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Abstract

The Papanicolaou (Pap) test or Pap smear is the primary screening test for cervical
cancer. It involves the microscopic examination of cells sampled from the cervix. Two
major factors affect the accuracy of the Pap test. The first is sampling error wherein
no diagnostic cells make it on to the slide. The other is interpretation error for reasons
including fatigue, inexperience, and habituation. Whilst computer-assisted interpreta-
tion can potentially address the issue of interpretation error it cannot address sampling
error. However the malignancy-associated change (MAC) phenomenon may offer a solu-
tion. MACs are subtle sub-visual changes in the appearance of otherwise normal-looking
cells from an abnormal Pap smear slide.

An essential first step in the development of an automated screener, based on MACs,
is robust automatic segmentation of free-lying cell nuclei in digitized Pap smear images.
This thesis presents and evaluates a fully automated algorithm for robustly detecting
and segmenting free-lying cell nuclei in bright-field microscope images of Pap smears.
The proposed novel segmentation algorithm makes use of grey-scale annular closings
to identify free-lying nuclei-like objects together with marker-controlled watershed seg-
mentation to accurately delineate the nuclear boundaries. The method was evaluated
empirically using images digitised from Pap smears sourced from the Regional Cancer
Centre in Thiruvananthapuram in India. The results show that the sensitivity and speci-
ficity of nucleus detection is 94.71% and 85.30% respectively, and that the accuracy of
segmentation, measured using the Dice coefficient, of the detected nuclei is 97.30±1.3%.

This thesis also presents and evaluates a set of novel structural texture features for
quantifying and classifying nuclear chromatin patterns in cells on a conventional Pap
smear. The experimental results demonstrate the efficacy of the proposed structural
approach and that a combination of the structural texture features and conventional
features can be used to discriminate between normal and abnormal slides with high
accuracy (0.954±0.019 AUC±SE ). They also demonstrate that it is possible to detect
MACs in Papanicoloau stain (which is not stoichiometric). This in turn suggests the
possibility of developing a fully automated Pap smear screener based on MACs.
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1
Introduction

C
ervical cancer is the third most diagnosed cancer and the fourth leading
cause of cancer death among women worldwide accounting for 9% of all ma-
lignancies among females in 2008 [1]. More than 85% of the cervical cancer
cases occur in developing countries where public health infrastructure does

not support Papanicolaou testing [1]. In countries with developed healthcare systems,
widespread cervical screening programmes, aimed at detecting precancerous changes that
can then be treated to prevent invasive cancer, have significantly reduced the number of
deaths from the disease. The Papanicolaou (Pap) smear, is the primary screening test
for cervical cancer. It has been largely responsible for diagnosing cancerous and precan-
cerous lesions in many developed countries [2]. There is compelling evidence showing
the efficacy of organised screening programmes based on performing the Pap smear test
every 3-5 years. In some of the Nordic countries the incidence of invasive cervical cancer
has declined by 80% since the introduction of organised screening programmes [3]. In
Sweden the incidence of cervical cancer has decreased by 65% during the last 40 years
but the incidence of invasive cervical cancer and cervical cancer mortality figures have
been rather stable over the last decade [4].

Fortunately, invasive cervical cancer takes years to develop from slowly progressing
precancerous lesions, thus enabling early detection through screening and diagnostic
tests. Currently screening by conventional cervical cytology (Pap smear test) remains
the principal global strategy to prevent invasive cervical cancer. However, the Pap smear
test has several shortcomings including: subjective nature (dependent on individual
interpretation), low sensitivity (i.e. ability to detect abnormal changes) and the need for
frequent retesting [5].

The remainder of the present chapter is organised as follows: Section 1.1 describes
the Pap smear test and discusses its shortcomings, and then presents the rationale for
automated screening of Pap smear slides and describes the problems inherent in current
automated screening systems. Section 1.2 then discusses a phenomenon known as ma-
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CHAPTER 1. INTRODUCTION

lignancy associated changes (MACs), which can offer a solution to the automated Pap
smear screening problem. The aim and objectives of the thesis are presented in section
1.3 and section 1.4 outlines the scope of the research. Finally, section 1.5 outlines the
structure of this thesis.

1.1 The Pap smear test

The Papanicolaou (Pap smear) test is the most cost-effective cancer prevention and
detection program ever invented [6]. It was devised by George N. Papanicolaou. In 1928
he first presented his findings that malignant cells from the cervix can be detected in a
small sample of cells collected from the cervix (vaginal smears) [7].

Over a decade passed before collaboration between Dr. Papanicolaou and Dr. Her-
bert Traut, a gynaecologist and pathologist, provided scientific evidence of the potential
of vaginal smears for the identification of cervical cancer and precancerous changes. Traut
provided Papanicolaou with a large number of clinical samples from female patients at
Cornell’s Hospital. Papanicolaou published a detailed description of pre-invasive cervical
lesions in his treatise, “Diagnosis of uterine cancer by the vaginal smear” [8] and in a
major paper [9].

The conventional Pap test is a simple procedure comprising the following steps [6]:

• A speculum is inserted into the vagina to widen the opening so that the cervix can
be viewed;

• Cells are sampled from inside and around the cervix using a swab, brush, or spatula;

• Cells are pressed on a glass slide and a fixative (preservative) is applied to preserve
the sample;

• The samples are stained to ameliorate the contrast in the specimen and highlight
the structural patterns to be analysed with a light microscope in a cytology labo-
ratory [10, 11].

Liquid-based cytology (LBC) is a new method for cellular sample preparation for
cytological tests. The main difference between LBC and the conventional Pap smear
is related to the underlying preparation technique [12]. The sample is collected in a
similar way to the Pap smear, but rather than smearing the cells onto a glass slide, the
cellular material is immediately rinsed into a preservative liquid solution. The sample
is then sent to the laboratory where special filtering techniques are used to remove non-
diagnostic materials such as mucus, pus and blood cells. In the next step, a thin layer
of cells is deposited onto a slide. Finally, the slide is examined under the microscope by
a cytologist in the same way as in the conventional smear test [12].

2 , Signals and Systems, Master of Science Thesis 2013



1.1. THE PAP SMEAR TEST

1.1.1 Shortcomings of the Pap smear test

It usually takes several days or weeks to prepare the final results of a Pap smear test.
Doctors and nurses sample the cervix and send the specimen to a pathology laboratory
for visual evaluation under a microscope [13]. The microscopic examination itself is
laborious and time-consuming involving the review of possibly hundreds of thousands of
cells for signs of cancer or precancer. It is not surprising therefore that 1 in every 10 to
20 positive cases is missed in routine screening [5].

Two major factors affect the accuracy of the Pap smear test. The first is sampling
error wherein no diagnostic cells make it onto the slide. This occurs when health care
providers fail to adequately sample the cervix (failing to sample precancerous/cancerous
cells when they are present). It also occurs when the precancerous/cancerous cells on the
collecting device do not make it onto the glass slide. The second factor affecting the ac-
curacy of the Pap smear test is interpretation error by the laboratory specialist (for any
of a number of reasons including fatigue, inexperience, and habituation). These short-
comings have motivated the research and development of automated screening systems
[5, 13].

1.1.2 Automated screening

Automated screening machines can analyse Pap smear slides in a short time without
fatigue, providing consistent and objective classification results. The rationale for auto-
mated screening is to improve the limitations of the conventional Pap smear test in the
following ways [14]:

• Increase the sensitivity1 and specificity2 of the Pap smear test;

• Decrease the workload of technicians and pathologists;

• Reduce the cost for cervical cancer screening programmes; and

• Lower the probability of incidence of cervical cancer and the mortality rate from
the disease.

At present there are two FDA-approved cervical cancer screening systems: BD Focal-
Point GS Imaging System (formerly known as TriPath AutoPap system) and HOLOGIC
ThinPrep Imaging System (formerly known as Cytyc Thin Prep Imaging System) [15].

The FocalPoint GS Imaging System works on LBC slides and any Pap stained con-
ventional smear. The machine scores and ranks the slides based on the likelihood of
abnormality and categorizes them into four groups: review, no further review (NFR),
process review and quality control (QC) review [15]. Among the analysed slides the NFR
group, which comprises up to 25% of the total qualified slides, can be archived without
human review. The ThinPrep AutoPap system, by contrast, can only work on ThinPrep

1The sensitivity measures the proportion of actual positives that are correctly classified.
2The specificity measures the proportion of negatives which are correctly classified.

, Signals and Systems, Master of Science Thesis 2013 3



CHAPTER 1. INTRODUCTION

LBC slides with a special stain which is nearly stoichiometric1 for DNA content. This
system automatically selects 22 field of view (FOV) images that are of diagnostic interest
for cytopathologists, from among a total of 120 FOVs acquired on each slide. These 22
FOVs must then be fully reviewed by a cytopathologist. The system provides no scoring
or ranking of the slides [15].

Whilst automated screening systems can reduce false negatives attributed to inter-
pretation errors, they cannot reduce false negatives due to sampling errors. Research
[16] suggests that a phenomenon known as malignancy-associated changes (MACs) may
offer a solution.

1.2 Malignancy associated changes (MACs)

The expression malignancy associated changes (MACs) was coined by Nieburgs et al.
(1959) [17]. They reported subtle changes in nuclei of apparently normal looking cells
“adjacent to or distant from malignant tumours” [18]. Research in the 1980s identified
sub-visual alterations in intermediate cells from cervical atypical smears [19].

The development of an automated screener based on detecting MACs can potentially
overcome the problem of sampling error because it is not necessary to perform an ex-
haustive review of all of the cellular material to identify diagnostic cells but rather to
look for subtle nuclear texture changes in a sub-population of cells sampled from the
slide.

Based on the available literature, the most effective MAC features seem to be tex-
tural features [20]. To date, most of the approaches for defining nucleus texture have
been based on stochastic approaches. However, the work of Mehnert [20] suggests that
an alternative structural approach to defining texture, which corresponds well to what
cytopatologists perceive from cell nuclei, is more effective to describe the chromatin2

distribution inside the nuclei.

1.3 Aim and objectives

The aim of this research was to fully explore the structural approach to chromatin pattern
description and to evaluate the efficacy of the features derived from it for discriminating
between normal and abnormal Pap slides. The research had the following objectives:

1. To develop a robust algorithm for detecting and segmenting cell nuclei in digitized
Pap smear images obtained using bright-field microscopy;

2. To develop structural texture features that quantitatively characterise the pattern
(arrangement, size, shape, etc.) of the nuclear chromatin;

1Stains for which the amount of stain uptake in the nucleus is proportional to the amount of DNA
are Stoichiometric stains.

2Chromatin is the combination of DNA and proteins that make up the contents of the nucleus of a
cell.

4 , Signals and Systems, Master of Science Thesis 2013



1.4. SCOPE

3. To determine the most discriminatory subset of features for discriminating between
normal and abnormal slides using real clinical data; and

4. To evaluate the performance of a classifier(s), based on the selected features, using
real clinical data.

1.4 Scope

As noted in section 1.3, MACs are subtle sub-visual alterations in the appearance of
normal looking cells from an abnormal Pap smear. The features which appear to have
the most discriminatory power are nuclear texture features [21]. These features reflect
chromatin structure and characterise the distribution of chromatin inside the nucleus.
The MAC approach to analysing Pap smear slides is conceptually straight forward (see
Figure 1.1). The process involves automatically capturing digital images of individual
FOVs from a Pap smear slide, identifying the location of nucleus like objects (scene
segmentation), segmenting the nuclei like objects in the image (nucleus segmentation),
extracting quantitative texture and other features for each nucleus and finally classifying
the slides as either normal or abnormal based on these features.

The proposed MAC-based cervical screening approach has the following steps:

1. Scanning the Pap-stained slide using a light microscope coupled with a CCD cam-
era with multiple objectives.

2. Capturing multiple images at different focal planes from interesting fields of view
(FOVs) on the slide.

3. Generating extended depth-of-field (EDF) images for each FOV. This involves
combining multiple focal planes for each FOV to obtain a single image where each
object is all in focus.

4. Locating and segmenting the free-lying cell nuclei in each EDF image, and per-
forming artefact rejection to make sure only nuclei-like objects are retained;

5. Segmenting the nuclear chromatin inside each nucleus into texture primitives (blobs);

6. Extracting features from this structural model to quantitatively characterise the
chromatin pattern;

7. Deriving slide-based features from the features in 6 in order to classify the slide as
normal or abnormal.

This thesis does not consider the slide scanning and FOV acquisition steps (steps 1
and 2).

, Signals and Systems, Master of Science Thesis 2013 5



CHAPTER 1. INTRODUCTION

Figure 1.1: Data acquisition and nucleus segmentation in an automated screening system.
(a) The cytometer1 scans the Pap-stained slide and captures scenes from the deposition
area on the slide in a predefined way. (b) The location of the cervical epithelial nuclei are
identified inside each microscope field of view. (c) Each nucleus-like object is then segmented
by defining its boundaries.

1The cytometer utilises a CCD camera mounted on a light microscope (fitted with a 40× objective
lens) to acquire 8-bit images of Papanicolaou-stained cells.

6 , Signals and Systems, Master of Science Thesis 2013



1.5. STRUCTURE OF THE THESIS

1.5 Structure of the thesis

This chapter has:

• Provided an overview of the Pap smear test, including its shortcomings, and dis-
cussed the rationale for automated screening of Pap smear slides.

• Described the malignancy associated changes (MACs) phenomenon and its rele-
vance to automated screening, in particular in addressing the problem of sampling
error.

• Defined the aim, objectives, and scope of this research.

The remainder of the thesis is organised as follows:

Chapter 2 This chapter presents two literature reviews pertinent to chapter 3 and
chapter 4. The first is a review of the cell and cell nucleus segmentation meth-
ods in Pap smear images published in the literature. The second is a review of
the texture features available in the literature devised to quantify chromatin tex-
ture/distribution.

Chapter 3 This chapter deals specifically with the problem of accurately and robustly
segmenting the cervical cell nuclei in digitized light microscopy images of Pap
smears. A novel algorithm is developed to detect and segment free-lying interme-
diate cell nuclei. The algorithm includes three main steps of locating the free-lying
nuclei, delineating nuclei and rejecting the artefacts. This chapter also presents
an empirical evaluation of the proposed segmentation algorithm for both detection
and delineation of free-lying nuclei in Pap smear images.

Chapter 4 This chapter deals with the problem of quantitative characterisation of chro-
matin texture and presents a set of novel structural texture features to describe
nuclear chromatin patterns in cells on a conventional Pap smear. These features
are derived from a segmentation of the chromatin into blob-like primitives. The
proposed set of features are, in particular, derived from statistics of morphometric
features and contextual features computed for these blobs.

Chapter 5 This chapter presents an evaluation of the performance of the proposed
structural chromatin texture features. In particular, it presents an investigation
of the most discriminatory subset of features, from among the proposed features
and a wide range of features drawn from the literature, for discriminating between
normal and abnormal Pap smears using the MAC approach. The chapter presents
the details of the two experiments carried out in this study. The first is a fea-
ture selection experiment performed to obtain the most discriminatory subset of
features. The second experiment is to evaluate the performance of a variety of clas-
sifiers built using the feature subset obtained in the first experiment to discriminate
between the normal and abnormal slides.

, Signals and Systems, Master of Science Thesis 2013 7



CHAPTER 1. INTRODUCTION

Chapter 6 This chapter reviews the work that is presented in this thesis and sum-
marises the major contributions and findings. In addition, it outlines the limita-
tions of the research undertaken, and proposes an avenue of future research.

The material presented in chapters 3, 4 and 5 have been published in the Proceedings of
the 2012 Annual International Conference of the IEEE Engineering in Medicine and Bi-
ology Society (EMBC 2012) [22] and the Proceedings of the 2013 SPIE Medical Imaging
Conference [23].
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2
Literature review

T
his chapter presents two literature reviews pertinent to chapter 3 and chapter 4.
The first is presented in Section 2.1. It is a review of the cell and cell nucleus
segmentation methods in Pap smear images published in the literature. The

conclusions motivate the method proposed in chapter 3. The second is presented in
section 2.2. It is a review of the standard texture features available in the literature
devised to quantify chromatin texture/distribution.

2.1 Review of existing methods for segmenting cells and
nuclei in Pap smear images

This section provides a review of the existing literature on the topic of automated de-
tection and segmentation of cells and cell nuclei in Pap smear images. The following
scientific databases were searched: IEEEXplore1, Inspec2, Medline3, ScienceDirect4. The
main keywords chosen were: Segmentation, cell segmentation, nuclei segmentation, Pap
smears. Image segmentation is the process of partitioning an image into sub-images
corresponding to the objects of interest and background. In general, automated segmen-
tation is one of the most difficult tasks in image processing. Numerous algorithms have
been published in the literature for segmenting cells and cell nuclei in microscopy images.
They can be categorized according to the primary underlying segmentation methodol-
ogy used: global and adaptive thresholding [24], watershed transform [24, 25], boundary
detection algorithms and deformable models [26, 27, 28], and edge enhancement based
techniques [29, 30]. These methods are summarized in table 2.1.

1http://ieeexplore.ieee.org
2http://www.engineeringvillage.com
3http://www.ncbi.nlm.nih.gov/pubmed
4http://www.sciencedirect.com
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CHAPTER 2. LITERATURE REVIEW

The basic methods underlying the existing cell and cell nucleus segmentation al-
gorithms mentioned in table 2.1 are presented in Appendix B. These methods employ
fundamental concepts and elements of mathematical morphology (see Appendix A).

An objective comparison between the performances of these methods is difficult,
either because no quantitative analysis of performance is provided or because widely
different evaluation methodologies (including data and methods) have been used. The
lack of information about how some parameters are derived further complicates the
assessment of these methods. Table 2.1 shows a detailed comparison of the cell and cell
nuclei segmentation methods in Pap smear images available in the literature.

The watershed approach to segmentation has proved to be a powerful and fast seg-
mentation technique for both object boundary delineation and region-based segmenta-
tion. Simplicity, speed and complete division of the image are the properties that make
the watershed transform a popular method for many different image segmentation appli-
cations. The method has been frequently applied to biological images and has produced
good results. Watershed-based methods have also been applied for segmentation of clus-
tered cell nuclei [25, 31]. However, these methods usually lead to over-segmentation.
In order to alleviate this issue, heuristic rules are defined (as a post-processing step) to
merge the over-segmented regions to produce the final segmented image. The alternative
approach is to use marker-controlled watershed, which effectively handles the problem of
over segmentation [32]. The method requires that the extracted markers represent true
cell nuclei. In the following chapter we present a novel algorithm for extracting markers
of candidate free-lying nuclei-like objects for subsequent marker-controlled watershed
segmentation to obtain the nucleus boundaries.
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2.1. REVIEW OF EXISTING METHODS FOR SEGMENTING CELLS AND NUCLEI IN PAP SMEAR IMAGES
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CHAPTER 2. LITERATURE REVIEW

2.2 Review of existing features devised to quantitatively
characterise chromatin distribution

This section presents a review of methods proposed for quantitative characterisation of
the distribution of chromatin; i.e chromatin texture.

2.2.1 Review of chromatin texture features

A taxonomy of features for cytometry (cell measurement) on microscope images can be
found in Appendix C. One class of features in this taxonomy are texture features. In
principle such features can be applied to any image object including a cell nucleus.

Two main approaches exist for describing the chromatin arrangement/texture in the
cell nucleus. The first approach, called the statistical approach, assumes that texture
is a realization of a stochastic process governed by a set of parameters [37] and charac-
terises the chromatin distribution by second or higher order statistics. In the other, the
structural approach, the chromatin distribution is assumed to be composed of primitives
that are arranged according to certain placement rules.

Traditionally MAC features have been based on a statistical approach to defining
texture. However such features do not correspond well to the terms used by cytopathol-
ogists to describe chromatin texture such as heterogeneity, granularity, margination,
condensation, compaction, clumping, diffuse, blobs and particles [20]. Another difficulty
is that these features are sensitive to changes in, or non-uniformity of, illumination and
staining. This motivates interest in a structural approach to chromatin texture analysis.

Several methods based on structural texture analysis have been proposed to detect
structural alterations of the nuclear chromatin. Beil et al. [38] proposed a dual ap-
proach to structural texture analysis for microscopic cell images by region or by lines.
In particular they describe the texture in terms of:

• the properties and the arrangement of regions; and

• the properties and the arrangement of lines.

Beil et al. [39] proposed a set of region texture features that corresponds to human
vision, such as: number of regions, number of large regions (size>threshold), number
of small regions (size<=threshold), number of regions at the boundary of the analysed
area, average size of region, etc. They also proposed features for line textures including
directionality and fractal dimension of line structures. Albregtsen et al. [40] presented
a structural texture analysis approach that “for each pixel in the image uses concepts
from adaptive filtering to find the neighbouring pixels that belong to the local texel”.
Thereafter, moment based features are extracted to characterise the grey level texel as
an object. Walker and Jackway [41] used features based on the statistics of geometrical
(SGF) attributes of connected regions developed by Chen et al. (statistical geometrical
features for texture analysis) to quantitatively characterise the chromatin in the nuclei
of Papanicolaou-stained cervical cells [41]. Mehnert [20] proffered a method, called the
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2.2. REVIEW OF EXISTING FEATURES DEVISED TO QUANTITATIVELY CHARACTERISE CHROMATIN

DISTRIBUTION

adjacency graph attribute co-occurrence matrix (AGACM) that combines both struc-
tural and statistical/stochastic aspects of texture for characterising both blob-like and
mosaic patterns (texture) in the plane.

The Cyto-Savant imaging system computes 116 nucleus features, which can be grouped
into 3 general categories: nuclear morphological features, chromatin texture, and DNA
content [42]. The measured texture features can be divided into statistical and struc-
tural groups. Chromatin distribution is statistically described by Markovian and non-
Markovian texture features, fractal texture and run length features. Discrete texture
features, however, reflect the structural aspect of chromatin distribution and are com-
puted by first segmenting the nucleus into regions of low, medium, and high optical
density. These regions are defined by two global thresholds. Discrete texture features
characterise the segmented regions by computing their size, shape, optical density, and
spatial distribution. Details of algorithms are described elsewhere [42].

, Signals and Systems, Master of Science Thesis 2013 13





3
Novel algorithm for segmenting

free-lying cell nuclei

T
he present chapter deals specifically with the problem of accurately and robustly
segmenting the cervical cell nuclei in digitized light microscopy images of Pap
smears. Given that the aim of the segmentation is to support MAC analysis,

the goal is not to segment every nucleus but rather to segment free-lying nuclei. These
are easier to segment and the nuclear texture is less likely to be affected by overlapping.
Based on the literature review in Section 2.1 we opted to develop our own novel algorithm
based on the marker controlled watershed transform for detecting and segmenting free-
lying intermediate cell nuclei.

The remainder of this chapter is organised as follows. Section 3.1 presents the high-
level description of the proposed algorithm. Section 3.2 presents the proposed marker
extraction algorithm corresponding to the first step of the segmentation algorithm. Sec-
tion 3.3 describes the implementation of the marker-controlled watershed algorithm for
segmenting and delineating the detected nuclei. Section 3.4 presents the artefact rejec-
tion strategy developed to discard segmented objects that are not nuclei. Section 3.5
describes the choice of features for the artefact rejection step. An empirical evaluation
of the performance of the proposed segmentation algorithm is presented in section 3.6.
Finally, section 3.7 summarises the chapter.

3.1 High-level description of the proposed algorithm

The proposed segmentation approach is conceptually a 3 step process (see Table 3.1):

1. Detecting or locating the objects of interest;

2. Delineating and labelling those objects; and
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CHAPTER 3. NOVEL ALGORITHM FOR SEGMENTING FREE-LYING CELL NUCLEI

3. Artefact rejection to ensure only desired objects are retained in the segmentation
results.

Table 3.1: The proposed algorithm to detect and segment free-lying intermediate cell nuclei

• Input: Grey-scale image containing a field-of-view (FOV) from a Pap smear
slide.

• Output: Binary image containing connected components, each corresponding
to a free-lying intermediate cell nucleus.

Steps:

1. Extract inner markers for free-lying nuclei-like objects (these locate the inte-
riors of candidate objects).

2. Apply the marker-controlled watershed transform on the FOV image with
respect to the inner markers (this yields an outer marker that lies between the
candidate objects).

3. Apply the marker-controlled watershed transform on the gradient image
with respect to the inner and outer markers (this yields the object bound-
aries/masks).

4. Compute the area and quantitative measures of shape and texture granularity
for each segmented nuclei-like object.

5. Reject objects that are too small or large to be intermediate cells, that do not
have an elliptical shape, and that do not have a granular texture.

3.2 Extraction of inner markers (step 1)

In Pap-stained cervical images, the cell nucleus appears darker than the rest of the cellu-
lar material. Approaches to finding a marker (connected component) within each nucleus
exploit this fact. Several candidate methods for extracting marker for nuclei were con-
sidered including: tophat transform [43], Jackway tophat [44], h-minima [45]. Appendix
D presents the basic methods underlying the existing nuclear marker extraction algo-
rithms. However, we found that none of these methods robustly detects free-lying nuclei.
Therefore, we developed a new nuclear marker extraction algorithm for this purpose.

The algorithm is based on the tophat transform defined in terms of an annular closing.
The grey-scale annular closing operator is defined

Ψanclo(f,B) = (f 	B) ∨ f (3.1)

16 , Signals and Systems, Master of Science Thesis 2013



3.3. MARKER-CONTROLLED WATERSHED SEGMENTATION OF THE DETECTED NUCLEUS-LIKE OBJECTS

(STEPS 2-3)

where f is a grey-scale image and B is a symmetric structuring element that does not
contain its origin. When annular closing is applied to a grey-scale image, isolated dark
spots will be removed. The tophat by annular closing, given by Ψanclo(f,B)− f , yields
the removed isolated dark spots. These spots serve as candidate cell nuclei markers [46].

The procedure is illustrated in Figure 3.1 for a single cervical cell and an annu-
lar structuring element. The control over the size and relative isolation of the nuclei
is achieved by changing the inner radius and outer radius of the annular structuring
element.

(a) (b) (c) (d)

Figure 3.1: Extracting an inner marker for a free-lying cell nucleus. (a) Original image.
(b) Grey-scale erosion with an annular structuring element. (c) Pixel-wise maximum of (a)
and (b). (d) Arithmetic difference between (c) and (a).

In order to detect a nucleus, an annular structuring element with an inner radius
larger than that of the nucleus is needed. The nuclei of normal intermediate and
parabasal cells measure approximately 8µm in diameter and may enlarge up to 15µm in
the case of malignant or rare benign disorders changes [47]. Hence, to detect all nuclei
within this range, a set of independent annular closings with structuring elements with
a range of inner diameters is needed. This is then the basis for the more sophisticated
inner marker extraction algorithm presented in Algorithm 1.

3.3 Marker-controlled watershed segmentation of the de-
tected nucleus-like objects (steps 2-3)

Marker-controlled watershed segmentation is used to delineate the boundaries of the cell
nuclei detected by the inner marker extraction algorithm. Rather than flooding from
the regional minima, as is the case for the traditional watershed transform, flooding
is initiated from the markers. The procedure for delineating the detected nuclei-like
objects is as follows. First, a watershed segmentation of the original image (f) with
respect to the inner markers is performed to obtain the outer marker. Next a watershed
segmentation of the gradient magnitude image with respect to the union of the inner
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markers and the outer marker is performed. The resulting watershed lines then delineate

Algorithm 1 Proposed nuclei inner marker extraction algorithm

Input: Grey-scale image (f), and parameters λ0, α,r1 and r2

Output: Inner markers binary mask (Xm) for free-lying nuclei-like objects.

1: Let B0 be a disk structuring element of radiusλ0

2: for λ = r1 → r2 do
3: Let Ban be an annular structuring element with inner and outer radii of λ and
λ+ α respectively.

4: g = Ψanclo(f,B)− f
5: X1 = g > 0
6: X2 = (X1 	B0)⊕B0

7: X = X ∪X2

8: end for
9: Xm = set of centroids of the connected components in X.

the nuclei-like objects. This idea is illustrated in Figure 3.2. The reason behind using
the gradient image is that the nuclei boundaries are located on high gradient points.
Therefore the watershed transform results in regions with boundaries corresponding to
those of the nuclei.

The gradient magnitude image can be quite noisy. For this reason, the original image
is median filtered to remove impulse noise (size of the kernel is selected to be 3× 3), its
magnitude of gradient is computed, and the result is Gaussian filtered.

There exist many different approximations for the computation of the magnitude
of the gradient of an image. Several approaches with similar results have been tested.
Among all these methods, the very simple and straight forward Gaussian derivative oper-
ator is used. The standard deviation of Gaussian filter is selected to be 0.9. The gradient
magnitude image is approximated by sum of the absolute values of the convolution of
the image with the vertical and horizontal Gaussian derivative operators.
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3.3. MARKER-CONTROLLED WATERSHED SEGMENTATION OF THE DETECTED NUCLEUS-LIKE OBJECTS

(STEPS 2-3)

(a) Watershed segmentation of the original image with respect to the inner markers (shown as disks)
yielding the outer marker.

(b) Gaussian filtered gradient magnitude of the median-filtered original image in (a).

(c) Watershed segmentation of (b) with respect to the union of the inner markers and the outer
marker.

Figure 3.2: Segmentation of the detected nuclei-like objects.
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3.4 Artefact Rejection (steps 4-5)

The presence of overlapping cells, overlapping and/or folded cytoplasm, blood and cellu-
lar debris presents a formidable challenge for nuclei segmentation [21]. Ensuring that the
segmented objects are nuclei of cells relevant for MAC analysis is essential. The artefact
rejection strategy is based on the size, shape and granularity of the objects. Quantitative
measures of the area, elliptical shape, and the texture/granularity are computed for each
segmented nucleus-like object.

3.4.1 Size criterion

The squamous epithelium of the female genital tract is composed of three principal layers
[47]: the basal cell layer (immature), the intermediate cell layers, and the superficial
cell layers (most mature) (see Figure 3.3). As the cell maturation progresses toward
the surface, the amount of cytoplasm per cell increases [47]. The nuclei of superficial
cells are pyknotic and considerably smaller than intermediate and parabasal cells with
a nuclear diameter of about 4µm [47]. In a normal Pap smear usually only the upper
few layers of the squamous epithelium are removed and so the immature cells near the
base of the epithelium are not sampled [16]. Given that the aim of the algorithm is to
detect intermediate cell nuclei (presenting a fine network of chromatin and chromocenters
suitable for further MAC analysis), a threshold value can be defined to remove the
superficial cell nuclei from the segmentation result.

The nuclei of normal intermediate cells ranges approximately between 8µm to 15µm
in diameter and are oval-shaped [47], accordingly the minimum area can be defined.
The minimum area is deemed to be the area of a circle with radius rmin. This artefact
rejection step removes not only the superficial squamous cell nuclei but also many of the
small objects belonging to image artefacts.
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3.4. ARTEFACT REJECTION (STEPS 4-5)

Figure 3.3: Cells of the squamous epithelium (freehand adaptation of Koss (2006, Figure
5-4)).

3.4.2 Shape criterion

Nuclei of the intermediate cervical cells are elliptical in shape [47]. To assess whether
a candidate nucleus object is elliptical, the elliptic variance feature is computed. Some
other features we looked at to fulfill the shape criterion are Danielsson’s G shape fac-
tor, ellipticity, elliptic variance and Dice-area (see Appendix E). The elliptic variance
descriptor (Evar) [48] measures how closely the borders of the fitted ellipse agree with
those of the segmented object (see Figure 3.4).

The simplest way to generate a signature for coarseness of the boundary of an object
is to compute the radial distances of the object boundary from the object centroid.
Suppose g = [gx, gy]

T is the centroid of the object and object boundary has N data
points pi = (xi, yi)

T . The covariance matrix of the data points is calculated using:

C =
1

N

N∑
i=1

(pi − g)(pi − g)T

Then the radial distances (d′i) of boundary points from the centroid are calculated as:

d′i =
√

(pi − g)T ·C · (pi − g)
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Figure 3.4: Ellipse fitting to an arbitrary shape

The mean (µ′R) and standard deviation (σ′R) of the radial distances over all boundary
points are:

µ′R =
1

N

N∑
i=1

(d′i) and σ′R =

√√√√ 1

N

N∑
i=1

(di − µ′R)2

and finally Evar is defined:

Evar =
σ′R
µ′R

(3.2)

It should be noted that for elliptical objects Evar is close to 0.

3.4.3 Texture criterion

The feature chosen to measure the degree of the granularity of the texture in a nucleus
is the Tamura coarseness feature. Tamura [49] devised a texture model corresponding to
visual perception. It is useful and robust in the sense that it does not depend directly on
the exact grey-levels in the object and so has robustness to non-uniformity of illumination
and staining variations (provided that these do not greatly affect the size and number
of texture primitives). The Tamura coarseness aims to pick the biggest size where the
texture is present. The primitive elements (textures) are larger in size but smaller
in number for a coarse texture, while a fine texture contains a large number of small
primitives. The computational procedure can be summarized in the following steps.

1. Take averages at each pixel (x,y) over neighbourhoods whose sizes are powers of
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3.4. ARTEFACT REJECTION (STEPS 4-5)

two 2k × 2k.

A (x,y) =

x+2k−1−1∑
i=x−2k−1

y+xk−1−1∑
j=y−2k−1

f(i,j)

22k
(3.3)

where f(x,y) is the grey-level at (x,y). The averaging procedure at different levels
is depicted in figure 3.5.

Figure 3.5: Computing averages at different scales

2. At each pixel, take the absolute difference between pairs of non-overlapping aver-
ages on opposite sides of the point in both horizontal and vertical directions. The
difference in the horizontal case is:

Ek,h(x,y) =
∣∣∣Ak(x+ 2k−1,y)−Ax(x− 2k−1,y)

∣∣∣ (3.4)

3. At each pixel, pick the best size of k which maximizes the difference Ek(x,y) in
either direction and set the best size to Sopt(x,y) = 2k.

4. Calculate the coarseness measure by taking the average of Sopt over the entire
image:

Fcrs =
1

m× n

m∑
i

n∑
j

Sopt(i,j) (3.5)

Where, m and n are the width and height of an image, respectively.

Figure 3.6 shows 6 images of cell nuclei with their corresponding Tamura coarseness
measures.

, Signals and Systems, Master of Science Thesis 2013 23



CHAPTER 3. NOVEL ALGORITHM FOR SEGMENTING FREE-LYING CELL NUCLEI

a b c

d e f

Figure 3.6: Measure of Tamura coarseness for 6 different cell nuclei.

Cell nuclei a b c d e f

Coarseness measures 9.10 9.52 9.56 10.41 10.72 10.9

(a) (b)

Figure 3.7: Two examples of artefacts rejected by the Tamura coarseness feature.
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3.4. ARTEFACT REJECTION (STEPS 4-5)

Figure 3.8: Two sample FOVs from a Pap smear slide. Twelve samples of the segmented
objects before the artefact rejection step are highlighted. The quantitative measures of shape
and granularity for these objects are in Table 3.2
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Table 3.2: Shape and granularity features for 6 different cell nuclei.

No Cell Nuclei Area Evar fcourse

1 480 0.031 9.48

2 331 0.69 8.79

3 924 0.07 11.95

4 740 0.043 12.23

5 1325 0.033 10.13

6 390 0.104 10.13
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Table 3.3: Shape and granularity features for 6 non-nuclei artefacts.

No Artefacts Area Evar fcourse

7 311 0.1138 10.78

8 460 0.129 11.10

9 392 0.072 9.80

10 336 0.137 9.31

11 288 0.109 12.80

12 464 0.209 11.81
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3.5 Empirical evaluation of the proposed segmentation al-
gorithm

It was noted in the review in section 2.1 that many of the proposed segmentation al-
gorithms have not been formally empirically evaluated. Herein we present an empirical
evaluation of our proposed method relative to expert manual segmentation.

3.5.1 Image data

The data used in this study is a subset of 889 fields of view (FOVs) captured by a
cytopathologist from 68 Pap smear slides. Each FOV was acquired using a CCD camera
mounted on a light microscope. The images were captured with a 40× objective lens.
Each FOV image is of size 1024 × 1344 pixels with square pixels of size 0.25µm. The
grey-scale resolution is 8 bits per pixel.

3.5.1.1 Ground truth generation

Eleven slides, each containing a minimum of 100 non-superficial cervical cell nuclei, were
randomly selected from among the 68 slides. For each slide three FOVs were randomly
selected to yield a total of 33 FOVs.

Two graphical user interfaces (GUI) were developed to permit a user to review each
FOV and to place a marker on individual nuclei and also trace the boundary of nu-
clei. These two GUIs were designed specifically for the two purposes of marking and
manual border delineation of cell nuclei (see Figures 3.9 and 3.10). They provide the
following functions: cell nuclei marking function (by clicking within the nucleus area),
border delineation function (using the mouse to trace the cell nuclei boundaries) and a
measurement tool for checking the desired particles within the image. Figures 3.9 and
3.9 show two GUIs designed and used for ground truth generation.

Three untrained subjects were recruited to independently review the FOVs using
the GUI and to mark each free-lying nucleus. Prior to performing this task each was
shown examples of intermediate cell nuclei in another FOV (not one of the 33 FOVs they
had to review). Each subject was specifically instructed to mark elliptical objects, of
approximately the right size, with a well-defined boundary, and with a granular texture.
The set of all objects selected by at least two of the three subjects were taken to be the
ground truth for free-lying intermediate cell nuclei. Two image analysis experts (authors)
then used the GUI to independently trace the boundary of each ground truth nucleus.
These manual segmentations were taken to be the ground truth for the boundaries of
the free-lying intermediate cell nuclei.
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3.5. EMPIRICAL EVALUATION OF THE PROPOSED SEGMENTATION ALGORITHM

3.5.2 Method and Experiment

The proposed segmentation algorithm was applied to the 33 FOV images. The param-
eters for different steps of the algorithm were selected after several experiments on a
small subset of images independent of the 33 selected FOV images. The minimum and
maximum values of the inner radius (r1 and r2) of the annular structuring elements (see
algorithm 1) were set to 22 and 33 pixels. The values were selected based on the nucleus
diameter range for the intermediate cell nuclei defined by Koss [47]. The outer radius
of each annulus was set to be two pixels more than the inner radius (i.e. α = 2) to
guarantee the extraction of inner markers of the adjacent free-lying nuclei. Finally the
size of the disk-structuring element (λ0) was set to 3 pixels (for noise removal).

The parameters for the artefact rejection step were also tuned on an independent data
set. Based on the defined size range of intermediate cell nuclei in [47], the threshold value
of 400 for segmented regions was selected for artefact rejection (The minimum area is
deemed to be the area of a circle with radius rmin). The threshold value of 0.095 and
13.2 were selected, respectively, for the elliptic variance and Tamura coarseness features.

Objects selected by the algorithm were compared to the ground truth nuclei obtained
manually and used to compute the sensitivity and specificity of the algorithm for the
detection of free-lying intermediate cell nuclei.

The accuracy of segmentation by the proposed algorithm for each detected mask was
assessed through comparison of the boundaries of the segmented object to the two cor-
responding boundaries (boundaries traced by two experts) in the ground truth datasets.
The similarity between pairs of masks and the similarity is computed. More specifi-
cally the similarity between pairs of masks was computed in terms of the Dice similarity
coefficient (DSC) scores defined by equation E.3.

3.5.3 Results

The sensitivity and specificity of the algorithm for the detection of free-lying interme-
diate cell nuclei is 94.71% and 85.3% respectively. Box-plots of the DSC scores for the
comparison of the proposed automatic segmentation to the two manual segmentations,
and for the comparison between the two manual segmentations are shown in Figure 3.11.
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Figure 3.11: DSC scores for the comparison of the proposed automatic segmentation to the
two manual segmentations, and for the comparison between the two expert segmentations
(GT1 and GT2).

The agreement between the algorithm and the two manual segmentations is 97.30±
1.35% and 96.96 ± 1.7% respectively (mean DSC±standard deviation). The overall
agreement between the two expert segmentations is 97.26± 1.2% .

3.5.4 Discussion

The sensitivity of the algorithm to the detection of free-lying intermediate cell nuclei is
remarkably high. However its specificity, whilst still quite high, could be improved. A
review of false positives indicates that some of them are due to segmentation failures
as the result of severe background noise and artefacts. However other apparent failures
in fact represent genuine free-lying nuclei overlooked by the three recruited subjects.
Understanding the reasons for an algorithm’s failure modes can be used to improve its
robustness. The main failure modes responsible for detection of false positive cases are
discussed bellow.

The DSC scores for boundary delineation evaluation (see Figure 3.11) show that
nuclei boundaries obtained using the marker-controlled watershed transform are highly
accurate and consistent with the two experts’ visual perception of the intermediate cell
nuclei boundaries.

3.5.4.1 Failure modes

In the experiment 111 false positive cases were detected. In many of the cases the false
positives are visually similar in appearance to a real nucleus. Therefore the marker
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detection algorithm extracts them as a nucleus-like object. The aim of the artefact re-
jection step is to discard a segmented artefact. The ellipticity and size features effectively
eliminate any object with an irregular size or shape. After reviewing the false positive
we discovered we concluded that the Tamura coarseness feature, whilst quite effective
in most cases, did not reject some of the artefacts as expected. Figure 3.12 shows two
such cases. The results suggest that other features be considered in future to improve
the specificity.

(a) (b)

Figure 3.12: (a) and (b) show two examples of false positive detection by the algorithm.

There were very few cases where there was no marker for a nucleus. Among the total
755 nuclei present in our database, the algorithm did not produce any marker for 14
nuclei. This basically happens when the nucleus is surrounded by many other objects,
especially when the adjacent objects have considerably lower intensity compared to the
the nucleus. An example of this type of failure is depicted in Figure 3.13a. All the other
nuclei markers were successfully extracted and no multiple seeds for a single object were
detected. The other mode of failure was due to inaccurate border delineation by the
watershed algorithm. This happens when there is very weak gradient information on
the boundary of the nucleus (see Figures 3.13b and 3.13c). A total of 6 nuclei were
missed due to watershed failure. Finally the particular thresholds defined for artifact
rejection features were responsible for eliminating some of the true segmented free-lying
nuclei. First of all the size feature has caused the rejection of the some of the segmented
nuclei that have slightly lower size than the predefined threshold. The ellipticity and the
Tamura coarseness features were responsible for discarding the rest of the true segmented
nuclei. Overall, 20 segmented regions that were truly segmented were rejected by the
artefact rejection features. Figure 3.14 shows some examples of these failure modes.
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(a) (b) (c)

Figure 3.13: Examples of missed nuclei due to presence of background noise surrounding
the nucleus and watershed transform failure: (a) The marker extraction algorithm has failed
to provide a marker for the nuclei. (b) Example of failure of the morphological watershed
technique because of sharp edge information inside the object, as seen in the gradient image
(c)

(a) (b) (c) (d)

Figure 3.14: Examples of missed nuclei due to unsuitable choice of parameter values: (a)
and (b) The two objects have approximately the same size, however, the segmented nucleus
has a size slightly above the threshold value while the size of the other nucleus is slightly
below, hence discarded as an artefact. (c) and (d) Example of an accurately segmented
object which was discarded as an artefact in the artefact rejection step. This is because the
value for Tamura coarseness feature of this nucleus is lower than the defined threshold value.

3.6 Summary

This chapter presented a new algorithm for segmentation of free-lying cell nuclei in Pap
smears. The novelty of the algorithm stems from a robust marker selection method for
selecting candidate free-lying nuclei-like objects for subsequent marker-controlled water-
shed segmentation to obtain the nuclear boundaries. The algorithm also implements
artefact rejection based on size, shape, and nuclear granularity to ensure only the nuclei
of intermediate squamous epithelial cells are retained. In addition, this chapter presented
an empirical evaluation of the performance of the algorithm and discussed the results.
The sensitivity and specificity of the algorithm to the detection of free-lying intermediate
cell nuclei together with the accuracy of the segmentation of each nucleus detected by
the algorithm were presented.
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4
Texture features characterising

chromatin distribution

T
his chapter is concerned with the quantitative characterisation of the texture of
chromatin. A review of chromatin texture features proposed to date was presented
in chapter 2. A novel set of structural chromatin texture features are presented

in this chapter. These are derived from a segmentation of the chromatin into blob-
like primitives. By considering each of the chromatin particles as individual regions
(objects), many features can be extracted that describe the distribution and arrangement
of those particles. This is the structural way of describing texture where the texture is
characterised by a description of its primitives and placement rules [20].

Using the segmented chromatin particles, two sets of features can be measured: Fea-
tures that solely characterise the blob-like particles in terms of measurements such as
area, perimeter, dynamics, etc. and features that characterise the spatial relationships
existing between the chromatin particles.

The remainder of this chapter is organised as follows. Section 4.1 presents the utilised
chromatin segmentation algorithm. Section 4.2 presents the proposed structural texture
features to characterise chromatin texture/distribution. Finally, Section 4.3 summarises
the chapter.

4.1 Chromatin segmentation

Chromatin is the material in the cell nucleus consisting of DNA and associated proteins.
It is so-named because of its ability to take on stain. In a Pap smear nuclear chro-
matin is visualised under light microscope as a mosaic of interchanging light and dark
regions within the nucleus (dark and light regions with high and low optical density1,

1The optical density also called extinction of a material is the logarithmic ratio of the incident
radiation to the transmitted radiation through that material.
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respectively). Regions of high optical density are well defined as particles [50].
The method chosen to segment the chromatin is proposed by Mehnert [20]. It can

be used to segment the dark and light particles (blobs) in a grey-level image of nucleus.
The grey levels in the image can represent either the intensity or optical density. Figure
4.1 shows a representation of a nucleus as a topographic relief. The dark particles or
chromatin blobs correspond to valleys and light particles correspond to mountains. In
a typical topographic relief, the valleys are associated with minima and the mountains
are associated with maxima.

Regional Maxima

Regional Minima

Figure 4.1: Representation of a cervical cell nucleus as a topographic relief (grey-level
represents height).

The chromatin segmentation algorithm proposed by Mehnert [20] has the following
steps:

1. Locating the regional minima;

• Applying a 3x3 median filter (to attenuate impulse noise);

• Up-sampling by a factor of 3 (to facilitate the rendering of watershed lines in
a subsequent step);

• Locating the regional minima (inner markers).

2. Computing the watershed transform of the filtered image with respect to the inner
markers (to produce an outer marker that delineates a zone of influence around
each regional minimum); and

3. Computing the magnitude of gradient image for the filtered image; and

4. Applying the watershed transform to the gradient image with respect to both the
inner markers and the outer marker (to delineate each dark chromatin blob).

Figure 4.2 shows examples of the segmentations produced by this algorithm. Light
particles can also be obtained by applying the algorithm to the negative of the image.
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(a) (b) (c) (d)

Figure 4.2: Chromatin segmentation. (a) Original image of cell nucleus. (b) Watershed
transform of (a) with respect to regional minima (inner markers) yielding the outer marker.
(c) The morphological gradient image of (a). (d) Watershed segmentation of (c) with respect
to the union of the inner markers and the outer marker.

4.2 Proposed structural texture features

In this section we present a novel set of structural chromatin texture features derived
from a segmentation of the chromatin. By considering each of the chromatin particles as
individual regions (objects), many features can be extracted that describe the distribu-
tion and arrangement of those particles. Using the segmented chromatin particles, two
sets of features can be measured: features that characterise the spatial relations exist-
ing between the chromatin particles and features that solely characterise the blob-like
particles through measurements such as area, perimeter, dynamics, etc.

4.2.1 Graph-based features

The graph-based features are derived from ordinary delaunay graph (the dual of the or-
dinary Voronoi diagram), several graphs related to the area-Voronoi diagram–generalised
Delaunay graph, generalised Gabriel graph, generalised relative neighbourhood graph,
and the generalised minimum spanning tree–and from the area-Voronoi diagram itself.
These graphs describe different adjacency relationships between the chromatin particles.
Formally, a graph is represented by G = (V,E) where V is called the vertex set and E is
the edge set of the graph. Vertices correspond to particles and edges denote adjacency
(see [51] for details concerning the computation of the graphs).

Our proposed graph-based features can be categorised into 6 groups: Delaunay graph
based features, features based on the area-Voronoi diagram, features based on the gen-
eralised Delaunay graph drived from the area-Voronoi diagram, generalised Gabriel and
relative neighbourhood graph based features, and finally features based on the gen-
eralised minimum spanning tree. Definitions and basic geometric properties of these
graphs can be found in [51]. Figure 4.3 shows the area-Voronoi diagram constructed
by computing the watershed transform of the Euclidian distance transform of the seg-
mented chromatin particle masks and the generalised Delaunay graph derived from the
area-Voronoi diagram.

Figure 4.4 shows the graphs drived from the area-Voronoi diagram. The generalised
Delaunay graph (DG) is obtained directly from the area-Voronoi diagram. Generalised
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(a) (b) (c) (d) (e)

Figure 4.3: Illustration of how the area-Voronoi diagram and generalised Delaunay graph
are computed. (a) Segmented chromatin particles superimposed on the original nucleus
image. (b) Euclidian distance transform of the set complement of the union of the chromatin
particle masks in (a). (c) Area-Voronoi diagram. (d) The area-Voronoi diagram clipped to
the nuclear mask. (e) The region adjacency graph defined on the Voronoi regions then
defines a generalised Delaunay graph.

Gabriel graph (GG), generalised relative neighbourhood graph (RNG), and generalised
minimum spanning tree (MST ) are all obtained as sub-graphs of the generalised Delau-
nay graph. In particular the generalised Delaunay graph is treated as an ordinary De-
launay graph, with vertices now corresponding to particle centroids, and the sub-graphs
are obtained by removing select edges. This means that they each have the same vertices
and the edges satisfy MST ⊆ RNG ⊆ GG ⊆ DG. Several features can be computed
from the area-Voronoi diagram and associated graphs to quantify the arrangement of the
chromatin particles inside the nucleus. Features extracted from the Delaunay, Gabriel
and relative neighbourhood graphs measure the distances between chromatin particles
and describe variations in the connectivity of the nodes. Voronoi-based features describe
the shape and size of the Voronoi polygons/regions. The minimum spanning tree con-
nects all the vertices in a given graph in a way that the sum of the edge lengths are the
minimum possible.

(d )(c)(b )(a)

Figure 4.4: Graphs derived from the area-Voronoi diagram. (a) the generalised Delaunay
graph (b) the generalised Gabriel graph (c) the generalised relative neighbourhood graph
(d) the generalised minimum spanning tree. See the text for details.
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4.2.2 Margination features

Our margination features characterise the distances of the segmented chromatin blobs
to the nucleus boundary. Six of these features are computed from the cookie-cutting-
distance [20] illustrated in Figure 4.5. The slopes of the cumulative frequency curve of
the cookie-cutting-distance at the 25th and 37th percentiles are calculated (M1 and M2)
as two measures of margination for each nucleus1.

Two other features for characterising margination are derived by computing the mean
and standard deviation of the distances in the cookie-cutting-distance image (M3 and
M4). These two features also include information about the size of the nucleus, which is
an indicator of the state of cell in certain disease processes [52]. In addition, features M3
and M4 are both normalized to the maximum value of the nucleus boundary distance
transform to yield pure measures of margination (M5 and M6). One additional feature
is the mean of the minimum distances between the geometrical centres of chromatin
particles and the nucleus boundary (M7).
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Figure 4.5: Illustration of how the margination features M1 and M2 are computed.
(a),(e) Segmented chromatin particles. (b),(f) Euclidean distance transform of the nucleus
boundary. (c),(g) Portions of (b),(f) cut out by the segmented chromatin particle masks.
This is called cookie-cutting-distance. (d),(h) Slope of the cumulative frequency curve of
the cookie-cutting-distance at the 37th percentile.

4.2.3 Clustering features

Four quantitative measures for chromatin particle clustering are proposed. For the first
measure, the distance transform of the area-Voronoi diagram circumscribed by nucleus

1These percentiles were chosen empirically using the cell images that were not used in the empirical
evaluation described in the next chapter.
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boundary is calculated. Portions of the resultant image are cut out by the segmented blob
masks. Afterwards, the cumulative frequency histogram of this image is constructed and
then the slopes of the cumulative frequency curve at the 25th and 37th percentile2 are
calculated to give the first two measures C1 and C2. Features C3 and C4 are computed
from the area-Voronoi diagram and the distance transform image used in its construction
(Figure 4.7a and 4.7b) as follows. Firstly for every pair of Voronoi regions that share
a common edge, the convex hull is computed for the union of the corresponding pairs
of particles. Secondly the union of these convex hulls is filled to form a binary mask
(Figure 4.7d). Thirdly this mask is intersected with the divide lines of the area-Voronoi
diagram (Figure 4.7e). Finally features C3 and C4 are the mean and standard deviation,
respectively, of the distance transform values corresponding to the residual divide line
pixels in this intersection (Figure 4.7f).
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Figure 4.6: Illustration of how the features C1 and C2 are computed. (a),(e) Area-
Voronoi diagram and segmented chromatin particles. (b),(f) Distance transform of the
Voronoi regions. (c),(g) Portions of (b),(f) cut out by the segmented chromatin particle
masks. (d),(h) Slope of the cumulative frequency curve of the distances in (c),(g) at the
37th percentile.

2See footnote 1.
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Figure 4.7: Illustration of how the features C3 and C4 are computed. (a) Segmented
chromatin particles. (b) Distance transform of the set complement of the union of the
chromatin particle masks. (c) Area-Voronoi diagram. (d) Binary mask (with particles
superimposed) formed from the union of the convex hulls (see the text for details). (e)
Voronoi region divide lines clipped according to the mask in (d). (f) Frequency histogram
of the distance transform values corresponding to the residual divide line pixels in (e).

4.2.4 Contextual chromatin particle features

Contextual features provide information based on object-object or object-scene interac-
tions. The information related to the segmented chromatin blobs can be integrated with
the higher level contextual information. For example, the area ratio of each chromatin
particle to its watershed ZOI captures information about object area as well as back-
ground contextual information. Table 4.1 lists the contextual chromatin particle features
measured in this study.

4.2.5 Statistics of chromatin particle morphometric features

Morphometric features describe the geometry (shape, size, position and boundary) of
the chromatin blob and are computed from its binary mask. By computing the mean
and standard deviation of the extracted features for all the blobs inside a nucleus, a
structural texture measure for the nucleus is obtained.
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Table 4.1: Summary of the extracted nucleus features

Morphometric Features

Area, perimeter, mean-radius, elliptic variance [53]

Densitometric Features

Photometric features [54]: Integrated optical density (IOD), mean optical density (MOD), variance

of optical density, skewness of optical density, kurtosis of optical density

Texture Features

S
ta

ti
st

ic
a
l

Fractal texture features [42]: Fractal area 1, fractal area 2, fractal dimension

Run length features [55]: SRE, LRE, GLN, RLN, RP, LGRE, HGRE, SRLGE, SRHGE, LRLGE, LRHGE

Histogram based features [42]: Mean, standard deviation, and skewness of the grey-level histogram

GLCM features [54]: Contrast, correlation, energy, entropy, local homogeneity, maximum probability, cluster

shade, cluster prominence and information measure of correlation (H-IMC1, H-IMC2)

Complex Daubechies wavelet features of nuclei [56]: Mean, standard deviation, and skewness of the grey-

level histogram. GLCM features – contrast, correlation, energy, entropy, local homogeneity, maximum probability,

cluster shade, cluster prominence and information measure of correlation (W -IMC1, W -IMC2)

Statistics of the chromatin particle morphometric features

Mean of chromatin particle areas and perimeters, mean of chromatin particle areas normalized to the nucleus area,
mean of chromatin particle perimeters normalized to the nucleus perimeter, chromatin particle compactness (P2A)

Contextual chromatin particle features

S
tr

u
c
tu

ra
l

Margination: M1, M2, M3, M4, M5, M6, M7 (See section 4.2.2) Clustering: C1, C2, C3, C4 (See section 4.2.3)

Blob features: Heterogeneity (the ratio between the area of the segmented dark and light regions, and the nucleus

area) [52], the ratio between the area of the segmented dark regions and the nucleus area, number of segmented dark

particles, number of segmented light particles, area ratio of each chromatin particle to its watershed ZOI, average

distance between the geometrical center of the nucleus and pixels of all chromatin particles, distance between the

geometrical center of the nucleus and center of mass of the chromatin particles

Discrete texture features [42, 57]: Medium and high DNA amount, medium and high DNA area, medium and

high DNA compactness, medium-high DNA compactness, center of gravity (the distance from the geometrical center

of the blob to the center of gravity of the optical density function)

Area-Voronoi diagram: Mean and standard deviation (SD) of the areas of the Voronoi regions, mean and SD of

the areas of the Voronoi regions normalized to the nucleus area, area disorder [55], Voronoi regions roundness [55],

mean of area ratio of each chromatin particle to its Voronoi region [55]

Delaunay graph and generalised Delaunay graph: Mean of the Delaunay triangle areas, mean and SD of

the Delaunay edge lengths, average of the mean and SD of the edge lengths connected to each vertex (chromatin

particle), maximum Delaunay edge length, mean of the number of connections per chromatin particle, number of

vertices (chromatin particles) on the graph boundary

Gabriel graph and relative neighbourhood graph: Mean and SD of the graph edge lengths, maximum edge

length, average of the mean and SD of the graph edge lengths connected to each vertex (chromatin blob), mean of

the number of connections per vertex (chromatin blob)

Minimum spanning tree: Mean and SD of the edge lengths, total edge length, edge disorder [55], minimum to

maximum edge ratio, mean of the number of connections per vertex, percentage of vertices connected to one vertex

(MST1), percentage of vertices connected to two vertices (MST2), percentage of vertices connected to more than

two vertices (MST3)
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4.3 Summary

The chapter presented a set of novel structural texture features for quantifying nuclear
chromatin patterns in cells on a conventional Pap smear. The features are derived from
an initial segmentation of the chromatin into blob-like texture primitives. Several new
features were introduced to quantify the qualitative description of chromatin used by
cytoprofessionals, such as margination and clustering, using an structural approach to
texture analysis requiring an initial segmentation of chromatin.
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5
Evaluation of the proposed

texture features for screening Pap
smear slides

T
his chapter presents an empirical evaluation of the performance of the structural
chromatin texture features proposed in the previous chapter. In particular two
experiments, using clinical Pap smears sourced from the department of pathol-

ogy, Regional Cancer Centre (RCC), Thiruvananthapuram in India, are detailed. The
first is a comprehensive feature selection experiment that sought to determine the most
discriminatory subset of features, from among the proposed features and features drawn
from the literature, for discriminating between normal and abnormal smears. The sec-
ond is a classification experiment that sought to evaluate the performance of a variety of
classifiers, built using the feature sets obtained in the first experiment, for discriminating
between normal and abnormal slides on the basis of only normal-appearing cells.

The remainder of this chapter is organized as follows. Section 5.1 presents the image
data used in the experiments. Section 5.2 details the feature selection methods considered
in this study. Section 5.3 details the first experiment carried out to obtain the most
discriminatory subset of features. Section 5.4 then details the second experiment.

5.1 Pap smear images and ground truth

The image data used in this study originate from a set of 68 conventional Pap smear slides
sourced from the Regional Cancer Centre (RCC), Thiruvananthapuram in India. Each
slide was reviewed by a cytopathologist and assigned a cytological diagnosis according
to the Bethesda system [58]. The cytopathologist subsequently acquired representative
FOVs from each slide. In the case of abnormal smears this included FOVs with and
without diagnostic cells. The cytopathologist also labelled individual cells in each FOV
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accordingly. The FOV images were acquired using a monochrome CCD camera mounted
on a light microscope with a 40× objective lens with a numerical aperture of 0.95. Each
image has a grey-scale resolution of 8 bits per pixel and is of size 1024×1344 pixels with
square pixels of size 0.25µm.

5.2 Feature selection methods considered in this study

5.2.1 The curse of dimensionality and the need for feature selection

The first step in designing a classifier is to have a dataset for training and evaluating
the performance of the classifier. It is unequivocal that this data must contain represen-
tative observations from each class, and that the sample size determines the number of
features required to build a classifier to discriminate between different classes [59]. As
illustrated earlier in the chapter 4, a wide range of features can be computed and those
can be used for building the classifier. However, increasing the number of features to
build a classifier tends to increase the misclassification error. In addition, the prediction
variability increases and the classifier becomes very sensitive to the outliers. Hence, there
would be no guarantee for the designed classifier to have roughly the same classification
performance on a new data set [59].

It is important to point out that building a classifier with too many features on a too
small training dataset can lead to a “perfect” classification performance on the training
dataset, but very poor performance on unseen test data.

Feature selection is a dimensionality reduction process, which aims to select an opti-
mum subset of features from the original potentially discriminating set of features. There
are two main reasons for using feature selection. First of all, irrelevant and redundant
features are detrimental for machine learning algorithms. For a given fixed number of
training samples, the predictive power of the classifier decreases as the dimensionality
increases. Feature selection techniques are intended to avoid the curse of dimensionality
by removing irrelevant and redundant features. Secondly, feature selection techniques
greatly reduce the measurement and computational cost of classifying high-dimensional
data [59].

The appropriate selection of relevant feature subset makes it possible to achieve
excellent performance on classification of malignancy. In this study, the following three
feature selection methods were investigated: the state-of-the-art multiple support vector
machines with recursive feature elimination (MSVM-RFE) [60], L1-regularization path
for generalised linear models [61], and the guided regularized random forest (GRRF)
[62].

5.2.2 MSVM-RFE

The feature extraction technique utilising Support Vector Machine based on recursive
feature elimination (RFE) was first proposed by Guyon [63]. It returns a ranking of the
features of a classification problem by training a SVM with a linear kernel and removing
the feature with smallest ranking score.
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The criterion used by the SVM-RFE is the weight magnitude and it is related to
each feature’s support to the discrimination function. The recursive feature elimination
algorithm, recursively identifies the features with the smallest weights in magnitude and
removes them.

Multiple SVM-RFE [60] is another feature selection method that uses backward
feature elimination procedure similar to SVM-RFE. However, instead of using a single
linear SVM at each recursive step, multiple linear SVMs are trained on sub-samples of
the training data obtained from multiple runs of k-fold cross validation. The feature
ranking score is then computed from statistical analysis of the weight vectors of the
multiple linear SVMs. Similar to the SVM-RFE method, the feature with the smallest
ranking score is omitted at each step.

5.2.3 Guided Regularized Random Forest (GRRF)

Decision trees are increasingly used for the purpose of the feature selection. Bagged
random trees known as Random forest (RF) have also been widely utilised for measuring
the feature importance. Those feature importance scores can be used in the feature
selection process to shortlist the most discriminating features and taking into account
only the features with high importance scores. The feature shortlisting procedure consists
of multiple iterations. The feature with the lowest importance score will be eliminated
from feature set per iteration. The number of features to be eliminated per iteration can
be increased to make the algorithm more time and cost efficient (the authors implemented
the algorithm to eliminate 20% of the features per iteration) [64].

The main drawback of the ordinary random forest is that at every node, a feature that
optimizes an information-theoric criterion will be selected to split the data. However, the
redundancy of that feature to the features selected in the previous splits is not considered
in this procedure.

A regularization framework can address the issue and can avoid selecting a new
feature for data splitting at each node when that feature produces a similar gain (im-
portance scores) to the feature set that has been selected in the previous splits. The
RF gives an importance score for each feature, though it does not end up in a feature
subset. Hence, the regularization framework can be easily added to the RF to ease the
feature subset selection. This implementation of the regularization framework on ran-
dom forest known as regularized random forest (RRF) [62] has been recently proposed
for the feature selection purposes. Nevertheless, evaluations of the features are usually
done by a portion of the training data at each tree node, which might cause in-stability
in feature selection procedure. To overcome this problem, an enhanced version of the
RRF, referred to as guided RRF has been proposed by Deng [62]. In this method, first
the importance scores for each variable from an ordinary random forest is computed.
Then those scores are used to guide the feature selection (in this case RRF). Given that
the importance scores in ordinary RF are computed on all of the trees and also on all of
the training data, the GRRF is likely to perform more efficiently in comparison to RRF
in terms of feature selection performance.
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5.2.4 L1-regularization procedure with generalised linear model

Generalised linear models (GLM) generalise the classical linear models based on the
normal distribution. In an ordinary linear model the relation between the response
variable Yi and the independent predictor variables Xij is given by:

ηi = Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXij (5.1)

where η is the linear predictor and βs are the coefficients of the linear combination whose
values are unknown and have to be estimated. The coefficient βj is the measure of the
impact of the predictor Xij on the target Yi. In an ordinary linear model, for each set of
values for the predictors, the response variable is continuous and normally distributed
[65].

In a generalised linear model, by contrast, response variables belong to the exponen-
tial family of distributions, such as the Gaussian, Binomial, Poisson, Gamma, or inverse
Gaussian. In addition, the relation between the response and predictor variables does
not necessarily have the simple linear form as in equation 5.1. In fact, the independent
predictive variables can take non-linear transformations of the other predictor variables.
However, the linear predictor is still linear in the coefficients (parameters) that need to
be estimated.

GLMs model the random variable Y by providing a relationship between its expected
value and the linear predictor η.

ηi = g (µ) = β0 + β1Xi1 + β2Xi2 + . . .+ βkXij (5.2)

where g is called the link function. The link function relates the linear predictor η
to the expected value of the response variable. The link function for a classical linear
model is the identity function g (µ) = µ = E (Y ). Examples of link functions for GLMs
include the identity, log, reciprocal, logit and probit.

The next step after selecting a model is to estimate its parameters and to assess the
precision of the estimates. The L1-regularization procedure uses maximum likelihood
method for estimating the parameters of GLM (parameters β in the linear predictor η),
with a penalization on the size of the L1-norm of the coefficients. The L1 regularization
procedure selects variables according to the amount of penalization on the L1-norm of
the coefficients. To achieve this, the algorithm makes use of the predictor-corrector
method to compute solutions along the entire path of the coefficient estimates [61].

5.3 Experiment I: Determination of the most discrimina-
tory subset of features for the classification of Pap
smears

The aim of this experiment was to determine the most discriminatory subset of features,
from amongst the proposed structural chromatin texture features and a wide range of
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CLASSIFICATION OF PAP SMEARS

features drawn from the literature, that have the most discriminating power for discrim-
inating between normal and abnormal Pap smears. A normal smear is deemed to be
one that has been labeled as NILM (Negative for Intraepithelial Lesion for Malignancy).
An abnormal smear is one that has been labeled as either LSIL (Low grade squamous
intraepithelial lesion) or HSIL (High grade squamous intraepithelial lesion).

5.3.1 Cytology slides for experiment I

As a compromise between having a reasonable number of cells per slide for MAC analysis
and having a reasonable number of slides for the feature extraction and feature selection
procedure, it was decided to impose the following two criteria. Firstly each slide should
have a minimum of 80 non-superficial cervical cells with a Negative for Intraepithelial
Lesion or Malignancy (NILM) label. Secondly, 10% to 40% of the cells in the abnormal
slides should be diagnostic cells. This left a total of 44 slides: 25 NILM, 10 LSIL, and 9
HSIL.

5.3.2 Feature extraction

The free-lying nuclei in each field of view were automatically segmented using the seg-
mentation algorithm proposed in chapter 3. Then, 159 features1 were computed for
each nucleus (see Table 4.1). Figure 5.1 shows the breakdown of the types of features
investigated (see Appendix C). These features include the proposed structural features
by the authors and other competing cytology features available in the literature for the
purpose of detecting MACs (see Appendix C).

Statistical texture features used in this study include fractal texture features [42], run-
length features [55], grey-level co-occurrence matrix (GLCM) features [54], and complex
Daubechies wavelets features [56]. The wavelet statistical and co-occurrence features of
nuclei were computed from decomposed images of the segmented nuclei by Daubechies
wavelets transform at first level of decomposition. However, instead of using a window
varying in size for each level of decomposition, a down sampled binary mask of the
original image was used to identify and retain only the nuclei regions in the decomposed
images for the purpose of feature extraction. Details of the extracted features can be
found in Table 4.1.

The mean and standard deviation of each nucleus feature was computed for each
slide yielding a total of 318 slide-based features. Finally, an additional random feature
was included to gauge the efficacy of the feature selection ( the feature does not have
any discriminatory power).

1Contextual features were excluded for nuclei, and textural and densitometric features were excluded
for chromatin blobs.
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Morphometric features

Densitometric features

Statistical texture features

Derived from morphometric 
features of chromatin blobs

Derived from contextual features

Figure 5.1: Pie chart showing the contribution of the four main object feature categories
in this study.

5.3.3 Feature selection and classification

In this research work, the MSVM-RFE , GRRF and L1-regularization procedure with
generalised linear model feature selection methodologies have been investigated on the
data. Also, a 5-fold cross validation procedure has been implemented to optimize the
parameters and to decrease the bias in feature selection as much as possible. The CV
loops have been iterated 100 times and the feature selection performance evaluation has
been averaged over all these iterations.

In order to optimize the classification performance it is necessary to couple each
classification approach with the most relevant feature selection method. In this experi-
ment we paired the SVM-RFE with a linear kernel SVM classifier, the GRRF with an
ordinary RRF classifier, and the L1-regularization procedure with a generalised linear
model. Given the limited number of slides available in this study, all the slides were
used for feature selection. However an internal cross validation (in-loop feature selec-
tion) technique[66] was employed to avoid overfitting and over-optimistic estimation of
the performance result. Feature selection by the MSVM-RFE was achieved using 100
iterations of double 5-fold cross validation, each iteration with random combinations of
samples in the training and the test set. The inner cross validation loop was used for
feature selection and tuning the optimal parameters for the SVM classifier with a linear
kernel. The outer cross validation loop was used to evaluate the classifier model perfor-
mance in terms of the AUC (area under the receiver operating characteristic curve). For
GRRF feature selection and the L1-regularization path for generalised linear models,
100 repeated 5-fold cross validation was employed. Figure 5.2 illustrates the use of 100
iterations of 5-fold cross validation for in-loop feature selection and classification.
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Figure 5.2: Illustration of 100 times iterated 5-fold cross validation used for feature
selection.

5.3.4 Results of experiment I

This section provides the classification performance results together with the four top-
ranked features for each of the three feature selection approaches mentioned in section 5.2
and used in the experiment I.

Table 5.1 shows the frequency with which each feature appeared in the best feature
subset of size three in the 100 iterations of 5-fold CV by SVM-RFE and GRRF feature
selection methods. The number of times a variable has been selected in 100 iterations
of 5-fold CV in a fitted generalised linear model is also shown in this Table.

Table 5.1: Frequency table for top 5 ranking features in experiment I.

Feature F1 F2 F4 F3 F7
SVM-RFE

Frequency 477 190 184 120 66

Feature F1 F2 F5 F6 F8
GRRF

Frequency 500 144 87 38 66

Feature F1 F6 F2 F5 F9
L1-Reg

Frequency 500 418 398 338 334

F1: SD of IOD, F2: Mean of M2, F3: SD of C1, F4: SD of

nucleus area, F5: SD of MST3, F6: Mean of W -IMC1, F7: SD

of C2, F8: Mean of M1, F9: SD of Heterogeneity

The classification results are presented in Table 5.2. Features “Standard deviation
of IOD” and “Mean of M2” are the among the top ranked features in all three feature
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selection (FS) methods. The top four features appearing most frequently among the
feature selection methods are: SD of IOD, Mean of M2, SD of MST3 and Mean of
W -IMC1. Figure 5.3 shows boxplots for each of these features for both the normal and
abnormal slides. The best AUC (0.954±0.019) was achieved using the L1-regularization
procedure with a generalised linear model.

Table 5.2: Classification results for experiment I.

FS Method Top 4 features Classifier AUC (Mean±SE)

MSVM-RFE F1, F2, F3, F4 Linear SVM 0.934±0.038

L1-Regularization Path F1, F2, F5, F6 GLM 0.954±0.019

GRRF F1, F2, F5, F6 RRF 0.935±0.029

Figure 5.3: Boxplots of the features F1, F2, F3, F4, F5, F6 for experiment 1.

The feature subset selected in this experiment will be utilised to model and generate
a MAC-based classifier in experiment II.

5.4 Experiment II: MAC-based classifiers for Pap smear
screening

The aim of this experiment was to evaluate the performance of a variety of classifiers,
built using the feature sets obtained in the first experiment, for discriminating between
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normal and abnormal slides on the basis of only normal-appearing cells. Although, the
diagnostic (LSIL and HSIL) cells were not excluded from the slides used for the feature
selection in the first experiment, they have been excluded from the data in the second
experiment. This makes sense, because in building a classifier specifically designed to
detect MACs, it is crucial to generate a database of cell nuclei including all nuclei from
normal slides and only normal-looking cell nuclei from abnormal slides.

The method for generating the database needed for the second experiment together
with a cell nuclei count constraint applied to the slides for acquiring the proper slides
for the MACs analysis is detailed in the following section.

5.4.1 Cytology slides for experiment II

In this experiment only the cells marked by the cytologist as NILM on normal and
abnormal slides were segmented and slides with a minimum of 80 such cells retained.
This left a total of 44 slides: 26 NILM, 9 LSIL, and 9 HSIL. Figure 5.4 shows an example
of a digitalized Pap smear FOV. All the NILM cell nuclei marked by cytopatologist
are segmented, though the 4 diagnostic cell nuclei are excluded from the FOV. After
selecting the suitable slides for the MAC-based classification, a variety of classifiers were
built based on the best feature subset obtained in experiment I and the classification
performance of each in detecting MACs is empirically evaluated.

5.4.2 Classification performance evaluation of the best subset of fea-
tures derived in experiment I

Among the six top-ranked features, (F1 to F6), having the most discriminating power,
identified in the experiment I, the features having the minimum of two votes between
three feature selection methods are considered for the experiment II.

Prior to the classifier design, the number of features for building the classifier must
be carefully determined to avoid the curse of dimensionality. For this purpose, only
feature subsets of size one or two were considered for the experiment two. Performance
of two classifiers were evaluated using 100 iterations of 5-fold cross validation to better
evaluate the discriminatory power of the best subset of features to detect the MACs.
The built and studied classifiers in the experiment II are as follows:

• SVM with a linear kernel

• Logistic Regression (LR)

See Appendix F for details of the two classifiers. These classifiers were built using
the best subset of features obtained in experiment I. Performance of two classifiers were
evaluated using 100 iterations of 5-fold cross validation. The results of experiment II is
depicted in the following section.
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LSIL

LSIL

LSIL

HSIL

Figure 5.4: An example of a digitalized Pap smear FOV, in which the diagnostic cells were
excluded from the segmentation process and only the NILM labelled cell nuclei remained
and used for the second experiment.

5.4.3 Results of experiment II

This section presents the classification performance results for the feature subsets of size
1 and 2 obtained from experiment II. These results for each classifier are depicted in
Table 5.3. Boxplots for each feature for both the normal and abnormal slides are shown
in Figure 5.5. The feature “Mean of M2”, which is a measure of chromatin margination
inside the nucleus, achieved the best classification performance in both classifiers for the
detection of MACs. The feature “SD of IOD”, whilst quite discriminatory in the first
experiment, does not show any discriminatory power in the second experiment. This
is not surprising given that the Pap stain is not stoichiometric and that none of the
cells in experiment 2 were diagnostic. The non-stoichiometric property means that the
amount of the stain uptake does not necessarily correspond to the DNA amount present
in the cell nuclei. This is also supported visually in Figure 5.5, in which the boxplot
scores for feature “SD of IOD” show a complete overlap of the scores between normal
and abnormal slides.
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Table 5.3: Classification results for experiment II.

Classifier Features AUC (Mean±SE)

SVM

F2 0.815±0.015

F5 0.706±0.053

F6 0.792±0.026

F2, F6 0.822±0.024

Logistic
Regression

F2 0.803±0.026

F5 0.591±0.054

F6 0.784±0.027

F2, F6 0.752±0.038

Figure 5.5: Boxplots of the features F1, F2, F5, F6 for experiment 2. The relatively high
overlap of feature F1 scores between normal and abnormal slides depicts the low discrimi-
nation power of F1 for dataset in experiment II.

5.5 Summary

The chapter presented an empirical evaluation of the performance of the proposed struc-
tural chromatin texture features in the Chapter 4. Overall, 159 features were computed
for each nucleus including the proposed features and a wide range of features drawn
from the literature. Two experiments were carried out to evaluate the discrimination
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power of those features for discriminating between normal and abnormal smears. The
results provided empirical evidence that it is possible to detect malignancy-associated
changes in Pap smears. The high performance of the classifiers for the detection of MACs
compares favourably with those reported in the literature for other stains.

56 , Signals and Systems, Master of Science Thesis 2013



6
Summary and Conclusion

T
his chapter reviews the work presented in this thesis, summarizes the major con-
tributions and findings, outlines the limitations of the research undertaken, and
finally proposes an avenue of future work.

6.1 Thesis summary

Chapter 1: This chapter provided a background to the project and illustrated the prob-
lem with the conventional method of screening, the Papanicalaou test. It was noted
that existing research suggests that the MACs phenomenon may be the solution to the
problem of sampling error in conventional Pap screening and that automated screening
can address interpretation errors associated with manual screening. The chapter states
the major aim of the thesis:

.. to fully explore the structural approach to chromatin pattern descrip-
tion and to evaluate the efficacy of the features derived from it for discrimi-
nating between normal and abnormal Pap slides.

and its objectives:

1. To develop a robust algorithm for detecting and segmenting cell nuclei in digitized
Pap smear images obtained using bright-field microscopy;

2. To develop structural texture features that quantitatively characterise the pattern
(arrangement, size, shape, etc.) of the nuclear chromatin;

3. To determine the most discriminatory subset of features for discriminating between
normal and abnormal slides using real clinical data; and
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4. To evaluate the performance of a classifier(s), based on the selected features, using
real clinical data.

Chapter 2: This chapter presented two literature reviews pertinent to chapter 3 and
chapter 4. The first was a review of the cell and cell nucleus segmentation methods in
Pap smear images published in the literature. The second presented a detailed review of
the standard texture features available in the literature devised to quantify chromatin
texture/distribution.

Chapter 3: This chapter presented the new algorithm for robustly detecting and
segmenting free-lying intermediate cell nuclei in bright-field microscope images of Pap
smears. The novelty of the algorithm stems from a robust marker selection method for
selecting candidate free-lying nuclei-like objects for subsequent marker-controlled water-
shed segmentation to obtain the nuclear boundaries. The algorithm also implements
artefact rejection based on size, shape, and nuclear granularity to ensure only the nuclei
of intermediate squamous epithelial cells are retained. In addition, this chapter presented
an empirical evaluation of the performance of the algorithm and discussed the results.
The sensitivity and specificity of the algorithm to the detection of free-lying intermediate
cell nuclei together with the accuracy of the segmentation of each nucleus detected by
the algorithm were presented. Finally, the algorithm’s failure modes were detailed and
the summary and conclusion of the chapter were presented.

Chapter 4: This chapter dealt with the problem of quantitative characterisation of
chromatin texture and presents a set of novel structural texture features to describe
nuclear chromatin patterns in cells on a conventional Pap smear. These features derived
from a segmentation of the chromatin into blob-like primitives.

Chapter 5: This chapter presents an the evaluation of the performance of the pro-
posed structural chromatin texture features in the previous chapter. Overall, 159 features
were computed for each nucleus including the proposed features and a wide range of fea-
tures drawn from the literature. Two experiments were carried out for evaluating the
features. The aim of the first experiment was to determine the most discriminatory sub-
set of features for discriminating between normal and abnormal Pap smear slides. The
aim of the second study was to evaluate the performance of a variety of classifiers built
using the feature subset obtained in the first experiment to discriminate between the
normal and abnormal slides. The results provided empirical evidence that it is possible
to detect malignancy associated changes in Pap smears. The high performance of the
classifiers for the detection of MACs compares favourably with those reported in the
literature for other stains.

6.2 Key contributions and findings

• A new automated algorithm for robustly detecting and segmenting free-lying cell
nuclei in bright-field microscope images of Pap smears. The proposed segmentation
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algorithm makes use of gray-scale annular closings to identify free-lying nuclei-like
objects together with marker-based watershed segmentation to accurately delineate
the nuclear boundaries. The algorithm also employs artefact rejection based on
size, shape, and granularity to ensure only the nuclei of intermediate squamous
epithelial cells are retained. The empirical results show that the algorithm has
both a high sensitivity and specificity for the detection of free-lying nuclei, and
that the algorithm is able to delineate the boundaries of these with high accuracy.
The achieved results are remarkable and encouraging for the development of an
automated screener for Pap smears based on the MAC phenomenon.

• A set of novel structural texture features for quantifying chromatin texture. The
features are derived from an initial segmentation of the chromatin into blob-like
texture primitives. They fall into two broad categories. The first consists of statis-
tics of morphometric features computed for individual blob. The second consists
of contextual features which can be further subdivided into the following classes
of features: margination, clustering, blob features, discrete texture features, and
features derived from the Voronoi diagram and its associated graphs. The most
prominent of the proposed features were margination and clustering.

• Empirical evidence that it is possible to detect malignancy-associated changes
(MACs) in Papanicoloau stain which in turn suggests the possibility of devel-
oping a fully automated Pap smear screener based on MACs. The results of a
classification experiment, using only normal-appearing cells from both normal and
abnormal slides, demonstrate that a single structural texture feature measuring
chromatin margination yields a classification performance of 0.815±0.019. The re-
sult compares favourably with the experimental results published in the literature
for other stains developed for automated cytology.

6.3 Conclusion

An automated algorithm for robustly detecting and segmenting free-lying cell nuclei in
bright-field microscope images of Pap smears was presented. This is an essential initial
step in the development of an automated screening system for cervical cancer based
on malignancy associated change (MAC) analysis. The empirical results provided in
chapter 3 demonstrate that the algorithm has a high sensitivity and specificity for the
detection of free-lying nuclei, and that the algorithm is able to delineate the boundaries
of these with high accuracy.

A set of novel structural texture features for quantifying nuclear chromatin patterns
in cells on a conventional Pap smear was presented. The features are derived from an
initial segmentation of the chromatin into blob-like texture primitives. The experimen-
tal results of chapter 5 demonstrate the efficacy of the structural approach to chromatin
texture analysis and that a combination of these structural texture features and con-
ventional features can be used to discriminate between normal (NILM) and abnormal
(LSIL and HSIL) slides with high accuracy. The designed MAC classifier outperforms
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the classifiers reported in the literature. However, the majority of the studies for the
detection of MACs in cervical smears used stoichiometric stains. Stoichiometric stains,
whilst quite useful for cyto-diagnostic purposes, are not the stain of choice for cervical
cancer screening programs. Papanicolaou stain is still the most commonly used staining
technique and therefore developing an automated conventional Pap smear screener will
provide significant advantages. The results of the present study demonstrate that it is
possible to detect malignancy-associated changes in Papanicoloau stain. This concurs
with the study by Mehnert [20]. The most discriminating single feature, Mean of M2,
for detecting malignancy-associated changes is a structural feature measuring chromatin
margination. This in turn suggests the possibility of developing a fully automated Pap
smear screener based on MACs.

6.4 Limitations

Brightfield microscopy suffers from limited depth of field. This shortcoming produces
images where portions of the field of view image that lie within the depth of focus are
in-focus whereas the remaining portions are out of focus [67]. Many methods have been
proposed for obtaining an extended depth of field (EDF) image from the “z-stack” of
images that collectively contain all in-focus information of the specimens in a field of
view.

Figure 6.1: Focus stacking for extended depth of field in optical microscopy. (a) Topog-
raphy of the specimens on the sample slide has wide variation in z-position. (b) Due to
limitations in the extended depth of focus of the microscopic imaging system, only some
portion of the image is in focus at each depth within the sample. (c) Multilayer scanning at
different planes of the specimen on the sample slide permits one to navigate between various
planes and capture z-stack images.

In this study the complex wavelet based image fusion technique [68] was used to
obtain EDF images. However, several other alternatives exist in the literature that
outperform the implemented method in our study. Recent approaches to EDF produce
results with significant improvements in terms of quality and sharpness and artefact
suppression [67, 69, 70].

Although all the cells in the second experiment are not necessarily included in the first
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experiment, there is a large overlap between the cells used in these two studies. Ideally,
the efficacy of the proposed structural texture features should have been assessed on an
independent data set. Therefore, a much larger number of Pap smear slides are required
to make conclusive claims about the feasibility of developing a fully automated Pap
smear screener that works based on MACs.

The total number of slides used in this study was limited to 68 because of practical
limitations of data collection. The literature suggests that at least 500 nuclei are nec-
essary to achieve a relatively constant MAC determination [21]. Unfortunately some of
the collected slides have hardly more than 100 nuclei (minimum of 15 and maximum of
700 nuclei).

The evaluation of the nucleus segmentation algorithm proposed in this thesis was
made relative to two collected ground-truth data sets which were limited to 33 FOVs
randomly selected from 11 slides. The use such limited number of FOVs was due to
limitations in recruiting image analysis experts. Ideally, several independent cytopathol-
ogists should have selected and delineated each cell nuclei.

6.5 Opportunities for further research

Numerous possibilities remain for developing improved chromatin segmentation algo-
rithms and developing features that may offer improved classification performance for
the detection of MACs.

• New segmentation approaches

Developing a fully automated mean-shift filtering algorithm for segmentation of
the chromatin blobs in cervical cell nuclei.

To date, the mean-shift algorithm has been widely used for image segmentation
in different biomedical applications. In the case of cervical cell segmentation,
Edwards et al. [71] used mean-shift filtering to smoothen the cervical images
prior to segmentation by an adaptive threshold algorithm. Mean shift has also
been used by Bell et al. [72] for the segmentation of sub-cellular structures, like
the nucleolar organizer regions (AgNORs) in silver stained cytopathology images.
However, the mean shift segmentation approach has not yet been investigated
for the segmentation of the nuclear chromatin into its blob-like primitives in Pap
smears. This could be a subject the future work.

A more thorough evaluation of the proposed nucleus segmentation algorithm is
required and this can be achieved by having a bigger cervical smear image data
set. This is the immediate future for the work presented. The sensitivity of the
algorithm to the detection of free-lying intermediate cell nuclei is high. However
its specificity, whilst still quite high, could be improved. The development of a
more sophisticated artefact rejection strategy would enhance the specificity of the
nucleus detection.

• Ideas for new features
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Of particular interest is the extraction of new features that can express several
desired properties of a cell nucleus in a single feature. As an example, the pro-
posed features M3 and M4, as two measures of margination, implicitly include
information about the size of the nucleus. In order to incorporate the information
from several features (describing the property of a nucleus or a single chromatin
particle) a 3D feature space can be constructed (see figure 6.2). The differences in
the spatial distribution of the discriminatory information within this 3D feature
space suggest the possibility of extracting several optimized features. One way to
characterize the distribution of the data is to use co-occurrence based methods of
texture analysis. For this purpose, feature values should be quantized to 8 or 16
discrete levels. The 3D co-occurrence matrix is a Ni×Nj ×Nk matrix where each
element p[i,j,k] of the matrix represents the summation of the nuclei having the
feature vector values of (i,j,k). Several features can then be extracted from this
3D co-occurrence matrix.
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Figure 6.2: 3D feature space
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A
Fundamental operations from

Mathematical Morphology

The definitions below are drawn from“Morphological image operators”by Henk Hejmans
[73] .

A.1 Mathematical morphology for binary images

Let En be either Zn or Rn representing the space of pixel coordinates . The dilation of
a set (binary image) X ⊂ En by the structuring element B ⊂ En is defined

X ⊕B =
⋃
b∈B

Xb

where Xb = {x+ b |x ∈ X}. The erosion of a set (binary image) X by the structuring
element B is defined

X 	B =
⋂
b∈B

X−b

The opening of X by B is defined

X ◦B = (X 	B)⊕B.

The closing of X by B is defined

X •B = (X ⊕B)	B.
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A.2 Mathematical morphology for grey-scale images

Let Fun(En,T ) denote the set of all functions of the form f : En → T where En repre-
sents the domain space of pixel coordinates (usually Zn or Rn) and T is either Z or R
representing grey-levels.

Let f, g ∈ Fun(En, T ). The dilation of the grey-scale image f by the structuring
function g is defined point-wise

(f ⊕ g) (x) = max
h∈En

{f (x− h) + g (h)} .

The erosion of the grey-scale image f by the structuring function g is defined point-
wise

(f 	 g) (x) = min
h∈En

{f (x+ h)− g (h)} .

The opening and closing operations, respectively, of the grey-scale image f by the
structuring function g are defined

f ◦ g = (f 	 g)⊕ g,

f • g = (f ⊕ g)	 g.

When the structuring function only takes on the value 0 on its domain then it suffices
to represent the function by a set B (its domain). The expressions for dilation and erosion
then simplify to the following:

f ⊕B = max
h∈B
{f (x− h)} ,

f 	B = min
h∈B
{f (x+ h)} .

The set B is called a structuring element or flat structuring function.
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B
Segmentation methods underlying

methods in Chapters 2 and 3

B.1 Thresholding

One of the most simple and frequently used methods for image segmentation is thresh-
olding. Thresholding utilizes the histogram of pixel intensities of the image. It is useful
for the segmentation of images where the grey-values of the background pixels lie below
or above the grey-values of the object. In other words, the object of interest is brighter or
darker than the background. Therefore a threshold value, T , can be applied to the image
to convert the grey-scale image to a binary image by replacing all the grey-values greater
than T with the value 1 and setting all other grey-levels to 0. Thus by thresholding the
original image f(x,y), the segmentation label image g(x,y) is obtained:

g(x,y) =

{
1 if f(x,y) > T

0 if f(x,y) ≤ T

Figure B.1a depicts thresholding as a plane cutting the 3D image surface. As seen,
the final location of region boundaries are affected by the choice of T . In this Figure,
a larger T value decreases the object area and a smaller T will increase it. In the
simplest case where the histogram of the image has two dominant peaks, a suitable
threshold value lies somewhere between the two peaks (corresponding to foreground and
background pixels)(see Figure B.1b).
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(a) (b)

Figure B.1: Global Thresholding: (a) The grey-level image depicted as a topographic
surface is globally thresholded (Topographic image is generated by interpreting the grey-
values of each pixel as heights). (b) The bi-modal histogram of the image. The threshold
value (T = 130) lies somewhere in between the two peaks

Numerous parametric and non-parametric algorithms have been proposed to deter-
mine the optimal threshold value by locating the valley in the grey-scale histogram.
The methods that determine this single threshold value for the entire image are known
as global thresholding [24]. These algorithms do not make use of any spatial informa-
tion and lack robustness to noise and uneven illumination. To overcome these problems
several local thresholding algorithms have been proposed. Local thresholding methods
[74, 75, 76] compute separate thresholds for each pixel using additional information de-
rived from the surrounding neighbourhood; e.g. Niblack [76] determined a local threshold
value on the basis of the local mean and standard deviation of grey-values in the image.
The grey-value of each pixel is compared with the average grey-values in some neighbour-
hood. If the grey-value of the pixel is significantly larger than the average it is classified
as foreground, otherwise it is classified as background. The major problem with the local
thresholding techniques is that they are mostly dependent on many parameters.

B.2 Active contours and Deformable models

Active contours and their associated techniques can be categorized as deformable models.
These models have been extensively studied and widely used in medical image segmen-
tation with promising results. An active contour is a planar curve (unbroken border
initialized somewhere in the image) with an associated energy function. The position of
the initial contour must be localized such that it roughly surrounds the object of interest.
The energy function is defined such that it attains it’s minimum when the contour lies
upon the desired object.

The snake is an active contour model introduced by Kass [77], and is able to deform
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elastically. A contour is defined parametrically in the continuous domain [77] by v(s) =
(x(s),y(s)) where x(s) and y(s) are the image coordinates and s is the normalized length
of the contour where s ∈ [0,1] (see Figure B.2).The energy of the contour usually includes
two separate energy terms: internal energy (Eint) and external energy(Eext). These two
energy functionals are combined to give the total energy of the contour as follows

Econtour(v(s)) =

∫ 1

s=0
[Eint(v(s)) + Eext(v(s))]ds. (B.1)

The external energy can be divided into two energy terms as

Eext = Eimage(v(s)) + Econ(v(s)) (B.2)

where Eimage denotes the external image energy and Econ denotes the external constraint
energy. The energy of the contour is given by

Econtour(v(s)) =

∫ 1

s=0
[Eint(v(s)) + Eimage(v(s)) + Econ(v(s))]ds. (B.3)

The energy function in equation B.3 is a continuous description and has been im-
plemented using B-splines [78] and finite elements [79]. Given that these methods are
computationally expensive [26], methods based on describing a contour in discrete form
(a set of points, that are then joined to form a closed polygon) have been used and yield
similar results (see Figure B.2). The energies of the contour are then only calculated at
the discrete sample points as follows

Econtour(v) =

N−1∑
i=0

[Eint(vi) + Eimage(vi) + Econ(vi)]. (B.4)

During the deformation/evolution process of the contour, the internal energy imposes
smoothness and continuity constraints(it is usually defined in terms of the first and
second-order derivatives of the contour). The image energy term attracts the snake to
the object’s boundaries (e.g. this attraction could be defined in terms of the magnitude
of the image gradient in which the contour is attracted to the prominent object edges).
The external constraint energy term permits an external constraint to be placed on the
contour(e.g. adding spring and repulsive forces to selected points on the contour), and
can be used to shift the snake from one local energy minimum to another. Figure B.3
illustrates the active contour segmentation performance on a single cell nucleus.

In order to solve the two major problems of proper initialization of contour and
poor convergence to boundary concavities, an external force was introduced by Xu [80].
This external force is called gradient vector flow (GVF), and is computed based on
the diffusion or gradual change of the gradient vectors of a grey-level or binary edge
map derived from the image [80]. Figure B.4 shows an example of nuclei segmentation
by using GVF snake. After introducing the GVF, Xu [81] also proposed a generalized
form of GVF which is called generalized gradient vector flow (GGVF) to improve active
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(a) Continuous contour: The contour length is
normalized to [0,1]. The contour is described
by v(s) = (x(s),y(s)) where x and y are the
coordinates.

(b) Discrete contour: The contour is divided in
to N discrete points. The contour is described
by v(i) = (x(i),y(i)) where i = 0, ...,N + 1, x
and y are the coordinates.

Figure B.2: Parametric representation of a contour

contour convergence to long, thin boundary indentations, but at the same time keep the
desired properties of GVF (e.g. extended capture range).

Recently, many new active contour models have been introduced in the literature.
These include:

• The high contrast segmentation framework (HCS), based on variational snakes and
is efficient for nuclei segmentation, in which a modified internal energy function is
introduced [82].

• Distance mapping active contour, in which distance mapping is used to create a
gradient vector flow [83].

• Multi-direction gradient vector flow using a new anisotropic diffusion filter for
removing the noise before applying the multi-direction GVF snake [84].

• Active contours using special processing named Selective Binary and Gaussian
Filtering Regularized Level Set (SBGFRLS) method [85].

To summarise, algorithms based on active contours or deformable models are highly
dependent on strong prior knowledge about the shape and location of objects in an
image to guide the segmentation process. Moreover they require the initial contour to
be reasonably close to the true object boundaries. As a consequence they can fail in
images containing clustered and overlapping cells [27, 28, 29, 30]. These methods can
also become trapped in local minima yielding the incorrect segmentation.
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(a) The energy function is minimised and the contour lies upon the boundary
in the magnitude of the gradient.

(b) Topographic map of the cell nucleus.

(c) Detected boundary of the nucleus obtained by the active contour (overlaid
on the original image).

Figure B.3: Active contour segmentation
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(a) An example of a cell nucleus. (b) Magnitude of gradient.

(c) The GVF overlaid on the image. (d) Segmented nucleus by active contour after
30 iterations.

Figure B.4: Cell nuclei segmentation by GVF snake.
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B.3 Seeded Region Growing

The seeded region growing algorithm [86] was introduced by Adams and Bischof. It starts
from a set of seed regions representing the desired image regions and uses a predefined
similarity criterion to append neighboring pixels. This is continued until the entire
image has been partitioned. Unfortunately, construction of a seeding method is not
straightforward; in fact it is the most difficult part of the segmentation. The seeding
algorithm should be able to provide exactly one seed per object. To overcome the
problem Adams and Bischof [86] propose that a user (based on personal judgment)
manually mark the seeds. Therefore the final segmentation results in the same number of
regions as the seeds. However, it is inherently dependent on the order of pixel scanning.
Mehnert and Jackway [87] introduced an improved seeded region growing algorithm
that retains the advantages of the Adams and Bischof algorithm whilst being pixel order
independent. The feature in common with all seeded region growing algorithms is that
the final segmentation result is highly dependent on the chosen similarity criteria and
an appropriate seed extraction method.

B.4 Watershed Transform

The watershed transform has proved to be a powerful and efficient segmentation tool
in mathematical morphology [88]. The watershed transform is a special case of seeded
region growing.

The intuitive idea behind this method originates from geography and describes catch-
ment basins formed by rain falling on a landscape. The water falling onto the surface will
flood each local minima until total immersion and if we prevent the merging of waters
coming from different sources by dams, we can partition the landscape into catchment
basins separated by watershed lines (dams) as illustrated in Figure B.5. As shown in
Figure B.6(a) a grey-level image can be regarded as a topographic surface by consid-
ering grey levels as altitude information. For example, the gradient of this image has
two catchment basins and the boundaries determined by the watershed transform cor-
respond to the transition regions between the two basins. A reliable result is achieved
if the catchment basins highly correspond to the regions of interest in the original or
gradient image and the watershed lines represent the desired region boundaries. For
image segmentation, the watershed transform is typically applied to the gradient magni-
tude image. However, gradient images are noisy and contain many minima due to local
irregularities and intensity variations in the image. Therefore the watershed transform
leads to over-segmentation. The marker-controlled watershed devised by Beucher and
Meyer [89] offers an efficient solution to the over-segmentation problem. To avoid over-
segmentation due to numerous sources of flooding, flooding of the topographic surface
should only be allowed from a priori defined set of markers (instead of flooding from
every minimum in the image).

The most crucial and difficult part of marker controlled watershed-based segmenta-
tion is the extraction of object markers. If the marker extraction algorithm fails to mark
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Figure B.5: Simulating the flooding of a topographic surface from its regional minima.

an object, it will be missed in the final segmentation. In practice, a lot of effort has been
made to develop fully automated algorithms for the extraction of appropriate markers.
The thresholding method [90] is sensitive to noise and uneven illumination. Utilizing
the distance transform [91] for extracting the markers will lead to multiple markers for
a single object particularly when the image objects are irregular in shape. The use of
Bayes classifier to identify pixel groups as internal markers has good performance in
certain applications, but it is complex. The method proposed by Lezoray and Cardot
[92] employs pixel classification techniques to extract the object markers. The result in
this method is dependent on the number of the classes the pixels belong to. Many of the
recent marker extraction techniques are based on mathematical morphology such as h-
minima [32], top hat transforms and the skeleton of the gradient image. The approaches
based on grey-scale morphological reconstruction have achieved remarkable results in
the application of cell nuclei segmentation in Pap smear images. However, there is still
much scope for improvement.

The watershed transform can accurately delineate the object boundaries and is robust
to slight optical changes. However, due to the lack of a boundary smoothness constraint,
the watershed transform can produce a jagged boundary in some cases. A marker-
controlled watershed algorithm with a new marking function has been proposed by Cheng
et al [45] to avoid jagged boundaries of segmented regions.
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(a) Original image. (b) The image as a topographic surface.

(c) Gradient image. (d) The gradient image as a topographic surface.

Figure B.6: Computing the magnitude of gradient image: Watershed transform considers
the gradient image as a topographic surface. (a) Original image. (b) The original image as a
topographic surface. (c) Gradient image. (d) The gradient image as a topographic surface.
Watershed transform is usually applied to gradient magnitude image. The topographic
surface of the gradient image has two catchment basins and the boundary of the object
corresponds to the transition regions between the two basins.
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C
Cytology features

Rodenacker and Bengtsson [54] proposed a taxonomy of features for cytology images
based on four main categories: morphometric, densitometric, textural and contextual.

Morphometric features describe the geometry (shape, size, position and boundary)
of the object and are computed from its binary mask. Densitometric features describe
the intensity or optical density of the object and are computed from the histogram of
grey-values within the object. Contextual features are derived from the spatial rela-
tionship between objects; e.g. the number of neighbors an object has, and statistics of
the distances to neighboring objects. Texture features describe the spatial variation of
grey-levels within an object. Such features can be broadly classified into statistical fea-
tures and structural/syntactic features. Statistical texture features used in this study
include fractal texture features, run-length features, histogram based features, grey-level
co-occurrence matrix (GLCM) features, and complex Daubechies wavelets features. The
wavelet features used in this study to characterize nuclear texture were computed from
the first level of the wavelet decomposition[56]. A down-sampled binary mask of the
original image is used to identify and retain only the nuclei regions in the decomposed
images for the purpose of feature extraction.

The structural texture features used in this study to characterize nuclear texture are
derived from a segmentation of the nuclear chromatin into blob-like texture primitives.
In particular they are derived from morphometric and contextual features computed for
these blobs.

Conceptually these features can be computed for both nuclei and chromatin blobs/particles.
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D
Candidate cell nuclei marker

extraction methods

D.1 Morphological reconstruction

There are two ways to perform morphological reconstructions either based on conditional
morphological operations or geodesic morphological operations. This section discusses
the morphological reconstruction as a set of image operators referred to as geodesic. Mor-
phological reconstruction is a powerful operator for filtering, segmentation, and feature
extraction from binary and grey-scale images. In binary case this method can extract the
connected components of an image which have been marked by another image. However,
this operator can be extended for grey-scale images as well to extract regions of interest
(i.e. cell nuclei candidate positions within cervical image).

D.1.1 Grey-scale reconstruction:

The definition of elementary geodesic transformations is needed for understanding the
concept of image reconstruction. Two important geodesic transformations are geodesic
dilation and geodesic erosion.

The grey-scale geodesic dilation of size 1 is defined [93]

δ(1)
g (f) = δ(1)(f) ∧ g (D.1)

where f is the marker image, g is the mask image, f ≤ g and have the same domain,
the operator ∧ stands for point-wise minimum, δ(1)(f) is the elementary dilation of f .
The grey-scale geodesic dilation of size i ≥ 0 can be computed by iterating i geodesic
dilations of size 1 as follows:
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δ(i)
g (f) = δ1

g(δ
1
g(δ

1
g . . . (δ

1
g(f)))). (D.2)

The morphological grey-scale reconstruction by dilation of a mask image g from a
marker image f where f ≤ g is defined as the geodesic dilation of f with respect to g
iterated until stability and is denoted by Rδg(f) [93] :

Rδg(f) = δ(i)
g (f), (D.3)

where i is such that δ
(i)
g (f) = δ

(i+1)
g (f).

The grey-scale geodesic erosion of size i ≥ 0 can be computed by iterating i geodesic
erosions of size 1 as follows:

ε(1)
g (f) = ε(1)(f) ∨ f, (D.4)

ε(i)
g (f) = ε1

g(ε
1
g(ε

1
g . . . (ε

1
g(f)))), (D.5)

where the operator ∨ stands for point-wise maximum.The morphological grey-scale re-
construction by erosion of a mask image g from a marker image f where f ≥ g is defined
as the geodesic erosion of f with respect to g iterated until stability and is denoted by
Rεg(f) [93] :

Rεg(f) = ε(i)
g (f), (D.6)

where i is such that ε
(i)
g (f) = ε

(i+1)
g (f).

D.1.2 Regional minima:

The regional extrema of an image are significant morphological features, because they
often represent relevant objects within the image; minima typically correspond to the
dark objects and maxima to the bright objects [93]. In morphology, a regional minimum
(M) of an image (f) at elevation of (t), is a connected component of pixels each with
the value of t, surrounded by pixels with values greater than t. In mathematical terms
the regional minimum can be defined as follows:
M is a regional minimum at level t⇔M is connected and

∀p ∈M if f(p) = t

∀q ∈ δ(1)M\M if f(q) > t
(D.7)

Figure D.1 depicts an example of a regional minimum in an image matrix of 5×7.
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Figure D.1: Regional minimum at level 2 in an image matrix (red connected components).

D.1.3 H-extrema:

The regional extrema of an image represent both relevant and irrelevant features within
the image. H-extrema transformations extract the image extrema by using a contrast
criterion. To be more precise, the h-maxima transformation will suppress all maxima
values whose depth is equal or lower than a specific threshold level of (h) [93]. The
h-maxima can be computed by performing the reconstruction by dilation of f from f−h
as follows:

HMAXh(f) = Rδf (f − h). (D.8)

Figure D.2 shows a simple example of h-maxima transformation on a 1D signal.

(a) H-maxima transformation on a 1-D signal
using a contrast value intensity of 3 levels.

(b) Extracted regional maxima by computing
f −Rδf (f − 3).

Figure D.2: H-maxima transformation on a 1-D signal and extracting the regional maxima
by computing f −Rδf (f − h).

Similarly the h-minima transformation in mathematical terms can be defined as
follows:

HMINh(f) = Rεf (f + h). (D.9)

and Figure D.3 depicts a h-minima transformation with contrast level of 3 on a 1-D
signal.
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D.1. MORPHOLOGICAL RECONSTRUCTION

(a) H-minima transformation on a 1-D signal
using a contrast value intensity of 1 level.

(b) Extracted regional minima by computing
Rεf (f + 1) − f .

Figure D.3: H-minima transformation on a 1-D signal and extracting the regional minima
by computing Rεf (f + h)− f .

As it is discussed in section D, in principle a set of regional minima as markers for
locating the cell nuclei in Pap-stained images can be found. These regional minima
can be computed using the h-minima transformation with required contrast level h (see
Figure D.3).

D.1.4 Morphological Top-hat Transform

The Top-hat transform originally proposed by Meyer [94] is a mathematical morphology
operator that uses morphological opening or closing for extracting bright (respectively
dark) objects from an uneven background. Top-hat transformation can be formulated
in two ways: White Top-hat (WTH) and Black Top-hat (BTH). White Top-hat can
identify small bright regions inside a grey-scale image with dark background. The WTH
transformation of a grey-scale image f is defined as:

Twhite(f) = f − (f ◦B) (D.10)

In order to identify the bright regions, the Top-hat transform should be applied using
a flat structuring element that is somewhat larger than the size of these regions. The
◦ is the grey-scale opening operator and is basically a min operation that removes the
bright regions smaller than the size of structuring element. Subtracting this image from
the original image produces an image that contains the desired bright regions, together
with some other small bright noise objects.

Similarly, the BTH transformation is defined as:

Tblack(f) = (f •B)− f (D.11)

The BTH is the dual of the WTH, and subtracts the original image from the closing
of the image with structuring element B. BTH extracts small dark regions from a bright
background. The Top-hat transform is usually followed by a thresholding operation to
provide the binary mask which serves as markers or seeds for the segmentation. Figure
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D.4 shows the effect of WTH and BTH transforms on a 1-D signal. More generally it
is possible to define tophats using other types of morphological openings and closings;
e.g. annular closing and opening.

D.1.5 Improved Morphological Top-hat Transform

Jackway [44] introduced an improved morphological top hat transform for the detection
of bright and dark objects in the presence of certain types of noise.

Let Bdo and Bdi represent the outer and inner structuring elements, respectively
with diameters do and di, where do > di. The brim which is the annular structuring
element is obtained by applying the set difference (/ operator) between Bdo and Bdi .
The improved white top-hat transformation denoted by IWTH is constructed by first
dilating the original image with the annular structuring element, and then eroding the
result by the inner structuring element. The result is then subtracted from the original
image to produce the IWTH, defined as [44]:

(a) Opening (b) WTHB(f)

(c) Closing (d) BTHB(f)

Figure D.4: (a) Morphological Opening operation on image f (b) 1D Profiles of highest
peaks extracted by White Top Hat Transform (c) Morphological Closing operation on image
f (d) 1D profiles of valleys extracted by the black Top Hat transform.
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HW = f − ((f ⊕ (Bdo \Bdi))	Bdi) (D.12)

IWTH can be used for bright blob detection. Similarly, the improved black top hat
(IBTH) can be introduced as follows:

HB = ((f 	 (Bdo \Bdi))⊕Bdi)− f (D.13)

IBTH can be used for black object extraction. Improved top-hat transform can well
extract the desired regions because of the superiority of effective background suppression.
However, in order to perform marker extraction with the use of morphological top hat
transform, an appropriately sized structuring element and a threshold value have to be
tuned to the application.

, Signals and Systems, Master of Science Thesis 2013 81



E
Shape Criteria

E.1 Danielsson’s G shape factor

Danielsson (1978) devised the G shape factor [95] for a binary image X ⊂ Z2(see Figure
E.1):

Figure E.1: G Shape-factor calculation

G =
A

9π(d)2
(E.1)

where

d =

∫
A

∫
rdA

 /A, (E.2)
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and A is the area of X. The G factor is dimensionless and is equal to one for an ideal
circle. The shape factor is more than one for all other shapes. For a digital image the
quantity d is estimated by taking the mean of the distance transform of X.

E.2 Dice similarity coefficient

Dice similarity coefficient (DSC) [96] is a spatial overlap index, which measures the
similarity between two point sets A and B. The coefficient value ranges from 0 to 1, in
which 1 represents a perfect overlap and 0 represents no overlap at all. The DSC is
given by

DSC =
2|A ∩B|
|A|+ |B|

(E.3)

where the operator | | indicates the number of pixels in the enclosed set, and A and B
are two regions.

E.3 Eccentricity

Eccentricity is a scalar that specifies the eccentricity of the ellipse that has the same
second-moments as the region. The eccentricity is the ratio of the distance between the
foci of the ellipse (l3) and its major axis length (l1) [97]. Figure E.2 shows an ellipse
with minor axis and major axis length of (l3) and (l3) respectively. F1 and F2 show the
foci of the ellipse.

Figure E.2: Parametric description of an ellipse

The eccentricity is given by

E =
l3
l1

(E.4)

and it can be verified that (l2)2 + (l3)2 = (l1)2 [97]. Therefore the eccentricity in
terms of major axis length and minor axis length is
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E =

√
1− (l2)2

(l1)2
(E.5)

The value is between 0 and 1. The two values of 0 and 1 are degenerate cases; an
ellipse whose eccentricity is 0 is actually a circle, while an ellipse whose eccentricity is 1
is a line segment.
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F
Classifiers used in the experiment

II

F.1 SVM classifier with a linear kernel

In real life, sometimes we need to assign an object to a specific category from a variety
of different categories based on some special characteristics of that object. As a case
in point, in this study we want to categorize a particular Pap slide as either normal or
abnormal. In computer science, these kind of situations are described as classification
problems. Classification of 2-class data is called binary classification and can be described
as follows.

Assume that we have a set of labelled objects denoted by the ordered pairs (xi,yi), i =
1,...,n, where xi ∈ Rd are known as feature vectors and yi ∈ {−1, + 1} are class labels.
The classification task is to generate a rule that assigns any new object (point) x to one
of the classes [98].

The Support Vector Machine has become one of the most popular classification meth-
ods in medical applications.

F.1.1 Theory of linearly separable binary classification

Assume that the data is linearly separable, so a line can be drawn on a graph of x1 vs
x2 in case of having just two features. Likewise, a hyperplane can be drawn on graphs
of x1, x2...xD when D > 2. That hyperplane is given by:

w · x + b = 0

where w is the normal vector of the hyperplane, and the term b
||w|| is the perpendicular

distance between the hyperplane and the origin.
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The Support Vectors in essence are those objects closest to the separating hyperplane.
The main objective of the support vector machine (SVM) is to orient the separating
hyperplane to a direction that maximises the distance between the support vectors of
each class and the hyperplane. Figure F.1 shows an illustration of two linearly separable
classes of data by a hyperplane [98].

Class 1

Class 2

d1

d2

w

|w|
-b H1

H2

Figure F.1: Illustration of how a two-class data can be separated with a hyperplane.

Figure F.1 depicts that implementing a support vector machine can be cut down to
selecting the appropriate values for the variables w and b. Hence the training data for
two classes can be described as follows:

w · xi + b ≥ +1 for yi = +1 (F.1)

w · xi + b ≤ −1 for yi = −1 (F.2)

and the generalization of these formulas can be given as follows:

yi(w · xi + b)− 1 ≥ 0 ∀i (F.3)

The support vectors for two classes are also shown with red circles in Figure F.1.
The two planes containing these support vectors for classes 1 and 2 are named H1 and
H2 respectively. Also, these two planes can be computed as follows:

w · xi + b = +1 for H1 (F.4)

w · xi + b = −1 for H2 (F.5)

The variables d1 and d2 are the perpendicular distances of separating hyperplane to
H1 and H2 planes respectively and are known as SVM margins. The SVM aims to orient
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the hyperplane in a way that maximises the margin. This margin is equal to 1
||w|| . To

maximise this margin it is necessary to minimise ||w||. Also minimising the term ||w||
is equal to minimising the term 1

2 ||w||
2. Finally, we can use quadratic programming will

help to find:

1

2
||w||2 such that yi(w · xi + b)− 1 ≥ 0 ∀i (F.6)

By imposing and solving a Lagrange multiplier and it’s dual the optimum values of
the w and b corresponding to the maximum margin can be computed. Those values are
as follows:

w =
L∑
i=1

βiyixi and b =
1

Ns

∑
s∈S

(ys −
∑
m∈S

βmymxm · xs) (F.7)

Ns is the number of support vectors. m and s belong to the support vector set points(m ∈
S and s ∈ S). Finally, β values are Lagrange coefficients.

F.2 Logistic regression

Logistic regression is an easy to implement and widely used method for medical data
classification. This method has been poorly named as a regression approach, however,
because the aim of the logistic regression is to discriminate between different classes of
the data. Logistic regression in essence aims to identify the relationship between a binary
response and one or more predictor attributes. In logistic regression the response variable
is binary, and that distinguishes logistic regression from ordinary linear regression [65].

Unlike the linear model that tries to predict the mean response, logistic regression
aims to predict the logit (log-odds) of the response having one particular value versus the
other value. If response value only takes values 0 and 1 then the logit of the response
with value 1 would be P (Y=1)

[1−P (Y=1)] . Taking the logarithm of this ratio results in a response

that varies between (−∞,+∞). This in turn suggests the following model:

logit[P (Y = 1|X)] = β0 + β1X1 + β2X2 + . . .+ βkXk (F.8)

where Y is a random variable denoting the response, vector XT = (X1, X2, ..., Xk) denote
a collection of k independent predictor variables, and where the βi are the parameters
to be estimated.

The logit transform can be defined as:

logit(x) = ln

(
x

1− x

)
(F.9)

By substituting the equation F.9 in equation F.8 the probability P (Y = 1|X) will be:

P (Y = 1|X) =
e(β0+β1X1+β2X2+...+βkXk)

1 + e(β0+β1X1+β2X2+...+βkXk)
(F.10)
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The equation F.10 is called the logistic regression model, and a maximum likelihood
estimation method can be used to identify the parameters in the model. Assume a
simplified version of this equation as follows:

f(z) =

(
ez

1 + ez

)
(F.11)

This logistic function is depicted in the Figure F.2. By assuming that the value
0 denotes the normal slides and value 1 denotes abnormal slides, the function f(z)
represents the estimate for a given value of z.
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Figure F.2: The logistic function f(z) =
(

ez

1+ez

)
restricted to the domain [−10,+10].

This idea can be used to utilize a fitted logistic regression model as a classifier. In
fact, for any given observation of xi, in the equation F.10, the fitted logistic regression
will end up with an estimated probability (see equation F.11) that shows the likelihood
of being 1. This estimated probability can be used for binary classification purposes
(classification of Pap smears). For this purpose, it is necessary to define a cut − point
value and compare the estimated probabilities with this value. Observations having the
estimated values of higher than the cut − point, belong to the abnormal class and vice
versa.

The optimal decisions in the logistic regression are based on the posterior class prob-
abilities p(y|x), and for a binary classification problem such as Pap smear classification
these decisions can be written as:y = 1 if ln P (y=1|x)

P (y=0|x) > 0

y = 0 Otherwise

(F.12)

Generally the probabilities P (y|x) are not known but the possible decisions can be
parametrized according to:
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ln
P (y = 1|x)

P (y = 0|x)
= f(x,w) = w0 + xTw1 = 0 (F.13)

The parameters can be calculated using a maximum likelihood estimation method. Fig-
ure F.3 shows a possible linear decision boundary for classification of a two-class data.

Class 1

Class 2

w1

w0+xTw1 = 0

Figure F.3: Logistic regression linear decision boundary for classification of a two-class
data.
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malignancy-associated change analysis 
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Ewert Bengtsson 

Abstract-This paper presents an automated algorithm for 

robustly detecting and segmenting free-lying cell nuclei in 

bright-field microscope images of Pap smears. This is an 

essential initial step in the development of an automated 

screening system for cervical cancer based on malignancy 

associated change (MAC) analysis. The proposed segmentation 

algorithm makes use of gray-scale annular closings to identify 

free-lying nuclei-like objects together with marker-based 

watershed segmentation to accurately delineate the nuclear 

boundaries. The algorithm also employs artifact rejection 

based on size, shape, and granularity to ensure only the nuclei 

of intermediate squamous epithelial cells are retained. An 

evaluation of the performance of the algorithm relative to 

expert manual segmentation of 33 fields-of-view from 11 Pap 

smear slides is also presented. The results show that the 

sensitivity and specificity of nucleus detection is 94.71 % and 

85.30% respectively, and that the accuracy of segmentation, 

measured using the Dice coefficient, of the detected nuclei is 

97.30±1.3%. 

I. INTRODUCTION 

THE Papanicloau test is the primary screening test for 

cervical cancer. It involves the microscopic examination 

of cells sampled from in and around the cervix for signs of 

precancerous and cancerous changes; e.g. large nucleus 

relative to cytoplasm. The test is labor-intensive and 

complex requiring the exhaustive review of tens of 

thousands of cells. One in every 10 to 20 positive cases is 

missed in routine screening [1]. There are two reasons for 

this [1]. The first is inappropriate interpretation due to 

factors such as fatigue, habituation, and inexperience. The 

second is due to sampling error wherein diagnostic cells do 

not make it onto the glass slide in the first place. Whilst 

automation using a computer and robotic microscope can 

address the issue of inappropriate interpretation it cannot 

address sampling error. Research suggests that the 

malignancy-associated change (MAC) phenomenon may be 

the solution. MACs are subtle sub-visual changes in the 

appearance of normal-looking cells from an abnormal Pap 

smear. The aim of MAC analysis is not to perform an 

exhaustive review of all of the cellular material to identify 
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Signals and Systems, Chalmers University of Technology, Gothenburg, 
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diagnostic cells but rather to look for MACs in a sub

population of cells sampled from the slide. 

An essential first step in the development of an automated 

screener based on MACs is robust automatic segmentation 

of free-lying cell nuclei in digitized Pap smear images. 

Numerous algorithms have been published for this purpose. 

They can be categorized according to the primary underlying 

segmentation methodology used: global and adaptive 

thresholding [2], watershed transform [3], boundary 

detection algorithms and deformable models [4-7], and edge 

enhancement based techniques [8, 9]. The algorithms based 

on thresholding lack robustness to noise, uneven 

illumination, and variations in staining intensity. The 

algorithms based on the watershed transform can yield 

oversegmentation (when too many potential cell nuclei 

candidates are selected) and inaccurate boundary 

segmentation (because of the lack of sufficient gradient 

information). The algorithms based on boundary detection 

and deformable models are highly dependent on strong prior 

knowledge about the shape and location of objects in an 

image to guide the segmentation process. Moreover they 

require the initial contour to be reasonably close to the true 

object boundaries. As a consequence they can fail in images 

containing clustered and overlapping cells. The algorithms 

based on edge enhancement are designed to segment the 

cytoplasm and nucleus of free-lying cells and likewise do 

not perform well in images containing clustered and 

overlapping cells. Another criticism of many of these 

proposed algorithms is that their segmentation accuracies 

have not been objectively evaluated. 

In this paper we present a new algorithm for robustly 

detecting and segmenting free-lying intermediate cell nuclei 

in bright-field microscope images of Pap smears. The 

novelty of the algorithm stems from a robust marker 

selection method for selecting candidate free-lying nuclei

like objects for subsequent marker-controlled watershed 

segmentation to obtain the nuclear boundaries. The 

algorithm also implements artifact rejection based on size, 

shape, and nuclear granularity to ensure only the nuclei of 

intermediate squamous epithelial cells are retained. The 

remainder of this paper is organized as follows. Section II 

introduces the proposed algorithm. Section III presents an 

empirical evaluation of its performance. Finally Section IV 

is the summary and conclusion. 
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II. PROPOSED SEGMENTATION ALGORITHM 

The proposed algorithm is designed to detect and segment 

free-lying intermediate squamous epithelial cell nuclei 

because these are the most abundant on a Pap smear and are 

the most suitable for MAC analysis [10]. The "nuclei of the 

intermediate cells measure about 8,um in average diameter, 
are round or oval, with a clearly defined nuclear membrane 

surrounding well-preserved homogeneous nucleoplasm" 

[11]. The algorithm is summarized in Table I and the 

individual steps discussed below. 

TABLE I 
PROPOSED SEGMENTATION ALGORITHM FOR FREE-LYING 

INTERMEDIATE CELL NUCLEI. 

Input: Gray-scale image containing a field-of-view (FOY) from 
a Pap smear slide. 

Output: Binary image containing connected components, 
each corresponding to a free-lying intermediate cell 
nucleus. 

Steps: 
I. Extract inner markers for free-lying nuclei-like objects 

(these locate the interiors of candidate objects). 
2. Apply the marker-controlled watershed transform on the 

FOY image with respect to the inner markers (this yields 
an outer marker that lies between the candidate objects). 

3. Apply the marker-controlled watershed transform on the 
gradient image with respect to the inner and outer 
markers (this yields the object boundaries/masks). 

4. Compute the area and quantitative measures of shape and 
texture granularity for each segmented nuclei-like object. 

5. Reject objects that are too small or large to be 
intermediate cells, that do not have an elliptical shape, 
and that do not have a granular texture. 

Step 1: Extraction o/inner markers 

The detection of free-lying nuclei is achieved using the 

gray-scale annular closing operator. The operator is defined 

Wanclo (f,B) = (f e B) V f (1) 

where f is a gray-scale image, e denotes erosion, V denotes 

pointwise maximum, and B is a symmetric structuring 

element which does not contain the origin [12]. The effect of 

this operator is to remove isolated dark spots in the gray

scale image. The operator is an algebraic closing and, like a 

conventional morphological closing, is increasing, extensive, 

and idempotent. Thus the arithmetic difference 
Wanclo (f, B) - f is non-negative and yields the removed 
isolated dark spots. These serve as candidate cell nuclei 

markers. This idea is illustrated in Fig. 1 for a single cervical 

cell and an annular structuring element. The inner radius and 

outer radius dimensions of the annular structuring element 

provide control over the size and relative isolation of the 

nuclei that can be detected. 

The squamous epithelium is made up of three principal 

layers [11]: the basal cell layer (immature), the intermediate 

cell layers, and the superficial cell layers (most mature). The 

nuclei of superficial cells are pyknotic and considerably 

smaller than intermediate and parabasal cells with a nuclear 

• 

(a) (b) (c) (d) 

Figure I. Extracting an inner marker for a free-lying cell nucleus. (a) 
Original image. (b) Gray-scale erosion with an annular structuring element. 
(c) Pixel-wise maximum of (a) and (b). (d) Arithmetic difference between 
(c) and (a). 

diameter of about 4 ,um [11]. In a normal Pap smear usually 

only the upper few layers of the squamous epithelium are 

removed and so the immature cells near the base of the 

epithelium are not sampled [13]. 

In order to detect a nucleus, an annular structuring 

element with an inner radius larger than that of the nucleus is 

needed. The nuclei of normal intermediate and parabasal 

cells measure approximately 8,um in diameter and may 

enlarge up to 15 ,um in the case of malignant or rare benign 

changes [11]. Hence, to detect all nuclei within this range, a 

set of independent annular closings with structuring 

elements with a range of inner diameters is 

needed. This is then the basis for the more sophisticated 

inner marker extraction algorithm presented in Table II. 

Steps 2-3: Marker-controlled watershed segmentation 0/ the 

detected nucleus-like objects 

Marker-controlled watershed segmentation [14] is used to 

segment the boundaries of the nuclei-like objects located by 

the inner markers. First a watershed segmentation of the 

original image f with respect to the inner markers is 

performed to obtain the outer marker. Next the original 

TABLE II 
PROPOSED NUCLEI INNER MARKER EXTRACTION ALGORITHM 

Inputs: Gray-scale image (t), and parameters AD, a, rl and rz 
Output: Binary mask (Xm) containing an inner marker for each 

free-lying nucleus-like object detected. 

1. Let Bo be a disk structuring element of radius AD 

2. for A = rl to rz do 

3. Let Ban be an annular structuring element with inner 

and outer radii of A and A + a respectively 

4. 9 = 'Panelo (f, Ban) - f 
5. Xl = 9 > a 

6. Xz = (Xl 8 Bo) EB Bo 
7. X = X u Xz 
8. end for 

9. Xm � set of centroids of the connected components in X 

Note: EB and 8 denote dilation and erosion respectively. 

image f is median filtered, its magnitude of gradient is 

computed, and the result is Gaussian filtered. A watershed 

segmentation of this filtered gradient with respect to the 

union of the inner markers and the outer marker yields the 

desired segmentation of the nuclei-like objects. This idea is 

illustrated in Fig. 2. 
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(b) 

Figure 2. Segmentation of the detected nuclei-like objects. (a) Watershed segmentation of the original image with respect to the inner markers (shown as 
disks) yielding the outer marker. (b) Gaussian filtered gradient magnitude of the median-filtered original image in (a). (c) Watershed segmentation of (b) 
with respect to the union of the inner markers and the outer marker. 

Steps 4-5: Artifact rejection 

Quantitative measures of the area, elliptical shape, and the 

texture/granularity are computed for each segmented 

nucleus-like object. These values are then used to reject 
objects that are too small or large to be intermediate cells, do 

not have an elliptical shape, or do not have a granular 

texture. 

The minimum area is deemed to be the area of a circle 

with radius r min' To measure how elliptical a segmented 

nucleus-like object is, an ellipse is fitted to the object pixels 

such that it has the same normalized second central moments 

as the segmented object. The elliptic variance descriptor 

(Evar) [15] is then used to measure how closely the borders 

of the fitted ellipse agree with those of the segmented 

nucleus-like object. For elliptical objects Evar is close to 0 
(see Fig. 3). 

The granularity or coarseness of texture of each segmented 

object is computed using the coarseness feature devised by 

Tamura [16] (derived from a texture model corresponding to 

visual perception). This feature reflects the size and number 

of texture primitives. It is useful and robust in the sense that 

it does not depend directly on the exact gray-levels in the 

object and so has robustness to non-uniformity of 

illumination and staining variations (provided that these do 

not greatly affect the size and number of texture primitives). 

Fig. 3 depicts two candidate nuclei with different Evar and 

Tamura coarseness values. 

III. EMPIRICAL EVALUATION 

The performance of the algorithm was evaluated relative to 

expert manual segmentation. 

A. Image data 

The data used in this study is a subset of 8 89 fields-of

view (FOVs) captured by a cytopathologist from 68 Pap 

smear slides. Each FOV was acquired using a CCD camera 

mounted on a light microscope. The images were captured 

with a 40x objective lens. Each FOV image is of size 

1024x1344 pixels with square pixels of size 0.25Ilm. The 

gray-scale resolution is 8 bits per pixel. 

Eleven slides, each containing a minimum of 100 non

superficial cervical cell nuclei, were randomly selected from 

among the 68 slides. For each slide three FOVs were 

randomly selected to yield a total of 33 FOV s. 

(a) (b) (c) (d) 

Figure 3. Assessing the shape and texture of a candidate nucleus. (a) 
and (b) show the result for a candidate nucleus with an elliptical shape 
(Evar = 0.026 and Tamura coarseness = 11.17). (c) and (d) show the 
result for a candidate nucleus with a non-elliptical shape (Evar = 0.096 
and Tamura coarseness = 10.75). 

B. Ground truth 

A graphical user interface (GUI) was developed to permit 

a user to review each FOV and to place a marker on 

individual nuclei. Three untrained subjects were recruited to 

independently review the FOV s using the GUI and to mark 

each free-lying nucleus. Prior to performing this task each 
was shown examples of intermediate cell nuclei in another 

FOV (not one of the 33 FOVs they had to review). Each 

subject was specifically instructed to mark elliptical objects, 

of approximately the right size, with a well-defined 

boundary, and with a granular texture. The set of all objects 

selected by at least two of the three subjects were taken to be 

the ground truth for free-lying intermediate cell nuclei. 

Two image analysis experts then used the GUI to 

independently trace the boundary of each ground truth 

nucleus. These manual segmentations were taken to be the 

ground truth for the boundaries of the free-lying 

intermediate cell nuclei. 

C.Method 

The proposed segmentation algorithm was applied to the 

33 FOV images. The parameters for different steps of the 

algorithm were selected after several experiments on a small 

subset of images independent of the 33 selected FOV 

images. The minimum and maximum values of the inner 

radius (rl and r2 ) of the annular structuring elements (see 

Table I) were set to 22 and 33 pixels. The values were 

selected based on the nucleus diameter range for the 

intermediate cell nuclei defined by Koss [11]. The outer 

radius of each annulus was set to be two pixels more than 

the inner radius (i. e. a = 2) to guarantee the extraction of 

inner markers of the adjacent free-lying nuclei. Finally the 

size of the disk-structuring element (AD) was set to 3 pixels 

(for noise mitigation). 
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Objects selected by the algorithm were compared to the 

ground truth nuclei obtained manually and used to compute 

the sensitivity and specificity of the algorithm for the 

detection of free-lying intermediate cell nuclei. 

To evaluate the accuracy of the segmentation of each 

nucleus detected by the algorithm, the resulting boundary 

was compared to the two corresponding boundaries (one 

from each expert) in the ground truth. More specifically the 

similarity between pairs of masks was computed in terms of 

the Dice similarity coefficient (DSC) scores [17]. The 

coefficient ranges between 0 and 1. A value of 1 indicates 

perfect agreement and a value of 0 indicates no agreement. 

D. Results 

The sensitivity and specificity of the algorithm for the 

detection of free-lying intermediate cell nuclei is 

94.71 % and 85.30% respectively. Boxplots of the D SC 

scores for the comparison of the proposed automatic 

segmentation to the two manual segmentations, and for the 

comparison between the two manual segmentations are 

shown in Fig. 4. 
The agreement between the algorithm and the two manual 

segmentations is 97.30 ± 1.3% and 96.96 ± 1.7% 
respectively (mean DSC ± standard deviation). The overall 

agreement between the two expert segmentations is 

97.26 ± 1.2%. 
E. Discussion 

The sensitivity of the algorithm to the detection of free

lying intermediate cell nuclei is high. However its 

specificity, whilst still quite high, could be improved. A 

review of false positives indicates that some of them are due 

to segmentation failures as the result of severe background 

noise and artifacts. However other apparent failures in fact 

represent genuine free-lying nuclei overlooked by the three 

recruited subjects. 

The DSC scores for boundary delineation evaluation (see 

Fig. 4) show that nuclei boundaries obtained using the 

marker-controlled watershed transform are highly accurate 

and consistent with the two experts' visual perception of the 

intermediate cell nuclei boundaries. 
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Figure 4. DSC scores for the comparison of the proposed automatic 
segmentation to the two manual segmentations, and for the comparison 
bewteen the two expert segmentations (GTI and GT2). 

IV. SUMMARY AND CONCLUSION 

In this paper we presented a new automated algorithm for 

detecting and segmenting free-lying cell nuclei in bright

field microscope images of Pap smears. The empirical 

results show that the algorithm has a high sensitivity and 

specificity for the detection of free-lying nuclei, and that the 

algorithm is able to delineate the boundaries of these with 

high accuracy. This work represents the first step in the 

development of an automated screener for Pap smears based 

on the malignancy-associated change phenomenon. 
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ABSTRACT
This paper presents a set of novel structural texture features for quantifying nuclear chromatin patterns in cells
on a conventional Pap smear. The features are derived from an initial segmentation of the chromatin into blob-
like texture primitives. The results of a comprehensive feature selection experiment, including the set of proposed
structural texture features and a range of different cytology features drawn from the literature, show that two
of the four top ranking features are structural texture features. They also show that a combination of structural
and conventional features yields a classification performance of 0.954±0.019 (AUC±SE) for the discrimination
of normal (NILM) and abnormal (LSIL and HSIL) slides. The results of a second classification experiment,
using only normal-appearing cells from both normal and abnormal slides, demonstrates that a single structural
texture feature measuring chromatin margination yields a classification performance of 0.815±0.019. Overall the
results demonstrate the efficacy of the proposed structural approach and that it is possible to detect malignancy
associated changes (MACs) in Papanicoloau stain.

Keywords: Cervical cancer, feature extraction, feature selection, classification, chromatin texture, malignancy
associated changes, structural texture features, Pap smear classification

1. INTRODUCTION
The Papanicolaou (Pap) test is the primary screening test for cervical cancer.1 It involves the microscopic
examination of cells sampled from the cervix. It is laborious and time-consuming involving the review of possibly
hundreds of thousands of cells for visual signs of cancerous or precancerous changes.2 One in every 10 to 20
positive cases is missed in routine screening.1 Two major factors affect the accuracy of the Pap test. The first is
sampling error wherein no diagnostic cells make it on to the slide. The other is interpretation error for reasons
including fatigue, inexperience, and habituation. Computer-assisted interpretation can potentially address the
issue of interpretation error. The malignancy-associated change (MAC) phenomenon may potentially address
sampling error. Several studies have demonstrated the phenomenon.3–5 MACs are subtle sub-visual, i.e. visually
imperceptible, changes in the appearance of otherwise normal-looking cells from an abnormal Pap slide. MACs
cannot be detected on a cell-by-cell basis but rather in a population of cells. The MAC approach obviates the
need to perform an exhaustive review of all of the cellular material to identify diagnostic cells.

The MAC features that appear to have the most discriminatory power are those characterizing nuclear
texture or more specifically the chromatin pattern in the nucleus. Traditionally MAC features have been based
on a stochastic approach to defining texture. However such features do not correspond well to the terms used
by cytopathologists to describe chromatin texture such as heterogeneity, granularity, margination, condensation,
compaction, clumping, diffuse, blobs and particles.2 This motivates interest in a structural approach to chromatin
texture analysis. This paper presents a set of novel structural texture features for quantifying chromatin texture.
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The features are derived from an initial segmentation of the chromatin into blob-like texture primitives. The
paper also presents an investigation of the most discriminatory subset of features, from among the proposed
features and a wide range of features drawn from the literature, for discriminating between normal and abnormal
Pap smears using the MAC approach.

2. METHODS
The types of features that can be extracted from cytology images can be broadly classified into four classes:
morphometric, densitometric, textural, and contextual.6 Whilst each of these can conceptually be computed for
both nuclei and chromatin blobs/particles, in this study contextual features were excluded for nuclei, and textural
and densitometric features were excluded for chromatin blobs. Morphometric features describe the geometry
(shape, size, position and boundary) of the object and are computed from its binary mask. Densitometric
features describe the intensity or optical density of the object and are computed from the histogram of gray-
values within the object. Contextual features are derived from the spatial relationship between objects; e.g.
the number of neighbors an object has, and statistics of the distances to neighboring objects. Texture features
describe the spatial variation of gray-levels within an object. Such features can be broadly classified into statistical
features and structural/syntactic features. Statistical texture features used in this study include fractal texture
features, run-length features, histogram based features, gray-level co-occurrence matrix (GLCM) features, and
complex Daubechies wavelets features. The wavelet features used in this study to characterize nuclear texture
were computed from the first level of the wavelet decomposition.7 A down-sampled binary mask of the original
image is used to identify and retain only the nuclei regions in the decomposed images for the purpose of feature
extraction.

The structural texture features used in this study to characterize nuclear texture are derived from a segmenta-
tion of the nuclear chromatin into blob-like texture primitives. In particular they are derived from morphometric
and contextual features computed for these blobs. The approach is described in the next section.

2.1 Novel structural chromatin texture features
Our proposed structural chromatin texture features are based on an initial segmentation of the chromatin into
blob-like texture primitives.2 For a given nucleus this involves: (i) applying a 3×3 median filter (to attenuate
impulse noise); (ii) up-sampling by a factor of 3 (to facilitate the rendering of watershed lines in a subsequent
step); (iii) locating the regional minima (inner markers); (iv) computing the watershed transform of the filtered
image with respect to the inner markers (to produce an outer marker that delineates a zone of influence (ZOI)
around each regional minimum); (v) computing the magnitude of gradient image for the filtered image; and
(vi) applying the watershed transform to the gradient image with respect to both the inner markers and the
outer marker (to delineate each dark chromatin blob). Our structural features (see Table 1) in essence describe
the attributes and arrangement of these resulting chromatin blobs. They fall into two broad categories. The
first consists of statistics of morphometric features computed for individual particles in a nucleus. The second
consists of contextual features computed from the particles in a nucleus. These contextual features can be further
subdivided into the following classes of features: margination, clustering, blob features, discrete texture features,
and features derived from the Voronoi diagram and its associated graphs.

The margination features characterize the distances of segmented chromatin blobs to the nucleus boundary.
They are computed from the cookie-cutting distances2 illustrated in Figure 1. In this study a 6th order polynomial
was fitted to the counts in the cumulative frequency histogram of these cookie-cutting distances, and the slopes at
the 25th and 37th percentiles were used as margination features M1 and M2 respectively for each nucleus. The
mean and standard deviation of these cookie-cutting distances were used as features M3 and M4 respectively.
The four features implicitly include information about the size of the nucleus. For this reason it was decided
in this study to include features M5 and M6 defined to be M3 and M4, respectively, each normalized to the
maximum value of the distance transform of the nucleus. The last margination feature, M7, is defined to be
the minimum distance between the centroids (geometrical centers) of the chromatin particles and the nucleus
boundary.
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Table 1: Summary of the extracted nucleus features

Morphometric Features

Area, perimeter, mean-radius, elliptic variance8

Densitometric Features

Photometric features:6 Integrated optical density (IOD), mean optical density (MOD), variance of optical density,
skewness of optical density, kurtosis of optical density

Texture Features

St
at

is
ti

ca
l

Fractal texture features:9 Fractal area 1, fractal area 2, fractal dimension
Run length features:3 SRE, LRE, GLN, RLN, RP, LGRE, HGRE, SRLGE, SRHGE, LRLGE, LRHGE

Histogram based features:9 Mean, standard deviation, and skewness of the gray level histogram

GLCM features:6 Contrast, correlation, energy, entropy, local homogeneity, maximum probability, cluster shade,
cluster prominence and information measure of correlation (H-IMC1, H-IMC2)

Complex Daubechies wavelet features of nuclei:7 Mean, standard deviation, and skewness of the gray level
histogram. GLCM features – contrast, correlation, energy, entropy, local homogeneity, maximum probability, cluster
shade, cluster prominence and information measure of correlation (W -IMC1, W -IMC2)

Statistics of the chromatin particle morphometric features

Mean of chromatin particle areas and perimeters, mean of chromatin particle areas normalized to the nucleus area,
mean of chromatin particle perimeters normalized to the nucleus perimeter, chromatin particle compactness (P2A)

Contextual chromatin particle features

St
ru

ct
ur

al

Margination: M1, M2, M3, M4, M5, M6, M7 (See section 2.1)

Clustering: C1, C2, C3, C4 (See section 2.1)

Blob features: Heterogeneity (the ratio between the area of the segmented dark and light regions, and the nucleus
area),10 the ratio between the area of the segmented dark regions and the nucleus area, number of segmented dark
particles, number of segmented light particles, area ratio of each chromatin particle to its watershed ZOI, average
distance between the geometrical center of the nucleus and pixels of all chromatin particles, distance between the
geometrical center of the nucleus and center of mass of the chromatin particles

Discrete texture features:9, 11 Medium and high DNA amount, medium and high DNA area, medium and high

DNA compactness, medium-high DNA compactness, center of gravity (the distance from the geometrical center of the
blob to the center of gravity of the optical density function)

Area-Voronoi diagram: Mean and standard deviation (SD) of the areas of the Voronoi regions, mean and SD of the
areas of the Voronoi regions normalized to the nucleus area, area disorder,3 Voronoi regions roundness,3 mean of area
ratio of each chromatin particle to its Voronoi region3

Delaunay graph and generalized Delaunay graph:Mean of the Delaunay triangle areas, mean and SD of the
Delaunay edge lengths, average of the mean and SD of the edge lengths connected to each vertex (chromatin parti-
cle), maximum Delaunay edge length, mean of the number of connections per chromatin particle, number of vertices
(chromatin particles) on the graph boundary

Gabriel graph and relative neighborhood graph: Mean and SD of the graph edge lengths, maximum edge length,
average of the mean and SD of the graph edge lengths connected to each vertex (chromatin blob), mean of the number
of connections per vertex (chromatin blob)

Minimum spanning tree: Mean and SD of the edge lengths, total edge length, edge disorder,3 minimum to maximum
edge ratio, mean of the number of connections per vertex, percentage of vertices connected to one vertex (MST 1),
percentage of vertices connected to two vertices (MST 2), percentage of vertices connected to more than two vertices
(MST 3)
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Figure 1: Illustration of how the features M1 and M2 are computed. (a) Segmented chromatin particles. (b)
Euclidian distance transform of the nucleus. (c) Portions of (b) cut out by the segmented chromatin particle
masks. (d) Cumulative frequency histogram of these cut-out distances with a polynomial fit through the counts
superimposed. Features M1 and M2 are the slopes at the 25th and 37th percentiles respectively.

A subset of the contextual features are those derived from the Voronoi diagram and a generalization called
the area Voronoi diagram. In this study the Delaunay graph (dual of the Voronoi diagram) is computed for
the centroids of the particles in the nucleus and several features are then directly computed from it. The area
Voronoi diagram is computed from the watershed transform of the distance transform of the set complement of
the union of the chromatin particle masks. The region adjacency graph defined on the resulting watershed regions
yields a generalization of the Delaunay graph as shown in Figure 2. Several sub-graphs—Gabriel graph, relative
neighborhood graph, and the minimum spanning tree12–14—are also computed. Each type of graph defines a
different adjacency relationship between the particles. Details concerning the explicit features computed from
the Voronoi diagram and associated graphs are given in Table 1.

(c)(b)(a)

Figure 2: Illustration of how the area Voronoi diagram and generalized Delaunay graph are computed. (a)
Distance transform of the set complement of the union of the chromatin particle masks in Figure 1a. (b) Area
Voronoi diagram and segmented chromatin particles. (c) The region adjacency graph defined on the Voronoi
regions then defines a generalized Delaunay graph.

The clustering features characterize the way the chromatin particles are clustered in the nucleus. They are
computed from the area Voronoi diagram. Features C1 and C2 are computed similarly to features M1 and
M2 except that the cookie-cutting distances are obtained from the distance transform of the Voronoi regions as
shown in Figure 3. Features C3 and C4 are computed from the area Voronoi diagram and the distance transform
image used in its construction (see Figure 2a and 2b) as follows. Firstly for every pair of Voronoi regions that
share a common edge, the convex hull is computed for the union of the corresponding pairs of particles. Secondly
the union of these convex hulls is filled to form a binary mask (Figure 3b). Thirdly this mask is intersected with
the divide lines of the area Voronoi diagram. Finally features C3 and C4 are the mean and standard deviation,
respectively, of the distance transform values corresponding to the residual divide line pixels in this intersection
(Figure 3c).

Details concerning the blob features and the discrete texture features are given in Table 1.
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(c)(b)(a)

(c)(b)(a)

Figure 3: Illustration of how the features C1, C2, C3, and C4 are computed. (a) Distance transform of the
Voronoi regions in Figure 2b. (b) Binary mask (with particles superimposed) formed from the union of the
convex hulls (see the text for details). (c) Voronoi region divide lines clipped according to the mask in(b).

2.2 Pap smear images and ground truth
The image data used in this study originate from a set of 68 conventional Pap smear slides. Each slide was
reviewed by a cytopathologist and assigned a cytological diagnosis according to the Bethesda system.15 The
cytopathologist subsequently acquired representative FOVs from each slide. In the case of abnormal smears this
included FOVs with and without diagnostic cells. The cytopathologist also labeled individual cells in each FOV
accordingly. The FOV images were acquired using a monochrome CCD camera mounted on a light microscope
with a 40× objective lens. Each image has a gray-scale resolution of 8 bits per pixel and is of size 1024×1344
pixels with square pixels of size 0.25µm.

2.3 Experiments
To evaluate the performance of the proposed structural chromatin texture features two experiments were per-
formed. The aim of the first experiment was to determine the most discriminatory subset of features, from
among the proposed features and a wide range of features drawn from the literature, for discriminating between
normal and abnormal Pap smear slides. A normal smear is deemed to be one that has been labeled as NILM
(Negative for Intraepithelial Lesion for Malignancy). An abnormal smear is one that has been labeled as either
LSIL (Low grade squamous intraepithelial lesion) or HSIL (High grade squamous intraepithelial lesion). The
aim of the second experiment was to evaluate the performance of a variety of classifiers built using the feature
subset obtained in the first experiment to discriminate between the normal and abnormal slides.

In the first experiment, the free-lying nuclei in each digitized FOV were automatically segmented using the
algorithm we have previously described.16 For each nucleus we computed the 159 features listed in Table 1. The
mean and standard deviation of each feature over all segmented nuclei for a slide yielded a total of 318 slide-based
features. An additional random feature was included to gauge the efficacy of feature selection. As a compromise
between having a reasonable number of cells per slide for MAC analysis and having a reasonable number of slides
for our study we decided to impose the following two criteria. Firstly each slide should have a minimum of 80
non-superficial cervical cells with a NILM label. Secondly, 10% to 40% of the cells in the abnormal slides should
be diagnostic cells. This left a total of 44 slides: 25 NILM, 10 LSIL, and 9 HSIL. The following three feature
selection methods were investigated: state-of-the-art multiple support vector machines with recursive feature
elimination (MSVM-RFE),17 L1-regularization path for generalized linear models,18 and the recently introduced
guided regularized random forest (GRRF).19 To optimize classification performance it is necessary to couple each
classification approach with the most relevant feature selection method. In this experiment we paired the MSVM-
RFE with a linear kernel SVM classifier, the GRRF with an ordinary RRF20 classifier, and the L1-regularization
procedure with a generalized linear model. Given the limited number of slides available in this study, all the slides
were used for feature selection. However an internal cross validation (in-loop feature selection) technique21 was
employed to avoid overfitting and overoptimistic estimation of the performance. Feature selection by the SVM-
RFE was achieved using 100 iterations of double 5-fold cross validation, each iteration with random combinations
of samples in the training and the test set. The inner cross validation loop was used for feature selection and
tuning the optimal parameters for the SVM classifier with a linear kernel. The outer cross validation loop
was used to evaluate the classifier model performance in terms of the AUC (area under the receiver operating
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characteristic curve). For GRRF feature selection and the L1-regularization path for generalized linear models,
100 repeated 5-fold cross validation was employed.

In the second experiment only the cells marked by the cytologist as NILM on normal and abnormal slides
were segmented and slides with a minimum of 80 such cells retained. This left a total of 44 slides: 26 NILM, 9
LSIL, and 9 HSIL. To avoid the curse of dimensionality, only feature subsets with one or two features identified
in experiment 1 were considered. Two classifiers were evaluated using 100 iterations of 5-fold cross validation:
SVM with a linear kernel and a logistic regression (LR) classifier.

3. RESULTS
Experiment 1: The classification performance results together with the four top-ranked features for the three
feature selection approaches are presented in Table 2. “SD of IOD” and “Mean of M2” are the top two features
in all three feature selection (FS) methods. The top four features appearing most frequently among the feature
selection methods are: SD of IOD, Mean of M2, SD of MST3 and Mean of W -IMC1. Figure 4a shows boxplots
for each of these features for both the normal and abnormal slides. The best AUC (0.954±0.019) was achieved
using the L1-regularization procedure with a generalized linear model.
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Figure 4: (a) Boxplots of the features F1, F2, F3, F4, F5, F6 for experiment 1. (b) Boxplots of the features
F1, F2, F5, F6 for experiment 2.

Experiment 2: The classification performance results are presented in Table 3. Boxplots for each feature for
both the normal and abnormal slides are shown in Figure 4b. The feature “Mean of M2”, which is a measure
of chromatin margination inside the nucleus, achieved the best classification performance in both classifiers for
the detection of MACs. This is also supported visually in Figure 4b. The feature “SD of IOD”, whilst quite
discriminatory in the first experiment, does not show any discriminatory power in the second experiment. This
is not surprising given that the Pap stain is not stoichiometric and that none of the cells in experiment 2 were
diagnostic.
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Table 2: Classification results for experiment 1.

FS Method Top 4 features AUC (Mean±SE)
MSVM-RFE F1, F2, F3, F4 0.934±0.038

L1-Reg F1, F2, F5, F6 0.954±0.019
GRRF F1, F2, F5, F6 0.935±0.029

F 1: SD of IOD, F 2: Mean of M2, F 3: SD of C1, F 4: SD

of nucleus area, F 5: SD of MST 3, F 6: Mean of W -IMC1

Table 3: Classification results for experiment 2.

Classifier Features AUC (Mean±SE)

SVM

F2 0.815±0.015
F5 0.706±0.053
F6 0.792±0.026

F2, F6 0.822±0.024

Logistic
Regression

F2 0.803±0.026
F5 0.591±0.054
F6 0.784±0.027

F2, F6 0.752±0.038

4. CONCLUSIONS AND DISCUSSION
A set of novel structural texture features for quantifying nuclear chromatin patterns in cells on a conventional
Pap smear was presented. The experimental results demonstrate the efficacy of this structural approach and that
a combination of these structural texture features and conventional features can be used to discriminate between
normal (NILM) and abnormal (LSIL and HSIL) slides with high accuracy. They also demonstrate that it is
possible to detect malignancy associated changes (MACs) in Papanicoloau stain. The most discriminating single
feature, Mean of M2, for detecting malignancy associated changes (MACs) is a structural feature measuring
chromatin margination. This in turn suggests the possibility of developing a fully automated Pap smear screener
based on MACs.

Most of the proposed contextual features for describing chromatin arrangement can be applied at the nucleus
level to quantitatively characterize the spatial arrangement of cells on a slide. This will be the subject of future
work.
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