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Synthesis and evaluation of differential absorption spectroscopy retrieval methods
Sebastian Göbel
Department of microtechnology and nanoscience
Chalmers University of Technology

Abstract
To reduce the negative impact of the increasing energy demands of society onto the cli-
mate, the use of renewable resources is essential. In this context, power plants for com-
bustion of sustainable biomass fuels play an important role. For an efficient combustion
process to take place, mixing of the fluid solids, the gas-solid contacts, and heat transfer
are of importance, and fluidized bed technology is used for large-scale combustion and
gasification of solid fuels. For further optimization of combustion, the mixing processes
of fluidized beds are under investigation using experiments and theoretical modelling.
However, theoretical methods are often hard to validate with appropriate experimental
results, and the experimental methods often lack the desired resolution in time and space.
In contrast, a sub-millimeter wave radar may be a suitable tool to resolve particle concen-
trations and velocities. Furthermore, the existence of water absorption lines within the
radars frequency range can facilities even water vapor content extraction.
In this thesis, a retrieval method inspired by NASA’s Vapor In-Cloud Profiling Radar
(VIPR) project is synthesized and evaluated using simulations to achieve a sense of ex-
pectations, and experimentally in a lab environment using falling particles to mimic the
fluidized bed. Further, a fixed target method is evaluated which could prove helpful in
measuring water vapor. Experimentally, the initial tests show promising performance of
range resolved measurements of particle concentration, suggesting further evaluation is
of interest.

Keywords: radar, retrieval, water, vapor, differential, absorption, spectroscopy.
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1
Introduction

The driving force behind this thesis is the desire to monitor the humidity and particle con-
centration inside a power reactor for biomass combustion at the Chalmers power plant [1].
The goal being a measurement of the three dimensional distribution of water vapor which
would allow one to visualize hot spots, although for this thesis the scope is limited to one
dimension. These hot spots could indicate that the stirring method used is insufficient,
this being placing the wood fuel on a fluidized bed of sand. This could mean a drop in
efficiency and thus having access to this diagnostic tool could allow one to optimize the
stirring of fuel and there by increase the efficiency of the power reactor. This being useful
in improving the performance of a renewable source of energy and thus important for a
future with renewable sources of energy.
This report investigates the opportunity of using a sub-millimeter wave radar for water
vapor retrievals inside of a power reactor, both theoretically and in a limited form ex-
perimentally. The theoretical result is a proposal of a retrieval method, with idealized
estimates of its expected performance. The experimental results are limited testing of the
retrieval method and of in-lab tests of an alternative mode of operation, where the humid-
ity is monitored without the particulate environment of the power reactor.

1.1 The process reactor and its environment
The process reactor is a chamber containing a fluidized bed of sand where fuel in the
form of wood chips is burnt, the fluidized bed allows for the dispersal of the fuel in the
chamber. The burnt fuel generates water vapor which is the output of the reactor, thus it is
of interest to monitor the distribution of the water vapor concentration inside the chamber.

The inside of the reactor is extremely warm (several hundreds of degrees Celsius) and
contains different gases, notably water vapor in great amounts(order of a hundred gram
per cubic meter) which makes it difficult to monitor the reactions in the power reactor by
technologies that require direct contact with the gases etc in the reactor.

1.2 Differential absorption spectroscopy
A method for remotely monitoring the inside of the chamber is differential absorption
spectroscopy. As electromagnetic radiation propagates an environment it loses energy by
absorption by the gases in the environment. This allows one to estimate the concentra-
tion of an absorbing gas species. In Differential absorption spectroscopy the frequency

1



1. Introduction

dependent contrast of the absorption is used to estimate the concentration rather than as
an example relying on comparing the power before and after the gas environment. This
allows the method to be used in situations where calibrating the system by removing the
absorbing gas species and comparing the measurements with and without the gas [2].

1.3 Previous work in differential absorption spectroscopy
Range resolved differential absorption spectroscopy has been used at optical frequencies,
notably in Differential Absorption spectroscopy Lidar, DIAL [2]. Recently it has been
used by NASA at millimeter wave frequencies. Notably in NASA’s work on humidity
measurements inside clouds [3]–[7], the work of which served as an excellent inspiration
for this thesis. The problem of measuring humidity inside clouds is quite similar to the
problem posed by measuring humidity inside the fluidized bed of a process reactor. In-
stead of a cloud of water droplets there is a cloud of small sand particles, the differences
lie in the geometry and amount of water vapor. A cloud is much larger, thus less range
resolution is needed while the water vapor concentration in a process chamber is much
higher than a cloud thus less humidity resolution is needed.

2



2
Theory

This chapter covers the theory needed to understand this report. It starts with radar es-
sentials, such as different methods of integration and more advanced processing such as
range Doppler processing to allow distance and velocity measurements, later used to re-
move stationary targets in section 4.2. Continuing with how scattering and absorption
of particles is described and characterized, and how these characteristics are calculated.
Finishing with describing how electromagnetic waves can be absorbed by gases and how
this is modelled, showing how to calculate the absorption behavior. The latter two are
later used in section 4.2 to build a model of the interaction between the radar beam and
the particles and gas inside the experiment.

2.1 Radar essentials
This section describes a few essentials for radar, focusing specifically on frequency mod-
ulated continuous wave (FMCW) radar, as it is the radar used in this thesis. In general a
radar works by transmitting an electromagnetic wave and comparing the time difference
between it and the reflected echo from a target, this to determine the distance or range to
the target [8, ch. 1].

3



2. Theory

2.1.1 FMCW Radar

An FMCW radar transmits a wave which in theory has a constant amplitude but a repeat-
ing frequency modulation such as a saw-tooth [8, ch. 8]. Which is used in this report,
where the instantaneous frequency transmitted is linearly increased and then quickly low-
ered only to be repeated again, this can be seen in Figure 2.1. The length of each sweep
is referred as the pulse length, or sometimes sweep time: Tp in the case of FMCW radar.
Its inverse being the pulse repetition frequency: PRF , assuming no waiting period in-
between the pulses. The difference between the maximum and minimum frequency is the
bandwidth: BW , while the center frequency: f0 lies between the two.

Figure 2.1: The saw-tooth frequency chirp profile of an FMCW radar, both with a trans-
mitted signal and a delayed reflected signal.Marked are the key parameters such as round-
trip delay τ , pulse length Tp, bandwidth BW and the frequency difference ∆F in transmit-
ted and received signals.

The received pulse from a point target will be delayed compared to the transmitted, with
a different amplitude and phase. This means that the frequency modulation is maintained
but shifted in time. For the modulation that’s used (sawtooth) this means that the fre-
quency difference between the transmitted and received wave is constant and proportional
to the delay, and thus also range.

4



2. Theory

Figure 2.2: The IF signal of three targets at different ranges, shown on logarithmic y-axis
scale. The signal is shown both with a rectangular and Hamming window, it is seen that
using a Hamming window heavily reduces the spread of a target in range.

The received signal of the radar is mixed with the transmitted to obtain the difference
frequency, called an intermediate frequency (IF). The IF is then sampled using an analog
to digital converter for further digital processing. In order to obtain the range information
from the IF signal, the sampled signal is then Fourier transformed to produce a range pro-
file, an example of which can be seen in Figure 2.2.

The delay between the outgoing and incoming wave τ = 2R
C0

is the round trip delay to
and from the target at distance R at the speed of light C0. The instantaneous frequency
fT X(t) = f0 +

BW
2Tp

(t−Tp), combining these two equations yields an equation for the IF
frequency fIF(r) as a function of range, which can be seen in Equation 2.1.

fIF(r) =
2BW
TpC0

R (2.1)

When multiple pulses are being processed the time scale of a chirp(which is Fourier trans-
formed to obtain a range profile) the time is referred to "fast time", while the time scale
for several pulses(to study how the range profile changes over time) is referred to as "slow
time".

5



2. Theory

2.1.2 Radar equation
The radar equation 2.2 describes the received power Pr using the antenna gain G, free
space wavelength λ , one way distance R, transmitted power Pt and the radar cross section
σ [8, Ch. 1]. The radar cross section which describes the amount of intensity that is
reflected back towards the source by an object and will instead be referred to as the back-
scatter cross section σb, to differentiate it from other cross sections.

Pr = Pt
G2σλ 2

(4π)3R4
(2.2)

2.1.3 Swerling targets
As seen in subsection 2.1.2, the received power is dependent on the targets back-scatter
cross section. In certain cases the back-scatter cross section is not constant between each
sweep/pulse, which could for example be caused by interference between several reflec-
tions. Swerling targets describe the different scenarios and their statistics, for this thesis
Swerling targets of type Swerling-2 are of interest as it is applicable for the intended use
case of a cloud of particles. These are caused by many scattering objects each with a
similar back-scatter cross-section interfering with each other, causing the received power
to be random and following a exponential distribution [9]. The expectant back-scatter
cross-section and its variance is equal as seen in Equation 2.3 [9].

E[σb] =
√

VAR[σb] (2.3)

2.1.4 Range-Doppler processing
Using the Doppler shift from a reflection the velocity of a target can be estimated, however
only toward/against the radar (~v ·~r). This can be combined with range detection for Range-
Doppler processing, where one can see the intensity of targets at a certain range and
velocity [8, ch. 4]. This is done in practice by collecting several range profiles over time
and doing a Fourier transform for each range. This is later used in section 4.2 to remove
reflections from stationary targets and only keep those from moving particles.

2.1.5 Frequency resolved FMCW radar
In certain applications such as differential absorption spectroscopy it is interesting to do
radar measurements at several frequencies. Which can be used to accurately solve for
certain physical parameters of the target scene, such as water vapor concentration or other
frequency dependent behavior [6]. This can be done by shifting the local oscillator of
the radar [4] or by using several radar systems. In this report a different approach will be
used. Instead the wide bandwidth of the radar will be utilized and the chirp will be divided
in fast time into several snippets where each one corresponds to a certain frequency band.
Having radar measurements for different frequencies lays the foundation behind the dif-
ferential absorption spectroscopy approach, since it relies on estimating the concentration
of for example a gas using the frequency dependent attenuation through the medium, as

6



2. Theory

seen in section 4.2.

∆R∆ f =
C0

2
(2.4)

Each of these sub-bands now have a bandwidth of ∆ f = BW
N f

and thus the radar will have
a frequency resolution of ∆ f , where BW is the total bandwidth and N f the number of
frequency points, then re-write the range resolution formula [8, ch. 8] and include the
frequency resolution. This equation is shown in Equation 2.4. This means that there is
a trade-off in-between range and frequency resolution, thus one needs to sacrifice range
resolution in order to do spectroscopic measurements using a radar.

2.1.6 Coherent integration
Coherent integration of wave-forms is done by adding the IF waveform in the time or
frequency domain of the signals for several pulses [10]. This will only work for signals
where the signal retains its phase over the many samples, it is then said to be coherent [8,
ch. 1]. This is used in section 4.1 to improve the signal to noise ratio, and thus stabilize
the measurement.

2.1.7 In-coherent integration
If the reflection from a target is not coherent such as in the case of multiple reflectors
who’s reflections interfere with each other as they move around in a random manner.
Instead of integrating the complex amplitude, the power (absolute squared amplitude) is
integrated [10]. This is used to estimate the average received power from a Swerling target
in subsection 4.2.2.

2.2 Scattering and absorption by particles

This section describes how electromagnetic waves interact with particles in a medium,
such as small dielectric spheres in air. It starts by describing first in general how the
behavior is treated and then introduces Mie-theory which is an analytical solution to scat-
tering and absorption by spheres of any size. The contents of this section is important
for the retrieval method in section 4.2, which relies on the later discussed extinction cross
section to estimate the range dependent concentration of particles in the path of the beam.

Light propagating through a medium containing particles of a contrasting refractive index
will scatter and be absorbed. The scattering will both send light back towards the source
and reduce the forward going wave by scattering it in other directions [11, ch. 1]. The
absorption by the particles will convert a part of the energy to heat, thus also reducing
the strength of the forward going wave [11, ch. 1]. The strength of the absorption and
scattering is characterized by different cross sections, which are in general dependent on
the shape, orientation, the refractive index of the particle and the surrounding medium

7



2. Theory

and frequency [11, ch. 1].

In general small particles scatter in a way referred to as Rayleigh scattering, where the
behavior as a function of the size parameter r

λ
is similar [11, ch. 5]. For larger particles

the cross section starts being describable using geometrical optics, in-between these two
regions lie the Mie Region or resonance region where the behavior of the particle is highly
dependent on the size parameter [11, ch. 6].

2.2.1 Backscatter cross section

Figure 2.3: Backscatter efficiency σb
πr2 of a sphere of perfect electrical conductor

as a function of its relative size. The three regions are clearly visible: Rayleigh,
Mie(resonance) and geometrical, the Rayleigh and geometrical dependency is marked
with an asymptotic line. It is worth noting that even at larger relative sizes the oscillating
behavior remains but quickly becomes smaller.

The back-scatter cross section σb (also referred to as the mono static radar cross section
[8, ch. 1])describes the amount of electromagnetic energy that is scattered back towards
the direction of which it came [11, ch. 4], used in the radar equation in subsection 2.1.2.
It is possible to interpret the size of the cross-section as the geometrical cross section of
a perfectly electrical conducting sphere that would scatter the same amount of energy as
a the object in question, and thus allows one to describe the cross section of spheres as
an efficiency times the geometrical cross section as seen in Equation 2.5 [11, ch. 4 ].

8



2. Theory

The backscatter efficiency for a perfectly conducting sphere is shown as a function of size
relative to wavelength in Figure 2.3.

σb = σb ·πr2 (2.5)

2.2.2 Extinction cross section
The extinction cross-section describes the reduction in forward going intensity by both
absorption and scattering, as both contribute to the reduction in intensity [11, ch. 3]. For
spherical particles it can also be described using an efficiency Q times the geometrical
cross section of a sphere πr2, as seen in Equation 2.6 [11, ch. 4]. The extinction cross
section σext is added into Beer-Lamberts law as seen in Equation 2.7, where I(z) is the
intensity, I0 is the initial intensity, n the particle concentration and z is the distance into
the absorbing medium [11, ch. 3].

σext = σsca +σabs = (Qsca +Qabs) ·πr2 (2.6)

I(z) = I0 · exp(−σext ·n · z) (2.7)

2.2.3 Mie theory - single spherical particle
Mie theory is the analytical solution of the interaction in-between an electromagnetic
plane wave and a sphere of refractive index m1 in an environment with refractive index
m2, while strictly correct for spherical particles it offers a first order approximation for
all roughly spherical particles [11, p. 4]. The derivation and physics of Mie theory are
somewhat outside the scope of this thesis, since the details of Mie theory are not used it is
sufficient to know that the cross sections used originate from Mie theory. For solving the
Mie theory of particles a Matlab script [12] was used, which outputs the different cross
sections.

9



2. Theory

2.3 Absorption spectroscopy
When electromagnetic radiation propagates in a gas it can excite the different molecular
resonances of the molecules in the gas, causing them to absorb part of the wave’s energy
and thus reducing its intensity [2, Ch. 4]. This chapter describes how this is modelled
and calculated, this to provide the reader with information about the dependency of the
environment(temperature, pressure, etc). As different gases have transitions at different
frequencies it allows one to independently measure their concentrations, which is useful
in applications such as atmospheric measurements using lasers [2, Ch. 5]. The content of
this section will be used in section 4.2 to estimate the range dependent concentration of
water vapor, as well describes the main phenomenon seen in section 4.1. It further also
shows the temperature, pressure dependencies for the parameters that describe the atten-
uation spectrum, which is important in deciding which kind of environment the retrieval
method proposed in section 4.2 may work in.

2.3.1 Radiative transfer / Beer-Lamberts law
When a plane-wave travels through a non radiating homogeneous medium but absorb-
ing and scattering medium the forward going beam intensity I(~r) is described by Beer-
Lamberts law seen in Equation 2.8, where the beam is directed in the r̂ direction and I(~r)
is the intensity at ~r [11, Ch. 3]. Here α is the total extinction of the medium, which
can originate from absorption or scattering making the energy change direction and thus
effectively be reduced [2, Ch. 1]. For mediums such as a gas mixture with containing
particles the extinction will be the sum of gas absorption (see section 2.3) and extinction
by the particles (see section 2.2).

ln
(

I(~r1)

I(~r2)

)
=
∫ r2

r1

α(r) ·dr (2.8)
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2.3.2 Attenuation in a gas
As previously mentioned in subsection 2.3.1 the intensity of a ẑ traveling plane wave in an
attenuating medium can be described using Beer-Lambert’s law which is shown in Equa-
tion 2.9, with α being the extinction coefficient usually in dB/km or simply in natural
units 1/m. In this chapter it is shown how to calculate the extinction from gas absorp-
tion using a line by line approach and data from HITRAN[13], an approach that works
all the way from low frequency radio to ultra-violet and in-between. The results of this
section are used to calculate the absorption cross section of water vapor in atmospheric
conditions, as shown in Figure 2.4.

I(z) = I0 · exp(−α(ν) · z) (2.9)

Figure 2.4: The absorption cross section of water vapor under normal atmospheric
conditions(P = 1atm, T = 290K), in dBg−1m3km−1, the inset shows the bandwidth of
the radar used in this thesis.

2.3.3 Line by line approach
The extinction spectrum for a gas is calculated using Equation 2.10, which is a sum of
N transitions each having a lineshape function (describing the shape of the transition in
the frequency domain) described by a transition wave number νi j in cm−1 and scaled by
a strength for the given transition Si j [14]. The extinction is then scaled by the volume
number density of the absorbing gas species [X ], in molecules/cm3. Later the shape
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of the lineshape and the temperature and pressure dependency of its parameters will be
introduced.

α(ν) = [X ]
N

∑
n=1

Si j,n f (ν ,νi j,n,T, p) (2.10)

The transition frequency νi j is constant but the lineshape itself contains a pressure de-
pendent shift(see Equation 2.12) on the form δ (pREF), in cm−1 [14]. The line strength
of a particular transition also has a temperature dependency, which is described in Equa-
tion 2.11. In which Q(T) is the total internal partition sum for a given temperature, which
is available from a HITRAN for each isotope, together with the needed constant c2, the
lower state energy E

′′
measured in cm−1 is also listed for each transition [13] [14].

Si j = Si j(Tre f )
Q(Tre f )

Q(T )
exp(−c2E

′′
/T )

exp(−c2E ′′/Tre f )

1− exp(−c2νi j/T )
1− exp(−c2νi j/Tre f )

(2.11)

The Lorentzian lineshape is derived from treating the excited molecules as electrical
dipoles and thus with an exponentially decaying emitted field, the frequency domain rep-
resentation of which is seen in the Lorentzian lineshape, which is shown in Equation 2.12
[14]. The Lorentzian line width γi j is described using Equation 2.13 [14] and its physical
interpretation is that the dipole loses energy faster when interacting with nearby particles,
thus this broadening is referred to collision or pressure broadening [2, Ch. 3]. This line-
shape fits well to experimental data at higher pressures and lower temperatures, such as
near ground atmospheric measurements [2, Ch. 3].

fL(ν ,νi j, p,T ) =
1
π

γi j(p,T )

γi j(p,T )2 +
[
ν−νi j−δ (pre f )p

]2 (2.12)

γi j(p,T ) =

(
Tre f

T

)nair
(

γair(pre f ,Tre f )(p− psel f )+ γsel f (pre f ,Tre f )psel f

)
(2.13)

The parameters describing the line width γi j in air for a gas species are the self broadened
width γsel f and air broadened width γair both at the reference temperature Tre f = 290K
and reference pressure Pre f = 1atm as well as a parameter describing the temperature
sensitivity for the gas species in air nair [14]. The width is then a function of the partial
pressure of air pair and the gas species psel f , which are linked to the concentration of the
absorbing gas species by the ideal gas law seen in Equation 2.14.

pV = nkBNAT (2.14)

Ideal gasses are described by the ideal gas law, shown in Equation 2.14. Which contains
the pressure p, volume V , amount in moles n, Boltzmann’s constant kB, Avogadro’s num-
ber NA and the temperature in Kelvin T . Assuming the gas mixture is a combination of
air and another gas, then the ideal gas law can be re-written as shown in Equation 2.15.
Where the pressure is divided into partial pressures depending on the mass concentrations
ρ and molar masses M.
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p = pair + pgas =

(
ρair

Mair
+

ρgas

Mgas

)
NAkBT (2.15)

The Gaussian lineshape is derived from the Brownian motion of the absorbing molecules,
where the velocity distribution in the direction of the wave vector~k gives rise to broaden-
ing from the Doppler effect which is referred to Doppler broadening [14]. The Gaussian
lineshape is given by Equation 2.16, where νi j is the transition wavenumber and αD is
half-width at half-maximum of the Gaussian lineshape which can be calculated using
Equation 2.17 [14]. This line shape works well in high temperature moderate pressures or
lower pressures and moderate temperatures such as in the upper parts of the atmosphere
[2, Ch. 3].

fG(ν ,νi j,T ) =

√
ln2
πα2

D
exp

(
−

(ν−νi j)
2 ln2

α2
D

)
(2.16)

αD(T ) =
νi j

c

√
2NAkBT ln2

Mgas
(2.17)

The Voigt lineshape takes into a account both collision broadening and Doppler broaden-
ing making it useful in cases where both effects are significant such as in a wave propa-
gating from space to ground level. The Voigt line is formed by convolution the line shapes
for the Lorentzian and Gaussian lineshapes, as seen in Equation 2.18 [14].

fV (ν ,νi j,P,T )=

∫
+∞

−∞

fL(ν−ν
′
,νi j, p,T )· fG(ν

′
,νi j,T )dν

′
= fL(ν ,νi j, p,T )∗ fG(ν ,νi j,T )

(2.18)
For this work all measurements and simulations were done at ambient temperature and
pressure thus a Lorentzian lineshape, seen in Equation 2.12 is adequate however for future
high temperature work a more advanced Voigt line shape as seen in Equation 2.18 may
be of interest.

For calculating the absorption cross section of water vapor σH2O Equation 2.10 was used,
with data from [13]. Since the assumption in section 4.2 is that the partial pressure of
water vapor psel f=pH2O is negligent, the extinction spectrum al pha(ν) is calculated for
ρ −→ 0gm−3 which is then converted to molecules per cubic meter to obtain [X ]. Then
the extinction spectrum α is used to calculate the absorption cross section α(ν)

ρ
= σ(ν),

then the frequency is re-scaled from ν in cm−1 to f in Hz.
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3
Experimental setups

This chapter describes the various experimental setups including the radar that was used
in this thesis. There were two series of experiments done, first with a fixed target and a
gas cell in the path of propagation, this using the retrieval method described in section 4.1.
Later is testing using the retrieval method described in section 4.2 shown, this by pouring
particles through the path of the radar beam.

3.1 Radar configuration
In Figure 3.1 a simplified block diagram can be seen for the radar that has been used. The
radar generates a low frequency chirp using a digital to analog converter (DAC), which is
then mixed up to a higher frequency using microwave back-end electronics, which is then
fed to the radar module. The radar module further up-converts the chirp until it reaches
the final approx. 340 GHz. The terahertz signal is then coupled to collimating optics
using a horn antenna. The intermediate signal from the radar module is then sampled by
an ADC which is connected to the control computer.

DAC Microwave
back-end

Radar
module

Horn
antenna
& Optics

ADC
Computer
with signal
processing

LF Chirp HF Chirp THz

IF Signal

DigitalSync Clock

Figure 3.1: A simplified block diagram for the radar used in the experiments.

3.2 Experimentation with fixed targets
For testing with a fixed target a climate chamber, which can be seen in Figure 3.2 was con-
structed. It was constructed out of square aluminium tubing and high density polyethy-
lene (HDPE) sheets as windows for the sides that the beam passed through, the remaining
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3. Experimental setups

sides were covered in thin plastic to contain the humidity. Greater care was taken for
the front/rear windows since a change in shape may change the propagation properties
of the window, further HDPE was found to offer low attenuation and reflectivity for THz
frequencies compared to the thin plastic that was used.

The angle of incidence was slightly off-set from right angle, this to drastically reduce
window reflections as they would interfere with desired reflections as well as increase the
noise floor. This was used for both windows. For tests using no window the plastic film
was used with cut outs for the beam, to remove any effects of the windows. For moni-
toring the humidity a hygrometer was used, which was placed inside the chamber. The
humidity was changed by spraying mist into the chamber.

The target was a ≈ 5mm diameter metallic sphere suspended in air using a wooden pole
and a XY translator for precision alignment with the beam pattern, the target was placed in
front of a leaning piece of sheet metal to act as a mirror to reduce background reflections.
Other targets were also experimented with, however only data for the metallic sphere is
shown in section 5.1.

1 m

1 m

2 m

~k

Target

Figure 3.2: The experimental setup used for fixed target measurements. The chamber
allows for controlling the water vapor concentration in the path of the beam.
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3.3 Experimentation with falling particles

~k

~k

Refill

Figure 3.3: Test setup for falling particles

For tests using falling particles, a setup as shown in Figure 3.3, which consists of a frame
holding a sift above a semi-transparent tray that collects the falling particles and chan-
nels them into a another tray for re-use. The setup is further dressed in paper sheets to
reduce spillage of particles. The beam of the radar enters orthogonal to the fall path and
is reflected by a mirror to travel in-line with the falling particles, thus monitoring the ex-
tinction through the cloud under the sift.

The particles used for the experiments were glass particles of type: 212-250 micrometer
diameter Ballotini, the dielectric constant εr is assumed to be equal to 6 using [15]. This
size was chosen due to availability of large amounts of media since long measurements
were required. The particle size was also a good choice based on the reasonable back
scatter efficiency of the particles, however metallic particles could offer better values. The
size distribution of the particles used in the calculations of extinction cross section was
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chosen as a single particle size with the diameter of the center diameter of the distribution
of the real particles.
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4
Retrieval methods

This chapter describes the methods used in the two experiments to retrieve the water
vapor concentration of the air, first in section 4.1 a more empirical method is proposed
and later a more theoretical method is formulated in section 4.2 and then a simulation
method for it in section 4.3. In the context of this thesis a retrieval method is a method
that uses the radar measurements to estimate the humidity and particle concentration of
the environment, but also possibly more outputs.

4.1 Water vapor retrieval from fixed target

Figure 4.1: The absorption cross section of water vapor under normal atmospheric
conditions(P = 1atm, T = 290K), in dBg−1m3km−1, the zoomed-in section is for the
bandwidth of the radar used in this thesis. The attenuation is varying and steadily increas-
ing with absorption peaks at certain frequencies.
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4. Retrieval methods

The goal with this method is to investigate if the ratio between the high and low frequency
measurements of the radar can be correlated to the water vapor concentration inside of a
gas cell, rather than estimate humidity directly. This is done using signal processing to
obtain this ratio, which is shown in Figure 4.2. The signal processing begins by dividing
the chirp time series in two, to form a low and high frequency reading sl and su. This is
done since the low frequency part of the bandwidth should have higher attenuation than
the upper part of the bandwidth, as seen in Figure 4.1. These signals is then coherently
integrated to increase the signal to noise ratio, then a hamming window is applied and
the signal is Fourier transformed to obtain a range profile for the low and high frequency
reading. Then a moving mean is applied to reduce the fluctuations of the measured pow-
ers which are then divided by each other and converted to decibels for a reading of the
low/high ratio RdB for a certain distance and a few surrounding range indices, the time
series of which is saved for comparison with readings from a hygrometer that measures
the water vapor concentration.

Split chirp
to form

upper, lower

Coherent
integration
of pulses

Navg = 256

Hamming
window

&
| FFT |2

Non-coherent
moving mean

Navg = 256

Calculate
upper,

lower ratio
Plot ratio

su,l[t,T] su,l[t,T]

Su,l[r,T]

Su,l[r,T]RdB[T]

rT

Figure 4.2: The block diagram of an equivalent signal processing chain to the one used,
simplified to omit unrelated parts of the chain. Fast time index is t, slow time is T and
distance to target monitored is rT .

4.2 Water vapor retrieval in particulate medium
This section describes the method used to retrieve a water vapor profile from radar data
and the underlying assumptions that are done, as well as the signal processing that pre-
cedes the retrieval method. The method presented is heavily inspired and aided by the
retrieval method used in NASA’s VIPR project [6], this work does however solve for
different state variables as it not only retrieves humidity but also particle concentration.

4.2.1 Assumptions and conditions
In order to synthesize a retrieval method the problem needs to be defined and constrained,
these constraints are discussed and presented below.

Gas absorption It is assumed that only water vapor shows a clear frequency dependent
shape. Background gases may attenuate, however they would show little to no contrast
over frequency and thus not be distinguished against a range dependent loss of power. In
section 2.3 it is shown that the actual absorption cross section of a gas is dependent on the
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other gases in the mixture as well as temperature, partial pressures of the different gases.
A reasonable approximation would be to assume that the gas mixture is simply water va-
por and air and that the partial pressure of water vapor is much lower than that of the air.
This is true for atmospheric pressure and ambient temperature which is a good assump-
tions as the tests would be done under normal atmospheric conditions. These assumptions
would result in an absorption cross section of water vapor that is approximately a function
of frequency only, thus using section 2.3 the cross section is calculated using T = 290K
and P = 1atm for the center frequency of each sub-band.

Particles in the environment The particles in the path of the radar beam are of utmost
importance as their extinction cross-section allows estimating their concentration in the
same fashion as the water vapor concentration will be estimated. The particles available
are spherical and are made of glass, with various size distributions. For a simple test and
lack of exact method to measure the concentration of particles, a simple approximation
will be used. The particles are assumed to be of the same size, which is the mean of the
size distribution of the particles used. Thus this model does not work well for particles
of widely varying size, as very small particles show a Rayleigh type behavior compared
to larger which might have a Mie behavior. The code [12] is used to calculate the back-
scatter and extinction cross-sections for use in the model, this at the center frequency of
each sub-band.

4.2.2 Radar processing

Split chirp
into N f

sub-bands

Hamming
window FFT

Doppler high
pass filter

Incoherent
integration

Nint Samples
Store data

s[t, f,T] s[t, f,T]

S[r, f,T]

S[r, f,T]P[r, f,T]

Figure 4.3: The block diagram of an equivalent signal processing chain to the one used,
simplified to highlight the main steps. Fast time index is t, frequency is f and slow time
is T . All steps are done independently for each sub-band.
The block diagram of the signal processing done before applying any retrieval method
is shown in Figure 4.3, which consists of dividing the chirp into multiple sub-bands for
different frequency points, then each sub-band is processed separately. The next step is
to apply hamming windows onto each sub-band, followed by Fourier transforming the
fast time signal to obtain a range profile for each sub-band. Then a Doppler high pass
filter is applied to remove stationary targets, which arise from reflections of the test setup,
the cut-off frequency and filter order of which was adjusted so that no stationary targets
where seen in a range-Doppler plot. The removal of stationary targets is important since
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they would not fit the model, as it assumes only particles of a uniform size but randomly
changing phase. After the filtering, the sweeps are in-coherently integrated to yield a
power estimation P[r, f ,T ] before finally being stored for further analysis. Worth noting
is that a portion of the sub-bands were skipped in the retrieval method as they are outside
of the radar module’s design frequency span or corrupted by a hardware glitch. Further
measurements where the received power for all analyzed ranges and frequencies was not
greater than 3dB from the noise floor were dropped in experiments, this as to not process
data with undesirable quality. The noise floor level was approximated as flat over range
and frequency, with a good fit for most of the analyzed range indices.

The radar settings used in the experiments with falling particles in section 5.2 are as shown
in Table 4.1.

f0 BW Nf D εr P T Nind
Tint

340 GHz 25.6 GHz 25 231 µm 6 1atm 290K 1024Sas−1

Table 4.1: The different parameters used for the measurements shown in section 5.2.
Where f0 is center frequency, BW the total bandwidth, N f the number of frequency points,
D diameter of particles in model, εr relative permittivity of particles in model, P the am-
bient pressure, T the ambient temperature and Nind

Tint
the number of statistically independent

measurements per second of integration.

4.2.3 Retrieval method
The retrieval method will use the multi frequency radar measurements of the reflected
power from different ranges and frequencies P(r, f ), this to estimate the state variables,
water vapor concentration over range ρ(r), particle concentration over range n(r) and a
proportionality constant kr(r). The latter being a free parameter used in differential ab-
solution spectroscopy [2, Ch. 6] that will include things such as absolute output power,
IF filter response and therefore this method should be robust to changes in the output
power and IF filter shape. For example it should be capable of working with and without
a window in-between the radar and particle cloud as the attenuation by the window is not
important since no absolute quantities are needed.

The method proposed below is heavily inspired by [6], which in turn is based on material
from [16]. The difference between this retrieval method and [6], is the addition of particle
concentration as a state variable as it is of interest for this work as well as the omitting of
the regularization technique used in [6].

This retrieval method is a so called inversion technique which is essentially a curve fit
of a model of the physics and radar characteristics(in this case) called a forward model
onto the measurements, resulting in an estimate of the unknown state variables [16, Ch.
2]. To do this one must first create a truthful forward model, that includes known un-
knowns such variations in the radar characteristics. This starts with the radar equation
shown in Equation 4.1. Which has been modified to have a Swerling type 2 back-scatter
cross section < σcloud(r, f ) > as described in subsection 2.1.3, this as the particles are a
valid example of a Swerling-2 target. The radar equation has further been modified with
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an unknown term that describes the range varying conversion factor from output to power
measurement Kr(r), that for example can describe how the IF electronics may attenuate
some ranges more than others or absorption by a gas with little to no spectral contrast in
the bandwidth of the radar. An additional unknown term that describes the conversion
factor from sent power to measured power over frequency is also added K f ( f ), which can
describe the frequency varying output power, antenna gain or similar. These unknown
terms represent the behavior the radar that may drift over time and thus not be reliable
or stable enough to calibrate, for example how the frequency response of an IF amplifier
changing over time may change Kr. The brackets <> represent to the time average of the
enclosed variable.

< Prec(r, f )>= Pt
G2

antennaλ 2

(4π)3r4
Kr(r)K f ( f )< σcloud(r, f )> (4.1)

The average radar cross section of the particle cloud from a certain range and frequency
< σcloud(r, f ) > is assumed to be equal to Equation 4.2. Where Vscatter is the scattering
volume which describes the volume of range index(roughly equal to the range resolution
times the area of the beam at distance r), the number of particles per volume n(r) at range
r and the backscatter cross section of a single particle σb( f ) [8, Ch. 19].

< σcloud(r, f )>=Vscattern(r)σb( f ) (4.2)

Now these equations may be combined as seen in Equation 4.3, where the conversion
factors Kr and K f can be made to include most of the terms from the radar equation, as
seen in the right hand side of Equation 4.3. Since no absolute values of any power is used
because of the unknown conversion factors, there is no value in keeping most of the terms
from Equation 4.1 and Equation 4.2.

< Prec(r, f )>= Kr(r)K f ( f )n(r)σb( f ) (4.3)

Now the extinction by particles and absorption by water vapor may be added, which is
done using Beer-Lamberts law as seen in subsection 2.3.1 and using the physics in sec-
tion 2.2. The total attenuation from the radar to the target and back is represented by the
addition of the integral in Equation 4.4, where σext( f ) is the extinction cross section of
the particles, σH2O( f ) is the absorption cross section of the water vapor in air and ρ(r) is
the water vapor concentration at range r. These extinctions will provide a contrast in both
range r and frequency f and thus should not be confused with the unknown conversion
factors kr(r) and k f ( f ), and therefore allow for estimations of the concentrations n(r) and
ρ(r).

< Prec(r, f )>= Kr(r)K f ( f )n(r)σb( f )exp[−2
∫ r

0
(n(r′)σext( f )+ρ(r′)σH2O( f ))dr′]

(4.4)
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To compress the equations the notation is changed to P(r, f ) =< Prec(r, f ) >. The next
step is to take the natural logarithm of Equation 4.4 as it would make the observable(received
power) linear with respect to the state variables n(r) and rho(r), although with the excep-
tion of the term ln(n(r)) which will be discussed later. This is shown in Equation 4.5.

ln
(
P(r, f )

)
= ln

(
Kr(r)

)
+ln

(
K f ( f )

)
+ ln

(
n(r)

)
+ ln

(
σb( f )

)
−
∫ r

0
2
[
ρ(r′)σH2O( f )+n(r′)σext( f )

]
dr′

(4.5)

The next step is to make Equation 4.5 a linear equation by taking the logarithm of it and
then discretize it for each step in range and frequency, which are done at a granularity of
the their resolutions ∆R, ∆ f similarly to [6]. Equation 4.5 is almost a linear function of
the state variables: Kr(r), n(r) and rho(r), with the exception of the ln

(
n(r)

)
term. Since

the proportionality constant Kr is a degree of freedom and does not produce information
of interest one can opt to include the ln

(
n(r)

)
term in it and thus making the equation

linear with respect to the state variables. The frequency calibration constant K f can be
ignored and set to be 0, as applying a least-squares fit of Equation 4.5 to this model will
yield the same state variables irrespective of the actual value of K f (this was tested). This
yields Equation 4.6, which is more easily represented in new notation where Xy(ri, f j) is
replaced with X i, j

y .

ln
(
Pi, j)= ln

(
Ki

r
)
+ ln

(
K j

f

)
+ ln

(
σ

j
b)−2∆R

i

∑
k=1

[
nk ·σ j

ext +ρ
k ·σ j

H2O

]
(4.6)
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The next step to obtaining the state variables is to invert the problem, a least-square fit
is used since the problem is over-determined with 3×Nr unknown values and Nr×N f
measurement points, where Nr, N f is the number of range and frequency indices respec-
tively. One wants to describe Equation 4.6 in the form of a linear equation system as seen
in Equation 4.7, where the state variables are defined inside x a column vector of length
3×Nr as seen in Equation 4.9 and the measurement data points in y a column vector of
length N f ×Nr on the form seen in Equation 4.8, just as shown in [6].

y = Ax+b (4.7)

y = ln


P j=1

r

P j=2
r
...

P
j=N f

r

 (4.8)

x =

ln
(
Kr
)

n
ρ

 (4.9)

The matrix A and column vector b will contain the information regarding the physics of
the problem, b will contain the back-scatter cross-section information as seen in Equa-
tion 4.11 while A contains how the received power depends on the state variables. A is a
(N f ·Nr)× (3 ·Nr) matrix, defined as seen in Equation 4.10, where INr is a identity matrix
of size Nr×Nr , Tpart and TH2O are the optical depth matrices for particles and water vapor
respectively. The matrices are assembled as shown in [6].

A =


INr , −Tpart

(
f1
)
, −TH2O( f1)

INr , −Tpart
(

f2
)
, −TH2O( f2)

...
...

...
INr , −Tpart

(
fN f

)
, −TH2O( fN f )

 (4.10)

b =



(
K j=1

f + ln
(
σ

j=1
b

))
~1Nr(

K j=2
f + ln

(
σ

j=2
b

))
~1Nr

...(
K

j=N f
f + ln

(
σ

j=N f
b

))
~1Nr


(4.11)

The optical depth matrices are defined as seen in Equation 4.12, 4.13, where LNr is a
lower triangular matrix of size Nr×Nr, σext the extinction cross section of the particles
used, σH2O the absorption cross section of water vapor and ∆R the range resolution of
a sub-band as seen in subsection 2.1.5. This matrix formulation is similar to that used
in [6], but includes the extinction from particles. The function of the lower diagonal
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matrix is to act as the sum which is a discrete integration, meaning ri has the accumulated
extinction/absorption of range cells numbering r1, r2, ..., ri−1.

Tpart( f j) = ∆R ·σext( f j)2LNr (4.12)

TH2O( f j) = ∆R ·σH2O( f j)2LNr (4.13)

The problem can be solved by minimizing the least squares error between the data and
the model, however since the data points may have a greater or less uncertainty it is vital
to weight the errors according to the noise of the data. Having information regarding the
uncertainty of each data point also allows one to estimate the uncertainty of the estimated
result, which is quite useful. To do this one needs a model of the noise, for this work that
model is borrowed from [6], although with an assumption and slight change in notation.
Information regarding the noise model used is found in section A.1.

The noise weighted least squares estimation of the vector containing the state variables
x̂ is done using Equation 4.14 [6], where Sy and Se are the co-variance matrices that
describe the model of the noise found in section A.1. The estimated co-variance matrix
of the estimated state vector Ŝx is given by Equation 4.15 [6], for visualizing uncertainties
the diagonal values are used as the variance of each retrieved value.

x̂ =
[

AT(Sy +Se
)−1A

]−1

AT(Sy +Se
)−1(y−b

)
(4.14)

Ŝx = [AT (Sy +Se)
−1K]

−1
(4.15)

26



4. Retrieval methods

4.3 Simulation of expected performance of retrieval method
This section describes the approach used for simulating the expected performance of the
retrieval method in a particulate medium, this to determine the feasibility of using this
approach in a process reactor. The code for which can be found in section A.2.

The simulation starts with defining the characteristics of the radar such as: center fre-
quency f0, total bandwidth BW , number of frequency points(thus also range resolution)
N f , number of range indices to simulate Nr, number of independent samples gathered
Nind . Further a single size of particle of diameter D and dielectric constant εr is assumed
and used together with Mie-theory to calculate the back-scatter, extinction cross sections.
For gas absorption only water vapor is assumed, the absorption cross section generated
using the data from HITRAN is used, at the assumed pressure and temperature, for these
1atm and 290K was used respectively.

The next step is to analytically define a true distribution for the particle concentration
n(ri) and water vapor concentration ρ(ri) as well as a constant scaling of the received
power. The received power is then calculated using the forward model used in the re-
trieval method, although afterwards correcting for the ln(n(ri)) and adding a−4ln(r) part
to simulate the radar equation, something the model of the retrieval method ignores. The
next step is to use the "true" power to generate a noise model and then use it to add suffi-
cient noise onto the "true" power to have a simulation of the received power according the
model, this is done directly on the y vector and thus it does not simulate well for extreme
amounts of noise as it does not simulate the step of y = ln(P).

Now the noisy measurement vector y can be used together with the retrieval method to
compare the true and retrieved profiles, as the simulated data is produced using the for-
ward model this simulation only allows one to estimate the necessary integration time.
Further since a proportionality constant is used(and not known for the radar) it does not
simulate the lack of received power from a too thin distribution of particles, as the re-
flected power will be too low.

f0 BW Nf D εr P T Nind
Tint

340 GHz 25.6 GHz 25 231 µm 6 1atm 290K 1024Sas−1

Table 4.2: The different parameters used for the simulations shown in section 5.3. Which
include the center frequency of the radar f0, the total bandwidth of the radar BW , the
number of frequency points N f , the diameter of the particles measured D, the dielectric
permittivity of the particles εr, the ambient pressure P, the ambient temperature T and the
number of statistically independent samples per second of integration Nind

Tint
.
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5

Results

This chapter describes the results that were obtained from experiments with fixed targets
and falling particles, further simulations to estimate the feasibility of estimating humidity
using a particulate medium.

5.1 Experimentation with fixed target

Measurements using the fixed target setup described in section 3.2 where done both us-
ing a HDPE window and using a plastic film window with a cut-out for the beam. An
example of a comparison between the radar low / high frequency ratio in decibels and the
hygrometer water vapor concentration in units of gm−3 can be seen in Figure 5.1, this us-
ing a HDPE window and a 5 mm diameter metal sphere as the target. In the figure a clear
correlation between the radar measurement and hygrometer reading is seen, although with
slight drift of the radar ratio over time.
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Figure 5.1: A time series comparison between the radar high/low frequency ratio, R and
the hygrometer’s water vapor concentration reading. It can be observed that there is a
strong correlation between the humidity reading and the radar reading, although drift is
also noticeable.

The measured ratio can then be plotted against water vapor concentration to achieve a
scatter plot where a linear fit is applied, this using 40 times down-sampled data for easier
viewing, the same data can then be seen in Figure 5.2. Here a linear relationship can be
observed, which is expected as the ratio is in units of decibels, the slope of which will
depend on the absorption cross section and gas cell length. The linear fit and its estimated
slope, something that should be consistent with gas-cell length irrespective of target type
or position, this slope in units of dBm3 g−1 and how it changed for different scenarios is
of importance to evaluate the method.
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Figure 5.2: A scatter plot comparison between the radar high/low ratio and the hygrome-
ter’s water vapor concentration reading, a clear linear relation is observed with a measured
slope displayed in the legend of the figure. The drift over time seen in Figure 5.1 can be
seen as there appears to be two different lines merging into one.

Several different targets where used and produced very different slopes and with differ-
ent consistencies. Some of the targets showed large instabilities and would not reach a
fixed initial value for the ratio, others like a metallic rod standing up showed strong angle
dependency for the initial humidity value. For the metallic rod target the slope showed a
variation of the slope of more than a magnitude, thus slightly changing the angle of the
rod could completely change the strength of the measured effect showing another phe-
nomenon than simply water vapor absorption was observed. Similarly the metallic sphere
also showed a large dependency of the exact position of the sphere in the beam, further the
slope was also inconsistent to around a magnitude in-between different positions. These
inconsistencies were observed both with and without the cut-out in the windows. For the
sphere specifically a note was also made that the slope inconsistency increased when the
angle went further from normal incidence in the path of propagation and height plane, but
only for the HDPE windows not for the cut-out setup. This suggesting that the windows
were bending the beam and thus hitting the target differently at different frequencies and
that this behavior had a dependency on the water vapor concentration inside the gas cell.

A hypothesis for an explanation of these two effects for the case with windows is that the
beam is deflected according to Snell’s law [17, Ch. 7] and thus the direction of the beam
will depend on the refractive index inside and outside the chamber. The imaginary part
of the refractive index is the loss of the medium, thus it will depend on the water vapor
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concentration and frequency as the absorption per length does. Then arguing from the
Kramer-Kroenig relations [17, Ch. 1], the real part of the refractive index will depend on
the imaginary part of the refractive index and thus also depend on frequency and humidity,
therefore offering an explanation why the behavior changes with the water vapor concen-
tration. For the hole in the window case the slope is still not consistent and a hypothesis
is that there is a gradient of water vapor inside the chamber and again arguing from the
Kramer-Kroenig relations there should be a gradient of refractive index, something that
can bend a plane wave [17, Ch. 7] and thus alter the angle of the beam. The changed
angle of the beam will change the amount of power reflected since the target is more/less
in the path of the beam, something that was also observed.

A way to fix this would be to use a target that is independent to angle of incidence or
position, such as a target with diffuse scattering. While diffuse scatters were experimented
with, none gave promising results. Instead a conclusion can be formed that something like
a cloud of particles is promising.

32



5. Results

5.2 Experimentation with falling particles

This section shows a portion of the results obtained using the experimental setup described
in section 3.3 which are then in turn analyzed using the retrieval method described in sec-
tion 4.2. Since the integration time is rather limited, the total accumulated integration
time is a mere 48.5 s, thus expectations for humidity measurements are not high if one
compares to the simulations in section 5.3. Instead there is hope to detect a somewhat
stable time averaged particle concentration over range(it will fluctuate over time as the
pouring is not stable) and that the time averaged humidity over range is spread out around
10 gm−3 within the estimated uncertainty.

By time averaged one means the standard deviation weighted mean of all measurements
over time, calculated for each range index. The over time values for each range index are
controlled to not contain outliars as they could result from a poor model fit, something
that might not be reflected in the estimated uncertainty.

Figure 5.3: The full range span measurement of the time-averaged water vapor ρ and
particle concentration n, the data is shown with error bars marking the 1σ uncertainty.
The readings are somewhat constant with the exception of an out-liar at range index 13.

The full range span measurement is shown in Figure 5.3, where the data for both water
vapor and particle concentration is somewhat constant with the exception of an out-liar at
range index 13. This could be explained by RF-leakage from the radar electronics into the
IF signal thus adding interference at a certain range index, as has been noticed in previous
experiments. The values at the higher ranges are near the strongly reflecting nozzle of the
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setup and thus could cause signals not modeled by the retrieval model and throw off the
estimations, this assuming the Doppler filter is not 100% effective. Therefore the analysis
will instead focus on the closer range indices: 8− 11 which are further from the nozzle
and the interference source, here the model should fit better as the particles are the furthest
from fixed targets as possible. Instead of simply cropping the data will be reanalyzed and
only samples with too low SNR inside the optimal range indices will be thrown, this to
obtain a longer integration time.

Figure 5.4: The optimal range span measurement of the time-averaged water vapor ρ and
particle concentration n, the data is shown with 1σ uncertainty as error bars. The readings
are more consistent compared to the full span.

The time averaged values of range indices 8− 11 are seen in Figure 5.4, here a much
better consistency can be seen. The particle concentration yields a finite value in the
order of n̂ ≈30 cm−3 and the humidity measurements are around 100 gm−3(≈ 10× too
high). Worryingly the humidity values seem to mimic the spread of the data points for
particle concentration, perhaps the model is not fitting well enough. A miss alignment in
frequency and very weak water vapor absorption (which is true in this case) could cause
the model to confuse particle extinction and humidity while preserving a reasonable fit.
The bad fit for humidity suggests controlling the radar setup further and then testing in an
environment with more humidity to more clearly resolve the absorption from water vapor.

To estimate the reason-ability of the particle concentration estimate, one can assume con-
stant flow of falling particles with a speed of around 5 ms−1 in the shape of column with
area approximate that of the beam and height of the experimental setup. Using this one
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can calculate the total mass of the particles fallen (≈ 3kg×Nre f ills ≈ 30kg) using the to-
tal time of the experiment and mass of the assumed particle. The calculations essentially
approximates the mass using the mass of a column of particles times the total amount of
columns that could have fallen during the time of the experiment, as seen in Equation 5.1.

mtot ≈ Texperiment× n̂mparticle Abeam×
V
h

(5.1)

Texp n̂ Abeam Vparticle h mparticle mestimated
370 s 40 cm−3 20 cm2 500 cms−1 100 cm 1×10−8 kg 100 kg

Table 5.1: The factors used to estimate the total mass fallen during the experiment mtot
using the length of the experiment Texp, estimated time average particle density n̂
, approximate area of beam Abeam, approximate velocity of particles Vparticle, approximate
height of experimental setup h and the approximate mass of a single particle mparticle.

Using Equation 5.1 the numbers in Table 5.1 yields an estimated total fall mass of around
100 kg, within one magnitude of the expectation. Thus the particle estimation part of the
result can be seen as promising and in demand of further testing, this using more attention
to the details of the experiment. Since the water vapor estimate is built on the same type
of measurement but using much lower values of extinction one can expect the water vapor
measurements to improve with higher levels, thus providing stronger extinction.
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5.3 Simulation of expected performance in a particulate
medium

This section describes the simulations that were done which evaluate the performance of
the retrieval method described in section 4.2, this using the method described in sec-
tion 4.3. The first point of interest is to figure out at what order of integration time
can measurements of the humidity be achieved in room temperature conditions(ρ <
20gm−3), since this is easier to test. The second point would be to figure out at around
what magnitude one could possibly achieve performance satisfactory for a process reactor
where the humidity is in the order of hundreds of grams.

In Figure 5.5, 5.6 and 5.7 is a comparison between the "true" and retrieved particle and
water vapor concentration profiles, this with 0.1,10 and 200 s of integration time respec-
tively. Focusing on the ability to retrieve humidity it is clear that video-rate speeds of 0.1 s
is not achievable, however at more modest integration times of 10 s the humidity uncer-
tainty is perhaps sufficient to be usable in an environment with many hundreds of gm−3

of water vapor. It is also evident that measuring room temperature levels of humidity will
require integration times in the order of minutes, at these settings.

Figure 5.5: A comparison between the true and retrieved particle and water vapor con-
centration profiles, this with an integration time of 1sec. For this short of an integration
time both particle and water vapor concentration is very uncertain. The SNR is also shown
over range for all the different frequencies.
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Figure 5.6: A comparison between the true and retrieved particle and water vapor con-
centration profiles, this with an integration time of 10sec. At this long of an integration
time the particle concentration is becoming increasingly accurate while the humidity is
still not good enough for room temperature humidity, but could be useful at much higher
concentrations. The SNR is also shown over range for all the different frequencies.
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Figure 5.7: A comparison between the true and retrieved particle and water vapor con-
centration profiles, this with an integration time of 100sec. At this integration time the
particle measurements are becoming accurate and the humidity measurements are still not
enough for room humidity but can be comparable to that needed in a process reactor. The
SNR is also shown over range for all the different frequencies.
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6
Conclusion

This chapter concludes the thesis with a summary of the findings and their implications,
later discussing the needed future work and the general outlook of differential absorption
spectroscopy using sub-millimeter wave radar.

6.1 Fixed target experiments
The experiments using a fixed target showed that it was difficult to use and other effects
seemed to dominate over the absorption by water vapor. It is further not especially appli-
cable in the power reactor, possibly at higher heights where there’s no particles but rather
only vapor, one could imagine using the wall as a fixed target and measuring the water
vapor using several radars or spectrometers.

However one of driving forces behind using a sub-millimeter wave radar is range resolu-
tion and penetration in the particulate environment, both two things not needed in that use
case. Therefore this mode of operation can be put aside.

6.2 Retrieval method: Formulation, experiments and sim-
ulations

In the thesis a retrieval method was synthesised and tested using a basic simulation tech-
nique, showing that for long integration times (≈ 100s) it is possible to measure humid-
ity at near room humidity conditions. However even at as low of an integration time as
10s the uncertainty is somewhat acceptable for very large concentrations of water vapor,
meaning with optimization perhaps an integration time of 10s is feasible.

Rudimentary experiments shown in section 5.2 showed that the retrieval method that was
synthesized in section 4.2 could extract a reasonable estimate of the particle concentration
in the falling column of particles, showing that the underlying idea of measuring range
dependent concentrations from their extinction is possible with the given hardware. While
the poor results from water vapor retrievals are perhaps explained from the model not
being accurate enough, perhaps this can be resolved from measuring a stronger absorption
response from having a courser range resolution (larger ∆R ) and higher concentrations
of water vapor. A strengthening argument to this is that the work by NASA [6] has a bias
on the order of 1 gm−3 at a resolution of ∆R = 20m, while this work has a considerably
higher resolution of ∆R = 15cm. This would mean the same error in optical depth T =
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∆R ·ρ ·σ would yield a 20m
0.15m = 133 times higher bias in humidity, which shows that the

results of this thesis are at-least comparable to state of the art.

6.3 Future work

To continue work on the evaluation of the retrieval method synthesized in section 4.2,
a more thorough approach should be taken. The different aspects of the experiment are
below discussed one by one.

6.3.1 Particles

For future experiments the particle size distribution should be well known and taken into
account in the calculation of the cross sections, the choice of particles should be done
so that the extinction and back-scatter crossection do not vary significantly within the
distribution. This since it cannot be guaranteed that the size distribution wont be spatially
varying in the experimental setup, thus causing uncertainty in the extinction crossection
and therefore the estimated concentration.

6.3.2 Water vapor concentration

The humidity levels should be significantly higher than normal atmospheric humidity
levels, preferably several hundreds of grams. Although it should be noted that for very
high concentrations of water vapor the line-width and thus absorption spectrum of water
vapor will change as the partial pressure of water vapor is significantly increased with
more humidity, this can be seen in section 2.3. Something that should be avoided for
initial tests, but could be solved with a more advanced retrieval method.

6.3.3 Reference measurements

During the experiments using falling particles in this thesis the humidity has been con-
trolled and measured but not the spatial profile of the particle concentration, this should be
solved for future tests. A rudimentary measurement of the particle concentration should
be used, perhaps a cloud of particles with a known mass inside. This would allow for
integrating the retrieved particle concentration vector and multiply with the area of the
setup(assuming it is a box) to estimate the total mass for comparison.

6.3.4 Experimental setup

For future experiments a fluidized bed should be used, as it allows for constant particles
to be in the path of the beam. Without large amounts of pulsing as pouring in a stable
manner is difficult, further it allows for practically indefinite measurements. It should
also create a distribution of particles that vary with height, thus allowing one to not only
compare the average particle concentration but also the profile retrieved.
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6.3.5 Retrieval method
The retrieval method used in this thesis should be used for future evaluation, except in
the case of a very large amount of water vapor. If the water vapor concentration is high
enough that the partial pressure of water vapor is becoming a significant part of the pres-
sure, then the absorption spectrum will change somewhat(see section 2.3). To allow for
these type of measurements a non-linear retrieval method should be used, which could be
solved with something like the Levenberg-Marquardt algorithm [16, Ch. 5]. The method
for estimating the uncertainty of the retrieved profiles is also in need of a change if a non-
linear retrieval method is used, a suggestions would be to see if using a linearization of
the forward model around the estimated values is sufficient [16, Ch. 5].

Further the noise floor of the radar should be better characterized to take into account
different noise levels for different range and frequency values.

6.3.6 Integration method
One of the difficulties of the experiments with falling particles was the corruption of a
portion of the frequency bands, caused by a glitch that occurred regularly at a certain
time in fast time. This error could mitigated to allow those frequency bands to also be
used, this to gain more useful data. The major cause of long integration times is however
the fact that the radar measures an equal amount on all sub-bands, which is not optimal.
Ignoring the extinction by particles, the optimal integration scheme would be half on the
maximum absorption and half at the minimum, to create the maximal contrast. Future
work would include computationally solving the optimal three(or more) frequency sub-
bands that yield the minimal estimated uncertainty of the water vapor profile, this at the
sacrifice of the particle concentration.
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A
Appendices

A.1 Noise model for retrieval method
The noise model is contained in the co-variance matrices Sy and Sb, which contain the
noise for the vectors y and b respectively. Starting with Sy which originates from the
uncertainty in the power measurements from each distance and frequency, and the co-
variance in-between them, which is caused by windowing making adjacent range indices
partially correlated. The model for the variance and co-variance is as seen in [6], however
the co-variance model is assumed to contain a minor error, the dropping of Nind . This is
assumed to be the correct equation as the paper states that the equations should be the
same however with average quantities and scaled by a factor decided to the window used,
which is a Hamming window both in the case of this thesis and [6].

The variance and co-variance models used are seen in Equation A.1 and Equation A.2
respectively. These equations contain the signal to noise ratio for a certain range and fre-
quency: SNRi, j, to describe the Gaussian white noise of the receiver chain. Further they
contain the number of statistically independent samples Nind of the Swirling target that
have been averaged in the incoherent integration stage in the signal processing, this de-
scribes the random fluctuations of the received power from a Swerling target as described
in subsection 2.1.3. It can be seen that the variance of the received power of certain range
and frequency only depends on itself, the SNR and the number of independent samples.
The co-variance however is scaled by a factor and depends on the average power and
SNR of a certain range index i and the adjacent indices i±1. The number of independent
samples is assumed to be equal to the number of pulses/sweeps that have been integrated,
which depends on the integration time and the pulses per second which is reflected in the
Nind
Tint

number seen in subsection 4.2.2.

VAR[Pi, j] =
(Pi, j)

2

Nind
· (1+ 2

(SNRi, j)
+

2

(SNRi, j)
2 ) (A.1)

COV [Pi, j,Pi±1, j
r ] =

(Pi, j +Pi±1, j)
2

9Nind
· (1+ 4

(SNRi, j +SNRi±1, j)
+

8

(SNRi, j +SNRi±1, j)
2 )

(A.2)

Now a co-variance matrix for the received power can be made: SP and then together with
a first order Taylor expansion of y = ln(P) a co-variance matrix for y can be obtained
Sy. The matrix is tri-diagonal, with the diagonal representing independent noise and the
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lower and upper diagonal representing correlated noise between adjacent range indices.
The co-variance matrices for each frequency are on the form in Equation A.4, which
contains the variance and co-variance seen in Equation A.1, A.2 and the Kronecker delta
δ j,k which is defined in Equation A.3. These co-variance matrices are then put together as
the diagonal of a larger (N f ·Nr)× (N f ·Nr) matrix to form the full co-variance matrix as
seen in Equation A.5 [6]. Since y = ln(P) it needs to linearized to estimate the uncertainty
of y using the uncertainty of P, this is done using the Jacobian of y with respect to P, JP
[6]. Then the co-variance matrix of P can be used to calculate the co-variance matrix for
y using Sy = JPSPJT

P [6], since this is based on a first order Taylor expansion it will not be
applicable for extreme amounts of noise.

δ
j,k =

{
1, for j = k
0, for j 6= k

}
(A.3)

[SP( fi)]
j,k =VAR[P j,i]δ j,k +COV [P j,i,P j±1,i](δ j,k+1 +δ

j,k−1) (A.4)

SPr = DIAG[SP( f1),SP( f2), ...,SP( fN f )] (A.5)
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A.2 Code used for simulations
This code was used for simulations, but is also able to read real data and process it.

1 % some testing using retrevial method - 25 frequency pt
2 clc
3 clear all
4 format shorteng
5
6 C0 = 299792458; % m/s
7 eps0 = 8.8541878128E -12; % F/m
8 my0 = 1.25663706212E -6; %H/m
9

10 %To allow for fancy colorschemes
11 addpath ('/ Users / z3bb0 / Documents / MATLAB / Matplotlib ')
12
13 %mie code
14 addpath ('Mie -Matlab -Maetzler -v2 ')
15
16 C_1 = '#0000 FF '%blue
17 C_1_RGBTRIPLET = [0, 0, 255]/255;
18 C_2 = '# F2B000 '% Amber
19 C_2_RGBTRIPLET = [242 , 176 , 0]/255;
20 W_line_1 = 4
21 S_marker_1 = 35
22 S_font_1 = 35
23 S_marker_2 = 55
24
25 fake = true%true means fake data is used( simulations ), false means data is read
26 filename_radardata = '/ Users / z3bb0 / Documents / GitHub /EXJOBB -data /19 May2021 /←↩

Nf_Nr_10subbands_fix '
27 % filename_radardata = '/ Users / z3bb0 / Documents / GitHub /EXJOBB -data /17 MAy2021 /←↩

Nf_Nr_10subbands_700Nint_fix '
28 filename_radardata = '/ Users / z3bb0 / Documents / GitHub /EXJOBB -data /24 May2021 /←↩

Nf_Nr_1000MHz_10subband_fixed '
29 % filename_radardata = '/ Users / z3bb0 / Documents / GitHub /EXJOBB -data /26 May2021 /←↩

Nf_Nr_1000MHz_15subband_SG2_fixed '
30 % filename_radardata = '/ Users / z3bb0 / Documents / GitHub /EXJOBB -data /26 May2021 /←↩

Nf_Nr_1000MHz_15subband_TB1_fixed '
31 filename_radardata = '/ Users / z3bb0 / Documents / GitHub /EXJOBB -data /2021 -05 -27/←↩

Nf_Nr_1000MHz_15subband_SG2_fixed '%this flow rate( higher ) seems ok
32 filename_radardata = '/ Users / z3bb0 / Documents / GitHub /EXJOBB -data /31 May2021 /←↩

Nf_Nr_15subband_128pulser_largeFlow_fixed '
33 % filename_radardata = '/ Users / z3bb0 / Documents / GitHub /EXJOBB -data /31 May2021 /←↩

Nf_Nr_15subband_128pulser_bronze_fixed '
34
35 %make some fake data into a file , disabled
36 print = false ;
37
38 %plot raw data
39 plotting = false
40
41 %For non fake data only , start and stop indices for integration in slow
42 %time
43 i_integration_start = 32
44 i_integration_stop = i_integration_start + 0
45
46 % Range indices to start /stop at
47 i_R_stop = 18
48 i_R_start = 5
49
50
51 %This method assumes a single particle size or to the very least
52 % homogenious distribution can be used to describe it
53
54 %It extracts particles , humidity and calibration
55
56
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57 % Inputs :
58 % -r, range vector in [m], length : Nr
59 % -f, frequency vector in [Hz], length : Nf
60 % -Pr , received power matrix in size Nr x Nf
61 % -sigma_b , vector of the particle backscatter cross
62 % section over frequency of a single particle [m^2]
63 % -sigma_ext , vector of the particle extinction cross section [m^2] of a
64 % single particle
65 % -sigma_h2o , vector with absorption cross section over freq. for water
66 % vapor in unit of [m^2/g]
67
68 % Outputs :
69 % -Kr , vector with range calibration coeff
70 % -n, vector with particle concentration in #/ cm ^3 over range
71 % -rho , vector with water vapor concentration in g/m^3 over range
72
73
74
75 %few point test
76 % Frequency info , remember these are center frequencies of each sub -band
77 N_f = 15
78
79 %from Tomas
80 f_min = 323.2 e9;
81 f_max = 355.2 e9;
82
83 f = linspace (f_min , f_max , N_f);%from radar ...
84
85 % Calibration k_f(f) vector , in linear
86 k_f = ones(N_f ,1);%just ones
87 %k_f = rand(N_f ,1);
88
89 % Particle info
90 D = 170e -6% diameter of particles in [m]
91 eps_r = 6% dielectric constant [] glass using microwaves101 table for glass
92
93 disp('testing different eps_r ')
94 eps_r = 4.3
95
96 % Ambient info
97 T = 273 + 23% Temperature [K]
98 P = 1% Pressure [atm]
99 M_gas = 18.01528; % Molar mass of water , g/mole

100
101 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -←↩

- - - - - - - - - - - - - - - - - - - - - -
102 %Sets up data for water vapor and particles
103 % Humidity info
104 addpath ('/ Users / z3bb0 / Documents / GitHub /EXJOBB - attenuation - simulator ')
105 filename_H2O = 'new_format_1500GHz .tab '
106 rho_gas = 0.1;
107 alpha = gas_attenuation_simulator (f /100/ C0 , filename_H2O , T, P, rho_gas , M_gas );
108 sigma_h2o = alpha / rho_gas *100; % dB /(g/m^3)/m = dB m^2/g
109 sigma_h2o = sigma_h2o *log (10) /10;% (g/m^3)/m = m^2/g natural units
110
111
112 % Particle info
113 addpath ('Mie -Matlab -Maetzler -v2 ')
114 k0 = 2* pi*f/C0;
115 refractiveindex_n = ones(size(k0)) .* sqrt( eps_r );% assume constant epsilon_r
116 % Buffers for data
117 N_D = 1;
118 qext = zeros (N_D , N_f);
119 qsca = zeros (N_D , N_f);
120 qabs = zeros (N_D , N_f);
121 qb = zeros (N_D , N_f);
122 asy = zeros (N_D , N_f);
123 qratio = zeros (N_D , N_f);
124
125 for i = 1: N_f

IV



A. Appendices

126 for j = 1: N_D
127 [buf1 buf2 buf3 buf4 buf5 buf6] = mie( refractiveindex_n (i), k0(i)*D(j←↩

)/2);
128
129 qext(j, i) = buf1;
130 qsca(j, i) = buf2;
131 qabs(j, i) = buf3;
132 qb(j, i) = buf4;
133 asy(j, i) = buf5;
134 qratio (j, i) = buf6;
135 end
136 end
137
138 %Back scatter and extinction cross section for a single particle here:
139 sigma_b = qb*pi*D ^2/4;
140 sigma_ext = qext*pi*D ^2/4;
141
142
143
144
145 tic
146 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -←↩

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
147 %fake data generation
148 if fake == true
149
150 % Range info and data
151 %dR = 0.15% [m]
152 dR = 3e8 /2/( max(f) - min(f))*N_f%[m]
153 N_r = 14
154 r = dR *(0: N_r -1) ' + 4.3;
155
156 % Particle density profile
157 rho_glass = 2.5 E6; % g/m ^3...
158 %or 2.5g/cm ^3
159 V_particle = 0.45* D^3;
160
161 %Flat
162 n = ( 0.5 + 0.3 * cos (4* pi/N_r * (1: N_r) ') )/ V_particle / rho_glass *2000/1 E6;
163
164 % Psudeo random concentration
165 %n = (5.5 + 2* cos (4* pi/N_r * (1: N_r) ') + normrnd (0, 0.2 , N_r , 1) )/←↩

V_particle / rho_glass *100/1 E6;
166
167 %Flat humidity profile
168 rho = (1.5 + cos (2* pi/N_r * (1: N_r)' + pi /2))*10;
169
170
171 % Psudeo random humidity profile
172 %rho = (1.5 + cos (2* pi/N_r * (1: N_r)' + pi /2) + normrnd (0, 0.5 , N_r , 1))*10;
173
174 % Noise simulation (just white )
175 Pn_dB = -65% [dB] Received power of noise (is somehow the same for all , ←↩

dependent of power so not a good approximation )
176 T_integrate_incoherent = 100% [s] incoherent integration time
177
178 T_sweep_and_process = 0.5% [s] time to sweep and process a single sweep (←↩

containing all frequencies )
179 % T_sweep_and_process = T_sweep_and_process *N_f /25% [s] time to sweep and ←↩

process a single sweep ( containing all frequencies ) fixing for using fewer ←↩
bands

180 N_independent = 512* round ( T_integrate_incoherent / T_sweep_and_process )%# of ←↩
independent samples from scattering , same for all range , freq

181
182
183 % Calibration factor profile
184 k_r = -5* ones(size(r));
185 %k_r = -10*(1.5 + cos (2* pi/N_r *(1: N_r)));
186
187
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188 % Assemble the forward model and generate the fake received power , then
189 %add noise
190
191
192 x_actual = [k_r ; n ; rho ];
193 %y = log ([P(f1 , all r) ; .. ; P(fN_f , all r)])
194
195 else
196 %data is not fake! Read real data
197 addpath ('/ Users / z3bb0 / Documents / GitHub /EXJOBB -data ')
198
199 delim = '\t';
200 %fid = fopen (filename ,'w ')
201 %A = readmatrix (filename ,'FileType ','text ','Delimiter ', delim );
202 A = dlmread ( filename_radardata ,delim ,0 ,0);
203 A_size = size(A)
204 %Read frequencies
205 %f = rmmissing (A(1 ,:)) ';
206 %N_f = length (f);
207 N_f = A(1 ,1)
208 N_r = A(1 ,2)
209 N_T = A(1 ,3)
210 dR = A(1 ,4)
211 dT = 30e -6
212 disp('dT is not read , use 1 sec ')
213 disp('F- vector not read , guessing ')
214 disp('R- vector not read , guessing ')
215 r = 2.5 + (0: N_r -1)*dR;
216
217 r = r.';
218 f = f.';
219
220 i_r_start = 1;
221 i_r_end = N_r;
222 r = r( i_r_start : i_r_end );
223 N_r = length (r);
224
225
226
227 %Read ranges
228 %r = rmmissing (A(2 ,:)) ';
229 %N_r = length (r);
230 %dR = r(2) -r(1);
231
232 %Read slow time
233 %T = rmmissing (A(3 ,:)) ';
234 %N_T = length (T);
235 %dT = T(2) -T(1);
236
237 %Read power matrix
238 N_slowtime_int = i_integration_stop + 1 - i_integration_start ;
239 % Pr_matrix = 10.^( A(2: end ,:) /10);
240 % Pr_matrix = Pr_matrix (1: N_f , 1: N_r);
241
242 Pr_matrix = zeros (N_f , N_r);
243 %for i = 0: N_slowtime_int -1
244 for i = i_integration_start : i_integration_stop
245 % Integrate power
246 % Pr_matrix = Pr_matrix + 10.^( A(2 + i*N_f :1+ N_f + i*N_f ,1: N_r)/10)/←↩

N_slowtime_int ;% dB version
247 Pr_matrix = Pr_matrix + A(2 + i*N_f :1+ N_f + i*N_f ,1: N_r)/ N_slowtime_int ;%←↩

linear version
248 end
249
250 Pr_matrix = Pr_matrix .';% transpose it
251 disp('Data is in dB already , convert to linscale then follow along as usual ')
252
253 Pn_dB = -70;% Noise floor power
254 % N_independent = 1e3% number of independent per slow time sample
255 N_independent = round (dT* N_slowtime_int /100e -6);% assuming 100 uS gives 1 ←↩
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independent
256 N_independent = N_slowtime_int *2048;
257 % N_independent = 2048;
258 % N_independent = 100 e3;
259
260 % remove frequency band in middle 5,6,7,8
261 i_skip = 5;
262 N_f = N_f -1;
263 Pr_matrix = Pr_matrix (:, [1: i_skip -1, i_skip +1: end], :);
264 f = f([1: i_skip -1, i_skip +1: end ]);
265
266 i_skip = 5;
267 N_f = N_f -1;
268 Pr_matrix = Pr_matrix (:, [1: i_skip -1, i_skip +1: end], :);
269 f = f([1: i_skip -1, i_skip +1: end ]);
270
271 i_skip = 5;
272 N_f = N_f -1;
273 Pr_matrix = Pr_matrix (:, [1: i_skip -1, i_skip +1: end], :);
274 f = f([1: i_skip -1, i_skip +1: end ]);
275
276 i_skip = 5;
277 N_f = N_f -1;
278 Pr_matrix = Pr_matrix (:, [1: i_skip -1, i_skip +1: end], :);
279 f = f([1: i_skip -1, i_skip +1: end ]);
280
281
282 % remove lowest , highest freq
283 N_skip = 1
284 N_f = N_f - N_skip *2;
285 Pr_matrix = Pr_matrix (: ,1+ N_skip :end - N_skip );
286 f = f(1+ N_skip :end - N_skip );
287 sigma_ext = sigma_ext (1+ N_skip :end - N_skip );
288 sigma_b = sigma_b (1+ N_skip :end - N_skip );
289 sigma_h2o = sigma_h2o (1+ N_skip :end - N_skip );
290 k_f = k_f (1+ N_skip :end - N_skip );
291 % fclose (fid);
292
293 % remove some ranges
294 Pr_matrix = Pr_matrix ( i_R_start :i_R_stop ,:);
295 r = r( i_R_start : i_R_stop );
296 N_r = length (r);
297
298 end
299
300
301 T_fakedata = toc;
302 tic
303 %Add together identity matrix and dust
304 disp('Removing power dependency on dust concentration to avoid non linear ←↩

treatment , only seen in extinction (TBD , this is why its weird )')
305 disp('Change from particles per m^3 to million per m^3 = per cm ^3 ')
306 I = [diag(ones (1, N_r))];
307 T_ext = [- sigma_ext (1)*dR *2*1 E6 * tril(ones(N_r , N_r))];
308 T_H2O = [- sigma_h2o (1)*dR *2 * tril(ones(N_r , N_r))];
309 for i = 2: N_f
310 %I = [I ; [ diag(ones (1, N_r)) , diag(ones (1, N_r)) - sigma_ext (i)*dR *2 * tril←↩

(ones(N_r , N_r))] ];
311 I = [I ; diag(ones (1, N_r))];
312 T_ext = [ T_ext ; - sigma_ext (i)*dR *2*1 E6 * tril(ones(N_r , N_r))];
313 T_H2O = [ T_H2O ; -sigma_h2o (i)*dR *2 * tril(ones(N_r , N_r))];
314 end
315
316 % %Make forward model
317 % %Add together T matrix for all frequencies
318 % T = [- sigma_h2o (1)*dR *2 * tril(ones(N_r , N_r))];
319 % for i = 2: N_f
320 % T = [T ; -sigma_h2o (i)*dR *2 * tril(ones(N_r , N_r))];
321 % end
322
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323
324
325 % assemble b here for particles , contains only sigma_b
326 b = ones(N_r ,1) .* sigma_b (1);
327 for i = 2: N_f
328 %make b be N_r values of sigma_b for each frequency
329 b = [b ; ones(N_r ,1) .* sigma_b (i)];
330 end
331
332 b = log(b);
333
334 %Make A matrix each row( block form) for another frequency . Each
335 % column ( block form) for another state variable
336 A = [I , T_ext , T_H2O ];
337
338 T_forwardmodel = toc;
339
340
341 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ←↩

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
342 if fake == true
343 %Make fake data
344 y = A* x_actual + b;
345
346
347 %If add strength contribution from particle density , not linear so done
348 %in2 steps , but not reflected in forward model ...
349
350 disp('Change from particles per m^3 to million per m^3 = per cm ^3 ')
351 addon = log(n*1 E6);
352 for i = 2: N_f
353 addon = [ addon ; log(n*1 E6)];
354 end
355 y = y+ addon ;
356 y_linear = exp(y);
357
358 %
359 % % simple way of noise (bad)
360 % %Pn = 20* log10 (rms( y_linear_old ))-SNR;
361 % % y_linear = wgn(N_r * N_f , 1, Pn) + y_linear_old ;
362 %
363 % %Same type of noise as in VIPR paper
364 % Pn = y_linear_old .^2/ N_independent *( 1 + 2/10^( SNR /10) + 2/10^( SNR /5) );
365 %
366 % y_linear = y_linear_old ;
367 % for i = 1: length (y)
368 % % iterate through add noise range per range ... for all freq
369 % y_linear (i) = y_linear (i) + normrnd (0, sqrt(Pn(i)));
370 % end
371 %
372 % % figure
373 % % plot( y_linear_old )
374 % % hold on
375 % % plot( y_linear )
376 % % legend ('No noise ','With noise ')
377 %
378 % % After adding the additive noise to the received power it 's
379 % % Converted back to ln(Pr) scale .
380 % y = log( y_linear );
381
382 % Convert to how radar saves data , in linear form
383 Pr_matrix = y_linear (1: N_r);
384 for i = 2: N_f
385 i_low = (i -1)*N_r +1;
386 i_high = i*N_r;
387 %size(y( i_low : i_high ))
388 Pr_matrix = [ Pr_matrix , y_linear ( i_low : i_high )];
389 end
390
391
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392 %Fake data is now assemblied
393 % Pr_matrix is data
394 %r is range
395 %f is frequency
396 %x
397
398
399 end
400
401 %Make a noise model that includes SNR , Swirling target distribution
402 disp('Further assume Hamming window as in VIPR paper , cite that here too ')
403
404
405 disp('This noise model is slightly simplified but completely from VIPR paper ')
406 tic
407 %Make buffer
408 Sy_lin = zeros (N_r*N_f , N_r*N_f);% remove ?
409
410 for i = 1: N_f
411 %Make noise model for each frequency point , automatically adds onto
412 % buffer
413
414 %SNR for each range for this frequency
415 SNR_r = Pr_matrix (:,i) /10^( Pn_dB /10);
416
417 %Self variance to describe noise
418 var_Pr_self = Pr_matrix (:,i) .^2./ N_independent .*( 1 + 2./ SNR_r + 2./ SNR_r .^2)←↩

;
419 Sy_lin = Sy_lin + diag ([ zeros (N_r *(i -1) , 1) ; k_f(i)^2 .* var_Pr_self ; zeros (←↩

N_r *(N_f -i), 1)], 0);
420
421 % Covariance between adjacent range bins from windowing
422
423 % Calculate the mean power at r +- dR , Both are this r + lower / upper
424 P_mean_lower = Pr_matrix (2: end ,i)/2 + Pr_matrix (1: end -1,i)/2;
425 P_mean_upper = Pr_matrix (1: end -1,i)/2 + Pr_matrix (2: end ,i)/2;
426
427 % Assume uniform noise floor Pn_dB [dB] noise everwhere
428 Pn = 10.^( Pn_dB /10);%to linear scale
429
430 % Calculate mean SNR between ranges , assuming constant noise (in R, maybe
431 % modify for frequency )
432 SNR_mean_lower = P_mean_lower ./ Pn;
433 SNR_mean_upper = P_mean_upper ./ Pn;
434
435 % Calculate the Covariance between r, +- dR , assuming Hanning window
436 cov_Pr_lower = 4/9* P_mean_lower .^2 .* ( 1 + 2./ SNR_mean_lower + 2./←↩

SNR_mean_lower .^2 );
437 cov_Pr_upper = 4/9* P_mean_upper .^2 .* ( 1 + 2./ SNR_mean_upper + 2./←↩

SNR_mean_upper .^2 );
438
439 %Make the lower , upper diagonal matrices and add to Sy
440
441 %disp('No off diagonal elements in Sy_lin , Sy ')
442 %Make exception for first , last sample
443 if i == 1
444 %Skip first zeros as it breaks for off diagonal
445
446 Sy_lin = Sy_lin + diag ([ k_f(i).^2 .* cov_Pr_lower ; zeros (( N_r)*(N_f -i), ←↩

1)], -1);
447 Sy_lin = Sy_lin + diag ([ k_f(i).^2 .* cov_Pr_upper ; zeros (( N_r)*(N_f -i), ←↩

1)], 1);
448 elseif i == N_f
449 % Breaks for last , skip that zero matrix
450 Sy_lin = Sy_lin + diag ([ zeros (( N_r)*(i -1) , 1) ; k_f(i).^2 .* cov_Pr_lower←↩

], -1);
451 Sy_lin = Sy_lin + diag ([ zeros (( N_r)*(i -1) , 1) ; k_f(i).^2 .* cov_Pr_upper←↩

], 1);
452 else
453 %Not first / last index , just use normal equation
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454 Sy_lin = Sy_lin + diag ([ zeros (( N_r)*(i -1) , 1) ; k_f(i).^2 .* ←↩
cov_Pr_lower ; zeros (( N_r)*(N_f -i), 1)], -1);

455 Sy_lin = Sy_lin + diag ([ zeros (( N_r)*(i -1) , 1) ; k_f(i).^2 .* ←↩
cov_Pr_upper ; zeros (( N_r)*(N_f -i), 1)], 1);

456 end
457
458
459
460
461 end
462
463 disp('Assume 1/ N_indep is missing from off diagonal elements ... Test fix ')
464 Sy_lin = Sy_lin ./ N_independent ;
465 for i = 1: size(Sy_lin ,1)
466 %step through and multiply by N to cancel double divide
467 Sy_lin (i,i) = Sy_lin (i,i)* N_independent ;
468 end
469
470
471 % Taylor expand y = ln(z) to obtain the Jacobian
472 %y = ln(z), dy/dz = 1/z for each index
473 y = log( Pr_matrix (: ,1) * k_f (1) );
474 for i = 2: N_f
475 % assemple z = Pr * r^2 * K_f(f)
476 y = [y ; log( Pr_matrix (:,i) * k_f(i) )];
477 end
478
479 y_lin = exp(y);
480
481 Jy_lin = diag (1./( y_lin ));
482
483 %Use Jacobian to calculate Covariance matrix of y:
484 Sy = Jy_lin * Sy_lin * Jy_lin .';
485
486 T_noisemodel = toc;
487
488
489 if fake == true
490 %Add noise using covariance matrix noise model
491 noise = normrnd (0, 1, N_r*N_f , 1);
492 noise = chol(Sy , 'lower ') * noise ;
493 y_old = y;
494 y = y + noise ;
495
496 % Convert to how radar saves data , in linear form
497 y_linear = exp(y);
498 Pr_matrix = y_linear (1: N_r);
499 for i = 2: N_f
500 i_low = (i -1)*N_r +1;
501 i_high = i*N_r;
502 %size(y( i_low : i_high ))
503 Pr_matrix = [ Pr_matrix , y_linear ( i_low : i_high )];
504 end
505 end
506
507 if plotting == true
508 %plot raw data
509 figure ('Renderer ', 'painters ', 'Position ', [10 10 1600 1100])
510 plot(r ,10* log10 ( Pr_matrix ))
511 end
512
513 % start of algorythm , it 's the same for both fake and real data
514
515 % %Plot received power
516 % figure ('Renderer ', 'painters ', 'Position ', [10 10 1600 1100])
517 % subplot (2 ,1 ,1)
518 % plot(r ,10* log10 ( Pr_matrix ), 'LineWidth ' ,4)
519 % hold on
520 % plot ([ min(r) max(r)] ,[1 1]* Pn_dB ,'--b', 'LineWidth ' ,4)
521 % xlabel (' Range [m]')
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522 % ylabel ('Pr [dB]')
523 % title (' Received power for all bands , over range ')
524 % set(gca ,'fontsize ' ,18)
525 % grid on
526 %
527 % subplot (2 ,1 ,2)
528 % plot(f*1E -9 ,10* log10 (Pr_matrix ') , 'LineWidth ' ,4)
529 % hold on
530 % plot ([ min(f) max(f)]*1E -9 ,[1 1]* Pn_dB ,'--b', 'LineWidth ' ,4)
531 % xlabel (' Frequency [GHz ]')
532 % ylabel ('Pr [dB]')
533 % title (' Received power for all ranges , over frequency ')
534 % set(gca ,'fontsize ' ,18)
535 % grid on
536 % xlim ([ min(f) max(f)]*1E -9)
537
538 %
539 % %Plot received power but with picture color format
540 % figure ('Renderer ', 'painters ', 'Position ', [10 10 1600 1100])
541 % %[X,Y] = meshgrid (f,r);
542 % % contour (X,Y, Pr_matrix )
543 % imagesc (f*1E-9,r ,10* log10 ( Pr_matrix ));
544 % N_axis = 10;
545 % xticks (1E -9 * linspace (min(f), max(f), N_axis ));
546 % yticks ( linspace (min(r), max(r), N_axis ) );
547 % colormap ('viridis ')
548 % cbar = colorbar ;
549 % cbar. Title . String = 'P_{ received }'
550 %
551 % ylabel (' Range [m]')
552 % xlabel (' Frequency [GHz ]')
553 % zlabel ('?')
554 % title (' Received power [dB]')
555 % set(gca ,'fontsize ' ,18)
556
557 tic
558
559 % Assemble y
560 y_lin = Pr_matrix (: ,1) ./ k_f (1);%log(Pr)
561 for i = 2: N_f
562 %Make z
563 y_lin = [ y_lin ; Pr_matrix (:,i) ./ k_f(i)];
564 end
565
566 y = log( y_lin );
567
568
569 disp('Add uncertainty of b')
570 Se = diag ([ ones (1, N_r*N_f)]) * 0; % S_e = J_b * S_b * J_b^T, uncertainty in B is ←↩

sigma_d ^2/d for VIPR
571
572 % Invert y = Ax , using measured data to estimate x, x_hat
573 x_hat = inv(A.' * inv(Sy + Se) * A) * A.' * inv(Sy + Se) * (y-b);
574 k_r_hat = x_hat (1: N_r);
575 n_hat = x_hat (N_r +1:2* N_r);
576 rho_hat = x_hat (2* N_r +1: end);
577
578 lambda_reg = 0;%not implemented yet add + lambda_reg .*A in inversion
579 Sx_hat = inv( A.' *inv(Sy + Se) * A);% estimated covariance matrix of retreived ←↩

state variables
580 Sx_hat_diag = diag(Sx_hat ,0);
581 sigma_n_hat = sqrt( Sx_hat_diag (N_r +1:2* N_r));
582 sigma_rho_hat = sqrt( Sx_hat_diag (2* N_r +1: end));
583
584 T_inversion = toc;
585
586
587 % Calculate the mean over range for the concentration , useful for getting
588 % something out of lower integration times
589
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590 %Done using the var ^-1 = std ^-2 as weight for each value of rho_hat , this assumes←↩
to

591 % correlations which is not true
592 disp('Mean rho does not take into account the correlations between ranges , to be ←↩

changed !')
593 w = 1./( sigma_n_hat .^2 );
594 % remove 1st , last sample in mean
595 w(1) = 0;
596 w(end) = 0;
597 w = w / sum( w );% normalize
598 n_mean_hat = sum( n_hat .* w ) ;
599 sigma_n_mean_hat = sqrt( sum( w.^2 .* sigma_n_hat .^2 ) );
600
601
602 % Calculate the mean over range for the water vapor , useful for getting
603 % something out of lower integration times
604
605 %Done using the var ^-1 = std ^-2 as weight for each value of rho_hat , this assumes←↩

to
606 % correlations which is not true
607 disp('Mean rho does not take into account the correlations between ranges , to be ←↩

changed !')
608 w = 1./( sigma_rho_hat .^2 );
609 % remove 1st , last sample in mean
610 w(1) = 0;
611 w(end) = 0;
612 w = w / sum( w );% normalize
613 rho_mean_hat = sum( rho_hat .* w ) ;
614 sigma_rho_mean_hat = sqrt( sum( w.^2 .* sigma_rho_hat .^2 ) );
615
616 disp(' ')
617 disp ([ 'Mean retreived humidity is: ', sprintf ('%3.5g', rho_mean_hat ), ' +- ', ←↩

sprintf ('%0.2g', sigma_rho_mean_hat ), ' [g/cm ^3] '])
618 if fake == true
619 % Print actual humdity
620 disp ([ 'Mean actual humidity is: ', sprintf ('%3.5g', mean(rho)), ' [g/cm ^3] ', ←↩

', the relative uncertainty is: ', sprintf ('%1.3g' ,100* sigma_rho_mean_hat←↩
/mean(rho)), ' [%] '])

621 end
622
623 %See wikipedia page weighted mean , under accounting for correlations ! For
624 % using COV ....
625 %J = ones(N_r , 1);
626
627
628 %Plot data and fake data for comparison
629 if fake == true
630 %plot data but with real values for comparison
631 figure ('Renderer ', 'painters ', 'Position ', [10 10 1600 1100])
632 subplot (3 ,1 ,1)
633 % plot(r, k_r + log(n), '--', 'LineWidth ', W_line_1 , 'Color ', C_1)
634 % hold on
635 % plot(r, k_r_hat , '.', 'MarkerSize ', S_marker_1 , 'Color ', C_2)
636 % xlabel (' Range [m]')
637 % ylabel (' Range calfactor + ln(n) ')
638 % set(gca ,'fontsize ', S_font_1 )
639 % legend ('boxoff ')
640 % legend ('Test data ', 'Retreived ','Location ', 'Best ')
641 % grid on
642 % xlim ([ min(r)+dR max(r)-dR ])
643
644 %Plot with black line for frequencies : 1, N_f
645 plot(r ,10* log10 ( Pr_matrix (: ,2:end -1)), 'LineWidth ' ,4, 'Color ', C_2)
646 hold on
647 plot(r ,10* log10 ( Pr_matrix (: ,1)), 'LineWidth ' ,4, 'Color ', 'black ')
648 plot(r ,10* log10 ( Pr_matrix (:, end)), 'LineWidth ' ,4, 'Color ', 'black ')
649
650 plot ([ min(r) max(r)] ,[1 1]* Pn_dB ,'--b', 'LineWidth ' ,4, 'Color ', C_2)
651 xlabel ('Range [m]')
652 ylabel ('Pr [dB]')
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653 title ('Received power for all bands , over range ')
654 set(gca ,'fontsize ',S_font_1 )
655 grid on
656 xlim ([ min(r), max(r)])
657
658
659
660 subplot (3 ,1 ,2)
661 plot(r, n, '--', 'LineWidth ', W_line_1 , 'Color ', C_2)
662 hold on
663 %plot(r, n_hat , '.', 'MarkerSize ', S_marker_1 , 'Color ', C_2)
664 errorbar (r,n_hat , sigma_n_hat , '.', 'MarkerSize ', S_marker_2 , 'Color ', C_1)
665 xlabel ('Range [m]')
666 ylabel ('n [#/ cm ^3] ')
667 set(gca ,'fontsize ',S_font_1 )
668 legend ('boxoff ')
669 legend ('Test data ', 'Retreived ','Location ', 'Best ')
670 grid on
671 xlim ([ min(r)+dR max(r)-dR ])
672 % yyaxis right
673 % ylabel (' Particle concentration [g/m^3] ')
674
675
676 subplot (3 ,1 ,3)
677 plot(r, rho , '--', 'LineWidth ', W_line_1 , 'Color ', C_2)
678 hold on
679 %plot(r, rho_hat , '.', 'MarkerSize ', S_marker_1 , 'Color ', C_2)
680 errorbar (r,rho_hat , sigma_rho_hat , '.', 'MarkerSize ', S_marker_2 , 'Color ', C_1←↩

)
681 xlabel ('Range [m]')
682 ylabel ('\rho [g/m^3] ')
683 set(gca ,'fontsize ',S_font_1 )
684 legend ('boxoff ')
685 legend ('Test data ', 'Retreived ','Location ', 'Best ')
686 grid on
687 xlim ([ min(r)+dR max(r)-dR ])
688
689
690
691
692
693
694 % fancy fake data plot ...
695 figure ('Renderer ', 'painters ', 'Position ', [10 10 1600 1100])
696 resultplot_1_1 = subplot (3 ,1 ,1);
697 %Plot with black line for frequencies : 1, N_f
698 plot(r ,10* log10 ( Pr_matrix (: ,2:end -1))-Pn_dB , 'LineWidth ' ,4, 'Color ', C_2)
699 hold on
700 plot(r ,10* log10 ( Pr_matrix (: ,1))-Pn_dB , 'LineWidth ' ,4, 'Color ', 'black ')
701 plot(r ,10* log10 ( Pr_matrix (:, end))-Pn_dB , 'LineWidth ' ,4, 'Color ', 'black ')
702
703 plot ([ min(r) max(r)] ,[1 1]* Pn_dB ,'--b', 'LineWidth ' ,4, 'Color ', C_2)
704 % xlabel ('Range , r $[m]$',' interpreter ','latex ')
705 % ylabel ('$P_r - P_n$ $[dB]$',' interpreter ','latex ')
706 ylabel ('SNR $[dB]$','interpreter ','latex ', 'Units ', 'normalized ','Position '←↩

,[ -0.075 0.5])
707
708
709 title ('Received power , retreived parameters over range ','interpreter ','latex '←↩

)
710 set(gca ,'fontsize ', S_font_1 )
711 %grid on
712 xlim ([ min(r), max(r)])
713 set(gca ,'XTickLabel ' ,[]);%test
714 xlim ([ min(r)+dR max(r)-dR ])
715 set(gca ,'LineWidth ' ,2)
716 ylim ([ 10* floor (( min (10* log10 ( Pr_matrix ) ,[],'all ') -1 - Pn_dB )/10) +1 , 10* ceil←↩

(( max (10* log10 ( Pr_matrix ) ,[],'all ')+1 - Pn_dB )/10) -1])
717 set(gca ,'TickLabelInterpreter ','latex ')
718
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719
720 resultplot_1_2 = subplot (3 ,1 ,2);
721 plot(r, n, '--', 'LineWidth ', W_line_1 , 'Color ', 'black ')
722 hold on
723 errorbar (r,n_hat , sigma_n_hat , '.', 'MarkerSize ', S_marker_2 , 'Color ', C_2)
724 % xlabel (' Range $[m]$',' interpreter ','latex ')
725 ylabel ('n $[cm ^{ -3}]$','interpreter ','latex ', 'Units ', 'normalized ','Position←↩

' ,[ -0.075 0.5])
726 set(gca ,'fontsize ',S_font_1 )
727 legend ('boxoff ')
728 legend ('True Profile ', 'Retreived Profile ','Location ', 'Best ','interpreter ','←↩

latex ')
729
730 %grid on
731 %xlim ([ min(r)+dR max(r)-dR ])
732 % yyaxis right
733 % ylabel (' Particle concentration [g/m^3] ')
734 set(gca ,'XTickLabel ' ,[]);%test
735 xlim ([ min(r)+dR max(r)-dR ])
736 set(gca ,'LineWidth ' ,2)
737 set(gca ,'TickLabelInterpreter ','latex ')
738 ylim ([ 50* floor (( min( n_hat (2: end -1) -sigma_n_hat (2: end -1) ,[],'all ') -1) /50) -49 ←↩

, 50* ceil (( max( n_hat (2: end -1)+ sigma_n_hat (2: end -1) ,[],'all ')+1) /50) +49])
739
740
741 resultplot_1_3 = subplot (3 ,1 ,3);
742 plot(r, rho , '--', 'LineWidth ', W_line_1 , 'Color ', 'black ')
743 hold on
744
745 errorbar (r,rho_hat , sigma_rho_hat , '.', 'MarkerSize ', S_marker_2 , 'Color ', C_2←↩

)
746 xlabel ('Range $[m]$','interpreter ','latex ')
747 ylabel ('$\rho$ $[g m^{ -3}]$','interpreter ','latex ', 'Units ', 'normalized ','←↩

Position ' ,[ -0.075 0.5])
748 set(gca ,'fontsize ',S_font_1 )
749 legend ('boxoff ')
750 legend ('True Profile ', 'Retreived Profile ','Location ', 'Best ','interpreter ','←↩

latex ')
751 %grid on
752 xlim ([ min(r)+dR max(r)-dR ])
753 set(gca ,'LineWidth ' ,2)
754 set(gca ,'TickLabelInterpreter ','latex ')
755 ylim ([ 5* floor (( min( rho_hat (2: end -1) -sigma_rho_hat (2: end -1) ,[],'all ') -1) /5) -4←↩

, 5* ceil (( max( rho_hat (2: end -1)+ sigma_rho_hat (2: end -1) ,[],'all ')+1) /5) +4])
756
757
758 %Make them share x-axis
759 p1 = get( resultplot_1_1 , 'Position ');
760 p2 = get( resultplot_1_2 , 'Position ');
761 p3 = get( resultplot_1_3 , 'Position ');
762 p1 (2) = p2 (2)+p2 (4);
763 p3 (2) = p2 (2) -p2 (4);
764 set( resultplot_1_1 , 'pos ', p1);
765 set( resultplot_1_3 , 'pos ', p3);
766
767 end
768
769
770 %Plot data and mean humidity for comparison
771 %
772 if true
773 %plot data but with mean values for comparison
774 figure ('Renderer ', 'painters ', 'Position ', [10 10 1600 1100])
775 resultplot_1_1 = subplot (3 ,1 ,1);
776 %Plot with black line for frequencies : 1, N_f
777 plot(r ,10* log10 ( Pr_matrix (: ,2:end -1))-Pn_dB , 'LineWidth ' ,4, 'Color ', C_2)
778 hold on
779 plot(r ,10* log10 ( Pr_matrix (: ,1))-Pn_dB , 'LineWidth ' ,4, 'Color ', 'black ')
780 plot(r ,10* log10 ( Pr_matrix (:, end))-Pn_dB , 'LineWidth ' ,4, 'Color ', 'black ')
781
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782 plot ([ min(r) max(r)] ,[1 1]* Pn_dB ,'--b', 'LineWidth ' ,4, 'Color ', C_2)
783 % xlabel ('Range , r $[m]$',' interpreter ','latex ')
784 % ylabel ('$P_r - P_n$ $[dB]$',' interpreter ','latex ')
785 ylabel ('SNR $[dB]$','interpreter ','latex ', 'Units ', 'normalized ','Position '←↩

,[ -0.075 0.5])
786
787
788 title ('Received power , retreived parameters over range ','interpreter ','latex '←↩

)
789 set(gca ,'fontsize ', S_font_1 )
790 %grid on
791 xlim ([ min(r), max(r)])
792 set(gca ,'XTickLabel ' ,[]);%test
793 xlim ([ min(r)+dR max(r)-dR ])
794 set(gca ,'LineWidth ' ,2)
795 ylim ([ -9 , 10* ceil (( max (10* log10 ( Pr_matrix ) ,[],'all ')+1 - Pn_dB )/10) +9])
796 set(gca ,'TickLabelInterpreter ','latex ')
797
798
799 resultplot_1_2 = subplot (3 ,1 ,2);
800 %plot(r, n, '--', 'LineWidth ', W_line_1 , 'Color ', C_2)
801 %hold on
802 %plot(r, n_hat , '.', 'MarkerSize ', S_marker_1 , 'Color ', C_2)
803 r2 = [r', fliplr (r ') ];
804 inBetween = [ones (1, N_r)*( n_mean_hat - sigma_n_mean_hat ), fliplr ( ones (1, N_r)←↩

*( n_mean_hat + sigma_n_mean_hat ))];
805 fill(r2 , inBetween , C_2_RGBTRIPLET );
806 hold on
807 errorbar (r,n_hat , sigma_n_hat , '.', 'MarkerSize ', S_marker_1 , 'Color ', C_1)
808 % xlabel (' Range $[m]$',' interpreter ','latex ')
809 ylabel ('n $[cm ^{ -3}]$','interpreter ','latex ', 'Units ', 'normalized ','Position←↩

' ,[ -0.075 0.5])
810 set(gca ,'fontsize ',S_font_1 )
811 legend ('boxoff ')
812 % legend ('Retreived ','Location ', 'Best ',' interpreter ','latex ')
813 legend ([ '$\ langle n \ rangle = $', sprintf (' %3.5g', n_mean_hat ), ' $\pm$ ', ←↩

sprintf ('%0.2g', sigma_n_mean_hat ), ' $[cm ^{ -3}]$'], 'Retreived ','Location←↩
', 'Best ','interpreter ','latex ')

814 %\ langle rho$ \ rangle
815 %grid on
816 %xlim ([ min(r)+dR max(r)-dR ])
817 % yyaxis right
818 % ylabel (' Particle concentration [g/m^3] ')
819 set(gca ,'XTickLabel ' ,[]);%test
820 xlim ([ min(r)+dR max(r)-dR ])
821 set(gca ,'LineWidth ' ,2)
822 set(gca ,'TickLabelInterpreter ','latex ')
823 ylim ([ 50* floor (( min( n_hat (2: end -1) -sigma_n_hat (2: end -1) ,[],'all ') -1) /50) -49 ←↩

, 50* ceil (( max( n_hat (2: end -1)+ sigma_n_hat (2: end -1) ,[],'all ')+1) /50) +49])
824
825
826 resultplot_1_3 = subplot (3 ,1 ,3);
827 %plot(r, rho , '--', 'LineWidth ', W_line_1 , 'Color ', C_1)
828 r2 = [r', fliplr (r ') ];
829 inBetween = [ones (1, N_r)*( rho_mean_hat - sigma_rho_mean_hat ), fliplr ( ones (1, ←↩

N_r)*( rho_mean_hat + sigma_rho_mean_hat ))];
830 fill(r2 , inBetween , C_2_RGBTRIPLET );
831 hold on
832 %plot(r, rho_hat , '.', 'MarkerSize ', S_marker_1 , 'Color ', C_2)
833 errorbar (r,rho_hat , sigma_rho_hat , '.', 'MarkerSize ', S_marker_1 , 'Color ', C_1←↩

)
834 xlabel ('Range $[m]$','interpreter ','latex ')
835 ylabel ('$\rho$ $[g m^{ -3}]$','interpreter ','latex ', 'Units ', 'normalized ','←↩

Position ' ,[ -0.075 0.5])
836 set(gca ,'fontsize ',S_font_1 )
837 legend ('boxoff ')
838 legend ([ '$\ langle \rho \ rangle = $', sprintf (' %3.5g', rho_mean_hat ), ' $\pm$←↩

', sprintf ('%0.2g', sigma_rho_mean_hat ), ' $[gm ^{ -3}]$'], 'Retreived ','←↩
Location ', 'Best ','interpreter ','latex ')

839 %\ langle rho$ \ rangle
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840 %grid on
841 xlim ([ min(r)+dR max(r)-dR ])
842 set(gca ,'LineWidth ' ,2)
843 set(gca ,'TickLabelInterpreter ','latex ')
844 ylim ([ 5* floor (( min( rho_hat (2: end -1) -sigma_rho_hat (2: end -1) ,[],'all ') -1) /5) -4←↩

, 5* ceil (( max( rho_hat (2: end -1)+ sigma_rho_hat (2: end -1) ,[],'all ')+1) /5) +4])
845
846
847 %Make them share x-axis
848 p1 = get( resultplot_1_1 , 'Position ');
849 p2 = get( resultplot_1_2 , 'Position ');
850 p3 = get( resultplot_1_3 , 'Position ');
851 p1 (2) = p2 (2)+p2 (4);
852 p3 (2) = p2 (2) -p2 (4);
853 set( resultplot_1_1 , 'pos ', p1);
854 set( resultplot_1_3 , 'pos ', p3);
855
856 end
857
858
859
860 %Fix list for future
861 % -read real data
862 % -Plot real data without comparison with fake actual data
863 % -Investigate how to display covariance data better
864 % -Investigate if there 's a mistake in the VIPR paper
865 % -Add to estimate K_f(f)
866 % -Add way to investigate fit? chi square test?
867
868
869
870
871
872
873
874
875
876
877
878 %plot times
879 T_forwardmodel
880 T_noisemodel
881 T_inversion
882
883 max( isnan (A) ,[],'All ')
884 max( isnan ( x_hat ) ,[],'All ')
885
886 % if print == true
887 % addpath ('/ Users / z3bb0 / Documents / GitHub /Retrevial -methods ')
888 % fid = fopen ('/ Users / z3bb0 / Documents / GitHub /Retrevial - methods / test_data .txt←↩

','w ')
889 %
890 % % print frequency
891 % fprintf (fid , '%.2f \t', f*1E -9);
892 % fprintf (fid , '\n ');
893 % fprintf (fid , '\n ');
894 %
895 % % Print range values
896 % fprintf (fid , '%.2f \t', r);
897 % fprintf (fid , '\n ');
898 % fprintf (fid , '\n ');
899 %
900 % % Print slow time values (this just prints the same data N_T times , but real
901 % %data would be different ofcourse )
902 % N_T = 10;
903 % Fs_slowtime = 10;%1/( T_int + T_process + T_wait )...
904 % T = (0: N_T -1)/ Fs_slowtime ;
905 %
906 % fprintf (fid , '%.2f \t', T);
907 % fprintf (fid , '\n ');
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908 % fprintf (fid , '\n ');
909 %
910 %
911 % % Print Pr_matrix ( linear )
912 % for i = 1: N_T
913 % for j = 1: N_r
914 % fprintf (fid , '%.6E \t', Pr_matrix (j ,:));
915 % fprintf (fid , '\n ');
916 % end
917 % end
918 % fclose (fid);
919 % end
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