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Finite Element Human Body Model-based Injury Prediction using Machine Learning
Development of simulation-based surrogate models for injury metrics
YASH NIRANJAN POOJARY
AKHIL SRINIVAS
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
Models of the human body, both physical and virtual, have been vital tools for the
design of safer vehicles. Finite element models of the human body are now becoming
widely used for evaluating safety systems. With the introduction of future designs
like autonomous vehicles that affect the nature of vehicle crashes, HBM will become
a necessary tool to assess safety. Detailed human anatomy representation in HBM,
however, makes it computationally expensive and consumes a lot of time to simulate
crash scenarios. The aim of this thesis was to evaluate machine learning models as
computationally inexpensive surrogates for injury metrics from human body models.

Machine learning was performed on outputs from two types of finite element mod-
els, crash test dummy (Hybrid III M50 fast model) and the human body (SAFER
model). Different types of model outputs namely kinematics, kinetics, injury met-
rics, and injury risks used for injury evaluation were studied. Linear regression-
based models (Ordinary, Lasso, Ridge) were used as the baseline models. Advanced
tree-based methods (Random Forest, Gradient boosted, XGBoost, Histogram-based
gradient boost) and Gaussian process regression were used to build additional ma-
chine learning models. The machine learning pipeline comprised of data preparation,
model validation using the k-Fold cross-validation method, and model optimization
using hyperparameter tuning methods such as random search and grid search. In
these methods, the number of simulations required to achieve accurate models was
evaluated.

This thesis provides representative model learning curves (model accuracy vs number
of simulations) for the various HBM outputs. The accuracy of the models was seen
to be highly dependent on data transformation if the HBM outputs were skewed. It
was also seen that estimation of numerical noise needs to be considered as part of
the ML pipeline for HBM data to avoid overfitting in the pursuit of accuracy. For
the HBM outputs considered in this study, tree-based boosting methods provided
accurate models in most cases.

Keywords:Finite Element (FE), Human Body Model (HBM), surrogate models, In-
jury risks, Injury criteria, Machine Learning, Hybrid III M50 fast model, SAFER
HBM, Numerical Noise
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1
Introduction

Approximately 1.35 million people die and 20-50 million suffer non-fatal injuries
resulting in long-term disabilities in road crashes each year[1]. Though the number of
fatalities is significant, the trend has been decreasing in the past decade[2]. Decrease
in the number of occupant fatalities despite an increase in road vehicle users have
been made possible due to stricter safety standards advancements in the field of
vehicle safety.

Current safety systems are evaluated and developed using anthropomorphic test
devices (ATD) also known as crash test dummies. These ATD’s are instrumented
to record the data during a crash. ATD’s have a simplified representation of the
human anatomy which limits their similarity to humans, in order to be robust and
do not break during repeated crash tests. To overcome this, in recent years Finite
element Human body models (HBM) are increasingly used as they capture more
realistic human responses during crashes. HBM are essential tools to evaluate safety
as they give a detailed understanding of an injury mechanism during a crash [3].

Despite HBM being very crucial in assessing safety in crashes they are computa-
tionally expensive and take a long time to reconstruct crash scenarios. This can be
overcome with the use of Machine Learning (ML). The use of ML has been a fast
growing field of FEM [4]. The use of ML to predict injury risk and kinematics of
crashes can save time and computational effort. Hence ML is a potential alternative
that can be used to reduce the time to evaluate crash scenarios. But the ML model
needs a sufficiently large set of input-output data in order to learn the underlying
structure of the simulation case it will be used to predict. Hence a number of FE
simulations must be run, in order to provide the ML method with training data.
So exploring how well ML methods predict when they only have a set number of
examples, which ML method learns the fastest can be evaluated.

1.1 Background
Prediction of injury severity and risk is an important measure to evaluate crash
safety. Many statistical models like logistic regression, multinomial logit, and mixed
logit [5] models have been used to calculate the risk and occurrence of traffic crashes
from the accident data. But these models are dependent on many assumptions of the
distribution of data. A study by Khaled et. al [6] has explored on implementation
of ML models like Neural Networks(NN) and support vector machines (SVM) to
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predict the crash injury severity from a crash database to learn. The risk for crashes
was modeled for inputs Driver attributes, vehicle attributes, and road condition
attributes.

Real world human responses are not completely captured by the current crash evalu-
ation techniques. Human and environmental Human variability, such as age, height,
and weight, can influence the outcome of an accident. Similarly, the injury outcome
depends on the specific accident scenario (impact speed, impacting object, impact
direction, vehicle structure design) [7]. Studies conducted to evaluate head intru-
sion to door impacts and thoracic injuries as a function of restraint parameters
using Neural Networks (NN) in Monte Carlo simulations [7]. The resulting response
surface was validated using real world field data. This study illustrated the method-
ology to generate response surfaces incorporating various input parameters for injury
predictions which could be used for design considerations.

Joodaki et al.[8] compared the performances of several ML methods on predicting
human body model responses in restraint design simulations. The study was done
to predict the effects of the restraint system inputs on the behavioral response of the
occupant during a crash. The study indicated that hyper-parameter tuning is es-
sential to build surrogates to predict HBM responses. Ensemble methods performed
well compared to lasso, support vector regression, Random Forest, Neural Network,
and ordinary least squares to predict HBM response in restraint design simulations.

As made clear from the above, previous investigations into using ML to predict
HBM responses have only studied by modeling to predict the behavioral response
and variability in crashes. There is a lot of variability to evaluate safety during
a crash. The use of HBM are expensive to explore all the variability. Hence, we
explore the use of ML models to predict injury criteria, injury risks, kinetics, and
kinematics during crashes.

1.2 Objectives
The aim of this thesis is to evaluate the use of machine learning methods to build fast
surrogates for human body simulation responses in crash scenarios. This involves:

1. Evaluating the number of simulations required to build accurate machine learn-
ing models for a given set of FE parameters

2. Implementing machine learning pipelines comprising data preparation, model
validation and optimization for various types of responses (kinematics, kinet-
ics, injury metrics, and injury risks) from a Human Body Model.

1.3 Limitations
The development of the ML model in the first objective is done using hybrid III
HBM. The generation of data is done with approximated parameter ranges. Ranges
defined for the 90th percentile of the real world crashes are used.
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Data generated by SAFER HBM from a previous parametric study was used. The
data consisted of 1000 simulations and will not be extended if it is not enough for
the development and evaluation of ML models.

Evaluation of the machine learning models during this thesis was done using existing
python libraries like sklearn [21]. For this study we only studied the ML-model
prediction of the following FE-simulation outputs:

1. Hybrid III M50 fast model: HIC15, maximum head acceleration,maximum
neck force and maximum chest deflection.

2. SAFER HBM v9: HIC15, maximum head acceleration, maximum pelvis
acceleration, Rib strains, risk of 2+ rib fractures and maximum chest deflection
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2
Theory

Theoretical background of the methods used in this thesis is given in this chapter.

2.1 Machine Learning
Machine learning (ML) is a technique that involves algorithms to learn automat-
ically from data and improve on preceding experiences without being distinctly
programmed. Such algorithms work using existing data to build and continuously
process models to perform predictions. Conventionally, ML forms the core of data
mining to exhibit a hidden pattern in large data sets [15]. ML is classified into su-
pervised learning and unsupervised learning. In supervised learning, the algorithms
are trained with specifically labeled data set and analyses training data to generates
anticipated predictions on new data[22]. Supervised learning is further classified
into Regression and classification.

Regression modelling is the task to find the approximate mapping function to map
input variables(X) to continuous output variable (y). This method predicts a con-
tinuous variable which is a real value such as an integer or real number. This study
is mainly focused to evaluate regression modeling of supervised learning methods.

Every ML project is distinct as the type of data used and the aim of the project is
different. However, for every project the steps to train ML algorithms generally the
same. This process is referred to as the applied machine learning process. The four
steps involved in the applied machine learning process are represented in Figure 2.1.

Figure 2.1: Machine Learning Process Flow

2.2 Problem definition
This step involves studying the project objectives to select the framing of the pre-
diction task. Framing includes regression, classification, and unsupervised learn-
ing methods. The problem definition includes Data collection from the respective
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sources, selecting input and output variables for modeling, encapsulation of col-
lected data using statistical functions to describe mean, standard deviation, min
and max values, percentiles values to describe the data structure. These are the
steps considered before data processing.

2.3 Data processing
Data processing is to analyze the raw data for any abnormalities and outliers. If
any of these are present in the raw data, transformations are used to re-structure
the data. Transformations is a data preparation technique that is very specific to
the raw data and ML models.

Depending on the ML model used, the type of raw data to train and the relation-
ship between input and output variables will affect the prediction. The raw data
obtained from the simulations would presumably be skewed, possibly reducing the
ML performance. ML models perform better when data is evenly distributed in the
training range.

1. Skewness is a statistical measure to describe the symmetry of the distribution
in data about the mean [37]. Positive skewness represents more number of data
points on the right and negative skewness when more data is concentrated to
the left, as shown in Figure 2.2.

Figure 2.2: Types of Data Skewness

2. Skewness in the data is visualized using Kernel Density Estimate (KDE)
plots[38]. Y-axis of KDE plot represents a probability density function and
X-axis is an actual variable value. Histogram can also be integrated into KDE
plots, where the height of the histogram represents the probability density of
the value occurrence.

The skewness of the raw data cannot be corrected completely using transformations
but, it can be reduced for better performance of the ML model. The commonly
used transformations are log, Quantile, and Logit transformers [21] and these are
shown in Table 2.1. Quantile transformer converts data to a normal or uniform
distribution, it has an inbuilt inverse function.
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Table 2.1: Transformation methods

Transformation technique Formula Inverse
Log transform log(y) exp(y)
logit transform log( y

1−y ) exp y
exp y+1

Quantile transform sklearn.preprocessing.QuantileTransformer
.fit_transform(y) .inverse_transform(y)

2.4 Model selection and Evaluation

Every ML model is different and it’s performance depends on the type of data and
its distribution as mentioned in the previous section. Assessments on the model
to check its performance on test data is referred as model evaluation. Test data
consists of data not seen by the model before. Based on the Evaluation results The
model is selected.

To prepare a training set we split the data into train and test data. The train data
will be used to train the ML model and the test data set will be used to evaluate
the model performance. The split of the data from the original is shown in figure
2.3. The data is split evenly between the test and train preventing any out of range
data to be in test set. This will be verified using the KDE plot.

Figure 2.3: Split the original data to test and train

2.4.1 k-Fold Cross-validation

k-Fold cross validation (CV) works by randomly splitting the training data set into
k groups as described in the Figure 2.4 illustrating a 4 fold CV. In the first step, one
of the groups will be used as a test set referred to as validation set, the red group
as shown in the Figure 2.4. The rest of the group data will be used to train the ML
model. The model is fit and the validation data is used to evaluate the prediction
error. The prediction error is retained and the model is discarded. This process
iterates for the defined k times. During this process every group becomes a training
and the testing set. In the end of the process k different predictions for k different
test groups is obtained.
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Figure 2.4: K-Fold Cross Validation interpretation with 4 folds. Test set is repre-
sented in red and the train group by grey.

k-Fold CV makes the model more accurate in predicting. It is also a more efficient
way of using the training data as it prevents data loss as test data will also be used
for training in the process.

2.4.2 Metric Functions
An assessment criteria to evaluate the performance of the ML model is referred as
a metric. For regression we generally use error metrices like mean square error, root
mean square error and mean absolute error. In figure 2.5 the predicted value is
plotted against the true value. The 45 deg line represents X = Y i.e.,if a point is
on the line the prediction is accurate. The red line represents the residuals or the
variation of the prediction.

Figure 2.5: Error description due to deviation of the prediction from the actual
point
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1. Mean Squared Error(MSE)
Mean squared error calculates the difference between the true and the pre-
dicted value, represented in the 2.5 in red. Squared the values and gives the
mean of this for all the predictions.

MSE = 1
Nsamples

∑
(ytrue − yprediction)2 (2.1)

2. Root Mean Squared Error(RMSE)
The RMSE is the root of the MSE. This value is more easy for interpretation
of the results as the value scale is same as the true values.

RMSE =
√

1
Nsamples

∑
(ytrue − yprediction)2 (2.2)

3. Mean Absolute Error(MAE)
MAE is the mean of the absolute value of the residuals. This metric is used
for loss functions for various fit in ML algorithms.

MAE = 1
Nsamples

∑
|(ytrue − yprediction)| (2.3)

2.4.3 Bias and variance
The goal of a ML method is to generalise the knowledge obtained from training in
order to predict values from new inputs with maximum possible accuracy. Every
generated data will have a certain amount of noise. The exact value of any real world
system cannot be measured, similarly complex computer simulations for example
crash simulations runs over many time-steps with finite accuracy. Every time step
generates small errors due to many reasons for example rounding off. So the ML
model needs to study the underlying structure of the data and learn.

Every ML method has a unique framework to generalise the relationship of the inputs
and outputs. Sometimes this framework limits the ability of the model to learn
during the training process. This limits causes bias in the model. High biased model
prevents effective learning during the training, this is also referred as underfitting.

When the built model learns too much during training i.e., the model learns the noise
in the data along with useful information, it causes high variance in the predictions.
In this case the model does not generalise the relation between the input and the
output and it’s called overfitting.

A high biased model is limited by not being to train effectively and causing un-
derfitting. A high variance model will not generalise as it learns too much during
training causing overfitting [36]. The model should be selected trying to avoid both
these scenarios. To find this visualisation of the error is done using learning curve
and validation curve to do this.
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2.4.4 Validation curve
A validation curve is the plot of the error against the features of the ML model. The
features are the hyperparameters influencing the prediction accuracy of the model.
The hyperparameters affects the complexity of the model. Both the training and
the validation errors are plotted as represented in figure 2.6. Using the nature of
the curves of both training and validation a optimum model is selected.

Figure 2.6: Validation curve representing overfitting and underfitting

In the figure 2.6 a part of the plot when the both training and validation error
are high, the model has high bias causing underfitting as the model is not able to
learn during training. The region of the plot where the errors diverge, the training
error close to zero as the model learns too much during training. The validation
error is high as the model was unable to generalise to the new data, this resembles
overfitting.

2.4.5 Learning curves
Learning curve is the plot of the error against the training data sizes. Similar to
the validation curve both the validation and the training error is plotted to find the
suitable model. When the training and the validation errors converge early as seen
in figure 2.7 the model is highly biased. For this model with increase in the sample
size the error does not improve significantly as the model is underfitted. This can
be improved by tuning the ML method by adding more input parameters. In figure
2.8 there is a distance between the curves represented by a red line, this is due to
high variance. This case of overfitting can be improved by increasing the sample
size for training.
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Figure 2.7: Learning curve repre-
senting Bias

Figure 2.8: Learning curve repre-
senting variance

2.4.6 Hyper-parameter tuning
ML methods have unique features which defines the working of the method, these
are referred to as hyperparamters. Searching for the most suitable and ideal hy-
perparameters for the model to perform at its best for a data is called as Hyper-
parameter tuning. This is an important aspect influencing the model performance.
Many methods are used to tune the features like Random search and Grid search.
Discrete values of the features need to given these methods so that it can find the
best combination among the provided values. From the Validation curve an effective
range of features to avoid either overfitting or underfitting is selected.

1. Random search
Randomsearch is used to find a combination of hyperparametrs using limited
number of iterations. This method might overlook some combinations due to
limited iterations specified. But this gives a better picture on the range of the
hyperparameters.

2. Grid search
Gridsearch is the final step followed for fine tuning the ML model, it fits the
ML model to all the possible combination of from the set of discrete values
specifid in the range which is attained for Randomsearch. This gives the final
combination of features to a model.

2.5 Machine Learning Algorithms:
The implementation of Machine learning algorithms is dependent on the type of
objective defined for the project. Our objective involves finding the most suitable
ML model for different training samples with independent variables (X, input FE
parameters) with dependent variables (y, injury risk, and kinetics) using the post
processed data from FE simulations. Regression models are used and it involves the
following workflow.
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The training data set is used by the ML algorithm to learn and develop a hypothesis.
The hypothesis is developed relative to the ML algorithm to create a mapping
function f(X,y).

The mapping function, f(X,y) generalizes based on the most suitable ML model to
balance bias and variance by reducing the residual errors. The errors are computed
through cost function and gradient descent algorithms to minimize the errors.

Basic Principles in Machine learning:

1. Cost-Function
In machine learning, cost-functions are implemented to measure the goodness
of a model in realising its ability to evaluate the correlation between X and y.
It is calculated as the average difference between the predicted values (results
from the hypothesis) and actual output values y.

J = 1
2m

m∑
i=1

(yi − ŷi)2 (2.4)

where, J is cost-function, yi is the actual value and ŷi is the predicted value
from the ML model.

The above function is similar to MSE metric and 1
2m is included in the equation

to make mathematics simple and convenient to gradient descent computations.

2. Cost-function minimization - Gradient Descent
The Machine learning models learn by minimizing a cost- function using gra-
dient descent function[23]. Therefore, Gradient descent is an optimizing algo-
rithm that repeatedly attempts to get a local minimum of function[23].

Mathematically, gradient descent algorithm performs by taking the derivative
of cost function, where derivative is the slope of the tangent at that point. The
slope of cost-function is stepped down in the conduct with steepest descent.
As the ML models iterate, the function finds a convergence point with slope
zero inferring minimal residual error for those parameters of the hypothesis.

The iterative step size is determined by hyper-parameter called learning rate
α and is tuned manually[23]. When α is preferred far from the optimal value
α∗ the optimization algorithm diverges and if α < α∗ converges slowly[23].

Goal:
Minimize Cost-function until reaches convergence point/local minimum(zero slope).
Basically there are distinguished techniques to overcome overfitting for linear mod-
els and non-linear models respectively. The below techniques/methods assist to
generalise well to the data and learn well to prevent from overfitting or underfitting.

12



2. Theory

2.5.1 Linear Model
Linear model in regression modelling finds the line that best fits the data points
and gives a linear relationship between independent variables (X) and dependent
variable (y). When linear regression model comprises of a large number of X as in
Equation 2.5 will be affected by overfitting and multicollinearity, which exits when
independent variables are correlated with each other. Thus, the above conditions
reduce prediction accuracy of linear regression model on test data set.

Regularisation is a configuration of regression [26] which are imposed on linear mod-
els in order to minimize cost function to prevent overfitting. This is achieved by
penalizing models with large parameter values [25]. The common techniques are L1
and L2 regularisations[21], which are complimented to algorithm which minimizes
cost-function i.e. minimize((hθ(X)−yi)2 + λ ||θ| |) for L1 and minimize((hθ(X)−yi)2

+ λ ||θ| |2) for L2, where θ = parameters vector, and
hθ(X) = θ0 + θ1X1 + ......+ θnXn (2.5)

In this technique, the parameter "λ" is introduced which weights the penalty in
opposition to complex models with increasing variance in the data errors. This
results in giving increasing penalty as complexity of model increases [24].
The models developed based on regularisation technique are,

1. Ridge Regression
In Ridge regression, the cost-function is penalized/modified by adding a penalty[21]
parameter λ to square of the co-efficients(θ).Therefore, this method is com-
puted until minimizing the cost function. The cost function used for ridge
regression is,

J(θ) = 1
2m

 m∑
i=1

(hθ(X i)− yi)2 + λ
n∑
j=1

θ2
j

 (2.6)

where, j = number of co-efficient including intercept(θ0),yi is actual value and
λ is the regularisation parameter[28] which puts constraint on co-efficients by
regularizing so that when co-efficients take large values, the function shrinks
the co-efficients and aids to reduce model complexity. This gives small amount
of bias due to penalty and reduces variance.
The value of λ is chosen between 0 to positive infinity, so if λ = 0: The
ridge regression line is similar to cost-function of linear regression and if λ
is too large: The function smooths out excessively and cause underfitting[?].
The model is run using a function linear_model.Ridge from scikit-learn[21]
library.

2. Lasso Regression
The lasso regression is similar to concept of ridge regression. The difference is
instead of taking square, the absolute value of co-efficients(θ) are considered.
The cost function used for lasso regression is,

J(θ) = 1
2m

 m∑
i=1

(hθ(X i)− yi)2 + λ
n∑
j=1
|θj|

 (2.7)
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Similar to Ridge regression, when λ = 0, the above equation behaves as linear
regression cost-function by calculating only squared-residuals and if λ is incre-
ated to larger extent, the co-effcients values can lead to zero because increased
value of λ can smooth out excessively and results in zero intercepts leading to
underfitting. So, some features with less importance(zero-intercepts) are ig-
nored for the estimation of output in Lasso regression.Thus, Lasso regression
technique not just reduces overfitting condition but also does feature selection.
The model is run using a function linear_model.Lasso from scikit-learn[21]
library.

2.5.2 Decision Tree
The decision tress are classified based on the problem definition specified. For in-
stance, if the problem defined is to predict mapping function to map input variables
X to continuous variable y is classed as regression decision trees, wheres as to map
to discrete output variable y is classed as classification decision Tree. In this algo-
rithm, the data or samples are split into two or more sub samples based on significant
splitting decisions.
The structure and basic terminologies used in decision tree are shown in the below
figure.

Figure 2.9: Decision Tree algorithm structure

1. Root Node
This is the starting node of the tree which exemplify the entire sample and
gets further splits into two or more internal/sub nodes.

2. Internal Node
The internal node illustrates the distinguishing characteristics of data set and
branches further into sub-nodes depicting decision criterion.

3. Leaf Node: This is the last node which do not split further resulting in
giving final outcome in discrete value or average values of observations in that
decision tree/region.

Overfitting is the common problem faced from decision tree models when considered
continuous numerical variables. So, this problem can be overcome by limiting the
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hyper -parameters values using hyper-parameter tuning and cross-validation tech-
niques. The key hyper-parameters which significantly define the decision trees are:

1. min_samples_split: This parameter represents the minimum number of
samples/observations to be considered while splitting at each node. The higher
values could result in underfitting and vice versa. So, the optimum value is
chosen where the model is generalised well.

2. min_samples_leaf: This parameter represents minimum number of sam-
ples/observations required at leaf node. At leaf nodes, the mean of observa-
tions value are stored.

3. max_depth: This parameter tells the maximum depth of a tree. As the
depth is higher, the model learns specifically well to the samples selected.

4. max_features: The number of features to be considered for best split from
the node.

5. max_leaf_nodes: This parameter represents the number of nodes in a tree.
The leaf nodes are created substantially as the depth of the tree increases.

2.5.2.1 Regression Tree

Regression tree is a supervised learning method which solves multivariate regression
difficulties.When the data to be trained is skewed or non-linearly distributed, the
straight line(Linear regression) intuitively produces wrong predictions and leads
to contradictory mapping functions from X to y. Therefore, the regression tree
algorithms generates a tree considering all features observations with logical decision
technique during splitting at each node.

Figure 2.10: Recursive partitioning algorithm

In regression tress, the values obtained at leaf nodes during training are the mean
value of observations for that particular modelled decision.Therefore, when unseen
data is swamped in that decision tree flow, the predictions are performed with
the mean value. This algorithm performs with the initiation by using recursive
partitioning algorithm [32]. During splitting at each node of a tree,the algorithm
chooses the best variable and its decision limit value by least square error method or
least residual error. The Figure 2.10 illustrates the recursive partitioning technique
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through which decision tree splits the nodes on all the features of the data set and
then selects the appropriate variable and its limit resulting with least residual error.
The least squared residual/variance is calculated using the below equation,

Sum of squared residual error = 1
N

N∑
i=1

(y − ȳ)2 (2.8)

where, Y is observation values(actual values), Ȳ is mean of observation values as
shown in Figure 2.10, N is the number of samples and least residual error is selected
as shown by red box in Figure 2.11.Thus, a fully grown tree is built though splitting
process and continued up to the limit of hyper-parameters values specified by the
user.

Figure 2.11: Sum of squared residual plot at every X limit for Tree

2.5.3 Ensemble Methods
Ensemble, as the name, refers to grouping. Ensemble methods refer to combine mul-
tiple machine learning methods for classification and regression problems to achieve
better predictions with a trade-off between bias-variance errors. To elucidate, en-
semble methods are capable of reducing prediction errors and generalize well with
the model. The commonly used methods to implement ensemble techniques are
Boosting and Bagging. This thesis involves implementation of these two techniques
to build a good model for the injury risk predictions by generalising well with the
FE-simulation data.

1. Bagging: Bagging is a technique which combines several decision tress(regression
or classification based on problem definition) predictions on random samples
of a data set.
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(a) Random forest
The Random forest is a bagging technique which models several regression
trees using bootstrap1[27] data sets to overcome high variance/overfitting
condition on the training data. In regression problem, this algorithm
takes the average of all the regression tree outputs to generalise the pre-
dictions. The working flow of random forest algorithm is illustrated as
follows,

Figure 2.12: Random Forest Regression algorithm workflow

The steps followed in the random forest regression are as follows,
i. Consider the number of samples in the data set is M, then random

few samples from M sets of data are selected with indeed repetitive
data sets.

ii. Assuming if there are N number of features in M data sets, then
random n<N features are selected at each node. The splitting at each
node is performed as per the regression tree algorithm as discussed
above.

iii. Several decision trees are modeled using different data samples and
features and the unseen data is predicted by averaging the predictions
from trees modeled.

The random forest algorithm has hyper-parameters same as decision tree
with additional n_estimators parameter which represents the number of

1Bootstrap is a method which selects random samples from data set with replacement(enabling
to appear same sample more than once)
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regression trees to be modelled. These parameters contribute predomi-
nantly in performance of an algorithm in generating good predictions.

2. Boosting

Boosting is an ensemble technique that enhances weak-learners into a strong-
learner[29] for predictive modeling problems. This technique applies to both
classification and regression problems. A weak learner is a decision tree, also
known as a base learner to generate a strong rule[30]. So, multiple weak learn-
ers(decision trees) are built for the same training data sets in each iteration.
And combines each learner to form a strong rule and predictions from the
multiple decision trees are aggregated for a regression problem.

(a) Gradient Boost

Gradient boost is a boosting technique and developed from decision tree
models. The tress are added sequentially based on the residuals from the
previous tress and fit until residual errors are minimized. This algorithm
uses a gradient-descent algorithm, so the name Gradient boosting and the
model is fit until the gradient is minimized. The below figure explains
the overview of an algorithm,

Figure 2.13: Gradient Boost Regression algorithm workflow

The steps involved in GradientBoost regression algorithm for predicting
y from training data set as follows,

i. Firstly, the average of y variable values is calculated as shown in
Figure 2.13, considering that all values of y variable is equal to mean.

ii. The gradient boost algorithm builds a tree based on errors i.e. Resid-
ual Error (yi− ȳ) from previous tree. And prediction is performed for
every data set by considering average of y variable values calculated
at first and decision tree with multiplication factor α or learning rate
as in Figure 2.13. This learning rate solves the problem of low bias

18



2. Theory

and high variance issue by scaling a tree such that taking small steps
results in better predictions with test data set i.e Low variance.

iii. The Residuals are calculated for each training set by taking the dif-
ference between observed weight calculated from step1 and latest
predictions from the tree built. If the residuals obtained are smaller
than previous, then acclaimed for proceeding in the right direction.

iv. The new tree is built with the new residuals and combined with the
previous tree and average value calculated at the initial step. All the
trees are scaled with appropriate learning rate and add everything
together. The predictions are made with the training data set and
residuals are calculated as previous step. The tress are built till the
residual error has reached minimum and stable.

The final outcome of the model is represented mathematically as follows,

F (x) = h0(x) + α1h1(x) + ....+ αnhn(x) (2.9)

F (x) =
n∑
i=1

αihi(x) (2.10)

where, h(x) = cost function and α = learning rate The hyper-parameters
used for gradient boosting regressor are similar to Random Forest regres-
sor with additional α which is called as learning rate.

(b) XG Boost

The XG Boost is similar to the Gradient boosting algorithm but uses
a unique regression tree. This algorithm was designed to be used with
large, complicated or unstructured datasets on classification and regres-
sion modelling problems. Like in Gradient Boosting algorithm, the resid-
uals are calculated first and Unique XGBoost trees are built on those
values. The steps involved while building XGBoost trees for regression
are,

i. Firstly, the similarity scores are calculated for Root node and leafs.
The root node contains all the residuals and consider threshold (’X’
limit) to split the node into two groups containing residuals. And
later, Gain is calculated to the root node to determine the splitting of
data with optimal threshold. The similarity and Gain are calculated
as follows,

Similarity_score = Sumofresidualsquared

Numberofresiduals+ λ
(2.11)
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Gain = Left_leafsimilarity+Right_leafsimilarity−Root_nodesimilarity
(2.12)

ii. The tree is pruned2 by calculating the difference between Gain values
and a user defined complexity parameter, γ(Gamma).
- The tree is not pruned, if the difference is positive
- The tree is pruned, if the difference is negative

iii. Lastly, the output values are calculated for the remaining leafs after
tree is built.

Output_value = Sumofresidualsquared

Numberofresiduals+ λ
(2.13)

Here, λ is a regularisation parameter and when λ > 0, results in
more pruning, therby shrinking the similarity scores, and results in
smaller output values in the leaves. So, the complete tree is built
considering the hyper-parameters namely λ, γ and learning rate η ,
which is same as α in Gradient boosting algorithm.

(c) Histogram-based Gradient Boosting Regression Tree

Histogram-based gradient boosting technique is an ensemble method built
based on gradient boosting regressor algorithm. Gradient boosting per-
forms well for structured predictive modeling problems. Even though the
gradient boosting algorithm performs well in practice, the training pro-
cess slows down because trees need to be created and added sequentially.

Histogram Gradient boosting regressor method improves the training pro-
cess by decreasing the number of values by discretizing output variables
especially for regression problems into fixed groups. The discretization
method converts the output variables which are of different distribu-
tion(skewed data set) to a continuous probability distribution (normal
distribution) and eventually reduces the number of essential values for
each feature from thousands of down to hundreds of or tens of. There-
fore, the decision trees are built on discrete or a continuous probability
distribution dataset instead of discrete values in the training set.

The histogram represents the discretization of data which are used in the
construction of trees, so it is intuitive to refer gradient boost algorithms
as histogram-based gradient boosting regression tree. Hyper-parameters
used are similar to gradient boosting regression with an important addi-
tional parameter named l2_regularisation[21], which helps in gener-
alizing the model to overcome overfitting.

2Pruning is a method to overcome overfitting a regression tree to training data. This is achieved
by removing some of the leaf nodes and replace the split with a leaf that is average of large number
of Y variable values. Leaf nodes are removed until the minimization in the cot-function has reached
on the test set
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2.5.4 Gaussian Process Regression (GPR)
Gaussian process is a distribution over the function f(X) defined by a mean value
µ(X) and a covariance function Σ(X, y) [31]. The GPR can be represented in a
equation as in 2.14 where GP is the defined GPR.

f(X) ∼ GP (µ(X),Σ(X, y)) (2.14)

Gaussian process distributions over a defied function can be used like regression
models. Gaussian process defined by the kernel function can be used to create a
distribution of the given data. This distribution can then be used to predict values
of output y based on the given input X [34].
A covariance function is an essential part of the Gaussian process model as it deter-
mines the continuity properties of predictions. Covariance functions are also known
as kernels. Some examples of kernels used are,

1. Rational Quadratic
Rational Quadratic kernel is similar to the addition of several squared ex-
ponential kernels of various length scales, which determines the range of the
Gaussian process. The parameter α in the equation of the kernel regulates the
relative weight of the variations. The Gaussian process for using this kernel
varies very smoothly in the ranges defined.[35]. in the equation X is the inputs
and y is the outputs. σ is the variance, l is the length scale, bigger the value
of l2 less complex the fit. α is the scale mixture.d() function is the euclidean
distance.

k(X, y) = σ2
(

1 + d(X, y)2

2αl2

)−α

(2.15)

2. Exponential
This kernel raises a scalar input p to the base kernel as represented in the
above equation.

kexp(X, y) = k(X, y)p (2.16)

2.6 Finite Element Analysis
Finite Element Analysis (FEA) is the representation of a physical occurrence such
as a crash scenario using numerical technique called Finite Element Method (FEM).
Using FEA, complex situations such as in crash are being studied in detail and can
be used for the development of safety systems.

2.6.1 Human Body Models for Injury assessment
Human Body Models (HBMs) are numerical tools used to simulate occupant re-
sponses in crash scenarios. To develop safety systems it is important to understand
the injury mechanisms. Injury criteria are used to develop safety systems in vehi-
cles. As compared to physical crash test dummies, HBM is sensitive to different
loading directions similar to a physical occupant. HBM’s can represent different
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occupant sizes, gender, anthropometry. HBM’s are essential tools for virtual testing
and verification within traffic safety research to improve and evaluate real life safety
systems.[10]

2.6.1.1 Hybrid III M50 Fast Model

Hybrid III M50 Fast Model is a semi-deformable FE model. The name fast represents
that the model is inexpensive due to the presence of fewer elements. The model used
in this project represents a 50th percentile male dummy, 175.26 cm tall, and has a
mass of approximately 78 kg. Due to the less computation time, this model was
used to run simulations to generate data to train ML models.

2.6.1.2 SAFER HBM v9

The model used in this study is Version 9 of the SAFER HBM representing the
50th percentile male. This model contains increased anatomical detail and improved
biofidelity of material models representing the human occupant in more detail. Ver-
sion 9 has an improved generic ribcage representing a human male [11]. SAFER
HBM v9 is used to study injury and injury mechanisms in greater detail compared
to the Hybrid III M50 Fast Model.

2.6.2 Injury criteria and Injury risk
Traumatic injuries occur when the mechanical tolerance limits of the body are ex-
ceeded. Injuries are generally believed to result from excess strain induced by direct
or indirect loading. Injury criteria are the probability of trauma to mechanical pa-
rameters which can be measured using instrumented crash test dummies or cadavers,
or evaluated in a numerical model. Without injury criteria, the severity of trauma
in crash reconstruction cannot be evaluated [14].

Injury risk is the measure of the likelihood of an occupant to be injured during a
crash. It is defined in terms of probability or percentage as the number of crashes
divided by the size of the population [41].

Head Injury Criteria (HIC) is the measure of the likelihood of head injury occurring
due to head impact during a crash. It calculated using the head acceleration mea-
sured at the center of mass of the crash test dummy or a FE HBM. In the equation
to calculate the HIC, equation 2.17 t1andt2 are the initial and final time used to
calculate HIC.

HIC = max
[ 1
t2 − t1

∫ t2

t1
a(t)dt)

]2.5
(t2 − t1) (2.17)

2.6.3 Application of FE in ML
The crash reconstruction parameters influence the injury to the occupant. These
crash reconstruction parameters are used as input parameters and the injury criteria,
injury risk, and injury matrices are the outputs. An ML model generalizes the
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relation between a set of input and its output. To develop a surrogate of the FE-
HBM to predict injury, reconstruction parameters are the inputs and the injury
predictions are the outputs. A well established, generalized relation between the
two is set up using various ML algorithms.

2.6.4 Softwares Used
In this thesis, LS-DYNA (R11.1) was used to numerically solve the model. The pa-
rameter sampling by distributing the parameters in a design space was done using
dynakit, a tool developed in this thesis to structure the design process in a design
space. dynakit is developed in python(3.8.5) scripting tool and this library is avail-
able in package installer for Python. The post processing of the simulations was
done in LS-Post processor, Lasso-python(1.5.0) python library, and META post
processor (v 20.1.1).
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3
Surrogate Models for Dummy

Responses

In this chapter, surrogates to a human body model dummy were evaluated by explor-
ing ML pipeline comprising data preparation, model validation, and optimization
for HIC15, maximum chest deflection, maximum Head acceleration, and maximum
Neck force during a crash. Further, the number of simulations were evaluated for
accurate surrogates for two data sets generated from the Hybrid III M50 fast model.

3.1 Methods
Surrogate models were built using the data generated from FE simulations. The
data was analyzed and prepared to train the ML models. Later, the models were
tuned and optimized to get accurate predictions and finally evaluated using error
metrics. The workflow is explained in detail in the below sections.

3.1.1 Generate Data
The data was generated using a fast hybrid III model for its short computational run
time. The model used in this study represents the 50th percentile male population
and is in a seated position at the driver’s end. Various factors influence injuries
during a crash, and these factors are referred to as FE parameters. Two categories
of data were generated based on FE parameters to investigate its influence on ML
model performance.

1. Restraint Parameters
This consists of parameters influencing the restraints in the vehicle to protect
the occupant. The parameters included are belt pre-tensioner trigger time,
max belt pre-tensioner force, seatbelt load limiting force, airbag peak pressure,
airbag pressure leakage rate scale factor, airbag trigger time, and steering
column compressive force.

2. Crash parameters
This consists of parameters influencing the crash situation. The parameters
included are delta velocity, angle of impact during a crash (PDOF_H), and
crash pulse duration which is the time period of the acceleration pulse acting
on the vehicle. A shorter pulse duration results in higher impulse force on the
occupant.
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Injury criteria and kinematics related to injury outputs are generated from simula-
tion in LS DYNA. Four outputs were selected to evaluate the ML models,

1. HIC15
HIC15 is the measure of HIC over 15 ms. Lower HIC15 values may result in
minor concussions and the higher values may result in severe head injuries.

2. Maximum head acceleration
Maximum head acceleration is the peak acceleration measured at the center
of mass of the head.

3. Maximum chest deflection
Maximum chest deflection is a measure of rib cage compression during a crash.
In the fast hybrid III model, a spring damper is designed near the thoracic area
which captures this measure. Higher chest deflection might result in fractured
ribs and might result in injuries to internal organs.

4. Maximum Neck force
Maximum Neck force is the measure of the maximum resultant force acting on
the neck. It is recorded approximately near the C3 and C4 Cervical bones of
the spine in the fast hybrid III model. A high value of neck force corresponds
to the possibility of injuries to the neck.

There are many variations in FE parameters during a crash. To develop a surrogate
model, the data to train the model should be distributed in a design space that
envelops all the FE parameter variations. The study conducted by Iraeus J and
Lindquist M [12] presented ranges of FE parameter for 90th percentile of real-life
crashes. These ranges were used to generate data to evaluate the ML model in this
study. The values in Table 3.1 were used to uniformly distribute FE parameter
values in a design space.

Table 3.1: Parameter ranges for the uniform distribution for sampling and gener-
ation of data

Parameters Unit Minimum Maximum
Pretensioner trigger time [ms] 5 15
max pull-force of pretensioner [KN] 0.99 2.5
Load limiter force [KN] 2.25 5.85
Airbag pressure [KPa] 111 170
Airbag leakage Scale factor [ - ] 0.5 1.5
Airbag trigger [ms] 16 23
steering column compressive force [KN] 3 6.6
Delta Velocity [Km/h] 40 60
Pulse duration [ ms ] 77.2 142
Angle of impact [degree] -10 10
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3.1.2 FE Simulations
Design of Experiment (DOE) was performed for the FE parameters to generate
training data to be uniformly distributed in the parameter range space. DOE was
conducted on the FE input parameters using Latin hypercube sampling with uniform
distribution. A workflow was developed for parametric simulations and packaged
as a python library called dynakit. The parametric key files were solved using LS
DYNA. Maximum head acceleration, maximum neck force, maximum chest deflec-
tion, and the HIC15 values were post-processed using META post to evaluate the
ML model. Finally, the post-processed data was assembled with the FE parameters
into a single data set.

3.1.3 Exploratory Data Analysis
The output data generated from FE simulations could be noisy, skewed, or have
some outlier points. Statistically, outliers are those points that do not belong to the
majority, but in FE simulations some meaningful data points may not belong to the
majority group due to the combination of input parameters causing odd data. Such
data points are recognized and analyzed.

Figures in appendix A.1 and A.2 are used to check the data for any kind of ab-
normalities like skewness. Since the data used during the study was generated in
parameter space with uniform distribution, outputs were evenly spread. The skew-
ness of the data was checked using a KDE plot which represents the distribution of
the data as seen in Figure 3.1 and Figures 3.2. The skewness value between [−1, 1]
[39] of the training data considered to be acceptable for ML.

Figure 3.1: Distribution of the
dummy chest deflection response in the
simulations where 7 parameters in the
restraint system were varied.

Figure 3.2: Distribution of the
dummy chest deflection response in the
simulations where 10 parameters in the
crash and restraint system were varied.
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3.1.4 Build a Machine Learning model
The analyzed data was divided into a test set and train set using a module from
sklearn [21]. 20% of the data was used for testing and the rest was used to train
using k-Fold CV. Figure 3.3 was used to evaluate the even split of the data into
test and train. 10 fold training was implemented to train the model using 108
samples. The training and the testing errors were evaluated using Mean absolute
error (MAE). MAE was used instead of root mean square error (RMSE) because
RMSE penalizes the error more than MAE. A single wrong prediction can get the
mean error to increase more compared to MAE. So, to evaluate the performance of
prediction, MAE is a better criterion.

Figure 3.3: Distribution of the chest deflection values when split into test and
train. The values are plotted against the probability density of the value.

ML models listed in Table 3.2 were used to train and prediction accuracy of each
was compared. The hyperparameters of each model were tuned using random search
and grid search to find the most suitable model for the selected outputs. The final
tuned models are tabulated in Appendix section A.3.

Table 3.2: library in python from which the ML model is used and its version

ML Method Python package Version
Lasso regressor sklearn.linear_model.Lasso scikit-learn version 0.23.2
Ridge regressor sklearn.linear_model.Ridge scikit-learn version 0.23.2
Decision Tree regressor sklearn.tree.DecisionTreeRegressor scikit-learn version 0.23.2
Random Forest regressor sklearn.ensemble.RandomForestRegressor scikit-learn version 0.23.2
Gradient boost regressor sklearn.ensemble.GradientBoostingRegressor scikit-learn version 0.23.2
Histogram based gradient
boost regressor sklearn.ensemble.HistGradientBoostingRegressor scikit-learn version 0.23.2

XGBoost regressor xgboost.XGBRegressor xgboost version 1.4.2
Gaussian process regressor sklearn.gaussian_process.GaussianProcessRegressor scikit-learn version 0.23.2

The model performances were compared using bar plots of test and train MAE.
Residual plots of the test set were used to evaluate the predictions of the test set
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for an ML model. ML model was trained with various training sizes and tested,
the outputs were plotted to determine the most suitable model for the number of
training samples available.

3.1.5 Numerical Noise estimation
Computational models like FE models while simulating may have numerical noise
because of round-off errors in numerical solvers, nonlinear contacts defined in the
model, control settings for the solver, etc. So, this numerical noise may possibly
affect the results accuracy of surrogates. It is necessary to estimate this value in
order to draw any conclusions regarding the performance of the ML model.

To estimate the value of numerical noise, the variation in output for small percentage
change in input has to be evaluated. The change should not be too big as it might
capture the true data. Too small change will fail to capture the noise. For the
study ±0.5% change is selected. The input FE parameters are uniformly distributed
within ±0.5% change from the mean. Total of 60 samples were simulated and post
processed. The average difference of the values from the mean was calculated and
used to evaluate prediction results for different models.

3.2 Result
The performances of the ML models for two different sets of simulation data in
predicting outputs are illustrated. Both the data sets have a total of 130 samples.
Before comparing the prediction accuracy of the models, the magnitude of numerical
noise was estimated. The range to evaluate the noise was selected for HIC15 values
between 300 to 400, as these values had relatively higher prediction residuals. The
noise was estimated based on data distribution plots in Appendix A.1 where the
mean of all the outputs considered to be the true value. The mean difference of the
values from the true value is calculated and listed in Table 3.3.

Table 3.3: Numerical Noise estimates for the generated samples

Measure Unit
Numerical Noise Estimate

Restraint
FE parameters

Crash and Restraint
FE parameters

HIC15 [−] 36.927 42.182
Maximum Chest Deflection [mm] 0.749 0.673
Maximum Head Acceleration [m/s2] 0.055 0.063
Maximum Neck Force [KN ] 0.069 0.068

Test MAE curves indicating the MAE of predictions for different training sample
can be used to select suitable models. Random forest regressor performed better
than the other models in predicting the values of HIC15 when trained for 10 samples
of data with 7 input FE parameters as seen in Figure 3.4a. With the increase in
samples, linear models namely Lasso and Ridge perform better until 90 training
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samples. Further increasing the samples to about 120, tree-based boosting methods
outperform in predicting accurate results. Similarly, When the input FE parameters
in the data are increased to 10, resulted in giving similar results as shown in Figure
3.4b.

(a) Restraint parameters (b) Crash and Restraint parameters

Figure 3.4: Test set MAE for HIC surrogate models with respect to sample size

(a) Restraint parameters (b) Crash and Restraint parameters

Figure 3.5: Test set MAE for maximum chest deflection surrogate models with
respect to sample size

The test MAE reduced with increase in sample size for all the output measures.
However, for Maximum chest deflection (Figure 3.5) , XGBoost does not predict
good results for fewer training samples. When up to 90 training samples are avail-
able, linear models are better to predict maximum head acceleration (Figure 3.6).

30



3. Surrogate Models for Dummy Responses

Tree-based boosting methods predict maximum neck force ( Figure 3.7) better than
the other models when 90 - 120 training samples are available. These curves can
be used for selecting suitable ML models for all outputs based on the training data
available and the accuracy required.

(a) Restraint parameters (b) Crash and Restraint parameters

Figure 3.6: Test set MAE for maximum head acceleration surrogate models with
respect to sample size

(a) Restraint parameters (b) Crash and Restraint parameters

Figure 3.7: Test set MAE for maximum neck force surrogate models with respect
to sample size

The final tuned model as presented in Appendix Table A.8 was used to predict
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HIC15 values. The training and testing MAE for the ML models considered were
near to numerical noise estimate, except for decision tree model which resulted
with high test error as shown in Figure 3.8. Among the ML models considered,
Tree-based boosting methods like Gradient boost, XGBoost, and Histogram-based
gradient boosting outperform the other in predicting HIC15 values. When compared
with other boosting methods, the training error for XGBoost was proximate to the
estimated noise.

Figure 3.8: Model comparisons for test and train MAE of predictions using bar
graph of HIC15 with noise estimate for crash and restraint parameters

The learning curve for XGBoost in Figure 3.9 shows the comparison of the training
and cross-validation errors. The training error is within one standard deviation
value of MAE for testing. It implies that the model would not be highly biased or
have high variance.

Figure 3.9: Learning Curve for XGBoost to predict HIC15 for data with Crash
and Restraint FE parameters

Prediction accuracy of ML model was evaluated using residuals. The residuals for
the test set are plotted against the predicted values as shown in Figure 3.10. The
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average value of the residuals is around 42.182. The residuals for testing are not
high compared to the test residuals, which indicates the model does not overfit. One
bad prediction around 270 influenced the MAE of testing. Increasing the number of
training samples will improve this.

Figure 3.10: Residual plot for XGBoost to predict HIC15 for crash and restraint
parameters

The presented workflow for selecting and evaluating the model was applied to other
outputs too. The comparison graph, the learning curve for the most suitable model,
and the residual plot that illustrates the prediction performance for the other output
measures are provided in Appendix A.2 for the two data sets.

3.3 Discussion
ML model performance in predicting output measures depends on many factors, in-
cluding the number of input variables, the size of training data, type of distribution,
the level of numerical noise, and the algorithm type. The selection of the ML model
based on the availability of training samples and the required prediction accuracy
for two categories of data sets was evaluated with test MAE plots.

Since a uniform sampling distribution was applied to a defined range, the data
generated had no skewness. In all evaluations, the output measures were evenly
distributed, thus no transformations were necessary. This has also been verified, as
the transformation implementation did not improve the prediction accuracy of all
evaluated models.

3.3.1 Estimating the number of simulations needed to ob-
tain accurate models

ML models (linear and nonlinear) were extensively tuned, trained, and tested to
achieve accurate predictions. The suitability of a model in predicting an output
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measure is affected by the number of training samples and the number of FE param-
eters. Sometimes, high complex models are not suited to predict outputs compared
to simpler models. Complex models (tree-based models and GPR) typically have
more effective hyperparameters than simple models (linear models). This because
models undergo overfitting by learning well with training data rather than general-
izing. Lasso and Ridge, when trained with 30 - 90 samples, performed consistently
better than other models in predicting all outputs.

HIC15 predictions showed nearly equal MAE for test and train for all the models
except Decision Tree in Figure 3.8, indicating that these models do not overfit or
underfit. All the training MAEs are near the estimated noise, which implies the
models do not learn too much noise. As the Decision Tree model builds a single
tree, it might overfit the training data. Random Forest, which has the option to
increase the number of trees, n_estimators can be used to decrease overfitting.
But the testing MAE is considerably more compared to the training error. In tree-
based boosting, the MAE is reduced by using hyperparameters such as regularisation
parameters to overcome overfitting. As a result boosting methods like Gradient
boost, XGBoost, and Histogram-based gradient boost have lower prediction MAE
for testing compared to the others. Among the three methods, XGBoost especially
has the lowest test error. This indicates that the model predicts the HIC15 values
generalizing the data without learning the numerical noise. To further evaluate the
XGBoost model, the learning curve and residual plot are studied. As we see in the
learning curve in Figure 3.9 the training error is within the standard deviation of
the cross-validation error. The curve also indicates the model has less variance and
bias, implying the model does not underfit or overfit.

Residuals in Figure 3.10 illustrate that the residuals are not consistently high. In
the figure, the residual for one of the predictions is very high, this can be reduced by
training the model with more samples. From the learning curve, by increasing the
number of training samples, the training and cross-validation MAE can be decreased.
However, the model might end up learning the noise in the data as the training error
with the current sample size is at the limit of estimated noise. Similarly, the model
selection procedure and inferences can be followed for all output measures.

Tree-based models and GPR are prone to overfitting with fewer samples because
the models learn the training set too well and fail to generalize. These models are
not suitable to predict HBM output measures for small training sizes. And for
larger training samples, preferably from 105 to 120, tree-based boosting methods
are consistently good in predicting near the limit of all output measures.

3.3.2 Numerical Noise
The numerical noise in the FE simulation data needs to be estimated before com-
paring the prediction MAE of various ML models. A variation of ±0.5% in input FE
parameter from the mean values resulted in 17.5% variation in HIC15 output, this
variation is referred as numerical noise. Numerical noise was estimated by chang-
ing the input FE parameters by a small amount and checked for the variation in
the output. The small amount is not standard, as if this is too big might end up

34



3. Surrogate Models for Dummy Responses

considering true values as noise. But, if the amount to change is too small might
fail to capture the noise. ±0.5% change was used for the study, as this value might
not be true, so it has referred to as estimates. The noise estimated in was varied by
±0.5% around the values of FE parameters resulting HIC15 value between 300-400.
Varying it around other values can have a different estimate so the estimated values
are only an approximate measure. For a more accurate value for estimating, the
numerical noise should be calculated for all the measures separately.

3.4 Conclusion
The prediction accuracy of different ML models with an increase in sample size was
evaluated using test error curves for each output. In general, test MAE of all ML
models showed a decreasing trend with an increase in training sample size. Model
is defined as accurate when the change in error percentage is not significant with
an increase in training samples, i.e the accuracy saturates over increase in training
samples as the model has reached the error limit. The sample size required to attain
accuracy was different for each output. For maximum chest deflection, a minimum
of 60 training samples was required to get accurate results. With an increase in
samples size from 60 to 108, the percentage change in test MAE curve slope is
about 0.75%. Decreasing the training sample size from 60 to 30 increases the MAE
by 2%. Similarly, the minimum number of samples required to get accurate ML
models for each output are listed in Table 3.4.

Table 3.4: Change in percentage of test curve slope with respect to sample size

Output Measure Number of
training samples

% Change in MAE with
further increase in samples

Maximum chest deflection 60 0.75
HIC15 90 4.90
Maximum head acceleration 60 0.01
Maximum neck force 30 0.02

Among the evaluated models, the suitable models in predicting outputs observed
to tree-based boosting methods. The suitable model for each output measure is
summarized in Table 3.5. In the process of model evaluation, numerical noise found
to be an important factor for selecting ML models. The numerical noise in the
training data has to be estimated to make better inferences of the results.

Table 3.5: Suitable ML models for outputs

Output Measure Restraint parameters Crash and
restraint parameters

Maximum chest deflection Histogram based gradient boostin Gradient boosting
HIC15 Gradient boosting XGBoost
Maximum head acceleration Histogram based gradient boostin XGBoost
Maximum neck force Histogram based gradient boostin Gradient boosting
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Model

Surrogate models to SAFER HBM are built in this chapter. ML pipeline were imple-
mented to determine how many simulations are required to predict accurate outputs.
The ML pipeline include data preparation, model validation, and optimization. The
models were trained for outputs namely, HIC15, risk of rib fracture, maximum head
acceleration, maximum chest deflection, maximum pelvis acceleration, and strains
on all 24 ribs.

4.1 Available Data

The study used data from Iraeus J., and Pipkorn [11], which used SAFER HBM v9
FE model to evaluate occupant response. The data had 1000 crashes reconstructed
using the parameters which are sampled based on distributions derived from real-life
crashes. Latin hypercube sampling was used to sample the data. Surrogate models
are built based on input parameters and post-processed outputs, as shown in Table
4.1.

Surrogate models were training for two kinds of output measures, HBM responses,
and injury metrics. Responses include maximum head acceleration, maximum pelvis
acceleration, the peak rib strains for all the ribs, and the chest compression value.
Injury metrics HIC15 and the risk percentage of two or more rib fractures for a 45
years occupant were computed using a Poisson-binominal distribution function of
the maximum rib strains [42].

From the available data, the output variables selected as mentioned in Table 4.1
are extracted and combined into a single data set. Approximately 0.5% pf the
simulations had an error termination due to numerical issues during solving. These
samples were recognized and excluded from further studies. Linear regression models
like lasso and ridge, tree-based regression models like the Random Forest, Gradient
boost, XGBoost, Histogram-based gradient boosting, and Gaussian process regressor
was used to develop ML models for all the selected outputs. The performance of the
different models was compared to find the best-suited model for each of the outputs.
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Table 4.1: FE parameters in the available data which was used as the input to
develop the ML and the outputs based on kinetics like max head acceleration, max
pelvis acceleration, Dmax and the rib strains. Injury criteria HIC15 and rib fracture
risk

FE Reconstruction parameters Postprocessed outputs
Friction between occupant and airbag HIC15
Friction between occupant and seatbelt Dmax
Seatbelt loadlimiter force Max pelvis acceleration
Delta Velocity (in km/h) Max Head acceleration
Pulse duration (in ms) Risk of 2+rib fracture 45yrs+
Horizontal pulse angle (PDOF_H) 24 Max rib strains
Airbag peak pressure (in kPa/100)
Radii of driver airbag
EV1 to EV3 (defines the pulse shape)
Trig time for driver airbag (in ms)
Friction between occupant and instrument panel
Linear stiffness of knee impact area (in kN/100mm def)
Seatbelt pretension force (in kN)
Deformation force for lower part of rim (in kN)
Friction between occupant and seat
Slipring friction
Steering wheel angle (in degrees)
Steering column axial collapse force (in kN)
Steering wheel longitudinal adjustment (in mm)
Yaw scale factor

4.2 Methods
A similar procedure as that used in chapter 3 was used in developing the surrogate
model. The data structure was evaluated as the first step of the process. ML models
do not perform well with skewed training data, so any abnormalities in the data were
checked. The output measures in the available data were skewed as shown in Table
4.2 and Appendix Table B.5. Before training the model, transformations are used
to correct the skewness.

Table 4.2: Skewness of the output data and the transforms used to correct it.

Parameter Initial skewness Final Skewness Transformer
Dmax 0.468 [ - ] [ - ]

Max pelvis acceleration 1.315 0.000 quantile
Risk of rib fracture 3.533 0.534 logit

HIC 15 6.646 -0.002 quantile
Max head acceleration 2.095 0.000 quantile

ML models listed in Table 3.2 were used to train surrogate models and compare
the performances. 20% of the 1000 samples was used as the test set was later used
to evaluate the model performance. The remaining 795 samples were trained using
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the 10-fold training technique. The ML models were tuned using random search
and grid search, and the final tuned models for all output measures are presented
in Table B.10.

MAE for the test set, which compares the predictions of the ML models, is evaluated
for different training sample sizes to find the number of simulations needed to train
accurate models. The performance of the best-suited model was further evaluated
using learning curves and residual plots for all measures.

According to the studies in chapter 3, simulation data will have some numerical noise
during FE simulations. To draw more meaningful conclusions from the results, the
magnitude of numerical noise was estimated. 64 simulations were performed with
input FE parameters changed by ±0.5% from their mean values. The mean variation
of the results from the 64 simulations were used as the numerical noise estimate.

4.3 Results
In this section, we evaluate the performance of ML models in predicting HBM
responses and injury metrics for different training samples sizes to find the most
suitable model for a given training size. The used data had 21 input FE parameters
and 1000 samples based on distributions extracted from real-life crashes. A total of
six simulations failed to complete because of error terminations. These were excluded
from further analysis. The magnitude of the numerical noise was estimated for all
the outputs from the distribution of output measures and is tabulated in Table 4.3.
The plots of the distribution are included in Appendix B.1.

Table 4.3: Estimated numerical noise for SAFER HBM

Measure Units Numerical Noise Estimate
HIC15 [−] 6.443
Rib fracture risk probability [−] 0.027
Maximum Chest Deflection [mm] 0.294
Maximum Head Acceleration [g] 6.009
Maximum Pelvis Acceleration [g] 1.002
1st Left Rib strain [%] 0.173

The available data was skewed, therefore appropriate transformation methods, such
as logarithmic, logit, and quantile, were implemented to correct it. The HIC15 data
had very high values that would have been caused due to situations not occurring in
real-life crashes, but rather a theoretical case. To inspect this extremity, the peak
value of HIC15 in the available data was used i.e. 20008. The crash animation
was analyzed to find the reason for the values being over 20000 and observed that
the forces acting on the occupant were not physical. Poor parameter combinations
like high crash pulse, low load limiter force, late trigger time of the airbag, rigid
wind screen, and high relative velocity caused this condition. From an injury point
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of view, AIS 3+ injuries are severe and difficult to medicate. By referring to the
HIC15 risk curves as a function of AIS level determined by the study from Hayes and
Kuppa (2004) [40], values of HIC15 above 2000 results in 100% possibility of AIS3+
injury. So, the HIC15 data is limited to 2000. After limiting the maximum values
to 2000, the data had positive skewness (right-skewed). Quantile transformation
was used to convert skewed data to a normal distribution as shown in Table 4.2.
Figure 4.1a represents the initial data distribution and Figure 4.1b represents the
distribution after transformation. A similar procedure was followed to analyze and
correct skewness in the data for all output measures.

(a) Distribution of raw data from FE sim-
ulations

(b) Distribution of data after using quan-
tile transformation

Figure 4.1: Data preparation for HIC15 raw data

Test MAE curves for the output measures were used to determine the number of
training samples needed to get models with a specified accuracy. A suitable model
was selected using these curves based on the available training size.

(a) HIC15 (b) Rib fracture risk
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(c) Maximum head acceleration (d) Maximum pelvis acceleration

(e) Maximum chest deflection (f) 1st Left Rib strain

Figure 4.2: Test MAE curves for model comparison when trained with different
size of training data

When 795 training samples are available, the most suitable model to predict rib
fracture risk was determined from Figure 4.2b. Histogram-based gradient boost and
XGBoost outperform other models to predict rib fracture risk. To verify the test
error curve, the test and training MAE for all the models are compared in Figure
4.3. Model performance is evaluated based on residual distribution and MAE for the
test and training sets. The residuals and the MAE for all the models are tabulated
in Table 4.4.
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Table 4.4: Comparison of MAE and residuals for probability of more than 2 ribs
fracture for 45 years and older occupants of different ML models

ML Method
MAE Residual

Train Test Train Test
mean std mean std

Lasso 0.044 0.052 -0.003 0.131 -0.014 0.149
Ridge 0.044 0.053 -0.003 0.131 -0.014 0.149
Random Forest 0.032 0.046 0.010 0.106 -0.006 0.154
Gradient Boost 0.030 0.050 -0.003 0.095 -0.023 0.159
XG Boost 0.026 0.040 0.000 0.088 -0.016 0.141
Histogram Based Gradient Boost 0.033 0.040 0.006 0.108 -0.008 0.125
Gaussian Process Regressor 0.014 0.031 0.001 0.057 -0.011 0.100

Linear models such as Lasso and Ridge have high values for both test and train sets.
On the other hand, Random Forest and Gradient boost have the training error on the
limit of estimated numerical noise, but the test MAE is big. XGBoost, Histogram-
based gradient boost and GPR predicts the risk values better than the other models.
But the training MAE for XGBoost and GPR are below the estimated noise limit.
Histogram-based gradient boost has the train MAE more than the noise. Also,
Histogram-based gradient boost has less mean residuals for test set from Table 4.4
compared to the other models. Based on all these factors learning curve is plotted
to further analyze the model.

Figure 4.3: Model comparisons of MAE for probability of 2+ rib fracture

The learning curve for Histogram-based gradient boost predicting the value of rib
fracture risk is plotted as in Figure 4.4 to check the model behavior. The training
error is within the range of the standard deviation of the cross-validation error,
implying that the model does not overfit the data. Both the training and the cross-
validation MAE saturates toward the end of the plot. Further details on model
prediction for test data are interpreted using the residual plot.
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Figure 4.4: Learning curve for rib fracture risk values using histogram based
gradient boosting

The residual plot for predicted logit values of risk probabilities, Figure 4.5b shows
the residuals for test set are close to zero for values between -12.5 to 2. Higher
values has higher residuals. In comparison, the residual plot for the maximum chest
deflection Figure 4.5a, the residuals are more scattered near the zero line indicating
that the model predictions are accurate. So, using this residual plot the model
performance was tested.

(a) Maximum Chest Deflection (b) Rib fracture risk

Figure 4.5: Plot for the Test residuals vs the predicted values

From the above results, the test MAE curves give information on the training size
required by the ML model with a given accuracy to predict the rib fracture risk.
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Similar information for all the output measures was inferred from Figure 4.2. Sim-
ilarly, results for HIC15, maximum chest deflection, maximum pelvis acceleration,
maximum head acceleration, and all the ribs are presented in the Appendix B.2.

4.4 Discussion
The performance of ML models is limited to certain factors such as the number of
samples, data distributions, and parameters while evaluating models in this partic-
ular study.

4.4.1 Data Analysis
The data was skewed because of skewness in the real life data. The data was based
on 90th percentile of real world crashes, which had more data on low severity cases.
When the model was trained using the skewed data the model prediction accuracy
was bad. The average prediction MAE was 31.144 higher when the training data was
not transformed. This is represented in Figure 4.6. The transformation for HIC15
was done using quantile transformation as shown in Figure 4.1. The selection of the
type of transformer is based on trial and error, as seen in Figure 4.6, log transformer
works better for less sample size. The type of transformer used to correct each type
for data is unique and determining them is dependent on the requirement of the
surrogate.

Figure 4.6: HIC15 prediction test error curves for Histogram based gradient boost

Along with correcting the skewness, the data outliers have to be analyzed and cor-
rected. Like limiting the value of HIC15 to 2000, the risk of rib fracture had some
data values indicating the risk to be 100%. The maximum possible value for risk
can be 99.99% as it cannot be said with 100% certainty at any value that the rib
can fracture during a crash. These data points were neglected to continue the study.
Similar steps were followed to improve the skewness and analyzed the data outliers
for all the output measures as it is different for each of them. The results for these
are presented in Appendix B.2. Therefore, the data structure was improved and
used to train the models.
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The data used was sampled using Latin Hypercube sampling. When sampling the
parameters for 1000 simulations, the data had many simulations resulting in close
to zero risk. Since the data was skewed, it would not be an ideal sampling strat-
egy for training ML models. Sampling methods as followed in chapter 3 can be
followed to generate data. Because uniform distribution generates training data
evenly distributed in the parameter value space.

4.4.2 Estimating the number of simulations needed for ac-
curate models

Linear models, Lasso and Ridge predict better results compared to others for fewer
training samples. For output measures like the risk of rib fracture and rib strains,
linear models are more suitable when about 100 training samples are available. For
the other measures, tree-based gradient boosting performs better for this size of
training samples. GPR works consistently better than the other models to predict
the rib strains for all the 24 ribs for all the training sizes.

When training samples more than 250 is available, tree-based boosting methods
perform better than other models for all HBM responses as seen in Figure 4.2.
However, XGBoost has a very high testing error when trained with small training
samples. This is due to the possibility of overfitting when XGBoost is used for data
with more input parameters and fewer samples.

Test MAE curve was used to find the suitable model for the risk of rib fracture
with 795 training samples. From the curve in Figure 4.2b, tree-based boosting
methods like XGBoost and Histogram-based gradient boost performs better than
other evaluated models. To further examine the results from the test MAE curve, the
test and train prediction MAE for the models trained with 795 samples is compared
with noise estimate as in Figure 4.3. Linear models are not suitable in predicting
the risk as both test and train MAE for prediction is high.

Tree-based boosting methods outperform other models in predicting the risk of rib
fracture. An improvement in the performance of tree-based boosting models is
because of the influence of effective hyper-parameters that includes generalization
parameters such as λ, α,γ, learning rate, and in addition to tree-based building
parameters. These parameters help in generalizing the data better. GPR has low
test and train MAE compared to the other models. However, the training error
is considerably less compared to the test error and is much lower than the limit of
estimated numerical noise. This may be due to overfitting as it learns too much from
the training data. For these reasons, we do not consider GPR as the better suitable
model to predict risk despite having a lower test MAE. Evaluating the tree-based
boosting methods, gradient boosting has test higher test MAE compared to the other
two models. XGBoost and Histogram-based gradient boost both have similar test
MAE. But, training MAE for XGBoost is lower than the limit of estimated noise.
This might indicate that XGBoost has learned some of the noise in the training data.
As Histogram-based gradient boost has test MAE above the estimated numerical
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noise and the mean residuals are less compared to the others, it is more suitable in
predicting the rib fracture risk.

Further, Histogram-based gradient boost was evaluated using learning curve, Figure
4.4. From the learning curve, it is seen that increasing the training samples with
similar distribution cannot improve the prediction MAE, as the cross-validation and
training curve looks to be saturating. By increasing the samples from 600 to 700 the
validation error in decreased by only 0.05%. To improve the model further, residual
plots are evaluated, Figure 4.5b and Figure 4.7.

Figure 4.7: Rib fracture risk probability residual plot using inverse logit transform
on the 4.5b plot.

The residuals for the logit prediction and the inversed values are compared to check
the model performance. The residuals for the predicted values of rib fracture risk
are plotted as in Figure 4.7. Figure 4.5b shows the logit transformed risk value used
to train the model.real life crashes have lot of data for low riskes so the model is
well trained for it. Similar trend in the residual plot for inverse transformed was
also seen, Figure 4.7. The residuals for the predictions values less than 0.1 are low.
But the prediction values between 0.2 to 1 have large values of residuals. As seen
in the residual plots, higher values of risk have higher residuals. This is because
of a lack of training data for the model for higher risk measures. This model can
be improved further if the model is trained with more data for higher risk values.
Similar inferences for all the output measures can be done using the results from
Appendix B.2.
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4.4.3 Numerical Noise
Numerical noise estimate for the output measures namely HIC15, chest deflection,
maximum head acceleration, and pelvis acceleration were much lower compared to
the test prediction MAE. But for the risk of rib fracture and rib strains for all the
ribs, the test MAE was almost at the limit of numerical noise. The estimation was
done by varying the 21 input FE parameters by ±0.5% from the mean. But varying
around another point might have given other noise estimates. For example, for the
HBM simulations the PDOF was varied about -27deg, a near side oblique crash,
where the occupant head more or less misses the airbag. Varying around other
PDOFs might produce other noise estimates. Varying the value from the mean
would not have influenced outputs like HIC15, chest deflection, etc. As there was
no significant influence of the inputs on the outputs, the noise might not have been
captured for these measures. In order to obtain more accurate noise estimates, the
range of the noise measurement must be chosen based on its influence on specific
outputs.

4.5 Conclusion

Depending on the output, a different number of simulations are needed to learn
from the data. Increasing the samples generally decreases the prediction MAE.
Prediction accuracy for risk of rib fracture using 250 samples is about 0.43. Further
increase in training samples decreases the MAE by only 0.001%. But decreasing
the training samples to 150, the error increases by 0.04%. 250 is the minimum
number of training samples required to obtain good predictions, further increasing
the samples decreases the prediction MAE by a very small amount. Similarly, the
minimum training samples for all the outputs are listed in Table 4.5.

Table 4.5: Minimum training samples for outputs

Output Measure Number of
training samples

% Change in MAE with
further increase in samples

Rib fracture risk 250 0.001
HIC15 250 5.380
Maximum chest deflection 250 0.110
Maximum head acceleration 500 0.250
Maximum pelvis acceleration 500 0.040
Maximum rib strains 250 0.004

To improve the prediction accuracy for skewed outputs, transformations are re-
quired. Data from FE simulations have numerical noise, estimating its magnitude
should be included in the workflow to evaluate ML models. Tree-based boosting
methods worked better to predict the HBM responses and injury metrics. Suitable
models for outputs are tabulated in Table4.6.
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Table 4.6: suitable models for the outputs

FE output Final model
Maximum chest deflection Gradient boosting
HIC15 XG boosting
Maximum head acceleration XG boosting
Maximum pelvis acceleration XG boosting
2+ fractured rib risk for 45 years Histogram based gradient boosting
Rib strain (Left rib1) Gaussian process regressor
Rib strain (Right rib 12) Histogram based gradient boosting
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Conclusion

The aim of the thesis was to evaluate the use of ML models in building surrogates
to predict HBM responses and injury metrics. Surrogates were developed using
machine learning to FE human body models using data generated from the fast
hybrid III model and SAFER HBM. A ML pipeline was developed to train, tune
and test the surrogate model. The data analysis and model evaluation in this thesis
was done in jupyter notebook, these are available in GitHub1.

The first objective to fulfill the aim was to evaluate the number of simulations
required to build accurate machine learning models for a given set of FE parameters.
Surrogate models were built for three types of data set. Fast hybrid III had two
types of data, 130 samples with only restraint FE parameters and another 130
samples with crash and restraint FE parameters. The SAFER HBM data had 1000
samples with 21 FE parameters. To get accurate models for fast hybrid III, about
60 training samples are needed. Whereas, outputs from SAFER HBM required a
minimum of 250 training samples. The number of samples required depends on the
parameterization of the crashes for the HBM simulations. In the study, HBM needed
more training samples because it had more FE input parameters and was sampled
for a broad range of values compared to fast hybrid III simulation data. Because
the data had fewer parameters and sampling was restricted to a smaller range.

The second objective involved implementing a general ML pipeline consisting of data
preparation, model validation, and optimization. As a part of data preparation for
HBM, outputs needed to be transformed to have a better distribution, so that the
ML models performs well. In addition, the presence of numerical noise in the data
generated from FE simulations is required to be estimated and considered to be a
part of the ML pipeline to predict HBM responses.

For surrogate models of fast hybrid III, linear models are more suitable for training
sizes less than 60. However, for more training samples up to 120 tree-based boosting
methods perform better. The tree-based boosting algorithms are suitable for surro-
gates to predict HBM responses and injury metrics for all training sizes examined.
However, GPR works better as a surrogate to predict rib strains than tree-based
boosting methods.

1https://github.com/yash-n-p/FE_HBM_ML
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5. Conclusion

The important outcomes obtained from this study were,
1. For modelling skewed data it was important to first transform the data. The

quantile transformer generally worked good for the the HBM reponses and
Logit transformer worked better for the injury risks data from SAFER HBM
v9.

2. Numerical noise estimation for the simulation outputs should be considered to
be a part of the ML workflow.

3. Test MAE curves were used to compare the performance of ML models for
each output. These curves were used to choose suitable ML models based on
the available size of training data.

4. Tree-based boosting methods were suitable in predicting for most of the HBM
responses and injury metrices followed by GPR, Random Forest, linear models
and Decision tree.
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HBM data used in the study had 21 FE parameters with a wide range of values.
Due to this, the ML models required a large number of training samples to predict
accurate outputs. The presence of many FE parameters also affects ML performance
due to multicollinearity and overfitting. To overcome this, a further study can be
carried to evaluate ML models for a well-defined crash case i.e. a specific crash
in a specific car with only a few design parameters for the restraints. In this way,
accuracy improvements can be evaluated when the ML model is trained with fewer
training samples of data having fewer FE parameters.

Linear, ensemble methods, and GPR were used in the study to explore its per-
formance in predicting HBM response and injury metrics. Implementing stacking
algorithms in building surrogate models would be an interesting study for future
research. The method combines learning strategies from multiple machine learning
algorithms to improve the prediction accuracy of the surrogate. Using this method,
we can develop a generalized surrogate to predict HBM responses and injury criteria.
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A
Dummy Results

Figure A.1: Plot describing the interactions of HIC15, chest deflection, head ac-
celeration and neck force and the input parameter, i.e. the restraint parameters to
study about the structure of the data.

I



A. Dummy Results

Figure A.2: Plot describing the interactions of HIC15, chest deflection, head accel-
eration and neck force and the input parameter, i.e. crash and restraint parameters
to study about the structure of the data.
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A. Dummy Results

A.1 Numerical Noise

(a) Restraint parameters (b) Crash and Restraint parameters

Figure A.3: Distribution of maximum chest deflection [mm] values for 1% change
in inputs

(a) Restraint parameters (b) Crash and Restraint parameters

Figure A.4: Distribution of HIC15 values for 1% change in inputs
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A. Dummy Results

(a) Restraint parameters (b) Crash and Restraint parameters

Figure A.5: Distribution of maximum head acceleration [m/s2] values for 1%
change in inputs

(a) Restraint parameters (b) Crash and Restraint parameters

Figure A.6: Distribution of maximum neck force [KN ] values for 1% change in
inputs

IV



A. Dummy Results

A.2 Learning curves and Model comparisons

A.2.1 Chest deflection

(a) Restraint parameters

(b) Crash and Restraint parameters

Figure A.7: Model comparisons for test and train MAE of predictions using bar
graph of maximum chest deflection with noise estimate

(a) Restraint parameters-
Histogram based gradient boost

(b) Crash and Restraint
parameters-Gradient Boost

Figure A.8: Learning Curves for the most suitable model to predict chest deflection
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A. Dummy Results

(a) Restraint parameters-Histogram based gradient boost

(b) Crash and Restraint parameters-Gradient Boost

Figure A.9: Residual plot for the most suitable model to predict chest deflection
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A. Dummy Results

A.2.2 HIC15

Figure A.10: Model comparisons for test and train MAE of predictions using bar
graph of HIC15 with noise estimate for restraint parameters

Figure A.11: Learning Curve for the most suitable model to predict HIC15 for
restraint parameter

Figure A.12: Residual plot for the most suitable model to predict HIC15 for
restraint parameter

VII



A. Dummy Results

A.2.3 Maximum head acceleration

(a) Restraint parameters

(b) Crash and Restraint parameters

Figure A.13: Model comparisons for test and train MAE of predictions using bar
graph of maximum head acceleration with noise estimate

(a) Restraint parameters-Histogram
based gradient boost

(b) Crash and Restraint parameters-
XGBoost

Figure A.14: Learning Curves for the most suitable model to predict maximum
head acceleration

VIII



A. Dummy Results

(a) Restraint parameters-Histogram based gradient boost

(b) Crash and Restraint parameters-XGBoost

Figure A.15: Residual plot for the most suitable model to predict maximum head
acceleration
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A. Dummy Results

A.2.4 Maximum neck force

(a) Restraint parameters

(b) Crash and Restraint parameters

Figure A.16: Model comparisons for test and train MAE of predictions using bar
graph of maximum neck force with noise estimate

(a) Restraint parameters-XGBoost (b) Crash and Restraint parameters-
Gradient boosting

Figure A.17: Learning Curves for the most suitable model to predict maximum
neck force
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A. Dummy Results

(a) Restraint parameters-XGBoost

(b) Crash and Restraint parameters-Gradient boosting

Figure A.18: Residual plot for the most suitable model to predict maximum neck
force

A.3 Tuned Models

XI
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A. Dummy Results
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B
HBM Results

B.1 Numerical Noise

Figure B.1: Distribution of chest de-
flection [mm] values

Figure B.2: Distribution of HIC15 val-
ues

Figure B.3: Distribution of maximum
head acceleration[g] values

Figure B.4: Distribution of maximum
pelvis acceleration [g] values

XXI



B. HBM Results

Figure B.5: Distribution of probability
of two or more rib fractures for 45 years
and older occupants

Figure B.6: Distribution of maximum
strains for the left rib 1

Figure B.7: Distribution of strains in the 12th right rib

XXII



B. HBM Results

B.2 Learning curves and model comparisons

B.2.1 chest deflection

Table B.1: Comparison of MAE and residuals for chest deflection (Dmax)[mm] of
different ML models

ML Method
MAE Residual

Train Test Train Test
mean std mean std

Lasso 3.530 3.210 0.017 5.120 0.203 4.789
Ridge 3.500 3.190 0.011 5.116 0.208 4.810
Random Forest 2.100 2.990 0.064 3.076 -0.176 4.189
Gradient Boost 1.700 2.700 0.179 2.986 0.038 3.946
XG Boost 1.500 2.670 -0.050 2.198 -0.227 3.977
Histogram Based Gradient Boost 1.300 2.500 0.013 1.987 0.102 3.754
Gaussian Process Regressor 1.800 2.600 0.020 2.466 -0.327 4.504

Figure B.8: Model comparisons for MAE of predictions using bar graph of Chest
deflection [mm]

Figure B.9: Learning curve for chest deflection values using gradient boosting
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B. HBM Results

Figure B.10: Learning curve for lasso Figure B.11: Learning curve for Ridge.

Figure B.12: Learning curve for Ran-
dom Forest

Figure B.13: Learning curve for His-
togram based gradient boost.

Figure B.14: Learning curve for XG
Boost

Figure B.15: Learning curve for Gaus-
sian process regressor.
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B. HBM Results

B.2.2 HIC15

Table B.2: Comparison of MAE and residuals for HIC15 of different ML models

ML Method
MAE Residual

Train Test Train Test
mean std mean std

Lasso 175.637 158.006 166.840 424.066 151.762 401.607
Ridge 172.333 180.902 -1.548 432.506 -40.280 452.316
Random Forest 63.785 89.037 49.670 183.340 51.151 256.439
Gradient Boost 41.531 93.435 18.240 125.647 31.575 251.253
XG Boost 56.387 73.440 35.188 159.833 41.329 217.314
Histogram Based Gradient Boost 40.101 74.271 25.067 118.629 38.778 215.323
Gaussian Process Regressor 45.042 88.272 17.321 129.355 -2.485 250.895

Figure B.16: Model comparisons for MAE in HIC15 predictions

Figure B.17: Learning curve for HIC15 values using XG boosting

XXV



B. HBM Results

Figure B.18: Residual plots of the prediction and the training using XG boost for
HIC15 values

Figure B.19: Learning curve for lasso Figure B.20: Learning curve for Ridge.

Figure B.21: Learning curve for Ran-
dom Forest

Figure B.22: Learning curve for His-
togram based gradient boost.

XXVI



B. HBM Results

Figure B.23: Learning curve for XG
Boost

Figure B.24: Learning curve for Gaus-
sian process regressor.

B.2.3 Maximum head acceleration

Figure B.25: Post processed head ac-
celeration data distribution

Figure B.26: Distribution of trans-
formed head acceleration

Table B.3: Comparison of MAE and residuals for max head acceleration [g] with
different ML models

ML Method
MAE Residual

Train Test Train Test
mean std mean std

Lasso 38.102 38.840 7.287 85.955 7.634 85.149
Ridge 38.110 38.894 7.180 85.989 7.257 85.070
Random Forest 24.771 22.511 7.357 55.606 -4.121 52.902
Gradient Boost 22.728 20.114 1.535 49.452 -7.428 55.027
XG Boost 18.174 18.439 4.052 44.493 -2.694 46.269
Histogram Based Gradient Boost 17.353 19.592 3.309 41.752 -3.062 48.614
Gaussian Process Regressor 13.161 17.014 0.804 33.672 -2.091 39.485

XXVII



B. HBM Results

Figure B.27: Bar graph for maximum head acceleration Vs MAE comparing the
different selected ML models

Figure B.28: Learning curve for maximum head acceleration [g] values using XG-
Boost

Figure B.29: Residual plots of the prediction and the training using XGBoost for
max head acceleration
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B. HBM Results

Figure B.30: Learning curve for lasso Figure B.31: Learning curve for Ridge.

Figure B.32: Learning curve for Ran-
dom Forest

Figure B.33: Learning curve for gradi-
ent boost.

Figure B.34: Learning curve for his-
togram based gradient Boost

Figure B.35: Learning curve for Gaus-
sian process regressor.
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B. HBM Results

B.2.4 Maximum pelvis acceleration

Figure B.36: Distribution of post pro-
cessed pelvis acceleration data

Figure B.37: Distribution transformed
head acceleration

Table B.4: Comparison of MAE and residuals for maximum pelvis acceleration [g]
for different ML models

ML Method
MAE Residual

Train Test Train Test
mean std mean std

Lasso 5.240 5.320 0.520 7.552 0.330 7.741
Ridge 5.270 5.060 0.487 7.729 0.362 7.098
Random Forest 3.520 3.940 0.665 5.546 0.231 5.392
Gradient Boost 3.200 3.800 0.539 5.223 0.356 5.130
XG Boost 1.900 3.700 0.533 4.911 0.380 5.360
Histogram Based Gradient Boost 2.200 3.700 0.418 4.097 0.984 5.025
Gaussian Process Regressor 5.810 5.650 0.749 7.903 0.532 7.116

Figure B.38: Model comparisons for MAE of maximum pelvis acceleration

XXX



B. HBM Results

Figure B.39: Learning curve for maximum pelvis acceleration values using XG-
Boost

Figure B.40: Residual plots of the prediction and the training using XG boost for
max pelvis acceleration

Figure B.41: Learning curve for lasso Figure B.42: Learning curve for Ridge.

XXXI



B. HBM Results

Figure B.43: Learning curve for Ran-
dom Forest

Figure B.44: Learning curve for gradi-
ent boost.

Figure B.45: Learning curve for his-
togram based gradient Boost

Figure B.46: Learning curve for Gaus-
sian process regressor.

B.2.5 Rib fracture risk

Figure B.47: Distribution of post pro-
cessed Rib risk

Figure B.48: Distribution transformed
rib risk

XXXII



B. HBM Results

Figure B.49: Learning curve for lasso Figure B.50: Learning curve for Ridge.

Figure B.51: Learning curve for Ran-
dom Forest

Figure B.52: Learning curve for gradi-
ent boost.

Figure B.53: Learning curve for XG-
Boost

Figure B.54: Learning curve for Gaus-
sian process regressor.
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B. HBM Results

Figure B.55: Rib risk evaluated with quantile transformation

B.3 Rib strains results

Table B.5: Skewness of the maximum strains data of the 24 ribs, the corrected
value and the transform used.

Parameter Initial skewness Final Skewness Transformer
Left Rib 1 2.444 0.863 log
Left Rib 2 6.456 1.505 log
Left Rib 3 3.390 0.688 log
Left Rib 4 2.356 0.506 log
Left Rib 5 6.685 0.874 log
Left Rib 6 5.715 0.704 log
Left Rib 7 7.290 1.311 log
Left Rib 8 3.388 1.311 log
Left Rib 9 3.158 1.349 log
Left Rib 10 4.119 0.918 log
Left Rib 11 3.175 0.603 log
Left Rib 12 3.215 0.639 log
Right Rib 1 2.666 0.492 log
Right Rib 2 6.000 0.877 log
Right Rib 3 6.449 0.388 log
Right Rib 4 5.744 0.427 log
Right Rib 5 7.446 0.561 log
Right Rib 6 3.909 0.407 log
Right Rib 7 1.983 0.139 log
Right Rib 8 1.982 0.263 log
Right Rib 9 2.970 0.303 log
Right Rib 10 6.119 1.014 log
Right Rib 11 5.914 0.835 log
Right Rib 12 8.903 2.040 log

XXXIV



B. HBM Results

B.3.0.1 1st Left Rib

Figure B.56: Distribution of post pro-
cessed rib strains for the first left rib

Figure B.57: Distribution transformed
rib strains for the first left rib

Table B.6: Comparison of MAE and residuals for maximum rib strains of the 1st
left rib applied for different ML models

ML Method
MAE Residual

Train Test Train Test
mean std mean std

Lasso 0.198 0.192 0.049 0.380 0.012 0.333
Ridge 0.191 0.196 0.049 0.380 0.012 0.330
Random Forest 0.148 0.146 0.053 0.327 0.024 0.246
Gradient Boost 0.168 0.167 0.091 0.349 0.024 0.246
XG Boost 0.287 0.272 0.053 0.472 0.031 0.380
Histogram Based Gradient Boost 0.121 0.134 0.055 0.272 0.037 0.238
Gaussian Process Regressor 0.079 0.107 0.025 0.169 0.011 0.186

Figure B.58: Model comparisons for HIC15

XXXV



B. HBM Results

Figure B.59: Plot for MAE of predictions of the test set for different sample sizes
for the ML models used

Figure B.60: Learning curve for rib strain of the 1st left rib values using GPR

Figure B.61: Residual plots of the prediction and the training for strains of 1st
left rib
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B. HBM Results

B.3.0.2 12th Right Rib

Figure B.62: Distribution of post pro-
cessed rib strains for the first left rib

Figure B.63: Distribution transformed
rib strains for the first left rib

ML Method
MAE Residual

Train Test Train Test
mean std mean std

Lasso 0.086 0.078 0.032 0.268 0.006 0.193
Ridge 0.088 0.069 0.030 0.271 0.005 0.139
Random Forest 0.053 0.052 0.023 0.200 0.005 0.116
Gradient Boost 0.064 0.061 0.025 0.237 0.012 0.127
XG Boost 0.054 0.050 0.017 0.217 0.000 0.108
Histogram Based Gradient Boost 0.037 0.046 0.015 0.158 0.006 0.110
Gaussian Process Regressor 0.038 0.056 0.017 0.217 0.000 0.108

Table B.7: Comparison of MAE and residuals for maximum rib strains of the 12th
right rib applied for different ML models

Figure B.64: Model comparisons for strains in 12th Right rib
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B. HBM Results

Figure B.65: Plot for MAE of predictions of the test set for different sample sizes
for the ML models used

Figure B.66: Learning curve for rib strain of the 12th right rib values using His-
togram based gradient boost

Figure B.67: Residual plots of the prediction and the training for the 2th right
rib strains
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B. HBM Results

Figure B.68: Left rib 2 surrogates MAE Figure B.69: Left rib 3 surrogates MAE

Figure B.70: Left rib 4 surrogates MAE Figure B.71: Left rib 5 surrogates MAE

Figure B.72: Left rib 6 surrogates MAE Figure B.73: Left rib 7 surrogates MAE

XXXIX



B. HBM Results

Figure B.74: Left rib 8 surrogates MAE Figure B.75: Left rib 9 surrogates MAE

Figure B.76: Left rib 10 surrogates
MAE

Figure B.77: Left rib 11 surrogates
MAE

Figure B.78: Left rib 12 surrogates
MAE

Figure B.79: Right rib 1 surrogates
MAE

XL



B. HBM Results

Figure B.80: Right rib 2 surrogates
MAE

Figure B.81: Right rib 3 surrogates
MAE

Figure B.82: Right rib 4 surrogates
MAE

Figure B.83: Right rib 5 surrogates
MAE

Figure B.84: Right rib 6 surrogates
MAE

Figure B.85: Right rib 7 surrogates
MAE

XLI



B. HBM Results

Figure B.86: Right rib 8 surrogates
MAE

Figure B.87: Right rib 9 surrogates
MAE

Figure B.88: Right rib 10 surrogates
MAE

Figure B.89: Right rib 11 surrogates
MAE
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B. HBM Results
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B. HBM Results
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