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Abstract

Most numerical metrics for diagnosing transport and mixing in fluid flows are
based on calculating trajectories and thus knowing the velocity fields of the flows.
Velocity fields are however difficult to measure globally on Earth. Tracer fields
are on the other hand easier to measure and tracer based metrics could therefore
prove to be valuable. A newly proposed metric based on the Rényi entropy of tracer
values is examined. Although the metric has been used before, the exact theoretical
connection to transport and mixing appears to be unclear to us. This motivates
us to examine the metric under controlled circumstances. A simple model, defined
by only a few parameters, is implemented and used as a test bench for comparing
the metric with conventional trajectory based metrics. In particular, the finite
time and the finite size Lyapunov exponents are considered for the comparison.
We show that the Rényi entropy metric features the main transport barriers of the
model and a positive correlation to the finite Lyapunov exponents is found.
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1
Introduction

T
ransport and mixing of fluids is an important topic in a wide range
of fields in science and technology. It relates to fusion energy, chemical
reactors, aeronautics, combustion, agricultural engineering and polymer
processing just to mention a few. At present, it seems as if many prob-

lems in the atmospheric sciences are related to transport and mixing in one way
or the other as well. The stratosphere is of particular importance in this respect.
Characterised by large scale horizontal advection, it plays a central role the dis-
tribution of chemical species globally. Good ways of quantifying the amount of
which fluids are transported and mixed are therefore valuable.

This thesis is concerned with the assessment of a newly proposed tracer based
metric (Krützmann et al., 2008) and its usefulness to quantify transport and mix-
ing in stratospheric flows is examined. It is based on the so called Rényi entropy
(RE) of tracer fields. The Rényi entropy is a complexity measure of probability
distributions and the main inspiration for its use on tracer data comes from Spar-
ling (2000). Other ways of using the Shannon entropy, which is a special case
of the Rényi entropy, has also been used for diagnosing mixing by, for example,
Camesasca et al. (2006) and Guida et al. (2010).

Although Rényi entropy has been used before as a metric of transport and
mixing, we are not aware of the exact theoretical connection to these processes.
This motivates us to test the metric under controlled circumstances. In particular,
a previously studied flow model (Shuckburgh and Haynes, 2003) defined by only
a few parameters is adopted. Despite the simplicity of the model, it possesses the
main dynamical characteristics of the stratosphere. Two widely used trajectory
based metrics, the finite time Lyapunov exponents (FTLE) and the finite size Lya-
punov exponents (FSLE), are further considered (Boffetta et al., 2001; Bowman,
1993; Garny et al., 2007; McKenna et al., 2000; Pierrehumbert and Yang, 1992).

1
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Figure 1.1: The main goal of this thesis is to evaluate if the proposed Rényi entropy
metric can be used as a diagnostic for stratospheric transport and mixing. Since we
are not aware of an exact mathematical connection, the Rényi entropy metric is
compared with metrics based on finite Lyapunov exponents.

These originate from chaos theory and essentially tell how small line segments
or uncertainties grow or shrink with time. Using the model as a test bench, we
can make quantitative comparisons between the Rényi entropy and the Lyapunov
exponents, to assess the validity of the former as a diagnostic for transport and
mixing in the stratosphere. The main goal can be summarised in answering the
following questions:

1. Is the Rényi entropy metric suitable as a diagnostic of stratospheric transport
and mixing?

2. What conditions must then be fulfilled for the Rényi entropy metric to be
useful?

3. What are the strengths and weaknesses with the metric compared to other
metrics?

1.1 Purpose

At present, stratospheric chemistry models do not fully agree with observations
(SPARC Report No. 5, 2010). These models are crucial in order to predict for
example greenhouse gas distributions, the spreading of pollutants or the struc-
ture of the Antarctic ozone hole (Wallace and Hobbs, 2006). To improve model
performance, good and well understood diagnostics of transport and mixing are
valuable.

Most conventional metrics are based on calculating Lagrangian trajectories.
This is typically computationally heavy, but foremost it is based on knowing the
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1.2. LIMITATIONS CHAPTER 1. INTRODUCTION

velocity field of the flow. Measuring wind fields globally on Earth is however very
difficult, and usually comes with large measurement uncertainties. Tracer fields are
on the other hand easier to measure globally. Consequently a tracer based metric,
like the Rényi entropy metric, would be valuable in the atmospheric context.

1.2 Limitations

This thesis should correspond to 30 ETCS credits, i.e. 20 weeks of full time studies.
With the relatively short time frame in mind, some clear limitations of the project
are important. To start with, we only consider the three metrics stated above; i.e.
the Rényi entropy metric, the finite time Lyapunov exponents and the finite size
Lyapunov exponents, although other metrics also do exists in the literature (e.g.
the effective diffusivity by Nakamura (1996)). We restrict the analysis to flows
typical for the stratosphere and let these be two dimensional and incompressible.
The metrics are however general and could equally well be applied on other types of
systems. We only consider scalar tracer fields and evenly spaced spatial grids. The
focus of the thesis lies on the measurement of transport and mixing and little will
therefore be said about the underlying mechanisms that give rise to the mixing.
We further allow ourselves to choose numerical methods without full motivation.

1.3 Thesis outline

The thesis starts with a chapter on the background and theory that will be used
to understand, implement and evaluate the metrics. First the dynamics of the
stratosphere is briefly introduced. In particular, the main transport and mixing
properties are covered. The Rényi entropy is thereafter introduced in a general
sense followed by a review of the Lyapunov exponents. The theoretical, so called
characteristic Lyapunov exponents are introduced and followed by their numerical
realisations: the finite time and finite size Lyapunov exponents.

Based on the previous chapter, the methods are presented. First the simple
stratospheric model is introduced, which tries to mimic the main dynamical fea-
tures of the stratosphere covered in the previous chapter. The implementation
of the Rényi entropy metric as an image filter of simulated tracer fields is then
explained. The algorithms for computing the finite Lyapunov exponents are then
presented.

Following the method chapter, the results are presented. Aspects as depen-
dence on design parameters, ability to reflect particle transport and dependence
on initial tracer fields for the Rényi entropy are considered. The results for the
finite Lyapunov exponents are shown and a comparison between these and the
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1.3. THESIS OUTLINE CHAPTER 1. INTRODUCTION

Rényi entropy is presented.
The thesis ends with a discussion of the results and the final conclusions are

made.
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2
Background

2.1 The stratosphere

The atmosphere is usually described in terms of different layers, where each layer
is defined by some characteristic physical or chemical properties. Most commonly
they are defined by their vertical temperature gradient, in which case the atmo-
sphere is splits into: the troposphere, stratosphere, mesosphere and thermosphere
(see figure 2.1). In this thesis we turn our attention exclusively to the stratosphere
and will only mention the other layers in relation to it.

As shown in figure 2.1, the stratosphere is defined by a steep positive temper-
ature gradient, i.e. warmer air is on top of colder air. Since cold air typically
is denser than warm air, this makes it very stable to vertical perturbations and
thus stratified. In general terms, when we cannot assume constant pressure, the
connection between temperature and density is made in terms of potential temper-
ature:

Θ = T

(
p

p0

)−κ
(2.1)

where T is temperature, p is pressure and κ is a constant. This is the temperature
that a volume of air would have if brought adiabatically1 to a reference pressure p0.
Thus, with respect to potential temperature we have vertical stability if ∂Θ/∂z>0,

1In the atmosphere, this usually means that we assume no radiative absorption (or emission)
or any phase changes of water in the volume of air.
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Troposphere

Stratosphere

Mesosphere

Thermosphere

Figure 2.1: A characteristic vertical temperature profile of the atmosphere, with
corresponding layers. The stratosphere is characterised by a positive temperature
gradient.

which usually is the case in the stratosphere2 (Haynes, 2005).
Potential temperature is not only useful in terms of identifying vertical sta-

bility. As it turns out, Θ typically increases monotonically with height in the
stratosphere and therefore works as an alternative measure of height (Andrews
et al., 1987, page 343). That is, positions can be written as (x,y,Θ(z)), where x is
longitude, y is latitude and z is height. When studying transport and mixing this
has the advantage that, adiabatic motion flows along surfaces of constant potential
temperature, called isentropic surfaces, and thus becomes two dimensional, while
diabatic motion flows across the surfaces and becomes one dimensional. Adiabatic
transport and mixing is typically more rapid (Shepherd et al., 2000) and for our
concerns we therefore assume the flows to be two dimensional.

2.1.1 Transport and mixing

Dynamical features of flows are commonly visualised by observing tracers that
follow the flow. In laboratory experiments this is typically some dye that is added,
while in the atmosphere it is often the concentration of some long lived chemical

2The connection between potential temperature gradients and temperature gradients (and
figure 2.1) can further be shown to be ∂Θ/∂z = T (∂T/∂z + κg/R) (see e.g. Andrews et al.
(1987), page 6), where g is the gravitational acceleration and R is the gas constant. Thus, in
terms of temperature, ∂T/∂z > −κg/R, implies vertical stability.
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2.1. THE STRATOSPHERE CHAPTER 2. BACKGROUND

substance. We can identify at least three processes that affects the distribution
of tracers: transport, mixing and diffusion. With transport we simply mean the
process of moving the tracer distribution away from its source. Mixing3 we identify
as the process of deforming the shape of the distribution by stretching and folding,
often resulting in filaments. Diffusion is finally the motion on the molecular scale
that acts to make the distribution smooth.

Formally these processes are described by the diffusion-advection equation:

∂C

∂t
+ u · ∇C = D∇2C (2.2)

where C = C(x,t) is the tracer field, u = u(x,t) is the velocity field and D is
molecular diffusivity. The first term on the left hand side represents sources and
sinks in the tracer field and will for simplicity be neglected. The second term,
where the velocity field enters, accounts for the advection and thus the transport
and mixing, while the right hand side accounts for molecular diffusion. As it turns
out, the advection term typically dominates the diffusion term in the stratosphere
(Haynes, 2005, page 267) and we therefore ignore the latter. This further means
that the tracer values stays constant as they follow their air parcel trajectories.

The starting point to the problem of describing transport and mixing is thus
the specification of the velocity field u(x,t) = (u,v), with components u = u(x,y,t)
being longitudinal wind and v = v(x,y,t) latitudinal wind. A precise description
is then acquired by solving the velocity field and measuring by how much the
tracer move, stretch and fold as they follow their trajectories. While this might
sound straight forward in theory, even very simple velocity fields can produce very
complicated trajectories, resulting in so called chaotic advection. A general and
precise description is therefore typically difficult to achieve and with that in mind,
we make qualitative assessments by comparing the different metrics instead of
working from first principles.

2.1.2 A simple picture

A rough idea of what the typical transport and mixing properties of the strato-
sphere looks like can be made by identifying the following three regions (see figure
2.2): the winter polar vortex, the surf zone and the tropical pipe. During winter,
a large vortex appears over the corresponding pole. The southern polar vortex is
typically stronger and more coherent then the northern one, due to the larger areas
of land on the northern hemisphere that give rise to perturbing gravity waves4. The
edge of the winter polar vortex makes up a distinct barrier to pole-ward transport.

3What we call mixing is sometimes referred to as stirring instead.
4Gravity waves are not to be confused with gravitational waves in general relativity.
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Figure 2.2: A schematic picture of the transport and mixing regions of the strato-
sphere. Transport barriers are shown as dotted lines. Bounded by the barriers,
the dynamics is characterised by large scale advective mixing which is particularly
strong in the surf zone. For a more extensive picture, see for example Haynes and
Shuckburgh (2000).

Figure 2.3: The distribution of the trace gas N2O in the stratosphere derived
from data assimilation (EOS MLS and domain-filling) shows large scale advective
features. (a) shows the tropical pipe with high concentrations over the equator and
large planetary waves between the poles and subtropical barriers. (b) shows the
southern polar vortex at winter. Images provided by Nikolai Krützmann.
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2.2. RÉNYI ENTROPY CHAPTER 2. BACKGROUND

The surf zone (Plumb, 1996) is the region between the winter polar vortex and the
tropical pipe. It is characterised by large scale planetary waves that break (thus
the term ”surf zone”), forming large filaments in the tracer fields. The tropical pipe
is a region of comparably large vertical transport and most chemical tracers from
the troposphere enter the stratosphere via this region. Outside the tropical pipe,
vertical transport is small and the extra-tropical tropopause can be identified as a
transport barrier towards the troposphere. The edges of the tropical pipe can be
identified as a barrier to equator-ward transport, called the subtropical barriers.

Satellite observations of long lived trace gases show some of these transport
and mixing features, as depicted in figure 2.3. The three mixing regions can be
identified by the strong gradients in chemical concentration reflecting the horizon-
tal transport barriers between them and we also see large scale filaments in the
mid latitudes representing the surf zone.

2.2 Rényi entropy

The Rényi entropy is a quantity that originates from information theory. It es-
sentially gives a measure of the complexity of a discrete probability distribution
function (PDF). The PDF is derived from some random variable, which in our
case will be a tracer value. We denote the probability that this variable will take
a discreet value ci as:

pi = ”probability that C = ci” (2.3)

where i = 1,...,b. We require that all probabilities must add up to one:

b∑
i=1

pi = 1 (2.4)

The Rényi entropy is then defined as (Renyi, 1960):

Hα =
1

1− α
ln

(
b∑
i=1

pαi

)
(2.5)

where α is a parameter that takes integer values. The special case α = 1 can be
shown to reduce to the well known Shannon entropy (Renyi, 1960):

H1 = −
b∑
i=1

piln(pi) (2.6)

9



2.3. LYAPUNOV EXPONENTS CHAPTER 2. BACKGROUND

which can be interpreted as a measure of information (Shannon, 1948, page 11).
In this thesis we follow Krützmann et al. (2008) and we restrict ourselves to the
case α = 2 only, which we will simply refer to as the Rényi entropy:

H2 = − ln

(
b∑
i=1

p2
i

)
(2.7)

It can be shown that if all ci are equally probable, i.e. the PDF is homogeneous,
the Rényi entropy is maximized and it follows from eq. 2.5 that this equals ln b.
Using this fact, we can normalise the entropy in order to make comparisons easier,
and define the normalised Rényi entropy as:

Ĥ2 = − 1

ln b
ln

(
b∑
i=1

p2
i

)
(2.8)

A homogeneous PDF thus yields unit Rényi entropy. If there is only one possible
ci the Rényi entropy is zero.

The main assumption when using Rényi entropy as a measure of mixing is thus
that the complexity of the discrete probability distribution of tracer values reflects
the geometrical stretching and folding of the tracer field. Note that the entropy
only depends on the probability distribution and not the values themselves, which
is expected since the transport and mixing only alters the distribution of values.

2.3 Lyapunov exponents

The concept of Lyapunov exponents originates from dynamical systems theory
as a diagnostic of chaos. They state how initially small perturbations or line
segments grow or shrink with time. In terms of mixing, they can be seen to
give the average stretching rates of material lines (Ottino, 1989). We distinguish
between the theoretical, so called characterstic Lyapunov exponents (CLEs) and
their numerical realisations: the finite time Lyapunov exponents (FTLEs) and the
finite size Lyapunov exponents (FSLEs).

2.3.1 Characteristic Lyapunov exponents (CLEs)

The characteristic Lyapunov exponents specifies how infinitesimal line segments
grow or shrink in the limit as time goes to infinity. Given some initial point
x0, we perturb it slightly and define the corresponding initial line segment as
δx0 = x0 − x̃0. We denote the line segment after some time t as δx(t) and define

10



2.3. LYAPUNOV EXPONENTS CHAPTER 2. BACKGROUND

the CLE5 as the logarithm of the rate of stretching per unit time (Ott, 2002):

λ(x0) = lim
t→∞

lim
|δx0|→0

1

t
ln

(
|δx(t)|
|δx0|

)
(2.9)

If the exponent is independent on the initial position x0 the system is called ergodic
(Eckmann and Ruelle, 1985), while otherwise it is non ergodic and results in a
time independent Eulerian field. In general the line segment can grow or shrink
along any dimension of the system and there are thus for n dimensional systems n
exponents, which we write λi, where i = 1,...,n. Each exponent is associated with
a specific initial line segment δx0i. It is customary to order the set of all exponents
from the largest to the smallest and form the so called Lyapunov spectrum as λ1 >
λ2 > ... > λn. In our case, we simply have two exponents and for incompressible
flows, the sum of exponents is zero:

λ1 + λ2 = 0 (2.10)

This can be shown using the fact that the area spanned by the infinitesimal seg-
ments must be conserved for incompressible flows.

If one or more exponent is positive the system is said to be chaotic, since for
long enough times we have roughly

|δx(t)| ≈ |δx0|eλ1t (2.11)

That is, small line segments (or uncertainties) grow exponentially fast on average
and the largest exponent dominate the growth6.

An alternative way of writing the CLEs is to make use of the so called varia-
tional equation, which govern the time evolution of infinitesimal line segments. It
can be found by linearisation of the velocity field and will be useful when defining
the finite time Lyapunov exponents. Taylor expansion of the wind field u(x,t)
around the perturbed point x̃ yields:

u(x+δx,t) = u(x,t) + Jδx +O(|δx|2) (2.12)

where J is the Jacobian matrix, i.e. the spatial derivatives of u(x,t):

J =

[
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

]
(2.13)

5The existence of the CLE is guaranteed by Oseledets multiplicative theorem (Oseledets, 1968).
6The inverse of the largest exponent is sometimes used as a measure of the time scale for

which certainty can be assumed (Boffetta et al., 2001).
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~

(a) Line segment. (b) Tangent matrix.

Figure 2.4: (a) illustrates a small line segment. It get mapped from its initial time
to a future time t by the tangent matrix T as illustrated in (b).

If we let the line segment be sufficiently small, higher order terms in eq. 2.12 can
be neglected. Using the simple fact that u = dx/dt we further get:

dδx

dt
= Jδx (2.14)

We now have a differential equation that governs the evolution of an infinitessmial
segment. We further make the following ansatz:

δx(t) = T(t)δx0 (2.15)

That is, we assume δx0 is mapped to future times linearly by the matrix T, called
the tangent matrix. If we plug this into eq. 2.14, we can rewrite it in terms of the
tangent matrix:

dT

dt
= JT (2.16)

This is called the variational equation. All information about the stretching of the
initial line segments and hence the mixing is contained in the tangent matrix. The
stretching can be made explicit by QR factorisation, for which we write T as the
product of a orthonormal matrix7 Q and a right triangular matrix R, such that:[

T11 T12

T21 T22

]
=

[
Q11 Q12

Q21 Q22

][
R11 R12

0 R22

]
(2.17)

The elements of R contains the stretching and skewing of the orthonormal column
vectors of Q in order to produce T as shown in figure 2.5. In particular the
diagonal elements R11 and R22 specifies the stretching and the off diagonal element
R12 specifies the skewing. The CLEs can now be written in terms of the diagonal

7Orthonormal essentially means that the column vectors are orthonormal vectors to each
other.
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2.3. LYAPUNOV EXPONENTS CHAPTER 2. BACKGROUND

Figure 2.5: Illustration of the QR factorisation of the tangent matrix.

elements as8 (see Appendix A and further for example Eckmann and Ruelle (1985);
Geist et al. (1990)):

λi(x0) = lim
t→∞

1

t
ln (|Rii|) (2.18)

2.3.2 Finite time Lyapunov exponents (FTLEs)

While the CLEs are defined as time goes to infinity, we are concerned with mix-
ing over finite times. The appropriate measure is then the finite time Lyapunov
exponents, which we define as:

λti(x0) =
1

t
ln (|Rii|) (2.19)

where t is now a finite time. Here we make use of eq. 2.18 to make the limit as
the initial line segment goes to zero implicit.

2.3.3 Finite size Lyapunov exponents (FSLEs)

While the limit as the line segment goes to zero is made implicit for the FTLE by
introducing the variational equation (eq. 2.16), this relies on knowing the Jacobian
of the flow. In many situations it is however not practical or possible to compute
the Jacobian matrix analytically, for example when the velocity field is derived
from observational data. One way of dealing with such situations is simply to use

8Yet another way of expressing the Lyapunov exponent is in terms of the eigenvalues of the
tangent matrix (Pierrehumbert and Yang, 1992).
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finite line segments. This yields the finite size Lyapunov exponent (Aurell et al.,
1997; Boffetta et al., 2001), which we define as:

λt,∆x0(x0) =
1

t
ln

(
|∆x(t)|
|∆x0|

)
(2.20)

where ∆x0 is a finite initial line segment such that ∆x0 = x0 − x̃0 and ∆x(t) =
x(t)− x̃(t).

It is worth mentioning that, while we distinguish the FSLE from FTLE as
two different quantities, both are sometimes referred to as FTLE in the literature
(for example Garny et al. (2007)). However, in this thesis we use the term FTLE
exclusively for the method described in the previous section based on linearised
equations.

14



3
Method

3.1 A simple stratosphere

In order to simulate transport and mixing typical for the stratosphere, we adopt
a model that roughly imitates the features noted in section 2.1.2. For this we find
a previously studied family of flows suitable. These have been used in a similar
context by Shuckburgh and Haynes (2003). Analytically the flows can be written
in terms of a stream function1:

Ψ(x,y,t) = a sinx− b sin3 x+ c(y,t) cos3 x (3.1)

where:

c(y,t) ≡ ε1 cos y + ε2 cos(y + ωt)

Specified as a stream function, the requirement of incompressibility is fulfilled
(Boffetta et al., 2001). The corresponding velocity field is then given as:

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
(3.2)

defined by the five parameters a, b, ε1, ε2 and ω. The first three; a, b and ε1,
determines the general structure of the field. The other two specifies the time
dependent part which makes motion chaotic. By choosing appropriate values we
can make a crude imitation of the typical stratospheric dynamics. By choosing
a = 0.25, b = 0.05 and ε1 = 0.25, the flow yields two vortex structures surrounded
by a jet, as shown by an arrow plot in figure 3.1(a). Note that if ε2 = 0 the

1The stream function is formally the Hamiltonian of the system.
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Figure 3.1: (a) shows the velocity field as an arrow plot for the case a = 0.25,
b = 0.05, ε1 = 0.25 at time t = 0. We see two vortex structures surrounded by a
jet. If ε2 is non zero, the arrows will oscillate with frequency ω/2π, which makes
the flow chaotic. (b) shows the corresponding stream lines of the velocity field. For
ε2 = 0 trajectories will follow the stream lines.

term in the stream function that contains time disappears. Trajectories are then
integrable and the flow is laminar, as shown by the stream lines in figure 3.1(b).
For non zero ε2, small perturbations with frequency ω/2π are introduced which,
as we will see, give rise to filaments that roughly imitates planetary wave breaking
in the surf zone.

3.1.1 Simulating tracer fields

Since the Rényi entropy depends on tracer fields, we must simulate these given
the velocity fields of eq. 3.2. Since we have neglected molecular diffusion as well
as sources and sinks the tracer values follow the trajectories passively. Thus, we
simply solve the velocity field for a grid of initial positions, each associated with a
tracer value, and define the tracer field as the tracer values at the final positions.
To make sure that the tracer field becomes uniformly distributed in space, we want
the final positions to end up on an evenly spaced grid. This can be achieved by
integrating the trajectories backwards. That is, we solve the velocity field from the
final time, say t1, with corresponding evenly spaced positions x(t1), to the initial
time, say t0, and corresponding positions x(t0). We then map each initial position
x(t0) to a tracer value and associate it to the position x(t1), as illustrated in figure
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Figure 3.2: A schematic illustration of how a the tracer field is mapped from the
initial time t0 to the final time t1 by backwards trajectories.

3.2.
For the numerical integration of the trajectories, an adaptive Runge Kutta

algorithm has been used, specifically the MATLAB function ode45. It is based
on the Dormand-Prince method, which is an explicit Runge-Kutta method with
adaptive step size. In short, it computes both a fourth and fifth order Runge-Kutta
step, estimates the error and adjust the step size according to a user defined error
tolerance. We find the adaptive step size desirable since the flow may show fractal
structures in the chaotic regime, i.e. fluid filaments may appear on multiple scales.
Since the trajectories in the grid do not depend on each other, this further give
us the opportunity to integrate the grid of initial positions in parallel, using the
Matlab Parallel Computing Toolbox.

3.2 Implementation of Rényi entropy

The Rényi entropy metric is essentially implemented as an image fitler, as illus-
trated in figure 3.3. In particular we consider a quadratic filter region of values on
which the Rényi entropy is calculated. The probability distribution is created by
placing the tracer values into b number of bins, each representing a small range of
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Tracer value

PDF:Tracer field: Rényi entropy:

Figure 3.3: The tracer field is filtered with a quadratic filter region. The tracer
values in the region are used to construct a discrete probability distribution on which
the Rényi entropy is calculated.

tracer values. We force bins to cover the range of all values in the global tracer
field. We thus get a localised distribution but with bins that references values
corresponding to the global tracer field. The probability distribution is thus:

pi =
ni
b∑
i=1

ni

(3.3)

where ni is the number of tracer values that corresponds to bin labelled by the
integer i. The normalised Rényi entropy is then calculated according to eq. 2.8.

3.2.1 Design parameters

We may here identify three parameters that we must choose for the Rényi entropy
metric: the number of bins to be used in the constructed probability distributions,
the filter size (i.e. the number of grid points contained in the filter window) and
the grid resolution. The number of bins can be interpreted as the number of
material lines or tracer contours considered in the tracer field, as illustrated in
figure 3.4. The act of discretising the tracer values in bins is due to result in a loss
of information and structure in the tracer field. In that respect it is desirable to
have a high number of bins.

At the same time, the number of bins must be chosen such that a meaningful
probability distribution can be constructed. If the bins are too many, the distribu-
tion will loose its shape and fail to represent the complexity of the tracer values.
This can be illustrated by generating two sets of random numbers according to two
different probability distributions: one made up of two displaced Gaussian peaks
and the other a flat distribution. We plot the Rényi entropy for the two sets of
random numbers for different number of bins, as shown in figure 3.5. It shows that
as the number of bins grow very large, the entropy for the two sets goes towards

18
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Figure 3.4: By binning the continuous tracer field in (a), we essentially define
material lines as in (b). This particular case would correspond to 5 bins.
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Figure 3.5: 500 random point are generated according to two different probability
distributions as seen to the left. The Rényi entropy is plotted for different number of
bins to the right, illustrating that too many bins make the Rényi entropy essentially
the same for both distributions.
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Figure 3.6: Periodical re-normalisation of the displacement between two trajecto-
ries is invoked to avoid numerical overflow.

the same value, although the underlying distributions are very different. One way
of choosing the bin number is to use a so called optimal binning algorithm (Krütz-
mann et al., 2008). The algorithm, which was provided by Nikolai Krützmann,
analyses the tracer values to find the optimal number of bins in order to estimate
the distribution.

The grid resolution sets a limit on the smallest scale of filaments that can be
resolved. The filter size must further be small enough to make the metric localised,
but big enough to cover the filaments.

3.3 Implemetation of Lyapunov exponents

Regardless if we want to implement the FTLE or the FSLE we face an immediate
numerical problems if one or more exponent turn out to be positive. The first
is that after sufficiently long times, the line segments will grow exponentially in
the direction of the largest exponent which eventually leads to numerical overflow
(see eq. 2.11). To avoid this, it is useful to normalise the length of the line
segments. Normalisation can be invoked periodically (Garny et al., 2007) or when
the segments grows larger than some specified threshold (Boffetta et al., 2001;
Shuckburgh and Haynes, 2003). For the FSLE we choose to do this periodically
with period ∆T , at times t = t0 +k∆T , where k = 0,...,m−1 and m = (t1−t0)/m.
For the FTLE we normalise if the segments grows larger than a factor r, but we
check this at the same normalisation times as for the FSLE.

Another numerical problem is that if one exponent is positive, the growth in
the corresponding direction will dominate. Any line segment with a component
in that direction will align to it after sufficiently long time (which is short if the
exponent is large). In other words, almost all the initial line segments will tend
to align with the direction of largest growth. If we want to evaluate only the
largest exponent, this is not a problem. If we want to calculate more than one
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exponent, we need to re-align the line segments as well as to re-normalise their
lengths (Wolf et al., 1985). In this thesis we are only interested in the maximal
exponent and thus re-alignment is not needed. For the FTLE which we have
expressed by QR factorisation, we get the normalised line segments for free in
terms of the orthonormal column vectors of Q (Geist et al., 1990) (see figure 2.5).
For the FSLE on the other hand, we make no re-alignments.

3.3.1 The FTLE algorithm

The FTLE we calculate as the average exponent over all normalisations periods:

λ
(t1−t0)
i (x0) =

1

t1 − t0

m−1∑
k=0

ln (|Rii(k)|) (3.4)

An advantage with expressing the FTLE in terms of R is that the corresponding Q
contains the appropriate re-aligned initial line segments for the next normalisation
period. We can describe the algorithm for the FTLE as follows (Eckmann and
Ruelle, 1985; Geist et al., 1990; Wolf et al., 1985):

1. Let x(0) = x0 and T(0) = I.

2. For each time specified by k = 0,...,m− 1:

(a) Solve the velocity field with initial condition x(k) and simultaneously
the variational equation (eq. 2.16) with initial condition T(k) to get
T(k+1).

(b) QR factorise2 T(k+1) = QR.

(c) Extract the diagonal of R and add to a sum Si := Si + ln (|Rii|).
(d) If |Rii(k)| is larger than some threshold r, let T(k+1) = Q.

3. Calculate λ
(t1−t0)
i (x0) = Si/(t1 − t0)

4. Take the maximal exponent.

Note that the variational equation depends on velocity (in the Jacobian) and thus
both the velocity field and the variational equation are solved for simultaneously.
The trajectories acquired form the velocity field can further be used when simu-
lating tracer fields as described in section 3.1.1.

2There are different numerical methods for doing this. Studies like Eckmann and Ruelle
(1985) suggests using the so called Householder transform, however we rely on Matlab to be
implemented in a numerically suitable way.
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3.3.2 The FSLE algorithm

Also the FSLE we calculate as the average exponent over all normalisations as:

λ(t1−t0),∆x0(x0) =
1

t1 − t0

m−1∑
k=0

ln

(
|∆x(k + 1)|
|∆xk|

)
(3.5)

The corresponding algorithm for the maximal exponent in two dimensions is as
follows (Garny et al., 2007):

1. Let ∆x(0) = [ d0 ], where d is a small number.

2. Let x(0) = x0 and x̃(0) = x(0) + ∆x(0).

3. For each time specified by k = 0,...,m− 1:

(a) Solve the velocity field for the two initial conditions x(k) and x̃(k) to
get x(k+1) and x̃(k+1).

(b) Let ∆x(k + 1) = x(k+1)− x̃(k+1)

(c) Add to sum S := S + ln(|∆x(k + 1)|/|∆x(k)|)
(d) Normalise the segment ∆x(k + 1) := ∆x(k + 1)/|∆x(k + 1)|

4. Calculate λ(t1−t0),∆x0 = S/(t1 − t0)

5. Repeat step 2-4 with ∆x(0) = [ 0
d ] and get λ2

6. Take the maximal exponent.

Note also here, as for the FTLE, that the velocity field is solved for and thus the
acquired trajectories can be used for simulating tracer fields as well.

22



4
Results

4.1 Tracer field simulations

To start with, we consider a grid of 512x1024 grid points in latitude and longitude
respectively and we let the initial time of integration be zero, i.e. t0 = 0. For all
numerical integrations we set the relative error tolerance between the integration
steps to 10−6. These settings will be used in the rest of the thesis.

We note that both the FTLE and the FSLE solve for the velocity field when
calculated and thus yields the trajectories from which the tracer fields can be
constructed. These tracer fields are then to be used for the Rényi entropy metric,
but also serves as a good way of visualising the flow. As an example we plot the
evolution of an linear initially tracer field C0(x,y), such that C0(x,y) ≡ C(x,y,t0) =
y, with the model parameters (a, b, ε1, ε2, ω) = (0.25, 0.05, 0.25, 0.1, 1), as shown

0 π 2π
−π/2

0

π/2

(a) t1 = 0

0 π 2π
−π/2

0

π/2

(b) t1 = 3τ

0 π 2π
−π/2

0

π/2

(c) t1 = 6τ

0 π 2π
−π/2

0

π/2

(d) t1 = 9τ

Figure 4.1: Time evolution of a linear tracer field for the case ε2 = 0.1, where
τ = 2π/ω.
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π/2

(b) ε2 = 0.15

Figure 4.2: Two initially linear tracer fields are advected to time t = 10τ , but
for two different values of ε2. Higher value makes the flow more non linear and
consequently the tracer field more mixed.

in figure 4.1. We can see how a jet zone with significant stretching and folding
surrounds two vortex structures. This roughly imitates the transport and mixing
features of the stratosphere, with a well mixed surf zone containing large scale
filaments separated from the less mixed polar and tropical zones.

Recall that ε2 is a control parameter that makes the flow chaotic, which can be
used as a mixing parameter. Higher ε2 means finer scaled filaments in the jet zone,
as seen in figure 4.2. In the following we will use (a, b, ε1, ω) = (0.25, 0.05, 0.25, 1)
unless stated otherwise and vary ε2 and the integration time t1 to control the
strength of mixing.

4.2 Rényi entropy

By generating tracer fields, considering C0(x,y) = y, t1 = 10τ and ε2 = 0.1, we
now calculate the corresponding Rényi entropy fields. We choose 10 bins and the
two filter sizes 9x9 and 25x25 grid points. The resulting entropy fields can be seen
in figure 4.3. We identify that larger filter sizes makes the field smoother. In this
particular case, it is further found that, using the optimal binning algorithm for
choosing the number of bins has no major effect in the resulting Rényi entropy
fields. It is however computationally much slower and we therefore restrict the bin
number to 10 in the following, unless otherwise is specified.
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Figure 4.3: Rényi entropy fields generated from tracer fields, for the case ε2 = 0.1
and t1 = 10τ . Here 10 bins are used and the filter sizes 9x9 in (a) and 25x25 (b).
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Figure 4.4: The Rényi entropy fields of figure 4.3 above with five overlayed Poincaré
sections of different colours. The initial positions of the Poincaré sections are marked
with crosses.
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Figure 4.5: Vertical cross sections of the three different initial tracer fields consid-
ered.

4.2.1 Comparison to Poincaré sections

The ability to reflect particle transport can be analysed by comparison to so called
Poincaré sections (Shuckburgh and Haynes, 2003). These are produced by inte-
grating points over a very long time, here using t1 = 2500τ , and plotting them
periodically. Doing this for five different initial positions and overlaying the re-
sulting Poincaré sections on top of the previously considered Rényi entropy field,
we get figure 4.4. Lines in the Poincaré sections indicates strong transport barri-
ers while scattered dots indicates weak or no barriers. Here the Poincaré sections
coloured in blue, green and red thus indicate strong transport barriers, the yellow
indicates weaker barriers and the turquoise no barriers.

4.2.2 Changing initial tracer field

So far, we have considered a linear initial tracer field only, that is C0(x,y) = y. Now
we also consider the fields C0(x,y) = cos(y − π/2) and C0(x,y) = cos(4y − π/2),
as shown in figure 4.5. In contrast to the linear tracer field, these fields have an
initially inhomogeneous Rényi entropy. After advection, the entropy fields using
a 9x9 filter are shown in figures 4.6(a)-(c). To see the effect of changing from the
linear initial tracer field, we calculate the absolute differences as shown in figures
4.6(d)-(e). It is clear that changing from the linear field to C0(x,y) = cos(4y−π/2)
yields a larger difference in resulting entropy than changing to C0(x,y) = cos(y −
π/2).
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(c) Rényi entropy from
C0 = cos(4y − π/2)

 

 

0 π 2π
−π/2

0

π/2

0

0.2

0.4

0.6

0.8

1

(d) Difference in RE: |(a) - (b)|

 

 

0 π 2π
−π/2

0

π/2

0

0.2

0.4

0.6

0.8

1

(e) Difference in RE: |(a) - (c)|

Figure 4.6: By advecting the three initial tracer field of figure 4.5, and generating
Rényi entropy fields we get (a), (b) and (c). The absolute difference between (a)
and (b) is shown in (d) and between (a) and (c) is shown in (e). We thus see that a
change in the initial tracer field yield a change in the Rényi entropy field.
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Figure 4.7: (a) shows the FTLE field and (b) the FSLE field for the case ε2 = 0.1.

4.3 FTLE and FSLE

In order to further analyse the Rényi entropy metric, corresponding FTLE and
FSLE fields are produced. For the FTLE we choose to invoke re-normalisation if
the line segments grows by a factor r = 103. Using t1 = 10τ and ε2 = 0.1 as for the
Rényi entropy fields, we get the FTLE field shown in figure 4.7(a). For the FSLE
we use an initial line segment equal to the displacement between the grid points (in
this setting that means |∆x0| = π/512) and invoke re-normalisation periodically
at times t = kτ/2, where k = 1,...,20. The corresponding FSLE field is shown in
figure 4.7(b).

In the limit as the initial lines segment of the FSLE goes to zero and the num-
ber of re-normalizations goes to infinity, the two fields should in principle be the
same. Here the FSLE field tends to give higher values as well as smoother features
compared to the FTLE. In particular, sharp edges appears in the FTLE field in
the less mixed upper and lower regions, which is not seen in the FSLE field. This
might suggest that there is a numerical problem with the FTLE algorithm. It is
however assumed to be of minor importance when using the FTLE for comparison
to the Rényi entropy metric.
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Figure 4.8: Cross-sectional plots of the FTLE, FSLE and Rényi entropy along
the line x = π, for the two filter sizes 9x9 and 25x25. The Lyapunov exponents
are averaged with the corresponding filter sizes and 10 bins are used for the Rényi
entropy.

4.4 Correlations

We are now in position to compare the Rényi entropy fields to the finite Lyapunov
exponent fields. Since the entropy metric depends on the filter size, we apply an
averaging filter on the FTLE and FSLE fields, with the same filter size as used
for the Rényi entropy. As a first comparison, we consider the case ε2 = 0.1 and
plot the cross-sections of the fields along the line x = π as seen in figure 4.8. The
Rényi entropy appears to compare well in the jet zones. It however deviates at
high latitudes for both filter sizes and in the vortex for the 25x25 filter size.

We can further analyse the correlation between the fields by scatter plots as
shown in figure 4.9. Since plotting all the grid points makes the figures rather
unclear, we have randomly picked out a sample of 3000 points (points closer than
half the filter size from the boundaries are ignored to avoid effects of padding). It
seems to indicate a somewhat linear relation, with a wider spread at low Rényi
entropy values. The correlations are made explicit by computing linear correlation
coefficients and Spearman correlation coefficients. The former, which assumes a
linear relation varies between 0.43 and 0.53. The latter, which assumes a monotonic
relation varies between 0.38 and 0.53.

Using the 9x9 filter, the coefficients are further examined by plotting the corre-
lation coefficients versus ε2 and t1 we get figure 4.10. It shows that both coefficients
stays fairly constant with respect to ε2, with a high at ε2 = 0.05. For t1, the coef-
ficients increases until about t1 = 6τ where they level out.
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Figure 4.9: Scatter plots for Rényi entropy of various filter sizes versus the FTLE
and FSLE. The Lyapunov exponents are averaged with the corresponding filter sizes.
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Figure 4.10: Linear and Spearman correlation coefficients between Rényi entropy
and finite Lyapunov exponents versus ε2 and integration time t1. A 9x9 filter was
used. The angled brackets denotes averaged Lyapunov exponents.
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5
Discussion

A
s stated in the introduction, the main goal with this thesis is to exam-
ine (1) if the Rényi entropy metric is a valid measure of stratospheric
transport and mixing, (2) what conditions must then be fulfilled and (3)
what are the possible strengths and weaknesses. With the background

and results presented, we are now in position to turn to these questions. Here we
would however like to stress that, our method is heuristic in the sense that we try
to answer these questions by comparisons between metrics rather then by working
from first principles. Our ambition is thus not to give general and definite answers,
but to come up with propositions and conditions for its use.

The main focus of the thesis thus lies on the comparison between the Rényi
entropy metric and the finite Lyapunov exponents. We start by discussing aspects
as dependence on design parameters, particle transport and dependence on the
initial tracer field. We then look at correlations to the FTLE and FSLE, followed
by our final conclusions. We finish the discussion with some suggestions on further
work related to the thesis.

5.1 Dependence on design parameters

As previously mentioned, we may identify three parameters which defines the Rényi
entropy metric: the number of bins, the filter size and the grid resolution. We may
further identify certain restrictions that these parameters impose on the metric.

Perhaps the most obvious restriction is that the grid resolution limits the scale
of the filaments observed in the tracer field. If the scale is smaller than the spacing
between the grid points, the filament cannot be detected. We may compare this
to the length of the initial line segment for the FSLE, although the exact analogy

32



5.1. DEPENDENCE ON DESIGN PARAMETERS CHAPTER 5. DISCUSSION

histogram:
1

0
filter

tracer value

filter

tracer value

grid points

grid points

histogram:
1

0
10 20 30 40 50 60

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Gridpoint

9 points filter, 10 bins

 

 

Tracer value

Renyi Entropy

Figure 5.1: A linear tracer field being filtered resulting in a inhomogeneous Rényi
entropy field. The two plots to the left illustrates that the PDF (or histogram)
changes with the position of the filter.To the right, a 9 grid point filter is used with
10 bins resulting in a inhomogeneous entropy field. The inhomogeneity close to the
edges of the field is however due to zero padding of the tracer field.

is unclear to us.
Another limitation is due to the discretisation of the tracer field when con-

structing the probability distributions, which result in a loss of information in the
tracer field. In particular, if the scale of the discretised filaments are larger than
the filter region, all tracer values ends up in one bin resulting in zero Rényi entropy.
Assuming that the act of mixing generates finer and finer filaments in the tracer
field, it is natural to also assume that large scale filaments means weak mixing.
This could thus set a limit on the weakest amount of mixing possible to observe by
the metric. This is further also likely to be the major reason why the correlation
coefficients to the FTLE and the FSLE in figure 4.10 are small for short integration
times, at which filaments are large in scale. It could possibly also explain why the
Rényi entropy appears to deviate more form the FTLE and the FSLE in the upper
regions of figure 4.8 and at low values in the scatter plots in figure 4.9.

5.1.1 A note on sampling artefacts

We further note a possible problem with the Rényi entropy metric that is related
to the number of bins and the filter size. It is likely not major but worth noting.
In regions of small gradients in the tracer field, we may identify lines of high Rényi
entropy. It is for example seen in the interior of the vortices in figure 4.3. The
phenomenon can be illustrated by considering a one dimensional linear tracer field
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as illustrated in figure 5.1. We would expect this tracer field to correspond to a
homogeneous entropy field, since the local distribution of tracer values is equal
over the whole grid. However, if the values for filter regions at different positions
do not match up to the same number of bins, the corresponding entropy will not be
homogeneous. This is mainly a problem where filament scales are large compared
to the filter size, for which the tracer values in the filter region cover a small number
of bins. The problem could however probably be handled by anti-aliasing in the
probability distribution, although this has not been done here.

5.2 Particle transport

The ability to detect particle transport is visualised by comparing the Rényi en-
tropy field with Poincaré sections as shown in figure 4.4. We identify three strong
barriers to transport at the boundary to the jet structure, shown as solid lines
coloured in blue, red and green. It appears as if the red and blue lines coincide
where the Rényi entropy field shows large gradients. There are also weaker barri-
ers within the jet, picked up by the yellow points. These are however not clearly
featured in the Rényi entropy field, partly due to the smoothening effect of the
filter size.

A quick comparison to the corresponding FTLE and FSLE fields of figure 4.7,
indicates that these in fact does not reflect the strong barriers as clearly as the
Rényi entropy in this case. The barriers are least clear in the FSLE field, which
stretches smoothly over the blue and red barriers.

5.3 Dependence on initial tracer field

Since the Rényi entropy metric is based on the tracer field, it is natural to ask in
what way the initial tracer field influences the resulting entropy field after advec-
tion. It is easy to realise that the initial tracer field must influence the resulting
entropy in some extent. For a homogeneous initial tracer field for example, no
entropy can ever be produced regardless of mixing. The question is in what extent
the initial field affects the Rényi entropy. Figure 4.6 shows the effect of changing
from the linear initial tracer field to fields of varying gradients in the latitudinal
direction. In contrast to the linear field, these do not have homogeneous Rényi
entropy before being advected. When filtering the tracer field after advection, we
may then identify a change in entropy either due to mixing or due to initial entropy
that has been transported into or out from to the filter regions. The additional
effect of transported entropy is likely the reason for the change in the fields shown
in figures 4.6(d) and 4.6(e). The change is larger using C0(x,y) = cos(4y − π/2)
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as initial tracer field, which is more inhomogeneous in entropy before advection
compared to C0(x,y) = cos(y − π/2).

To fully account for inhomogeneous initial entropy being transported, trajec-
tories are likely needed. The main advantage with the Rényi entropy metric is
however that it does not depend on trajectories and such a modification would not
be desirable for our use. However, if the mixing is considered in global terms as
an average over the whole entropy field, the effect of transported initial entropy
should not be a problem.

5.4 Rényi entropy versus FTLE and FSLE

Using a linear initial tracer field, we show that the Rényi entropy fields does
produce the same structural features as the FTLE and FSLE fields, with a well
mixed jet separating the less mixed polar zones from the vortices. The structural
similarity is perhaps best seen in the cross-sectional plots in figure 4.8. Overall, we
see that the FSLE correlates better to the Rényi entropy than the FTLE in both
Spearman and linear correlation coefficients. This could partly be due to the fact
that the FSLE depends on the length of the initial line segment in a similar way
as to which the Rényi entropy depends on the grid resolution. Both sets a limit
on the smallest scale of filaments that can be observed, in contrast to the FTLE
which assumes infinitesimal line segments.

The relatively constant relation between correlation coefficients and ε2 in figure
4.10 also suggests that the correlation is not case sensitive. On the other hand,
comparing the correlation to integration time we see an increased correlation which
levels out after about t1 = 6τ . This is likely an effect of the filter size being too
small compared to the scale of filaments. This is also observed in the regions
outside the jet in figure 4.8. The effect can be made smaller either by (a) increasing
the number of bins, but with the risk of loosing the shape of the probability
distribution, or (b) increasing the filter size, but making the metric less localised.

At the same time as a large filter size seems desirable in terms of covering
filaments in the tracer field, we observe that the correlations are higher for the
9x9 filter size than the 25x25 as shown in figure 4.9. The choice of a large filter
size does therefore not seem obvious and no clear relation between filter size and
correlation is observed. For example, a 15x15 filter size yields a lower correlation
than both the 9x9 and the 25x25 filter size. It is however worth noting that, with
an increased filter size, both the averaged FTLE and FSLE, as well as the Rényi
entropy looses information as they become smoothed. In a sense, the statistics
degenerates with an increased filter size and it is thus possible that a more rigorous
statistical analysis can be made when comparing correlation coefficients for various
filter sizes.
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5.5 Conclusions

We conclude that the Rényi entropy metric may be related to transport and mixing
under the right conditions. We identify these as the following:

1. The grid resolution must be high enough to resolve the filaments in the tracer
field.

2. The tracer field must contain gradients.

3. The filter size must be:

(a) Big enough to cover the fluid filaments.

(b) Small enough to make the metric localised.

4. The number of bins must be:

(a) High enough to contain as much information of the tracer field as pos-
sible.

(b) Not too high for a meaningful distribution to be constructed.

5. The initial tracer field should correspond to a homogeneous entropy.

The first condition is perhaps the most obvious, if the resolution is too low, the fluid
filaments generated by the mixing cannot be resolved and thus not measured. The
second condition just states that we must be able to define material lines to be able
to detect the mixing. The third condition state two contradicting requirements on
the filter size and should therefore be chosen on a case to case basis. The fourth
condition state two, also possibly contradicting, requirements on the number of
bins. Here the optimal binning algorithm mentioned previously can be used for
choosing the number depending on the tracer values, but a large number of bins
is still desirable, especially if the filaments are large in scale. The fifth condition is
needed to avoid transported entropy from the initial tracer field, but could possibly
be loosened to some extent, depending on the situation. If an average of the Rényi
entropy field is calculated such that the mixing is considered as a global scalar
quantity, the requirement can be ignored completely. This is also the case if we
consider the mixing as an absolute measure, not referring to an initial time. In
the latter case, molecular diffusion as well as sources and sinks must however most
likely be considered as well.
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5.5.1 Strengths and weaknesses

We end the assessment of the Rényi entropy metric by identifying its main strengths
and weaknesses compared to trajectory based metrics such as the FTLE and the
FSLE. We identify the following weaknesses:

- Relationship to physical quantities less clear than FTLE and FSLE.

- Information loss in the tracer field due to discretisation.

- Sensitive to the initial tracer field.

Perhaps the biggest problem with mixing metrics in general is that they are typi-
cally not derived from first principles. They can therefore be difficult to relate to
physical quantities in terms of fluid dynamics. This also concerns the FTLE and
FSLE, although these can be related to average stretching rates (or strain rates
as done by for example Pierrehumbert and Yang (1992)), but the exact relation
to mixing still appears unclear to us. Another weakness with the Rényi entropy
metric is that the tracer field is discretised and a loss of information in the field is
unavoidable. This further might set a limit on the weakest level of mixing that the
metric can detect. We have further noted that both the bin number and the filter
size are ambiguous to some extent and must be chosen on a case to case basis. The
last noted weakness is that the metric is dependent on initial tracer field to some
degree. An additional point that is not listed is the observed sampling artefacts
described above. This is however likely a minor weakness that probably can be
avoided by further developing the metric.

We identify the following strengths with the Rényi entropy metric:

+ Independent of velocity fields.

+ Numerically robust.

+ Computationally fast.

+ Easy to implement.

The first point is what motivated the study in the first place, and is the main
advantage with the metric. This is of special importance when dealing with real
data, where global observations of wind fields usually are associated with larger
uncertainties than global observations of tracer fields. The Rényi entropy metric is
also numerically robust. Trajectory based metrics rely on solving the velocity field,
which can be challenging if the field is chaotic. When dealing with large grids, the
third strength is also of importance. We find that, given a tracer field, the Rényi
entropy metric can be up to about 3 orders of magnitudes faster in computation
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time than the FTLE and FSLE, depending on integration time and error tolerance
of the trajectory solver. Finally, the metric is essentially an image filter and the
implementation is fairly straight forward.

5.6 Further work

We end the thesis with some suggestions on further work. Due to the limited
time frame, there are obviously a number of aspects and questions that we have
not considered. First of all, there are a number of physical aspects that could be
included in the study. The effect of diffusion would for example be interesting to
study and of importance if the metric is applied on real data over long time scales
or on small spatial scales. Another aspect is the effect of sources and sinks in the
tracer field which also could be of concern for long time scales.

There are further a number of ways the Rényi entropy metric could be im-
proved. First of all, a solution to the sampling artefacts noted above would be
desirable. One solution could possibly be based anti-aliasing in the histogram.

To make the choice of filter size less ambiguous, it would also be interesting
to look at the effects of scaling of the filter size. For example, one method of
measuring global mixing in tracer fields that has not been considered here utilises
the so called box counting dimension (Ott, 2002) of material lines. Perhaps an
analogy of this fractal dimension could be made for the Rényi entropy metric, for
which the scaling of the Rényi entropy with filter size could be examined. Other
ways of incorporating multiple filter sizes into one measure could probably be
studied as well. After all, mixing often results in fractal structures in the tracer
field, which in turn relates to scaling.

Finally, we recognise that the approach of this thesis is heuristic. We have not
worked from first principles and the conclusions are thus based on comparisons
rather than rigorous derivations. In order to fully understand the relationship
between the Rényi entropy, transport and mixing, a more rigorous and theoretical
approach is probably needed. This would be useful in order to further relate the
Rényi entropy metric to physical quantities in terms of fluid dynamics as well.
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A
Appendix

A.1 CLE expressed in terms of rii

We now show that the CLE can be expressed in terms of the diagonal elements of
the right triangular matrix R. Consider the tangent matrix in eq. 2.15 and note
that we can write:

λi(x0) = lim
t→∞

lim
|δx0i|→0

1

t
ln

(
|Tδx0i|
|δx0i|

)
= lim

t→∞

1

t
ln (|Tv̂0i|)

where v̂0i = δx0i/|δx0i|. The limit as the initial displacement goes to zero now has
been made implicit by assuming that the linearisation is valid. We can factorise
the tangent matrix by QR factorisation and note the following:

|Tv̂0i| = (v̂tr0iT
trTv̂0i)

1/2 =

= (v̂tr0iR
tr QtrQ︸ ︷︷ ︸

≡I

Rv̂0i)
1/2 = |Rv̂0i|

That is, if we let v̂0 1 = [1,0] and v̂0 2 = [0,1], we can write the exponents as:

λi(x0) = lim
t→∞

1

t
ln (|Rii|)

That is, as in eq. 2.18.
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