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Abstract

The offshore industries have a big demand of transferring heavy objects in portable offshore (PO) units between
oil rigs and boats and this is done by lifting. The offshore company Aker Solutions is interested of determining if
the same capacity results can be obtained by using a beam model instead of a shell model. The main objective
of the present project was to determine if it was possible to model the portable offshore unit with a beam
model instead of a shell model. The shell model is the method used presently and is time consuming. If the
possibility exists to use a beam model instead of a shell model, a lot of time could be saved during the model
setup phase and in the simulation phase which would be of a great importance for the offshore industries.
Model modifications were also checked to examine its influence to the results.
The tools used to examine the capacities of these two models have been the FE software Abaqus CAE 6.13-1
and the calculation software MATLAB. The focus in this research was to create and simulate the shell and
the beam models in order to compare them. The shell model used thin conventional linear shell elements
with Kirchhoff’s plate theory which simulated large deformation and was implemented with a multi-linear
elastic-plastic material with nonlinear deformation, in order to properly represent the ultimate bearing capacity.
The beam model used linear beam elements with Timoshenko beam theory with the same nonlinear material
behavior as in the shell model.
The beam model had a higher capacity than the shell model as expected since beam structures are known to
be more stiff in general. It is not possible to use a beam model in order to obtain the same capacity result.
Internal modification such as the integration points through the thickness were examined for the shell model
and it showed that five integration points are the minimum requirement to obtain a converged result for this
load case. The contribution of the riser mass (payload) on each support individually is more conservative than
applying the mass uniformly on the supports from one master point. The beam model converges at larger
element sizes than the shell model. The shell model experience collapse earlier than the beam model, which
means that the shell model is more conservative when measuring collapse load. One reason for this is how the
mass is applied to the basket in the models. Another reason is the beam element can not deform in its cross
section, which makes it stiffer than the shell element. These results are based on one simple load case and a
analysis of a couple of more load cases would been preferred for future work in order to make a more general
conclusions about collapse load and if it would be possible to use beam elements instead of shell elements when
modeling the PO unit.
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Nomenclature

PO = Portable Offshore
COM = Center of Mass
MGW = Mass Gross Weight
ML = Master Link
DF = Design Factor
DOF = Degrees of Freedom
BCs = Boundary Conditions
FE = Finite Element
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1 Introduction

Usually in the offshore industry the equipments and the products need to be shipped from one place to another.
Regularly upon arrival it must be lifted off the ship with cranes. The equipment in the offshore industry can
be for instance risers as in this case or other heavy equipment. The structures lifting these heavy objects are
called Portable Offshore (PO) units. The specific PO unit in this thesis has the form of a basket. The basket
consists of several parts, such as hollow beams, screw nuts and padeyes, which together gives the assembled PO
unit. It is important that the lifts are done in a safe and secure way so that no damages take place during
or after the lifting processes. to achieve this the Norwegian standard Det Norske Veritas (DNV) [1] is used
by Aker Solutions, and many other offshore companies. The standard works as a guidance and it includes i.e
acceptance criterion and working procedures. It is crucial to do the tests in beforehand with finite element
method (FEM). Since the lifting processes are very common in the offshore industry, there exist researches to
assure the safety of the basket during lifting. [5][14]. In this project the software Abaqus 6.13-1 has been used,
which is a pre-processor solver and a post-processor for finite element analysis. The interesting result from a
normal lift case is the capacity of the PO unit with respect to deformation. This research is mainly initiated to
compare the differences between a shell and a beam model, when analysing the normal lift case. The reason for
comparing these two models is the curiosity and interest of finding similarities in result for these two models. If
there is a possibility to achieve the same result with a model made of beam elements as a shell model with shell
elements, it is of a great interest to use it in further analyses since it reduces the working hours tremendously.
This master’s thesis is a pre-study for the offshore company Aker Solutions. Lifting is the most common type of
calculation in the offshore industry. In the end of a delivery process, most of the equipment need to be shipped
and lifted onto a rig. These lifts must be done in a safe way for the structures so that no cracks or damages
occur. The calculations are in many cases straightforward but very time consuming due to computation of
heavy elements. In worst case one need to use solid elements, but in most of the cases shell elements are enough.
It takes a lot of time to build up a shell model from a solid model compared to building up a beam model.
The concept of building up the shell model from a solid CAD model is also known as ”cleaning the model”. It
would have been beneficial if it would have been possible to model the PO unit as a beam model instead of a
shell model. A model made of beam elements is much more efficient due to time limitations when building it
and running the simulation. If the same results are obtained in less time, a lot of money can be saved.

1.1 Problem Description

The research is initiated due to lack of time to investigate if it is possible to obtain equivalent result between a
model meshed with shell elements and a model meshed with beam elements. In the current state, the analyses
are made on shell structures which is time consuming to clean from a CAD model. It is of interest to know if a
beam structure can be implemented instead of a shell structure in the analyses, and to know which properties
are changed due to the element change. The interest lays in how to make the results be as similar as possible
with the two models made of shell and beam.

1.2 Deliverable and Limitations

The scope of this master’s thesis is to evaluate the capacity of a PO unit lifting a heavy payload and examine
the difference in results when this is modeled with shell or beam elements. The result that will be examined is
the displacement at a critical location when the gravity load is increased gradually. Mesh convergence analysis
will be performed in order to find its influence and requirements on the accuracy of the results. Two different
techniques of applying the payload (riser mass) will be analysed for both the model made of shells and beams.
Collapse load will be compared for the two payload cases. The influence of the number of the integration
points through the thickness will be analysed for the shell structure. Linear and quadratic elements will be
compared for both the shell and the beam model. The project scope has been determined in discussion with
the supervisor at the university and at Alten. The project limitations set for the thesis are:

• Finite element analysis will be made on one PO unit. The 3D CAD model will be received from the
offshore company Aker Solutions in order to save time of constructing a model.

• Only one load case will be analyzed: Normal lift. This case will be analysed in depth.
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• The capacity analyses will be following the offshore standard DNV 2.7-3 [1].

• The model will be simplified in order to make the computation easier. Secondary parts will be deleted
from the model since they do not affect the stiffness of the structure when the load is applied to the
model.

1.3 Methodology

The project will start off with simplifying and cleaning the shell model and also building up the beam model
in the CAE software Abaqus 6.13-1. The shell model will use thin conventional linear shell elements rather
than continuum shell elements in order to save simulation time. Kirchhoff’s plate theory will be used to
simulate large deformation and the material model will use multi-linear elastic-plastic properties with non-linear
deformation, in order to properly represent the ultimate bearing capacity. The beam model will use linear
beam elements with Timoshenko beam theory with the same non-linear material behavior as the shell model.
Loads and boundary conditions (BCs) will be added into the model. Different ways of applying the riser load
will be analysed and discussed. When the simulations have been completed the results will be interpreted and
analyzed using the calculation program MATLAB.

2



2 Theory

The finite element method (FEM) is a numerical technique for finding approximate solutions to differential
equations controlled by boundary values, such as Nuemann and Dirichlet BCs. The element stiffness matrix
Ke will in this chapter be derived for linear Triangular and quadrulateral shell elements and for linear beam
elements, which later can be used to assemble the global stiffness matrix K. This is derived so the reader can
have a brief understanding of how the software Abaqus is working. In order to calculate the displacement for
each node, Eq. (2.1) is used

a = K−1f (2.1)

where a contains the displacements and rotations, and f contains the forces and moments for each of the nodes.

2.1 Element Types

In this project, the basket will be meshed with linear elements and therefore the theory behind constructing
the Ke matrix for the different type of elements will be derived. The elements in the shell model are the
conventional linear shell elements and are the most basic ones for a shell model in Abaqus. There are two
different types of shell elements used in the shell model, triangular (S3)1 and quadrilateral (S4R)1 elements.
The solid pads on which the padeyes are attached, are meshed with solid hexahedral elements (C3D8R)1. The
solid elements are utilized in the model to avoid unnecessarily high stress concentrations around the area where
the padeyes are attached. In order to gain a better estimation of where it exist in the model see Fig. 4.3 in
next chapter. There are three translational and three rotational degrees of freedom (DOF) in each node [17],
for the three elements shown in Fig. 2.1.

(a) Triangular Elements. (b) Quadrilateral Elements. (c) Hexahedral Elements.

Figure 2.1: The three different types of elements used in the model.

The beam model of the basket will be meshed with two different elements, linear (B31)2 and quadratic elements
(B32)2, see Fig. 2.2. This is to compare the difference in collapse for the two mesh types, and to see what
impact the two different meshes have on the results. The number of DOF for the linear and quadratic beam
elements at each nodes is six. The element stiffness matrix Ke is derived for a simple case without an effect of
torsion and when the element is planar in App. B.3.

(a) Linear beam element. (b) Quadratic beam element.

Figure 2.2: The two element types used in the beam model.

1S3, S4R and C3D8R are Abaqus titles for denoting the linear elements
2B31 and B32 are Abaqus titles for denoting the linear and quadratic elements
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2.2 Shell Structures

In the engineering field shell structures are frequently used in FE softwares since the simulation time is
tremendously decreased compared to models meshed with solid elements. Shell structures come in various
forms and shapes. It is important to know the behavior and performance of shell structures in order to use
it properly. Shells in rotation describe the behavior in the best way and also minimizes the complexity in
geometry [8]. Fig. 2.3 shows an example of how a shell structure can be composed [2].

Figure 2.3: Geometrical representation of shell structure with mid surface and shell thickness

2.2.1 Shell Element Geometry

In Abaqus there are two types of shell elements available, conventional shell elements and continuum shell
elements. The conventional shell elements discretize, a reference surface by defining the elements plane (the
geometry of the element), the surface normal and the curvature of the element. The nodes do not define
the thickness of the shells. The thickness is defined in the section properties which is later applied to the
corresponding shell. Continuum shell elements resemble a three-dimensional solid elements in that they
discretize an entire three-dimensional body, but are formulated so that their kinematic and constitutive behavior
is similar to conventional shell elements and not solid elements, according to Abaqus online manual [4]. The
latter shell element mentioned is not used in this project since the necessity does not exist in discretizing an
entire three-dimensional body.

2.2.2 Shell Thickness and Integration Points

The conventional shell elements in Abaqus must be assigned with a section consisting of a thickness, number of
thickness integration points and a method of integration rule. The methods available in Abaqus are Simpson’s
integration rule and Gauss’ integration rule. To verify which integration rule is the most appropriate in order
to obtain an accurate result as possible, the study ”Numerical Integration Strategy” conducted by Burgoyne
and Crisfield [3] was used. Burgoyne and Crisfield studied different integration methods used in a plate and
calculated the mean error by taking the difference between the numerical integration and the exact solution.
This study concluded that the Gauss integration rule was the most accurate integration method since it resulted
in less mean error than the other methods. In Fig. 2.4 the mean error versus integration points between two
and thirteen are shown for the different integration rules.
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Figure 2.4: Mean error for different thickness integration methods.

In Abaqus the number of integration points must be odd because one point must be in the middle surface
of the shell element. The default value for this number is five for homogeneous shells, which is sufficient for
most non-linear problems. For linear problems three integration points are sufficient and will provide an exact
integration through the thickness.

2.2.3 Thick and Thin Shells

Shell elements can be formulated as thin and thick. The thickness determines its shear behavior. Thickness to
length ratio is used to define if a shell element is thick or thin according to the Abaqus online documentation
??. A shell is considered ”thick” if the ratio is greater than 1/15 and if it is less than 1/15 it is considered as
”thin”. If the shell is thick the transverse shear deformation is taken into account and is an important factor,
while a thin shell is neglecting the shear deformation due to a thickness that is small enough to be ignored. Fig.
2.5 shows the transverse shell deformation for a thin and a thick shell.

Figure 2.5: Transverse shell deformation of thin (a) and thick (b) shells.

The basket is in this case modelled as a thin shell since the length of the geometry is large compared to its
thickness. In the FE software Abaqus a thin shell model uses the kinematics of Kirchhoff theory, see App. A to
gain the general principles of Kirchhoff ’s plate theory.
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2.3 Beam Structures

Beam structures are traditionally used for civil engineering structural elements and for buildings but it
is also used in small structures as machine frames or other mechanical components. The structural ele-
ment beam is characterized by its cross section, its length and its material. A beam is capable of taking
up loads by resisting bending. When these loads are applied to the beam structure it induces a bending moment.

The finite element software Abaqus offers a set of beam elements. A beam element is defined as an ele-
ment in which the assumptions are made so that the mathematically solution to the problem is reduced to one
dimension. In order to make this assumption reasonable the beam must be a continuum. [4]
In this case the beam elements applied to the basket is using the kinematic of Timoshenko’s theory.

2.3.1 Timoshenko Beam Theory

The classical Euler-Bernoulli beam theory approach is the simplest one and it is based in the kinematic
assumption of straight lines transverse to the beam’s axis remain straight, and undistorted after deformation i.e
they do not extend and they will always remain normal to the mid-plane of the beam. Timoshenko beam theory,
on the other hand is including the ”transverse shear strain” in which the cross section may not necessarily
remain normal to the beam axis. [6]
The displacement vector for a Timoshenko beam has the following components of the vector u =

[
u v w

]
and it can be written as

u(x, z) = −zφ(x), v = 0, w(x, z) (2.2)

Figure 2.6: Deformation of a Timoshenko beam.

The strains can then be computed as

εxx =
∂u

∂x
= −zφ′, γxz = 2εxz =

∂u

∂z
+
∂w

∂x
= −φ+ w′ (2.3)

The corresponding virtual strains are

δεxx = −zδφ′, δγxz = −δφ+ δw′ (2.4)

The internal shear force, V and bending moment, M are

M =

∫
A

σxxzdA, V =

∫
A

σxzdA (2.5)

In order to compensate the difference between the actual shear force and the shear force from the Timoshenko
beam theory, a correction factor Ks is introduced in Eq. (2.7). The shear correction factor is defined in
different ways and Timoshenko (1992) developed the frequency-matching approach. By equating the frequency
of vibration using plane stress equations of elasticity. [10]
The shear correction factor is calculated as

Ks =
5(1 + ν)

6 + 5ν
(2.6)
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Linear elasticity assumption with shear modulus G and Young’s modulus E gives

V = Ks

∫
A

σxzdA = Ks

∫
A

G(−φ+ w′)dA = GKsA(−φ+ w′), M =

∫
A

σxxzdA = −EIφ′ (2.7)

The internal virtual work is

δWint =

∫
Ω

σijδεijdΩ =

∫ L

0

∫
A

σxxδεxx + σxzδγxzdAdx (2.8)

The external virtual energy δWext is as (without any end loads acting on the beam)

δWext =

∫ L

0

qδwdx (2.9)

The internal virtual power then becomes

δWint + δWext =

∫ L

0

M(−δφ′) + V (−δφ+ δw′)− qδwdx

= −[Mδφ]L0

∫ L

0

(−V +M ′)δφdx+ [V δw]L0 −
∫ L

0

(V ′ + q)δwdx = 0

(2.10)

The equilibrium equations for a Timoshenko beam are

−V +M ′ = 0

V ′ + q = 0
(2.11)

By using the definitions of V and M by Hooke’s law, Eq. (2.11) can be rewritten in terms of φ and w as

GKsA(φ− w′)− EIφ′′ = 0

GKsA(−φ′ + w′′) + q = 0
(2.12)

By combining Eq. (2.12) the differential equation in terms of φ becomes

EIφ′′′ = q (2.13)

And w can be computed from

w′ =
−EI
GKsA

φ′′ + φ (2.14)

The complete BCs are also obtained from the principle of virtual power

δφ = 0 or M = 0 for x = 0 and x = L
δw = 0 or V = 0 for x = 0 and x = L

2.4 Material Model

When a material has been exposed to enough applied force it will begin to change its shape. This is called
deformation. When the force has been removed and if the material has recovered to its original shape, the
material has experienced elastic deformation. On micro level this means that the atoms have experienced
stretching of the bond, but there has been no grain boundary slip. When the applied force on the material is
great enough and the material does not recover to its original shape it has experienced plastic deformation
which is permanent. This means that there has been a slip between grain boundaries on microscopic level.

7



2.4.1 Elastic-plastic Material Model

The simplest type of plasticity model is an isotropic, perfectly elasto-plastic material associated with a flow
rule. It is realistic only under certain conditions and should be used with caution. The rheological model for
perfectly plastic behavior can be seen in Fig. 2.7 where it behaves elastically and then perfectly plastic.

Figure 2.7: Prototype rheological model for elastic perfectly plastic behavior and stress-strain relationship.

The free energy for a 1D stress-strain state is defined as,

Ψ =
1

2
E(εe)2 =

1

2
E(ε− εP )2 (2.15)

Where E is the elastic modulus and εe = ε − εP is the elastic spring from Hooke’s law. The constitutive
equation for the stress is then,

σ =
∂Ψ

∂ε
= E(ε− εP ) (2.16)

The dissipative stress, σP conjugated to εP is then,

σP = − ∂Ψ

∂εP
= E(ε− εP ) ≡ σ (2.17)

The yield criterion is Φ = 0, where Φ is chosen as

Φ(σ) = |σ| − σy (2.18)

For this simple prototype model the magnitude of stress can never exceed the yield stress and therefore the
admissible stresses are defined as those which are Φ ≤ 0. Plastic strain may be produced when Φ = 0 and the
constitutive rate equation for εP is then formulated as the associative flow rule

ε̇P = λ
∂Φ

∂σ
= λ

σ

|σ|
(2.19)

where λ is the plastic multiplier and is always a positive scalar variable. By combining Eq. 2.19 and 2.16 the
differential equation for the stress is obtained as

σ̇ = Eε̇− λE σ

|σ|
(2.20)

This formulation is complemented by the elastic-plastic loading criteria. Loading criteria follows,

λ ≥ 0, Φ(σ) ≤ 0, λΦ(σ) = 0 (2.21)
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2.4.2 Hardening Plastic Behavior

When a ”hardening spring” with stiffness H related to the plastic strain is inserted in the rheological model
it illustrates the behavior of hardening plasticity according to M.Jirásek and Z.P Bezant. [11] and Kenneth
Runesson. [16] as showed in Fig. 2.8

Figure 2.8: Prototype rheological model for elastic-hardening-plastic material and stress-strain relationship.

The isotropic hardening variable k is introduced and the free energy becomes,

Ψ =
1

2
E(ε− εP )2 +

1

2
Hk2 (2.22)

The stress then becomes,

σ =
∂Ψ

∂ε
= E(ε− εP ) (2.23)

σP = − ∂Ψ

∂εP
≡ σ (2.24)

The dissipative stress κ, also denoted as the ”drag stress” is associated with k, is given as

κ = −∂Ψ

∂k
= −Hk (2.25)

The yield function is now defined as

Φ(σ, κ) = |σ| − σy − κ (2.26)

Inelastic deformation can be produced when Φ = 0. The associative flow and hardening rule are then defined
as

ε̇P = λ
∂Φ

∂σ
= λ

σ

|σ|
(2.27)

k̇ = λ
∂Φ

∂κ
= −λ (2.28)

The plastic multiplier, λ is still defined by the loading criteria presented in Eq. (2.21). The dissipative stress
rate, κ̇ can also be obtained by differentiating Eq. (2.25) and combining it with Eq. (2.28). One obtain the
following set of equations

Eε̇ = Eε̇− λE σ

|σ|
(2.29)

κ̇ = Hλ (2.30)

which are subjected to the following loading criteria

λ ≥ 0, Φ(σ, κ) ≤ 0, λΦ(σ, κ) = 0 (2.31)
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Elastic-plastic tangent stiffness modulus is defined as

Eep = (1− E

h
), E =

E

h
H (2.32)

The following situations are distinguished with a generalization of the hardening concept. [11], [16]

Hardening : H > 0⇒ Eep > 0, (κ̇ > 0)

PerfectPlasticity : H = 0⇒ Eep = 0, (κ̇ = 0)

Softening : H < 0⇒ Eep < 0, (κ̇ < 0)

(2.33)

2.5 Newton’s Method

For nonlinear problems, it is not possible to solve all the components in the displacement vector a explicitly.
Therefore an iterative technique is necessary until convergence has been reached. The iterative method used in
this project is Newton’s method. It is great at solving nonlinear equations due to solving it implicitly and it
updates the Jacobian at each iterative step. In order to get a deep understanding of which of the components
in the displacement vector that needs to be solved by this iterative technique, the ”Non-linear Finite Element
Analysis” written by Fredrik Larsson can be examined [12]. In order to derive this method an arbitrary residual
function is chosen, see Eq. (2.34) with the Jacobian matrix J Eq. (2.35).

g(x) = 0 (2.34)

J =
dg

dx
=


∂g1
∂x1

∂g1
∂x2

. ∂g1
∂xNfree

∂g2
∂x1

∂g2
∂x2

. ∂g2
∂xNfree

. . . .
∂gNfree

∂x1

∂gNfree

∂x2
.

∂gNfree

∂xNfree

 (2.35)

The method starts with a guess solution at xk. By linearizing the Eq. (2.34) around the guess solution point, a
Taylor series approximation can be obtained.

g(x(k) + ∆x(k)) = g(x(k))∆x(k) +O((∆x(k))2 ≈ g(x(k)) + J(x(k))∆x (2.36)

And letting the updated guess be x(k+1) = xk + ∆x and aiming for the solution g(x(k+1)) = 0. The linear
approximation from Eq. (2.36) can be used to get the updated J and x for each iteration.

J(xk)∆xk = −g(x(k))
x(k+1) = x(k) + ∆x(k) (2.37)

The convergence of this method is quadratic, i.e.

| x− x(k+1) |≤ C | x− x(k) |2 (2.38)
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3 Finite Element Representation of PO unit

In order to proceed with the analyses some basic requirements are necessary which will be presented and
illustrated in the following chapter. The content of this chapter will firstly describe the geometry of the PO
unit and how it is defined according to the offshore standard. Further the material properties for the basket
will be described and lastly the definition of the acceptance criteria will be denoted.

3.1 Geometry

The geometry of the PO unit is a rectangular shaped basket with an approximate length and width of 12 and
1 meters respectively. The basket is used for transporting the five risers, each with a weight of 2200 kg. In
Fig. 3.1 (a) the PO unit can be seen together with the five risers inside (payload). Fig. 3.1 (b) is showing the
provided 3D CAD model from Aker Solutions. The CAD model did not come with the risers in it therefore
the load will be distributed to the frames where the risers are supported. It consists of several parts such as
hollowed beams, padeyes, screw nuts etc, see Fig. 3.2 (a) and (b)

(a) Illustration of the PO unit (b) The provided CAD model

Figure 3.1: Illustration of the basket with the risers in (a) and without the risers as a CAD model in (b)

X

Y

Z

(a) Section cut to illustrate the hollow beams.

X

Y

Z

(b) Original shape of the padeye.

Figure 3.2: The hollow beams and the padeye are showed which are parts of the basket.

The basket consists of primary and secondary structure and are shown in Fig. 3.3. The primary structure is
defined according to the standard [1] as the load bearing structure e.g the frame of the basket, global structural
strength parts, lifting points (padeyes) seen in Fig. 3.2 (b) etc. The primary structure must be included in the
calculations since they are load bearing and influences the results. It is though approved to simplify the primary
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structure. The padeyes or the so called lifting points were simplified as a point in order to save unnecessary
computation time of solid elements. The secondary structure contains the parts that are not load bearing, e.g.
frames, protection structures, etc. These parts or components can be removed from the calculation but the
mass of the removed parts or components must be implemented in the calculation model as nonstructural
masses.

Figure 3.3: Basket containing primary structure, secondary structure and payload.

The information about the PO unit has mostly been defined from the industrial offshore standard DNV 2.7-3
[1]. In order to select an operational class for the PO unit some crucial information is needed, such as the
purpose of the unit and the load case. This is to determine the acceptance criterion which is described in
Sec. 3.3. First the PO unit type must be known, which in this case is A. Type A stands for a PO unit which
consists with a primary structure frame and is used for service packages such as, pumps, risers, generation
units, pressure vessels, skid mounted manifolds or process arrangements of portable nature. Estimates of the
masses for primary structure, secondary structure and the payload was taken from the 3D CAD model. Tare
mass is the total mass of primary and secondary structures. Mass gross weight (MGW) is the total mass of the
PO unit including the payload. MGW decides the operational class, see Tab. 3.1.

Table 3.1: PO unit information

PO unit type A
Primary Structure 3.50 tons
Secondary Structure 0.59 ≈ 0.70 tons
Payload 11 tons
Operational Class DNV 2.7-3 R60

The primary structure consist of all the frames of the basket while the secondary structure are those who
supports the risers (plastic containers). The plastic containers can be seen in Fig. 3.1 (a) and a rough estimate
of the mass was made, which in turn gave a weight of 0.7 tons.

Table 3.2: Mass estimates and contingencies for the basket.

Estimated mass [tons] Mass used in simulations [tons] Contingency factor
Shell Beam Shell Beam Shell Beam

Tare mass 0.7 + 3.5 = 4.2 3.12 + 0.7 = 3.82 4.47 4.48 1.07 1.17
Payload 2.2× 5 = 11 2.2× 5 = 11 11.7 11.7 1.06 1.06
MGW 4.2 + 11 = 15.2 3.82 + 11 = 14.82 16.17 16.18 1.06 1.09
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3.2 Material Properties

The next step consisted of applying the material to the basket. Depending on the thicknesses for the different
parts of the basket the plasticity properties differed. The material applied to the calculation models is EN
10025 S355, see App. C, and is illustrated in Fig. 3.4 where the stress-strain relationship can be seen for this
material. The material is of a multi-linear elastic-plastic model with kinematic hardening up to 0.2 % and then
it becomes perfectly plastic. This material model is following the same principles discussed in Sec. 2.4. All the
thicknesses for the different parts of the basket, were below 16 mm and therefore the same material properties
were applied to the whole model. For more detailed information about the material properties, see App. C
where the plasticity properties are shown for a thickness value below 16 mm.

Strain [%]
0 0.005 0.01 0.015 0.02 0.025 0.03
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Stress-strain relationship

True strain
Plastic strain

Figure 3.4: Plastic and true strain properties for the material S355.

Table 3.3: Material properties.

Material Young’s Modulus [GPa] Poisson’s ratio Yield stress [MPa] Density [tons/mm3]
EN 10025 S355 202,35 0.3 355.7 7.75 ×10−9

3.3 Acceptance Criteria

The interesting result for the lift case is the ultimate capacity (collapse load). The collapse load FRk, has two
definitions according to the the industrial offshore standard DNV 2.7-3 [1]
Collapse occurs when:

1. the least of the load corresponding to the last converged increment. This definition is considering the
collapse at the last linear part of the structural response. This can be hard to verify since it is difficult to vi-
sualize the last converged increment and therefore the second way of defining the collapse has been utilized.

2. the structural response stiffness is reduced with 1/3 of the initial stiffness.

Let us consider the case where a gravity load is applied to the model and the response obtained is
the displacement, see Fig. 3.5. The displacement is measured at a point where the material has yielded
and where the plastic strain is sufficiently high compared to the rest of the model. Hence, the displacement
should not be measured at a place where stress concentration exist, e.g at sharp edges, or corners. The
initial stiffness is obtained by calculating the gradient in the elastic area of the response.
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Figure 3.5: Load-displacement curve

The initial stiffness response is calculated as in Eq. (3.1).

4g1

4u1
=
g2 − g1

u2 − u1
=
{

Let us assume a reasonable value
}

= 2.0 (3.1)

Then 1/3 of the initial stiffness must be checked

4g1

4u1

1

3
=

2

3
(3.2)

Gradient between point 2 and 3 is then calculated as

4g2

4u2
=
g3 − g2

u3 − u2
=
{

Let us assume a reasonable value here as well
}

= 1.3 (3.3)

4g1

4u1
− 4g

2

4u2
= 2.0− 1.3 = 0.7 >

2

3
→ Collapse! (3.4)

Collapse has occurred since the gradient has reduced with more than 1/3 of the initial stiffness gradient.
In this project the collapse was calculated in MATLAB.

Collapse Load

The collapse load, FRk is determined by Eq. (3.5).

FRk = MGW × c× g (3.5)

where MGW is the mass gross weight, c is the measured gravity multiplier at the collapse occurrence and g is
the gravity.
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4 FE Analysis of Normal Lift

In this section the FE analysis of a ”normal lift” will be discussed of the PO unit. The normal lift case is
when the basket is initially hanging still in the air with zero gravity. When the simulation starts the gravity is
introduced and gradually increased which will simulate an increase in mass for the basket in reality. The finite
element analysis are based on a limit analysis, i.e the load is increased to either structural instability or until a
numerical divergence occurs. The normal lifting analysis will be following the standard DNV 2.7-3 [1].

4.1 Methodology in Abaqus CAE

With the 3D solid CAD model received from Aker Solutions, the shell model could be constructed in the ”part”
module as midsurfaces from the solid CAD model. Simplifications to the geometry were made in order to
obtain the final calculation models. The beam model was constructed simply by measuring the geometry of
the solid CAD model and creating a wireframe with those measurements. The wireframe was inserted with a
box-shaped profile with lengths and thicknesses of the cross section. The material was then applied to the cross
sections. Reference points were created where point masses could be attached, which was connected to the
model with the help of coupling constraints which couples the mass to the model. The model was connected
with rigid wires in the padeyes to the master link (ML) which gave the hanging effect of the basket, see Fig.
4.1. The ML was locked in the translational and rotational DOFs. The mass of the risers was applied on the
model in two different ways, uniformly from the riser’s center of mass (COM) and by manually calculating
the fraction of the mass that would rest on each support analytically. When the model setup was complete a
gravity load was added and gradually increased during the simulation.

  Padeye−1

  Padeye−2

  Padeye−3

  Padeye−4

  ML

Figure 4.1: Wires connected from the master link to the padeyes

4.1.1 Model Simplifications

The 3D CAD model that was received from Aker and imported into Abaqus, where a few simplifications were
made. The secondary structure that can be seen in Fig. 3.3 was removed. Midsurfaces were created from the
solid hollow beams to construct the shell model. The solid parts were then removed and only the midsurfaces
remained. At this point there existed a few gaps in the model where there were no surfaces. These gaps were
extruded in order to make the model complete. The beam model was made as a wireframe with the same
geometry as the shell model, with a box shaped cross section applied to it. Fig. 4.2 shows the two calculation
models that was used in the FE analysis.
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(a) Shell calculation model. (b) Beam calculation model.

Figure 4.2: Simplified calculation models.

Due to the conventional shell elements being used in the model, there will be a significantly high stress
concentration in close proximity to where the padeye is constrained with coupling constraint. To avoid this a
solid pad was added into the model where the padeye constraint could be connected to instead, see Fig. 4.3.
When this was added into the model the stress concentration was distributed on the solid pads instead. The
reason for this is that

Figure 4.3: Solid pads added to shell model.

4.1.2 Model Setup

In the following section, the settings to complete the final models for analysis are explained in detail. The
constraints and the loading procedure will be presented for the normal lift case.

Dashpots

When the basket is lifted it will tilt due to an unsymmetrical riser weight distribution. In order to get a more
stable simulation, dashpots were used to stabilize the movement of the basket. These dashpots were connected
to the ground which can be seen in Fig. 4.1. There should be at least two dashpots connected to the model to
restrict the motion in X and Z direction. If no dashpots are applied to the basket the basket starts to rotate
unrealistically much and will not give a proper motion of a lifting procedure.
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Viewport: 1     Model: Beam−FDist−MC16     Step: Initial
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(a) Dashpots placed at the padeyes on the shell
structure.

Viewport: 2     Model: Shell−FDist−MC16     Step: Initial
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(b) Dashpots placed at the corners on the beam
model.

Figure 4.4: Dashpots applied to the shell and the beam model.

In the Fig. 4.1 the dashpots are applied in different places to the models. According to the standard DNV
[1] the dashpots should be applied onto the padeyes but due to instability in motion of the beam model, the
dashpots were applied onto the basket in order to stable the motion.
The dashpot coefficient was calculated with the help of Eq. (4.1)

c = 0.01
FT

L
(4.1)

where c is the dashpot coefficient, F is the design lifting force in the master node where the wires are connected,
T is the time period of a step and L is a characteristic dimension of the PO unit (the greatest is chosen). The
definition of the dashpot coefficient is taken from the standard DNV [1].

Nonstructural mass

Simplifications of the models will contribute to less mass than it had originally which means that the removed
material must be reapplied to make the model’s properties as similar as the 3D CAD model. This was done by
applying nonstructural masses. When the model was ”cleaned” and the material was removed, the center of
mass was most likely changed. It was important to make sure that the position of center of mass remained at
same location after applying the nonstructural mass as it was for the 3D CAD model. When the nonstructural
mass was applied, it was placed so the center of mass would change back to where it was in the original model.
The nonstructural mass was applied to the surfaces on the shell model as can be seen in Fig. 4.5 (a). The beam
model was applied with nonstructural point masses at the connection points and can be seen in Fig. 4.5 (b).

X

Y

Z

(a) Nonstructural mass applied to the surfaces on
the shell structure

Axial

Axial
Axial

Axial

(b) Nonstructural mass placed at the points on the
beam model

Figure 4.5: Nonstructural masses applied to the shell and beam model in order to make it conservative
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Riser weight distribution

The weight of the risers was implemented into the model in two different ways. First as a point mass which
was constrained to the five supports (uniform distribution). The second way was to calculate the fraction of
the mass acting on the five support analytically using the secondary software ”GoBeam” (manual distribution),
see App. D.

Riser weight - Uniform distribution

The first way of implementing he riser weight into the model was to add it as a point mass in the location
where the COM for the riser is. The mass added was 11.7 tons, 11 tons from the riser and then an additional
0.7 tons in order to be conservative. This point mass was constrained to the five supports with the constraint
”Continuum distributing”. For more information about this constraint see Sec. 4.1.3. This implementation can
be seen in Fig. 4.6 and Fig. 4.7.

Axial
Axial

Axial
Axial

Figure 4.6: Uniform distribution of the riser mass by using the constraint ”Continuum distributing coupling” in
Abaqus.

Viewport: 5     Model: Shell−Uniform     Step: Initial

AxialAxial
AxialAxial

Axial
Axial

Axial
Axial

Figure 4.7: Uniform distribution of the riser mass by using the constraint ”Continuum distributing coupling” in
Abaqus.

Riser weight - Manual distribution

When constraining the riser mass to the model there was not a sufficiently good option in Abaqus. The weight
from the risers should be applied as can be seen in Fig. 4.8. In this loadcase a portion of the mass of the riser
is outside the supports. When the mass is distributed to the five support in the uniform loadcase it will not
take this into consideration.
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Figure 4.8: Uniform load.

So a more sophisticated approach was to add the contribution the weight of the riser would have on each
support individually. In order to determine the distribution of the mass a third party excel document was used,
see App. D. In this document the load, geometry, inertia of the beam (risers in this case) and spring constant
must be specified. Here the supports are considered as springs, because in theory the supports act as stiff
springs. The spring constants were calculated by clamping the padeyes and applying a force of 1 kN on each
support. The displacement on each support was extracted from the simulation and used in Eq. (4.2) to get the
spring constants.

F = kx (4.2)

The distribution of the reaction force acting on each support is shown in Fig. 4.9. With the help of these
results the fraction of the riser mass could be determined and applied for each support in the beam and shell
model, see Tab. 4.1.

(a) Force distribution for beam. (b) Force distribution for shell.

Figure 4.9: Reaction forces on each support the beam and shell model.
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Figure 4.10: Riser weight distribution of the shell calculation model.
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Figure 4.11: Riser weight distribution of the beam calculation model.

Table 4.1: Mass distribution of the supports from left to right.

Mass 1 [tons] Mass 2 [tons] Mass 3 [tons] Mass 4 [tons] Mass 5 [tons]
Shell model 4.2 0.9 2.0 1.3 3.4
Beam model 4.2 0.8 2.0 1.3 3.4

4.1.3 Constraints

In Abaqus two constraints, tie and coupling were applied to the models. The constraints in Abaqus have the
purpose to connect different parts of the structure. The constraints partially or fully eliminate DOF of a group
of nodes and couple their motion to the motion of a master node (or nodes).

• Tie - This is a simple constraint that connects two different surfaces or adjacent nodes. It will not matter
if one is a surface from a shell and the other a surface from a solid. This is why it was chosen to constraint
the solid pads onto the shell model.

Master Node (Padeye 1)

Slave Surface (Solid Pad)

(a) Tie constraint illustrating the master node (padeye 1)
and the slave surface (solid pad).

Master Node (Padeye 1)

Slave Edge

(b) Tie constraint illustrating the master node (padeye 1)
and the slave edge at the primary structure.

Figure 4.12: The calculation models showing the tie constraints, (a) shows the shell model and (b) shows the
beam model.

• Coupling - A master node and a slave surface can be coupled to each other using either continuum- or
structural distributions. Continuum distribution, couples the displacement and rotation of each fastening
point with the average displacement of the nodes in a surrounding slave area. When constraining the
mass onto the supports the continuum distribution was used, see Fig. 4.13.
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(a) Coupling constraint to fasten the masses onto the sup-
ports in the shell model.

(b) Coupling constraint to fasten the masses onto the
supports in the beam model.

Figure 4.13: Coupling constraint.

4.1.4 Boundary Conditions and Load

In this case there were two BCs. The first BC locks the master link (ML) in the DOF corresponding to
translation where the four wires are connected. The second BC restricted the deformation of the wires axially
and this was because the deformation of the wires was unessential to the analysis. The only load that was
applied on the structure was the gravity. The gravity was linearly increased for each step in the simulation. In
the first step the gravity was increased to 0.1 g, the second is unchanged, the third up to 1 g and in the forth
and final step increased up to 30 g. The BCs and the load applied on each step are shown in Tab. 4.2.

Table 4.2: Step configuration.

Step No. Step name Step Description At Padeye center At ML Slings BC
0 Initial Initiate B.C U1=0 U2=0 U3=0 U1=0 U2=0 U3=0 -
1 Apply Gravity Apply 0− 0.1g U1=0 U2=0 U3=0 Propagated -
2 Dummy Propagated Unlocked Propagated Axial dir. U1=0
3 Apply Gravity Apply 0.1− 1g Propagated Propagated Propagated
4 Apply Gravity Apply 1− 30g Propagated Propagated Propagated

The configurations from step number 0 and up to 2, stabilizes the simulation while step number 3 and 4 will
gradually increase the gravity load. This loading procedure is very common in the offshore industry and is
recommended according to internal best practice provided from Aker Solutions.
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Master Link (ML)

Center of Mass for Risers (CoM Risers)

Padeye 3

Padeye 2

Padeye 1

Padeye 4

(a)

Master Link (ML)

Center of Mass for Risers (CoM Risers)

Padeye 3

Padeye 2

Padeye 1

Padeye 4

(b)

Figure 4.14: Position of the master link (ML), padeyes and center of mass for the risers (COM) for the
calculation models.

4.1.5 Mesh

In this section the mesh types will be presented for the two calculation models. The shell and beam models
were meshed with simply linear elements. Quadratic elements were used for both calculation models in order to
verify the models. Only the finest mesh size of 16 mm was simulated with quadratic elements.

Table 4.3: Mesh information for the shell calculation model made of linear elements.

Global seed size [mm] Total no. of elements Total no. of nodes S4R S3 C3D8R
50 22709 22042 22327 382 3600
30 63582 65024 59336 646 3600
20 140649 141719 136405 644 3600
16 216094 216644 211320 1174 3600
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Table 4.4: Mesh information for the shell calculation model made of quadratic elements.

Global seed size [mm] Total no. of elements Total no. of nodes S8R STRI65 C3D8R
16 216094 639662 211320 1174 3600

Tab. 4.3 illustrates the mesh sizes for the shell model. S4R, S3 and C3D8R are the different elements in the
model. The element type S4R is a linear quadrilateral element, S3 is a linear triangular element and C3D8R
is a linear hexahedral element. These elements is explained in more detail in the Chapter 2. The quadratic
elements, S8R, STRI65 and C3D8R are used in the shell model, see Tab. 4.4

Table 4.5: Mesh information for the beam calculation model.

Global seed size [mm] Total no. of elements Total no. of nodes B31/B32 B31 B32
50 2528 2479/– 2528 –
30 4206 4157/– 4206 –
20 6300 6251/– 6300 –
16 7896 7847/15743 7896 7896

The beam model was meshed similarly as the shell model with the same global seed sizes as can be seen in Tab.
4.5. B31 is the linear beam elements while B32 is the quadratic element. The quadratic element was only used
with the finest mesh size, 16 mm.

4.2 Convergence Analysis

A mesh convergence will be performed in order to obtain an accurate size of element for the analysis. The finite
element size is of importance and has a big impact on the results obtained from the simulations. Therefore a
mesh convergence will be implemented in the beginning of the FE-analysis. Mesh convergence study usually
contains an increase of elements while the mathematical model is converging to an unique solution. Hence, in
linear elastic analysis there exist an unique exact solution to the mathematical model. [2]

4.3 Placement of the Local Coordinate System

In order to measure the deformation on an arbitrary location in the model without including the rigid body
motion a local coordinate system has to be located into the model. The location for the local coordinate system
must be the same in both the shell and the beam model in order to make the appropriate comparison. The
initial deformation gradient which is when the material is deforming elastically will differ depending on where
the local coordinate system is placed. Therefore the chosen location was placed at the same position for both
models, shown in Fig. 4.15.

(a) (b)

Figure 4.15: Placement of the local coordinate system in order to prevent rigid body motion effects.
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4.4 Critical Area

The measurement of the deformation will be made at a critical location, as in this case at the outer support
in which the largest mass proportion was applied. In Fig. 4.16 the von Mises stresses can be seen and the it
clearly shows that the critical area in this model is at the outer support due to the unsymmetric riser weight
distribution.

(a) (b)

Figure 4.16: Plot of von Mises stresses and the critical area where the deformation will be measured.

24



5 Results and Discussion

In this chapter all the results from the simulations will be presented and discussed. First the mesh convergence
study will be presented in order to verify the models. The result for applying the payload differently due to the
risers will then be demonstrated. The capacity analysis with different mesh sizes will also be presented in order
to see where collapse occurs. The influence of first and second order elements will be presented when meshing
the two models with the finest mesh size of 16 mm. The results when applying different thickness integration
points in the shell model will be denoted in order to verify how many points are sufficient. Lastly a comparison
in capacity between the shell and the beam model will be confronted.

5.1 Mesh Convergence

Mesh convergence study consisted of measuring the von Mises stress at the bottom side of the basket along the
path on the critical support, see Fig. 5.1 and Fig. 5.2.

(a) (b)

Figure 5.1: Bottom side of the beam model where the von Mises stress was measured.

(a) (b)

Figure 5.2: Bottom side of the shell model where the von Mises stress was measured.

The von Mises stress along the path for the two models are seen in Fig. 5.3 (a) and (b). It can be seen that
the valley increases and converges with a finer mesh size. The curve has almost converged to the same valley
in the beam calculation model with a mesh size of 16 mm (Fig. 5.3 (b)). The shell calculation model is still
converging and demands a finer mesh size than 16 mm.
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(a) Mesh convergence for the shell calculation model.
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(b) Mesh convergence for the beam calculation model.

Figure 5.3: von Mises stress along the path length indicated in Fig. 5.1 (b) and Fig. 5.2 (b)

The results can be seen in Tab. 5.1 and Tab. 5.2. If the change in mean von Mises stress along the path was less
than 1 % it was considered to be fully converged. The change between 20 mm and 16 mm for the shell model
is 2.8 % and not fully converged according to the convergence criteria, but since the model was computational
demanding it was interesting to check when collapse occurs for the different mesh sizes in order to see if the
mesh size has an impact to it. The capacity analysis for the different mesh sizes will be demonstrated in Section
5.3

Table 5.1: The mesh convergence result for the shell calculation model.

Model name Mesh size [mm] Mean von Mises stress [MPa] Change [%]
Shell-M16mm 16 201.8 2.8
Shell-M20mm 20 207.6 6.0
Shell-M30mm 30 221.9 6.3
Shell-M50mm 50 236.9 –

Table 5.2: The mesh convergence result for the beam calculation model.

Model name Mesh size [mm] Mean von Mises stress [MPa] Change [%]
Beam-M16mm 16 199.7 0.4
Beam-M20mm 20 200.4 1.3
Beam-M30mm 30 202.3 3.0
Beam-M50mm 50 204.1 –

Mesh convergence study was also made with the element sizes of 14 mm, 12 mm and 10 mm for the shell model
in order to see if the mean von Mises stress had fully converged at these mesh sizes. It could be seen that the
change between 16 mm and 14 mm was less than 1%. This can be seen in App. E.

5.2 Distribution of Payload due to the Risers

The mass of the risers was implemented on the calculation models with two different techniques. When the
mass of the risers was uniformly distributed from the COM of the risers, the collapse occurred at 16.2 g for
the shell model and 18.4 g for the beam model at the critical support. But when the mass distribution was
calculated analytically collapse occurred at a lower gravity multiplier which was at 10.2 g for the shell model
and 13.6 g for the beam model. Both shell and the beam model are giving the same behavior. This can be seen
in Fig. 5.4 (a) and (b). The reason for this is that when the mass proportion is calculated analytically and
applied on each support individually the proportion of the riser mass on the critical support will be greater than
the proportion would be if the riser mass would be applied uniformly from the risers COM. These differences
in collapse load is pretty significant which shows that it is very important to implement the load correctly in
order to make a conservative model.
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(a) Shell model.

Deformation [mm]
0 10 20 30 40 50 60 70 80

Lo
ad

 [g
]

0

5

10

15

20

25

30
Beam Deformation, FDist vs Uni

Beam-FDist-M16-Mid
Beam-Uni-M16-Mid

(b) Beam model.

Figure 5.4: Ultimate capacity result when the calculation models are applied with payload distribution manually
and payload distribution uniformly.

The results at collapse, c are presented in Tab. 5.3 where the maximum displacement and the maximum plastic
strain are measured for the calculation models.

Table 5.3: Results at collapse load.

Model Collapse, c Max. Disp. [mm] Max. Plastic strain [%]
Shell Uniform 16.2 5.6 0.08
Shell Mass dist. 10.2 8.6 0.10
Beam Uniform 18.4 11.6 0.03
Beam Mass dist. 13.6 16.4 0.10

Collapse load, FrK was calculated according to the acceptance criteria in Sec. 3.3 and is again defined in Eq.
(5.1).

FrK = MGW × c× g (5.1)

where

MGWshell = 16.17 tons MGWbeam = 16.18 tons c =collapse g = 9810 mm/s2

5.3 Capacity Analysis - Collapse Load

The deformation for both shell and the beam model has been simulated with four different mesh sizes and are
plotted in Fig. 5.5. The deformation is measured in the middle of the critical support shown in the previous
Section 4.4, Fig. 4.16. When simulating with the four different mesh sizes, collapse has been reached before the
divergence occurs in the curves. This collapse occurrence happens at 10.2 g for the shell model and 13.6 g
for the beam model. This indicates the mesh size of 16 mm being converged since the collapse load is at the
same place for the four different mesh sizes in both models. In the beam model there is no difference when
decreasing the mesh size from 50 mm to 16 mm which means that the mesh has already converged at a mesh
size of 50 mm for the beam model.
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Figure 5.5: Ultimate capacity result when the calculation models are applied with payload distribution manually
and payload distribution uniformly.

5.4 First and Second Order Elements

In order to determine if the collapse load would have been better modeled with higher order elements, the
basket was meshed with a quadratic elements for both shell and beam models with a mesh size of 16 mm. Fig.
5.6 shows that the difference is none existing between linear and quadratic elements for the beam model and do
not have an impact of the load-displacement curve. This is because the mesh has already been fully converged
at current mesh size. While on the other hand when the shell model is meshed with quadratic elements it does
have an impact on the load-deformation curve. The difference occurs in the plastic region after collapse has
been reached. The reason for this is that the mesh size is not sufficiently small when modeling the plasticity
as discussed in Sec. 5.1. Quadratic elements gives a better representation of the deformation than the linear
elements does and this is because the shape functions is made of second order polynomial. But in this case
when collapse occurs before the two curves diverges (10.2 g), linear elements in sufficient. The reason that the
quadratic element model has not been simulated past a deformation of 40 mm in Fig. 5.6b, is due to a very
small step increment would have been needed and the time for the simulation would have taken to long to run.
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Figure 5.6: Linear compared to quadratic elements.

5.5 Thickness Integration Points

It is of interest to investigate how the number of thickness integration points affect the results for the shell
model. At this time Aker Solution uses five integration points which is the default value in Abaqus. In Fig. 5.7
the deformation for the different number of integration points have been plotted. If the thickness integration
points are reduced to three the deformation will at a certain point increase asymptotically earlier than higher
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number of integration points. As mentioned in Sec. 2.2.2, it would be sufficient to use three integration points
if the problem would be linear, but in this case the model will deform non-linear which means that three may
not be sufficient. Since in this case the basket is deforming non-linearly, three thickness integration points
are indeed not sufficient. There is no difference in the deformation behavior when the integration points are
increased from five to seven or even as high as eleven. This means that the number of integration points of five
is enough to model the plastic behavior that the material experience during the deformation stage. It can also
be seen in Fig. 2.4 the error that remains for three integration points is higher than for five. It may be the case
that the error from integrating with three points is just above a critical value which means that the error will
propagate for each iteration and in the end have a bigger impact. Five integration points would not have this
propagating error in this case.
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Figure 5.7: Deformation on critical support for different thickness integration points

5.6 Comparison between the Shell and the Beam model

As can be seen in Fig. 5.8, the model made of shell elements collapses earlier than the model made of beam
elements, known since earlier to be 10.2 g and 13.6 g. In general it is known that the shell model is more
flexible and gives a more accurate solution.
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Figure 5.8: Deformation at the critical support for shell and beam model, collapse occurs at 10.2 g for shell and
13.6 g for beam

One reason for the lower collapse load in the shell model is the load application to the nodes. Considering
the shell cross section in this case, the riser load is applied on the upper surface nodes which gives a bending
moment effect, seen in Fig. 5.9 (a). The beam model is meshed with one dimensional elements and when the
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riser load is applied to one node it distributes the load to the cross section. The beam’s cross section remain its
shape after deformation and this phenomena is shown in Fig. 5.9 (b).

(a) Shell cross section. (b) Beam cross section.

Figure 5.9: Differences in how the mass is applied to the cross section in the shell and the beam model.

In Fig. 5.8 it can also be seen that the initial deformation gradient differs between the shell and the beam
model. One reason for this is the placement of the local coordinate system, it was not applied at the exact
same position. The local coordinate system was placed on the corner of the cross section in the shell model and
in the middle of the cross section in the beam model, see Fig. 5.10. This gives a small difference between the
two models and will affect the initial deformation gradient.

(a) Placement of the local coordinate system in the shell
model.

(b) Placement of the local coordinate system in the beam
model.

Figure 5.10: Local coordinate system placed at the top corner of the cross section in the shell model and in the
middle of the cross section onto the beam model.

Another reason is that the nonstructural mass could not be applied in the exact same way to the models. The
nonstructural mass was placed on the surfaces in the shell model while in the beam model it was only possible
to apply it as point masses in the connections between two beam bars. This can be seen in Fig. 4.5. In order
to verify the initial deformation gradient difference due to applying the nonstructural mass, it was applied in
a dissimilar way in order to check the behavior, see App. F. This way of applying the mass will contribute
to different mass distribution to the models and the deformation will differ from each other when applying a
gradually increased gravity load.
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6 Conclusions

The scope of this thesis has been to determine if it would be possible to use a beam model to simulate a normal
lift case instead of using a shell model, and still be able to get a solution that is satisfying. This is something that
would further the goals for the offshore industry in such a way that a lot of time could be saved for the CAE time.

When working with a geometry that is as big as the one in this thesis, a mesh size of 16 mm was enough for
the beam structure but not for the shell structure when making the mesh convergence with mean Von Mises
stress over the length exposed to high pressure from the risers. When measuring collapse at the critical location
it was still accurate enough, see Fig. 5.5. If the mesh convergence has not fully converged to a sufficiently
low tolerance another convergence test must be used later on to validate that the results from the analysis is
accurate enough. In the deformation-gravity curve, collapse occurred before the different mesh sizes diverged
which means that for this type of analysis the mesh had converged enough. In the beam model a mesh size of
16 mm is more than enough, and there would even be possible to use an even more course mesh size and still
obtain the same result.

The results show that there is no difference in using quadratic or linear beam elements when analysing
the collapse. The convergence occurred at a mesh size greater than 16 mm. The shell model, on the other
hand, did not converge at the element size of 16 mm but in this case collapse had already occurred before the
results diverges the quadratic elements would not be needed for this case.
It is also important to apply the payload onto the model as realistic as possible in order to obtain a more
accurate solution, it could be the case that a more simple way of applying it may be more conservative but this
may not always be the case. This is why it is important to investigate different options of how to apply the
payload.

When there is linear deformation, only three integration points are needed when using Newton integra-
tion. If there is plastic deformation five or more integration points are needed to model a correct deformation
behavior. In this case collapse load was reached before the curves diverges when checking for different number
of integration points, this can be seen in Fig. 5.7. If the collapse criteria was differently defined, this may have
not been the case. If there is a possibility for plastic deformation, less than five integration points will not give
an appropriate solution and would not be reliable results.

The beam model experience collapse later in the gravity-displacement curve than the shell model, one reason
for this is because the mass is applied on the hole cross section of the support. This means that the beam
model will become more stiff when measuring deformation on the support compared to how it would have
been applied in reality where it would only have contact on the top side. Another reason is because the cross
section of a beam elements remain the same after deformation and can not model the bending effect in the
cross section.

These limitations discussed about the beam model does not occur in the shell model, but here are a few
limitations. Shell elements are not as good as beam elements when handling out of plane stresses, this means that
it will become weaker when the mass from the risers are applied on the model than what would happen in reality.

No real test data has been provided from Aker Solutions so no comparison could be made between the
beam model, shell model and a real case scenario. The conclusion that can be drawn is that the models have
different strengths and weaknesses, and that the shell model experience collapse earlier than the beam model
and therefore it is not possible to obtain the same results for the normal lift case. This makes the shell model
more conservative and a better choice to utilize.
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7 Future Work

The difference between a shell and a beam structure has only been analyzed for one static loading scenario
with a limit analysis. It would be interesting to see if collapse would occur later if a thin solid pad would have
been added to the five supports in the shell model. The results from this thesis can only be used as a source for
determining if it is possible to model the structure as a beam instead of a shell model if the loading case is the
same as in this thesis. It would be interesting to evaluate dynamic scenarios to see if the results will be similar
to what is presented in this thesis.
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Appendix A Kirchhoff’s Plate Theory

Kinematics

The displacement components at any point (x, y, z) in the plate are related to the in-plane displacement
u0(x, y) = [u0

x, u
0
y]T at the midplane (z = 0) and the transverse displacement w(x, y) as

u =

[
ux
uy

]
= u0 − z∇w (A.1)

and the transverse component uz = w(x, y) is constant across the plate thickness such that εzz = 0. From the
kinematic assumption in Eq. (A.1) the in-plane strains and out-of-plane shear strains are obtained as

ε =

εxxεyy
γxy

 = ∇̃u = ε0 − zκ (A.2)

γ =

[
γxz
γyz

]
= 0 (A.3)

The auxiliary notations are introduces as

ε0 =

ε0xxε0yy
γ0
xy

 = ∇̃u0, κ =


∂2w
∂x2

∂2w
∂y2

2∂
2w
∂xy

 =
∗
∇ w (A.4)

with

∗
∇def

= ∇̃∇ =


∂2

∂x2

∂2

∂y2

2 ∂2

∂xy

 (A.5)

The strains through the thickness can not be determined from the kinematics but with the constitutive relation
the out of plane strain, εzz can be computed when the plane stress assumption is taken into consideration.

Constitutive relations

Assuming the material to be symmetric in xy-plane and in z-direction. The stress-strain relation is then
σxx
σyy
σzz
σxy
σxz
σyz

 =


D11 D12 D13 D14 0 0
D12 D22 D23 D24 0 0
D13 D23 D33 D34 0 0
D14 D24 D34 D44 0 0

0 0 0 0 D55 D56

0 0 0 0 D56 D66




εxx
εyy
εzz
γxy
γxz
γyz

 (A.6)

σ = D : ε (A.7)

Noting that γ = 0 in the last two rows in Eq. (A.6) since they can not determine the out-of-plane shear stress
components. The plane stress condition, σzz = 0 is used to determine the relation

εzz = − 1

D33

[
D13εxx +D23ε33 +D34γxy

]
(A.8)

By combining the Eq. (A.2) with the constitutive relation in Eq. (A.6) one obtain

σ = D
[
ε0 − zκ

]
= Dε0 − zDκ (A.9)
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The material of the basket has an isotropic elasticity which yields the definition of the constitutive response as

D =
E

1− ν2

1 ν 0
ν 1 0
0 0 1

2 (1− ν)

 (A.10)

where E is the Young’s modulus and ν is the Poisson’s ratio.
The theory in this section was taken from ”Introduction to Finite Element Analysis of Plates” written by
Fredrik Larsson and Kenneth Runesson [7].

FE representation of Kirchhoff’s plate Theory

The element stiffness matrix is calculated as

Ke =

∫
A

BTDBdA (A.11)

where A is the domain and B is the strain-displacement matrix given in Eq. (A.12) with the shape functions
from the element the theory is used with. [15]

B = −


∂2N1

∂x2
∂2Nx1

∂x2

∂2Ny1

∂x2 ...
∂2Nyn

∂x2

∂2N1

∂y2
∂2Nx1

∂x2

∂2Ny1

∂y2 ...
∂2Nyn

∂y2

∂2N1

∂x∂y
∂2Nx1

∂x∂y
∂2Ny1

∂x∂y ...
∂2Nyn

∂x∂y

 (A.12)
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The theory used here is according to Michigan’s homepage [15]

Appendix B Finite Element Equations

B.1 Quadrilateral Element

Geometrical relations

The geometric relationships for a quadrilateral membrane element will in this section be presented for a warped
geometry and for a flat ”best fit” element, by setting the z coordinate for each node equal to zero. The non-flat
relationships are used for the development of the non-linear projector for quadrilaterals while the flat projector
relationships are used to develop the membrane and bending stiffness of the shell element. The following
content for deriving the element stiffness matrix is taken from a course textbook made by the University of
Colorado and from the textbook ”The Finite Element Method: A Practical Course” written by Liu and Quek.
[9],[13]
Consider a vector r pointing to a non flat quadrilateral element. It can be parametrized with respect to the
natural coordinates ξ and η as

r(ξ, η) =

 x
y
z

 =

 N 0 0
0 N 0
0 0 N


 x
y
z

 , (B.1)

where

x =


x1

x2

x3

x4

 ,y =


y1

y2

y3

y4

 , z =


z1

z2

z3

z4

 , (B.2)

where x, y and z are the node coordinates in the global coordinate system. N is the bi-linear isoparametric
interpolation for the quadrilateral element

N(ξ, η) =
[
N1 N2 N3 N4

]
(B.3)

where the shape functions N1, N2, N3 and N4 are

N1 = 1
4 (1− ξ)(1− η)

N2 = 1
4 (1 + ξ)(1− η)

N3 = 1
4 (1 + ξ)(1 + η)

N4 = 1
4 (1− ξ)(1 + η)

(B.4)

The quadrilateral element can be seen in Fig. B.1 where it is transformed from the global coordinate system
(x,y) to the natural coordinate system (ξ, η).
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Figure B.1: Quadrilateral element in global coordinate system (left) and natural coordinate system (right).

The variation of the position vector r can be formulated by using the geometric relations

 dx
dy
dz

 =


(∂x/∂ξ)dξ + (∂x/∂η)dη

(∂y/∂ξ)dξ + (∂y/∂η)dη

(∂z/∂ξ)dξ + (∂z/∂η)dη

 =

∂x/∂η ∂x/∂η

∂y/∂η ∂y/∂η

∂z/∂η ∂z/∂η

{dξ

dη

}
(B.5)

Eq. (B.5) can also be rewritten as

dr = Jdξ (B.6)

where J is the Jacobian which is also used to compute partial derivatives with respect to the natural coordinates
ξ and η. In order to obtain the strain matrix B in Eq. (B.8), the relationship between the differentials of the
shape functions with respect to x and y those with respect to ξ and η need to be formulated as in Eq. (B.7).
Hence, the z coordinate is set to zero. [

∂Ni/∂x

∂Ni/∂y

]
= J−1

[
∂Ni/∂ξ

∂Ni/∂η

]
(B.7)

B = LN =

∂/∂x 0
0 ∂/∂y
∂/y ∂/∂x

N (B.8)

The element stiffness matrix can be obtained by using Eq. (B.9)

Ke =

∫
Ve

BT cBdV =

∫
Ae

( h∫
0

dz

)
BT cBdA =

∫
Ae

hBT cBdA (B.9)

The integral in Eq. (B.9) can be evaluated by the following formula

dA = det|J |dξdη (B.10)

Then the element stiffness matrix in Eq. (B.9) can be rewritten as

Ke =

+1∫
−1

+1∫
−1

hBT cBdet|J |dξdη (B.11)
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B.2 Triangular Element

When formulating the triangular elements, the displacement U is generally a function of the triangular
coordinates x and y. And the displacement at any point can be expressed using the displacement at the nodes
and shape functions. An arbitrary triangle and its coordinates is shown in Fig. B.2.

Figure B.2: Arbitrary triangle element with coordinates.

Then it can be assumed that

Uh(x, y) = N(x, y)de (B.12)

where the superscript h means that the displacement is only a approximated displacement and de is the vector
of nodal displacement for the element.

de =



u1

v1

u2

v2

u3

v3


(B.13)

The shape function matrix is arranged as

N =

[
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]
(B.14)

Eq.(B.12) is expressed in a compact matrix form, and is expressed explicitly in Eq.(B.15).

uh(x, y) = N1(x, y)u1 +N2(x, y)u2 +N3(x, y)u3

vh(x, y) = N1(x, y)v1 +N2(x, y)v2 +N3(x, y)v3

(B.15)

This means that the displacement at each point in the element is an approximation of the interpolation of
the nodal displacement using the shape functions. Now the shape function Ni must be constructed for the
triangular element and must satisfy the requirements: delta function property; partitions of unity; and linear
field reproduction. Starting with the assumption of that the shape functions are of polynomial basis with
unknown constants. Then these constants must be determined using the property of the shape functions.
Normally the basic approach when constructing the shape functions Ni(i = 1, 2, 3) the displacement is assumed.
This works for any element type, but in this case assuming the polynomial form is more convenient. A linear
triangular element are here assumed to be a linear function of x and y, and should therefore take the form as

N1 = a1 + b1x+ c1y
N2 = a2 + b2x+ c2y
N3 = a3 + b3x+ c3y

(B.16)

where ai, bi, ci(i = 1, 2, 3) are unknown coefficients that must be determined. There are a total of nine constants
that need to be determined in Eq. (B.16). Here the property of delta function will be used, which states that
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the shape function must be a unit at its home node, and zero at all the remote nodes. For this equation it will
be expressed as

Ni(xj , yj) =

{
1 i = j
0 i 6= j

(B.17)

When solving Eq. (B.16) with the help of Eq. (B.17) we get the constants

ai =
1

2Ae
(xjyk − xkyj), bi =

1

2Ae
(yj − yk),ci =

1

2Ae
(xk − xj) (B.18)

where Ae is the area of the triangle element. Now when the shape functions have been determined the strain
matrix must be derived in order to compute the stiffness matrix, in a 2D solid which a shell element basically
is.

εxx =
∂u

∂x
, εyy =

∂v

∂y
, γxy =

∂u

∂y
+
∂v

∂x
(B.19)

which can be expressed in concise matrix form as

ε = LU (B.20)

Using Eq.(B.12) and Eq.(B.20), we get

B = LN =

∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

N (B.21)

Now the element stiffness matrix Ke can be calculated as

Ke =

∫
Ae

BT cBdV =

∫
Ae

(∫ h
0
dz
)
BT cBdA =

∫
Ae

hBT cBdA (B.22)

Where c is a material constant matrix for plane stress or plane strain and h is the thickness of the shell element.
This theory used is from ”The Finite Element Method: A practical Course” from Liu, G R. and Quek [13].

B.3 Beam Element

Beam element is a simple element that may be used for simple geometries. In this thesis a combination of truss
elements and beam elements are used, which it called frame elements. Here the Ke for a simple beam element
with four DOFs will be derived, see Fig. B.3. It is usually modeled as a slender straight bar with an arbitrary
cross section. It can only deform in the direction that is perpendicular to its own axis.
Fig. B.3 is illustrating a beam element with its four DOF, length and natural coordinates. The natural
coordinate system is dimensionless and has its origin in the middle of the element, it has the coordinate -1 on
the left side and 1 on the right side in the figure. The relation between the natural- and the local coordinate
system is given in Eq. (B.23).

ξ =
x

a
(B.23)

Figure B.3: Beam element with natural coordinate system (ξ) and degrees of freedom.
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In order to derive the four shape functions in the natural coordinate system, a third order polynomial equation
for the displacement is chosen Eq. (B.24) and expressed in ξ which will generate four unknown constants.

v(ξ) = α0 + α1ξ + α2ξ
2 + α3ξ

3 (B.24)

in vector form

v(ξ) =
[
1 ξ ξ2 ξ3

]︸ ︷︷ ︸
pT (ξ)


α0

α1

α2

α3

︸ ︷︷ ︸
α

(B.25)

or

v(ξ) = pT (ξ)α (B.26)

In order to obtain the rotation θ, the proposed equation Eq.(B.24) must be differentiated and the relation
between x and ξ must also be taken into consideration (Eq. (B.23)). This can be accomplished using the chain
rule

θ =
∂v

∂x
=
∂v

∂ξ

∂ξ

∂x
=

1

a

∂v

∂ξ
=

1

a
(α1 + 2α2ξ + 3α3ξ

2) (B.27)

In order to determine the four unknown constants in Eq. (B.24), we can use the four following conditions: at
x=-a or ξ=-1 and at x=a or ξ = −1

(1) v(−1) = v1

(2) dv
dx |ξ=−1 = θ1

(3) v(1) = v2

(4) dv
dx |ξ=1 = θ2

(B.28)

When combining the conditions from Eq. (B.28) with Eq. (B.25) and Eq. (B.27), we get
v1

θ1

v2

θ2

︸ ︷︷ ︸
de

=


1 −1 1 −1
0 1/a −2/a 3/a
1 1 1 1
0 1/a 3/a 3/a


︸ ︷︷ ︸

P


α0

α1

α2

α3

︸ ︷︷ ︸
α

(B.29)

Since the determinant of P in Eq. (B.29) is 6= 0. We get

α = P−1de (B.30)

Using Eq. (B.30) in Eq. (B.26) we get

v = N(ξ)de (B.31)

Combining Eq. (B.26), Eq. (B.30) and Eq. (B.32) we get the N vector containing the shape functions

N(ξ) = pT (ξ)P−1 =
[
1 ξ ξ2 ξ3

]︸ ︷︷ ︸
pT (ξ)


2 a 2 −a
−3 −a 3 −a
0 −a 0− a
1 a −1 a


︸ ︷︷ ︸

P−1

1

4
=
[
N1(ξ) N2(ξ) N3(ξ) N4(ξ)

]
(B.32)

Now the shape functions are established as

N1(ξ) =
1

4
(2− 3ξ + ξ3)

N2(ξ) =
a

4
(1− ξ + ξ2 + ξ3)

N3(ξ) =
1

4
(2 + 3 + ξ3)

N4(ξ) =
a

4
(−1− ξ + ξ2 + ξ3)

(B.33)
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Now when the shape functions is established the element stiffness matrix (ke) can be derived. We start with
the relation between the strain and deflection, which gives the normal stress

εxx = Bde (B.34)

where the strain matrix B can be expressed with the help from Eq. (B.23) as

B = −y ∂
2

∂x2
N = − y

a2

∂2

∂ξ2
N = − y

a2
N
′′

(B.35)

The second derivative can be expressed in vector form as

N
′′

=
[
N
′′

1 N
′′

2 N
′′

3 N
′′

4

]
(B.36)

The basic formulation for the element stiffness matrix ke is then

ke =

∫
V

BT cBdV = E

∫
A

y2dA︸ ︷︷ ︸
Iz

∫ a

−a

{
∂2

∂x2
N

}T {
∂2

∂x2
N

}
dx =

EIz

∫ 1

−1

1

a4

[
∂2

∂ξ2N
]T [

∂2

∂ξ2N
]
adξ =

EIz
a3

∫ 1

−1

N ′′
T
N ′′dξ

(B.37)

This theory used is from ”The Finite Element Method: A practical Course” from Liu, G R. and Quek [13].
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Appendix C Material Properties
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Appendix D Go Beam

D.1 Input data for the shell model

D.2 Input data for the beam model
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Appendix E Mesh Convergence
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Figure E.1: Mesh convergence study with element sizes smaller than 16 mm.
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Appendix F Effect of Nonstructural Mass
When applying the nonstructural mass as in Fig. F.1, the initial deformation gradient was affected as can be
seen in Fig. F.2.
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Figure F.1: Nonstructural mass applied differently
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Figure F.2: Comparison of nonstructural masses when distributing them differently
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