
Comparative Study on Optimization
Methods for Correlation Clustering
Master’s thesis in Computer science and engineering

DRIKVY V. CAPPENBERG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

Comparative Study on Optimization Methods
for Correlation Clustering

DRIKVY V. CAPPENBERG

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

Comparative Study on Optimization Methods for Correlation Clustering
DRIKVY V. CAPPENBERG

© DRIKVY V. CAPPENBERG, 2019.

Supervisor: Morteza Haghir Chehreghani, Department of Computer Science and
Engineering
Examiner: Devdatt Dubhashi, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Comparative Study on Optimization Methods for Correlation Clustering
DRIKVY V. CAPPENBERG
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Correlation clustering is an optimization problem that aims to create partition of
data based on pairwise similarity coefficients that represents the level of similarities
between data observations. The thesis focused on the maximization of agreements
version of the problem in which to find clustering of data where the data that belong
to the same cluster have maximized agreements. The thesis aims to give more
details on how different methods are used for correlation clustering problem, how
they perform and what are the similarities between these methods. The well known
linear programming methods as well as simple iterative algorithms are compared in
terms of their runtime and correctness.

Keywords: Correlation Clustering, Maximization of Agreements, Optimization, Com-
parative Study.

v

Acknowledgements
I would like to express my sincere gratitude towards the Department of Computer
Science and Engineering (CSE), especially for my supervisor that has given me
proper assistance and sufficient knowledge to accomplished this thesis project. I
would like to thank Indonesia Endowment Fund for Education that has given me
full scholarship to complete my study. I would like to give my utmost gratitude to
Alberta Maria who has accompanied me through my master study in Sweden. I
would also like to thank my family and friends for their support during my master
study at Chalmers University of Technology.

Drikvy V. Cappenberg, Gothenburg, February 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Correlation Clustering . 1
1.2 Contributions . 2

2 Theory 3
2.1 Correlation Clustering Formulation 3

2.1.1 Problem Formulation . 3
2.1.2 Randomized Rounding . 3

2.2 Optimization Methods . 4
2.2.1 Quadratic Programming (QP) 4
2.2.2 Semidefinite Programming (SDP) 5
2.2.3 Frank-Wolfe Algorithm (FW) 8
2.2.4 Gradient Descent Methods . 10

3 Methods 11
3.1 Evaluation of optimization methods for correlation clustering 11

3.1.1 Implementation of QP . 11
3.1.2 Implementation of SDP . 14
3.1.3 Implementation of FW . 16
3.1.4 Gradient Descent Methods . 18

4 Results 21
4.1 Performance evaluation . 21

4.1.1 Runtime evaluation of QP, SDP and LSFW 21
4.1.2 Runtime evaluation of gradient descent and LSFW 25
4.1.3 Correctness of QP, SDP and LSFW 26
4.1.4 Correctness of Gradient descent and LSFW 28

4.2 Similarity of iterative methods . 29
4.3 Suboptimality of gradient descent . 33

4.3.1 Increase noise in the data . 34
4.3.2 Compute gradient with random sampling 36
4.3.3 Adding perturbation to saddle points 38

ix

Contents

5 Conclusion 41
5.1 Performance evaluation . 41
5.2 Algorithmic similarity . 41
5.3 Stochasticity in gradient descent . 41
5.4 Conclusion . 42

Bibliography 43

x

List of Figures

4.1 Runtime comparison between QP and SDP. 22
4.2 Runtime comparison between SDP and LSFW. 22
4.3 Runtime comparison between QP, SDP and LSFW. 23
4.4 Close up LSFW runtime growth shown in figure 4.3. Note that for

comparison with QP and SDP, LSFW ran with 10 restarts for each
test data. 24

4.5 Runtime comparison between gradient descent methods and LSFW. . 25
4.6 Objective values obtained using QP, SDP and LSFW. LSFW and QP

obtained the exact same objective most of the time. 26
4.7 Objective values for larger data size n = 100 using SDP and LSFW. . 27
4.8 Objectives obtained for data size n = 200 and noise p = 0 ∼ 0.9. . . . 28
4.9 Objectives obtained for data size n = 500 and noise p = 0 ∼ 0.9. . . . 28
4.10 The step length chosen at each iteration for data with noise p = 0

and p = 0.1. Only γ = 0.1 and γ = 10 that are chosen along the
entire iterations. 30

4.11 The largest step length γ = 1e4 is chosen more as the noise in the
data increased. 32

4.12 Percentage of each step length chosen compared to noise in the data. 33
4.13 The sudden collapse of objective values obtained by gradient descent. 34
4.14 More noise level may prevents gradient descent from converging into

saddle points but at the same time it also degrades solution quality. . 35
4.15 Increasing the noise takes the solution away from the ground truth of

the data. 36
4.16 Big sample size 0.5 ∼ 0.9 still converge to saddle points. 37
4.17 Smaller sample size 0.1 ∼ 0.4 means more stochasticity and as the

result prevents saddle points at least until n = 1000. 37
4.18 The difference of objectives obtained using smaller sample size. 38
4.19 Using the same range of data size as in figure 4.13, this shows that

by adding perturbation with certain magnitude of σ could prevent
gradient descent from converging into saddle points. 39

4.20 Correlation clustering objective obtained using different perturbation
level. This suggests that larger perturbation may yields better objec-
tives. 39

4.21 Increased perturbation may caused gradient descent to take longer
time to converge and also more difficult to check convergence. 40

xi

List of Figures

xii

List of Tables

4.1 Runtime comparison between QP and SDP. 21
4.2 Runtime comparison between SDP and LSFW. 23
4.3 Correctness of QP, SDP and LSFW. p = 0.0 ∼ 0.4. 26
4.4 Correctness of QP, SDP and LSFW. p = 0.5 ∼ 0.9. 27
4.5 The objectives obtained by different step lengths. Here, the smallest

step length (γ = 0.1) yields the best improvement. 31
4.6 The objectives obtained by different step lengths. Here, the step

length (γ = 10) is chosen. 31
4.7 The objectives obtained by different step lengths. Here, the step

length (γ = 100) is chosen. 31
4.8 The objectives obtained by different step lengths. Here, the largest

step length (γ = 1e4) is chosen. 32

xiii

List of Tables

xiv

1
Introduction

1.1 Correlation Clustering
Clustering of objects into groups is a common task that arises in many applications
such as data mining, web analysis, marketing, pattern recognition etc. In a theo-
retical setting, the objects are usually viewed as points in either a metric space or
a general distance matrix, or as vertices in a graph [3]. There are many variants of
clustering problem, but this thesis will particularly concentrate on the correlation
clustering problem.

Correlation clustering is a clustering problem that can be represented as a complete
graph on n vertices (items), where each edge (u, v) is labeled either + or - depending
on whether u and v have been deemed to be similar or different [2]. In addition,
each edge has real non-negative weight which interpreted as confidence measure of
the similarity or dissimilarity of the edge’s endpoints (higher weight denotes higher
confidence) [3]. The goal is to produce a partition of the vertices (a clustering) that
agrees as much as possible with the edge labels [2].

Optimizing such cost function is NP-hard. Therefore, the optimal solution should
be approximated [4]. Several approximation method have been formulated such as:
PTAS for MAXCUT on dense graphs to maximize agreements with O(n2eO(1/ε))
time [2] and an O(log n)-approximation algorithm to minimize disagreements for
(weighted) general graphs with linear-programming rounding using the "region-
growing" technique. On the other hand, it is also shown that the problem is equiva-
lent to minimum multicut, and therefore it is APX-hard and difficult to approximate
better than Θ(log n) [3].

The cost for correlation clustering and min cut are equivalent cost functions, i.e.
the cost functions share the same optimal solution. It is proposed to solve the op-
timization problem for correlation clustering using Shifted Min Cut cost function,
with the number of clustering K is specified. A local search method was developed
which computes a local minimum of the cost function for O(tKn2) time [4].

1

1. Introduction

Recently, there is a new approach for correlation clustering optimization based on
Frank-Wolfe (FW) framework [1]. This new approach is introduced to the problem
based on a natural non-convex relaxation which observed to be well suited to the
classical FW or conditional optimization algorithm and develop new algorithms for
correlation clustering [1]. Referring to recent advances in the FW method that are
proven to be very suitable for large scale optimization, they take advantage of the
block coordinate version of the FW algorithm which has fast convergence proper-
ties. It is shown that the basic approach leads to a simple and natural local search
algorithm with guaranteed convergence [1].

1.2 Contributions
The contribution of this thesis work is to show the differences among well known
optimization methods for correlation clustering in terms of runtime scalability and
the quality of solutions obtained. The thesis also aims to elaborate in detail regard-
ing the drawbacks that have caused worse performance on some of the optimization
methods, bottlenecks, algorithmic similarity and findings that are still relevant in
the scope of the thesis. Chapter 2 will elaborate the background theories that are
fundamental to the implementations used in the experiments in order to compare
different optimization methods. Chapter 3 will discuss the details of implementation
of different optimization methods. Chapter 4 will discuss the results obtained by
implementation of different optimization methods.

2

2
Theory

2.1 Correlation Clustering Formulation

2.1.1 Problem Formulation
Correlation clustering is a clustering problem that consists of a complete and dense
graph G = (V,E) where V is the set of all nodes in the graph with size n. E is
the set of all edges in the graph, where each edge e ∈ E connects two different
nodes e = (i, j) and has positive or negative weights wij. The aim is to partitioned
the nodes such that the weights of edges within a cluster is maximized. The exact
formulation of this clustering problem has been specified by Williamson and Shmoys
[6] as follows:

max
∑

(i,j)∈E
wij(vi · vj)

vi ∈ {e1, ..., ek}, i = 1, ..., n
(2.1)

The natural convex relaxation of the exact formulation is:

max
∑

(i,j)∈E
wij(vi · vj) (2.2)

vi ∈ ConvexHull(e1, ..., ek), i = 1, ..., n

Where vi is the solution to the clustering optimization. vi is a vector with length
k that represents the clustering assignment for node i ∈ V where each element
m = 0, ..., k of vector vi denotes the clustering assignment probability for node i in
mth cluster. ek is the kth unit vector where it has a one in the kth coordinate and
zero elsewhere.

2.1.2 Randomized Rounding
The exact clustering solution is obtained through randomized rounding over the
approximated solution in vi. The natural randomized rounding algorithm based on
the optimal solution to v∗i , i = 1, ..., k. For i = 1, ..., n independently, generate a
distribution on 0/1 vectors with exactly one 1 (i.e. a distribution on e1, ..., ek) with
marginals v∗i,j, and let v̂i = ek with this distribution. A simple way to do this as
follows: divide the unit interval into k parts with the jth part having size v∗i,j. Then
choose U uniformly at random with interval [0, 1]. If U falls into the jth interval,
set v̂i = ej.

3

2. Theory

Note that with this rule,

P [v̂i = v̂j] =
∑
s

P [v̂i = es = v̂j]

=
∑
s

P [v̂i = es]P [v̂j = es]

=
∑
s

v∗i,s · v∗j,s

= v∗i · v∗j

(2.3)

and the expected value of the resulting solution is:

E

[∑
(i,j)∈E

1[v̂i = v̂j]wi,j
]

=
∑

(i,j)∈E
P [v̂i = v̂j]wi,j

=
∑

(i,j)∈E
v∗i · v∗jwi,j

(2.4)

Which is the optimal solution value of the relaxation.

2.2 Optimization Methods

2.2.1 Quadratic Programming (QP)
Quadratic programming (QP) is the problem of optimizing a quadratic objective
function. The objective function can contain bilinear or up to second order polyno-
mial terms, and the constraints are linear and can be both equalities and inequal-
ities. Quadratic programming is a particular type of nonlinear programming. The
quadratic programming problem with n variables and m constraints can be specified
as follows:

1. a real-valued, n dimensional vector c,
2. an n× n-dimensional real symmetric matrix Q,
3. an m× n-dimensional real matrix A, and
4. an an m-dimensional real vector b,

min
1
2x
>Qx+ c>x (2.5)

subject to Ax ≤ b

The objective function is arranged such that the vector c contains all of the once-
differentiated linear terms and Q contains all of the twice differentiated quadratic
terms. In other words, Q is the Hessian matrix of the objective function and c is
its gradient. By convention, any constants contained in the objective function are
left out of the general formulation. The one-half in front of the quadratic term is
included to remove the coefficient that results from taking the derivative of a second-
order polynomial.

4

2. Theory

x> denotes the vector transpose of x. The notation Ax ≤ b means that every entry
of the vector Ax is less than or equal to the corresponding entry of vector b.

If the objective function is convex, then any local optima found is also global optima.
To analyze the function’s convexity, one can compute its Hessian matrix and verify
that the matrix Q is positive definite. This is a sufficient condition, since it is not
required to be true for a local optima to be the unique global optima, but will
guarantee that this property holds if true. For positive definite Q, it is known
that ellipsoid method solves the problem in polynomial time. Whereas only one
negative eigenvalue in Q makes the problem NP-hard. Correlation clustering can be
formulated as the following quadratic programming problem:

max
∑

(i,j)∈E
wij(vi · vj) (2.6)

subject to
k∑

m=0
vim = 1, i = 1, ..., n,

vim + vjm ≥ 0, ∀ i 6= j, m ∈ [0, k[,
vim ∈ [0, 1], ∀ i, m ∈ [0, k[,

Matrix Q from the formulation 2.6 is a zero-diagonal symmetric matrix. The trace
of matrix Q is zero and since the sum of eigenvalues equals the trace of the matrix,
there must be at least one negative eigenvalue of Q. Hence Q is not positive definite
and this makes formulation 2.6 NP-hard.

2.2.2 Semidefinite Programming (SDP)

Semidefinite programming uses a symmetric, positive semidefinite matrices. A ma-
trix X ∈ <n×n is positive semidefinite (PSD) iff for all y ∈ <n, y>Xy ≥ 0. Symmet-
ric PSD matrices have some special properties. If X ∈ <n×n is a symmetric metrix,
then the following properties are equivalent:

1. X is PSD;
2. X has non-negative eigenvalues;
3. X = V >V for some V ∈ <m×n where m ≤ n.

A semidefinite program (SDP) is similar to a linear program in that there is a linear
objective function and linear constraints. In addition, however, a square symmetric
matrix of variables can be constrained to be positive semi-definite. Below is an
example in which the variables are xij for 1 ≤ i, j ≤ n.

5

2. Theory

max or min
∑
i,j

cijxij (2.7)

subject to
∑
i,j

aijkxij = bk, ∀ k

xij = xji, ∀ i, j
X = (xij) � 0

Semidefinite programming can be represented as vector programming. The variables
of vector programs are vectors vi ∈ <n, where the dimension n of the space is the
number of vectors in the vector program. The vector program has an objective
function and constraints that are linear in the inner product of these vectors. The
inner product of vi and vj can be written as vi · vj. Below is the example of a vector
program.

max or min
∑
i,j

cij(vi · vj) (2.8)

subject to
∑
i,j

aijk(vi · vj) = bk, ∀ k

vi ∈ <n, i = 1, ..., n

Williamson and Shmoys, claimed that SDP 2.6 and vector program 2.7 are equiv-
alent. This follows since a symmetric X is PSD if and only if X = V >V for some
matrix V . Given a solution to the SDP 2.6, we can take the solution X, compute in
polynomial time a matrix V for which X = V >V (within small error), and set vi to
be the ith column of V . Then xij = vi · vj, and the vi are a feasible solution of the
same value of the vector program 2.7. Similarly, given a solution vi to the vector
program, we construct a matrix V whose ith column is vi and let X = V >V . Then
X is symmetric ans PSD, with xij = vi · vj, so that X is a feasible solution of the
same value for the SDP 2.6 [6].

Semidefinite programming is a well known method that can be used to obtain good
correlation clustering in an undirected graph. Williamson and Shmoys in 2011
have shown that one can obtain a 3

4 -approximation algorithm by using semidefinite
programming [6]. The following is the proposed model of the problem in a vector
program:

max
∑

(i,j)∈E

(
w+
ij(vi · vj) + w−ij(1− vi · vj)

)
(2.9)

subject to

vi · vi = 1, ∀ i,
vi · vj ≥ 0, ∀ i, j,
vi ∈ <n, ∀ i.

6

2. Theory

Where w+
ij is the degree to which i and j are similar, and w−ij is the degree to which

they are different. Note that in this formulation, both w+
ij and w−ij are non+negative

weights.

2.2.2.1 Interior point method

SDP is in fact a special case of cone programming and can be solved efficiently
with interior point methods. Most code implementations for solving SDP are based
on interior point methods. Robust and efficient for general linear SDP problems.
Restricted by the fact that the algorithms are second-order methods and need to
store and factorize a large matrix. Interior point method for nonlinear optimiza-
tion can be described as follows, consider the all-inequality version of a nonlinear
optimization problem:

min f(x) (2.10)
subject to ci(x) ≥ 0 for i = 1, ...,m, x ∈ <n,
where f : <n → <, ci : <n → <

The logarithmic barrier function associated with 2.10 is:

B(x, µ) = f(x)− µ
m∑
i=1

log(ci(x)) (2.11)

Here µ is a small positive scalar, sometimes called the barrier parameter. As µ
converges to zero, the minimum of B(x, µ) should converge to a solution of 2.10.
The barrier function gradient is:

gb = g − µ
m∑
i=1

1
ci(x)∇ci(x) (2.12)

Where g is the gradient of the original function f(x), and ∇ci is the gradient of
ci. In addition to the primal variable x, Lagrange multiplier inspired dual variable
λ ∈ <m as follows:

ci(x)λi = µ,∀i = 1, ...,m (2.13)

The aim is to try to find those (xµ,µ) for which the gradient of the barrier function
is zero. Applying 2.13 to 2.12, we get an equation for the gradient:

g − ATλ = 0 (2.14)

7

2. Theory

Where the matrix A is the Jacobian of the constraints c(x). Applying Newton’s
method to 2.13 and 2.14, we get an equation for (x, λ) update (px, pλ):W −AT

ΛA C


px
pλ

 =

−g + ATλ

µ− Cλ

 (2.15)

Where W is the Hessian matrix of B(x, µ), Lambda is a diagonal matrix of λ, and
C is a diagonal matrix with Cii = ci(x). Because of 2.10 and 2.13, the condition
λ ≥ 0 should be enforced at each step. This can be done by choosing appropriate
α:

(x, λ)→ (x+ αpx, λ+ αpλ) (2.16)

2.2.3 Frank-Wolfe Algorithm (FW)
In 1956 Frank and Wolfe developed an algorithm for solving quadratic programming
problems with linear constraints. The Frank-Wolfe (FW) or conditional gradient
algorithm is one of the oldest methods for nonlinear constrained optimization and
has seen an impressive revival in recent years due to its low memory requirement
and projection-free iterations [7]. In its classical form, the Frank-Wolfe algorithm
can solve problems of the form:

maxx∈D f(x) (2.17)

Where f is differentiable with L−Lipschitz gradient and the domain D is a convex
and compact set. Using the block coordinate version of the Frank-Wolfe algorithm
from (Lacoste-Julien et al. 2013), This method applies to problem of the form [1]:

maxv∈M(1)×M(2)×...×M(n) f(v) (2.18)

Where f is a concave function overM (1)×M (2)× ...×M (n) andM (i) ⊆ <ni is convex
and compact for i = 1, ..., k. This method works well when certain subproblem are
computationally cheap to solve when only considering the variables in one variable
block M (i) at a time. This method is described below [1]:

Algorithm 1 Block Coordinate Frank-Wolfe Algorithm
1: Let the initial solution v0 ∈M (1) ×M (2) × ...×M (n)

2: for t = 1, ..., T do
3: Pick object i at random in {1, ..., n}
4: Find si = argmaxs′

i∈M(i) s′i · ∇if(v(t))
5: Let γ = 2k/(t+ 2k) or optimize γ by line-search
6: Update v(t+1)

(i) = (1− γ)v(t)
(i) + γs(i)

8

2. Theory

Block-coordinate version of the algorithm is shown to converge for non-convex func-
tions. By extending the results from (Lacoste-Julien et al. 2013; Reddi et al. 2016),
the convergence of Frank-Wolfe algorithms for non-concave problems can be mea-
sured by the Frank-Wolfe duality gap [1]:

d(v) = maxs∈M(s− v) · ∇f(v) (2.19)

Which is zero if and only if v is a stationary point. Let d̃t = min0≤s≤td(v(t)).
For f continuously differentiable (but not necessarily concave) with finite curvature
constant C over M , we have that the Frank-Wolfe iterates with line search satisfy
E
[
d̃t
]
≤ Cn/

√
T . If f is multilinear in the variable blocks: E

[
d̃t
]
≤ n(f ∗−f(v0))/T .

This convergence rate of O(1/t) in expectation for block coordinate Frank-Wolfe
should be compared to the (deterministic) convergence of the duality gap of O(1/

√
t)

for general non-concave functions with ordinary Frank-Wolfe developed in (Reddi
et al. 2016) [1].

2.2.3.1 Local Search Frank-Wolfe (LSFW)

Using the line search version of the FW algorithm, it is observed that it simplifies
to the combinatorial local search algorithm [1]. To see why this holds, consider the
so called linear programming oracle (LPO) from FW algorithm:

si = argmaxs′
i∈M(i) s′i · ∇if(v(t)) (2.20)

Here ∇if(v(t)) = ∑
(i,j)∈E wijv

(t)
j . Assuming that all vi are integers, the kth element

of this vector is the cost associated with assigning node i to cluster k. Here, the
solution to 2.20 is given by si = e∗j where j∗ = argmaxj∈[k](∇if)j [1]. Therefore, the
LPO returns a 0/1 vector which has the highest objective when all other variables
remain fixed. This particular instatiation of FW framework is similar to the greedy
method in (Elsner and Schudy 2009), called BOEM [1]. This local search algorithm
for correlation clustering is defined as follows [1]:

Algorithm 2 Local Search Frank-Wolfe Algorithm
1: Initialize vi ∈ {e1, ..., ek} randomly for i = 1, ..., n
2: while not converged do
3: Select i uniformly at random from [n]
4: Assign i to a cluster which maximizes the correlation clustering objective

9

2. Theory

2.2.4 Gradient Descent Methods
Gradient descent is a well known iterative method that utilizes gradient and step
length to find stationary points of a function. It is usually used for unconstrained
optimization problem that can be formulated as,

minimize f(x),x ∈ <n (2.21)

In this method, one generates a sequence of iterates xj that gradually converges to-
wards a local optimum, beginning with a starting point x0. In essence, the algorithm
generates new iterates as,

xj+1 = xj + γjdj (2.22)

where dj is the search direction at the point xj, and γj is the step length. The step
length is typically adaptive, i.e. its value also depends on x.
Making a Taylor expansion of f(x) at x = x0, and neglecting higher-order terms,
one obtains,

f(x) ≈ f(x0) +∇f(x0)T (x− x0) (2.23)

Since the aim is to minimize f(x), starting from x = x0, one should try to find
an x such that f(x) < f(x0). There might be many search directions for which
this condition holds, but the direction in which f(x) decreases most is given by the
negative gradient at x0. Thus, given only gradient information as in 2.23, a suitable
choice of search direction is given by,

d0 = −∇f(x0) (2.24)

Returning to 2.22, the iteration now takes the form,

xj+1 = xj − γj∇f(xj) (2.25)

The step length γj can be a fixed real number or typically optimized e.g. using
line search. In cases where the objective function has a very complex shape, line
search may be computationally expensive, and one may resort to use a fixed step
length γ (typically determined through empirical tests) or a slowly decreasing γ.
The gradient descent algorithm typically generates a zig-zag search path towards
the local minimum. In fact, under gradient descent, consecutive search directions
are orthogonal to each other [13].

10

3
Methods

3.1 Evaluation of optimization methods for cor-
relation clustering

Several optimization methods are evaluated in terms of their scalability and cor-
rectness. The methods that are being evaluated are QP, SDP, LSFW and gradient
descent. In chapter 2, it has been discussed regarding the underlying theory behind
correlation clustering problem. The formulation of correlation clustering on several
optimization methods also presented. This chapter will discussed on how to imple-
ment these formulation using off-the-shelf method using academic license solver and
basic programming language such as Java or Matlab.

3.1.1 Implementation of QP
Given the quadratic programming formulation 2.6 for correlation clustering, one can
construct a model of this formulation using well known solver. In this implemen-
tation, academic license IBM ILOG CPLEX optimizer will be used, specifically the
Java interface from CPLEX Concert Technology. Concert Technology is a set of
libraries offering an API that includes modeling facilities to allow a programmer to
embed CPLEX optimizers in C++, Java or .NET applications. The advantage of
using CPLEX is that it allows the optimization of a quadratic programming problem
even if Q is not positive semidefinite matrix. In this case, it will try to find global
optima of the quadratic program and since Q is not a PSD matrix, the quadratic
program is NP-hard.

In order to build an optimization model in CPLEX, it is first needed to declare an
instance of a CPLEX model using IloCplex object. There are three types of param-
eters that can be used to setup the quality of solution in CPLEX. One can setup
CPLEX to find global optima by set the following parameter IloCplex.Param.
OptimalityTarget with value 3 or a static parameter IloCplex.OptimalityTarget.
OptimalGlobal after the model has been created.

After the the model is created, variables, constraints and objective function can be
specified and later added into the model. The following paragraphs will show the
step by step explanations on how CPLEX is used to optimize correlation clustering
problem where the number of nodes is N = 4 and number of clustering is K = 2.
The weight matrix is known and has been generated beforehand.

11

3. Methods

The optimization problem can be constructed in CPLEX by first declaring a CPLEX
optimization model. Listing 3.1 below, shows how to do this and in this case the
optimality target of the solution is setup to find the global optima.

Listing 3.1: Constructing a CPLEX model to find global optima.
I l oCp lex model = new I l oCp lex () ;
model . setParam (I loCplex . Param . OptimalityTarget , 3) ;
I loLPMatrix lp = model . addLPMatrix () ;

Variables can be added into the model as shown in listing 3.2 below. Take note that
the third set of constraints in equation 2.6 where all the elements in the decision
vector vi must be between 0 and 1 is presented as setting up the lower and upper
bound arrays. Each element in the array setup the upper or lower bound of a partic-
ular variable. In this implementation, we are treating each element in the decision
vector as separate variables. Nevertheless, the construction of other constraints will
arrange the clustering solution as expected.

Listing 3.2: Construct variables and add them into CPLEX model.
// v a r i a b l e s
double [] lb = {0 .0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 } ;
double [] ub = {1 .0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 } ;
for (int i = 0 ; i < N∗K; i++) { varX [i] = " x "+i ; }
IloNumVar [] x = model . numVarArray (model .

columnArray (lp , N∗K) , lb , ub , varX) ;

Listing 3.3 shows how both equality and inequality constraints are added into the
optimization model. As we can see, the separated variables now depend on each
other as dictated by the constraints in 2.6 acting as elements in the decision vector
just as we wanted. The first and second set of constraints in 2.6 can be easily added
to the model where addEq represents creating equality constraints and addGe rep-
resents inequality constraints "greater equal".

Listing 3.3: Equality and inequality constraints in CPLEX model.
// c o n s t r a i n t s
// the f i r s t s e t o f c o n s t r a i n t s
model . addEq(model . sum(x [0] , x [1]) , 1 . 0) ;
model . addEq(model . sum(x [2] , x [3]) , 1 . 0) ;
. . .

// the second s e t o f c o n s t r a i n t s
model . addGe(model . sum(x [0] , x [2]) , 0 . 0) ;
model . addGe(model . sum(x [1] , x [3]) , 0 . 0) ;
. . .
model . addGe(model . sum(x [4] , x [6]) , 0 . 0) ;
model . addGe(model . sum(x [5] , x [7]) , 0 . 0) ;

12

3. Methods

Finally, the objective that is supposed to be maximized can be constructed as shown
by listing 3.4 where in this case an optimization to a correlation clustering objective
of N = 4 and K = 2 is assumed. Below, it is obviously shown that CPLEX model
can consists of several smaller models that will built up the entire objective expres-
sion that will be solved.

Listing 3.4: Objective maximization in CPLEX.
// o b j e c t i v e
IloNumExpr x010 = model . prod (1 . 0 , x [0] , x [2]) ;
IloNumExpr x011 = model . prod (1 . 0 , x [1] , x [3]) ;
IloNumExpr q1 = model . prod (model . sum(x010 , x011) , w [0] [1]) ;
. . .
IloNumExpr x230 = model . prod (1 . 0 , x [4] , x [6]) ;
IloNumExpr x231 = model . prod (1 . 0 , x [5] , x [7]) ;
IloNumExpr q6 = model . prod (model . sum(x230 , x231) , w [2] [3]) ;

IloNumExpr Q = model . sum(q1 , q2 , q3 , q4 , q5 , q6) ;
model . addMaximize (Q) ;

cp l ex . s o l v e () ;
cp l ex . exportModel (" cc_qp_test . lp ") ;

Listing 3.5 shows the exported model, a human-readable representation of the model
that is being solved in CPLEX. The exported model helps us to clarify that the
constructed model is correct to our QP formulation.

Listing 3.5: Exported QP model in CPLEX.
Maximize
obj : [2 x0 ∗ x2 − 2 x0 ∗ x4 − 2 x0 ∗ x6 + 2 x1 ∗ x3 −

2 x1 ∗ x5 − 2 x1 ∗ x7 − 2 x2 ∗ x4 − 2 x2 ∗ x6 −
2 x3 ∗ x5 − 2 x3 ∗ x7 + 2 x4 ∗ x6 + 2 x5 ∗ x7] / 2

Subject To
c1 : x0 + x1 = 1 c9 : x1 + x5 >= 0
c2 : x2 + x3 = 1 c10 : x1 + x7 >= 0
c3 : x4 + x5 = 1 c11 : x2 + x4 >= 0
c4 : x6 + x7 = 1 c12 : x2 + x6 >= 0
c5 : x0 + x2 >= 0 c13 : x3 + x5 >= 0
c6 : x0 + x4 >= 0 c14 : x3 + x7 >= 0
c7 : x0 + x6 >= 0 c15 : x4 + x6 >= 0
c8 : x1 + x3 >= 0 c16 : x5 + x7 >= 0

Bounds
0 <= x0 <= 1 0 <= x4 <= 1
0 <= x1 <= 1 0 <= x5 <= 1
0 <= x2 <= 1 0 <= x6 <= 1
0 <= x3 <= 1 0 <= x7 <= 1

End

13

3. Methods

By default, CPLEX is using branch and cut algorithm to find the global optima to
the constructed QP formulation of correlation clustering problem.

3.1.2 Implementation of SDP
There’s not much known about academic license optimizer that is able to construct
the model for a vector program optimization as shown by the formulation 2.8. In
this case, given the vector program for correlation clustering 2.8 and the equivalence
between vector program and SDP as shown by Williamson and Shmoys [6], the
semidefinite program for correlation clustering is defined as:

max
1
2

〈
W, X

〉
(3.1)

subject to xij = 1, ∀ i = j

xij ≥ 0, ∀ i 6= j

X = (xij) � 0
xij = xji, ∀ i, j

Here standard notation is used for the matrix inner product, i.e, for A,B ∈ <m×n
we have

〈
A, B

〉
= ∑m−1

i=0
∑n−1
j=0 AijBij . The solution to correlation clustering is a

symmetric PSD matrix X. The implementation of SDP program can be carried out
using an academic license MOSEK. In this particular evaluation, Fusion API from
MOSEK Java interface will be used. Below is the example of creating a model of
SDP optimization for correlation clustering with N = 4 and K = 2 in MOSEK.

Similar to CPLEX, SDP formulation must be constructed as optimization model in
MOSEK. Listing 3.6, shows how the model is constructed using Model class. There
are also several settings for the model such as setLogHandler() to turn on logging
or printing the output of the optimizer while solving process is taking place.

Listing 3.6: Constructing model in MOSEK using Fusion API.
Model model = new Model (" cc_sdp_test ") ;
model . setSolverParam (" preso lveUse " , " o f f ") ;
model . setLogHandler (new PrintWriter (System . out)) ;

Constructing variable using Fusion API in MOSEK is very simple especially for
SDP. Listing 3.7 shows the construction of 4 by 4 symmetric semidefinite matrix X.
Here we can see that the matrix of variables of our correlation clustering problem
will grows quadratically as the number of nodes N increased.

Listing 3.7: Construct variables in MOSEK.
// se tup v a r i a b l e s i n t o the model
Var iab le X = model . v a r i a b l e ("X" , Domain . inPSDCone (4)) ;

14

3. Methods

Listing 3.8 shows how the SDP objective from 3.1 is constructed using MOSEK
Fusion API. The method objective() setup the objective to be maximized together
with the expression of the objective as the second parameter. We can see that it is
almost similar to CPLEX where the objective consists of smaller expressions.

Listing 3.8: Construct SDP objective in MOSEK.
// de f i n e the o b j e c t i v e
model . o b j e c t i v e (Object iveSense . Maximize ,

Expr . mul (0 . 5 , Expr . dot (W, X))) ;

Finally, the constraints are constructed as shown by listing 3.9. When all the vari-
ables, objective and constraints have been specified for the model, the optimization
is then able to be executed simply with the statement model.solve().

Listing 3.9: Construct the constraints in MOSEK.
// de f i n e the c o n s t r a i n t s
model . c on s t r a i n t (" c1 " ,X. index (0 , 0) ,Domain . equalsTo (1 . 0)) ;
model . c on s t r a i n t (" c2 " ,X. index (1 , 1) ,Domain . equalsTo (1 . 0)) ;
model . c on s t r a i n t (" c3 " ,X. index (2 , 2) ,Domain . equalsTo (1 . 0)) ;
model . c on s t r a i n t (" c4 " ,X. index (3 , 3) ,Domain . equalsTo (1 . 0)) ;
model . c on s t r a i n t (" c5 " ,X. index (0 , 1) ,Domain . greaterThan (0 . 0)) ;
model . c on s t r a i n t (" c6 " ,X. index (0 , 2) ,Domain . greaterThan (0 . 0)) ;
model . c on s t r a i n t (" c7 " ,X. index (0 , 3) ,Domain . greaterThan (0 . 0)) ;
model . c on s t r a i n t (" c8 " ,X. index (1 , 2) ,Domain . greaterThan (0 . 0)) ;
model . c on s t r a i n t (" c9 " ,X. index (1 , 3) ,Domain . greaterThan (0 . 0)) ;
model . c on s t r a i n t (" c10 " ,X. index (2 , 3) ,Domain . greaterThan (0 . 0)) ;

// s o l v e the model
model . s o l v e () ;

When the model is solved successfully, the following instructions can be used to
obtain both the decision variables and objective value respectively.

Listing 3.10: Obtain the result of optimization in MOSEK.
X. l e v e l () ;
model . primalObjValue () ;

The default setting in MOSEK to solve semidefinite programming is by using interior-
point method. In order to get the clustering assignment for each data, the optimiza-
tion result in X must be transformed into some matrix V where X = V >V . This
can be done by using LU-decomposition either using native programming language
or well known math library such as Apache Commons Math API for Java. Matrix U
as the result of LU-decomposition of X is exactly V.

15

3. Methods

3.1.3 Implementation of FW
Local search Frank-Wolfe algorithm is an iterative algorithm that converges to a lo-
cal optima for each random starting points. In contrast, LSFW can be implemented
without third-party solver compared to QP and SDP implementation. This is since
LSFW itself is just a simple iterative algorithm with greedy rule. The solution to the
clustering algorithm can be improved by rerun the algorithm on different starting
points, save the objective value and replace it if better objective value is found with
different starting points.

As has been mentioned earlier on Chapter 2, that LSFW is actually a block coordi-
nate iterative algorithm. at each step in the iteration, one item is taken randomly,
which represents taking a random variable block. Then, the algorithm proceed to
update the clustering for that item that yield the most improvement to the objec-
tive value. This procedure repeats until the objective value converges. Here, in this
implementation, taking an item also can be done by shuffling the order of N items
using random permutation and iterate over this shuffled order.

The implementation directly follows algorithm 2. First each decision vector is ini-
tialized into random cluster as shown by listing 3.11. Then, compute the objective
obtained using this initial configuration to be used as the reference in the optimiza-
tion process.

Listing 3.11: Initialize the decision vector into random cluster.
int [] c l u s t e r = new int [Constant .N] ;
Random random = new Random () ;

// s t a r t wi th random c l u s t e r i n g
for (int i = 0 ; i < Constant .N; i++) {

c l u s t e r [i] = random . next Int (Constant .K) ;
}

// and c a l c u l a t e i t s co s t
double cur r en tOb je c t i v e = 0 . 0 ;
for (int i = 0 ; i < Constant .N; i++) {

for (int j = 0 ; j < i ; j++) {
i f (c l u s t e r [i] == c l u s t e r [j])

cu r r en tOb je c t i v e = cur r en tOb je c t i v e + w[i] [j] ;
}

}

The next step is to optimize the clustering with FW until the objective converges.
Listing 3.12 shows the procedure that keeps iterating until the gap between the
objectives before and after the optimization is below the EPSILON which is around
2−53 In IEEE 754 arithmetic.

16

3. Methods

Listing 3.12: Procedure of iteration until the objective converged.
double prevObject ive = cur r en tOb je c t i v e − 1 ;

while ((cu r r en tOb j ec t i v e − prevObject ive) > EPSILON) {
prevObject ive = cur r en tOb je c t i v e ;

// do maximization o f o b j e c t i v e u n t i l converge
}

Listing 3.13 below shows what is inside the while loop. On each iteration, one
item or node is taken at a time and then the gradient for the variable block which
represents the item is computed. Next, using the gradient, objective improvement
is calculated for each cluster position where the item will be moved into.

Listing 3.13: Compute gradient of a variable block.
// compute the g r ad i en t s
double [] tempObjs = new double [Constant .K] ;
for (int j = 0 ; j < Constant .N; j++) {

i f (j != i) {
int k = c l u s t e r [j] ;
tempObjs [k] = tempObjs [k] + w[i] [j] ;

}
}

int m = c l u s t e r [i] ;
double costOfM = tempObjs [m] ;

// compute o b j e c t i v e changes when c l u s t e r f o r i changes
tempObjs [m] = cur r en tOb je c t i v e ;
for (int k = 0 ; k < Constant .K; k++) {

i f (k != c l u s t e r [i]) {
tempObjs [k] = cur r en tOb je c t i v e −

costOfM + tempObjs [k] ;
}

}

Finally, on each iteration, the clustering to a data is updated. The greedy rule in
LSFW is to move the data to the cluster that gives the best improvement to the
objective. Listing 3.14 shows after the objective is computed for all possible clus-
tering position, the data is moved to the cluster position with the highest objective
and then the objective and clustering solution is updated.

17

3. Methods

Listing 3.14: LSFW chooses to move the item to the cluster with highest objective.
// f i nd which c l u s t e r to put i t h a t maximizes the o b j e c t i v e
int maxIndex = 0 ;
double max = −Double .MAX_VALUE;
for (int k = 0 ; k < tempObjs . l ength ; k++) {

i f (tempObjs [k] > max) {
max = tempObjs [k] ;
maxIndex = k ;

}
}

// update the c l u s t e r
c l u s t e r [i] = maxIndex ;
cu r r en tOb je c t i v e = max ;

Alternatively, one can update the best objective value if better solution has been
found as shown by listing 3.15. Here, t is the current restart position and one can
try to repeat the entire algorithm on different starting configuration on different
restarts with the hope to find better objective maximization.

Listing 3.15: Keep track on the best objective found by LSFW.
i f (t == 0 | | (cu r r en tObj ec t i v e > bes tObjec t i v e)) {

be s tC lu s t e r i ng = c l u s t e r ;
be s tObj ec t i ve = cur r en tObj ec t i v e ;

}

3.1.4 Gradient Descent Methods

3.1.4.1 Block Coordinate Gradient Descent (BCGD)

Following the formulation of gradient descent method 2.25 in chapter 2, we begin by
defining the starting points. In the case for correlation clustering, we can initialize
these starting points by randomly assigned each item into a cluster. This can be
done by randomly initialize a matrix V with dimension n×k that consists of vector
vi on each of its row. vi is initialized as binary unit vector, where eth element is 1
and other elements is 0, denoting that ith item was initially assigned to eth cluster.

The next part is to construct the iterative procedure involving the gradient of the
objective function. At each iteration randomly pick ith item and as described by
Frank-Wolfe algorithm section in Chapter 2. Then, the ith gradient of the correlation
clustering objective is:

∇if =
∑
j

vj.wij (3.2)

18

3. Methods

By which we will use to update clustering assignment for a particular vector vi as
follows:

vt+1
i ← vti + γ∇if (3.3)

Note that its positive γ∇if since it’s a maximization problem. This procedure
iterates until convergence, where all the gradients are 0. However, notice that since
the objective function for correlation clustering is non-convex, the update rule 3.3
will make entries in vi grows to either +∞ or −∞. Furthermore, since we want
our solution vi to be presented as unit vector, such that we can decide to which
cluster does ith item is assigned to, we need to carry out normalization of vti before
updating to vt+1

i . Considering the normalization, we can rewrite the update rule of
3.3 as follows:

vti = vti + γ∇if (3.4)

vtim


0, if vtim < 0

vtim, otherwise
m ∈ [0, k[(3.5)

vt+1
im ← vtim/(|vti |1), m ∈ [0, k[(3.6)

First, the gradient is add up to the vector vti = vti + γ∇if . Next, eliminate all
negative elements in vti by overriding each of them with 0 and finally, normalize vti
by dividing each element with L1-norm of vector vti . In the case where the norm is 0,
vt+1
i ← 1/k, which gives equal probability for each cluster. This iterative procedure
is a variant of gradient descent method known as block coordinate gradient descent
(BCGD), since we are using the gradient ∇if from ith block coordinate to update
vi at each iteration.

3.1.4.2 Stochastic Block Coordinate Gradient Descent (SBCGD)

Recall that in 3.2 to compute the gradient of ith block coordinate, it is required to
sum over all other vectors vj where j is an item index other than i, or ∀j, j 6= i.
Assume that a set S contains all these n−1 items whose vectors needed to compute
ith gradient ∇if , stochastic block coordinate gradient descent aims to compute ∇if
using vectors of some randomly chosen items in S. The formulation of the update
rule for SBCGD is the following:

∇if =
m∑
j∈S

vj.wij (3.7)

Where m is an arbitrary size of random sample chosen from S. Once the gradient
is obtained this way, the update rule is the same as 3.5 and 3.6.

19

3. Methods

3.1.4.3 Batch Gradient Descent (BGD)

Batch gradient descent in principle is similar to the block coordinate version above
except its update rule. In block coordinate version, only gradient from ith block
coordinate is used to update clustering assignment vector vi at each iteration. In
batch gradient descent, a batch of gradients with fixed size m is used to update vi
instead of individual block coordinate. The batch size m does not necessarily to
be all existing number of items n but can be arbitrarily defined, as long as m ≤ n.
Thus,m gradients are computed and used altogether to update vt+1

i at each iteration.
Following the update rule 3.3, batch update can be formulated as follows:

vt+1
i ← vti + γ

m∑
i

∇if (3.8)

Surely the normalization procedure 3.5 and 3.6 also apply for BGD.

3.1.4.4 Stochastic Gradient Descent (SGD)

Stochasticity or randomness of a gradient descent method depends on random sam-
ples of vectors to be included in order to compute the gradient as in the case for
SBCGD. Thus, stochastic gradient descent is a variant of gradient descent method
that uses both random samples of jth vector for computing gradient, and batch up-
date rule as in BGD.

LSFW is an iterative method that uses the information of gradients and step length
to optimize correlation clustering. It is interesting to see its performance and cor-
rectness compared to other well known iterative method such as gradient descent.
More importantly, the similarities and differences of behaviors of both algorithms
that could potentially provides the answer of what makes one of them better than
the other.

20

4
Results

4.1 Performance evaluation
The optimization methods that has been mentioned earlier in Chapter 2 along with
their implementations in Chapter 3 are measured. The methods are tested using
synthetic generated data and measured in terms of their runtime and correctness
of finding the solution for correlation clustering problem. Synthetic data generator
generates positive-negative weight matrix that will be used as the input to the cor-
relation clustering problem. The data generator uses the parameters regarding the
number of nodes n, number of clusters k and noise p to generate the synthetic data.
Each weight value in the matrix is any random number with normal distribution on
which with probability p the sign of the weight is flipped. The system specification
that is used for conducting the experiments consists of Intel core i5-6200U processor
with 4 cores @2.3GHz and a 4GB RAM. The operating system is Windows 10 64-bit.

4.1.1 Runtime evaluation of QP, SDP and LSFW
In order to compare the runtime among optimization methods, synthetic data are
generated each with fixed number of clusters k = 4, noise p = 0.3, and the increas-
ing data size n. to compare the performance between QP and SDP, the data size
parameter n used are 10, 12, 16, 18 and 20, while the number of clusters and noise
parameter are fixed k = 4 and p = 0.3 respectively. The runtime measurement be-
tween QP and SDP are shown by table 4.1 and figure 4.1, where the runtime for QP
grows exponentially compared to the runtime of SDP that is hardly seems to make
any changes as data size getting larger. Since CPLEX is set to find global optima
for QP, it is evidently NP-hard as has been elaborated in Chapter 2. Meanwhile,
interior-point is used to solve SDP problem and SDP relaxation is a type of approx-
imation algorithm that solves the correlation clustering problem in polynomial time
with approximation ratio 0.75 of the optimal solution [6].

Table 4.1: Runtime comparison between QP and SDP.

RUNTIME. k = 4, p = 0.3

n 8 10 12 16 18 20

QP (s) 0.06 0.17 0.48 3.54 51.43 17204

SDP (s) 0.01 0.01 0.02 0.04 0.05 0.06

21

4. Results

Figure 4.1: Runtime comparison between QP and SDP.

The runtime evaluation proceed to observe on the performance comparison between
SDP and LSFW. The runtime comparison between SDP and LSFW is shown by ta-
ble 4.2 and figure 4.2. This result can be expected as in the case for SDP, the number
of constraints and the size of SDP matrix grows quadratically. Moreover, interior
point method as the efficient method to solve SDP required to store and factorize a
large(and often dense) matrix for its computation that may caused bottleneck in the
memory while optimizing SDP. MOSEK returns "error insufficient space" when SDP
is ran with n = 300. Karmarkar’s algorithm which is the most efficient algorithm
in the class of interior point methods requires O(n3.5L) operations on O(L) digit
numbers.

Figure 4.2: Runtime comparison between SDP and LSFW.

22

4. Results

Meanwhile, LSFW is operating on the concept of local search where initially ran-
dom starting point is given and the algorithm will iterate until converge to a local
optima. In order to improve the solution, it is simply needed to rerun the algorithm
with different starting points which may lead to better local optima. Furthermore,
10 tests are carried out for each optimization methods and the average time spent
from these tests is considered into the observation.

Table 4.2: Runtime comparison between SDP and LSFW.

RUNTIME. k = 4, p = 0.3

n 40 50 60 80 100 120 160 180 200

SDP (s) 0.37 0.97 1.97 8.39 22.81 55.22 252.71 526.02 941.83

FW (s) 0.006 0.012 0.011 0.024 0.039 0.042 0.082 0.086 0.113

All the observation results provided in the graphs are represented as the growth
of runtime in seconds against the number of items to be partitioned n. Figure 4.3
shows the runtime observation for all optimization methods QP, SDP and LSFW.
The growth of LSFW is much slower compared to well known optimization methods
such as QP and SDP. Thus, Figure 4.4 shows how much LSFW grows in terms of
runtime up to N = 1000.

Figure 4.3: Runtime comparison between QP, SDP and LSFW.

23

4. Results

Figure 4.4: Close up LSFW runtime growth shown in figure 4.3. Note that for
comparison with QP and SDP, LSFW ran with 10 restarts for each test data.

24

4. Results

4.1.2 Runtime evaluation of gradient descent and LSFW
Several types of gradient descent methods are tested, which have been mentioned
in Chapter 3. The result shown in figure 4.5, where BCGD and LSFW has similar
runtime behavior compared to other gradient descent variant. SBCGD is constant
time slower compared to BCGD since it takes constant time to check its convergence
due to more oscillating objective when converged. BCGD, SBCGD and LSFW have
linear runtime growth O(tn) where t is the number of iterations needed to reach
convergence.

Figure 4.5: Runtime comparison between gradient descent methods and LSFW.

BGD takes slower time compared to BCGD and SBCGD since it computes all the
gradients on each iteration, and it needs to iterate over all items every time it com-
putes each gradient. Likewise, SGD also need to compute all gradients and takes
constant time more for checking convergence. BGD and SGD both have quadratic
runtime growth O(tn2). For the evaluation between gradient descent methods and
LSFW, LSFW was executed once for each test data without using constant number
of restarts.

25

4. Results

4.1.3 Correctness of QP, SDP and LSFW
In order to compare the correctness among optimization methods, synthetic data
are generated with fixed number of nodes n, clusters k = 4 and the increasing noise
parameter p. The performance of each optimization methods is measured against
the increasing noise in the weight matrix data from p = 0.0 until p = 0.9. Figure 4.6
below shows the objective values obtained from each optimization methods over the
noisy data. For this observation, LSFW is allowed to restart on 10 different starting
points because its runtime is much faster that QP or SDP.

The average objective values obtained from 10 different observations for each noise
parameter p are considered. Table below shows that QP and LSFW relatively come
up with similar objective value for each noise parameter, and are much better com-
pared to objective values obtained by SDP. The details of objectives obtained by
QP, SDP and LSFW over increasing noise in the data can be seen on table 4.3 and
4.4. The data size tested is small n = 16 so that the size is still feasible for QP.

Table 4.3: Correctness of QP, SDP and LSFW. p = 0.0 ∼ 0.4.

CORRECTNESS. n = 16, k = 4

p 0 0.1 0.2 0.3 0.4

QP 16.848 14.622 15.579 14.789 17.558

SDP 16.848 12.243 11.66 8.635 12.949

FW 16.848 14.622 15.579 14.789 17.558

Figure 4.6: Objective values obtained using QP, SDP and LSFW. LSFW and QP
obtained the exact same objective most of the time.

26

4. Results

Table 4.4: Correctness of QP, SDP and LSFW. p = 0.5 ∼ 0.9.

CORRECTNESS. n = 16, k = 4

p 0.5 0.6 0.7 0.8 0.9

QP 18.425 29.671 37.98 38.654 55.672

SDP 15.076 27.467 35.171 39.217 55.672

FW 18.425 29.671 37.98 38.654 55.672

Figure 4.7 shows the objectives obtained between SDP and LSFW. This time with
larger data size n = 100 that is feasible for SDP. As can be seen, LSFW can perform
better maximization over noisy data. The objective decreased as the noise in the
data increased until reached the lowest objective obtained when the noise is p = 0.4
and then the objective raise again when p > 0.4.

Figure 4.7: Objective values for larger data size n = 100 using SDP and LSFW.

27

4. Results

4.1.4 Correctness of Gradient descent and LSFW
The objective maximization obtained by gradient descent and LSFW is measured
using fixed number of nodes, but with varying noise level. Figure 4.8 and 4.9 show
the result of objectives obtained using gradient descent and LSFW. The results show
that the objective maximization obtained by LSFW is higher compared to gradi-
ent descent variants. The results also show that most variants of gradient descent
namely BCGD and BGD converge towards negative objective when the noise in the
data is low for current number of nodes. When comparing with gradient descent
variants, LSFW only ran once without restarts. The sample size for SBCGD is 0.4.

Figure 4.8: Objectives obtained for data size n = 200 and noise p = 0 ∼ 0.9.

Figure 4.9: Objectives obtained for data size n = 500 and noise p = 0 ∼ 0.9.

28

4. Results

4.2 Similarity of iterative methods
One practical difference between LSFW and other well known iterative method such
as gradient descent is that while the gradient descent methods use both gradient
and step length (γ), LSFW simplifies the optimization of step length and instead
used greedy rule to maximize the correlation clustering objective. LSFW algorithm
uses the gradient as the reference and chooses which cluster to put the item that
yields the maximum improvement for the correlation clustering objective.

Let us turn the attention to the update rule used by gradient descent methods 3.3.
It is intuitively easy to suggest that gradient plays the important role in determining
the clustering assignment that maximizes the objective because it gives the infor-
mation of clustering agreement on all clusters. We can also see that from 3.2 at
each iteration, the gradient itself is influenced by the current cluster assignment of
each item and their relations to each other represented by weights wij. To be more
simple, the gradient ∇if will have larger value on its mth element, if the there are
more items j 6= i inmth cluster that have positive weights wij than any other cluster.
Likewise, the gradient ∇if will have smaller value on its mth element, if the there
are less items j 6= i in mth cluster that have positive weights wij.

In this case, we can conclude that the gradient will give the information on how the
items should be re-arranged for the next iteration based on the current clustering
situation in order to improve the objective. The information could be to move the
items to another cluster, to make the items stay in their current cluster or incon-
clusive which means that all elements have 1/k probability.

Given the role of gradient and the update rule 3.3, we can see that the step length
(γ) is just amplifying the information already contained in the gradient ∇if before
being used to update vti . Several experiments has been carried out to see how var-
ious step lengths affect the improvement of objective. Figure 4.10 and 4.11, shows
the step length chosen by BCGD at each iteration for a particular data. The data
tested have n = 100 and k = 4, each with increasing noise parameter p = 0 ∼ 0.9.

Figure 4.10 and 4.11 show that only 2 step lengths γ = 0.1 and γ = 10 that are
chosen along the entire iterations. It is not the case that for low noise data, gradient
descent prefers smaller step lengths more than larger step lengths, since there are
ties of objectives obtained by larger step lengths too, i.e. when γ = 10 is chosen,
γ = 100, γ = 1e3 and γ = 1e4 all yield the same objective.

29

4. Results

Figure 4.10: The step length chosen at each iteration for data with noise p = 0
and p = 0.1. Only γ = 0.1 and γ = 10 that are chosen along the entire iterations.

The reason behind this, is because starting from γ = 10, the step lengths gave the
same update to the decision vector thus larger step length yield equal improvement
for the objective as shown by table 4.6. Moreover, a step length is chosen because
it is able to give the highest probability to the decision in vi to move the item to
the cluster with the largest agreement. Table 4.5 and 4.6 show the example where
γ = 0.1 and γ = 10 are chosen. The tables show that gradient descent always prefers
to move the item to the cluster with the largest agreement.

30

4. Results

Table 4.5: The objectives obtained by different step lengths. Here, the smallest
step length (γ = 0.1) yields the best improvement.

n = 100, k = 4, p = 0 step length

start gradient 0.1 10 1.0e+02 1.0e+03 1.0e+04

vi

1 -4.2615 1 0.25 0.25 0.25 0.25

0 -12.8145 0 0.25 0.25 0.25 0.25

0 -9.3145 0 0.25 0.25 0.25 0.25

0 -19.2915 0 0.25 0.25 0.25 0.25

objective -577.11875 -584.27775 -584.27775 -584.27775 -584.27775

Table 4.6: The objectives obtained by different step lengths. Here, the step length
(γ = 10) is chosen.

n = 100, k = 4, p = 0.1 step length

start gradient 0.1 10 1.0e+02 1.0e+03 1.0e+04

vi

0 -16.651 0 0 0 0 0

0 6.842 0.6222 1 1 1 1

0 -16.093 0 0 0 0 0

1 -5.845 0.3778 0 0 0 0

objective 250.032 254.8255 254.8255 254.8255 254.8255

Table 4.7 shows that starting from (γ = 100), the improvement to the objective is
equal because all the step lengths give the same update to vi. Table 4.8 shows that
the largest step length is chosen because it is able to give the highest probability to
the decision to move the item to the cluster with the largest agreement.

Table 4.7: The objectives obtained by different step lengths. Here, the step length
(γ = 100) is chosen.

n = 100, k = 4, p = 0.3 step length

start gradient 0.1 10 1.0e+02 1.0e+03 1.0e+04

vi

0 0.0831 0.0098 0.8772 1 1 1

0.4892 -1.5206 0.3956 0 0 0 0

0 -15.5701 0 0 0 0 0

0.5108 -0.0394 0.5947 0.1228 0 0 0

objective 98.2086 98.9008 98.9159 98.9159 98.9159

31

4. Results

Table 4.8: The objectives obtained by different step lengths. Here, the largest step
length (γ = 1e4) is chosen.

n = 100, k = 4, p = 0.2 step length

start gradient 0.1 10 1.0e+02 1.0e+03 1.0e+04

vi

0 -21.112 0 0 0 0 0

0 -7.1147 0 0 0 0 0

1 0.4249 0.7366 0.1234 0.1045 0.1025 0.1023

0 3.7288 0.2634 0.8766 0.8955 0.8975 0.8977

objective -169.82436 -167.79864 -167.73604 -167.72963 -167.72898

Figure 4.11 shows that as there are more noise in the data, larger step lengths started
to appear more along the iteration. This can also be seen in figure 4.12 which shows
that the percentage of choice for the largest step length is increased as there are
more noise in the data.

Figure 4.11: The largest step length γ = 1e4 is chosen more as the noise in the
data increased.

32

4. Results

Figure 4.12: Percentage of each step length chosen compared to noise in the data.

This is because as noise is increased in the data, more clustering assignments will
become probabilistic which also means that more decision vectors will become non-
binary. Since it is known that higher probability in the decision vector gives better
improvement for the objective, and larger step lengths give higher probability for
the decision in the decision vector, thus more and more larger step lengths are cho-
sen. Notice that the percentage is increasing progressively as the noise is increased
from 0 to 0.5. When the noise is p > 0.5, the percentage goes up and down be-
cause as noise approach 1, the data started to become the inverse of itself meaning
that all the positive weights become negatives and all the negatives become positives.

Finally, the results suggest that on each iteration, gradient descent will always try
to move the item to the cluster with the largest agreement and this is similar to the
greedy rule found in LSFW. Moreover, gradient descent prefers larger step lengths
to move the item to other cluster because they give higher probability to the decision
in vi to move the item to the cluster with the largest agreement, resulting in higher
improvement for the objective.

4.3 Suboptimality of gradient descent
Gradient descent clearly has similarity with LSFW on how the items are arranged
on each iteration that gives most improvement to the objective. However, using the
normalization scheme elaborated in Chapter 3 will make gradient descent at some
point converged to a suboptimal solution such that all or most of the elements in
matrix V have the same value 1/k when converged.

33

4. Results

This phenomenon is shown at figure 4.13, where increasing data size with noise pa-
rameter p = 0 is tested.

Figure 4.13: The sudden collapse of objective values obtained by gradient descent.

Upon reaching certain data size, the objective suddenly collapsed into negative and
it continues to degrade as the data size increased. This is the result when the data
is large enough that makes the gradient more likely to be negatives because there
are more disagreements or negative weights wij on every cluster than the positive
ones, and as elaborated in Chapter 3, negative gradient is penalized to 0 and thus
all the elements in vi will be updated with equal probability 1/k.

In order to tackle this problem, one well known method is to add stochasticity to
prevent gradient descent converging into suboptimal solution. This can be done
with several implementations such as, adding noise to the data, random sampling
for computing gradient and adding perturbation to the data.

4.3.1 Increase noise in the data
The first plot in figure 4.14 shows the objectives obtained by gradient descent over
data with different noise level from p = 0 to p = 0.2. It shows small noise in the data
may prevent convergence to saddle points but still when certain data size reached,
saddle points may occur again. When the noise level is increased p = 0.3 ∼ 0.5 sig-
nificant changes can be seen that gradient descent is not converged to saddle points
anymore at least until n = 300. The quality of the objectives however are degrading
as shown by the gaps among objective plots.

34

4. Results

Another experiment is also support these findings. As can be seen in figure 4.15,
where the result of clustering assignment using gradient descent is compared to the
ground truth of the data using rand index (RI) and normalized mutual information
(NMI). The data tested is generated using the following parameters n = 100, k = 4
and p = 0; the same data is used and different noise level is added to generate new
data. A ground truth is the clustering assignment used when generating the data
with no noise p = 0.

Figure 4.14: More noise level may prevents gradient descent from converging into
saddle points but at the same time it also degrades solution quality.

35

4. Results

The result of RI and NMI over different noise levels shows that as the noise in
the data increased, the clustering solution is getting more random compared to the
ground truth. This is clearly shown when NMI is approaching 0 as the noise is
p = 0.5, meaning the clustering solution of data with high noise shared no mutual
information with the ground truth. Likewise, the value of RI also decreased when
noise level in the data increased, which means that the frequency of occurrence of
agreements between ground truth and clustering solution is getting down.

Figure 4.15: Increasing the noise takes the solution away from the ground truth
of the data.

4.3.2 Compute gradient with random sampling
Adding stochasticity to avoid suboptimal solution can also be done by random sam-
pling of data while computing the gradient, which is exactly what SBCGD is. Chap-
ter 3 has elaborated in detail that with SBCGD, not all data is involved in order to
compute the gradient ∇if . SBCGD can avoid saddle points better than by adding
noise to the data since there’s no modification whatsoever to the data resulting in
better objective and closer clustering solution to ground truth.

Figure 4.16 shows the result of SBCGD using different sample size. The experiment
results show that using larger sample size 0.5 ∼ 0.9 gradient descent still end up
in saddle points, where the largest sample size 0.9 starts end up in saddle points
when data size is n ≥ 500. Meanwhile, with small sample size 0.1 ∼ 0.4 shown in
4.17, none of the objectives obtained were found converged to saddle points at least
until the size of data is n = 1000. This happens because stochasticity is increased
as sample size getting smaller and also with smaller sample size, smaller number of
items involved in computing the gradient which may prevent the elements in the
gradient to become dominated by negatives.

36

4. Results

Figure 4.16: Big sample size 0.5 ∼ 0.9 still converge to saddle points.

Figure 4.17: Smaller sample size 0.1 ∼ 0.4 means more stochasticity and as the
result prevents saddle points at least until n = 1000.

Moreover, it is shown by figure 4.18 that when compared to objectives obtained by
BCGD represented as blue plot in the graph, SBCGD with smaller sample sizes have
lower objectives. However, sample sizes 0.3 and 0.4 are shown to have the smallest
gap with objectives obtained by BCGD.

37

4. Results

Figure 4.18: The difference of objectives obtained using smaller sample size.

4.3.3 Adding perturbation to saddle points
Adding perturbation in the data is another way to add stochasticity during opti-
mization process. This can be done by adding each element in vector vi with an
independent random variable e.g. α, β, γ etc. Recall the normalization procedure
in 2.23 and 2.24, in the case where L1-norm of vi is 0 then each element is replaced
with 1

k
+ α instead of overriding all the elements in vi with only 1/k. Each random

variable has normal distribution with fixed mean set as µ = 0 and custom value for
standard deviation (σ). Figure 4.19 shows the result of adding different levels of
perturbation to the data with standard deviation σ = 0, 1, 2.

Figure 4.20 shows the result with even larger data range n = 100 ∼ 1000. This
result shows that bigger perturbation may provide better performance for gradient
descent to avoid saddle points. For example, when σ = 1 for data size n ≤ 300 gra-
dient descent is able to obtained satisfying objective, but starts experiencing saddle
points again once the data size is approaching n = 1000.

Despite advantages achieved by adding perturbation to data, it also suffers another
side effect. Figure 4.21 shows that larger perturbation may lead to slower con-
vergence and difficulties to decide convergence state during optimization process.
Perturbation may also sensitive with the noise level in the data such data the more
noise in the data.

38

4. Results

Figure 4.19: Using the same range of data size as in figure 4.13, this shows that
by adding perturbation with certain magnitude of σ could prevent gradient descent
from converging into saddle points.

Figure 4.20: Correlation clustering objective obtained using different perturbation
level. This suggests that larger perturbation may yields better objectives.

39

4. Results

Figure 4.21: Increased perturbation may caused gradient descent to take longer
time to converge and also more difficult to check convergence.

40

5
Conclusion

5.1 Performance evaluation
Since QP is NP-hard thus it cannot be solved in polynomial time. SDP can solve
correlation clustering in polynomial time but with approximation ratio 0.75 from
optimal solution and also suffers bottleneck in terms of memory capacity because
it requires large and often dense matrix for computation. LSFW has the best run-
time complexity and the best objective maximization compared to QP, SDP and all
gradient descent methods. BCGD has similar runtime complexity with LSFW and
the fastest among other gradient descent methods. The gradient descent variants:
BCGD, SBCGD, BGD and SGD all suffers from saddle points 1/k when the data
size is n ≥ 150.

5.2 Algorithmic similarity
BCGD is a variant of gradient descent that is most similar to LSFW. LSFW simpli-
fies optimization of step length and uses greedy rule to put the item in the cluster
that gives the best improvement to the objective. Whereas BCGD moves the item
to the cluster which has the highest agreement resulting in the best improvement
for the objective.

5.3 Stochasticity in gradient descent
Gradient descent has drawback in which it is likely end up converge in saddle point
if the data is large enough. Adding stochasticity can avoid this convergence into
suboptimal solution and this can be done by either adding noise into the correlation
data, random sampling of data to compute gradient and perturbation of data. From
all three ways of adding stochasticity, adding noise to data is the worst method
since it alters the underlying data and larger noise will make the clustering solution
deviates away from the ground truth. Random sampling for gradient is a good
approach since it doesn’t change the correlation data and for sample size 0.3 or 0.4,
both yield the closest objective maximization to the ground truth while at the same
time avoiding saddle points at least until the data size is n = 1000.

41

5. Conclusion

Adding saddle points with perturbation during optimization is also a good approach
and with small enough parameter µ = 0 and σ = 2 for each independent random
variable, this is able to prevent convergence to saddle point at least until the data
size reaches 1000.

5.4 Conclusion
For the maximization agreement of correlation clustering problem, LSFW has the
best performance both in terms of runtime and solution quality compared with other
well known optimization methods such as QP, SDP and gradient descent methods.

42

Bibliography

[1] Erik Thiel, Morteza Haghir Chehreghani, Devdatt Dubhashi, A Non-convex
Optimization Approach to Correlation Clustering, Thirty-Third AAAI Confer-
ence on Artificial Intelligence (AAAI), 2019.

[2] N. Bansal, A. Blum and S. Chawla, Correlation clustering, Machine Learning,
56(1-3):89-113, 2004.

[3] E.D. Demaine, D. Emanuel, A. Fiat and N. Immorlica, Correlation clustering
in general weighted graphs, Theor. Comput. Sci., 361(2-3):172-187, 2006.

[4] M.H. Chehreghani, Clustering by shift, IEEE International Conference on Data
Mining (ICDM), https://doi.org/10.1109/ICDM.2017.94, 2017.

[5] A.A. Goshtasby, Similarity and dissimilarity measures, Image Registration-
Principles, Tools and Methods. Advances in Computer Vision and Pattern
Recognition. Springer. pp.7-61, 2012.

[6] D.P. Williamson, D.B. Shmoys, The Design of Approximation Algoritms. Cam-
bridge University Press. 2011.

[7] Jaggi, M. (2013) Revisiting Frank-Wolfe: Projection-free sparse convex op-
timization. In Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, 427-435.

[8] Lacoste-Julien, S.; Jaggi, M.; Schmidt, M. W.; and Pletscher, P. 2013. Block-
coordinate frank-wolfe optimization for structural svms. In Proceedings of the
30th International Conference on Machine Learning, ICML 2013, Atlanta, GA,
USA, 16-21 June 2013, 53-61.

[9] Mathieu, C., and Schudy, W. (2010) Correlation clustering with noisy input. In
Proceedings of the 21st Ánnual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’10, 712-728.

[10] Reddi, S. J.; Sra, S.; Póczos, B.; and Smola, A. J. 2016. Stochastic frank-wolfe
methods for nonconvex optimization. In 54th Annual Allerton Conference on
Communication, Control and Computing, Allerton 2016, Monticelli, IL, USA,
September 27-30, 2016, 1244-1251.

[11] Demaine, E. D.; Emanuel, D.; Fiat, A.; and Immorlica, N. 2006. Correlation
clustering in general weighted graphs. Theor. Comput. Sci., 361(2-3):172-187.

[12] Wang, H.; Banerjee, A. 2014. Randomized Block Coordinate Descent for Online
and Stochastic Optimization.

[13] Wahde, M. 2008. Biologically Inspired Optimization Methods, An Introduction.
WIT Press, ISBN: 978-1-84564-148-1.

43

Bibliography

44

	List of Figures
	List of Tables
	Introduction
	Correlation Clustering
	Contributions

	Theory
	Correlation Clustering Formulation
	Problem Formulation
	Randomized Rounding

	Optimization Methods
	Quadratic Programming (QP)
	Semidefinite Programming (SDP)
	Frank-Wolfe Algorithm (FW)
	Gradient Descent Methods

	Methods
	Evaluation of optimization methods for correlation clustering
	Implementation of QP
	Implementation of SDP
	Implementation of FW
	Gradient Descent Methods

	Results
	Performance evaluation
	Runtime evaluation of QP, SDP and LSFW
	Runtime evaluation of gradient descent and LSFW
	Correctness of QP, SDP and LSFW
	Correctness of Gradient descent and LSFW

	Similarity of iterative methods
	Suboptimality of gradient descent
	Increase noise in the data
	Compute gradient with random sampling
	Adding perturbation to saddle points

	Conclusion
	Performance evaluation
	Algorithmic similarity
	Stochasticity in gradient descent
	Conclusion

	Bibliography

