
Parameterized Verification of Distributed
Algorithms in Dynamic Graphs

Master’s thesis in Computer science and engineering

Maria Kokkou

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022





Master’s thesis 2022

Parameterized Verification of Distributed
Algorithms in Dynamic Graphs

Maria Kokkou

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022



Parameterized Verification of Distributed Algorithms in Dynamic Graphs
Maria Kokkou

© Maria Kokkou, 2022.

Supervisor: Nir Piterman, Department of Computer Science and Engineering
Examiner: Wolfgang Ahrendt, Department of Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Description of the picture on the cover page (if applicable)

Typeset in LATEX
Gothenburg, Sweden 2022

iv



Parameterized Verification of Distributed Algorithms in Dynamic Graphs
Maria Kokkou
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Problems set in dynamic graphs have recently been gaining more attention. How-
ever, automated verification methods for the proposed solutions to these problems
have not yet been studied. We aim in this work to provide some first results in this
direction by focusing on distributed algorithms set in dynamic rings.
This work consists of three main parts. We provide a formalization of the mobile
agents and algorithms that are used to solve known problems from the distributed
computing literature. We then show that under the most common assumptions for
mobile agent capabilities, constructing an automated decision procedure for algo-
rithms that solve the distributed computing problems in dynamic rings is undecid-
able. Finally, we use a different framework for algorithmic verification called “Reg-
ular Model Checking”. In this part, we provide a method to transform algorithms
that solve the problems that we study in dynamic graphs into the components that
are needed for the application of regular model checking techniques.

Keywords: Parameterized verification, distributed computing, mobile agents, dy-
namic graphs, thesis.
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1
Introduction

1.1 The Problem

The number of devices able to connect to a network nowadays, such as devices with
internet connectivity, is huge. However, the need for distributed computing methods
to solve problems while using the available computation power remains high. One
of the methods used in the distributed computing literature is to use mobile entities,
such as “mobile agents” or “robots”. Those entities can move between the nodes of a
graph, gather information about the network and solve potential problems without
the nodes communicating directly with each other. Even more recently, research has
turned towards the study of problems on dynamic graphs [2]. That is, on graphs
that consist of a fixed set of edges and nodes but not all the edges are always present.
In those graphs, mobile entities are still required to solve some problem, but this
time there is the added difficulty of the graph changing while the agents are moving.
Solving problems in dynamic graphs is at least as hard as solving the same problem
in the static version of a graph. In the area of distributed computing, problems in
dynamic graphs have not yet been studied as much as in static graphs, but for the
problems that we are interested in as part of this thesis, it has been shown that
more mobile agents with more capabilities are needed in a dynamic setting.
Parameterised verification refers to proving the correctness of a system specification
regardless of the components. In the context of this thesis, only the graph is given
as a parameter and the initial goal of this thesis was to construct an automated
procedure that could decide whether a distributed algorithm for mobile agents that
operate in a dynamic ring is correct. We decided to focus on algorithms that solve
three well studied problems from the area of distributed computing. The problems
we selected are “Exploration”, “Gathering” and “Black Hole Search” and the reason
those problems were chosen is twofold. First, those problems are connected (see
Chapter 2.6) and as a consequence we expect the algorithms that solve the prob-
lems to have some common elements. Briefly, the way the problems are connected,
is that “Black Hole Search” can be viewed as a special case of “Exploration” and
“Gathering” usually depends on the agents exploring the graph as a first step. The
second reason, is that all three problems have been studied in the same type of dy-
namic graphs, called “1-interval connected dynamic rings” (see Chapter 2). While
determining the agent capabilities that we would need to represent the systems that
would be automatically verified, the focus of this work changed to determining the
agent capabilities that make the problem undecidable. In addition to the undecid-
ability results, we also provide a way to use a framework called “Regular Model

1



1. Introduction

Checking” for the verification of algorithms that solve “Exploration”, “Gathering”
and “Black Hole Search”. Regular Model Checking is an incomplete method, how-
ever, it has been shown to terminate under specific conditions. In this work, we
provide a method to transform any algorithm that solves one of the three problems
into the components that are needed for Regular Model Checking techniques to be
applied.

1.2 Contributions
Our contributions in this thesis are the following:

• We provide an encoding capable of representing mobile agents and algorithms
that solve Exploration, Gathering or Black Hole Search (described in Chapter
2) as automata.

• We formalize the local agent configuration and the global configuration for the
automata of the previous bullet point.

• We derive undecidability results for agents that have at least two variables that
can count up to an upper bound that depends on the size of the ring, start
from the same node or from different nodes, have distinct identities and are
able to receive one bit of information from other agents located at a common
node at the same time.

• We derive undecidability results for agents that have one variable that can
count up to an upper bound that depends on the size of the ring, start from
the same node or from different nodes, have distinct identities and are able to
receive one bit of information from other agents located at a common node at
the same time.

• We derive undecidability results for agents that have at least two variables
that can count up to an upper bound that depends on the size of the ring,
start from the same node or from different nodes, have distinct identities and
are only able to see if another agent is located at a common node at the same
time but cannot exchange any other information.

• We derive undecidability results for agents that have one variable that can
count up to an upper bound that depends on the size of the ring, start from
the same node or from different nodes, have distinct identities and are only
able to see if another agent is located at a common node at the same time but
cannot exchange any other information.

• We provide a way to transform the agent and algorithm encoding we proposed,
to the components required to apply regular model checking techniques for the
verification of algorithms solving Exploration, Gathering or Black Hole Search
in dynamic rings.

1.3 Thesis Organization
In Chapter 2, we give an overview of the most important notions that are needed
to understand the parameterised verification problem for the algorithmic problems
(Exploration, Gathering and Black Hole Search) that we study. More specifically,

2



1. Introduction

we give a detailed explanation of the three algorithmic problems that we use and
some of the important results in both static and in dynamic graphs about those
problems. Furthermore, we show that the three problems that we study are actually
closely connected to each other. This result is later used to show that undecidability
results for Exploration are also undecidability results for the other two problems.
We describe what a dynamic ring is in the context of this thesis and what the mobile
agents that we use are. In the same chapter we summarize some of the work on
parameterised verification of multi agent systems in static graphs, that is closely
connected to our problem. Finally, we give a definition of 2-counter machines and
we introduce regular model checking. Then we introduce the non-halting problem
for a 2-counter machine that we later use to obtain undecidability results for the
problems that we study.
In Chapter 3, we present the specific model that we use throughout this thesis. Like
in Chapter 2, we talk about mobile agents, dynamic rings and our three algorithmic
problems. However, this time we present the specific assumptions we make about
the problems, the specific capabilities of the agents and the specific properties of the
networks that we use in the rest of this thesis.
In Chapter 4, we present a method to model mobile agents that are able to solve
the problems we discuss in this thesis as automata. In our encoding of the agents,
any algorithm that the agent executes is encoded directly in the automaton. As an
example, we show the representation we propose for two known algorithms, one for
Exploration and one for Black Hole Search, in dynamic rings into automata using
our encoding.
In Chapter 5, we show that if each mobile agent in a system is equipped with a
unique but secret numerical identity, the agents can undertake different tasks. We
consider both the case of initially co-located and of initially scattered agents. We
then use the results of this chapter in Chapter 6.
In Chapter 6, we present some undecidability results for the problems we study. As
part of the undecidability results, we prove that the type of algorithms used in the
literature for the problems we study leads to undecidability.
Because of the undecidability results, in Chapter 7, we move to regular model check-
ing which is an incomplete method that has been used for the verification of parame-
terized systems before, and we present a way to transform the agents and algorithms
for the problems we study into the components that are needed for the application
of known regular model checking techniques.
Finally, in Chapter 8 we summarize our results and discuss the open problems that
arise from this work.

3
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2
Background

In this chapter we describe the problems that we will address in the following chap-
ters in more detail. Furthermore, we give a short presentation about the techniques
we are going to use. As part of the thesis we examine three problems that we also
refer to as “tasks”. The problems that we examine as part of the thesis are called
“Exploration”, “Gathering” and “Black Hole Search”. All three problems have been
extensively studied in the distributed computing literature. Finally, we talk about
the connections between those three problems.

2.1 Mobile Agents
The mobile agents that we refer to in this work, are entities that have the abil-
ity to move from a node to a neighbouring one in a graph, make computations,
remember information that they gathered in previous rounds and in some cases
are able to communicate with other agents. A recent survey can be found in [3].
The communication between agents, when it is possible, can be by either endoge-
nous or exogenous methods. We call “endogenous” those communication methods
that depend on the agents exchanging information directly. An example of such a
communication method is called “face-to-face” (or f2f) communication and refers to
agents that are able to read the contents of other agents’ memory, provided they
are on the same node at the same time (e.g., [4]). By “exogenous” communication
methods we denote any communication method in which agents leave information
on the graph (either in nodes or in edges) that other agents can read when they
are located on the node or edge that contains the information at a later time. Two
such communication methods are for example in [5, 6]. As part of this work, we
consider both the case in which agents are initially on the same node and the case
of initially scattered agents. Moreover, the agents may have distinct IDs or be com-
pletely indistinguishable and they may have a common sense of orientation (called
“chirality”) or not. Finally, in some cases the agents operate in “Look - Compute
- Move” rounds, introduced in [7]. This means that as part of a single round, each
agent

• Gathers information about its environment, such as whether other agents are
located in the same node. (Look Phase)

• Based on the information the agents gathered during the Look Phase and
potentially on information that was gathered in previous rounds, the agent
computes its next move. (Compute Phase)

• Finally, the agent attempts to move to the node it computed in the previous

5



2. Background

phase or remain in its current node if that was the result of the computation.
(Move Phase)

2.2 Dynamic Networks
Computer networks are often represented as graphs. However, a major part of the
distributed computing literature considers static graphs when modelling a problem.
Taking into consideration the conditions of real world systems it becomes evident
that such a representation might not always be accurate. New devices might connect
to an existing network and links connecting nodes in the network can potentially
fail. In order to better represent those possibilities as well, distributed computing
literature has recently started turning to using dynamic networks [2, 8, 9, 1]. A
dynamic graph is a sequence of static graphs. More specifically, a dynamic graph
G can be written as G = (V,E) = G0(V,E0);G1(V,E1), . . . , where V is the set of
nodes and Ei ⊆ E. Although the general definition of a dynamic graph allows almost
any type of change between two consecutive time units, in this work we consider a
much more restricted type of dynamic graph. More precisely, we study problems in
dynamic graphs called “1-interval connecting”. In 1-interval connecting graphs (like
in [8]), at most one edge is missing in each static graph, that is, |E|−1 ≤ |Ei| ≤ |E|.
Furthermore, the missing edge is chosen by an adversary, therefore, it does not follow
a pattern.
The biggest challenge, as well as the biggest advantage, of using dynamic graphs lies
in the uncertainty of the changes of the graph. Therefore, although there has been
some work in studying problems in dynamic graphs that change in a predetermined
way, we only consider the case in which the changes of the network are unknown in
advance. The first type of setting is called “Postmortem” (introduced in [10]) and
the latter is called “Live” (also introduced in [10]).

2.3 Exploration
In the Exploration problem, the goal is for an agent or a team of agents to visit
each node of an unknown graph in a systematic manner. A recent survey of graph
exploration with mobile agents is given in [11]. In the case of exploration by a team
of mobile agents, the problem has been considered for both the case of initially co-
located agents and of agents starting from different nodes. The Exploration problem
was first studied by Shannon in [12]. A lower bound on the memory complexity
needed for graph exploration was given in [13] and an upper bound was given a
few years later in [14]. As far as the time complexity is concerned, the fastest
algorithm that can solve the Exploration problem in arbitrary but labelled graphs
needs m + O(n) moves as was shown in [15], where m is the number of edges
and n the number of nodes. The problem has been studied in various topologies
such as trees [16], grids [17], tori [17] and other common interconnection graphs
[18]. As far as collaborative exploration (i.e., exploration by a team of agents) is
concerned, the goal is to reduce the time needed for exploration as compared to
when only one agent is available. Finding an optimal strategy for a group of agents
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2. Background

that minimizes the maximum steps taken by any agent for a given graph is known
to be NP-complete [19], therefore research has mainly focused on graphs that are
unknown to the agents in the beginning. In the case of distributed exploration, each
agent explores the graph using the same algorithm and the agents can communicate
with each other by writing on the nodes they visit. The simplest strategy that the
agents can use in a distributed setting is a distributed version of the DFS algorithm
presented in [20].
In the context of dynamic graphs, a team of mobile agents moves throughout a graph
with the goal of visiting each node of the graph at least once [21, 8]. This problem
has two versions. In “Terminating Exploration” the algorithm finishes when each
node has been visited by at least one agent and there is at least one agent that
knows that the graph has been explored. In the second version of the problem,
called “Perpetual Exploration”, each node has to be visited by some agent infinitely
often.

2.4 Gathering
In the Gathering problem, a team of mobile entities (i.e., agents or robots) initially
located in arbitrary but distinct locations in a graph or in the plain, meet at the same
location after a number of moves. The special case in which the team consists of
only two robots is called the Rendezvous problem. Two recent surveys are presented
in [22, 23]. The Gathering problem has been studied in various different topologies
such as rings [24, 25], trees [25, 26] and grids [26, 24]. Furthermore, the problem has
been studied in synchronous, semi-synchronous and asynchronous settings [24]. The
agents operating in the graph may have varying degrees of visibility ranging from
strong global visibility to weak local visibility or even to being completely oblivious
of other agents. Finally, some fault-tolerance results have been given in [27], where
the agents start from different nodes and must gather in a graph that has faulty
edges that destroy the agents that cross them.
In the context of dynamic graphs, a number of mobile agents are initially scattered
(i.e., placed on different nodes) on a graph [9]. The goal is for the agents to manage
to meet on some node of the graph after a finite number of moves. The Gathering
problem is not solvable in dynamic graphs, however, it is possible to solve a relaxed
version. In the relaxed version, all agents reach two neighbouring nodes (i.e., nodes
connected by an edge) after a finite number of moves.

2.5 Black Hole Search
The Black Hole Search problem was introduced in [28]. A black hole (BH) is a
malicious entity that destroys any agent that visits it without leaving any trace. The
Black Hole Search Problem (BHS) assumes the existence of either one or multiple
black holes in a network and the goal is to determine the location of the black hole
or the black holes using a team of mobile agents. In order to solve the problem, at
least one agent needs to survive knowing the location of the black hole. The agents
can only infer the position of a black hole if it is located in the last unexplored node
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2. Background

of the network or due to the loss of other agents in it. Therefore, the number of
surviving agents after the location of the black hole can be smaller than the initial
number of agents in the network. Since an agent lost in a black hole does not leave
any trace, various communication methods are used between the agents in order to
determine the position of the black hole.
The Black Hole Search problem has been studied with respect to the synchronicity
of the network (synchronous, asynchronous), the initial location of the agents (co-
located, scattered), the type of graph the agents operate in and the communication
method used. Four communication methods are commonly used: whiteboards (the
agents can leave messages for other agents at the nodes they visit [18, 29, 6, 30]),
pure token (the agents can place tokens at the nodes they visit [31, 5]), enhanced
token (the agents can place tokens on the nodes or edges they visit [32, 33]) and
timeout mechanisms ([34, 35]). The BHS problem was originally studied in rings
and it has since been studied in various other topologies in [36, 4, 37, 18], as well as
arbitrary networks, for example in [38, 34]. Finally, the computational complexity of
searching for a black hole, as well as hardness and approximation results are found
in [39, 40, 41].
In the context of dynamic rings, the problem of locating a black hole has been solved
under the assumption of 1-interval connected rings in [1]. In that paper, the authors
give algorithms that solve the problem in oriented rings using three agents for both
the case of initially co-located agents and in the case of initially scattered agents.
Multiple algorithms are presented in the paper and the authors provide tight bounds
under numerous assumptions such as whether the agents have chirality, whether the
agents know the size of the ring, the initial positions of the agents and whether the
agents are anonymous or they have distinct identities.

2.6 Connection Between Exploration, Gathering
and Black Hole Search

2.6.1 Exploration and Gathering
The connection between these two problems is based on a detailed review of known
algorithms in both static and dynamic rings. Although there is no formal proof that
the two problems are connected, we have found that all algorithms for agents that
operate in dynamic rings and the algorithms we have found for agents operating in
static rings include the exploration of the ring before gathering is achieved.
Although the goals of the two problems are different, many algorithms that solve
the Gathering problem, depend on the agents also exploring the ring. This happens
in cases where the agents do not have any information about the network and the
only way to meet is to perform some computation based on the common information
that they gather after an exploration phase. In the case of Gathering in dynamic
rings, all the known algorithms (presented in [9]) begin by an Exploration phase.
Although it is possible that the agents gather during the exploration phase, it is not
guaranteed and the algorithms use various protocols to elect a node or an edge as a
meeting point after the exploration phase is complete.
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In static rings, an exploration phase might or might not be needed depending on
the information the agents have about the network and the available communication
mechanisms. The simplest case of agents that operate in a ring and that need to
gather in some unknown in advance node, is for the agents not to have any external
communication devices or knowledge, but for the nodes of the ring to have unique
numerical IDs. In this case, exploration and gathering are the same, since the
agents can only meet by traversing the ring once and then determining the node of
the meeting based on some pre-decided condition (e.g., gather on the node with the
lowest ID). This case is mentioned in [42]. If the agents do not have enough memory
to read the node labels then gathering is not possible if the agents do not have some
initial knowledge or an external communication method.
The initial knowledge two agents trying to meet may have, is the size of the ring,
the distance to the other agent or the knowledge of the other agent’s ID. The last
case is the simplest since the agents solve the problem by having one agent wait and
the other agent explore the ring until it finds it. The remaining cases are described
in [43] and when lower bounds for the relevant scenarios are discussed, the authors
provide algorithms that satisfy those lower bounds and depend on exploration.
In the case of an external communication method, the agents may have one or more
tokens or the nodes may be equipped with whiteboards the agents can write on.
Once again, in [43] the authors provide lower bounds on the number of moves the
agents need to make and present time optimal algorithms that solve gathering by
also exploring the ring.

2.6.2 Exploration and Black Hole Search
As we mentioned in Chapter 2, the Black Hole Search problem was introduced in
[28]. The problem consists of finding a method for a team of mobile agents that
operate in a graph to determine the location of a malicious entity which destroys
any agent that visits it. A few years after the introduction of the problem, the same
authors gathered the results that had been obtained until then in [44]. In the same
survey, the authors introduced the black hole search problem as a special case of the
exploration problem. We give here the intuition behind this result.
The main idea that we will use is that if the agents do not visit some nodes, the BH
can be located in one of those nodes. Let A be an algorithm that solves BHS. Let
us suppose that A is structured so that at least two nodes are never visited by any
agent. For any ring, there is a configuration in which the BH is located in one of the
two unvisited nodes. Furthermore, the BH only influences the node it resides in, by
destroying the agents that visit it without leaving any trace. Therefore, any correct
algorithm needs to visit at least one more node to solve the problem. Either the
BH is located in that node, hence the BH is found or the BH is located on the last
unexplored node. Therefore, all the nodes of the graph must be visited in order to
solve BHS, since the BH can always be placed in the last unexplored node for any
algorithm and any starting configuration, and the agents cannot infer its position if
more than one nodes are unexplored. Formalizing this intuition even in the case of
unconscious exploration is not trivial because it is hard to formalize the fact that
an agent cannot identify a BH, unless it visits the node it is located at.

9
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2.7 Parameterised Verification of Multi-Agent Sys-
tems

The goal of “Parameterised Verification” is to prove the correctness of a system
regardless of its specific components. In this thesis, we only consider the size of the
ring to be given as a parameter, however, the number of mobile agents operating
in the graph is also often considered a critical system parameter. The closest pa-
per to this project is “Parameterised Verification of Autonomous Mobile-Agents in
Static but Unknown Environments” by Sasha Rubin [45]. In this paper, the author
establishes a framework to model and automatically verify that autonomous mobile
agents correctly perform their tasks. In this work, the author reduces the parame-
terised verification problem to classic questions in monadic second order logic and in
automata theory. However, as the title suggests, this work studies a static environ-
ment, whereas we will study a dynamic environment. Another closely related paper
is “Parameterised verification for multi-agent systems” by Kouvaros and Lomuscio
[46]. In this work the authors study the problem of verifying role-based multi-agent
systems, where the number of components cannot be determined at design time.
Furthermore, they provide semantics about the representation of the system and of
the ways the agents can interact with each other and with their environment.
A central part of studying distributed algorithms has always been centered around
facing system failures. However, the most common ways those potential problems
are studied are delay of messages (i.e., the system being asynchronous) or com-
plete loss of messages. More recently, the interest of the distributed computing
community has turned to dynamic networks, which model more accurately possi-
ble communication failures that are caused by the network itself. A recent survey
of those results can be found in [2]. Formal methods for mobile agents have also
been widely studied, however not in dynamic graphs. Some important results are
surveyed in [47].
Solving a parameterised verification problem in dynamic environments in general is
undecidable, even if the environment is very simple, such as a ring and there is only
a single robot in the graph [48, 49]. However, it is still interesting to determine what
restrictions on the robot or the environment will result in a decidable parameterised
verification problem. Finding those restrictions is still an open problem that we
study in this thesis.

2.8 Model Checking
Model Checking introduced in [50, 51] is a technique that facilitates the verification
of various models. A recent introductory text can be found in [52]. Model Checking
can be used on both finite and infinite models (under some constraints) as well as
on parameterised models (e.g., [53]). Furthermore, it has also been used in the
verification of distributed algorithms in [54, 55].
Regular Model Checking (RMC), which we will use in this thesis, is one of the
frameworks used for algorithmic verification of parameterized or infinite state sys-
tems. RMC was first introduced in [56]. In model checking, in order to verify specific
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properties (e.g., liveness) we usually compute reachability relations between states.
In infinite state systems there is no upper bound on the number of transitions from
an initial configuration to a reachable configuration, so the reachability problem is
in general undecidable. RMC is an incomplete method (since the general problem
is undecidable) but it has been proven in [56] that it can terminate under specific
conditions. Three techniques that are used as part of RMC are “acceleration”,
“abstraction” and “widening” and an overview of them is given in [57].
The RMC framework needs the four following components in order to represent an
algorithm A that attempts to solve a problem in a given system S, where by system
we denote a graph and the agents that operate on the graph.

• A finite alphabet Σ that is used to represent the valid states of A in S.
• A configuration of S using the alphabet Σ, where each configuration is a word

over Σ∗.
• A transition relation (called a “transducer”) that describes the valid successive

configurations of S according to A, over the alphabet Σ× Σ.
• A set of all the possible initial configurations of S over Σ.

A more formal definition of those components is given in Chapter 7. In addition
to those components, RMC requires the definition of a verification problem. The
types of verification problems usually considered in RMC are that of verification of
safety properties and verification of liveness properties. Both “safety” and “liveness”
require to solve a reachability problem for a set of configurations from the initial
configurations. The above mentioned techniques (“acceleration”, “abstraction” and
“widening”) are used over the four components in order to check if the properties of
the specified verification problem are satisfied. In Chapter 7, we express Exploration,
Gathering and BHS as verification problems to be checked by RMC.
As an example, consider a mobile agent that is moving in a line graph. Suppose
that in each step, the agent can only move one step to the right. A configuration of
the system consists of the size of the graph and of the current position of the agent
in the graph. That is, a configuration is a word over the alphabet {e, a}, where
e represents an empty node (i.e., a node not occupied by a mobile agent) and a
represents a node occupied by an agent. For instance, a line graph consisting of four
nodes in which the leftmost node is occupied by an agent, is given by the word aeee.
The set of all possible initial configurations is given by the regular expression e∗ae∗
(Figure 2.1) and the transition relation is given by the transducer given in Figure
2.2. We give a detailed description of how the transducer is constructed and read
in Chapter 7.

s0start s1

e

a

e

Figure 2.1: The set of initial configurations for an agent in a line graph.
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s0start s1 s2

(e, e)

(a, e) (e, a)

(e, e)

Figure 2.2: The transducer describing the transition relation of an agent moving
to the right in a line graph.

2.9 The Non-Halting Problem for a 2-Counter Ma-
chine

In this section we first give a definition for a 2-counter machine and then we describe
the non-halting problem for those 2-counter machines. In Chapter 6, we will use the
non-halting problem for 2-counter machines in order to derive undecidability results
for the problem of constructing an automated decision procedure for algorithms that
solve distributed Exploration in dynamic rings.
A 2-counter machine (2CM) [58] is a machine that has two registers (call them
register x and register y) and can only perform the following computations.

• Increment or decrement x by one.
• Check if x is equal to 0.
• Increment or decrement y by one.
• Check if y is equal to 0.

Formally, a 2CM is a 6-tuple M = (Q,Σ, δ, I, F,K) where:
• Q is the set of states.
• Σ is the input alphabet, including the empty symbol ε. In our case, we only

consider input free 2-counter machines, so Σ = {ε}
• δ : Q× Σ× {zero, ¬zero}2 → Q is the transition function.
• I ∈ Q is the starting state.
• F ⊆ Q is the set of accepting states.
• K : Q×Σ× {zero, ¬zero}2 → {−1, 0, 1}2 is the counter updating function. It

is always the case that K(q, zero, a) ∈ {0, 1} × {−1, 0, 1} and K(q, a, zero) ∈
{−1, 0, 1} × {0, 1}. For K(q, α, β) = (a, b) we denote K1(q, α, β) for a and
K2(q, α, β) for b.

A computation step of a 2CM is determined by the current state of the machine, the
input symbol and by the set of counters that contain zero. The action at that step
consists of independently altering the value of each counter by adding 0, 1 or −1 to
the previous value of the counter. More formally, a description of the configuration
of a 2CM is given by the triple

(q, c1, c2) where q ∈ Q, c1 ∈ {zero,¬zero} and c2 ∈ {zero,¬zero}

and by the pair
(v1, v2) where v1 ∈ N and v2 ∈ N

so that
vi = 0 iff ci = zero for i = 1, 2
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We say that a configuration C ′ = 〈(q′, c′1, c′2), (v′1, v′2)〉 is the successor of a configu-
ration C = 〈(q, c1, c2), (v1, v2)〉 if

• There is a valid transition δ(q, c1, c2)→ q′.
• v′1 = v1 +K1(q, c1, c2)
• v′2 = v2 +K2(q, c1, c2)

A computation or run of a 2CM is a series of successive configurations.
The non-halting problem of a 2-counter machine is, given a 2CM M that only uses
the aforementioned operations, to decide whether the machine does not halt. We
say that the machine halts if it enters a specific state called “halting state”. This
problem has been proven to be undecidable in [58].
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3
Model

In this chapter, we describe in more detail the specific model we use. More precisely,
we describe the type of dynamic graphs we consider, as well as the mobile agent
capabilities. Furthermore, we talk about the assumptions we make for each of the
algorithmic problems we study (i.e., Exploration, Gathering and Black Hole Search).

3.1 Network

The type of graph that we consider as part of this thesis is a ring, that is, a finite
graph in which each node has degree exactly two. The systems that we consider
are synchronous, which means that each agent move from a node to a neighbouring
one, takes one time unit. Each node has two ports, each port corresponding to one
of the edges that are incident to the node, and the ports are consistently labelled
in all nodes of the ring. That is, if an agent starting from some node always enters
a node from port a and leaves the node from port b it will traverse the whole ring.
In some cases, the ring contains one marked node that the agents can distinguish.
Finally, we only consider 1-interval connecting rings, which means that at most one
edge may be missing at any time and as a result, the ring is always connected.

3.2 Agents

The mobile agents that we consider, operate in Look-Compute-Move rounds, as we
described in Chapter 2. Briefly, during the “Look” phase, an agent located at node
v observes v and checks if another agent is located on v or in one of the ports leading
to the nodes connected to v by an edge. In the “Compute” phase the agent makes
computations based on the values of its variables and the results obtained during
the “Look” phase and, finally, it attempts to move during the “Move” phase. An
agent can “see” when other agents are located on the node it occupies (i.e., the agent
has “local visibility”) but it cannot see the location of agents on other nodes of the
ring. Additionally, an agent is not aware of traversing an edge at the same time as
another agent moving in the same or in the opposite direction. The agents that we
study are equipped with unlimited memory.
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3.3 Problem Assumptions
In this section we list the assumptions under which the problems we study have
already been solved. We then use these assumptions and the impossibility results
in [8, 9, 1] as a guide in obtaining useful undecidability results in Chapter 6.

3.3.1 Exploration
For Exploration [8] we focus on the setting where either there is a marked node or
the agents know the size of the ring. Furthermore, we assume that the agents have
distinct IDs and a common sense of orientation but the only form of communication
they have is seeing how many agents occupy their current node. In our model, the
agent can see the number of other agents but not their identities. For example, let
an agent A occupy node v at time t, t + 1 and t + 2. At t + 1 an agent, A2, moves
to v and at t + 2, A2 leaves v but another agent, A3, enters v. In this setting, A
cannot distinguish between A2 and A3 but knows that one more agent occupies v at
both t+ 1 and t+ 2. We only consider the fully synchronous case. According to the
results of [8], the exploration problem in dynamic rings is not solvable, even with
partial termination1, by any number of mobile agents if the agents are anonymous,
that is, if the agents do not have distinct identities, if there is no distinctly marked
node in the ring or if the agents do not know the size of the ring. A summary of the
results for which Exploration in dynamic rings with explicit termination is possible
is given in Table 3.1.

Table 3.1: Possibility results for Exploration with explicit termination. In the table, we
use n to denote the size of the ring, “f2f” to denote “face-to-face communication” meaning
that agents on the same node can read the contents of each other’s memory, “vision” to
refer to the model of communication in which every agent can only detect the presence and
number of other agents on the node it currently occupies, “edge cross detection” means
that agents crossing the same edge at the same time in opposite directions can detect each
other and, finally, IDs refer to distinct but secret numeric agent identities.

# of Agents Initial Positions Communication Other Capabilities

[8] 2 co-located or scattered vision known n, memory
[8] 2 co-located or scattered vision landmark
[59] 3 co-located or scattered f2f IDs, memory
[60] 3 scattered f2f IDs, edge cross detection,

O(log n) memory

In the undecidability proofs in Chapter 6 we only consider agents that have capabili-
ties that make the problem solvable with respect to the impossibility and possibility
results of [8, 59] and [60].

1In Partial Termination at least one agent enters a terminal state and stops moving after a
finite number of steps.
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3.3.2 Gathering
We know that Gathering in dynamic rings is not possible and we therefore consider
the relaxed version in which the problem is solved if either all agents gather in the
same node or if all the agents gather in two neighbouring nodes. In the known
algorithms in [9] the agents must either know the size of the graph or the number
of agents in order to solve the problem. To be more precise, if the agents have
chirality (i.e., a common sense of orientation) they need to know the number of
agents, otherwise they need to know the size of the graph. It is always assumed that
the agents and the nodes are anonymous and that the agents cannot communicate
with each other. Finally, the agents must either be able to detect when they are
crossing the same edge as another agent at the same time or all nodes that contain
an agent at the beginning of the algorithm must be identically marked.

3.3.3 Black Hole Search
The known algorithms for Black Hole Search in dynamic rings need at least three
agents to operate in the ring and the agents must know the size of the ring. Al-
gorithms and tight bounds are presented in [1] for various models with initially
co-located agents. Furthermore, in the given algorithms the agents have distinct
and visible IDs. Finally, both the case of endogenous (i.e., vision and face-to-face)
and of exogenous (i.e., tokens and whiteboards) communication methods are con-
sidered in [1] but in this work we only consider the more restricted communication
models of vision and face to face communication.
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4
Formal Model of Agents

In this chapter we give a detailed description of how we can model mobile agents that
are able to solve the type of problems that we study in this thesis (i.e., Exploration,
Gathering and Black Hole Search in dynamic rings) when the size of the environment
the agents operate in, is given as a parameter.
The idea of coding an algorithm within the agent automata, as we will do in this
chapter, was introduced in [61] and was more recently also used in [45]. Using this
method, an agent is modeled as a set of instructions which tell the agent how and
when to move along an edge (if the edge is present) and how to use the information
it collects from its environment and its interaction with other agents in order to
complete a task. Our motivation for using this particular method, comes from the
fact that a similar method, resulting in a different framework, was used for the
static graphs case in [45]. We thought that a reasonable first step would be to check
whether a different encoding of the algorithms within agents, also based on the model
of [61], would work in a dynamic environment. In addition to the difference in the
environment (i.e., static vs dynamic) the difference between the resulting models
between [45] and this work comes from the fact that the agents used in dynamic
graphs in the literature, so far operate in “Look-Compute-Move” rounds instead of
the single action per round model that is widely used for problems in static graphs.
According to the recent survey in [3] and the algorithms that solve the problems
that we study in this thesis [8, 9, 1], a mobile agent is capable of moving, gathering
information from its environment, communicating with other agents and performing
computations. Our formalization of an agent is with respect to those capabilities.
More precisely, we represent all information that comes from outside the agent
(i.e., either from the agent’s environment or from the agent’s interaction with other
agents) using “sensors” and all information that is a result of the agent’s computa-
tions as “variables”. For the most common communication methods (whiteboards,
tokens, vision, wireless, beeping and face to face communication), including the com-
munication methods used in the algorithms that we consider, sensors can represent
the information the agents gather. Therefore, we provide a way to formalize both
the external information the agent acquires during the execution of an algorithm
and the results of internal computations the agent performs. Finally, in the repre-
sentation of our agents we add a parameter, which we consider to be some initial
but not predetermined input to the agent, that the agent can use as part of the
computations it performs. In our case, we only use the parameter as the number
of nodes in the ring. In addition to sensors, moves and variables we also use condi-
tions to define an agent. As we have already mentioned, the agents use the sensors
and variables in order to perform computations. The conditions that we define are
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the mathematical expressions of sensors and variables that determine the agent’s
transitions.

4.1 Sensors

Each agent is equipped with sensors that allow it to interact with its environment
and gather information. For example, a sensor may allow an agent A that moves to
node v at time t, to detect whether another agent that reached v at some time t′ < t
is still at v at t. Furthermore, another sensor may allow A to detect whether an
edge e, incident to its current node is present at some time unit. Several methods
of communication between agents have been presented in the distributed computing
literature, such as face-to-face communication, tokens and whiteboards (see also
Chapter 2). All the possible methods of communication are modelled as sensors.
The sensors that we use are further divided into two subcategories: “Pre-Move” and
“Post-Move” sensors.

• Pre-Move Sensors: This set of sensors is updated before the agent calculates
its next move. Such sensors may detect the agent’s position, the existence of
other agents on the same node, the existence of other agents on the same edge,
etc. In general, information that concerns the environment of the agent comes
from this type of sensors.

• Post-Move Sensors: This set of sensors is updated after the end of a move.
Post-Move sensors may hold information like the success or failure of a move
from a node v to a neighbouring node v′, the existence of an edge or whether
a port was free or occupied by another agent. In general, this type of sensors
provide information about the result of the move.

We refer to any information that cannot be calculated by the agent locally as infor-
mation detected by a sensor. Finally, we will use the symbol D(sens) to denote the
product of the domains of the sensors. We will use D(sens) to refer to the values
of all the sensors the agent is equipped with, at any given time.

4.2 Variables

Agents may or may not have memory that they can use to remember data that they
have gathered about their environment or about the execution of the algorithm. For
example, variables may be used to count the number of nodes an agent has traversed,
the number of rounds it has been waiting on a node or the number of other agents on
its current node. In general, we use variables to store new knowledge the agent has
acquired about the network and that the agent will need to use again. Furthermore,
the agent can change the value of the variables on its own, but it cannot receive
new values as input. Additionally, we will use the symbol D(vars) to denote the
product of the domain of the variables. We will use D(vars) to be able to refer to
the values of all the variables used by the agent.
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4.3 Conditions
An agent chooses its next step based on the values of its variables and sensors.
We use conditions to formalize the information either computed by the agent (i.e.,
through variables) or gathered from the environment (i.e., through sensors) that is
relevant to the execution of the algorithm. In other words, Conditions are predicates
evaluating to true or false, whose terms are Variables and Sensors.

4.4 Moves
In the kind of problems that we consider in this thesis, the agents can move from
a node to a neighboring one (i.e., to a node connected by an edge to the agent’s
current node). The edges incident to a node may be numbered, in which case the
set of Moves contains as many possible moves as the degree of the graph. In special
cases of graphs, such as rings or lines, the set of Moves only contains the two possible
directions, left and right. Finally, the set of Moves can contain the possibility to not
perform a move in a round, depending on whether the algorithm permits that.

4.5 Updates
The values of variables, pre-move sensors and post-move sensors are updated during
the execution of the algorithm. More specifically, the value of any variable vi ∈
Variables is updated by the agent after a transition. The value of a pre-move
sensor is given to the agent as input before a move and the value of a post-move
sensor is given to the agent as input after a move.

4.6 Formalization of an Agent
An agent is a 10-tuple:

(Q, δ, I, F, Moves, Conditions, Variables, PreM-Sensors, PostM-Sensors, N)
where:

• Q is a finite set of states.
• δ = Q × Conditions → Q × Moves × VarUpdates is the transition relation,

where VarUpdates refers to the updates of variables vi ∈ Variables.
• I ∈ Q is the initial state.
• F ⊆ Q is the set of final states.
• Moves, Conditions, PreM-Sensosrs, PostM-Sensors and Variables are

the sets described above.
• N is the number of nodes of the graph.

As an example, the mobile agent in Figure 4.1 solves the Exploration Problem in a
ring of known size, when the agents do not have chirality, using Algorithm 1 from [8].
To make the presentation clearer, the expressions on the loops and the expressions
on the transitions between two states are mutually exclusive and complete, so we
omit re-writing the conjunction of the negation of the expressions of Conditions that
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Figure 4.1: An agent that solves the Exploration problem in rings of known size
with agents that do not have chirality

are on the transitions between two different states and on the loops. The conditions,
are specified below.
We use the following symbols in the automaton:

• Pre-Move Sensors: the agent is on a port (onPort), the agent is alone on a
port (aloneOnPort)

• Post-Move Sensors: a move failed (moveFailed)
• Variables: the number of consecutive rounds the agent has been waiting on a

port (aloneOnPortRounds), the total number of rounds (totalRounds). Both
variables are initialized to 0, that is, aloneOnPortRounds = 0 and totalRounds
= 0.

• Conditions:
c1: (((totalRounds ≥ 2N − 4) ∧ ( waitOnPort == N − 1)) ∨

(totalRounds ≥ 3N − 6)) ∨
(onPort ∧¬ aloneOnPort ∧¬moveFailed)

c2: totalRounds ≥ 3N − 6
c3: (onPort ∧¬ aloneOnPort ∧ moveFailed) ∨

(totalRounds ≥ 3N − 6)
• Moves = {left, right, none}
• Q = {Init, Forward, Bounce, Terminate}
• I = Init (the initial state)
• F = {Terminate} (the final state)
• δ = Q× Conditions→ Q× Moves× VarUpdates
• N = The number of nodes

A second example is presented in Figures 4.2, 4.3 and 4.4. In this example, we give
a representation of the agents that solve the Black Hole Search problem in dynamic
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rings. The algorithm that we model is introduced in [1] and uses three types of
agents which are able to cooperatively locate a black hole in a ring after a finite
number of moves. The agents are able to see each other’s identity and in the paper
are called “avanguard”, “retroguard” and “leader” and we also use this naming here
to differentiate the agents.
We begin by defining the “Avanguard” agent.

• Q = {Init, Return, NewNode, Move}
• I = {Init}
• F = ∅
• Moves = {right, left}
• Pre-Move Sensors: ∅
• Post-Move Sensors: ∅
• Variables: the number of distinct visited nodes since the agent last switched

direction (nodesSinceDirSwitch)
• Conditions:
c1: nodesSinceDirSwitch > 0

Initstart Return Move

NewNode

¬c1, right, nodesSinceDirSwitch + +

c1, nodesSinceDirSwitch = 0

¬c1, left, nodesSinceDirSwitch + +

c1, nodesSinceDirSwitch = 0
¬c1, right, nodesSinceDirSwitch + +

c1, nodesSinceDirSwitch = 0

¬c1, right, nodesSinceDirSwitch + +

c1, nodesSinceDirSwitch = 0

Figure 4.2: The “Avanguard” agent that solves the BHS problem in dynamic rings
when the agents can only communicate by seeing which other agents are in the same
node as them (vision model) following the algorithm in [1].

Next, we define the “Retroguard” agent from the same paper.
• Q = {Init, Bounce, Return}
• I = {Init}
• F = ∅
• Moves = {right, left}
• Pre-Move Sensors: the retroguard detects that the “leader” is located on the

same node (seesLeader).
• Post-Move Sensors: ∅
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• Variables: the number of distinct visited nodes since the agent last switched di-
rection (nodesSinceDirSwitch), the number of counterclockwise nodes start-
ing from the initial node that the retroguard has visited, increased by one after
each meeting with the leader (meetingsWithLeader)

• Conditions:
c1: nodesSinceDirSwitch > meetingsWithLeader
c2: seesLeader

Initstart Return Bounce

¬c1, left, nodesSinceDirSwitch++, meetingsWithLeader=1

c1, nodesSinceDirSwitch=0

¬c2, right, nodesSinceDirSwitch++

c2, nodesSinceDirSwitch=0, meetingsWithLeader=nodesSinceDirSwitch+1

¬c1, left, nodesSinceDirSwitch++

c1, nodesSinceDirSwitch=0

Figure 4.3: The “Retroguard” agent that solves the BHS problem in dynamic rings
when the agents can only communicate by seeing which other agents are in the same
node as them (vision model) following the algorithm in [1].

Finally, the “Leader” agent is defined as:
• Q = {Init, Move, Cautious, TerminateA, TerminateR}

• I = {Init}

• F = {TerminateA, TerminateR}

• Moves = {wait, right, left}

• Pre-Move Sensors: the avanguard is on the expected node (metAvanguard),
the avanguard failed to return to the current node even though the edge
is present (AvanguardFailedReport), the retroguard did not return within
the expected time even though it cannot be blocked by a missing edge
(RetroguardFailedReport).

• Post-Move Sensors: ∅
• Variables: the number of distinct visited nodes since the agent last switched

direction (nodesSinceDirSwitch)
• Conditions:
c1: nodesSinceDirSwitch > 0
c2: RetroguardFailedReport
c3: AvanguardFailedReport
c4: metAvanguard
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Initstart Move Cautious

TerminateA TerminateR

¬c2 ∧ ¬c3 ∧ ¬c4, wait, nodesSinceDirSwitch++

c4, nodesSinceDirSwitch=0

c2c3

¬c1 ∧ ¬c2, right, nodesSinceDirSwitch++

c1, nodesSinceDirSwitch=0

c2

¬c2 ∧ ¬c3 ∧ ¬c4, wait, nodesSinceDirSwitch++

c4, nodesSinceDirSwitch=0

c2

c3

Figure 4.4: The “Leader” agent that solves the BHS problem in dynamic rings
when the agents can only communicate by seeing which other agents are in the
same node as them (vision model) following the algorithm in [1].

4.7 Semantics
An agent
A = (Q, δ, I, F, Moves, Conditions, Variables, PreM-Sensors, PostM-Sensors, N)
walks on a graph G, where G can be any graph. A configuration is described by

1. The position of the agents on the graph, or equivalently the nodes that contain
one or more agents.

2. The position of the agents on the node, or equivalently if an agent is placed
at a port or in the node.

3. The values of the local variables of each agent.
4. The values of the sensors of each agent.

Using this information, an agent configuration Conf is therefore formally defined by
a tuple 〈q, v, s〉 ∈ Q× D(vars)× D(sens).
An agent configuration is initial if q is the initial state, I. From an agent configura-
tion Conf we can reach an adjacent configuration Conf ′ if the agent has executed
exactly one transition. The agents operate in “Look, Compute, Move” rounds.
During the “Look” phase the agent gathers information from its environment by
updating the values of the pre-move sensors. In the “Compute” phase the agent
uses the values of its local Variables and of its Sensors and it calculates the values
of the Conditions. Finally, using all the calculated values, the agent either moves
or attempts to move to a neighbouring node during the “Move” phase. Let us now
suppose that an agent is in some configuration Conf.
Look Phase: In Conf, the agent is in some node v of the graph, its local variables
have some values and the post-move sensors have either the values that came from
the previous move or they are just initialized, if this is the first move. The agent
then updates its pre-move sensors.
Compute Phase: Based on the pre-move sensors, the variables and the post-move
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sensors, the agent obtains a valuation for the conditions.
Move Phase: Next, based on the value of the conditions and the current state,
the agent chooses a move. An agent can only move from a node to another node
connected by an edge at each time unit. That is, an agent that occupies a node v at
time t can only be at one of the nodes v− 1, v and v+ 1 at t+ 1. Finally, the agent
either attempts to move to a new node or it chooses to remain at its current node.
Notice that even if an agent chooses to move, the move might fail. After the move
the agent reaches a new state and it updates its post-move sensors and its variables.
Now the agent has reached a different configuration, Conf ′.
Formally, an agent configuration, Conf, is defined by the values of the pre-move
sensors (PreM-Sensors), the move of the agent (left, right or none) and the
values of the post-move sensors (PostM-Sensors). The valuation of a condition
depends on the values of variables and sensors, and the transition function is given by
δ = Q×Conditions→ Q×Moves×VarUpdates. Therefore, an agent configuration,
Conf ′, is the (PreM-Sensors, move, PostM-Sensors′) successor of Conf, if there
is a condition c, such that all of the following hold:

1. c(pre, v, post) is true
2. δ(q, v) = (q′,m, update)
3. Conf ′ = 〈q′, v′, post′〉
4. v′ = Update(v)

A global configuration, ConfG, depends on the location of each agent on the graph,
as well as the local configurations of the agents. Therefore,

ConfG = 〈(v1,Conf1), . . . , (vn,Confn)〉

such that vi is a node in the graph and Confi is the configuration of agenti.
We call two configurations ConfG = 〈(v1,Conf1), . . . , (vn,Confn)〉 and Conf ′G =
〈(v′1, Conf ′1), . . . , (v′n, Conf ′n)〉 successors if the following hold:

1. For each agent, PreM-Sensorsi are the pre-move sensor values. In this case we
will only consider the case in which the pre-move sensors can give information
concerning the location of the agent on the node (i.e., in a port or in the node)
and whether or not other agents are on the same node.

2. For each agent, Confi ′ is the (PreM-Sensorsi, movei, PostM-Sensors′i) suc-
cessor of Conf

3. For each agent, PostM-Sensors′i is the post sensor value for agenti after taking
move movei.

Automata like the ones in Figures 4.1 and 4.2 - 4.4 solve the problems we consider
when they operates in ring graphs. So we restrict G to be a ring. Furthermore, for
any of the problems, more than one automaton needs to opearate in the ring in order
to solve the problem (see Lemma 3). We do not make any assumption about the
initial positions of the agents. Therefore, in the model presented here, the agents
may start from different nodes or be initially co-located.
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5
From Distinct to Sequential

Identities

In this chapter, we show that a group of mobile agents with unique identities op-
erating in a dynamic ring are able to perform different tasks if they have distinct
identities, even if the agents cannot learn the other agents’ identities and the initial
identities are not predetermined. We begin by presenting an algorithm that assigns
sequential identities to agents that are initially placed on the same node and we
prove the correctness of our algorithm. Then we prove the same property for agents
that are initially placed on different nodes.
Since the agents operate in a distributed setting, all agents follow the same algo-
rithm. Each agent Ai is equipped with two capabilities: it can “see” how many other
agents occupy the same node as Ai at any time unit, using sensors, and it can signal
one Boolean value to all other co-located agents at each step. As far as signalling is
concerned, the disjunction of the co-located agents’ Boolean values is given as input
to all agents in the same node at each step. In other words, at each time unit, each
agent has access to one bit of information, which represents the disjunction of the
Boolean value of the signalling variable of each co-located agent. We will prove that
the one bit of information that is given as input to the agents, is enough for the
agents to be able to assign different tasks to themselves.
Below we give an algorithm that allows co-located agents to assume different tasks
based on their identities and know when all other agents on the node have also
finished calculating their task. Briefly, the algorithm begins with k initially co-
located agents equipped with distinct IDs placed in a common node. Each agent
waits and counts a number of time units equal to its original ID. When the number
of time units becomes equal to the ID of an agent, say AID, AID assigns the next
available sequential ID to itself, notifies the remaining agents at the node and all
agents locally increase the value of the next available ID by one. When the value of
the next available ID becomes equal to k, the agents know that a sequential ID has
been assigned to each agent and the algorithm terminates.
The agent or the part of the agent that executes the algorithm is defined as follows:

• Q = {have orig ID, update next seq ID, have seq ID, other agent got
seq ID, all agents have seq IDs}

• I = have orig ID
• F = {all agents have seq IDs}
• Moves = ∅
• Pre-Move Sensors = checks if any agent on the node is signalling by having

set its signalling variable to true (isSomeAgentSignalling)
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• Post-Move Sensors = ∅
• Variables = the initial numeric ID of the agent (id), the next available se-

quential ID (sid), the number of agents in the system (k), the current round
(r), whether the agent is signalling (signalling)

• Conditions =
c1 : r < id
c2 : isSomeAgentSignalling
c3 : sid < k

Before the execution of the algorithm, the variables are initialized in the following
way:

• id: Can be any natural number, as long as no other agent is assigned the same
value.

• sid: It is initialized to 1.
• k: It is initialized to the number of agents in the system.
• r: It is initialized to 1.
• signalling: It is initialized to false.

have
orig. IDstart

update
next

seq. ID

have
seq. ID

other
agent got
seq. ID

all
agents
seq. IDs

c1 ∧ ¬c2, r++

c1 ∧ c2, sid++c1, r++

¬c1, signalling← true, sid++, id← sid

c3 ∧ ¬c2, signalling← false

c3 ∧ c2, sid++c3

¬c3

Figure 5.1: Algorithm that allows initially co-located agents to assume sequential
identities.

Lemma 1. Algorithm 5.1 takes a group of k mobile agents that have unique numeric
identities and assigns distinct but sequential identities in {1, . . . , k} to the agents.

Proof. The algorithm can be split into four parts, each corresponding to one set of
actions:

• Initialization: During the initialization of variables phase, the variables of
the agents get assigned common values. The agents do not share memory
so assigning values to the variables is local and cannot cause synchronization
problems. Furthermore, the agents have enough memory to count the number
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of agents on the current node, by our definition, and in the model that we
consider the agents can see other agents that reside on the same node during
the Look phase. Consequently the initial input of all agents is the same.

• States have orig. ID and update next seq. ID: Those states represent a
while loop. The agents that do not exit the loop (i.e., by moving to state have
seq. ID), count the number of rounds, until as many rounds as the initial
value of their ID have passed. The IDs of the agents are unique, therefore at
most one agent can exit this while loop at each round. The agents that do
not exit the loop, observe whether at least one agent in the node is signalling.
Since all agents are on the same node and operate in synchronous rounds, their
input during this step is the same. Updating variables is once again a local
action and is a result of the common observation. Consequently, all agents
that are still in the while loop have the same values in their local variables.

• Transition from have orig. ID to have seq. ID: At most one agent, the
one that has just exited the while loop (i.e., the one for which c1 becomes false),
can be executing this transition at any time unit. The ID of that agent is equal
to the number of the current round r and since each ID is unique, the agent
that can execute this part of the algorithm in any round is also unique. Let us
call that agent As. Agent As assigns sid to its local ID variable. The sid was
increased every time another agent set its signalling variable to true, detected
by c2. Since the only time the value of the sid is used is when an agent assigns
it to itself after exiting the while loop between have orig. ID and update
next seq. ID, the current value of the sid variable has not been used by
another agent. As then increases its local value of sid and sets its signalling
variable to true. Since all other agents increase the local value of sid when an
agent is signalling, local values of the sid variables remain synchronized and
no more than one agent can assign the same value to its ID.

• States have seq. ID and other agent got seq. ID: Those two states
also represent a while loop. Agent As keeps its sid variable synchronized with
the other agents and waits until all agents have an ID in {1,. . . ,k}, detected
by sid becoming equal to the number of agents in the system, k. Therefore,
all agents finish executing the algorithm simultaneously when c3 becomes false
and having distinct IDs in {1,. . . ,k}.

Lemma 2. A group of agents with distinct IDs in a dynamic ring can perform
different roles when they meet based on their identities, even if the identities are
not predetermined, each agent initially only knows its own identity and face-to-face
communication is not possible, assuming the values of the agents’ IDs come from
an ordered set, each ID is distinct and each agent has enough memory to count the
number of agents on the node.

Proof. In any configuration, the agents can either be initially co-located or initially
scattered in the ring.
Let us first consider the case where all agents are initially placed on the same node.
As we have shown in Lemma 1, Algorithm 5.1 correctly allows the agents to assume
different roles. The assumptions of Algorithm 5.1 match the assumption of this
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lemma. Since there exists at least one algorithm that allows initially co-located
agents to assume different tasks, the lemma is proved for the case of initially co-
located agents.
Let us now consider the case of initially scattered agents. In this case, when agents
enter a common node v, this happens in different time units, since all agents are
initially placed on different nodes. Therefore, each agent can assign a distinct task to
itself by counting how many agents are already on any node it enters. If more than
one agents enter the node simultaneously, there are two cases. Either the agents
enter the node while moving in the same direction, or they enter the node from
different directions. If the agents enter while moving in the same direction, they
must have also met in a previous node and already have a way to assign different
tasks among themselves. If the agents enter the node while moving in opposite
directions, they can use that difference to decide who should compute a new task
first among themselves. This can be done in the following way. Let Acw be the
agent that entered the node while moving clockwise and let Accw be the agent that
entered the node while moving counterclockwise. Furthermore, suppose that a group
of m agents, A, reached the node at some previous step. Acw (resp. Accw) cannot
immediately differentiate between Accw (resp. Acw) and the agents of A. Out of
the two new agents at v, Acw and Accw, the agent that was moving clockwise, Acw,
signals first that it just entered v and changes its identity to m+1. In the next step,
Accw observes that Acw signalled, and also signals that it just entered v. Accw then
changes its ID to m+ 2. If no agent entered a node moving clockwise, Accw detects
that there was no signal from another agent and instead of m+ 2, changes its ID to
m+ 1. Thus, the lemma is also proved for the case of initially scattered agents.
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6
Undecidability

When designing this thesis we considered the problem of constructing an automated
verification procedure for algorithms that solve the terminating exploration problem
in dynamic rings, using mobile agents. However, while studying that problem
using the agent capabilities that are commonly assumed in the known distributed
computing literature, we discovered that the verification problem becomes undecid-
able under many of the assumptions. In this chapter, we prove our undecidability
results and we show that by combining our undecidability results with the known
impossibility results from the distributed computing literature we can define a set
of mobile agent capabilities for which the decidability of the verification problem is
still open.

As we showed in Chapter 2.6, Exploration is connected to both Black Hole Search
and Gathering. In the case of Black Hole Search, if Exploration is not possible the
problem cannot be solved. In the case of Gathering we only know that all currently
known algorithms for agents that operate in dynamic rings depend on the agents
exploring the ring. Due to those results, we check undecidability for Exploration in
dynamic rings and the results we obtain also hold for BHS and Gathering under the
same assumptions.
Let R be the set of all ring graphs. Formally, for every n ∈ N, where n is the size
of the graph, there is a graph Rn = (Vn, En,Σ, λn) in R where Σ = {l, r}, Vn = |v|
is the set of nodes, En = {(vi, vj)|vi ∈ V, vj ∈ V and vi 6= vj} is the set of edges and
the label λn of each edge that is of the form (vi, vi+1 mod n) is r and of each edge of
the form (vi−1 mod n, vi) is l. We will prove that if an algorithm requires the agents
to be able to use even one counting variable, the problem is undecidable. The proof
will be by reduction from the non-halting problem of 2-counter machines (2CM).
An input free 2-counter machine is a deterministic program manipulating two
integer counters using commands that can increment a counter by one, decrement
a counter by one and check whether a counter is equal to zero. We will first show
that the exploration problem cannot be solved in dynamic rings by only one agent,
so at least two agents are needed by any correct algorithm.

Lemma 3. Any problem that requires agents to move in order to complete a task
(like Exploration, Gathering or BHS) in dynamic rings cannot be solved by a single
agent, even if that agent has unlimited memory and knows the size of the ring.

Proof. Let the agent be initially located on some node v. The agent cannot remain
at v indefinitely, otherwise the ring is not explored. Let the agent first attempt
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to move clockwise (resp. counterclockwise). The adversary then removes the edge
incident to v that leads to its clockwise (resp. counterclockwise) neighbour. Call
that edge er (resp. el). The agent can continue attempting to move clockwise
(resp. counterclockwise), choose to remain at v or move counterclockwise (resp.
clockwise). In the first case, the adversary keeps er (resp. el) removed and the
agent does not move and therefore does not explore the ring. In the second case
the ring is also not explored. Therefore, the agent will eventually need to attempt
to move counterclockwise (resp. clockwise) using edge el (resp. er). However, when
the agent attempts to move, the adversary can remove el (resp. er). Therefore, it is
always possible for the adversary to remove the edge the agent attempts to use and
not allow the agent to leave its initial node, thus not allowing the agent to explore
the ring. As a result, one agent cannot leave its initial node in a dynamic ring.

In the following lemmas, we address various cases using different numbers of agents
operating in a dynamic ring and different agent capabilities and we prove that the
problem of deciding if a given algorithm is correct becomes undecidable under many
of the most common assumptions in [8, 59, 60, 9, 1]. We split our results into two
parts. The first part, corresponds to Lemmas 4 - 7. In this part, we assume that
the agents only have “vision” which is the weakest communication mechanism. This
means that agents can only see how many other agents are located at the node
they currently occupy but they cannot exchange any other information with those
agents. In the second part, we focus on decreasing the number of agents that need
to operate in the ring to prove that the problem is undecidable. To do that, we
assume that this time the agents are able to exchange one bit of information at each
round in addition to being able to detect how many other agents are located on a
common node. The lemmas of this part, Lemmas 8 - 11, also hold for any other
communication mechanism, provided that in that mechanism the agents are also
able to exchange at least one bit of information. For example, such communication
mechanisms are tokens/pebbles and face to face communication. Also, Lemmas 8
- 11 do not depend on agents moving, so they also hold for agents in static rings.
We summarize the undecidability results that we will prove later in this chapter in
Table 6.1.

6.1 Agents That Only Have Vision
In the following lemmas the agents cannot signal information to each other without
moving, since their only communication capability is vision. Therefore, the agents
must leave their current node in order to exchange information. However, since the
ring is dynamic, when an agent attempts to leave a node to signal information, a
missing edge can prevent the agent from moving. Hence, in our proofs we need to
differentiate between an agent not moving as part of the protocol and an agent
failing to move due to a missing edge.

Lemma 4. If an algorithm for solving the exploration problem in dynamic rings
depends on at least four co-located agents, each agent is equipped with two ring-
size dependent variables, a distinct ID and has chirality, the automated verification
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Table 6.1: Summary of our undecidability results. All agents in all cases have distinct
but unknown identities. In the cases where the agents do not begin from the same node
(i.e., scattered) we assume there is also a marked node somewhere in the ring.

Lemma # of Agents Initial Positions
# of “Ring

Size
Dependent”
Variables

Communication

4 4 co-located 2 Vision
5 4 scattered 2 Vision
6 6 co-located 1 Vision
7 6 scattered 1 Vision
8 2 co-located 2 One bit & Vision
9 3 scattered 2 One bit & Vision
10 3 co-located 1 One bit & Vision
11 5 scattered 1 One bit & Vision

problem is undecidable.

Proof. The agents are initially placed at the same node and have distinct identities.
Therefore, the four agents can form two pairs, which is possible as we have shown
in Lemma 2. We say that agents A1 and A2 form pair P1 and agents A3 and
A4 form pair P2. Furthermore, since the agents are on the same node and have
chirality, we can make P1 pick as initial direction the clockwise direction and P2
pick counterclockwise as its initial direction. Each agent uses one variable to count
the computation steps and the other variable to simulate the register the agent
follows. We say that the agents that belong to the same pair each simulate one
of the registers of the 2CM. That is, A1 and A3 simulate register x and A2 and
A4 simulate register y. The agents then operate in the following manner. All
agents count the number of computation steps. When register x is decremented or
incremented, A1 and A3 increment or decrement their variable respectively. When
register y is decremented or incremented, A2 and A4 increment or decrement their
variable respectively. When it is checked whether register x (resp. y) is equal to 0,
A1 and A3 (resp. A2 and A4) check whether their variable is equal to zero. Then, if
the variable is not equal to 0, A1 and A3 (resp. A2 and A4) remain on the current
node for two time units, t and t+ 1. Otherwise, if the variable is equal to 0, A1 and
A3 (resp. A2 and A4) move one step to their chosen direction at t and one step back
to the initial node at t + 1. The remaining agents, in this case A2 and A4 (resp.
A1 and A3), always attempt to move one step towards their chosen direction at t
and return to the initial node at t + 1. This way, A2 and A4 (resp. A1 and A3)
always know if A1 and A3 (resp. A2 and A4) were blocked by a missing edge and
as a result they were blocked from signaling the value of their variable. A missing
edge is detected in the following way:

• One of the agents, say A1, checks the value of its variable and the value is
0. In this case, both A1 and A2 attempt to move one step to their chosen
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direction and they both detect that the edge is missing.
• One of the agents, say A1, checks the value of its variable and the value is not

0. In this case, A1 does not move in the following step and it detects that A2
did not move either. Since A2 always moves when A1 checks if its variable is
equal to 0, A1 infers that the edge is missing. A2 also knows that the edge is
missing since its move failed.

• An agent that moved to a neighbouring node did not return after one time unit.
In this case, the agent that tried to move learns that the move failed and the
other agent that belongs to the pair infers that the edge is missing.

After a pair of agents detects that an edge is missing, the pair that detected the
missing edge waits for the edge to return, before continuing the simulation of the
2CM. If the edge does not return, then the remaining pair finishes the simulation
of the computation and two agents are enough to explore the ring. If the edge
returns, then at least one of the pairs simulates a computation step at each round
and eventually, one of the pairs finishes the simulation and begins exploring. Finally,
if the 2CM halts before making n computation steps, the agents cannot count up to
the number necessary for the completion of the algorithm and we make the agents
stay in place in an infinite loop. Otherwise, the agents follow the computation of
the 2CM for n computation steps and then explore the ring. Since the size of the
ring can be any natural number, it cannot be guaranteed that the 2CM will not halt
and exploration will be solved, thus, the problem is undecidable.

Lemma 5. If an algorithm for solving the exploration problem in dynamic rings
depends on at least four initially scattered agents, each agent is equipped with two
ring-size dependent variables, a distinct ID, has chirality and there is a marked node
in the ring the automated verification problem is undecidable.

Proof. The agents begin from different nodes in the ring and have chirality. There-
fore, they can attempt to reach the marked node by all moving in the same direction,
say counterclockwise. The following cases are possible:

1. All agents reach the marked node. This case is the same as the one described
in Lemma 4 and we have proved it is undecidable.

2. Three agents reach the marked node and one agent is blocked by a missing edge.
In this case two agents form a pair and the remaining agent in the marked
node, waits. This time, the agents reach the marked node in different time
units. We call A1 the first agent to reach the marked node, A2 the second agent
to reach the marked node and A3 the third agent to reach the marked node.
Each agent that enters the marked node can see how many other agents are
also in the node and the agents are able to assign different tasks to themselves
by counting the number of agents that are already on the marked node. Let
the first two agents that reach the marked node (A1 and A2) form a pair and
use their distinct IDs to each simulate one of the registers of the 2CM. Say
A1 and A2 have formed a pair, A3 is in the marked node, A4 is blocked by a
missing edge, A1 simulates register x and A2 simulates register y. The pair
now begins simulating the 2CM in the following way. Each agent uses one
variable to count the number of computation steps and the other variable to
simulate its assigned register. Checking if one of the registers is equal to zero is
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done by a back and forth move, as we described in the proof of Lemma 4. The
first pair to be formed chooses counterclockwise (i.e., the same direction they
moved when searching for the marked node) as the direction the agents use
to signal that a variable is zero. Otherwise, an adversary can block both A4
and the pair by removing the edge between the marked node and its clockwise
neighbour. If the pair is blocked while simulating the 2CM, A4 must have been
unblocked and it will eventually reach A3. If A4 reaches A3, A4 and A3 form a
pair and simulate the 2CM, choosing clockwise (i.e., the opposite direction of
the first pair) as the direction they move to signal or check whether a variable
is equal to zero. Furthermore, since all agents are now in the same node
and have formed pairs we can use the same argumentation as in the proof of
Lemma 4. That is, the adversary can only block one of the two pairs at each
move, therefore, one of the pairs always simulates a step of the 2CM and we
have already shown in Lemma 4 that the problem is undecidable in this case.

3. Two agents reach the marked node and two agents are blocked by a missing
edge. Two pairs have been formed. The pair in the marked node (call it P1)
begins the simulation and chooses counterclockwise (towards the initial direc-
tion) as the direction for checking if a variable is zero. The blocked pair (call
it P2), also begins the simulation of the 2CM and also chooses counterclock-
wise as its direction. By having both pairs choose the same direction as the
direction used for signaling and checking whether a variable is equal to zero,
the adversary cannot block both pairs by removing one edge. If P1 becomes
blocked by a missing edge when checking for a zero, P2 must have been un-
blocked. While the two pairs are not on the same node, either P1 simulates
the 2CM, P2 simulates the 2CM or both pairs simulate the 2CM.

4. One agent reaches the marked node and three agents are blocked by a missing
edge. In order to avoid being blocked by a missing edge the agents perform
the following moves. Two of the three agents on the marked node form a
pair, P1, and choose counterclockwise (the same direction as the initial) as the
direction they use to signal or check a zero. P1 begins simulating the 2CM.
The remaining agent (call it A3) that is blocked by a missing edge, changes
direction and moves until it finds the marked node. At each rounds, the
adversary can either block P1 from simulating the 2CM or A3 from reaching
the marked node. Thus, either the 2CM is able to continue the simulation of
the 2CM or A3 and the agent on the marked node meet and form another pair,
P2. That pair chooses counterclockwise (the same direction as the initial) as
the direction they use to signal or check a zero and the adversary cannot block
both pairs from simulating the 2CM by removing an edge.

5. All agents are blocked by a missing edge. The agents have all managed to meet
and they can continue the simulation using the method in Lemma 4.

Since the agents are able to distinguish the marked node, see if an edge is missing
and count the number of agents on a node, they are able to infer in which of the
above cases they are and perform the corresponding actions. Therefore, in every
case the problem is undecidable for four initially scattered agents that have distinct
IDs, chirality, two variables that depend on the size of the graph and move in a
dynamic ring.
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Lemma 6. If an algorithm for solving the exploration problem in dynamic rings
depends on at least six co-located agents, each agent is equipped with one ring-size
dependent variable, a distinct ID and has chirality the automated verification problem
is undecidable.

Proof. The agents are initially placed at the same node and have distinct identities,
so they can form teams and decide on different roles, due to Lemma 2. Like in
Lemma 4, we say that agents A1 and A2 form pair P1 and choose the clockwise
direction for signaling and that agents A3 and A4 form pair P2 and choose the
counterclockwise direction for signaling. The remaining agents, A5 and A6, only
leave the initial node once, when signalling. A5 moves in the same direction as P1
and A6 moves in the same direction as P2. One agent from each pair simulates one
of the registers of the 2CM. That is, A1 and A3 simulate register x and A2 and A4
simulate register y. Finally, A5 counts the number of computation steps of P1 and
A6 counts the number of computation steps of P2, by incrementing their respective
variable by one once every three time units if their corresponding pair is not blocked.
The proof of this lemma follows the proof of Lemma 4 with the following difference.
This time, each round lasts for three time units, instead of two. The first time unit is
reserved for A5 and A6 to signal whether n simulation steps have passed. During the
first time unit reserved for the counting agents, the agents that have formed pairs
only observe A5’s and A6’s move (or lack of move) without simulating the 2CM. In
the following two time units the pairs simulate the 2CM as described in the proof
of Lemma 4. When A5’s (resp. A6’s) count reaches n computation steps, it signals
it to the agents of P1 (resp. P2). To signal, A5 (resp. A6) moves one step clockwise
(resp. counterclockwise) and then returns to the node. Since during that time unit
no other agent moves, the agents that have formed pairs, infer that the agent that
moved is a counting agent. There are three cases for each pair. We will use P to
refer to either pair and Ac to refer to the counting agent corresponding to P .

1. The agents of P and Ac are on the initial node. This is possible when the edge
P uses to signal a zero was not missing in the previous round or if P did not
perform a check for zero. In this case, when Ac signals that n computation
steps have been simulated, all agents of P know.

2. Ac and one of the agents of P are on the initial node. This is possible when one
of the agents of P (say Ax) checks if the other agent’s (say Ay) variable (say
z) is zero at computation step n − 1 and z 6= 0. In this case, Ax moves from
the initial node, vi, to the designated neighbour, vneigh. Let the edge between
vi and vneigh disappear before Ax has returned to vi. When Ac signals that n
computation steps have been simulated in the next round, only three of the
agents are on the node and Ax does not learn that n computation steps have
been simulated. Either the edge between vi and vneigh returns or it does not.
In the first case, Ax learns that n computation steps have been simulated by
a signalling move during the first time unit of the next round from Ac. In the
latter case, Ax does not learn that the simulation is complete but the other
pair is enough to explore the ring and it is not blocked by a missing edge since
the missing edge is the one between vi and vneigh.

3. Only Ac is on the initial node. This is possible when one of the agents in a
pair (say Ax) checks if the other agent’s (say Ay) variable (say z) is zero at
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computation step n − 1 and z = 0. In this case, both Ax and Ay move from
the initial node, vi to the designated neighbour, vneigh. Let the edge between
vi and vneigh disappear before Ax and Ay have returned to vi. When Ac signals
that n computation steps have been simulated, Ax and Ay are not on vi and
consequently do not learn that n computation steps have been simulated.
Either the edge between vi and vneigh returns or it does not. In the first case,
Ax and Ay learn that n computation steps have been simulated by a signalling
move during the first time unit of the next round from Ac. In the latter case,
Ax and Ay do not learn that the simulation is complete but the other pair is
enough to explore the ring and it is not blocked by a missing edge since the
missing edge is the one between vi and vneigh.

Since at most one edge is missing in each time unit and the adversary cannot block
both pairs by removing the same edge, if one of the pairs, P , is in Case 2 or in
Case 3 the other pair, P ′ has to be in Case 1. So, in every case the problem is
undecidable.

Lemma 7. If an algorithm for solving the exploration problem in dynamic rings
depends on at least six initially scattered agents, each agent is equipped with one
ring-size dependent variable, a distinct ID, has chirality and there is one marked
node in the ring the automated verification problem is undecidable.

Proof. The proof in this case follows the same reasoning as the proof of Lemma 5,
with the difference that this time, the goal is for the agents to form teams of three
agents instead of pairs. Since there is a marked node and the agents have chirality
all agents can start moving in the same direction, say counterclockwise, trying to
reach the marked node. If one or two agents are blocked by a missing edge, they
continue attempting to move in the same direction, by waiting for the edge to return.
If three agents are blocked by a missing edge they form a team and begin simulating
the 2CM, using the original direction, counterclockwise, for signalling a zero. The
following cases are possible:

1. All agents are on the marked node. The agents can form two teams and
simulate the 2CM following the proof of Lemma 6.

2. Three agents are blocked by a missing edge and three agents reach the marked
node. In this case, the agents can form teams of three, where each team
consists of one agent simulating register x, one agent simulating register y and
one agent counting the number of computation steps of the 2CM. The two
teams must choose a common direction as the direction for signalling a zero,
otherwise the adversary can block both teams from simulating the 2CM by
removing one edge. Let the agents choose the same direction as the initial
direction of movement, in this case counterclockwise. The two teams can
independently simulate the 2CM following the method described in the proof
of Lemma 6. Since the adversary can only block one of the pairs in each round,
eventually at least one of the pairs finishes the simulation phase.

3. The majority of agents are blocked by a missing edge. The first three agents
that are blocked by a missing edge form a team and begin attempting to
simulate the 2CM, using counterclockwise as the direction for signaling a zero.
If another agent, A, reaches the team already simulating the 2CM, A changes
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direction and attempts to reach the marked node. If A is blocked at any step,
the team that was originally blocked must have been unblocked and it can
simulate the 2CM. Either the team will finish the simulation, or the agent(s)
that reach the team and change direction reach the marked node. Notice that
this means that it is not possible for all agents to be blocked by a missing
edge, so it does not need to be a separate case. Therefore, either the team
that is not on the marked node finishes the simulation or the agents that are
not part of that team form another team in a different node and simulate the
2CM using counterclockwise (i.e., the initial direction) for signaling a zero or
reach the marked node and simulate the 2CM using counterclockwise (i.e., the
initial direction) for signaling a zero. In all cases, the adversary can block
at most one team by removing an edge and eventually, one of the teams will
finish the simulation phase.

4. The majority of agents reach the marked node. In this case, the first three
agents that reach the marked node form a team, choose counterclockwise (that
is, the initial direction) as the direction for signaling a zero and begin simulat-
ing the 2CM. The remaining agents always attempt to move counterclockwise
to reach the marked node, since at least three agents are needed for a group
of agents to stop and form a team. Therefore, either the team of agents on
the marked node will complete the simulation phase without being blocked or
the team will be blocked but the rest of the agents will become unblocked and
eventually reach the marked node. In the latter case, a second team is formed
in the marked node and the simulation continues in the same way as in the
proof of Lemma 6.

Consequently, in every case the problem is undecidable.

In addition to the results of Lemmas 4 - 7, there are some impossibility results in [8]
that further restrict the assumptions that can be made for an algorithm that solves
the terminating exploration problem in dynamic graphs. Namely, any number of
agents operating in a dynamic ring that has no knowledge of the size of the ring,
does not depend on a marked node and uses agents that do not have distinct IDs,
cannot solve the terminating exploration problem in a dynamic ring. Combining
those impossibility results with our undecidability results, further restricts the
possible assumptions that would make the automated verification problem decidable.

Theorem 1. Every automated decision procedure for the correctness of exploration
algorithms in a dynamic ring, where agents have at least one variable that can count
to the size of the ring, must depend on the number of agents being less than six,
specific initial conditions, or very restricted forms of communication.

Proof. In Lemmas 4 - 7 we study the automated verification problem for a very
restricted method of communication between the agents. That is, any agent, Ai,
operating in a dynamic ring is only able to see how many other agents are located
on the same node, v, as Ai but does not have any other information about any of
the moves of the other agents before reaching v. Let us first consider the case in
which all agents are initially placed on the same node. As shown in Lemma 6, even
six agents that can only “see” each other and use one variable to count, without
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exchanging any additional information, make the exploration problem undecidable.
Similarly, the presence of six initially scattered agents that can use a variable to
count and can “see” other co-located agents, also make the exploration algorithms
undecidable. Furthermore, due to Lemma 3, we know that one agent is not enough
to solve exploration in dynamic rings. Taking the impossibility results from [8]
into account as well, algorithms that may be decidable by an automated decision
procedure, can:

• Have between two and five agents operate in the dynamic ring, due to Lemmas
3, 6 and 7.

• Have distinct but unknown IDs for the agents from [8] and Lemmas 6 and 7.
• Assume there is a marked node in the ring from [8] and Lemmas 6 and 7.
• Have no restrictions on the initial positions of the agents from Lemmas 6 and

7.
• Have at most one ring size dependent variable per agent from Lemmas 6 and

7.

6.2 Agents That Have Vision and One Bit of In-
formation

The main methodology difference in the following lemmas is that the agents can
now transfer limited information to other agents located on the same node. More
precisely, each agent is able to signal one bit of information in the form of a
Boolean value, and all other co-located agents receive the value corresponding
to the disjunction of the values being signalled by the agents on the same node.
Hence, the agents are able to exchange sufficient information to simulate the 2CM
without needing to move to a different node and as a result they cannot be blocked
by a missing edge at any step of the simulation.

Lemma 8. If an algorithm for solving the exploration problem in dynamic rings
depends on at least two co-located agents, each agent is equipped with two ring-size
dependent variables, a distinct ID and can transmit one bit of information in each
round the automated verification problem is undecidable.

Proof. The agents are initially placed at the same node and have distinct identities.
Therefore, the two agents can assume different roles as we have shown in Lemma
2. One agent, say As, simulates the 2CM and the other agent, say Ac, counts the
number of simulation steps performed by As. Let the two variables of each agent
be v1 and v2 and the two counters of the 2CM be x and y. Agent As uses one of its
variables, say v1, to simulate one of the 2CM’s counters, say x. Similarly, As uses its
other variable, v2, to simulate the remaining counter of the 2CM, y. The simulation
is performed in the following way:

• When register x is incremented (resp. decremented) by 1, As increments (resp.
decrements) v1 by one.

• When register y is incremented (resp. decremented) by 1, As increments (resp.
decrements) v2 by one.
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• When it is checked if register x (resp. y) is equal to 0, As checks if v1 (resp.
v2) is equal to zero.

The simulation of each computation step of the 2CM (i.e., incrementing a variable,
decrementing a variable or checking if a variable is equal to zero) takes one time
unit. The counting agent, Ac, uses one of its variables, say v1 to count the number of
computation steps and does not use its second variable. If As finishes the simulation
of the computation of the 2CM, it signals it to Ac by setting the value of the Boolean
variable that the two agents use to communicate to true. Similarly, if Ac counts n
computation steps it signals it to As by setting the value of the Boolean variable to
true. If the 2CM halts before making n computation steps, the agents cannot count
up to the number necessary for the completion of the algorithm and we make the
agents stay in place in an infinite loop. Otherwise, the agents follow the computation
of the 2CM for n computation steps and then solve exploration in the ring. Since the
size of the ring can be any natural number, it cannot be guaranteed that the 2CM
will not halt and exploration will be solved, thus, the problem is undecidable.

Lemma 9. If an algorithm for solving the exploration problem in dynamic rings
depends on at least three initially scattered agents, each agent is equipped with two
ring-size dependent variables, a distinct ID, can transmit one bit of information in
each round has chirality and there is one marked node in the ring the automated
verification problem is undecidable.

Proof. The agents all start from different and unknown nodes and there is a marked
node at the ring. First all agents begin moving in the same direction (say clockwise)
until they reach the marked node. The goal is for at least two agents to meet on
a node and then follow the simulation of the 2CM described in Lemma 8. Either
all agents eventually reach the marked node or a number of agents are blocked by a
missing edge. When an agent (call it A1) is blocked by a missing edge, it waits on
its current node, v, until the missing edge returns or until another agent reaches v.
Let us first consider the case of at least one more agent, say A2, reaching v before
the edge returns. A1 and A2 entered v at different times so they have a way to
break the symmetry between them and assign different roles to themselves. The
two agents simulate the 2CM in the same way as in Lemma 8 with one agent (say
A1) using both its variables to simulate the counters of the 2CM and the other agent
(say A2) using one variable to count the computation steps. In the case where the
missing edge reappears at some later time but before any other agent reaches v, A1
continues moving clockwise and it either manages to reach the marked node or it is
again blocked by a missing edge and the same argumentation holds. Finally, if the
edge does not return and no other agent reaches v, the remaining two agents must
have both reached the marked node and stopped moving. In all cases, at least two of
the three agents eventually meet either at the marked node or when they encounter
a missing edge. After two agents meet, the agents are able to assign different tasks
to themselves (due to reaching a common node at different time units) and follow
the method described in Lemma 8 to simulate a run of the 2CM.

Lemma 10. If an algorithm for solving the exploration problem in dynamic rings
depends on at least three co-located agents, each agent is equipped with one ring-size
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dependent variable, a distinct ID and can transmit one bit of information in each
round the automated verification problem is undecidable.

Proof. The proof of this lemma is similar to the proof of Lemma 8, with the difference
that instead of simulating both counters of the 2CM using one agent, this time we
use two agents. Let A1, A2 and Ac be the three agents in the ring. A1 and A2
each use their variable to simulate one of the counters of the 2CM. Let A1 simulate
counter x and A2 simulate counter y. We refer to Ac as the “counting agent” and we
use it to count the number of simulation rounds that have passed. Each simulation
round lasts three time units:

• In the first time unit, t, agent Ac signals if n computation rounds have passed
and if so, the simulation stops.

• In the second time unit, t+1, A1 simulates counter x and signals if its variable’s
value is zero to A2.

• In the third time unit, t+2, A2 simulates counter y and signals if its variable’s
value is zero to A1.

When register x (resp. y) is incremented (resp. decremented), agent A1 (resp. A2)
increments (resp. decrements) its variable. When it is checked if register x (resp.
y) is equal to zero, A1 (resp. A2) checks if the value of its variable is zero. If it is,
A1 (resp. A2) signals it to A2 (resp. A1) by setting its Boolean variable to true for
one round. In the next round, A1 (resp. A2) resets its Boolean variable to zero.

Lemma 11. If an algorithm for solving the exploration problem in dynamic rings
depends on at least five initially scattered agents, each agent is equipped with one
ring-size dependent variable, a distinct ID, can transmit one bit of information in
each round, has chirality and there is one marked node in the ring the automated
verification problem is undecidable.

Proof. Since the agents have chirality, they begin moving in the same direction, say
clockwise, until they reach the marked node or until they are blocked by a missing
edge. The goal is for at least three agents to meet at a common node and then
follow the procedure described in Lemma 10. Following the same argumentation as
in Lemma 9, either at least three agents manage to reach the marked node, or at
least three agents are blocked by a missing edge. In either case, at least three agents
manage to reach a common node. Furthermore, due to Lemma 2 the agents can
assume different tasks based on their identities, therefore, the at least three agents
that meet on a node can simulate the 2CM following the procedure presented in
Lemma 10 and the problem is undecidable.

Theorem 2. Every automated decision procedure for the correctness of exploration
algorithms in a ring, where agents have at least one variable that can count to the
size of the ring and where agents in the same node can exchange one Boolean value,
must depend on the number of agents being less than five, specific initial conditions,
or very restricted forms of communication.

Proof. This theorem follows the same argumentation as Theorem 1. In Lemmas 8 -
11 we increase the communication capabilities between the agents, by assuming the
agents are able to send and receive one bit of information, in addition to knowing
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the number of other agents on the node. By adding this communication capability,
two things happen:

1. The initial position of the agents (i.e., co-located or scattered) affects the
number of agents that make the automated verification problem undecidable.

2. In the case of initially co-located agents, the automated verification problem
is also undecidable in static rings under the same assumptions.

This time the restrictions to possibly get a decidable version of the automated veri-
fication problem for terminating exploration algorithms in dynamic graphs, become:

• Have two agents operating in the dynamic ring, due to Lemmas 3 and 10, if
the agents are initially co-located.

• Have between two and four agents operating in the dynamic ring, due to
Lemmas 3 and 11, if the agents are initially scattered.

• Have distinct but unknown IDs for the agents from [8] and Lemmas 10 and
11.

• Assume there is a marked node in the ring from [8] and Lemmas 10 and 11.
• Have no restrictions on the initial positions of the agents from Lemmas 10 and

11.
• Have at most one ring size dependent variable per agent from Lemmas 10 and

11.
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Regular Model Checking

In this chapter, we provide a way to use regular model checking (RMC) to check
whether an algorithm in correct. As we described in Chapter 2, RMC is an in-
complete method, but it has been proven to terminate under specific conditions
for parameterized systems. We begin this section by discussing why model check-
ing cannot be used for the existing algorithms for the problems we consider, since
the known algorithms depend on the size of the ring. Next, we talk about regular
model checking and we provide a way to transform the formalization of an agent
from Section 4.6 to the form that is needed to use RMC techniques. We begin by
showing a specific example of this transformation and then we move to describing
the transformation for the general case.

7.1 Algorithms with agents that use counting
variables

Similarly to the undecidability results of the previous chapter the presence of the
ring size dependent variables is still a problem for deciding if an algorithm solves
Exploration in dynamic rings using model checking. Namely, the unbounded vari-
ables are a problem because in order to represent all the possible configurations we
would need a state for each possible value of the variables’ values. Since we need to
be able to represent the algorithm for any size of graph, the presence of even one
counting variable prevents us from representing the algorithm when using model
checking. On the other hand, regular model checking was introduced specifically for
analyzing a subset of parameterized and infinite-state systems. Therefore, the size
of the environment being given as a parameter to the algorithms we consider is not
prohibitive to further studying RMC methods.

7.2 Motivation for RMC
Regular Model Checking is a framework that is used for the verification of infinite
and parameterized systems. Since RMC is a model checking technique, its goal
is to automatically verify system properties. As we described in Chapter 2, RMC
represents sets of states using finite state automata and transition relations using
finite state transducers. In general, system configurations can be represented as
words or tree structures in the context of RMC. However, in this thesis we choose
to only represent system configurations as words.
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The motivation for presenting a way to transform algorithms that solve Exploration,
Gathering and BHS into the components that are needed for the application of RMC
techniques, is to provide a possible way for automated verification in view of the
undecidability results of the previous chapter. Even though RMC is not guaranteed
to terminate since the problems we discuss are undecidable, it has been shown that
RMC methods terminate sufficiently often (Chapter 2). Even though we do not
discuss specific RMC algorithms in this thesis, we show how to construct all the
components that are needed for the application of RMC algorithms such as the ones
presented in [57].

7.3 Moving in a Ring
As we showed in Section 4.7, in order to represent the global configuration we need:

1. The position of the agent in the graph (in this case, a ring).
2. The internal configuration of the agent. That is, the values of the agent’s

pre-move sensors, the move direction (if any) and the values of the agent’s
post-move sensors.

Let us begin by the representation of an agent moving in a ring. At any given time,
an agent might be moving counterclockwise, moving clockwise or not moving. Let
Σ be a finite alphabet of symbols. We can represent an agent moving clockwise
in a ring with Σ = {e, o} where e represents a node that does not contain an
agent (i.e., the node is empty) and o indicates that a node is occupied by an agent.
We will construct an automaton Al = {Q, q0, t, F} that accepts the language of
valid left moves of an agent in a ring. In this case, Q = {q0, . . . , q5} is the set of
states, q0 is the initial state, F = {q4, q5} ⊆ Q is the set of accepting states and
t := Q × (Σ × Σ) 7→ Q is the transition relation. We use L(Al) to denote the
language of Al. The words that are accepted by Al are of the form (x, y), where
x = a1 . . . an and y = b1 . . . bn and (a1, b1) . . . (an, bn) ∈ L(Al). This representation
allows us to simulate a transition between two configurations of a given system, in
this case, of an agent moving counterclockwise in a ring. In the context of regular
model checking (RMC) an automaton of the form of Al is called a transducer [57].
More generally, a transducer is a way to represent the transitions of a system from
some configuration Conf to a successive configuration Conf ′. The automaton Al is
represented in Figure 7.1.
Similarly, we can also create another automaton, Ar that represents an agent moving
clockwise in a ring. That automaton is depicted in Figure 7.2.
Let us now briefly discuss how a transducer of that form is read. As an example we
will use the transducer of Figure 7.1, which describes an agent moving counterclock-
wise in a ring. Suppose we have a ring graph R that consists of four nodes and an
agent is initially placed on node v2. This initial configuration is shown in Figure 7.3.
Equivalently, we can describe that configuration with the sequence “eeoe”, where e
represents an empty node, o represents a node occupied by an agent and each letter
of the sequence corresponds to one node of R. In this example, we consider the case
of an agent moving counterclockwise in a ring. After each step, the agent moves to
the counterclockwise neighbouring node, so from vi to vi+1 mod 4. The corresponding
sequences to the moves of the agent are:
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Figure 7.1: An automaton representing an agent that moves counterclockwise in
a ring.

eeoe→ eoee→ oeee→ eeeo→ eeoe

A transducer describes the move from one configuration to the next. So in our
example, the transducer in Figure 7.1 should be able to represent any move from a
node to its counterclockwise neighbour. For example, let us consider the move of
the agent from v2 to v1. The corresponding sequences are eeoe and eoee. Using the
definition of the language accepted by a transducer in the beginning of this section,
x = eeoe (an agent is on v2), y = eoee (an agent is on v1) and the corresponding
word of the language that is accepted by the transducer is (e, e)(e, o)(o, e)(e, e)
where each pair is of the form (xi, yi). By looking at the transducer in Figure 7.1,
the word indeed belongs to the language of an agent moving counterclockwise in
a ring. On the contrary, words describing an agent moving clockwise in the ring
such as (e, e)(o, e)(e, o)(e, e) or an agent moving counterclockwise but for more than
one nodes in a single step such as (e, e)(e, o)(e, e)(o, e) are correctly not accepted
by the transducer in Figure 7.1. Furthermore, the size of the ring between any two
successive configurations cannot change since the word would contain a pair of the
form (_, e), (_, o), (e,_) or (o,_) which are not part of the language and therefore
can never reach an accepting state.

Transducer for Exploration in dynamic rings
The problems we consider in this thesis are more complex than an agent simply
moving in the ring and as a result the transducer describing the legal moves that
are defined by an algorithm is also more complex. In this section, we will construct
the transducer corresponding to the algorithm described by the agent of Figure 4.1,
which solves the Exploration Problem in dynamic rings of known size for agents that
do not have chirality. As part of the algorithm, the agent can move left or move
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Figure 7.2: An automaton representing an agent that moves clockwise in a ring.

v3

v2

v1

v0

Figure 7.3: A ring R that consists of four nodes and contains an agent initially
placed on node v2.
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right depending on the valuation of its conditions. That agent consists of four states
(Init, Fwd, Bounce and Terminate), so we split the description of the transducer to
parts corresponding to those states.

1. Init: In this state, the agent checks the values of conditions c1 and c3. If
one of those conditions is true the agent must transition to a different state,
otherwise, the agent must move on step to the left. Since we can only use one
letter to describe the state of the agent, we will look at all possible valuations of
the conditions and encode each valid valuation with one letter in the alphabet
we will later define for the transducer.

Table 7.1: Encoding for agent configuration in state Init

c1 c2 c3
0 0 0 → move left
0 0 1 → do not move, switch to state Fwd
0 1 0 → move left
0 1 1 → do not move, switch to state Fwd
1 0 0 → do not move, switch to state Bounce
1 0 1 → not valid
1 1 0 → do not move, switch to state Bounce
1 1 1 → not valid

When an agent does not make a left move, two things happen: (1) a condition
becomes true and (2) the agent changes its state. We will use the following
letters to describe the possible actions of the agent:
Il The agent is in state Init, c1 is false and c3 is false which implies that

the agent moves one step to the left.
Ic1 The agent is in state Init, c1 is true and c3 is false which implies that

the agent needs switch to state Bounce without moving.
Ic3 The agent is in state Init, c1 is false and c3 is true which implies that

the agent needs to switch to state Fwd without moving.
2. Bounce: Similarly to Init, we look at the possible valuations of the conditions

and encode each valid combination in a letter which we will then add to the
alphabet of the transducer.

Table 7.2: Encoding for agent configuration in state Bounce

c1 c2 c3
0 0 0 → move right
0 0 1 → move right
0 1 0 → do not move, switch to state Terminate
0 1 1 → do not move, switch to state Terminate
1 0 0 → move right
1 0 1 → move right
1 1 0 → do not move, switch to state Terminate
1 1 1 → do not move, switch to state Terminate
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We use the following letters to describe the possible actions of the agent:
Br The agent is in state Bounce and c2 is false which implies that the

agent moves one step to the right.
Bc2 The agent is in state Bounce and c2 is true which implies that the

agent does not move and switches to state Terminate.
3. Fwd: Once again, we need to look at the possible valuations of the conditions

and encode each valid combination in a letter which we will then add to the
alphabet of the transducer.

Table 7.3: Encoding for agent configuration in state Fwd

c1 c2 c3
0 0 0 → move left
0 0 1 → move left
0 1 0 → do not move, switch to state Terminate
0 1 1 → do not move, switch to state Terminate
1 0 0 → move left
1 0 1 → move left
1 1 0 → do not move, switch to state Terminate
1 1 1 → do not move, switch to state Terminate

We will use the following letters to describe the possible actions of the agent:
Fl The agent is in state Fwd and c2 is false which implies that the agent

moves one step to the left.
Fc2 The agent is in state Fwd and c2 is true which implies that the agent

does not move and switches to state Terminate.
4. Terminate: Finally, for the last state, the agent does not perform any action,

so we only need to represent that the agent entered that state. We will only
use T to describe that action of the agent.

In addition to the possibilities described above, we need to also represent the case
of a node not containing an agent. We will do this with e. So the alphabet of our
transducer is Σ = {Il, Ic1 , Ic3 , Br, Bc2 , Fl, Fc2 , T, e}.
Representing a move of the agent can be done using the automata of Figures 7.1
and 7.2 from the previous section. In this case too, we represent the ring by a
sequence of letters. We use e to represent a node that does not contain an agent.
However, this time, the agent configuration contains more information in addition
to the position of the agent. Therefore, instead of representing a node occupied
by an agent with just an o (like in Figures 7.1 and 7.2), we represent the agent
with Il, Ic1 , Ic3 , Br, Bc2 , Fl, Fc2 or T , depending on its state and the valuation of its
conditions. Therefore, the part of the transducer that describes an agent moving
counterclockwise and is in state “Init” becomes the one in Figure 7.4.
Similarly, the part of the transducer that describes an agent that is in state “Fwd”
and is moving counterclockwise is in Figure 7.5.
The part of the transducer describing an agent that is in state “Bounce” and is
moving counterclockwise is the one in Figure 7.6.
Since there is no other valid state-move combination in the agent, we do not define an
agent moving clockwise in states Init or Fwd and we do not define an agent moving
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Figure 7.4: Transducer for an agent being in state Init and moving counterclock-
wise

counterclockwise in Bounce. At this point, we have defined the moves of an agent and
we need to add the parts of the transducer that correspond to conditions becoming
true and to changes of the agent’s state. The regular expression of a condition (say
c1) becoming true when an agent is in state Init is (e, e)∗(Il, Ic1)(e, e)∗ (Figure 7.7).
This means that after a number of left moves the agent does not move (hence Il and
Ic1 are in the same position in the word in two successive configurations) and c1 is
true. Similarly, the regular expression for an agent that is:

• In Init and c3 becomes true is (e, e)∗(Il, Ic3)(e, e)∗. See Figure 7.8.
• In Fwd and c2 becomes true is (e, e)∗(Fl, Fc2)(e, e)∗. See Figure 7.9.
• In Bounce and c2 becomes true is (e, e)∗(Br, Bc2)(e, e)∗. See Figure 7.10.

Finally, to show that an agent switches state and which transitions between states
are valid, we use the following regular expressions.

• (e, e)∗(Ic1 , Br)(e, e)∗: According to the algorithm, when an agent is in Init, if
c1 becomes true the agent should not move and switch to state Bounce. Hence,
when c1 becomes true in state Init in configuration Conf, the agent transitions
to Bounce in Conf ′ without moving to a different node, where Conf ′ is the
successor of Conf. This is represented by the pair (Ic1 , Br). Notice that we
use Br here because according to our definition of the table for Bounce, when
c1 = 1, c2 = 0 and c3 = 0, the corresponding encoding is Br. See Figure 7.11.

• (e, e)∗(Ic3 , Fl)(e, e)∗: According to the algorithm, when an agent is in Init, and
c3 becomes true the agent should not move and switch to state Fwd. Using the
same reasoning as in the previous case, this is represented by the pair (Ic3 , Fl).
We use Fl here because according to our definition of the table for Fwd, when
c1 = 0, c2 = 0 and c3 = 1, the corresponding encoding is Fl. See Figure 7.12.

• (e, e)∗(Fc2 , T )(e, e)∗: According to the algorithm, when an agent is in Fwd,
and c2 becomes true the agent should not move and switch to state Terminate.
Using the same reasoning as in the first case, this is represented by the pair
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Figure 7.5: Transducer for an agent being in state Fwd and moving counterclock-
wise.

(Fc2 , T ). See Figure 7.9.
• (e, e)∗(Bc2 , T )(e, e)∗. According to the algorithm, when an agent is in Bounce,

and c2 becomes true the agent should not move and switch to state Terminate.
Using the same reasoning as in the first case, this is represented by the pair
(Bc2 , T ). See Figure 7.14.

s0start s1

(e, e)

(Ic1 , Br)

(e, e)

Figure 7.11: Transducer for an agent switching from state Init to state Bounce.
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(e, e)
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Figure 7.12: Transducer for an agent switching from state Init to state Fwd.
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Figure 7.13: Transducer for an agent switching from state Fwd to state Terminate.
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Figure 7.6: Transducer for an agent being in state Bounce and moving clockwise.
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Figure 7.7: Transducer for an agent being in state Init when c1 becomes true.

The transducer describing all possible transitions defined by the algorithm encoded
in the agent in Figure 4.1 that explores a dynamic ring of known size using agents
that do not have chirality, is the union of the automata presented in Figures 7.4 -
7.14.

7.4 Constructing the Necessary Components for
RMC

In a more general case, the construction of the transducer follows the structure of
the agent encoding of the algorithm that we described in Section 4.6 (“Formal-
ization of an Agent”). In that agent configuration, an agent is of the form A =
{Q, δ, I,F,Moves, Conditions, Variables, PreM-Sensors, PostM-Sensors, N}.
During each round, the agent gets an input that is a combination of the variable

s0start s1

(e, e)

(Il, Ic3)

(e, e)

Figure 7.8: Transducer for an agent being in state Init when c3 becomes true.
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Figure 7.9: Transducer for an agent being in state Fwd when c2 becomes true.

s0start s1
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(Br, Bc2)
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Figure 7.10: Transducer for an agent being in state Bounce when c2 becomes true.

values and the sensor values, makes a number of computations based on that
input and that computation leads to true or false values for a subset of the
conditions it checks. According to the valuation of the conditions the agent either
moves (clockwise, counterclockwise, no move/waiting phase), attempts to move
but fails, or transitions to a different, internal, state. The construction of the
transducer that we will show consists of constructing several automata that we call
“sub-transducers”, the union of which produces the transducer.

7.4.1 Alphabet Definition in the General Case
The first step, towards the construction of the transducer is defining its alphabet,
Σ. We split the alphabet definition to a number of parts equal to the number of
states in the agent. For each state, construct a table with the possible valuations
of all conditions of the agent. After constructing the table, encode each action (i.e.,
move or wait phase) of the agent that corresponds to a valid combination of condition
values for the agent in that state with one letter, lmove, and add lmove to the alphabet
of the transducer. That it, Σ = Σ∪{lmove},∀m, q ∈ Moves, Q for which there exists
a valid transition δ(q, v) = (q′,m, updates) of the agent. Furthermore, add one letter,
lcond, in the alphabet for each valid condition or combination of conditions becoming
true within the state. That is Σ = Σ ∪ {lcond}.

7.4.2 Transducer Construction in the General Case
After the alphabet is complete, we begin building the sub-transducers. We split this
procedure into the following parts, for each state of the agent.

s0start s1

(e, e)

(Bc2 , T )

(e, e)

Figure 7.14: Transducer for an agent switching from state Init to state Bounce.
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1. Condition checks. A condition becoming true either does not affect the agent
in the current state and as a result does not need to be recognized by a
sub-transducer or it leads to a change in the agent’s configuration through a
transition. The latter possibility either means that an agent should change its
move or that the agent changes state and is described in the following cases.
The format of a sub-transducer representing that a condition becomes true is
(e, e)∗(x, c)(e, e)∗, where x is a letter of the transducer’s alphabet correspond-
ing to the agent’s previous state and c is the letter of the transducer’s alphabet
corresponding to the condition that becomes true.

2. Agent actions. As we have mentioned in a previous step, we consider an
agent action to be either a move or a wait phase. A move can be either
clockwise or counterclockwise, since we only consider ring graphs as part of
this thesis. We only construct sub-transducers for the moves that are possible
within the given state. The sub-transducer that corresponds to a move in
each valid direction within a state, is of the form of the automata in Figures
7.1 and 7.2, but “o” is replaced by the letter of the transducer’s alphabet
which corresponds to that action and agent state. Let us now consider the
case in which an agent changes directions within the same state. An agent
continues performing the same action (i.e., moving in direction dir or waiting)
until a condition changes. The following things happen when an agent changes
direction within a state. (1) The agent is moving in a direction d or waiting
at a node (that we also symbolize with d for brevity), (2) a condition or set
of conditions, c, becomes true and (3) the direction changes. This is reflected
by constructing two sub-transducers: one that accepts (e, e)∗(d, c)(e, e)∗ and
one that accepts (e, e)∗(c, d′)(e, e)∗. Finally, an agent that is only waiting
(symbolized as an example by w) at a state, is accepted by a sub-transducer
of the form (e, e)∗(w,w)(e, e)∗.

3. Internal change of state. An agent only changes state, if some condition, c,
is fulfilled. When an agent transitions from some state s to some state s′
because a condition c became true, two sub-transducers need to be added.
That is, a sub-transducer that accepts (e, e)∗(s, c)(e, e)∗ and one that accepts
(e, e)∗(c, s′)(e, e)∗.

Finally, the transducer describing all successive configurations of the system, is given
by the union of all the sub-transducers.

7.4.3 Set of Initial Configurations in the General Case
In addition to the alphabet and the transducer, we need to provide a way to repre-
sent the set of initial configurations. Before the execution of an algorithm begins,
internally the agent is in its initial state and the conditions that the agent checks
before making a move or an internal change of state are all set to false. There is
already a symbol in the alphabet of the transducer that corresponds to the agent
being internally in its initial state and the conditions being false. Let that sym-
bol be s. Furthermore, we have already defined e to denote an “empty” node, not
occupied by an agent, in the alphabet of the transducer. The regular expression
corresponding to the set of initial configurations for some agent A is se∗ which is
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depicted in Figure 7.15.

s0start s1
s

e

Figure 7.15: The set of initial configurations for some agent A

7.4.4 Exploration, Gathering and BHS as Verification Prob-
lems

The “Gathering” problem is a reachability problem. More precisely, in any correct
algorithm there should exist a reachable state in which either all agents in the system
are located at a common node or at two neighbouring nodes.
For problems similar to Exploration, we need to add memory that keeps information
obtained from the transducer. In particular, each time an agent visits a node we
flip a bit that corresponds to that node from 0 to 1. If the node is already visited
by some other agent, the bit remains 1. At the end of the algorithm we check if all
the nodes have been visited, or equivalently, we check if all the bits are set to 1. If
indeed all the nodes are visited, exploration is achieved.
Finally, the agents can learn the position of a black hole in different ways, depending
on the kind of communication methods that are used. In the case of endogenous
communication, the agents can only discover a black hole by having at least two
agents, A1 and A2, meet at a node v and then have only one of the agents, say
A1, move to a previously unexplored node at time t. Either A1 returns to v at
t + 1 or A2 infers that the BH is located at the node A1 visited. Notice that in
the cases of endogenous communication mechanisms, the agents cannot exchange
any information without meeting and an agent that is lost in the BH does not leave
any information behind. Therefore, the agents cannot learn the position of the BH
unless they use the described technique, known as “cautious walk” in the literature.
Therefore, for an algorithm that solves BHS to be correct we need to check that
before some agent disappears at some step s it met with another agent at s − 1.
This is a reachability problem, like Gathering, which also requires some memory,
like Exploration. We use memory to record that two agents met in a node, by
flipping a bit from 0 to 1 when an agent meets with another agent, indicating that
the execution of “cautious walk” has started. The reachability problem then is to
reach a state in which an agent is alone on a node, after meeting with another agent
in the exactly previous step, or equivalently, by reaching a state in which an agent
is alone on a node and the bit that indicates that the agent is performing cautious
walk is set to 1.

7.5 More than one agents in the ring
The description of the transducers we have given so far describes the possible tran-
sitions of one agent that operates in a dynamic ring and attempts to accomplish

54



7. Regular Model Checking

a given task. However, as we showed in Lemma 3, one agent in a dynamic ring
cannot even leave its initial node. Therefore, all the problems in dynamic rings that
require agents to move, require at least two mobile agents to operate in the ring.
For the algorithms that we study in dynamic rings, the lower bounds for agents are
two agents for Exploration (according to [8]), three agents for BHS (according to
[1]) and Gathering by the definition of the problem refers to at least two agents.
At the beginning of the “Moving in a Ring” section, we defined the language that
is accepted by the transducer to be of the form (x, y), where x = a1 . . . an and
y = b1 . . . bn and x and y are two successive configurations. For k agents, where k
can be any integer but needs to be fixed in each algorithm, we define x to be of the
form

x = 〈(a11a12 . . . a1n), (a21a22 . . . a2n), . . . , (ak1ak2 . . . akn)〉

Similarly, we define y to be

y = 〈(b11b12 . . . b1n), (b21b22 . . . b2n), . . . , (bk1bk2 . . . bkn)〉

For convenience, we think of words that belong to the language that is accepted by
the global transducer as having the following form:〈 [

(a11, b11), (a12, b12), . . . , (a1n, b1n)
]
,[

(a21, b21), (a22, b22), . . . , (a2n, b2n)
]
,

...[
(ak1, bk1), (ak2, bk2), . . . , (akn, bkn)

] 〉
In this type of words, each line i corresponds to one transition of the i-th agent
in a ring. The transition function for the global transducer is t := Q × (Σ ×
Σ)k 7→ Q which for each agent i ∈ {1, . . . , k} becomes ti := Qi × (Σi × Σi) 7→ Qi,
where t is the transition function of the transducer defined in a previous section
(“Moving in a Ring”) and Qi and Σi are respectively the set of states and the
alphabet corresponding to the local transducer Ti of agent i. We have already
defined in the previous section the local transducer of an agent to be the union of
the sub-transducers of valid condition checks, agent actions and internal changes of
state for each agent. The global transducer that describes the moves of all agents
in the system is the intersection of all the local transducers. Notice that the local
transducers of the agents can either be the same for each agent in the ring (like
in the case of the agents in Figure 4.1) or they can be different for each agent or
for subsets of agents (as is the case for the agents in Figure 4.2 - 4.4). In the case
where more than one agents have the same local transducer, we change the alphabet
corresponding to the local transducer of each agent, to be unique to that agent. The
transducer for the global configuration is defined as a relation over (Σ×Σ)k, where
k is the number of agents operating in the ring. That is, for k agents and m sub-
transducers for each agent,

Tglobal =
k⋂

i=1

m⋃
j=1

Tj(Σi × Σi)
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Similarly, the set of initial configurations when there are more than one agents in
the ring, is the union of the set of initial configurations for each agent in the ring.

7.6 Example: Global Transducer for Multiple
Agents

Let us now look at an example for a problem that uses multiple agents such as the
ones we defined in Chapter 4. In order to make the example simpler, instead of
using complex agents that solve one of the three algorithmic problems we have been
studying, we consider the following problem: “Have two agents move clockwise in a
ring. If both agents are blocked by the same missing edge terminate”. We call the
two agents in the ring A1 and A2.
We split the description of the global transducer to the two parts indicated by the
two boxes in the following description of the transducer:

Tglobal =
k⋂

i=1

m⋃
j=1

Tj(Σi × Σi)

Let us first discuss the part of the global transducer enclosed in the smaller box.
This part refers to the union of the sub-transducers that form the local transducer
of one agent. This is the procedure we described in the Section “Transducer for
Exploration in Dynamic Graphs”. The agents that solve the problem we defined are
of the following form:

• Q = {Init, Term}
• I = Init
• F = {Term}
• Moves = {right}
• Pre-Move Sensors = checks if more than one agents are in the node (metAgent)
• Post-Move Sensors = checks if the edge leading to the clockwise neighbouring

node was missing (blocked)
• Variables = ∅
• Conditions =
c1 : metAgent ∧ blocked

Initstart Term
c1

¬c1, right

Figure 7.16: Some agent A, solving the problem defined in this section

Following the steps in Section 7.4, we can derive the local transducer for each agent.
That is the local transducers comprise of three parts:

• A sub-transducer describing the clockwise move of an agent in a ring.
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Figure 7.17: Transducer for an agent being in state Init and moving clockwise.

• A sub-transducer describing the condition (c1) between two states of the agent
(Init and Term) becoming true.

s0start s1

(e, e)

(Ir, Ic1)

(e, e)

Figure 7.18: Transducer for an agent detecting that condition c1 became true.

• A sub-transducer describing the internal transition of the agent from a state
(Init) to another (Term).

s0start s1
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(Ic1 , T )

(e, e)

Figure 7.19: Transducer for an agent switching from state Init to state Term.

The part of the transducer enclosed in the smaller box is completed by taking the
union of the three sub-transducers.
Let us now move to the larger box of the global transducer definition. In this case,
the algorithm needs two agents operating in the ring. Therefore, k = 2 and we
need to make one more local transducer which is also the union of the automata in
Figures 7.17 - 7.19, and differentiate the alphabets. That is, we define the alphabet
of the local transducer for A1 to be ΣA1 = {e, Ir1 , Ic11 , T1} and for A2 to be ΣA2 =
{e, Ir2 , Ic12 , T2}. Finally, to obtain the global transducer, we take the intersection of
the two local transducers.

57



7. Regular Model Checking

58



8
Conclusion

We begin this chapter by summarizing our results. Then, we discuss how our results
fit with the known impossibility results. Finally, we conclude by presenting some
open problems that arise from this work.

8.1 Summary
In this thesis we study the problem of parameterized verification of distributed
algorithms in dynamic graphs, for three well known problems from the distributed
computing literature. Namely, the problems we are interested in are “Exploration”,
“Gathering” and “Black Hole Search”. We began this work by studying the known
algorithms for those three problems in 1-interval connecting dynamic rings and
seeing how those algorithms work. We also worked on learning the minimum agent
capabilities to solve the problems, as well as the agent capabilities that have been
used in the literature. Using this information, we defined a type of automaton that
is capable of encoding this type of algorithms and agents. The automata we defined

• Use sensors in order to gather information from their environment, such as
whether any other agents are located on the current node.

• Use variables in order to record information they compute, such as the number
of moves they have made.

• Can check a number of predefined conditions in order to decide the next action
to be performed.

Although “Exploration” is the most well known and the easiest of the three problems,
we chose those problems because they are connected. Our initial assumptions were
that:

• Under certain conditions, the parameterized verification problem for any given
algorithm that solves “Exploration” in dynamic graphs is decidable.

• For the more complex problems (that is, first “Gathering” and then “Black
Hole Search”), as the agent capabilities increase, so would the undecidability
results.

However, while attempting to determine the characteristics mobile agents can have
so that the problem remains solvable we proved that those agent capabilities already
make the Exploration problem undecidable. Thus, we chose to focus more on the
undecidability results which are summarized in Table 8.1.
Due to those undecidability results, in Chapter 7 we focus on finding a way to use
regular model checking. RMC, being an incomplete method that has been used
before in the context of parameterized verification, turned out to be more suitable
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Table 8.1: Summary of our undecidability results. All agents in all cases have distinct
but unknown identities. In the cases where the agents do not begin from the same node
(i.e., scattered) we assume there is also a marked node somewhere in the ring. Unless
indicated otherwise in the table, the model of communication between agents is “vision”,
that is, each agent can only communicate by seeing how many other agents are located
on the node it currently occupies. “One bit of information”, means that agents located
at the same node can get one bit of information, corresponding to the disjunction of the
signalling variables of all co-located agents.

# of Agents Initial Positions # of Ring Size
Dependent Variables

One bit of
information

2 co-located 2 X
3 scattered 2 X
3 co-located 1 X
5 scattered 1 X
4 co-located 2 X
4 scattered 2 X
6 co-located 1 X
6 scattered 1 X

to the three problems that we study. We provide a way to transform the type of
algorithms and the agents that are needed to solve the three distributed computing
problems that we defined to the components needed to use regular model checking
techniques. More precisely, our results concerning RMC are split into the following
parts.

1. Defining the alphabet of any given system.
2. Describing the procedure of deriving the transducer. The construction of the

transducer is further split into three stages: the movement of the agent, the
condition checks and the internal change of state of the agent.

3. Defining the set of the possible initial configurations.
4. Describing Exploration, Gathering and BHS as reachability problems.
5. Finally, since none of those problems have local solutions and at least two

mobile agents need to operate in an 1-interval connected dynamic ring to
guarantee that at least one agent moves, we generalized the components to
describe multiple agents operating in a ring.

8.2 Discussion
As part of this work, we derived some undecidability results that we combine in
Theorems 1 and 2 with impossiblity results from [8]. This combination helps us
restrict the agent capabilities for which Exploration or Exploration based problems
such as Gathering and BHS might be decidable. To be more specific, in the case of
agents that only have vision and no other communication methods, we have learned
that any possibly decidable algorithm can only have between two and five agents
with one ring size dependent variable (Theorem 1). This corresponds to more limited
memory than what is used in the known algorithms in [8]. However, those algorithms
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only need two agents. It is therefore interesting to study whether algorithms that
use more agents with less memory could be decidable.
The second direction that we explored was related to more complex communication
mechanisms. Our goal was to add as little communication capabilities as possible,
as a first step. Indeed, even one bit of information exchanged between the agents
suffices to further restrict the possibly decidable cases, with respect to the number
of agents with one ring size dependent variable. In Theorem 2 we show that in the
case of initially co-located agents, two agents with one ring size dependent variable
are the only case that an algorithm might be decidable. On the other hand, if agents
are initially scattered, the automated verification problem may only be decidable
for algorithms that use between two and four agents with one ring size dependent
variable.
The most natural and interesting next direction would be to discover whether the
remaining cases, that is, the cases that we have so far been referring to as “poten-
tially decidable” in Theorems 1 and 2 are actually decidable or undecidable. From
a distributed computing perspective, it is worth focusing more on algorithms where
the memory of agents is limited, since there are no lower bounds on the amount
of agent memory that would make Exploration, Gathering or BHS impossible to
solve. Another interesting direction for the automated algorithm verification prob-
lem, would be to consider different communication mechanisms (such as tokens) for
agents with less memory and study whether the problem would then become decid-
able. Finally, it would be worth studying the problem in other types of 1-interval
connecting dynamic graphs.
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