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Abstract

Numerical simulations were carried out to evaluate the performance of insulating
joints in railway tracks. Although insulating joints are considered weak spots on
the track due to the imposed rail discontinuity, they are nevertheless essential to
monitor and control train traffic. All simulations presented were conducted using the
commercial FE code Abaqus. Results were extracted, processed and plotted with the
help of the programming languages Python and Matlab. No dynamic effects were
included in the simulations.

This study consists of three major parts: The first part was to compare hyper-
elastic Neo-hookean and linear elastic material models for the insulating layer in the
joint. The simulations showed that there was no significant difference in stresses or
displacements between the two models.

Investigating the effects of increasing the stiffness of the insulating material was
performed in the second part. The investigation showed that increased stiffness
decreases the plastic deformation in the steel. However when increasing the stiffness
the interfacial shear stress increases. This will promote failure of the glue that ties
insulation and rail together.

The effect of having an inclined insulating joint was analyzed. Four different
inclination angles θ, were tested ranging from 0◦ (no inclination) to 60◦. By increas-
ing the angle the plastic deformation in the steel on both sides of the insulating
layer increased under pure rolling conditions. Inclination did not seem to cause any
significant changes in interfacial shear stresses.

Finally a comparison was made of the vertical displacement of the wheel cen-
ter between the quasi-static ABAQUS simulations and approximations derived from
Newtonian physics. These approximations indicate that the time that it takes for
the wheel to travel over the gap is not sufficient to allow for the wheel displacements
predicted by the quasi-static simulations when traveling on a speed exceeding roughly
85 km/h.

Keywords: Insulating rail joint, plastic deformation, ratchtetting, low-cycle fatigue, in-
clined joint, hyper-elastic material
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1 Introduction

The use of insulating joints is a rather easy and reliable way to monitor rail traffic. By
a small voltage difference between the rails, a traveling train conducts current between
the two rails see figure 1.1. By measuring this short circuiting it is possible to determine
on which rail segment the train is located. The insulating joints are designed to insulate
track sections. The insulating material is usually nylon (polyamid). The nylon layer does
not provide load carrying capacity but is necessary to keep objects and dirt off the gap,
especially conducting objects like metal shavings that can cause interference. Different
designs of insulating joints are employed, for example supported and unsupported joints
(depends on the position of the supporting sleepers) and inclined joints. Insulating joints
are generally weak spots of the track structure and have rather short service life as compared
to the rail itself.

Figure 1.1: The role of insulating joints.

There is a high demand from the railway sector to increase the life span and reliability
of these joints. To improve the performance it is first essential to understand why they
fail. The biggest problem by using insulating gaps are the stress concentration on both
ends of the rails caused by the imposed discontinuity. The insulating layer typically has a
Young’s modulus of 3-5 GPa as compared to the steel modulus of roughly 200 GPa.

The insulating joint is assembled with two fishplates on both sides of the ends of the
rail web, an insulating layer and bolts to secure the connections, see figure 1.2. The gap
between the two rail ends is on the order of 4 mm but varies between countries. The
effects of the fishplate, bolts and support conditions will be ignored in this investigation.
All simulations assume that the insulating joint is ”supported” i.e. vertical deflections are
restricted and the rail ends are not allowed to bend.
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Figure 1.2: A photo of an assembled insulating joint.

2 Numerical models and tools

This chapter contains detailed information on how the Finite element model was designed,
how simulations were performed and the subsequent postprocessing. The information can
be helpful for future simulations of insulating joints. The investigation was conducted
using the commercial software package Abaqus 6.7-2.

2.1 Geometry and boundary conditions of the FE model

Figure 2.1: The simulated volume (red) in relation to the whole rail section.

The study considers a nominal UIC60 rail section which was imported to Abaqus from
a CAD file of a 2D rail profile. To try to minimize the number of elements used in the
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simulations and therefore reduce the calculation time only a small part of the rail was
simulated as seen in figure 2.1. The width and height of the simulated volume was 24
mm X 24 mm. The length of the simulated volume varied between simulations. In all
simulations except when simulating an inclined insulating gap (where the geometry is not
symmetric) only half the volume was employed and symmetric boundary conditions were
applied on the plane of symmetry seen in figure 2.2. The insulating gap was created by
partitioning the rail volume thus making it possible to assign different material properties
to different parts. In all simulations the gap size was dgap = 4 mm.

Figure 2.2: Boundary conditions of the rail part. On the left adopted boundary conditions
for the case of an antisymmetric insulating joint, on the right boundary conditions for a
symmetric joint.

When modeling the inclined joint the simulated rail volume was partitioned like in
figure 2.3. θ represents the inclination of the joint from the z-axis of the global coordinate
system, θ = 0◦ equals a regular joint.

For all cases the boundary conditions at the bottom of the simulated volume were that
all displacements were set to zero at all nodes of the bottom plane as seen in figure 2.2.
Rotation of the model edge elements (in the x-direction) are prohibited. This corresponds
to prohibited rail bending.

The wheel was modeled as an extruded circle with a radius Rwheel = 460 mm. An
actual train wheel has ”conic” shape as sketched in figure 2.4. This was not accounted for
in the simulations where the wheel surface was considered cylindrical.

Rather than modeling the whole wheel, only a part was modeled to decrease compu-
tational efforts. A sketch of the modeled wheel can be seen in figure 2.5. A rigid link is
defined between the theoretical center of the wheel and the upper surface of the wheel part
as shown in figure 2.5
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Figure 2.3: Inclined joint-Top view.

Figure 2.4: Surface profile of a real train wheel.

Figure 2.5: Modeling of wheel section
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2.1.1 Mesh

The volume is meshed using two different shaped elements, tetrahedral and hexagonal as
seen in figure 2.6. The hexagonal mesh is used on the region of interest i.e. the insulating
gap and the steel surrounding it. It is necessary to have high resolution in this region
to capture the high stress concentrations. The volume of the rail that was more than
5 mm away from the gap was meshed with tetrahedral elements and the mesh density
was courser. Results from the course mesh were not used in the postprocessing. It was
necessary to lower the wheel to the surface and also lift it up far away from the gap to get
a good simulation of the rollover where the effects of lowering and lifting would not affect
the results on the region of interest.

Three different mesh sizes were applied to the volume of interest i.e. the insulating layer
itself and the rail steel on both sides. The mesh seed sizes were a = 0.4, 0.5 and 0.6 mm for
different simulations. Two different types of elements were used on the area of interest for
two different material models for the steel, these were hexagonal linear element with 1 and
8 integration points. Other elements on the rail are tetrahedral single integration point
elements. To connect the two different shaped elements a ”tie” constraint was defined
between the surfaces of tetrahedral and hexagonal cells. Tie constraints tie two surfaces
together so there is no relative displacement between them.

Figure 2.6: Meshed model for a symmetric joint.

Also the wheel was partitioned into two volumes with different types of elements so it
would have the same element size and type as the matching point on the rail as seen in
figure 2.7.

The elements on the boundary on the interface between the steel and insulating layer
share nodes as seen in figure 2.8. In a real insulating joint the plastic is glued to the steel.
However assuming that the glue layer is very thin as compared to the element size and
also assuming that the glue is intact and have mechanical properties similar to that of the
insulating layer this way of modeling the interface is reasonable.

When modeling the inclined joint a separate model was made for each joint inclination,
due to the complexity of the model it was not possible to automate the modeling process
by scripting. The meshed model of an inclined joint can be seen in figure 2.9. The wheel
had to be meshed in the same way as the rail i.e. have a fine mesh on its surface to match
the fine mesh on the rail in the vicinity of the insulating layer.
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Figure 2.7: Meshed model-close up. Surface mesh of the wheel matches the mesh on the
track surface.

Figure 2.8: Interface between insulation and steel. The elements on the figure contain 1
integration point, in some simulations the elements contained 8 integration points.

Figure 2.9: Top view of meshed inclined joint. The different colors represent different
material, i.e. steel and nylon.
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2.1.2 Loads

Figure 2.10: Loads, displacements and the resulting frictional force Fx.

All the loads and displacements were applied to a point corresponding to the center
of the wheel. During each rollover three quantities define the loading: the horizontal
displacement u of the wheel center in the traveling direction, the rotational moment M
due to the traction and vertical load Fy due to the weight of the train. These are indicated
in figure 2.10. The applied moment is calculated as

M = FyRf (2.1)

where R is the wheel radius and f is the traction coefficient defined as f = Fx/Fy where
Fx is the prescribed longitudinal force acting in the wheel/rail interface as seen in figure
2.10 . In this study the traction coefficient is either f = 0 i.e. no traction or f = 0.2. Note
that Fx is the result of the applied moment M . Transverse loads Fz are not considered in
this study.

2.1.3 Contact modeling

The contact model used to simulate normal contact between the rail and the wheel is
the built-in Abaqus Penalty(Standard) with linear contact stiffness. Tangential contact
forces are evaluated using the Penalty module. The maximum coefficient of friction for the
Coulomb friction used is µ = 0.4. To ensure the wheel does not slide when rolling over
the insulating gap when traction is applied on the wheel center it is necessary to define a
maximum distance of allowed slip. The default value of ”fraction of characteristic surface
dimension” (FOCSD) was reduced from a value of 0.005 to 0.0025. FOCSD defines the
maximum relative displacement between surfaces. When the wheel is directly above the
center of the insulating layer as in figure 2.12, the risk of slipping is at maximum . The
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Figure 2.11: Normal and tangential stresses in the wheel/rail interface.

insulating layer is so flexible as compared to the steel that the wheel sinks into it and
tangential force between the surfaces Fx decreases. In these quasi-static simulations wheel
sliding can not be accounted for. In a simulation accounting for dynamics the wheel would
gain a velocity v and the momentum of the train would ensure that the wheel would pass
the gap without problem. In the present study reducing the value of the FOCSD ensured
that the wheel did not slip.

Figure 2.12: Risk of wheel slip in the static analysis when the wheel is positioned in middle
of the insulating layer

2.1.4 Steps in the numerical simulation

When describing the load and the displacement it was necessary to use the theory of
nonlinear geometry due to the great distance traveled by the wheel center during each
rollover and also due to the large displacements of the element nodes. All simulations were
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quasi-static i.e. acceleration and momentum is not accounted for. Further, the material
models employed are (strain)-rate-independent.

A single rollover of the wheel consists of 8 steps as seen in figure 2.13 and described
below.

A The first step consists in lowering the wheel on to the surface of the rail. To aid the
normal contact model to converge, a point (anchor) above the center of the wheel was
connected to the wheel center with a linear spring of stiffness k =5kN/mm. Rather
than solely prescribing the displacement of the wheel a much smoother contact is
obtained by instead prescribing the movement of the anchor when lowering the wheel.
It will further aid the establishment of the contact after the first rollover when the
surface of the rail has yielded and it is not possible to know in advance how far the
wheel should be lowered to obtain contact. All degrees of freedom of the wheel center
are locked except uy

B The vertical wheel load Fy is applied. In this step all degrees of freedom of the wheel
center are locked except uy, just like in the previous step.

C When the moment is applied, rotation of the wheel center around the z -axis ωz is
unlocked and the prescribed moment M is applied. When there is no interfacial shear
considered, i.e. f = 0, then M = 0.

D For the rollover itself ux on the wheel center is prescribed. The rotation angle ωz
is is not prescribed during the rollover and the wheel rotates due to the interfacial
wheel-rail friction.

E When the wheel has concluded the rollover, both the moment M and the vertical
force Fy are set to zero.

F1 Before starting the next rollover the wheel must be moved back to the initial position.
The contact model is quite sensitive to large displacements so in this step ux and ωz
are fixed and the wheel is lifted 1 mm up from the surface to release the contact.

F2 The wheel is lifted up high above the rail before being moved back to the initial
position in order for the contact algorithm not to make any attempts at contact
iterations

G The wheel is moved to the initial position in front of the insulating layer and the
next cycle can begin.
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Figure 2.13: Steps for the 1 rollover in the simulation.

The input simulation steps were generated by a Python script.

2.2 Material models

Four different materials models were used in the simulations.

2.2.1 Linear elastic material

The wheel material was simulated as linear elastic in all simulations. The wheel steel had
a Young’s modulus of Ewheel = 200 GPa and Poisson’s ratio of νwheel = 0.3. In most
simulations the insulating layer was considered as linear elastic. The Young’s modulus of
the insulating layer was varied between different simulations.

2.2.2 Hyper-elastic material

In many cases it is not accurate to model the behavior of the material by a linear-elastic
model. When modeling a nearly incompressible isotropic material it is usually better to
use a hyper-elastic model, especially under large strain conditions. The hyper-elastic stress
strain relationship is derived from a strain energy density function Ψ(F) where F is the
deformation gradient tensor of the element. A hyper-elastic material will initially behave
linearly but for high strain magnitudes the elastic modulus λ will decrease significantly
due the to release of energy.

The insulating layer usually consists of nylon as mentioned above. In most applications
a more realistic behavior would be obtained by simulating the material as hyper-elastic
instead of linear-elastic. One could further wonder if the displacements in the insulating
layer are so large that they can’t be considered as linear anymore. To investigate this,
a built-in Abaqus Neo-Hookean hyper-elastic model was used and compared to a linear-
elastic model for the insulating layer.

The stored energy of compressible Neo-Hookean material is, see [3]

Ψ =
µ

2
(J2 − 3)− µ ln J +

µ

2
(ln J)2 (2.2)
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Where µ and λ are the initial bulk and elastic modulii and J the volume ratio between
the initial and current state of the object, which in term is a function of the deformation
gradient F. It is easy to compare this model to a linear elastic model since they both use
the same input parameters, i.e. λ = Eν

(1+ν)(1−2ν)
and µ = E

3(1−2ν)
.

2.2.3 Plasticity model built-in to Abaqus

Abaqus has a built in plasticity model that features a non-linear kinematic hardening
model and can therefore simulate ratcheting, i.e. accumulation of plastic strain. This
standard model is formulated in a small strain setting. This model has a benefit over the
Custom Model that will be discussed in next section in that it converges well due to the
good control over the time increments in the solver. The employed material parameters
are found in the appendix, and are calibrated for the rail steel R260 (UIC900A) in [6].

2.2.4 Custom model

An advanced constitutive model especially designed for rail materials was employed in some
of the simulations. The model uses nonlinear kinematic hardening of combined Armstrong-
Frederick and Burlet-Cailletaud types. These hardening models were originally derived
assuming small strains which is not quite valid for the steel surrounding the joint in these
simulations. However a generalization to large strains featuring a Neo-Hooke description
is also included in the model and is employed in this study. Strain-rate dependency is
not included in the constitutive model. This is not a problem since all simulations were
quasi-static. The material parameters have been identified for a rail steel in using test data
[5] and are given in the appendix.

2.3 Postprocessing

In this section the postprocessing process of this study is described.

2.3.1 Comparison of hyper-elastic to linear elastic insulating material

To compare the two different material models of the insulating layer, i.e. the hyper-elastic
and linear-elastic material, the von Mises stress σv and the magnitude of displacement u
in the insulating material were compared between simulations featuring the two models.
Usually when analyzing insulating joints the results from steel are analyzed to determine
wear, plastic deformation and etc.. However since we are now comparing a feature of the
insulating layer, the most straightforward approach is to compare the results evaluated in
this layer.

2.3.2 State of strain in the rail steel

The Abaqus plasticity model calculates, for each integration point, a quantity called ”equiv-
alent plastic strain” which is defined as:

εp = εp|0 +

∫ t

0

√
2

3
ε̇p : ε̇pdt (2.3)

Here εp|0 is the initial equivalent plastic strain (taken as 0 in this study) and ε̇p are the
plastic strain rate components. Note that the material models are not strain-dependant so
the time is here irrelevant, therefore the integration is in fact carried out over the rollover.
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The custom model doesn’t include this measure to determine the deterioration so we use
instead a so called effective strain which is defined for excessive plasticity i.e. E∆εeff >>
∆σeff , where

εeff =
√

2/3
√

(εxx − εyy)2 + (εyy − εzz)2 + 6(ε2xy + ε2yz + ε2zx) (2.4)

and

σeff =
√

(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 3(σ2
xy + σ2

yz + σ2
zx) (2.5)

and E is the Young’s modulus of the material.
There are many different ways to quantify strain. One measure, commonly used for

large non-linear deformation, is the so called logarithmic strain. Taking a 1D rod for
example, logarithmic strain is defined by adding all the strain increments together when
the rod is continuously stretched from the original length L to final length l [4]

εL =

∫ l

L

dl

l
= ln

l

L
(2.6)

In the current study εeff according to equation (2.4) is calculated by using the logarith-
mic strains from the integration points of the elements.

2.3.3 Deterioration of the insulating layer

The insulating layer does not carry much load due to its flexibility and does not deform
enough to reach the yield limit of most plastic materials. However the insulating layer
is glued to the steel on both sides and it is interesting to see if the glue can sustain the
interfacial shear stress due to the heavy load from the wheel. The yielding of the steel
on both sides of the insulating layer also causes larger and larger displacements after each
wheel traversal and consequently a higher shear stress after each rollover. The glue that
holds the two materials together is not part of the simulation as mentioned above so the
shear stress σxy (in the yz–plane) was extracted from the integration points of the insulating
layer elements on the interfaces between the two materials.

2.3.4 Accuracy and consistency

Just capturing the highest values in the model of the evaluation variables i.e. εp, εeff and
σxy will not give realistic results. The elements on the edge between the rail surface and
the interface between the steel and the plastic are the elements that deform the most. The
mentioned values will become the highest there but the results will be very mesh dependent
due to the high stress gradients. In [7] a mesh sensitivity test for two different mesh sizes
was conducted for similar insulating joints. The result was that 1.5 mm into the steel, as
defined in figure 2.14, the magnitudes of the measured quantities agreed between the fine
and course mesh. Based on that result the values of εp, εeff and σv were evaluated at this
position on both sides of the insulating layer. The values were extracted from the elements
in the symmetry plane of the rail i.e. the xy-plane. To obtain the values at the exact
position it was necessary to interpolate between values in the integration points of the
elements. For the reduced integration elements, the elements only contained 1 integration
point in the middle so there were no points to interpolate between in the z -direction. Hence
only 2D interpolation was adopted in this case and values were taken 0.2 mm from the
symmetry plane in the z -direction i.e. half the length of the elements (0.4 mm). The full
integration elements have 8 integration points so it was possible to interpolate in 3D and
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the values were taken from the 1.5 mm position although the elements were larger (0.5
mm).

For the shear stress σxy the results from the elements at the top surface of the rail were
ignored due to the heavy distortion. Here results are evaluated at a depth of 0.6 mm below
the top of the rail head.

1.5mm

1.5mm

Insulating layer

1.5mm

1.5mm

steel steel

y
x

Figure 2.14: The position where values of εeff , εp and σv are evaluated.

When calculating εp for the inclined joint, the values were obtained from steel elements
one element layer below the surface. The mesh size for these calculations was 0.6 mm, and
each element contained one integration point so the values were evaluated at a distance
0.9 mm below the top of the rail head.

To calculate the maximum shear stress in the inclined insulating joint it was necessary
to transform the stress matrices for each element from the global coordinate system to the
orientation of the the plane between the steel and the insulating layer i.e. in the interface
between the two materials. That was done by transforming the stresses using the tensor
transformation rule

σ′ = RyσRy
T (2.7)

where Ry is the rotation matrix around the y-axis

Ry(α) =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

 (2.8)

and α = −θ where θ is the angle of inclination as defined in figures 2.3 and 2.15. σ is
the 2nd order stress tensor defined as

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (2.9)
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Figure 2.15: Stress transformation, the stress matrices for each element are rotated as seen
in this figure to evalate the stresses between the interface of the two materials.

2.4 Static vs. dynamic simulation

All simulations in this study were quasi-static and no dynamic effects are included. One
could ask how good assumption it is to treat this as a static problem. When the wheel
rolls over the gap the wheel sinks into the insulating layer and reaches a maximum vertical
displacement when the wheel center is located directly above the middle of the insulating
layer. To see if the wheel can drop this distance in the short time it takes it to travel
over the joint a simplified evaluation (featuring Newton’s second law) is employed. First
to calculate the vertical position uy of the wheel center we use

uy =
1

2
ayt

2 (2.10)

where ay is the vertical acceleration calculated as ay = Fy/mwheel, Fy is the spring force
and mwheel is the mass of the wheel. The vertical elongation of the spring is so small that
that Fy is assumed as a constant. The time t is calculated as t = ux/vtrain where vtrain is
the train velocity and ux is the the horizontal displacement of the wheel center.

3 Results

In this section results are presented from all simulations. The simulations were carried
out on a computer cluster. Each simulation was performed using four Xeon 5160 3 GHz
processors with 4 GB of shared internal memory. The calculation time varied between 16
hours and 5 days depending on the number of elements in the model, distance traveled by
the wheel center and which material model that was used for the rail steel.
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3.1 Hyper-elastic vs. linear-elastic model in the insulating layer

The vertical force on the wheel was Fy = 150 kN with no rotational moment applied
i.e. a traction coefficient of f = 0. These simulations were performed for different Young’s
modulii of the insulating layer Eins, Poisson’s ratio was kept constant νins = 0.4 for all cases.
The mesh size for the insulating layer and surrounding steel is 0.4 mm. The elements of
the insulating layer featured reduced integration i.e. they only contained one integration
point.

0 10 20 30 40 50 60 70 80
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16
Maximum node displacement in insulating material

E [GPa]

u 
[m

m
]

 

 
Neo−hookean insulating material
Linear insulating material

Figure 3.1: Maximum node displacement of
the whole insulating layer during the last
(forth) rollover of the wheel.
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Figure 3.2: The maximum σv in the insulat-
ing layer during the last (forth) rollover of the
wheel.

Figures 3.1 and 3.2 show the maximum displacement and maximum von-Mises stress in
the insulating material during the last i.e. the 4th, rollover. The displacements are derived
from element nodes and the von-Mises stresses from integration points. The maximum
values of these two quantities from the whole insulating layer are plotted in figures 3.1 and
3.2. The results show that the difference between the two material models is small. The
maximum displacements in figure 3.1 for different Young’s modulus are almost identical.
The von-Mises stress in figure 3.2 shows some difference in σv magnitudes for low values of
the Young’s modulus. Figure 3.3 to 3.6 show a more detailed evaluation for the extreme
values of the Young’s modulus i.e. Eins = 2 GPa and Eins = 80 GPa.

The peak displacement u are almost identical between the two material models for
both Eins = 2 GPa and Eins = 80 GPa as seen in figures 3.3 and 3.4. However there is
some difference in peak σv for Eins = 2 GPa. The stress in the hyper-elastic material is
lower as expected (see chapter 2.2.2). The reason for this small difference between the two
material models is that the gap is so small as compared to the radius of the wheel that
the deformation is not large enough to show the non-linear behavior of the hyper-elastic
model. The largest displacements occur for the softest insulating layer i.e. Eins = 2 GPa.
This also corresponds to the largest plasticity in the steel that surrounds the insulating
layer. This can be seen in figures 3.3 and 3.5 where the values of u and σv increase for each
passage and the difference in σv between the two material models increases due to plastic
deformation of the steel.

The conclusion from these simulations is that the difference in results between the
material models i.e. the Neo-Hookean hyper-elastic and the linear elastic is small enough
to be neglected. Using the hyper-elastic model could be more appropriate for larger gap
sizes than the currently studied dgap = 4 mm, where the displacement is larger and the

, Applied Mechanics, Master’s Thesis 2009:15 15



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time[s]

E=2GPa

u 
[m

m
]

 

 

Neo−hookean insulating material
Linear insulating material

Figure 3.3: Displacement u for the 4 roll overs
with Eins = 2 GPa.
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Figure 3.4: Displacement u for the 4 roll overs
with Eins = 80 GPa.
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Figure 3.5: σv for all the 4 roll overs with
Eins = 2 GPa.
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Figure 3.6: σv for all the 4 roll overs with
Eins = 80 GPa.

material behavior more non-linear. The calculation time for these two models differed only
by 2% with the hyper-elastic model taking more time when simulating Eins = 2 GPa. The
reason for this small difference in calculation times is that the most time consuming parts
of the simulation were the constitutive driver iterations for the steel material.

The simulations below were all performed using a linear elastic insulating layer.

3.2 Increased stiffness of the insulating layer

It is interesting to investigate if a stiffer insulating layer is beneficial for the joint. Both
strains in the steel and shear stresses in the rail/insulation interface are evaluated below
to answer this.

The vertical load was Fy = 150 kN and simulations included both cases of pure rolling
f = 0 and tractive rolling f = 0.2. The mesh size was 0.4 mm and the elements contained
one integration point. The built in Abaqus material model was employed for the rail steel.
Material parameters are given in the appendix.
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3.2.1 Shear stresses in the rail/insulation interface

In figures 3.7-3.8 the maximum shear stress in the outermost elements of the insulating
layer at a depth of 0.6 mm below the rail head as described in chapter 2.3.4 are plotted.
The shear stress from the elements at the surface were ignored due to the major distortion.
The shear stresses are evaluated at the last (4th) rollover.
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Figure 3.7: Maximum shear stress σxy on the
left side (x < 0) of the joint.
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Figure 3.8: Maximum shear stress σxy on the
right side (x > 0) of the joint.

The shear stress σxy increases rapidly with increased Young’s modules Eins. By increas-
ing Eins from 2 GPa to 10 GPa it can be observed that on the left side the shear stress
σxy increases by 160% for pure rolling and increases by 250% for tractive rolling. On the
right side for the corresponding figures the values increase 160% and 150% respectively.
The applied moment (traction) contributes more to σxy on the left than on the right hand
side as seen in figures 3.7 and 3.8.

3.2.2 Strain magnitudes in the rail steel

The magnitudes of εp were extracted from the location defined in chapter 2.3.4. In figures
3.9 and 3.10 the results for pure rolling i.e. f = 0 are presented.

As seen in figures 3.9 and 3.10 a stiffer insulating layer (increasing the value of Young’s
modulus Eins) decreases the plastic strains in the steel. This behavior is expected since an
increased stiffness of the insulating layer results in an increased supporting capacity. The
surrounding steel thus needs to take less load and the plastic deformation decreases. Note
that εp is higher on the left side for all Eins. Increasing Young’s modulus from Eins = 2 GPa
to Eins = 10 GPa decreases εp by 25% on the left hand side and by 15% on the right hand
side after the 4th rollover. Having Eins > 10 GPa is likely to be unrealistic for a plastic
materials [1]. Materials that are both electricity insulating and very stiff e.g. ceramics
are usually rather brittle and would not withstand the impact of the wheel. Note that in
the current study the insulating material was only simulated as elastic i.e no yielding and
hardening was considered, this is generally not a good approach when Eins comes close to
the stiffness of the rail steel (Esteel = 200GPa).

Now consider the tractive rolling, with an applied moment calculated from equation
(2.1) using f = 0.2. The behavior of εp is quite different as seen in figures 3.11 and 3.12.
On the left hand side (figure 3.11). Plastic strain magnitudes εp are very similar, only a 3%
difference between Eins = 2 GPa and Eins = 10 GPa. The lowest value of the εp magnitude
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Figure 3.9: Equivalent plastic strain εp on the
left hand side – Pure rolling.

0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

Rollover

ε p

Right side, Fy=150kN, pure rolling 

 

 

E=2GPa
E=5GPa
E=10GPa
E=40GPa
E=80GPa

Figure 3.10: Equivalent plastic strain εp on
the right hand side – Pure rolling.
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Figure 3.11: Plastic strain εp on the left hand
side-Moment included f = 0.2.
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Figure 3.12: Plastic strain εp on the right
hand side-Moment included f = 0.2.

after the 4th passage is obtained for Eins = 40 GPa. Surprisingly the highest εp is obtained
for Eins = 80 GPa. The plastic strain at the right hand side of the rail is shown in figure
3.12. The quite surprising result is that an increased the stiffness of the insulating layer
causes more yielding on the steel at the right hand side. This could be explained by the
fact that the applied moment M introduces a compressive stress in the x -direction i.e. a
high negative σxx. On the right hand side, the compressive stress σxx increases for higher
Eins due to increasing reaction force from the insulating layer. The result will be more
yielding in the rail steel. This effect is explained better in chapter 3.4.2.

3.3 Laterally inclined joint

The insulating layer is in this part of the study considered to be nylon with Enylon = 3 GPa
and νnylon = 0.4. The vertical load is Fy = 150 kN and the traction coefficient f = 0. The
rail steel is simulated using the built-in Abaqus constitutive model with material properties
given in the appendix. Four different angles are considered, 0◦ (not inclined), 30◦, 45◦ and
60◦. For all angles the mesh size is 0.6 mm for the dense mesh. The elements contain one
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integration point. The simulations especially for the 60◦ angle took significantly more time
to run than simulations of straight joints as the model has a large number of elements since
symmetry can not be employed. Further the wheel had to travel a longer distance to roll
over the joint. For this reason the mesh size was taken larger than in the other simulations.

3.3.1 Strain magnitudes in the rail steel

As mentioned in chapter 2.3.4 the εp magnitudes are evaluated at a depth of 0.9 mm from
the top of the rail head in the elements that are closest to the insulating layer on both
sides of the insulating gap. The maximum values of εp after each wheel passage are plotted
in figures 3.13 and 3.14
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Figure 3.13: Maximum εp on the left hand
side of the insulating joint.
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Figure 3.14: Maximum εp on the right hand
side of the insulating joint.

As seen in figures figures 3.13 and 3.14 the equivalent plastic strain εp is lowest for
0◦ i.e. a straight joint and gradually increase both on the left and right hand side of the
insulating layer for an increased angle of inclination θ. The curves for θ = 30◦ and θ = 45◦

are almost identical on the right hand side (wheel traveling from left to right).
In figures 3.15 and 3.16 the length of the affected region is indicated. The affected

length is the distance in the projected z -direction (see figure 3.17) where elements have
εp > 10−3 at the 4th rollover at a depth of 0.9 mm below the top of the rail head in the
interface between the two materials as shown in figure 3.17.

As seen in figures 3.15 and 3.16 the affected projected length decreases for increasing
angles on both sides. However if we consider the length of the affected zone as measured
parallel to inclination the length will be increased by a factor 1/ cos(θ) and the length of
the zone will increase with an increasing inclination.

For a better understanding of the plastic strain as a function of z -position. Plotting
is made for two different angles, θ = 0◦ (not inclined) and θ = 60◦ in figures 3.18-3.21

In 3.18 – 3.19 the εp magnitudes for a straight joint (θ = 0◦) are plotted as a function
of z -position. As seen εp increases after each roll over. The curves for both sides of the
insulating layer are completely symmetric with maximum εp at the position z = 0 after
each rolling which is expected since the geometry and loading are symmetric. Note that
the values are higher on the left side than on the right side.

The corresponding plots for θ = 60◦ are given in figures 3.20 and 3.21. The element
coordinates are projected onto the z -axis as shown in figure 3.17. The curves have shifted
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Figure 3.15: Length of the affected region on
the left side. Projected on the z -axis
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Figure 3.16: Length of the affected region on
the right side. Projected on the z -axis

Figure 3.17: The εp magnitudes are evaluated at from elements closest to the insulating
layer at depth of 0.9 mm from the surface. In figures 3.15, 3.16, 3.18 and 3.21 these values
are projected on the z -axis like seen here

.

and are biased as compared to θ = 0◦. On the left hand side of the insulating layer (wheel
travels from left to right) the curves shift toward the negative z -direction. On the right
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Figure 3.18: εp after each rollover for 0◦ angle
joint on the left side of the insulating layer.
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Figure 3.19: εp after each rollover for 0◦ angle
joint on the right side of the insulating layer.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Left side θ=60°

Z [mm]

ε p

 

 
1.pass
2.pass
3.pass
4. pass

Figure 3.20: εp after each rollover for 60◦

joint on the left hand side of the insulating
layer.
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Figure 3.21: εp after each rollover for 60◦

joint on the right hand side of the insulating
layer.

hand side of the insulating layer the curves shift towards the positive z -direction.
In figures 3.22 and 3.23 the maximum magnitudes of the shear stresses σx′y′ and σy′z′

in the insulating elements at the insulation/rail interface are shown. The results are from
the 4th and final rollover. The stresses are projected from the original coordinate system
as described in chapter 2.3.4 to get the shear stresses along the plane between the two
materials. σx′y′ decreases significantly for increasing θ up to θ = 45◦. The σy′z′ magnitude
increases for increasing θ but decreases somewhat for θ = 60◦. Note that the magnitudes
of σx′y′ and σy′z′ for different θ are not from the same position or the same time step.

In figures 24(a)– 24(e) the wheel-rail contact pressure for the case of θ = 0◦ during the
first rollover is shown. The unit of the contact pressure is MPa.
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Figure 3.22: σx′y′ on the interface between the
two materials.
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Figure 3.23: σy′z′ on the interface between the
two materials.

The contact patch is elliptical and symmetric around the x -axis for the whole rollover,though
it is hard to see in the first and the last frame due to the course mesh. There is almost
no contact pressure between the insulating layer and the wheel. The size of the contact
patch increases when the wheel sinks into insulating layer as seen in figure 24(c) and causes
extreme contact pressures on both sides of this layer.

In figures 25(a)– 25(e) the contact pressure is plotted for θ = 60◦.
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(a) First frame θ = 0◦ (b) Second frame θ = 0◦

(c) Third frame θ = 0◦ (d) Fourth frame θ = 0◦

(e) Fifth frame θ = 0◦ (f) Colorbar

Figure 3.24: Contact pressure for θ = 0◦

Here the contact patch is not symmetric. When the wheel is in the center of the gap as
seen in figure 25(c), the contact patch has shifted on both sides of the gap. This explains
the shifted maximum value of εp in figures 3.20 and 3.21. The contact patch shifts to the
side of the steel away from the insulating layer since the insulating layer gives little support
to the wheel. For increasing θ the influenced surface area of the insulating layer increases.
This reduces the area of the contact region on the steel, which in turn increases the contact
pressure. The increased contact pressure leads to higher stress magnitudes in the steel and
therefore more yielding of the material

The results show that for the case considered an inclined joint is not beneficial for the
steel, nor the for glue that connects the two materials. The steel yields more and the shear
stresses on the interface of the two materials are about the same.
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(a) First frame θ = 60◦ (b) Second frame θ = 60◦

(c) Third frame θ = 60◦ (d) Fourth frame θ = 60◦

(e) Fifth frame θ = 60◦ (f) Colorbar

Figure 3.25: Contact pressure for θ = 60◦

3.4 Custom constitutive model for the rail steel

The features of the constitutive model are discussed in chapter 2.2.4

A larger mesh size of 0.5 mm was used due to the computational demands of this
material model. The elements in the region of interest contained 8 integration points.

3.4.1 Influence of load magnitude

Three different loads Fy were applied to the wheel, 100 kN, 150 kN and 200 kN, with and
without applied moment i.e. f = 0 and f = 0.2. Young’s modulus for the insulating
layer is Eins = 5GPa. The effective strain is calculated according to equation (2.4) and the
values are extracted as described in chapter 2.3.4.

Figures 3.26 and 3.27 give the residual effective stresses εeff after each rollover of pure
rolling i.e. f=0.
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Figure 3.26: Influence of vertical load magni-
tude on the residual εeff . Left hand side, pure
rolling
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Figure 3.27: Influence of vertical load mag-
nitude on the residual εeff . Right hand side,
pure rolling

As expected the effective strain εeff increases with an increased load. By increasing the
vertical load Fy from 100 kN to 200 kN the value of the residual εeff after the 4th rollover
increases by 45% on the left hand side and by 50% on the right hand side. Also the residual
εeff is higher on the right hand side than on the left hand side. For the built-in Abaqus
material model the equivalent plastic strain εp was higher on the left hand side for the same
load and the same stiffness of the insulating layer. The difference between the right and
the left hand sides is not significant so the difference between the two material models can
probably be explained partly by the different constitutive relations, and partly by the fact
that the residual effective strain εeff and the plastic strain εp are not directly comparable.

Now consider cases when a moment is applied , i.e. f = 0.2
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Figure 3.28: Influence of vertical load mag-
nitude on the residual εeff . Left hand side,
tractive rolling, f =0.2.
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Figure 3.29: Influence of vertical load mag-
nitude on the residual εeff . Right hand side,
tractive rolling , f =0.2.
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In figures 3.28 it is seen that the residual effective strain εeff is much higher on the left
hand side with the applied traction, about 70% increase for Fy = 200 kN after the 4th
rollover. For the right hand side the residual εeff decreases. This behavior is the same as
for the built in Abaqus-material model. A possible reason is given in the following section.

3.4.2 Traction vs. pure rolling

It is interesting to evaluate the stress–strain curves for the steel on both sides with and
without the applied traction i.e. with f = 0 and f = 0.2. The applied vertical force is Fy
= 150 kN and the stiffness of the insulating layer is Eins = 5 GPa . The material model
of the steel is the Custom constitutive model. The values are evaluated at a distance and
depth of 1.5 mm from the insulating layer at both sides as described in chapter 2.3.4. The
element mesh seed size is 0.5 mm in the insulating layer and the surrounding steel.
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Figure 3.30: Stress strain curve – Pure rolling
and tractive rolling.
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Figure 3.31: Residual effective strain εeff at
the end of each cycle.

Figures 3.30 and 3.31 show the stress–strain curves and the residual effective strain εeff

for the left hand side of the insulating layer. For tractive rolling the steel yields much more
than for pure rolling.

In figures 3.32 - 3.33 the same corresponding stress–strain curves on the right side of
insulating layer are plotted. Here the steel yields more when there is no applied moment.
The reason for this is the yield criteria of the material. A very simplified diagram can be
seen in figure 3.34.
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Figure 3.32: Stress–strain curve–Tractive vs.
pure rolling.
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Figure 3.33: Residual effective strain εeff at
the end of each cycle.

Figure 3.34: Simplified diagram showing the stressing of a material element in the steel
on both sides of the insulating layer. The quivers indicate the magnitude of σ in different
directions.
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When there is no moment applied (f = 0) the main stress in the material on both
sides is compressive σyy due to the weight of the train and also compressive σxx when
the wheel sinks into the insulating layer. With the moment applied on the wheel center
the compressive σxx on the left hand side of the insulating layer increases which causes
the material to ”lift” due to the Poisson effect i.e. when compressed in one direction it
expands in the other directions. This causes a higher contact stress on the left side and
the material yields more. However on the right side the material is stretched out along
the x -axis towards the insulating layer which causes a lower compressive σxx, that reduces
the yielding. This also explains better why increasing the stiffness of the insulating layer
causes more yielding on the right hand side for a tractive rolling, the steel can not stretch
as much in the negative x -directions when the insulating material gets stiffer.

3.4.3 Variable Young’s modulus of the insulating layer

These simulations were conducted in the same manner as for the built-in Abaqus model
for the steel material. The vertical load was Fy = 150 kN on the wheel center and the
simulations were conducted with and without traction i.e f = 0 and f = 0.2. εeff plotted
here in the following graphs is the residual εeff after each rollover and is calculated according
to equation (2.4).
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Figure 3.35: Variable Young’s modulus, left
hand side, pure rolling.
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Figure 3.36: Variable Young modulus, right
hand side, pure rolling.

From figures 3.35–3.36 it is clear that it is beneficial for the steel to have a stiffer
insulating layer. The results are similar to those featuring the built-in ABAQUS model,
although there is it much larger difference between residual εeff and εp when Eins changes
from 2 GPa to 10 GPa. Since the custom model is designed for large strains but the Abaqus
model not, these results are more valid since the strains are large in the steel around the
insulating layer.

Figures 3.37 and 3.38 show the influence of the insulating stiffness when the moment
M is applied i.e. f = 0.2. The steel yields less on the left side with an increased stiffness
of the insulating layer. For the same load in the built-in Abaqus model there was so little
difference between εp after the 4th rollover that there was no noticeable gain of increasing
the stiffness of the insulating layer. On the right hand side the yielding decreases for
increasing stiffness up to Eins = 10GPa then the yielding increases again. When running
this same test for the Abaqus built-in model, the yielding increased for all increasing Eins

on the right hand side.
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Figure 3.37: Variable Young modulus, left
side. Tractive rolling
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Figure 3.38: Variable Young modulus, right
side. Tractive rolling

3.4.4 Many rollovers–Stabilization

To see if the stress-strain curve will stabilize and investigate if the values of εeff would
converge, one simulation with 16 rollovers was performed. This simulation would also test
the decision to simulate only 4 rollovers in the previous simulations. The vertical load is
Fy = 150 kN and the simulations featured tractive rolling (f = 0.2). The Young’s modulus
of the insulating layer was Eins = 5 GPa.
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Figure 3.39: σv vs. εeff , left hand side, 16
rollovers
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Figure 3.40: σv vs. εeff , right hand side, 16
rollovers

Figures 3.39 and 3.40 show that the stress–strain relations for both sides are far from
stabilizing. It can further be seen that the strain accumulation decreases between wheel
passages. By looking at the two figures it can be seen that most of the yielding happens in
the first 3–6 rollovers so it looks as if taking 4 rollovers is a good balance between accuracy
and simulation time since the trend of the curves can easily be seen only by looking at 4
rollovers.
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3.5 Limitations of using static analysis

The wheel mass was assumed to be mwheel =750 kg and the vertical load Fy = 150 kN
with pure rolling i.e. f = 0. The insulating layer stiffness is Eins = 5 GPa in the Abaqus
simulation. The wheel displacement from Abaqus are from the 4th and final rollover and
the material model for the railway steel is the custom model as described in chapter 2.2.4.
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Figure 3.41: Wheel displacement during the last rollover (4th). The dotted lines show
where the insulating layer is. Note that the scales on the axes are not equal.
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Figure 3.42: Wheel displacement due to the free-falling of the wheel. The dotted line
represents where insulating layer starts, the horizontal dashed-dotted line represents the
maximum vertical displacement from the quasi-static Abaqus-simulation.

It is seen in figures 3.41 and 3.42 that even if the wheel is allowed to fall freely due
to the weight of the train and we assume there is no reaction force from the rail it can
not fall the vertical distance corresponding to the evaluated displacement when traveling
with a speed more than roughly 85km/h. Just by these simple calculations it is clear
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that the results from dynamic simulations would not be the same. Further in the static
simulation the vertical force on the rail surface from the wheel is constant in each rollover,
in a dynamic simulation however this force would decrease when entering the insulating
layer and the wheel would accelerate downwards, then the force would increase again when
the wheel impacts the far rail end post. The results from a dynamic simulation would
therefore cause less yielding on the left side and more on the right side as compared to the
static simulation (wheel traveling from left to right as before).

4 Discussion

Hyper-elastic insulating material: When comparing hyper-elastic insulating material
to linear-elastic material the difference in stresses and displacements were almost none-
existent for a wide range of Young’s modulii in the insulating material Eins 2–80 GPa. The
displacements in the insulating material are just not large enough for the hyper–elastic
material model to behave non-linear so there is no need to use a hyper–elastic constitutive
model for an insulating gap that is only 4 mm.

Increasing stiffness of the insulating material: Increasing the stiffness of the insu-
lating layer decreases the yielding in steel on both sides under pure rolling conditions. The
standard Abaqus constitutive model for the rail material did not give quite clear results
regarding if it was better for the tractive rolling. However the Custom model indicated
that this was the case when when increasing from 2 GPa to 10 GPa. The results from
the Custom model should be more accurate since the Custom model is especially designed
for railway steels with large strains. Note though that the material parameters for both
models are evaluated using test data from real rail steels in [6] and [5]. When increasing
the stiffness, the shear stress σxy between the interface of the two materials increases, thus
it is necessary to optimize the value of the Young’s modulus with respect to the strength
of the glue that ties the materials together.

Inclined joint: The results from having an inclined joint (defined by the inclination
angle θ ) show that the contact pressure between the wheel surface and the track surface
increases which causes an increased yielding in the steel. Regarding the shear stresses
between the two materials (values extracted from the integration points closest to the
steel from the insulating layer) σx′y′ decreases while σy′z′ increases consequently it was not
beneficial for the glue between the two materials to have an inclined joint either.

Influence of load magnitude: With increased vertical loading of the wheel the strain
magnitudes in the steel increases as expected.

When comparing the effect on the steel with and without traction the straining in-
creased significantly on the left hand side (train traveling from left to right and moment
applied clockwise). However the strain magnitudes decreased on the right side.

Dynamic simulation vs. quasi–static simulation: By using simple Newtonian dy-
namic equations and comparing the displacement of the wheel from the static simulation
it was shown that it is not quite valid to use quasi-static simulations when the train is
traveling more than around 85km/h when the applied load is Fy=150 kN. The time that
it takes the wheel to travel over the insulating layer is so small that it can not deflect the
same distance (y-direction) as in the static simulation. Consequently, predictions from dy-
namic simulations would differ. However the resulting computational demand in running
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full dynamic simulations are currently not realistic. More about dynamic simulations for
insulating joints can be found in [2].
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A Material parameters

A.1 Built in Abaqus constitutive model

E = 200 GPa ν = 0.3 σ0 = Y = 443 MPa
C = 66 GPa γ = 636

where E is the Young’s modulus, ν Poisson’s ratio, σ0 = Y the yield limit and C and
γ are the kinematic hardening parameters. The values are evaluated using experimental
data for rail steel R260 (UIC900A) see [5]

A.2 Custom model

The values of the input parameters are evaluated using experimental data for railway steel
900A (R260).

E = 199 GPa ν = 0.293 Y = 295 MPa
β = 0.3 H1 = 34 GPa H2 = 4.4 GPa

H3 = 0.73 GPa H4 = 0.408GPa Y1 = 0.250 GPa
Y2 = 2 GPa Y3 = 10 GPa Y4 = 34 GPa

E is the Young’s modulus of the material, ν is the Poisson’s ratio, Y is the initial yield
limit, Hi are the hardening modulii, Yi saturation stresses. β governs the combination of
Armstrong–Frederick an Burlet–Cailletaud hardening. The values are derived in [6]
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