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1. Preface

This  Master  of  Science  Thesis  report  details  the  work  performed  during  an 
internship at INRIA Rocquencourt, a French public research laboratory in computer science 
and  automatic control. The team in which the internship took place is called AOSTE, which 
stands for ”models and methods for the Analysis and Optimization of Systems with real-Time 
and Embedding constraints”.

I would like to thank the whole team for allowing me to work with them as well 
as for the welcome and help they gave me throughout the internship. I would especially like 
to thank my tutor in the team, Dr Dumitru Potop-Butucaru, for his help, advice and for the  
precious time he gave me.

2. Abstract

In the world of embedded real-time applications, the optimization of schedules 
has been since long a major concern. Indeed such applications are often ruled by hard real-
time  constraints,  meaning  that  they  must  compute  a  correct  result  in  terms  of  logical 
computations, but also that this result must be computed before a deadline. In case the result 
is  not  computed  before  the  deadline,  the  consequences  to  the  system  can  be  dramatic, 
equivalent to or worse than a wrong logical computation. 

My master thesis work concerns embedded control systems, which are systems 
in which the software controls a physical process. For such systems, control engineers provide 
the software development  teams with a discretized automatic  control  specification usually 
described  in  Matlab/Simulink,  SCADE or  other  equivalent  formalisms.  Such applications 
always  have  a  cyclic/periodic execution model  alongwith  real-time  constraints  such  as 
latency/makespan  and  throughput.  These  constraints  must  be  respected,  as  well  as  the 
functional specification. The general problem of automatically generating optimal code in this 
context  is  NP-complete  or  undecidable  (depending  on  the  formalism  used),  but  various 
techniques  exist  for  generating  efficient  implementations.  Our  work  starts  from  existing 
techniques allowing the generation of optimized code for one cycle  of computation. Such 
techniques  allow  the  fulfillment  of  the  latency  constraints.  The  present  work  proposes 
techniques  that  optimize  the  throughput  of  applications  at  a  constant  latency.  Thus,  it 
completes existing implementation techniques.

Our  work  is  based  on  the  representation  of  static  real-time  schedules using 
conditional  reservation  tables  defining  the mapping  of  computations  to  computing  and 
communiation  resources  in  time  according  to  the  execution  conditions.  This  approach  is 
validated by many industrial standards such as ARINC 653 for avionics and AUTOSAR for 
automotive industry. 

On such conditional reservation tables we apply software pipelining techniques 
inspired from existing work on  code optimization for microarchitectures with instruction-
level  parallelism (superscalar,  VLIW).  Our  solution  to  the  problem is  one (new) kind  of 
software pipelining of ”modulo scheduling” type that respects the real-time requirements of 
our problem. The originality of the solution we provide, when compared to classical software 
pipelining techniques, is that:

1. It defines a scheduling model that better supports and takes advantage of the execution 
conditions  attached  to  each  computation,  resulting  in  more  compact  generated 
schedules in the end.
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2. As  in  traditional  software  pipelining,  a  dependency  analysis  must  be  performed. 
Nevertheless, in our technique, the real-time context allows the optimization of this 
analysis, which should allow for a shorter analysis time. 

I started my research work by studying a corpus of research articles dedicated to 
embedded  control  systems,  and  more  precisely  to  synchronous  systems,  and  to  software 
pipelining techniques. Those articles were the starting point of a detailed bibliography that I 
did in  order  to  get  good  knowledge  on  the  subject,  and  especially  on  existing  software 
pipelining  techniques.  A particular  interest  was given to  modulo  scheduling  techniques  – 
software  pipelining  techniques  that  allow  the  definition  of  an  optimized  schedule  of 
operations by performing simple computations and a dependency analysis – and to predicated 
execution  for conditional  branches of applications.  This bibliographical  study allowed the 
understanding of the state of the art in this domain, and also put into light the limitations 
inherent to these techniques, especially when it comes to the real-time constraints that were 
mentioned earlier.

At  that  point  I  was  able  to  define  a  formal  model  for  the  representation  of 
pipelined schedules, and to use it in order to define pipelining algorithms. Such algorithms are 
the key to solving the problem, as they take a (non-pipelined) schedule in input, and output an 
optimized pipelined version of the schedule that respects all the constraints we want to fulfill.  
Moreover,  alongside the algorithms was developed a memory management  technique that 
tackles all variable reuse problems that arise during pipelining.

The  formal  model  for  pipelined  schedules  is  embodied  in  an  intermediate 
representation for both pipelined and non-pipelined implementations, which I defined in order 
to  be  able  to  automate  code  generation.  I  then  implemented  the  algorithms  using  those 
models, into a prototype written in Objective CaML. The algorithms were tested on real-life 
cases and showed good results.

At  the  end  of  the  internship,  I  was  able  to  describe  my  work  and  my 
achievements in a research paper that will be submitted soon, and to present them to the rest 
of my research team, as well as to other researchers from both the real-time and the software 
pipelining communities.
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4. Introduction
4.1. The AOSTE research team

I conducted my research in the AOSTE research team of INRIA (http://www-
sop.inria.fr/aoste/) . The team develops correct-by-construction implementation techniques for 
real-time  embedded  systems.  The  AOSTE team conducts  research  in  covering  the  entire 
development  cycle,  from  high-level  modeling  to  the  actual  mapping  of  applications  on 
particular  hardware architectures.  The price to pay for covering the entire design cycle  is 
focusing  work  on  specific  models  of  concurrency  like  data-flow  process  networks  and 
synchronous reactive languages, which give the theoretical basis of its developments.

On the specification side, the team defined a generic "logical time" approach 
based on logical clocks and constraints between them, which has been implemented in the 
OMG UML MARTE profile (http://www.omg.org/omgmarte/). On the implementation side, 
the  team  defined  the  AAA  methodology  (Algorithm/Architecture  Adequation 
http://www.syndex.org/) which imposes that the scheduling action be coupled to a mapping of 
computations and communications to processing units and communication media described 
by an architecture model.

The  AAA  methodology  is  embodied  in  the  SynDEx  tool  for  the  design  of 
distributed real-time embedded applications. From a high-level description of the application, 
given in a hierarchical data-flow formalism close to SCADE or simulink, SynDEx is able to 
synthesize a distributed implementation that targets a given hardware architecture. It is based 
on the synchronous paradigm that we will present in the theory section.

4.2. Motivation and problematics

Embedded  systems  design  brings  together  research  and  engineering 
communities that used to be only loosely connected. This new interaction helps bring forth 
common  problems  that  are  central  to  more  than  one  community.  This  cross-fertilization 
ideally results in the development of common formalisms and general modeling, analysis, and 
code generation techniques.

My work followed this paradigm for a specific problem: the efficient execution 
of  cyclic  computations  over  synchronous  architectures  comprising  several  computing  and 
communication  resources  .  Instances  of  this  problem are  present  at  several  levels  of  the 
embedded design cycle. At low level, compilers are expected to improve code speed by taking 
advantage  of  micro-architectural  instruction  level  parallelism[1].  To  minimize 
synchronization overhead, pipelining compilers usually rely on reservation tables to represent 
an efficient (possibly optimal) static allocation of the computing resources (execution units 
and/or registers) with a timing precision equal to that of the hardware clock. Executable code 
is then generated that enforces this allocation, possibly with some timing flexibility. But on 
VLIW architectures , where each instruction word may start several operations, this flexibility 
is  very  limited,  and  generated  code  is  virtually  identical  to  the  reservation  table.  The 
scheduling  burden  is  mostly  supported  here  by  the  compilers,  which  include  software 
pipelining  techniques [2] designed to increase the throughput of loops by allowing one loop 
cycle to start before the completion of the previous one.
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A very similar picture can be seen in the system level design of safety-critical 
realtime  embedded systems.  The timing precision is  here coarser,  both for  starting dates, 
which are typically given by timers, and for durations, which are characterized with worst-
case  execution  times  (WCET).  However,  safety  and  efficiency  arguments[3]  lead  to  the 
increasing  use  of  tightly  synchronized  time-triggered  architectures  and  execution 
mechanisms, defined in well-established standards such as TTA, FlexRay[4], ARINC653[5], 
or AUTOSAR[6]. Systems based on these platforms typically have hard real-time constraints, 
and their correct functioning must be guaranteed by a schedulability analysis. In this paper, 
we are interested in statically scheduled systems where resource allocation can be described 
under  the  form  of  a  static  reservation  table  which  constitutes,  by  itself,  a  proof  of 
schedulability. Such systems include:

• Periodic time-triggered systems[7; 8; 9;  10; 11] that are naturally mapped 
over ARINC653, AUTOSAR, TTA, or FlexRay.

• Systems where the scheduling table describes the reaction to some sporadic 
input  event  (meaning  that  the  table  must  fit  inside  the  period  of  the 
sporadic event). Such systems can be specified in AUTOSAR, allowing, 
for instance, the modeling of computations depending on engine rotation 
events [12].

• Some  systems  with  a  mixed  event-driven/time-driven  execution  model, 
such as those synthesized by SynDEx[13].

To facilitate the synthesis and implementation of such systems from high-level 
specifications, implementation techniques[7; 8; 13; 11; 10] often produce a scheduling table 
that  implements  exactly  one  cycle  of  the  embedded  control  algorithm.1 Given  the  time-
triggered execution policy,  this means that cycles of the control algorithm cannot overlap. 
Depending on the nature of the controlled physical system or computing resource limitations, 
this restriction may not be acceptable (as the system becomes non-schedulable). 

To work around this limitation, we define pipelining techniques adapted to this 
system-level  real-time  scheduling  framework.  We start  from reservation/scheduling  tables 
defining the (possibly distributed) non-pipelined time-triggered implementation of embedded 
control applications. We define algorithms that synthesize pipelined implementations where a 
new computation cycle can begin before the previous one has completed, subject to resource 
and inter-cycle data dependency constraints. The algorithms optimize the  throughput  of the 
system, but each computation cycle is executed exactly as specified by the input reservation 
table,  so that  all  latency  guarantees  are preserved. The  functionality  of the system is  also 
preserved. The pipelined implementation is represented using a pipelined reservation table.  

We allow the use of conditional scheduling tables where each operation can be 
guarded  by  an  activation  condition,  allowing  a  natural  modeling  of  control  applications 
having several (nominal or degraded) execution modes. Our algorithms give the best results 
on specifications without temporal partitioning, like the previously-mentioned AUTOSAR or 
SynDEx  applications  and,  to  a  certain  extent,  applications  using  the  FlexRay  dynamic 
segment. For partitioned applications like those mapped over ARINC 653, TTA, or FlexRay 
(the static segment), our algorithms currently cannot exploit conditional control information, 
but allow pipelining and synthesize a new partitioning of the computation and communication 
cycles.

The  remainder  of  the  report is  structured  as  follows.  Section 5 provides  a 
comparison with existing  work.  Section  6.1 and 6.2 use intuitive  examples  to  define  our 

1 One hyper-period, in the case of multi-periodic specification
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model of time-triggered system implementation. Section 6.2 extends this model to allow the 
representation of pipelined implementations and defines the mapping of pipelining-specific 
constructs to executable implementation code.  It also provides a larger example involving 
conditional  scheduling  tables,  a  sporadic  implementation  model,  and memory constraints. 
Section 6.7 provides the pipelining algorithms, and the data dependency analysis they use. 
Section 6.8 gives experimental results, and Section 7 concludes.

5. Related work review

An  important  part  of  my  research  work  was  to  established  a  detailed 
bibliography relative to the two domains that the problem crosses: the world of embedded 
control  systems,  and the  world of  software  pipelining.  This  study was crucial,  as  in  any 
research, in order to be able to understand correctly the problem and its application domains, 
but also to get knowledge about what techniques and theories already exist, in order to be able 
to decide if they can be applied, adapted, or are not fit to the problem. This section is a quick 
state of the art in the domains of synchronous programming – a paradigm that allows to define 
and implement  reactive  systems such as  those concerned in  this  thesis  –  and in software 
pipelining.  A particular focus is given to a particular software pipelining technique called 
modulo scheduling, because it is from that technique that I derived the models used to solve 
the problem. An explanatory axample is also given in section 5.2.1. The end of the section is 
devoted to other optimization techniques close to software pipelining and especially to the 
retiming technique.

5.1. Reactive systems/Synchronous programming

Reactive systems [16], by opposition to transformational systems, is the term 
used to designate computing systems that interact continuously with their environment, in a 
timely manner. In other words, such systems cannot make their environment wait, and thus 
have to react quickly to any event. More precisely, they are activated by input events coming 
from their environment, and react to them  within specified delays by producing an output. 
Such systems are very common in industry, and are often highly critical, which implies a high 
degree of control in their design to cope with their hard real-time constraints. These systems 
share some common features that need to be taken care of while designing them. First of all,  
they are often concurrent systems because:

• they run in parallel with their environment,
• they often include several sub-systems running in parallel 
• they are often implemented in a distributed way for performance, fault-tolerance or 

functionality. 
Second,  they  are  submitted  to  hard  real-time  constraints  induced  by  the 

environment. Failing in meeting those constraints may lead to catastrophic consequences and 
makes the system useless. Finally, those systems are dependable which means we must design 
them carefully, and be able to verify them thoroughly. As a consequence, engineers should be 
able to, and are encouraged to use formal methods to design and verify them.

The synchronous paradigm [14][15] meets all the aforementioned constraints. 
The behavior  of  a  synchronous  systems  is  divided in  execution  cycles.  The synchronous 
model  is  based on the assumption that each cycle  is  executed without interaction with or 
interference from the exterior world. All interactions between the system and its environment 
happen between execution cycles. In addition to this atomicity hypothesis, the synchronous 
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model  also  requires  that  the  computation  of  each  cycle  is  functionally  deterministic  and 
bounded  in  number  of  operations  (so  that  worst-case  execution  time  guarantees  can  be 
computed). As  a  consequence,  we  consider  that  time  is  discrete,  divided  into  several 
execution instants that correspond to the reactions of the system.

The main implication of the synchronous hypothesis is that every synchronous 
program can be viewed as a (synchronous) finite-state automaton machine (FSM) in which 
the states are valuations of the memory state, and the transitions correspond to the reactions. 
By  consequence,  every  synchronous  formalism  has  a  natural  interpretation  in  two  well-
studied mathematical models: explicit FSMs and digital synchronous netlists at RTL level. 
This makes (automated) analysis and verification easier, but also helps us describe our system 
clearly  and  efficiently  by  providing  a  notion  of  deterministic  concurrency.  Synchronous 
formalisms define a system of activation conditions (also called "logical clocks") specifying 
under which conditions parts of the system will be activated or not when an execution instant 
is reached. This allows us to slow some parts of the system compared to the quickest clock, 
known as global clock or tick given by the succession of execution cycles. 

High-level  specification  languages  and graphical  formalisms  such as  Esterel, 
Signal/Polychrony, Lustre/Scade allow a simple specification of complex systems. All such 
specifications can be given an interpretation in mathematical models (synchronous finite state 
machines and synchronous digital netlists) that allow the application of efficient verification 
techniques. Our work is concerned with code generation, and we will rely on a representation 
level which is much simpler and flexible than the high-level formalisms, allowing complex 
code transformations, yet preserving some of the high-level structural information to allow 
the definition of efficient analysis and code generation algorithms. Our representation of such 
systems  [17]  is  obtained  by  drawing  and  decorating  the  various  computations  and 
communications of the different  system parts with relevant  information such as activation 
conditions (logical clocks), data dependencies, etc.

5.2. Software pipelining

Software  pipelining  [18]  is  a  microcode  generation  discipline  that  was 
developed in the 1980's and 1990's and that targeted highly-parallel  architectures (such as 
super-scalar computers for example). Due to the advances in the design and production of 
CPUs,  it  is  now a  common  optimization  used  in  most  compilers.  It  is  a  family  of  code 
generation techniques that aim at optimizing the average-case throughput of loops on parallel 
architecture machines. 

Software pipelining techniques were soon developed for the VLIW (Very Long 
Instruction  Word)  architectures, that  is  to  say  machines  composed  of  many  functional 
(execution) units that can operate independently in parallel, where each instruction word of 
the software contains  multiple  machine  instructions  to  be executed  simultaneously by the 
various functional units.  

The main idea  of software pipelining is to re-organize an executable code in 
order  to  achieve  a  maximal  use  of  the  parallelism of  the  platform.  Reorganization  must 
preserve the function of the code. However, it can move operations within the code while 
taking care that data dependencies are preserved. Thus, the notion of dependency graph is 
central to all SP techniques[18]. 

Software  pipelining  is  mostly  used  to  optimize  the  execution  of  loops,  by 
allowing a new iteration of a loop to start before the end of a currently executing one in order 
to use hardware units that would otherwise remain unused. Multiple iterations of a loop are 
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therefore active at the same time. In practice, each new iteration will be started at a fixed 
interval called the initiation interval (II) [19][20]. By doing so, we can eventually detect a 
recurring stable pattern in the execution, that hopefully involves several iterations of the loop. 
This pattern is called the kernel of the loop, and it includes all of the operations of a cycle,  
although  these  operations  can  be  from different  iterations.  The length  of  this  kernel  will 
always be the length of the II.

Most techniques differ on the heuristic they use in order to determine the kernel 
of the loop iterations, which is the steady-state of operations that we reach when the pipeline 
is loaded. In practice, finding the smallest possible II allows us to reduce the time between the 
end of the various iterations (and thus to maximize the throughput of the program), as when 
an iteration finishes, the next ones have already been started. 

5.2.1. Example

A simple  example  [19]  can  be  used  to  illustrate:  in  this  example,  a  pseudo 
machine code corresponding to the following loop is displayed :

for(i=0; i<n; i++){
a[i]+=1;

};;

where array a has been initialized before.
The first operation reads the current value of a[i], then 1 is added to it, and the 

result is written back in a[i]. Note that the add operation takes two clock cycles. The hardware 
architecture is composed of a Read unit, two ALUs (Arithmetic and Logical Unit) and a Write 
unit, all connected to a central memory.

In the original,  non-pipelined  schedule,  one cycle  takes  four  clock cycles  to 
execute. Thus, as only one cycle can execute at a time, the throughput of the system is ¼ 
result per clock cycle.

Clock cycle Read unit ALU1 ALU2 Write unit
1 Read
2 Add
3 Add
4 Write

Original schedule for one cycle of the loop. Throughput : ¼ result per clock cycle.

Cycle mod II Read unit ALU1 ALU2 Write unit
0 Read

s = 1
Add
s = 2

Add
s=3

Write
s=4

Modulo resource reservation table for the example program.
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Clock cycle Read unit ALU1 ALU2 Write unit
1 Read1

2 Read2 Add1

3 Read3 Add1 Add2

4 Read4 Add3 Add2 Write1

5 Add3 Add4 Write2

6 Add4 Write3

7 Write4

Pipelined schedule : each line is a VLIW instruction word. II = 1. Kernel described at time 4.
Throughput : 1 per clock cycle (once the steady state is reached).

5.2.2. Modulo scheduling

One  of  the  most  commonly  used  software  pipelining  techniques  is  called 
modulo scheduling [20][21]. In this technique, the goal is to first determine the kernel length 
by computing the constraints that arise when pipelining the original loop. 

When pipelining a loop, operations that were initially executed in a sequential 
way are now executed in parallel, which increases the requirements in terms of resources. As 
the hardware architecture is fixed, the number of computing resources of each kind imposes 
constraints  on the initiation interval (and thus, on the length of the kernel).  Indeed, as no 
functional  unit  can  be over-committed  at  any time,  the number  of  operations  requiring  a 
functional unit at each instant must not exceed the number of available functional units of this 
type.

ResMII=Maxi∈FU types 
# cycles requiring FU type i
# units of type i∈ processor



[21] Minimum II due to resource constraints.

Moreover, another type of constraints arises from dependence cycles that are 
caused by recurrences  inside the  loop.  When computing  in  a  sequential  way,  there  is  no 
problem due to these dependencies, as any result needed during an iteration of the loop, but 
generated by a former iteration, has already been computed. If the pipelining process is done 
without care, it could happen that an operation that needs a result from a former computation 
be scheduled before that former computation, and that the result be not ready when needed. 
This could lead to brutal termination of computations, or to corrupted results. To avoid such 
problems, another limitation on the length of the II is computed. For all dependence cycles in 
the dependence graph, the length of the cycle is divided by the number of loop iterations the 
dependence spans (i.e. how many iterations of the loop are between the iteration that produces 
the data and the iteration that uses it). The maximum of all these ratios is another minimum 
boundary for the II. In case there is no recurrence, this minimum boundary is 0.
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RecMII=Maxall dependence cycles
length of cycle

iteration distance 
[21] Minimum II due to recursion constraints

Once both have been computed,  modulo resource reservation  tables  [20] are 
used,  in  order  to  effectively  avoid  resource  conflicts.  These  tables  map  the  scheduled 
operations to the resources in time, taking into account the cyclic behavior of the pipelined 
system. The goal is to create a table without conflict,  and with the smallest modulo index 
possible, i.e the smallest II that would satisfy the constraint. Technically, a table is built with

max ResMII , RecMII   rows,  and  # functional units  columns.  Then, operations  are 
scheduled in the cells keeping in mind that each cell has three potential states : empty, no-
conflict, and full. An empty slot means no operation has yet been scheduled in the slot. A no-
conflict slot means that no control path exist in the dependence graph between the operation 
that  is  being  scheduled,  and  the  ones  that  already  are  in  that  slot.  It  is  the  case  when 
scheduling operations from different paths of a conditional branch. On the contrary, when a 
control  path  exists  between  the  operations  that  is  being  scheduled  and  an  operation  that 
already is in that slot, the slot is said to be full for that operation. In order to get the tightest  
schedule, each operation must be scheduled using the following technique : try to find no-
conflict slots available for this operation. If there are, schedule the operation in the earliest 
available slot compared to the starting date of the operation. If not, schedule it in the earliest  
empty slot compared to the starting date of the operation.

When pipelining, as no dependence exist between the various iterations of the 
loop and there is  enough functional  units  to avoid any resource conflict,  it  is  possible  to 
exploit parallelism and start one iteration of the loop every clock cycle. During the prologue,  
that is, the three first lines of the table, the pipeline is loading. The steady state is reached at  
clock cycle number four, and is repeated until the last iteration is launched. When the last 
iteration has been launched, the pipelined loop enters the epilogue phase that is pictured from 
line 5 to 7 in the table. During that phase, the pipeline unloads itself, and the computation 
ultimately  ends.  In  the  classic  execution,  one  result  is  obtained  every  four  clock  cycles,  
whereas with pipelining,  once the steady-state is reached, one result  is issued every clock 
cycle. The gain in throughput is thus 300%, or said otherwise, the program execution is four 
times faster.

5.2.3. More advanced work

Other  techniques  [18]  use  an  incremental  modification  of  the  loop  body  to 
construct  the  kernel  (  URPR/GURPR techniques  [23]:  Global  UnRolling,  Pipelining,  and 
Rerolling for example), or use various scheduling techniques and check if repeating patterns 
appear (kernel recognition techniques). 

Although software pipelining techniques have been developed for some years, 
and are now mature, it is still very hard to find efficient algorithms for loops that include 
conditional branches. However, some techniques were developed early on in order to cope 
with this problem. For example, [24][19] present a technique called hierarchical reduction that 
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allows modulo scheduling to be used even when there are conditional branches in the loop. In 
short, both conditional branches are scheduled independently, and the shortest one is padded 
with NOPs. Then the scheduler treats the if-then-else as one operation. This technique has 
several disadvantages: padding paths with NOPs may slow the execution, considering the if-
then-else as one operation gives an over estimation of the real resource requirements,  and 
code motion becomes complicated. Another technique [21] is to modulo schedule all possible 
paths  separately,  and  try  to  optimize  the  transition  code  between  them.  In  this  case,  no 
guarantee can be given on the periodicity of the system schedule, as many different kernels 
exist, and the efficiency of the pipelined implementation is correlated to the efficiency of the 
transition code, and to the number of successive iterations without change in the executed 
conditional path. Indeed, the more the paths are changed, the more the system has to execute 
transition code, and change the kernel. On the contrary, the less the paths are changed, the 
more successive iterations of the same kernel will be executed. Thus, for loops where the 
probability  of  execution  of  the  various  possible  paths  are  close  to  one  another  (e.g.  one 
conditional  branch with  50% chance  that  the  condition  is  true),  this  technique  clearly  is 
suboptimal.

Other improvements in the field of software pipelining use predication to solve 
the problem of conditional branches [22]. The main idea is to use if-conversion [20] together 
with predication on conditional statements, that is, to replace the conditional statement by an 
operation that sets or clears a predicate, and to schedule both paths with a flag on each.

Example from [7] :

Fig1: Example loop before if-conversion                  Fig2: Example loop after if-conversion 
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Then, all instructions are modulo scheduled as one branch. Before executing the 
former conditional branches, the flags are compared against the value of the predicate. If they 
match, the instruction is executed. If not, the instruction is nullified, that is to say it does not 
execute. As we see in the example, the conditional branch operation present in the non if-
converted version of block A is  replaced by a predicate  define operation  under the same 
condition. Then blocks B and C are both scheduled, but B only executes when predicate p is 
false, and C only executes when predicate p is true. In block D, an operation is added in order 
to merge the predicate after it has been used. As we can see, the schedule A,B,C,D in its if-
converted version can be seen as just one block A', and thus can be scheduled as one branch.

One huge side-effect of that technique is that the resource constraints along both 
paths that are if-converted are summed. In other words, the compiler has to allocate distinct 
resources for each of the operations of both paths at each instant. This can require a lot of 
resources, or otherwise make the kernel of operations longer. Moreover, with predication, this 
is  counter-productive,  as  only  operations  from one conditional  path  will  execute  at  each 
iteration,  meaning that  resources assigned to the operations  of the other path will  remain 
inactive. To counter this side effect, [26] proposes a technique that removes the assignment of 
resources to operations whose predicate evaluates to false at run-time. The solution lies in 
assigning multiple operations to the same resource at the same time, as long as the predicates 
of these operations are exclusive with one another. This way, only one operation can have its 
predicate set to true at a given time, and the over-subscription of the resource is only virtual : 
only one operation can be executed at a time. This reduces the need for extra resources, and 
prevents  the under-utilization  of  the resources of the system.  Nevertheless,  this  technique 
requires  heavy modifications  of  the  hardware  in  order  to  support  the  over-committing  of 
resources, and is thus not yet put into practice on a large scale. Still, in the context of our 
problem, it is possible to adapt this state of the art technique, as the conditional reservation 
tables  allow  the  overcommitment  of  resources  as  long  as  the  execution  conditions  of 
simultaneous computations on each resource are exclusive.

Another  software  pipelining  technique  [28]  was  developed  recently  for  high 
performance multimedia embedded systems. It allows the synthesis of a pipelined schedule 
from a dependence graph, and gives a formalism for the description of the process. Although 
different from the problem treated here, it is noticeable because it is, to our knowledge, the 
first attempt to use software pipelining in the real-time context.

Other  techniques  derive  from  the  retiming  [29]  method  and  can  achieve 
noticeable  improvements  in  the  throughput  of  digital  networks  or  be  applied  to  software 
optimization  by using  a  synchronous  representation  of  the  application.  The goal  of  these 
optimizations is to cleverly move registers (memories) in the high-level representation graph 
of the application, in order to obtain a quicker execution time, and thus a better throughput.

6. Results

The final theoretical results obtained during the thesis are described in [25]. The 
objective is to define formalisms that allow the description of the hardware architecture on 
which the application will  be running, as well  as pipelined  and non-pipelined  reservation 
tables. Algorithms that allow us to pipeline a non-pipelined table will also be presented here. 
The architecture and implementation models designed for this paper are at a low abstraction 
level  that  allows an easy modeling of existing implementations,  but makes  the pipelining 
algorithms more complex. The techniques we describe here can easily be integrated at the end 
of the development cycle of applications.

Throughput optimization by software pipelining of conditional reservation tables            14/34



The remainder of this section will present and illustrate the results described in 
the paper, by following the same outline.

6.1. Architecture model

The  execution  architectures'  topologies  will  be  described  using  sequential 
execution resources, memory blocks, and their interconnections. An architecture topology is 
thus a bipartite graph A=<P,M,C>, where P contains "processors", that is to say computation 
and  communication  devices  capable  of  independent  execution,  such  as  CPU  cores, 
accelerators and DMA controllers. Each processor can execute only one operation at a time, 
and has its own sequential or time-triggered program. This is natural on actual CPU cores, 
and models the fact that the cost of control of a DMA by another processor is negligible.  M 
contains RAM blocks, that is to say sets of disjoint untyped memory cells. The set of all these  
cells in the system is called  Cells.  Each memory cell in fact represents an implementation 
variable  in  memory  that  can  be  of  arbitrary  type,  and  thus  occupy  an  arbitrary  space. 
Nevertheless, we focus mainly on enforcing the non-corruption of the data stocked in these 
memory cells, and it is assumed that new memory cells can be created at will for pipelining 
purposes, but the size of the memory cells is taken into account for memory access durations 
as well as for the lifetime analysis used to reduce the number of newly created cells during 
pipelining.

Finally  C is composed of pairs of one processor and one memory block. Each 
(P,M) pair present in C denotes the fact that processor P has direct access to memory block 
M. All processors connected to the same memory block M can access it at any time, so the 
algorithms will have to ensure that no concurrent read-write or write-write access will occur, 
in order to protect data integrity inside the memory block. It is here assumed that the input 
schedule of the pipelining algorithm ensures this property. The algorithm will preserve it if it 
is already present in the input.

Fig3: A simple example architecture composed of three processors interconnected via two 
RAM blocks.

In this  example,  P={P1,P2,P3}, M={M1,M2}, C={(P1,M1),(P2,M1),(P2,M2),
(P3,M2)}, and Cells={v1,v2}.

6.2. Implementation model

We focus on embedded control applications that we implement using the time-
triggered paradigm. Our implementations all have a periodic non-preemptive execution model 
and are embodied by reservation tables, that is to say finite time-triggered activation patterns. 
Such a table describes exactly one cycle of execution of the system, and is thus periodically 
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triggered every time its end is reached in order to run the system indefinitely. In the normal 
execution mode, the period at which the table is triggered corresponds to its length, meaning 
that no two different cycles can execute at the same time. Our goal is to reduce the triggering 
period, in order to make overlap cycles execution.

We chose to model reservation tables by a triple S = <p,O,Init>, with p being the 
activation period of cycles, O is the set of scheduled operations, and Init is the set of all initial 
values of the memory, that is, the initial state of the memory. If a memory cell is used by an 
operation before it has ever been written by another, the operation will use the initial value 
corresponding to the same variable, and present in Init. For a memory cell m, Init(m) can be 
either a constant or nil. 

As p is the activation period of execution cycles, and cycles cannot overlap, p is 
equal the length of the reservation table len(S), that is to say the duration of one cycle of 
execution of the system. Each operation o in O has the following attributes: 

• In o⊆Cells is the set of all variables (memory cells) that operation o 
uses as inputs,

• Out o⊆Cells is the set of all variables that are written by operation o,

• Guard o is  the  execution  condition  of  operation  o.  It  is  a  predicate 
defined over the values of memory cells. The set of variables needed for 
the computation of Guard(o) is GuardIn(o),

• Res o⊆P is the set of independently executing resources involved in 
the  computation  of  o.  This  set  can  contain  more  than  one  resource, 
meaning that some operations need to be executed on multiple resources at 
the same time (cf knock control example),

• t o is the start date of operation o,

• d o is the duration of operation o. More precisely, it is a time budget 
determined through worst case execution time (WCET) analysis so that it 
cannot be exceeded by the execution of o.

During the execution,  when t(o) is reached, if Guard(o) evaluates to true, all 
resources of Res(o) are used exclusively by o during d(o) time units. This is analogous to the 
use of predicates in classical software pipelining, with the important difference that guards 
naturally enable the overcommitting of resources, as long as they are exclusive to one another. 
This means that our technique does not imply an increase in resource needs or in the length of 
the kernel, contrarily to the predication techniques. The memory cells in GuardIn(o) are read 
at the beginning of the execution of o, but it is here assumed that the computation of the guard 
takes no time, or is included in the WCET time budget. As some variables can be read and 
updated  by  the  same  operation,  the  sets  In(o)  and  Out(o)  are  not  necessarily  disjoint.  
Moreover, in our model, we consider that all variables inside In(o) and Out(o) are used during 
the whole execution of the operation. This is an important choice that we made in order to be 
able to perform lifetime analysis on the various variables handled by the system. 
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Time P1 P2 P3
0 A@true
1 B@true
2 C@true

Fig4: Scheduling table for a simple application running on the architecture of Fig3.

Time P1 P2 P3
0 A@true

iteration 1
Prologue

1 A@true
iteration 2

B@true
iteration 1

2 A@true
iteration 3

B@true
iteration 2

C@true
iteration 1

3 A@true
iteration 4

B@true
iteration 3

C@true
iteration 2

Steady-state

... ... ...
Fig5: Pipelined execution of the application.

This  model  is  enough to  describe  non-pipelined  reservation  tables.  Figure  4 
gives  the  non-pipelined  scheduling  table  for  a  very  simple  application  running  on  the 
architecture  described  in  figure  3.  The  length  of  the  cycle  is  3  time  units,  and  thus  the 
throughput is 1/3. It contains three operations defined as such: Operation A has no input, but 
writes its output in memory cell v1. Thus we have: In A=∅  and Out A={v1} . The 
same  way  we  have:  In B={v1}, Out B={v2} , In C ={v2}, and  Out C =∅ .  the 
guards of each operation is true in this example, which means A, B, and C will execute at 
each cycle no matter what. The guards are represented in figure 4 with the notation "@true". 
Each operation has a dedicated processor: Res(A)={P1}, Res(B)={P2}, Res(C)={P3}, and the 
timings are the following: t(A)=0, t(B)=1,t(C)=2, and d(A)=d(B)=d(C)=1. Finally, there is no 
need for initialization of the variables, so the initial values of v1 and v2 (stored in Init) are: 
Init(v1)=Init(v2)=nil.

For pipelined implementations, we will incrementally extend this formalism in 
order to be able to have a compact but sound description format. A pipelined reservation table 
will  describe  the  behaviour  of  the  system during  one  pipelined  cycle,  that  is  to  say  the 
equivalent  of  the  kernel  of  operations  in  traditional  software  pipelining:  the  smallest  set 
containing all operations of a non-pipelined cycle and that repeats itself indefinitely, as long 
as new iterations are started. Indeed, the kernel describes exactly the repeating part of the 
execution of the system, but also describes the prologue phase, when the pipeline is loading, if 
we simply inhibit some operations. In order to be sound, our description model must be able 
to  account  for  the  prologue phase,  otherwise  it  would not  be able  to  describe  the whole 
execution of the system. This is why in the pipelined implementation model, each scheduled 
operation o has an extra attribute called the starting index and noted fst(o). This index tells in 
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which pipelined cycle the operation is scheduled for the first time. This allows the system to 
start running progressively, by scheduling operations effectively only when it makes sense. 
For example, an operation that has fst(o)=n will be scheduled effectively for the first time at 
the (n+1)th repetition of the pipelined cycle (indexes start at 0). Thus, an operation o executed 
in the pipelined cycle m belongs to the computation iteration m-fst(o).

Figure 5 describes the four first  time units  of the pipelined execution of the 
system. We see that during the prologue phase (time 0 and 1), the pipeline is loading, and 
operations are scheduled progressively (B is scheduled for the first time at time 1, and C at 
time 2). When C is scheduled for the first time, all operations are scheduled at the same time: 
the steady-state  is  reached,  which means the kernel  repeats  itself  in time as long as new 
iterations are launched. Graphically, the kernel of operations is easy to determine: it is any 
row of the table after time 1. The pipelined reservation table of figure 6 can be deduced from 
these observations. It represents the kernel of operations, and starting indexes are attributed to 
each of the operations: indeed, this table is of length 1, which means the new periodicity and 
throughput of the application is 1. If we do not use starting indexes, all operations will be 
scheduled at each time unit during the execution, just as if there was no prologue. We need to 
be able to reconstruct the execution in figure 5, just by repeating periodically the pipelined 
cycle of figure 6. In order to deal with the prologue phase, we give the following starting 
indexes to the operations: fst(A)=0, meaning that A will be scheduled when the system starts 
to execute. fst(B)=1 so operation B will not be scheduled in the first pipelined cycle of the 
execution: it will not appear at time 0, but will be scheduled at time 1. In the same fashion, 
fst(C)=2,  so operation  C will  be scheduled for  the  first  time  in the  third  iteration  of  the 
pipelined cycle. Nevertheless, that instance of operation C, that will be scheduled at time 2, 
belongs to the first execution cycle of the system.

Time P1 P2 P3
0 A@true

fst(A)=0
B@true
fst(B)=1

C@true
fst(C)=2

Fig6: Pipelined reservation table of the application.

Now,  we  have  a  model  that  describes  non-pipelined  and  pipelined 
implementations,  and  that  allows  the  formalization  of  well-formed  properties  of  such 
implementations. Indeed, some behaviours are prohibited for the systems we implement, and 
we need to define correctness properties for our models.

6.3. Well-formed properties

The problem here lies in the fact that a syntactically correct specification can 
model an incorrect implementation, or can be unimplementable. An incorrect implementation 
can arise due to non-determinism induced by data races or exceeded time budgets, and an 
unimplementable specification can be caused for example by the scheduling of an operation 
on a processor that is not connected to RAM blocks needed by the operation.

To  avoid  this  last  problem,  we  can  formalize  the  following  correctness 
property :

∀ o∈O ,∀ m∈In o∪Out o ,∃P∈Reso ,∃Block∈M ,m∈Block ∧P ,Block ∈C 
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with M and C defined in the architecture description.
Nevertheless,  some  correctness  properties,  including  this  one,  are  of  no 

importance to us because we assume that the input implementation models to our algorithms 
are correct,  and thus  respect  these properties.  Most of the well-formed properties  will  be 
preserved by our methods, because the internal state (allocation and scheduling) of each cycle 
is left unchanged. The only properties that we will formalize are correctness properties that 
take care of problems inherent to pipelining, that is to say problems that do not exist in the 
non pipelined implementations and that arise when we pipeline them.

First  of  all,  we  say  that  two  operations o1 and o2 with 
Res o1∩Res o2≠∅ are non-concurrent, denoted o1⊥o2 , if either their executions do 

not overlap in time  t o1d o1≥t o2∨t o2d o2≥t o1 or if they have exclusive 
guards  Guard o1∧Guard o2= false . Using this notation we can formalize two well-
formed properties that are supposedly respected by the input reservation tables, and that must 
be respected by our output pipelined models: the fact that no two operations can use the same 
processor  at  the same time (including the  prohibition  of  preemptive  behaviours),  and the 
absence of data races.

Sequential processors: ∀ o1, o2∈O ,Res o1∩Res o2≠∅⇒o1⊥o2 .

Absence of  data  races:  ∀ m∈Cells ,m∈Out o1∧m∈In o2∪Out o2⇒o1⊥o2 (if  a 
memory cell is written by an operation and used (read or written) by another operation, then 
these two operations are non-concurrent).

6.4. Dependency graph and maximal throughput

Given that our pipelining approach does not change scheduling decisions inside 
computation cycles, the transformation of Fig. 4 into Fig. 6 only depends on the throughput of 
the  pipelined  system.  In  turn  the  (maximal)  pipelined  throughput  is  determined  by  the 
dependencies  between  successive  execution  cycles.  As  we  aim  for  periodic  pipelined 
schedules,  we can represent  these dependencies  as a Data Dependence  Graph (DDG) -  a 
formalism that is classical in software pipelining based on modulo scheduling techniques [2].

In this section we formalize DDGs and we explain how it limits the throughput 
of the maximal pipelined throughput can be computed from it. The actual computation of the 
dependency graph and the pipelined implementation will be detailed in Section 6.7.
Given an implementation model  S  =< p;O;  Init  >,  the DDG associated to  S  is  a directed 
graph:

DG =< O; V >

where  V ⊆O×O×N . Ideally, the elements of  V are all triples (o1; o2; n) such that there 
exists an execution of the implementation and a computation cycle k such that operation o1 is 
executed in cycle k, operation o2 is executed in cycle k + n, and o1 must be executed before o2, 
for instance because some value produced by o1 is used by o2. In practice, any V including all 
the arcs defined above (any over-approximation) will be acceptable, leading to correct (but 
possibly sub-optimal) implementations.

The DDG represents all possible dependencies between operations, both inside a 
cycle (when n  = 0) and between successive cycles at distance  n≥1 . Given the statically 
scheduled implementation model, with fixed dates for each operation, the pipelined schedule 
Throughput optimization by software pipelining of conditional reservation tables            19/34



must respect  unconditionally  all these dependencies. This is classical in software pipelining 
based  on  modulo  scheduling.  The  originality  of  our  work  comes  from applying  such  a 
technique to an implementation model allowing a resource to be allocated at the same time to 
operations with exclusive activation conditions, and from the technique used for computing 
the  dependency  graph,  which  uses  timing  information  to  limit  the  computation  of 
dependencies to triples (o1; o2; n) where o1 and o2 can actually overlap in time.

To define the constraints,  we start with some definitions.  Recall  that a (non-
pipelined)  schedule  table  S  =<  p;O;  Init  >,  represents  statically  scheduled  periodic 
implementations where each operation is assigned a fixed starting date in every computation 
cycle. For each operation o∈O , we denote with tn(o) the date where operation o is executed 
in cycle n, if its guard is true. By construction, we have t no=t on∗ p . In the pipelined 
implementation of period p', this date is changed to t ' n o=t on∗ p' .

Given  o1 ;o2 ;n∈V  with  n≥1 ,  the  pipelined  implementation  must 
satisfy, for all k≥1 :

t ' kno2≥t ' k o1d o1

From here, we obtain:

p '≥
t o1d o1−t o2

n

Our objective is to construct pipelined schedules that satisfy these constraints for 
all o1 ;o2 ;n∈V , and which are well-formed in the sense of Section 6.3.

6.5. Code generation issues

Given that our pipelining approach does not change scheduling decisions inside 
computation cycles, the transformation of Fig. 4 into Fig. 6 only depends on the throughput of 
the pipelined system, which is determined by the analysis  of Section 6.6. However, these 
figures mainly describe the scheduling of operations, whereas pipelining implies significant 
changes in memory allocation and the execution mechanism. We deal with these issues here. 

We  start  with  a  notation:  In  the  pipelined  system,  the  maximal  number  of 
simultaneously-active computation cycles is  max _ par=⌈ len(S )/ len(S )⌉ , where  S  is the 
non-pipelined scheduling table, and S  is its pipelined version. Note that max_par can also 
be computed as 1+ maxo∈O fst (o) . In the initial scheduling table of our example, both A 
and B use memory cell v1. In the pipelined table A and B work in parallel, so they must use 
two different  copies  of  v1.  We say that  the replication  factor  of  v1  is  rep(v1) = 2.  Each 
memory  cell  v  is  assigned  its  own  replication  factor,  which  must  allow  concurrent 
computation cycles using different copies of  v  to work without interference. Obviously, we 
can bound rep(v)  by max_par. We use a tighter margin, based on the observation that most 
variables (memory cells) have a limited lifetime inside a computation cycle. We set rep(v) = 1 
+ lst(v) − fst(v), with

fst (v )=minv∈ In(o )∪Out(o) fst (o)
lst (v)=max v∈In(o)∪Out (o) fst (o)
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Through replication, each memory cell  v of the non-pipelined scheduling table 
is replaced by rep(v) memory cells, allocated on the same memory block as v, and organized 
in an array v , whose elements are  v [0],...,v [rep(v)+1 ] . These new memory cells are 
allocated cyclically, in a static fashion, to the successive computation cycles. More precisely,  
the computation cycle of index  n  is assigned the replicas  v [n mod rep(v)] for all  v. The 
computation of rep(v) ensures that if n1 and n2 are equal modulo rep(v), but n1 6= n2, then 
computation cycles n1 and n2 cannot access v at the same time.

For systems like our simple example, where no information is passed from one 
computation cycle to the next, this static allocation allows for a simple code generation, which 
consists in replacing  v with v [(cid - fst(o)) mod rep(v)] in the input and output parameter 
lists of every operation o that uses v. Here, cid is the index of the current pipelined cycle. It is 
represented in the generated code by an integer. When execution starts, cid is initialized with 
0. At the start of each subsequent pipelined cycle, it is updated using the code: 

cid:=(cid + 1) mod R 

where R is the least common multiple of all the values rep(v).
When  a  computation  cycle  may  use  values  produced  by  previously-started 

computation cycles,2 code generation is more complicated, because a computation cycle may 
access memory cells different than its own. The code generation problem is complicated by 
the fact that it is impossible, in the general case, to statically determine which cell must be 
read (because the cell was written at an arbitrary distance in time). Thus, we need a dynamic 
mechanism  to  identify  which  cell  to  read.  If  more  static  pipelined  implementations  are 
needed,  different  pipelining  techniques  should  be  designed,  either  limiting  the  class  of 
accepted non-pipelined systems, or allowing the copying of one memory cell onto another, 
which  we  do  not  allow  because  it  may  introduce  timing  penalties.  Our  memory  access 
mechanism is supported by a new data structure which associates to each memory cell  v of 
the non-pipelined scheduling table an array src(v) of length rep(v), and allocated on the same 
memory block as v. In this context, code is generated as follows:

• At execution start, all the values of  src  are initialized with 0 (pointing to 
the initial values of the memory cells).

• At the start of each pipelined cycle, for each cell v of the initial scheduling 
table, assign to src(v)[(cid − fst(v)) mod rep(v)] the value of src(v)[(cid − 
fst(v)  −  1)  mod  rep(v)].  This  assignment  indicates  that  the  value  of  v 
initially used during computation cycle cid is that used (but not necessarily 
produced)  during computation  cycle  cid  −  1  and stored in memory cell 

v [src(v)[(cid - fst(v) - 1) mod rep(v)]] .
• When an  operation  o  of  the non-pipelined  scheduling  table  reads  v,  its 

counterpart  in  the  pipelined  table  will  read 
v [src(v)[(cid - fst(o)) mod rep(v)] . The same is  true for cells  used by 

the computation of execution conditions.
• When o writes v in the non-pipelined table, there are 2 cases: 

• If  o  also reads  v, then the counterpart of  o  in the pipelined table will 
write the same memory cell it reads (as defined above).

2 This is necessary to represent systems having an internal state
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• If  not,  then  o  writes  the  memory  cell  normally  assigned  to  this 
computation cycle by the replication process ( v [x] , where x = (cid − 
fst(o))  mod  rep(v)).  An operation  is  added after  o  and on the same 
execution condition to set src(v)[x] to x.

The last aspect of memory management is initialization. In our case, v1 requires 
no initialization, so that none of its replicas do. In the general case, if Init(v) 6= nil, we need 
to initialize v [0] with Init(v), but not the other replicas.

6.6. The knock control example

We complete  this  section  with  a  larger  example  that  illustrates  several  key 
points of our approach, including the use of conditional scheduling tables and the pipelining 
of sporadic systems. Knock control is one of the functions of the engine control unit (ECU) of 
gasoline spark-ignition engines. At each rotation of the engine, it chooses for each cylinder an 
ignition  time  that  maximizes  power  output  while  keeping  engine-destructive  knocks 
(autoignition events) at an acceptable level.

                    
      Fig7: High-level representation of the knock control function

We provide in Fig. 7 a high-level description of the knock control functionality. 
The model  is  based on an industrial  case  study and on the  description  of  [12].  It  leaves 
unrepresented  the  other  ECU  functions  and  degraded  functioning  modes,  which  are  not 
essential to our presentation. The behavior is as follows: One computation cycle is triggered 
at each rotation of the engine crankshaft. The cycle starts with the acquisition of knock noise 
data.  Acquisition  is  performed  over  a  knock  acquisition  window  where  autoignition  can 
occur. It is performed using a vibration sensor sampled at 100kHz, and the samples are stored 
in a buffer. The samples are used by the filtering, detection, and correction (FDC) function to 
adjust the ignition time (not figured here) and the position and size of the acquisition window. 
The configuration data produced by the computation cycle of index n controls the acquisition 
of cycle n+2. This delayed feedback is realized using two unit delays (labeled ). Acquisition is
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performed by a specialized device (AD) of the ECU, whereas the FDC function is computed 
by the ECU microcontroller (μC).

Fig8: Engine Control Unit (ECU) architecture

Rotation units AD BUF1 BUF2 µC
0 book@true
1 Acq1 

@ c
Acq2 
@ c

Acq1 
@ c

Acq2 
@ c2

3 FDC1 
@ c

FDC2 
@ c

FDC1 
@ c

FDC2 
@ c4

5
Fig9: Non-pipelined scheduling table for the knock control
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For  reasons  related  to  the  physics  of  engines  and  to  computing  resource 
limitations in the ECU, the successive computation cycles must sometimes be pipelined, by 
allowing the acquisition and FDC operations of successive cycles to be executed in parallel. 
Such a pipelining can be directly constructed using our approach, using the code generation 
scheme of the previous section. However, our code generation may conflict  with memory 
constraints  or  pre-existent  implementation  choices.  We will  assume  here  that  the  system 
designers have already fixed the maximal number of buffers to 2, placed them at fixed places 
in memory, and written the protocol that alternates the use of the buffers in both acquisition 
and FDC. To model such an implementation, the two buffers are best represented as in Fig. 8, 
with  two  memory  cells  (buf1  and  buf2)  on  separate  memory  blocks  (BUF1_mem,  resp. 
BUF2_mem). Each memory block has its own memory controller (BUF1, resp. BUF2) that 
ensures exclusive access and makes memory cell replication impossible during pipelining.

In this implementation model, the scheduling table of one computation cycle is 
represented in Fig. 9. Memory cell c is a Boolean used in guards to determine which buffer to 
use in the current computation cycle to pass data from the acquisition function to FDC. In the 
beginning of each computation cycle, operation book flips the value of c by executing “c:=￢
c”. In cycles where the new value is true, buffer buf1 is used. Otherwise, buf2 is used. If we 
denote with cn the value of c used in guards throughout computation cycle n, we have cn = ￢
cn−1 for all n positive. Operation book also implements the “book keeping” function of the unit 
delays. The scheduling table represents both activation scenarios, corresponding to different 
initial values of  c. In order not to introduce special memory access operations, we split the 
acquisition and  FDC  operations in two. Both  Acq1  and  Acq2  perform acquisition. But the 
first writes its samples in buf1 and is executed on condition c, while the second writes them in 
buf2 and is guarded by ￢c. Each of the Acqi and FDCi operations use two resources: One of 
CD and μC and one of the memory controllers BUF1 and BUF2. 

The operation durations must be interpreted here as upper WCET bounds in an 
engine  rotation  referential.  More  precisely,  each  duration  gives  the  maximal  rotation  (in 
degrees) of the engine crankshaft during the execution of the operation. For the acquisition 
operation,  this  is  the  maximal  acquisition  window  size.  The  FDC  function  runs  on  a 
microcontroller,  and  its  duration  is  characterized  with  a  classical  WCET  (in  real  time). 
Conversion to the engine rotation referential is performed by assuming the maximal engine 
rotation speed.

The algorithms of the next section determine that successive computation cycles 
can be at best pipelined as pictured in Fig. 10. To do so, they determine that cn = ￢cn−1 for all 
n, thus allowing the acquisition and FDC operations of successive computation cycles to be 
executed in parallel. Note that a resource can be allocated to two operations at the same dates 
if  their  guards  are  exclusive.  Like in  Fig.  9,  we represent  here both activation  scenarios, 
corresponding to different initial values of c. 

The corresponding pipelined scheduling table is provided in Fig. 11. The system 
is schedulable if the length of this table is smaller than the engine rotation interval between 
successive triggers of computation cycles. In turn, this is given by the number of cylinders 
and structure of the engine. If the system is schedulable, the code generation technique of 
Section 6.5 can be used to automatically generate the book keeping memory cells and code. 
Thus, we automatize the analysis of [12] and also allow automatic code generation.
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... ... … ...
Fig10: Pipelined execution of the knock control
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Fig11: Pipelined scheduling table for the knock control

6.7. Pipelining algorithms

Our  algorithms  determine  if  it  is  possible  to  pipeline  the  execution  of  the 
system, and if so, the new period of the system. This is achieved by a dependency analysis 
that  computes  the DDG of the application by using the timing information present in the 
initial  schedule.  All  these  dependencies  then  allow the  algorithms  to  determine  the  new 
throughput of the system, and thus the pipelined reservation table.
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Time P1 P2 P3
0 A@true
1 B@true
2 C@true
3 D@true

Fig12: Dependency analysis example

Time P1 P2 P3
0 A@true

fst(A)=0
C@true
fst(C)=1

1 D@true
fst(D)=1

B@true
fst(B)=0

Fig13: Dependency analysis example, pipelined

6.7.1. Dependency analysis
In our setting, there are 2 sources of dependencies:

1. “Classical”  data  dependencies  between  operations  of  successive  cycles.  These 
dependencies must be preserved by any pipelining.

2. Dependencies  that  facilitate  the  computation  of  a  periodic  or  sporadic  pipelined 
implementation.

To explain the source of the second dependency type, consider the nonpipelined 
scheduling table  of Fig.  12.  Resource  P1  has an idle  period between operations  A  and  B 
where a new instance of A can be started. However, to preserve a periodic execution model, A 
should not be restarted just  after  its  first  instance (at  date  1).  Indeed, this  would imply a 
pipelined throughput of 1, but the fourth instance of A cannot be started at date 3 (only at date 
6). The correct pipelining starts  A at date 2, and results in the pipelined scheduling table of 
Fig. 13. Note that the pipelined system is strictly periodic, of period 2, because every instance 
of D is bound to its slot of size 1 between two instances of A (and vice-versa).

Determining if the reuse of idle spaces between operations is possible requires a 
complex analysis which basically checks, for each integer  n  smaller than the length of the 
initial  table,  whether  a  pipelined  scheduling  table  of  length  n  can  be  constructed.  This 
complex  computation  can  be  avoided when such idle  spaces  between two operations  are 
excluded from use. This can be done by creating a dependency between any two operations of 
successive cycles  that  use a same resource and have non-exclusive execution conditions.  

Excluding such idle spaces from pipelining also has the advantage of supporting 
a sporadic execution model. In sporadic systems the successive computation cycles can be 
executed  with  the  maximal  throughput  specified  by  the  pipelined  table,  but  can  also  be 
triggered arbitrarily less often, for instance to tolerate timing variations, or to minimize power 
consumption in systems where the demand for computing power varies. 
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Dependency analysis is performed by Function 1. The function takes as input a 
scheduling table and a Boolean flag stating whether the analysis should include dependencies 
of the second type. It produces a unique integer. When fast_pipelining_flag  is  true, the idle 
spaces are excluded from pipelining and the result gives the length of the pipelined scheduling 
table. When fast_pipelining_flag is false, idle spaces can be used, and the result gives a lower 
bound on the distance between successive starts of computation cycles. Respecting this lower 
bound ensures that data dependencies are satisfied (but not dependencies of the second type).
Moreover, this function can be called many times to construct incrementally the DDG of the 
application: the goal is to make sure that all data dependencies have been found and included 
in the graph. 

Function 1 works as follows: it takes two schedules in input, and concatenates 
them without pipelining using the Concat2Copies function. It returns a new schedule S'. The 
list of all starting and ending of operations is constructed using the BuildEventList function. 
This function returns a sorted list in terms of dates of events. Function1 then computes all 
data  dependencies  between  the  operations  of  the  concatenated  schedule.  During  Phase  1 
scheduling  table  S'  is  progressively  transformed  to  allow  the  identification  of  the  data 
dependencies between operations. The result needs not be consistent as a scheduling table. It 
is simply used as an internal data structure similar to a static single assignment (SSA) form. 
The transformation proceeds as follows: For each memory cell v of the initial table and every 
operation  o  producing  v,  we introduce  a  new cell  vo.  We also  introduce  a  new cell  vinit 

representing  the  initial  value  of  v.  With  these  notations,  there  is  a  bijection  between the 
possible productions of v and its versions vo and vinit.

The remainder of the transformation is performed by a symbolic execution of S', 
realized by the traversal of list l. A new data structure curr is used to identify at each point of 
the list traversal the possible producers of each memory cell. For each cell  v  of the initial 
table,  curr(v)  is a set of pairs  vo@C, where  vo  is a version of  v  and  C is the condition on 
which the value of v is that corresponding to vo. Condition C is a predicate over memory cell 
versions.  The  predicates  of  the  elements  in  curr(v)  provide  a  partition  of  true.  Initially, 
curr(v) is set to {vinit@true} for all v. This changes upon treatment of completion events (lines 
23-31 of Function 1).

Dependencies are identified in lines 15-16 (for classical data dependencies) and 
18- 21 (for the dependencies of the second type). The code involves in both cases predicate 
comparisons. A third predicate comparison is used in line 29. These comparisons are handled 
by a SAT solver that also considers a Boolean abstraction of the operations of the algorithm.  
In our knock control example,  the Boolean abstraction of the  book  operation provides the 
information that cn = ￢cn−1.

These dependencies are added to the DDG under the form : (oi;oj;n) where oi 

and oj are data dependent and n is the number of iterations that separate the execution of oi and 
oj. In practice, n is just the number of times Function 1 has been called, because we call it  
each  time  using  an  incrementally  constructed  pipelined  schedule  as  first  input,  and  the 
original schedule as second input.

To do so, Function 1 is first called with the two first non-pipelined cycles of 
execution of the application. From that point, all inter-cycle dependencies that exist between 
these two successive cycles are computed. In practice, if operations o1 from cycle 1 and o2 

from cycle 2 are data dependent, we add (o1;o2;1) to the graph. Then, these two cycles are 
pipelined using  min_dist -  that is,  the number of time units that can be substracted to the 
timings of the second cycle without violating dependencies  -, and used as input to the next 
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call of Function 1, the second input schedule being the initial schedule. The new DDG input is 
the DDG output of the last call of Function 1. The difference with the first call of Function 1 
is that now when the two schedules are concatenated, the second schedule does not start at the 
end  of  the  execution  of  the  initial  cycle,  but  at  the  end  of  the  pipelined  version  of  the 
execution  of  the  two  first  cycles  of  execution.  Moreover,  we  only  need  to  compute  the 
dependencies between operations from the first cycle and the newly concatenated cycle. The 
same analysis process is performed until the nth initial schedule being concatenated at the end 
of the pipelined execution version of the n-1 first cycles starts executing after the end of the 
execution  of the 1st cycle.  At that  point,  we are certain  that  the DDG is complete,  as all 
possible dependencies from one given cycle to all following cycles have been determined. In 
practice we actually have determined the conditional DDG of the application by using the 
timings of the application.

With this DDG, Function 4 is able to determine an optimized throughput for the 
application which respects all  data  dependencies  as well  as the periodic behaviour  of the 
application, by using the formula determined in Section 6.4.
Algorithm1: Dependency Analysis
Input: S1 : current  scheduling table
       S2 : initial non-pipelined scheduling table
       iteration : integer stating how many time the function 
has been called
       DDG : currently constructed DDG
       fast_pipelining_flag : boolean
Output: min dist : integer
        DDG : incremented DDG
1: /* Phase 0: Preliminaries */
2: S' := Concat2Copies(S1, S2)
3: l := BuildEventList(S')
4: /* Phase 1: Compute the dependencies */
5: for all o operation in S' do
6: Out(o) := {vo | v  ∈ Out(o)}
7: for all v  ∈ Cells do
8: curr(v):={vinit@true}
9:while l not empty do
10: e := head(l) ; l := tail(l)
11: if e = start(o) then
12: Assume Guard(o) = go(v1, . . . , vk). 
Replace it by:

∪
v ' i @C i∈curr v i , i=1,k

____

C1∧...∧C k ∧g ov ' 1, ... , v ' k 

13:     for all o  ′  ∈ Completed, v  ∈ In(o), v  ′  ∈ Out(o′) do
14: /* Classical data dependencies */
15:        if v′@C  ∈ curr(v) and C  ∧ Guard(o) ≠ false 
then
16:  DDG := DDG  {∪ (o′, o, iteration)}
17: /* Dependencies of the second type */
18:        if fast_pipelining_flag then
19: if Res(o) ∩ Res(o′) ≠  ∅ then
20:   if Guard(o)  ∧ Guard(o′) ≠ false then
21:     Depend := Depend  {∪ (o′, o, iteration)}
22: else
23: /* e = end(o) */
24: Completed := Completed  {∪ o}
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25: for all vo  ∈ Out(o) do
26:  new curr(v) := vo@Guard(o)
27:         for all vo′@C  ′  ∈ curr(v) do
28:   C  ′′ := C  ′  ∧ ￢Guard(o)
29:   if C  ′′ ≠ false then
30:     new curr(v) := new curr(v)  {∪ vo′@C′′}
31:         curr(v) := new curr(v)
32: /* Phase 2: Compute the minimal distance */
33: Depend := {(o′, o, iteration)  ∈ DDG | t(o) > len(S1) ≥ t(o
′)}
34: min_dist := mino ' , o , iteration∈Depend t o−t o ' −d o ' 
35: return DDG, min_dist

Algorithm2: BuildSchedule
Input:        S  : Non-pipelined schedule
              p' : new period of the system
Output:       S' : Pipelined schedule of the application
/* Compute operation dates and start indices */
4:     for all o in O do

5:            fst(o):= ⌈
t o
p '

⌉

6:            t'(o):=t(o) − fst(o)  ∗ p'
/* Assemble the pipelined schedule */
7:     S' := AssembleSchedule(S, p', fst, t′)
8:     return S'

6.7.2. Pipelining routines

Algorithm 3: PipelineSchedules
Input: S1 : non-pipelined scheduling table
       S2 : non-pipelined scheduling table
       counter  : integer
       min_dist : integer
Output: S        : non-pipelined scheduling table
        scounter    : integer
1:   S := S1
2:   for all o in S2 do
3:       t(o) := t(o) + len(S1) − min_dist
4:       S := AddOpToSchedule(o,S)
5:   scounter := len(S1) − min_dist
6:   return (S,scounter)

The pipelining functions are simple drivers using the results of the dependency 
analysis. Function 2 takes a non-pipelined scheduling table and the Data Dependency Graph 
computed by several iterations of Function 1, and builds a pipelined schedule. It starts by 
determining the new period of the system, using the formula given in section 6.4. It then 
determines  the  start  indices  and  new  start  date  of  every  operation.  Then,  it  calls 
AssembleSchedule to fully assemble the pipelined scheduling table. This function implements 
Throughput optimization by software pipelining of conditional reservation tables            29/34



the complex memory allocation scheme described in Section 4.1, and we shall not provide 
pseudocode for it here.

Function 3 is used to construct incrementally the first input schedule of function 
1. It basically concatenates the current schedule with one instance of the initial non pipelined 
schedule, and pipelines them using min_dist that has been computed by Function 1. It outputs 
the new current schedule, as well as the starting date of the last cycle iteration that it contains. 
This way, we can know if the last iteration starts after the end of computation of the first cycle 
contained in the schedule. This is the condition on which we can stop computing the DDG, as 
it is complete when that condition becomes true.

Function 4 is the top-level pipelining driver. The function starts by performing 
the data analysis, in order to define the new period of the system. If fast_pipelining_flag = 
true, the output scheduling table is simply produced by a call to Function 2. If not, we have to 
find the pipelined scheduling length by testing all the values between the minimal new period 
and the non-pipelined length. For each length j, the pipelined scheduling is assembled, but the 
result may not respect the well-formed properties defined in Section 6.3. We do not provide 
here the code of function ConsistentSchedule, which closely follows the definition of these 
properties.

Algorithm 4: Pipelining driver
Input: S1 : non-pipelined schedule table
       fast_pipelining_flag : boolean
Output: S : pipelined schedule table
1:   new length := 0
2:   DDG:= ∅
3:   i := 1
4:   S2 := S1
5:   cover := false
6:   while ¬cover do
7:      (DDG,min_dist) := DependencyAnalysis(S2, S1,i,DDG, 
fast_pipelining_flag)
8:      (S2, si) := PipelineSchedules(S2, S1, i, min_dist)
9:      cover := (si > len(S1))
10:     i := i + 1
11:  for all (o;o';i) in DDG do

12:     p':=max(p, ⌈
t od o−t o ' 

i
⌉  )

13:  if fast_pipelining_flag then
14:     S:= BuildSchedule(S1,p')
15:     return S
16:  else
17:     for j:= p' to len(S1) do
18:         new_length:=j
19:         S := BuildSchedule(S1,new_length)
20:         if ConsistentSchedule(S) then
21:              return S

6.8. Experimental results

We have applied our pipelining algorithms on several examples, and the results 
are synthesized in Table 1.
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Scheduling table length

example initial pipelined gain
cycab 1482 1083 27,00%
ega 84 79 6,00%

knock 6 3 50,00%
simple 3 1 66,00%

Table 1: experimental results

The  largest  and  most  typical  example  we  use  is  the  embedded  control 
application of the CyCab electric car [22]. The CyCab control application we use allows it to 
be driven manually, or in an autonomous “platooning” mode where it follows the vehicle in 
front of it, letting it make the speed and direction change decisions. The embedded software 
runs on a platform composed of 3 micro processors connected by a CAN bus. Our pipelining 
technique allows a significant reduction of 27% in cycle time. This reduction means that the 
application can be significantly complexified while maintaining I/O latency.

The second example is an adaptive equalizer. This filter is normally part of a 
larger  control  application,  but we considered it  here in  isolation.  The particularity of this 
example  is  that  it  has  already  been  carefully  designed  to  exploit  the  parallelism  of  the 
execution platform (it can be seen as “manually pipelined”). The cycle length reduction after 
application of our technique is not very large, but it is still significant in spite of the very 
optimized starting point.

The third example is the knock controller, based on an industrial case study and 
presented  in  Section  4.2.  We  also  add  a  line  for  our  toy  example.  The  comparison  is 
interesting,  because this  example  allows for  an  ideal  pipelining  with  a  resource usage  of 
100%.

7. Conclusion

We  have  defined  a  pipelining  approach  allowing  the  optimization  of  the 
throughput of periodic and sporadic real time systems defined through scheduling tables. The 
pipelined  system  preserves  all  the  latency  guarantees  of  the  non-pipelined  system.  Our 
approach includes a model for the representation of non-pipelined and pipelined systems, a 
code generation technique, and pipelining algorithms. By using a very general system model, 
our approach can be applied at implementation level, allowing a simple integration in existing 
design flows. We have applied our technique,  with good results, on real-life systems and 
system models with various implementation types.

For  the  future,  many problems remain.  One of  them is  the  extension  of  the 
framework to fully cover memory constraints and the exploitation of execution guards over 
partitioned architectures. Using the n-synchronous formalism [27] should allow us to express 
and potentially exploit regular repetition patterns in the pipelining process. Another important 
goal  is  to  integrate  pipelining  in  the  initial  scheduling  process,  so  that  better  trade-offs 
between latency, throughput, and resource usage can be obtained.
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