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Formally Verifying WebAssembly with KWasm

Towards an Automated Prover for Wasm Smart Contracts
Rikard Hjort

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

A smart contract is immutable, public bytecode which handles valuable assets. This
makes it a prime target for formal methods. WebAssembly (Wasm) is emerging
as bytecode format for smart contracts. KWasm is a prototype mechanization of
Wasm in the K framework which can be used for formal verification. The current
project aims to verify a single Wasm smart contract, a simple token contract. First,
we complete the KWasm semantics to be able to deal with modules and test the
semantics against the official conformance tests. This reveals several shortcomings
of the conformance tests. Second, we create an Ethereum embedding by creating
a separate Ethereum client semantics and combining it with the KWasm seman-
tics through a thin, synchronizing interface. This embedding is then unit tested,
including conformance tests for two variants of the WRC20 contracts. Thirdly, we
use the KWasm semantics to prove properties of incrementally more complex Wasm
programs, with an emphasis on heap reasoning, culminating in the verification of a
helper function that reverses the bytes of a 64-bit integer. In the process we add
25 axioms that get upstreamed into K, and several more that are useful for general
Wasm verification.

Keywords: K, K framework, WebAssembly, Wasm, Ethereum, Ewasm, formal
methods, formal verification, semantics, specification






Acknowledgements

I want to express my sincerest thank you to Everett Hildenbrandt, who started the
KWasm project, for letting me contribute, for teaching me about K and all its quirks
and for supporting me with design discussions and troubleshooting in my day-to-day
work.

A big thank you also to Thomas Sewell for supervising my thesis project and
helping me turn my engineering work into useful academic work, as well as provid-
ing an inquisitive outside perspective. Thank you also to Wolfgang Ahrendt, the
examiner for this thesis, for your feedback during the process and providing your
insights on how this projects fits inside research field of formal methods.

Thank you Martin Lundfall for initially suggesting I should familiarize myself with
KWasm, and Magnus Myreen for pushing me into pursuing it as research work. To
Jakob Larsson for feedback and helping me fine tuning the thesis.

Thank you to the other contributors to KWasm, Stephen Skeirik and Qianyang
Peng, for fruitful discussions and enjoyable collaboration. To Runtime Verification,
Inc—especially Bogdan, Grigore, and Patrick—for giving me a shot at making this
a real product.

Thank you, all.

Rikard Hjort, Gothenburg, February 2020

vii






Contents

List of Figures xiii
List of Code Listings XV
1 Background 1
1.1 Imtroduction . . . . . . . . ... 1
1.2 Project Outline . . . . . . .. .. ... 3
1.3 The Case for Verifying Wasm . . . . .. ... ... ... ... .... 3
1.4 Related Work . . . . . . . ... 5
1.5 Project Limits . . . . . . . .. .. 6
1.6 Ethical Considerations . . . . . . . . .. . .. ... ... ... .... 6
1.7 Preliminaries . . . . . . . ..o 7
1.7.1  WebAssembly (Wasm) . . . ... ... ... ... ... ..., 7

1.7.2  Blockchains, Ethereum and Smart Contracts . . . . . . . . .. 9

1.7.3 Formal Verification . . . . . . ... ... ... ... .. 10

1.7.3.1 Deductive Verification . . . . . . . . ... ... ... 11

1.7.3.2  Functional Correctness . . . ... .. ... .. ... 11

1.7.3.3  Satisfiability Modulo Theory (SMT) and Their Solvers 12

1.7.3.4 Symbolic execution . . . . . ... ... 13

1.74 K Framework . . . . . .. ... oo 14

1.7.4.1 The Deductive Program Verifier . . . . . . . . .. .. 15

1.74.2 The K Language . . . .. .. ... ... ... .... 16

1.8 The KWasm Project . . . . . .. .. .. ... ... ... ..., 19
1.8.1 Design . . . . . . . 20

1.8.2  Wasm and KWasm Introduction . . . . . . ... ... ... .. 20

1.8.2.1 Imstructions . . . . . . . . ... 21

1.8.2.2 Declarations . . . . . . ... ... 0oL 22

1.8.2.3 Runtime Structure . . . . . ... ... ... ... 22

2 Part 1: Completing and Extending KWasm 25
2.1 Giving KWasm Support for Modules . . . . . . ... ... ... ... 25
2.1.1 Finding the Correct Order of Definitions . . . . . . . . . . .. 26

2.1.2  Grouping the Declarations in Top-Level Modules . . . . . .. 27

2.1.3 Desugaring Inline Declarations . . . . . . . ... .. ... ... 29

2.2 Testing KWasm Against the WebAssembly Core Test Suite . . . . . . 31
2.2.1  The Reference Interpreter . . . . . . . . ... ... ... ... 32

ix



Contents

2.2.1.1 The WASM-TEST module . . .. ... ... ...... 32

2.2.2  Discovering Missing Functionality . . . . . . .. ... ... .. 33

2.2.2.1 Missing Floating-Point Representation . . . . . . .. 33

2.2.2.2 Specifying Modules . . . . . ... ... 33

2.2.2.3 NaNs With Payloads . . . . ... ... ... . .... 34

223 Conclusions . . . . . . ... 34

2.3 EWasm Embedding . . . . . .. ... oo 35

2.3.1 The Ethereum Environment Interface (EEI) . . . ... .. .. 35

2.3.2 A General Template for Making a Wasm Embedding . . . . . 37

2.3.2.1 Dealing With Host Functions in KWasm . . . . . . . 38

2.3.2.2 Creating a Wasm-Host Boundary . . . . . ... ... 38

2.3.2.3 Testing The Ewasm Semantics . . . .. .. .. ... 39

3 Part 2: KWasm for Deductive Program Verification 41

3.1 From Semantics to Proofs . . . . .. ... ... ... L. 41

3.2 A Very Simple Proof . . . . ... ... ... 0. 42

3.3 A Proof With Heap Reasoning . . . . . . . . ... ... ... .. ... 44

3.3.1 Using a Symbolic Type . . . . . . ... .. ... .. ... ... 46

3.4 Helping the K Prover With Inductive Reasoning . . . . . . .. .. .. 47
3.5 WRC20: Specifying and Proving Correct the i64.reverse_bytes

Function . . . . . . . .. 50

3.5.1 The Proof Obligation . . . . . ... ... ... ... ...... 51

3.5.1.1 The<k>Cell . .. ... ... ... ... ....... 53

3.5.1.2 The <memInst> Cell . . . . . ... ... ... .... 53

3.5.1.3 The Pre- and Postconditions . . .. .. .. .. ... 53

3.5.2 Helping the Prover Along . . . . . ... ... ... ...... 54

3.5.2.1 Axiom Engineering: Avoiding Infinite Rewrites . . . 54

3.5.2.2 Adding New Axioms . . . . ... ... ... ..... 56

3.5.2.3 The Full Set of Extensions . . . . . . ... ... ... 59

4 Discussion 61

4.1 How Suitable is KWasm for Verifying Smart Contracts? . . . . . . . . 61

4.1.1 Comparison to KEVM . . . . .. ... ... ... .. ... 61

4.1.2  Ergonomic Issues of Proving Working with KWasm . . . . . . 62

4.2 Increasing K’s vs. Z3’s Reasoning Capabilities . . . . . . . . ... .. 64

4.3 Issues With the Core Test Suite . . . . . . .. ... ... ... ..., 64

4.4 Future work . . . . ... 65

4.4.1 WRC20 Contract . . . . . . . ... ... 65

4.4.2 Proving Our Lemmas Sound . . . . . .. ... ... ...... 65

4.4.3 Upstreaming Lemmas . . . . . .. .. ... ... ... ... 66

4.44 Interactive Proving . . . . . . . . ... oL 66

4.4.5 An Ewasm DSL and Spec Language . . . . . . .. ... .. .. 67

4.4.6 Benchmarking Lemmas . . . . . . .. ... ... ... ..... 67

4.4.7 JavaScript Embedding . . . . .. ... 68

5 Conclusion 69

5.1 Contributions to Wasm and Ethereum . . . . .. ... ... ... .. 69



Contents

5.1.1 Examples of Verifying in Wasm . . . ... ... ... .. ... 69

5.1.2 Ewasm Embedding . . . . . ... ... ... 69

5.1.3 Evaluation of the Wasm Tests as Conformance Tests . . . . . 70

5.2 Contributions to K and KWasm . . . . ... ... ... ... ..... 70
5.2.1 Completing KWasm . . .. ... ... ... ... ....... 70

5.2.2  Lemmas for Integer and Modular Arithmetic . . . . . . . . .. 70

5.2.3 Embedded K Semantics . . .. ... ... ... ... .. ... 71
Bibliography 73
A Reverse Bytes: Final Expression I
B The WRC20 Wasm Module Vv
C The Complete Configuration of KWasm XI
Index XIII

X1



Contents

xii



1.1

2.1

2.2

3.1

3.2
3.3

List of Figures

K framework conceptual description. . . . . .. ... ... ... ...

This directed graph shows how the different parts of a module’s dec-
larations depend on each other. Red hexagonal nodes indicate alloca-
tions, which create a new structure in the store; blue elliptical nodes
indicate initialization, which alter the contents of that structure; and
white boxed nodes indicate definitions that only alters mappings in
the current module. For example, an export depends on the field it
exports having been allocated (so that its index is known). . . . . .
This directed graph shows which declarations can be inlined in an-
other. For example, a table or memory can have their initializing
declarations inlined, and any allocation can be exported inline.

The symbolic value of the result of $i64.reverse_bytes after one
loop iteration. This expression is intended to have shifted the least
significant byte of the input, #getRange (BM, ADDR, 8), to be the most
significant byte of the result. . . . . . . . ... ... ... ... ...
The resulting expression after applying the first three simplifications.
The fully simplified expression of the first iteration. . . . . . . . . ..

29

xiii



List of Figures

Xiv



1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
2.1
2.2
2.3

24
2.5
2.6
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13
3.14
3.15
3.16

List of Code Listings

Introductory Wasm example. . . . . . . ... ...
A small C function to execute symbolically. . . . . . ... ... ...
Basic syntax declarationsin K. . . . . ... .. ... .. .......
Syntax annotations in K. . . . . . ... 0000000
Example of a K semantics configuration. . . . . . .. ... ... ...
Operational rules in K. . . . . .. ... ... ... L.
An example of a complete K semantics, split over two modules.

The rules for sequencing statements in KWasm . . . ... ... ...
Pushing constants in KWasm. . . . . . ... ... ... ........
Popping constants for binary operations in KWasm. . . . . . . . . ..
Rules for unfolding folded Wasm instructions. . . . . . .. .. .. ..
A Wasm function declaration. . . . . . . .. ...
Abbreviated KWasm configuration. . . . . . .. ... ... ... ...
A simple Wasm module . . . . . . ... ..o
Three equivalent text format modules. . . . . .. . . ... ... ...
Three equivalent modules when (incorrectly) reordering before desug-

Examples of function type uses. . . . . . . ... .. ...
The currently implemented EEI APT . . . . ... ... ... .....
Semantics of Ewasm host calls. . . . . . ... ... ... ... ...
Asmall proof in K. . . . . . . .. ...
A spec for reading from and writing to the value of local variables. . .
The heating and unfolding rules in KWasm. . . .. ... ... .. ..
Specification for a simple memory property. . . . . .. .. ... ...
Five lemmas about arithmetic for heap reasoning. . . . . . .. . ...
Two lemmas about #get for heap reasoning. . . . . . ... ... ...
A lemma over #setRange and #getRange. . . . . . . . .. .. ... ..
A Wasm program for summing the numbers 1 to N. . . . . . . .. ..
Spec with the main proof obligation for the arithmetic sum program.
The proof-obligation for inductive reasoning. . . . . . . . ... .. ..
$i64.reverse_bytes Wasm code. Copyright Paul Dworzanski et al.,
licensed under GNU General Public License v. 3. . . . . . . ... ..
The spec for $i64.reverse_bytes function. . . . . . . . . . ... ...
The expression for integer interpretation of the reversed bytes

The integer interpretation of a single shifted byte. . . . . . . . . . ..
New axiom: addition by zero. . . . . . . . . .. .. ... ... .. ..
New axiom: seqences of mod operations. . . . . . . . . ... ... ...

30

45

XV



List of Code Listings

3.17 New axiom: left shift followed by mod. . . . . . . . ... .. ... ... 58
3.18 New axioms: rules for shifts. . . . . .. .. .. ... ... ... ... 58
3.19 New axiom: getting a single byte. . . . . . . . .. ... .. ... ... 58
4.1 A lemma with its handwritten proof . . . . .. ... ... ... ... 65
C.1 The complete K configuration of KWasm. . . .. ... ... ... .. XI

Xvi



—_

O © 0O Utk W

1

Background

1.1 Introduction

WebAssembly (Wasm) is a platform-independent bytecode[17]. It is supported by
all major web browsers and has standalone implementations. Wasm is a low-level
stack-based language with many higher-level features, including static typing, jump-
free control flow, and function calls and primitives. It is designed to be portable,
fast to transmit and easy to map onto modern instruction set architectures.

Wasm is meant to be embedded, meaning a Wasm program is part of another
program that calls into it. Wasm programs are not scripts, but rather a collection of
functions and variables, and there is no natural empty point such as the main func-
tions in other languages like C, Java or Haskell. The embedder interacts with Wasm
by modifying a shared memory array that both the embedder and Wasm program
can read and modify, and by invoking Wasm functions. The Wasm program can re-
turn control to the embedder by either terminating its execution, possibly returning
a value or by calling host functions which look like regular imported functions in
the Wasm program. One can thus think of Wasm programs as symbiotic with other
languages, interacting via a two-way foreign function interface.

The following toy Wasm module showcases a few features of the language (we will
cover these and more in-depth in Sect. 1.8). The module declares two functions,
$main and $set-and-return, and one page (64 KiB) of memory. The first function
calls the second, and the second sets the value of eight bytes of memory, returning
the old memory contents. In this case, we store the eight bytes representing the
value 10 at memory location 42. The functions each declare what parameters they
expect, what their return type is, and if they use any local variables apart from the
parameters. The rest of each function is the body, which is a sequence of instructions.

Listing 1.1: Introductory Wasm example.

(func $main (result i64)

i32.const 42 ;; Push first param ($address)
i64.const 10 ;; Push second param ($value)
call $set-and-return ;; Pop params, use for call.

)

(func $set-and-return
(param $address i32) (param $new i64)
(result i64)
(local $o0ld i64)
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local.get $address ;; Push param $address.

i64.1load ;; Pop $address, push i64 from memory.
local.set $old ;; Pop i64, store in local $old.
local.get $address ;3 Push param $address.

local.get $new ;3 Push param $new.

i64.store ;35 Store $new to $address in memory.
local.get $old ;3 Push $o0ld.

)

(memory 1)

Now assume that we would like to verify this program, i.e. we would like to make
certain assertions about what its possible behaviors are, and under exactly which
circumstances we expect each behavior. For example, if we were to call the function
$main twice, what should we expect it to return? We do not know what the first call
would return—it depends on the state of the memory—but we should expect the
second call to return 10. However, there are caveats. For example, it depends on
what we mean by “calling twice”. If other instructions may occur between the calls,
those instructions may modify memory. If we want to prove beyond doubt that the
second call will return 10, we must make clear under what conditions we expect it.

While the above example may seem trivial, correctly and formally specifying
the behavior of even such a simple program comes with pitfalls, and proving that
it adheres to the specification requires using a formal specification of Wasm as
inference rules. A formal proof of a program requires a formal definition of the
language it is written in. Luckily, Wasm has a rewrite-based formal operational
semantics[31], which one could use to hand-verify the program above. But hand-
verifying a program is time-consuming—for any sizable program, we would like for
the reasoning to be at least mostly automated.

While programs running on the Web may not be renowned for their high-assurance
properties, Wasm has use cases beyond the Web. It is a portable byte-code format
that is meant to be inherently platform-agnostic, in the same spirit as the Java Vir-
tual Machine. As such, it is finding uses beyond the browser. One example of such
a use case is blockchains.

Blockchains are used for decentralized decision making, code, and money. The
market cap for blockchains is counted in hundreds of billions of dollars!.

At least four high-profile blockchain projects use Wasm: Ethereum has Ewasm?
as a virtual machine specification for executing smart contracts; NEAR? will use
their own Wasm flavor in the same way; EOSIO* already is using a Wasm VM; and
Polkadot® has Substrate, a framework for building blockchains in a parameterized
and modular fashion, that compiles to Wasm.

Smart contracts on blockchains handle valuable assets. The code is public and
immutable. If a smart contract contains a bug that can be exploited for profit,

L As of Saturday 215¢ March, 2020: https://coinmarketcap.com

’https://github.com/ewasm/design

3https://docs.nearprotocol.com/docs/roles/developer/quickstart/
#smart-contract-development

4https://eos.io/news/eos—virtual—machine—a—high—performance—blockchain—webassembly—interpreter,

Shttps://polkadot.network/technology
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the assets are in danger of being stolen. The same is true if there is a bug in the
software that manages network consensus, such as the Substrate framework. That
is why, with blockchains adopting Wasm both for on-chain execution and as a client
implementation language, it becomes important to establish with high confidence
the functional correctness of the code.

1.2 Project Outline

This project is about verifying Wasm programs by using and extending an automated
prover. We start with simple programs and incrementally increase the complexity.
We have a Wasm program that implements a typical Ethereum smart contract that
will guide the effort. As we verify more complex programs, we will need to add
further reasoning power to the prover.

The prover is based on KWasm, the unfinished mechanization of Wasm in the
K language. KWasm can be used as input to the K framework[33], which is a
set of tools for automatically generating common programming language tooling
from single language mechanizations. One of these tools is a deductive program
verifier[36] that can be used to symbolically execute Wasm programs, and verify
functional specifications.

The research questions this project tries to answer belong to two broad themes:
completing the mechanization, and using it for proofs.

Related to the mechanization, we ask: What does it take to fully mechanize the
Wasm specification? How can we mechanize a blockchain embedding?

Related to proving, we ask: Can a symbolic execution engine prove interesting
properties of Wasm? Which theorems must be added as axioms? What challenges
does verifying Wasm pose?

The first set of questions can be answered by Part 1, and the second set by Part
2 of the project:

P1: Finishing KWasm and making a prototype embedding. At the out-
set of this project, KWasm is still a prototype. Importantly, it lacks support for
modules, exporting and importing, and embedding the Wasm semantics in an envi-
ronment it can interact with through a host interface. In this part, we implement
the missing functionality and run conformance tests against KWasm, and we design
and implement and Ewasm embedding.

P2: Using KWasm to verify Wasm programs. We give a proof-of-concept
that Wasm programs can be verified for interesting properties, and construct meth-
ods for dealing with hard-to-verify properties.

1.3 The Case for Verifying Wasm

Source-level verification of high-level language code does not give as reliable results
as verifying lower-level compile targets since (unverified) compilers can introduce
bugs[41] ®. To avoid trusting a possibly buggy compiler, the verifier can work on the

5In the Ethereum space, this Serpent compiler bug is
a documented example: https://medium.com/@AugurProject/
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lowest available level of compiler-generated target code instead of the source code.

Exploits in generated Wasm code are already being discovered [25]. If Wasm
becomes a global standard for distributed bytecode, it stands to reason that it will
also be used in high-assurance systems. If the same high-assurance software is to run
in multi-platform environments, such as IoT networks or the Web, the verification
effort should not have to be duplicated per platform. Since the semantic gap between
Wasm and executable bytecode is significantly smaller than the step from a general
high-level language to Wasm, the trusted computing base (TCB) is smaller than a
regular compiler if the verification happens at the Wasm level, and therefore more
trustworthy. In these cases, verifying Wasm code gives a nice trade-off between
effort expended and assurance level.

In the case of smart contracts, this semantic gap is no longer relevant. The
bytecode semantics is what consensus is formed around on the blockchain, not how
that bytecode is executed on any particular—and possibly buggy—virtual machine.
Since blockchains are built on protocols rather than any particular hardware, and
no single piece of hardware can cause the protocol to fail, verifying the bytecode
means verifying the actual contract.

Whatever environment and embedding Wasm-based high-assurance software runs
in, formal verification will need to verify pure Wasm functions, as well as the inter-
action between the embedder and Wasm. The exact Wasm code and what invariants
are necessary to preserve will vary by use-case.

To be able to use Wasm in any application, an embedding is needed. Apart
from the embedding invoking Wasm code, the Wasm code may also call out to
host functions to interact with the embedder. In Ethereum, the embedding (also
“environment” or “execution environment”) contains blockchain state information
and the Ethereum host functions (or “environment interface”). Together with the
Wasm specification, this is called Ewasm?, which is a complete virtual machine for
Ethereum. Ewasm is still being designed, so there are only prototypes for us to
work from.® This project assumes that by working from this prototype for now and
trying to use it for verification, lessons for the future can be gleaned that will be
useful once we implement the final version of Ewasm.

Deductive program verification, i.e. proving using formal logic that a program
fulfills a specification, gives the highest possible assurance of the behavior of a piece
of code. It shows beyond doubt—except any doubt in the tools that generate the
proof, the process for checking the proof, or the logic—that a program will always
behave according to its specification. Deductive program verification is not reliant
on an abstract or incomplete model, but instead uses the formal semantics of a
programming language as axioms. KWasm generates a deductive program verifier
that is largely automated, making it both powerful and tractable to use.

serpent-compiler-vulnerability-rep-solidity-migration-5d91e4ae90dd
"https://github.com/ewasm/design
8The available specification is based on what is commonly called Ethereum 1.X—the current,
simple protocol without sharding and proof-of-stake consensus mechanism. Ewasm is planned to
be incorporated in the upcoming Ethereum 2.0, and the environment may then look much different.
It is not clear, for example, how one would make calls between contracts in a sharded environment.
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1.4 Related Work

It has been said that deductive source-level verification has a “killer application”
in smart contracts[2]. Much of the argument applies just as well to bytecode level
verification, with the exception that bytecode verification may be more inscrutable
for the high-level programmer.

A complete specification of the semantics of Wasm in K has not been done pre-
viously but there is plenty of research surrounding the K framework®. Several lan-
guages have been fully or mostly formalized in K, with papers in high-quality publi-
cations produced describing them: C[18, 13], Java[7], JavaScript[28] are examples of
large and widely used such programming languages. The most similar effort to this
project, however, is KEVM [19]. This is the K formalization of the Ethereum Virtual
Machine (EVM). EVM bytecode is what smart contracts currently are composed of
on Ethereum. The KEVM paper has a similar focus to the proposed work—it de-
scribes the semantics of the EVM specified in K and uses them to prove properties
of EVM programs.

KEVM is being used for verifying smart contracts on the Ethereum main-net,
among them contracts handling hundreds of millions of dollars'®. There is also
tooling being developed based on KEVM to help developers do verification and run
their code in a trusted EVM version!'. K semantics and tools thus already have
some traction in the formal verification community around Ethereum.

While the K-generated deductive prover is automatic, it needs help. Experience
with KEVM[29] shows that some trusted theorems need to be introduced as axioms
and language-specific abstractions are needed.

Wasm has previously been successfully mechanized in Isabelle, and the mecha-
nization has been used to verify the soundness of Wasm’s type system[38]. The
mechanization has also been extended with additional types, which can be used to
guarantee constant-time execution to avoid side-channel attacks on cryptographic
libraries [39]. To the best of our knowledge it has not been used to verify any
properties of specific programs or aid automatic proving, and it seems this is not
the target of the project. K, on the other hand, provides good tooling for such
verification[36]. Of course, the Isabelle mechanization could also be used to prove
properties of specific programs interactively. This does not, however, align with our
goal of a mostly automated prover. While Isabelle is a popular verification tool, it
is currently not being put to much use for verifying smart contracts, as far as we
can tell. We believe there is no community or specific tooling around the Isabelle
mechanization for verifying concrete programs, in part because smart contracts are
not yet being written in Wasm. For example, the ETH-Isabelle mechanization of
the EVM' has not seen as much traction as KEVM. By developing KWasm, we
hope to make a complementary tool to the existing mechanization.

http://www.kframework.org/index.php/K_Publications

OFor example, multi-collateral DAI (https://github.com/dapphub/k-dss) and several
other tokens and smart contracts verified as part of audits (https://github.com/
runtimeverification/verified-smart-contracts).

Uhttps://runtimeverification.com/firefly/

2https://github.com/pirapira/eth-isabelle
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1.5 Project Limits

This project will be limited to using KWasm for verification, and will not consider
other possible mechanizations. Furthermore, it will not be building the mechaniza-
tion from scratch but instead, build upon the existing KWasm semantics. KWasm
is a tool that we are familiar with, as we have already contributed to the project.
We also do not believe that there is any point in surveying other tools at this point,
because there are few to survey; a cursory search for Wasm verification tools re-
veals there is little beyond the Isabelle mechanization[38], which is aimed at proving
high-level properties of the language!.

The task at hand is to verify concrete Wasm programs with symbolic inputs.
This work is exploratory and qualitative. Building infrastructure for large-scale
automated reasoning is out of scope in the interest of time.

Finally, this project will not spend any significant amount of time evaluating
what are the most relevant properties of specific Wasm programs to prove, or Wasm
programs in general. Instead, it focuses on verifying what we believe are reasonable
specifications of existing programs without arguing in-depth for the choices.

1.6 Ethical Considerations

The explicit goal of the proposed verification efforts is to verify some properties
of smart contracts. This is the first project to use Wasm to do so, and as such
may set a precedent. As previously mentioned, these programs may handle large
sums of money, will be public and will be immutable. It is therefore important
that we communicate with absolute clarity to current customers and future users
of the system what a proof entails. There are three main concerns: understanding
the proof claim, trusting the verification engine, and trusting the specification and
axioms.

Firstly, formal verification always comes down to producing a mathematical state-
ment: given certain assumptions, some conclusions follow. Fully understanding the
assumptions and the result may require a certain knowledge of the logic that was
used and of the domain the proof is over. Therefore, some of the assumptions may
be plain wrong, or either the assumptions or results may be misinterpreted leading
to incorrect actions.

Secondly, while proof of a property in K gives a very high assurance that the
property truly holds, K does not yet produce machine-checkable proof objects. Thus,
a bug in K could produce a faulty proof. While the risk that any given proof passed
due to such a bug is small, it should not be dismissed. As such, K together with
the SMT solver used, Z3, (see Sect. 1.7.3) make up a trusted computing base.

Thirdly, another possible source of erroneous verification is an error in the manu-
ally added axioms. As K cannot prove all desired properties just from the semantics,
we manually write certain axioms that are not explicitly part of the language se-
mantics. A mistake in such an axiom mean that we can prove properties that do
not hold. It is thus important to take the utmost care in designing the set of ax-

13 Available here: https://www.isa-afp.org/entries/WebAssembly.html
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ioms and also to communicate clearly that all verification takes place within that
axiomatization—a user who does not believe in any of the axioms should also not
trust the proofs which make use of them.

Personal experience has shown that the term “formal verification” elicits in some
people the belief that the verified software is infallible. Any behavior perceived as
a bug, or any event labeled a “hack” on such software would then be a violation
of that belief. As the person in question may have acted on that belief by, say,
transferring money to a contract which was later compromised, the consequences of
such a misunderstanding could be costly. Indeed, there is evidence that formally
verified systems exhibit bugs that they have been “proved” to not have[l4]. It is
important that we as verifiers both make clear to ourselves and our clients what
exactly we have proven, and that we make certain efforts to falsify our assumptions.
Herein lies the main ethical consideration: we must not oversell our product (the
verification) even in the face of high expectations and a fairly low risk to us as
verifiers. We must explain that while the results are trustworthy (with the already
mentioned caveats), the verifier may not be a domain expert, and the semantics we
build, the axioms we add and the assumptions we make must be thoroughly checked.

Apart from the above caveats, like many software construction projects, this one
comes at no considerable risk to people or property. No other projects yet depend
on KWasm, and there are no significant business interests staked on it. What is
being staked in this project is the developers’ time. The worst-case scenario for this
project is a null result, where nothing is accomplished at all, but nothing is lost.

1.7 Preliminaries

In this section we will give the requisite introduction to follow along the bulk of this
thesis. Here, the reader will be familiarized with K, Wasm, and formal verification.
The treatments here are meant to only supply the minimum necessary understanding
of each topic. The interested reader should look to the references for more complete
treatments.

1.7.1 WebAssembly (Wasm)

Wasm|[17] was introduced as a low-level language for fast and safe web programs.
It is designed to execute fast on modern processors, be easy to validate in a single
streaming pass, and uses a control flow semantics with no jumps and separation of
code and memory, adding safety. Wasm is statically typed, supports modules with
imports and exports, mutually recursive functions, indirect calls, and locally scoped
variables. The semantics is defined as a transition system with only a few non-
deterministic transitions. The semantics is reminiscent of a stack machine. Wasm
has no exception handling.

The simple type system of Wasm allows static validation, such that no valid
Wasm module can violate the memory model. The type system has been proven
sound through an Isabelle mechanization[38]. Wasm is also amenable to extensions:
for example, support for garbage collection, tail-call optimizations, and many other
features are on the standards track. There are also extensions to the type system,
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for example, to ensure information flow security and timing attack security [39].
This is one example of how researchers are taking an interest in Wasm for achieving
high security of a low-level binary format.

However, the use-case for Wasm extends beyond the web: it is a platform-agnostic
low-level language. Notably, it has found use in blockchain smart contract devel-
opment, where the same code must run on many different computers, preferably at
the least cost possible. There is much activity in this space, and notably, Ethereum
is planning to use Wasm as the underlying virtual machine for smart contracts in
the future!4.

Wasm is a more structured format than regular assembly language. A Wasm
program is defined as a module, which contains any number of definitions. These
define functions, byte-array memories, tables of functions for indirect function calls,
and global variables. Wasm code is embedded in some environment, and is executed
by calling into one of the functions in a module. Several modules can interact
through imports and exports.

Functions contain stack-based code. The stack can contain not only operands but
also the control flow constructs labels and frames, which serve similar purposes to
their namesakes in regular assembly. Labels serve as branching targets, and frames
as stores for local variables and for data necessary to return control to the caller.
There is no way to perform arbitrary jumps—branching can only be done to the
beginning of a loop or the end of the body of a block or conditional statement.
Note that control flow structures like loops and conditional statements as well as
functions are primitives in Wasm, unlike regular assembly code.

Execution wise, a function body is considered a single stack that is repeatedly
rewritten until it only contains constant values. The stack has the shape of a cons
list and grows to the left. Both operands and operators live on the same stack in
the official specification (but in KWasm there is a special stack for operands). For
example, the following is a stack rewrite is for a binary operator, i32.add, so its
execution affects the top three stack elements: the operator and the two operands.

(132.const 1) (i32.const 2) (132.add) — (i32.const 3)

Thus, the top three stack elements have been reduced to one element. (The rest
of the stack below i32.add on the left-hand side and below i32.const 3 on the
right-hand side is implicit.)

Labels specify their arity, n, which is the number of constant values they return,
and their continuations, which is a sequence of instructions, which are only taken
when the label is branched to. The branching instruction br takes a number, which
is the number of labels to break out of, reminiscent of de Bruijn indexing[10]. Thus,
the instruction br 0 means “break to the nearest label”—there may be more labels
preceding the label being broken to'®.

... label, {instr*} val” (br 0) end < val” instr*

When a label is on top of the stack, it is reduced to its result, which is n constants.

Yhttps://github. com/ewasm/design, accessed 2020-01-08.
5The notation used here is simplified compared to that in the official specification, in order to
simply explain these concepts, rather than give a complete semantic definition of labels.
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label,{_} val” end < val"

Frames behave similarly. They are processed when they are at the top of the
stack so that the calling context is restored and values are returned.

The above examples use the abstract syntax of Wasm. Wasm also has two con-
crete syntaxes: a binary format, and a text format. The binary format is designed be
compact and easy to validate in a single pass, ideal for streaming code. It imposes an
exact representation of a module with little wiggle room, for example allowing only
one ordering of the different declarations in a module, The text format is designed
to be readable. It allows for many different syntactic sugars, and declarations in a
module can come in any order.

1.7.2 Blockchains, Ethereum and Smart Contracts

The basic structure of blockchains is presented in the original Bitcoin paper[27]
which serves as an excellent introduction to the field. Blockchains make distributed
(eventual) consensus possible for a sequence of events[4, pp. 217-218]. These events
can consist of arbitrary data—currency transactions and virtual machine executions
being the most common types. A typical blockchain works by having each node in
the network replicating the blockchain data. This means it is relatively costly to
perform any action on a blockchain compared to regular, non-replicated systems, and
that all the data stored in it is public. The cryptography, consensus mechanisms,
network structure, game theory and economics of blockchains are all interesting
topics in their own right. For this thesis, however, we are content to view them as
platforms for ordering virtual machine executions, which is what we are aiming to
verify.

When a blockchain stores virtual machine executions, it is considered a smart
contract platform. Smart contracts make up a computing environment, the code,
and state of which the network reaches consensus on.[37, pp. 9-12]. The execution
model is that of a single, sequential and fully deterministic computer, which ensures
all nodes can reach consensus of the exact state changes introduced in a block.
A prominent example of a smart contract and decentralized application platform
is Ethereum!®. Ethereum uses a specially constructed bytecode language, EVM
bytecode, to run the Ethereum Virtual Machine. The formal specification of EVM
bytecode and the EVM is given in the Yellow Paper[40]. The contracts are executed
by a user sending a transaction, unlocking a little bit of their balance of Ether—the
native currency on Ethereum—to pay for the effects of the transaction, and possibly
some additional Ether which the contract can then use, either by keeping it, sending
it to someone else, or sending it back, or any combination of the two that keeps the
total amount of Ether constant. Since each node in the network replicates the
virtual machine and runs all program invocations, there must be a cost attached to
storing data and running programs, since otherwise an attacker could at will cripple
the entire network by sending large amounts of data or running non-terminating
programs. In Ethereum this attack vector is mitigated by the introduction of “gas”,

16Qutlined in the White Paper: https://github.com/ethereum/wiki/wiki/White-Paper
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which is a cost attached to each action on the network and each transaction run,
paid by the sender and denominated in ether (at a rate decided by the sender).
Storing data costs gas, as does running a non-terminating program—the program
will run out of gas, causing the sender to lose ether while having no effect on the
virtual machine, since out-of-gas exceptions cause the state of the machine to revert
to what it was before the transaction.

Smart contracts are simply computer code on a special machine. In addition
to being regular computing machines—e.g. stack machines—they have a primitive
concept of addresses and currency. Contracts occupy an address and hold value
in the form of cryptocurrency, such as Ether, and transact it as a computational
primitive. The contracts are immutable, so actors can trust that “code is law”—the
contract they have sent money to cannot change behavior after the fact. Smart
contracts can, for example, implement additional currencies, often called tokens,
by simply maintaining a mapping between addresses and balances, which can be
modified through transfers. They can also call out to each other in an agent-like
computer system. Such systems range from the dead simple, such as a single basic
token contract, to the relatively complex, such as the multi-collateral DAI system!”.

While extensive formal verification such as deductive source code verification and
symbolic execution (see Sect. 1.7.3) is often time-consuming and expensive, such
verification efforts become more reasonable in the case of smart contracts. Assuming
the effort required to formally verify a program is proportional to the number of lines
of source code, the cost-to-benefit ratio of verifying smart contracts look promising.
The argument is that while a smart contract hack may cause less damage than a
space shuttle crash or errors in a self-driving car’s decision procedure, the complexity
and size of the codebase in a smart contract is often several orders of magnitude
smaller. The Linux kernel contained over 5 million lines of code as of 2008[22].
If 1.3 trillion USD could potentially be lost due to any single error in the Linux
kernel, then it would have the same potential loss of value per line of code as multi-
collateral DAI does.'® In the short history of Ethereum, several high-profile and
expensive attacks have taken place, [5] perhaps the most prominent being an attack
on TheDAO, in which an attacker stole in the vicinity of 60 million USD.

1.7.3 Formal Verification

Formal verification and formal methods are deep fields with many branches, includ-
ing advanced deductive verification, symbolic execution, satisfiability modulo theory
(SMT) solving, type theory, automata theory and model checking to name a few.
In essence, it is the application of mathematical methods, especially formal logic'®
(the “formal part”), to the task of showing that computer programs fulfill certain
specifications (the “verification” part). While some kinds of formal verification are
commonplace—a type checker is a proof checker due to the Curry-Howard corre-

"https://docs.makerdao.com

18Granted, this is not an entirely fair comparison since the Linux kernel contains many modules
that any given system may not make use of. Still, 5 million lines of code do not stand out as
unusual for a software system in a critical application.

9The reader is directed to any introductory textbook on the subject, such as [21], chapters 1-2
for a primer.
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spondence (see [16], in particular, Sect. 3.5 for an introduction) and many IDEs
offer some static checking based on dependency graphs—others are more esoteric.
This project uses deductive verification with the aid of SMT solving, through sym-
bolic execution, to verify functional correctness. In theory, at least, these methods
allow us to give full functional specifications of computer programs and prove them.

1.7.3.1 Deductive Verification

Deductive verification is any verification that proceeds like a deductive proof, for
example like a proof in natural deduction or in sequent calculus[15, Sect. 2-3]. Pre-
conditions are thus initial assumptions judged to be true, and after suitable reduction
of the program, a deduction must be made that shows that the preconditions in con-
junction with the reduced program imply the postconditions. Note that this means
that the program itself must be expressed in the logic in which the proof is taking
place. This can be done by either expressing the entire programming language in
a suitable logic, by embedding it in the specification language (thereby extending
that language), or by translating a program into a series of verification conditions|6,
p. 7]. The expressibility of the logic dictates what properties can be stated, and
whether or not it is decidable dictates whether or not all properties can be proved
(or disproved) automatically. A simple example of a system for deductive verifica-
tion is Hoare logic[20], in which a programming language’s syntax is translated into
conditions that hold before and after each step in its execution. Using Hoare logic,
the desired proof that a program such as S1; S2 satisfies postconditions Q given
preconditions P is written {P}S1; S2{Q}. Letting semicolon play its usual role in im-
perative languages, this can further be translated to the proof obligations {P}S1{R}
and {R}s2{Q}. {P}s1{R} and {R}S2{Q} are further broken down into further proof
obligations until they can not be decomposed further. The verifier, which may be
human or automatic, then needs to prove each obligation, using the logic of choice,
and the consequence rule, given below, as needed:

PP {(PS{Q) Q@ -Q
{rrs{Q}
Using a similar rule is common in all types of deductive verification, and is often

referred to as “weakening the preconditions” when P # P’ and “strengthening the
postconditions” when @ # @Q'..

1.7.3.2 Functional Correctness

Functional correctness is the property of a system of adhering to a specification
starting from any initial state and for any input, the specification being of observable
behavior of the system rather than its internal structure.[6, p. 3] While “any initial
state” and any output may sound impossibly restrictive—how could we prove a state
is unreachable if the system could start in that state, or that a program that only
accepts certain inputs can handle any input?—it is not so, since the requirement
may rule out certain initial conditions and inputs. If, for example, a program which
only accepts non-negative integers as inputs gets a negative integer, the specification
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would have a precondition violated, letting us conclude L and therefore also @, since
1 — R for all propositions R.

1.7.3.3 Satisfiability Modulo Theory (SMT) and Their Solvers

In Boolean satisfiability (SAT) problems the goal is to find whether there is an
assignment of truth values to propositions P, ..., P, such that a Boolean formula
containing only these propositions evaluates to true. This has turned out to be
a particular kind of problem for which there are very efficient tools, although the
problem is NP-complete in general. An SMT problem is a SAT problem where the
propositions may additionally hold meaning in some theory, such as the theory of
Peano arithmetic, and the goal is instead to find whether values can be assigned to
all free variables in the formula. The goal is to do almost as well as for SAT problems,
but for a broader class of problems. Thus, an assignment of truth values that solves
the corresponding (weaker) SAT problem may not solve the SMT problem. For
example, the SMT problem z < 2 Az = 4 can be solved by turning it into the
corresponding SAT problem P; A P,. Since the arithmetical formulas are unequal,
they can be considered different propositions. The SAT version is satisfiable with
P, = P, = true, while the SMT problem is unsatisfiable since there is no assignment
of x under which both parts of the conjunction hold. Some SMT solvers use a SAT
solver, by first issuing its corresponding SAT problem to the SAT solver, getting
a truth assignment to each atom, and then trying to find an assignment to free
variables that satisfies every truth assignment.?’

Thus, an SMT solver is a program which given an SMT problem it will report sat
unsat or unknown. The result may be unknown due to timing constraints—a definite
answer could not be found in time—or due to the problem being undecidability. In
practice, the former is more often the case, since often SMT solvers make use only
of theories under which the problems are decidable.

SMT solvers are useful in formal verification because they are fast and can be
used for a common subset of problems that a more specialized verification system
may encounter. The verification system can specialize in the deductive verification
specific to the computer program being verified, while facts about arithmetic, strings
or byte arrays can be delegated to the SMT solver. Think for example about the
situation when, deep in program execution, an if-statement is encountered, with
the condition x + y > 0. x and y may be unknown values but have many conditions
apply to them which have been accumulated during the course of execution. If the
SMT solver, when given all the accumulated conditions on the variables x and y
and the claim z + y > 0, comes back with the result unsat, the body of the if is
skipped. If the negation of the formula, =(z +y > 0) comes back unsat, the body is
executed. If both queries come back as sat, then under the given conditions, both
execution paths are possible.

An SMT solver may also help to check postconditions: if the postcondition is
negated and the SMT solver reports unsat, then we know the postcondition always

20Tn principle, the K prover follows a conceptually similar strategy, where it asks the SMT solver
to come up with solutions to a less general problem (intermittent SMT problems) to solve a more
general problem (whether a program satisfies a specification).
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holds, whereas if it comes back sat we know it does not. This project will exclusively
make use of the SMT solver Z3[11], which is used in the K framework’s deductive
program verifier.

1.7.3.4 Symbolic execution?!

Symbolic execution is executing a program, only with variables instead of concrete
values in some places.

Think of it like this: semantics are a description of how a program should com-
pute its result. Computation and calculation are just two sides of the same coin.
Given the program a = 2; b = 3; ¢ = 5; print(1/ (c * (b + a))); we can com-
pute that the program will output 25. No matter what the program looks like, we
can always run it and see what it produces, just like we can compute any arithmetic
expression, e. g., (2 + 3) 5.

Symbolic execution is to computation what algebra is to calculation. Given the
expression (X + (X +1)) % (X +2), we can’t compute a result. We can only rewrite
it, for example to 2X2 + 5X + 2. What we can do, however, is to make deductions
about the expression. And since the concrete expression, with values 2, 3 and 5, is
just a special case of the algebraic expression, anything we can deduce about the
algebraic expression is also valid for the concrete expression, and all expressions like
it. For example, we know that for any value of X > —1 (X + (X + 1)) * (X + 2)
is positive. We can also figure out if there are any interesting edge cases, like if the
result can be 0, which it can (at -2 and —%)

In symbolic execution, instead of fully evaluated results, we end up with symbolic
results. For example, take a look at the following program, where we assume integers
are 32 bit. There are certain “dangers” lurking in it.

Listing 1.2: A small C function to execute symbolically.

function foo(int a, b, c) {
assert (a > b, b >= 0)
if (¢ '= 0) {
d = c * a
if (b == -a) {
return d;
} else {
d =d+ b *x c;
return 1 / d; // Danger zomne.
}
}
return O;

3

Let’s say we get past the assertion at the start. Executing this program symbol-

ically, we realize it can return 0, c*a, or , with a, b and ¢ unknown. Now

c*(b+a)

21Parts of this section has been previously published by the author in a blog post, available
here:

https://medium.com/dlabvc/kwasm-a-new-executable-semantics-for-the-blockchain-14e1bca8a360.
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we want to decide if this division is safe. It obviously is not if a, b and ¢ can be any
value. But it is rare that variables are completely unconstrained. For example, in
this case the assert and if-conditions guarantee that ¢ != 0 and that a > b >= 0, in
which case, things look safe. But the programmer might have missed the possibility
of overflow: if the integer values are 4 bytes, ¢ = 23, b = 0 and a = 2, we get a
division by 0.

It is often hard to catch these cases with testing. In a toy example like the one
above, a verifier can use a pen and paper to make sure they covered every possible
result. With larger programs, it is easier (and faster) to use symbolic execution to get
algebraic expressions of the possible states a program can have when it terminates.

1.7.4 K Framework

The K framework is a software suite that creates several different, common tools
from a single language definition. The syntax and semantics of a language are
expressed in the formal language of K, in one or more modules. For example, it
is common that the syntax and semantics of the language are defined in different
modules, but not necessary. KWasm mixes syntax and semantics in files, so that
the semantics of a language construct are given immediately after its syntax, for
readability reasons.

The syntax of a language is given in a modified version of Extended Backus-Naur
form[34], importantly supporting annotating productions. The semantics are given
as a configuration, expressed as a subset of XML[8] with each tag being a different
cells, and a set of small-step operational rules, which only need to mention the parts
of the configuration they make use of. The semantics are expressed in a similar way
to rewriting logic[24], but the rules express concurrency and can be interleaved[33,
Sect. 2.2]. K even supports configuration composition: defining different parts of
the semantics in different modules with their own configurations, then inserting the
top-level cells of the different semantics as cells in a new top-level cell. Due to the
rules only mentioning the parts of the configuration it uses, as long as the composed
configurations do not have any cell names in common, the rules can be carried over
unambiguously to the composed semantics.

Examples of defining syntax and semantics can be seen in Chap. 1.8. Configura-
tion composition is used to define Ewasm, described in Sect. 2.3.

The K framework explicitly states as its goal to be a universal framework for
programming language definition. [33] Indeed, several mainstream programming
languages have been defined in K, including C [13] [18], Java [7], JavaScript [28],
and Solidity [23]. Most importantly for the blockchain use case, perhaps, is the
K formalization of the EVM-—KEVM was the first full description of the EVM in a
formal verification framework.[19]

Fig. 1.1 shows a conceptual overview of the K framework: from a single definition,
many tools can be generated. These are tools that otherwise tend to be implemented
on a per-language basis. The vision of the K framework is that all tools should be
created only once, and then parameterized by language, instead of hard-coding the
language definition into the tool.
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1.7.4.1 The Deductive Program Verifier

From the specification several tools can be automatically generated by the frame-
work. The most important tool for the proposed project is a deductive program
verifier, kprove kprove treats all rewrite rules in the semantics as axioms. The proof
obligations are then expressed as separate rewrite rules. Using symbolic execution,
applying all possible rewrite rules in turn and branching when several apply, the ver-
ifier can automatically prove or disprove that a program, given some pre-conditions,
will satisfy some post-conditions. When there are no side conditions the prover uses
unification to decide which rules could apply in any given state. However, side con-
ditions may impose extra constraints. To decide whether there is any way to assign
concrete values to symbolic variables so that those constrains are met, a query is
discharged to Z3, the SMT solver. If it comes back unsat the rule can be ignored,
and if not, it will get applied. In the end, Z3 is used again if our proof obligation
dictates that the variables in the final configuration must satisfy certain constraints.
Then, the end constraints are negated, and only if Z3 reports that this is unsat is
the proof complete.

In theory, the fully mechanized semantics of a language should be enough to prove
properties of programs. However, previous experience with KEVM shows that in
reality, this is not true for verifying realistic programs due to the the limitations of
kprove and of Z3.[29] The main limitation consist in K’s inability to reach conclusions
about integer arithmetic—this is delegated to the SMT solvers for all expressions
which are not trivially equal from a structural perspective—and in Z3’s inability to
understand the domain objects of K, as well as efficiently reasoning about certain
modular arithmetic which is common in KEVM—and, as we shall see, in KWasm.
The result is that whenever the prover reaches a decision point where the decision
depends on equalities or inequalities in arithmetic, but the formulas also contain
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domain objects, the prover is stuck. To cope with this, one can add new axioms to
the semantics for the prover to apply that it in principal should be able to deduce
on its own—i.e. taking care to not extend the theory (by making new things true)
in the process.

The underlying logic of the K deductive verifier is all-path reachability logic[35],
a subset of matching logic[32]. All-path reachability deals with the question of
whether on every terminating path of execution in a symbolic and possibly non-
deterministic program a certain state will eventually be reached. The program and
the end state both take the form of a pattern with side conditions, and thus the
resulting proofs show that any program matching the initial pattern will eventually
reach a state where it matches the end pattern. The logic is designed to take the
transition rules in an operational semantics (rewrite rules) as axioms, while the rules
of the logic allows reasoning about non-determinism. Using reachability logic or the
more general matching logic is one alternative to Hoare logic (see Sect. 1.7.3.1).

1.7.4.2 The K Language
In K syntax productions are declared in the following way.

Listing 1.3: Basic syntax declarations in K.

syntax Var ::= Id

syntax Expr = Int | Var
| Expr "-" Expr
|

Expr "+" Expr

syntax Expr Expr "==" Expr

syntax IntList ::= List{Int, ":"}

This creates the Expr and Var sorts, and two new terminals, - and +. We can
extend a sort in several different syntax declarations, as is done with Expr above.

A special type of production is List, which creates a list sort from a sort and
a delimiter string. So for example, the IntList syntax declarations declares a list
of integers delimited with : This would tell the parser that the string “1 : 2 : 3”
could be a list. Inside K the list is terminated by a nil value derived from the sort
name—the above type of list would have the nil value .IntList.

Furthermore, syntax productions can have extra annotations. For example, take
the following production:

Listing 1.4: Syntax annotations in K.

syntax Int ::= sum(IntList) [function, functional, smtlib
(intSum) ]

rule sum(.IntList) => 0

rule sum(I : IS) => I +Int IS

The function annotation means that the rules using this production apply any-
where and immediately. The rules can thus not mention cells or any other context,
but must all data available to it passed as parameters. The functional annotation
says that the function is total. It is up to the implementer to ensure this is the case.

16
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The smtlib annotation tells the SMT solver to declare this as a function in SMT
world, rather than treating an unevaluated sum(X) as a separate constant in every
instance. The rule for the above declared sum function would be: The function’s be-
havior is specified with the rule keyword, where each rule may use pattern patching
(as we do here) or with side conditions, or both.

A semantics can have one or more?? configurations, which describe the runtime
structure. The structure is an extensible tree with typed nodes, described using
an XML-like syntax. Typically, there is a <k> cell which can hold values of any
sort (they are all subsorted under the K sort) where the initial program is put. For
example, a simple stack-based language may have this configuration:

Listing 1.5: Example of a K semantics configuration.

configuration
<k> $PGM:Expr </k>
<stack> .IntList </stack>
<vars> .Map </vars>
<storage>
<location multiplicity="*" type="Map">
<index> 0 </index>
<value> 0 </value>
</location>
<size> 0 </size>
</storage>
<result> 0 </result>

The multiplicity and type annotations mean that the <vars> cell contains any
number of <var> cells, and that the first cell in <var>, in this case <name>, can be
used for lookups. Internally this structure is turned into a map with Identifiers
as keys and <var> cells as values. The map is initially empty.

The operational semantics in K is given with rules. Rules have left-hand sides,
right-hand sides, requires-clauses and ensures-clauses. We already saw examples
of rules when we defined the sum function above. They had with left-hand and
right-hand sides separated by => and no condition clauses. The main differences
between function rules and operational rules are that the latter may mention cells,
and are treated as the steps of the interpreter or virtual machine, that the prover
may branch on. For example, we could imagine rules using the configuration and
syntax we have already defined may look like this:

Listing 1.6: Operational rules in K.

rule <k> V:Var => N ... </k>
<vars> ... V |-> IDX ... </vars>
<location>
<index> IDX </index>
<value> N </value>
</location>
requires IDX >Int O

Z2Typically there is only one configuration per semantics. Several configurations are only used
in practice with configuration composition.
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rule <k> N:Int => . ... </k>
<result> _ => N </result>

Let us consider the first rule. The requires-clause ensures we are only accessing
non-zero addresses, meaning this rule does not deal with null pointers in our lan-
guage. The ... at the end of the <k> cell means the cell contains an associative list
with ~> as the separator and . as the identity. <k> X => Y ... </k> is syntactic
sugar for <k> X ~> DOTVAR => Y ~> DOTVAR </k>, or, equivalently, <k> (X => Y)~>

DOTVAR </k>. In interpreting the rules, the parentheses group to the right, but the
list can be appended to from either end. The double ... around the map indi-
cate that map is an associative-commutative structure of _ |-> _ key-value pairs,
and that we match anywhere in that structure. Equivalently, we could have called
matched on the <vars> cell with the pattern <vars> VARS </vars> and replaced IDX
with VARS[N] in the rest of the rule. Note also that we only mention the cells we are
accessing, and that the left-hand side consists of all the left-hand sides of => in the
cells which have this arrow, and vice versa for the right-hand sides. The cells which
are not mentioned, or which do not contain a => symbol, have identical left-hand
sides and right-hand sides, meaning they do not change.

The next rule uses two more features: the _ wildcard, and the . identity of the
~> associative list. This rule gives our language the feature that the last computed
number is the result, and is put int the result cell.

The syntax, configuration and rules can be grouped in modules. Modules can
import other modules, which is essentially like a C import: it is as if the entire
contents of the imported module was pasted in place of the import. For example,
the DOMAINS module contains much of the K standard library for maps, integers
and strings. A common practice®® is to separate the syntax and the semantics
into separate modules, the latter importing the former. For example, the little
toy language we have defined in this section could look like this, spread over two
modules:

Listing 1.7: An example of a complete K semantics, split over two modules.

module K-PRIMER-SYNTAX
imports DOMAINS

syntax Var ::= Id

syntax Expr ::= Int | Var
| Expr "-" Expr
|

Expr "+" Expr

syntax Expr Expr "==" Expr
syntax IntList ::= List{Int, ":"}

endmodule

23We deviate from this practice in KWasm by importing in the reverse direction, importing the
semantics module into the syntax module. This is to avoid parsing issues.

18




15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

1. Background

module K-PRIMER
imports K-PRIMER-SYNTAX
configuration
<k> $PGM:Expr </k>
<stack> .IntList </stack>
<vars> .Map
<storage>
<location multiplicity="x*"
<index> 0 </index>
<value> 0 </value>
</location>
<size> 0 </size>
</storage>
<result> 0 </result>

</vars>

syntax Int ::=
(intSum)]
rule sum(.IntList) => 0
rule sum(I IS) => I +Int IS
<k> V:Var
<vars> ... V

=> N </k>
| -> IDX

rule

<location>
<index> IDX </index>
<value> N </value>
</location>
requires IDX >Int O

rule <k> N:Int
<result>

=> </k>

// K uses C-style comments.
/* Here is
a multiline comment.

*/

endmodule

sum(IntList) [function,

_ => N </result>

type="Map">

functional, smtlib

</vars>

1.8 The KWasm Project

At the outset of this project, KWasm supported most of the functionality in a single
Wasm module: declaring and using functions, memories, tables and globals, and
putting almost all instructions (except certain floating-point conversions) in a func-
tion body. In Chap. 2 we describe how we added support for interacting modules,
along with some other refactoring and code improvements and more thorough test-
ing. In this section, we give an overview of KWasm, its design, and its relationship

with the official specification of Wasm.
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1.8.1 Design

The basic design of KWasm follows that of the official specification of Wasm, which
uses a very similar formalism to that of K. We have only chosen to deviate from
Wasm in one way: instructions can be executed directly, like in regular assembly
language, without invoking a function. The KWasm program starts with an empty
stack, so all stack-based operations can be executed directly. The rest of the config-
uration contains minimal default values.

The execution semantics is split up in four main files: data.md, numeric.md,
wasm.md and wasm-text.md. Each uses a literate programming style, interleaving
Markdown documentation and K code. data.md holds modules that define data
structures that are needed for the semantics, but are in principle decoupled from
Wasm, such as stacks and byte maps. numerics.md contains numerical functions
described in [31, Sect. 4.3] that instructions lift their operands through, such as eq,
add and xor. wasm.md contains the bulk of the abstract syntax and semantics as
described in [31, Sect. 4.4, 4.5]. wasm-text.md contains text-only syntactic sugars
as described in [31, Chap. 6]. In the situations where the text format syntax and
abstract syntax overlap or are one-to-one, they are put in wasm.md rather than in
wasm-text.md.

1.8.2 Wasm and KWasm Introduction

Wasm is a stack-based language with high-level features such as functions and mem-
ories with bounds checks. All Wasm code is structured as modules, which is a set
of structures that have access to each other—functions that can call each other,
memories that can be accessed, etc. Some of these may be declared in the module
itself, while others may be imported. KWasm executes a module by sorting its list
of declarations (described in Sect. 2.1) and putting them in the <k> cell. The only
place where regular, assembly language-like instructions appear in Wasm is in func-
tion bodies. When a function is invoked, its body is loaded at the top of the <k>
cell.

So the <k> cell holds lists of instructions and lists of declarations. We order
instructions and declarations into the supersort statements, and list of instructions
of declarations into lists of statements®!. The lists are consumed by taking the first
element of each and sequencing them with the rest of the list using the associative
list operator ~>. This process is called “heating” in K. Then rules can match on the
head of the <k> cell, with ... occluding the rest of the list.

Listing 1.8: The rules for sequencing statements in KWasm

syntax Stmts ::= Instrs | Defns

[/ mmmmmmm o
rule <k> .Stmts => ... </k>
rule <k> (S:8tmt .Stmts) => S .. </k>

24 All the lists—of declarations, of instructions, and of statements—are produced by the parser
and then consumed, never extended. Due to the operation of taking from a list being covariant in
the list sort, we can treat a list of declarations as a list of statements.
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rule [step] : <k> (S:Stmt SS) => S ~> 88 ... </k>
requires SS =/=K .Stmts

1.8.2.1 Instructions

Instructions manipulate the stack by pushing constant values onto it, or by pushing
call frames or branching targets (called “labels”). While the Wasm specification
keeps everything on a single stack and regular Wasm implementations use different
stacks for each, KWasm uses two stacks: one for constants, and one for everything
else. The stack for numeric constants is called <valstack> in KWasm. A Val has
the form < TYPE > VALUE in KWasm, the TYPE being i32 or i64 for integers, or the
special case undefined. Numeric instructions return a Val, where an undefined may
result from an operation such as division by 0.

Listing 1.9: Pushing constants in KWasm.

syntax PlainInstr ::= IValType "." "const" Int
A e
rule <k> ITYPE:IValType . const VAL => #chop (< ITYPE >
VAL) ... </k>
rule <k> undefined => trap ... </k>
rule <k> V:Val => . . </k>

<valstack> VALSTACK => V : VALSTACK </valstack>
requires V =/=K undefined

Constants get pushed to the stack by being lifted through the #chop function,
which returns a val. This allows negative integers or integers outside the range of
the type to be given to the const instruction and turned into their representative in
the range from 0 to 2"™YPEI=1 The resulting Val is pushed to the <valstack>.

An example of consuming the stack is binary operations, such as i32.add or
i64.eq. These can be abstracted in the following way.

Listing 1.10: Popping constants for binary operations in KWasm.

syntax PlainInstr ::= IValType "." IBinOp

rule <k> ITYPE . BOP:IBinOp => ITYPE . BOP C1 C2 ... </k>
<valstack> < ITYPE > C2 : < ITYPE > C1 : VALSTACK =>
VALSTACK </valstack>

This rule consumes two operands and passes them to the function . which takes
a type, a binary operation-representing atom (such as add) and the operands, and
results in a new val.?

All functions that return a Val respect the custom that vals should be in the
correct range for their type. Therefore, the only place where integers in the wrong
range can appear is in the const operations. Throughout the semantics, it is assumed

Z5This is indeed a function, declared with the production syntax Val ::= IValType "."
IBinOp Int Int [klabel(intBinOp), function].
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that Vals respect this invariant. This assumption will be made explicit when we
cover proving in Chap. 3 with the predicate #inUnsignedRange (TYPE, NUM).

In the text format of Wasm instructions can be folded, allowing operations to be
written in an S-expression-like form by wrapping them in parentheses and giving
them 0 or more “arguments”. Non-folded instructions are called plain instructions,
as seen in listings 1.9 and 1.10 in the sort name PlainInstr. So for example, the
following sequences of instructions are desugared to the same sequence:

e i32.const 1 i32.const 2 1i32.add

e (i32.add (i32.const 1)(i32.comnst 2))

e i32.const 1 (i32.add (i32.const 2))

e i32.const 1 i32.const 2 (i32.add)

Listing 1.11: Rules for unfolding folded Wasm instructions.

syntax FoldedInstr ::= "(" PlainInstr Instrs ")"
| "(" PlainInstr ")" [prefer]
A e e L L E LR
rule <k> ( PI:PlainlInstr IS:Instrs ):FoldedInstr => IS ~>
PI ... </k>
rule <k> ( PI:PlainlInstr ) :FoldedInstr =>
PI ... </k>

The [prefer] annotation is an instruction to the parser.

1.8.2.2 Declarations
Here is an example of a function declaration in Wasm:

Listing 1.12: A Wasm function declaration.

(func $main (result i64) (i32.const 42) (i64.const 10) (call
$set-and-return))

The func keyword, the (optional) identifier $main and the type declaration (
result i64) make up what may be called the function header in other languages,
while the rest of the declaration make up what might be called the function body.
The body is made up of a list of instructions.

Central to Wasm is the concept of the store. This is where all functions, memories,
tables, and globals live. The module is simply a collection of pointers into the store.
If the store is S and the list of functions is S.funcs, which has length n, then when
we declare the function in listing 1.12, the list S.funcs gets extended, and pointer is
added to the module that indicates that the $main function can be found at location
n in the store. Inside a module, a function (or other allocated element) is referenced
by its indexr . If the function in listing 1.12 is the first function to appear in the
module, it gets index 0. The next function will get index 1, and so on. Each index
then points to an address in the store.

1.8.2.3 Runtime Structure

The complete configuration of the KWasm is given in App. C. Below we give an
abridged version, focusing on the parts necessary for dealing with functions, with
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1. Background

<...>in place of omitted cells.

Listing 1.13: Abbreviated KWasm configuration.

configuration
<wasm>
<k> $PGM:Stmts </k>
<valstack> .ValStack </valstack>
<curFrame >

<locals> .Map </locals>
<curModIdx> .Int </curModIdx>
<. L0 2

</curFrame>
<moduleInstances>
<modulelInst multiplicity="*" type="Map">

<modIdx> 0 </modIdx>
<types> .Map </types>
<funcIds> .Map </funclds>
<funcAddrs> .Map </funcAddrs>
< oo

</moduleInst>
</moduleInstances>
<mainStore>

<funcs>
<funcDef multiplicity="*" type="Map">
<fAddr> 0 </fAddr>
<fCode> .Instrs:Instrs </fCode>
<fType> .Type </fType>
<fLocal> .Type </fLocal>
<fModInst> O </fModInst >
</funcDef >
</funcs>
<nextFuncAddr> 0 </nextFuncAddr>
<tabs> <...> </tabs>
<mems > <...> </mems>

<globals> <...> </global>
</mainStore>
< .02
</wasm>

The <curFrame> cell informs us about in which module we are currently execut-
ing (may change when we call an imported function) and what local variables are
available. The <curModIdx> cell is used to look up the correct module in the set of
modules. A module instance has mappings between indices and addresses, as well as
some extra mappings between identifiers and information about the different types
of the functions in a module. The global store contains the actual functions, where
each function has an address by which we reference it (growing from 0, where each
new allocated function gets the next available address), a body, a type, a definition
of which local values it has available, and a reference to which module it belongs
to. The module index is necessary to know, for example, which memory should be
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modified when invoking the i32.store operation.
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Part 1: Completing and Extending
KWasm

To use KWasm for verifying things like host function calls and smart contracts, we
need to complete KWasm and extend it with an embedding. Part 1 of the project
is to make these completions. We start by adding support for modules, imports,
and exports. In the process, we also found that with full module support we could
test our implementation against official conformance tests with little extra effort,
which helped locate some missing functionality and revealed some issues with the
test suite that makes it non-ideal for our purposes. Finally, we add a prototype
EWasm embedding by composing an Ethereum client semantics with KWasm and
connecting them through a thin synchronizing interface.

2.1 Giving KWasm Support for Modules

KWasm was developed from the bottom up, starting with basic stack operations
and adding higher-level features such as function calls, tables, and memory. Yet
Wasm programs always come packed in modules, and interaction between several
modules is a core Wasm functionality. The final major step in completing KWasm
has been to allow support for having several, full modules.

A Wasm module may contain any of the following:

 functions

« named types

e a memory

e a table

o globals

« table initializations

e memory initializations

e imports

e exports
a start function.

The simplest possible module is simply (module), which contains none of the
above, while a module containing all of them may look like follows:

Listing 2.1: A simple Wasm module

(module
(global $x (import "otherModule" "gi") i32)
(func $init
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2. Part 1: Completing and Extending KWasm

(i32.store (i32.comnst 0) (global.get $x))

)

(type $main-type (func (result i64)))

(func $main (export "main") (type $main-type)
(i64.load (i32.const 0))

)

(memory 1)

(table $tab funcref (elem $init $main))

(export "myTab" (table $tab))

(start $init)

2.1.1 Finding the Correct Order of Definitions

Each memory, table, etc., in KWasm is defined, or declared,' and is then available
for use. However, the text format of Wasm allows declarations to come in any order
inside a module. However, some declaration types depend on others, so the first step
to instantiating a module is ordering the declarations. The official specification’s
description of module allocation and instantiation[31, Sect. 4.5] proceeds sequentially
from the structured module format, where all declarations are available. KWasm
consumes modules based on the text format, applying syntactic sugars as they are
encountered, in an interpreter-like fashion. Some declarations can be made inline.
For example, a function export can be specified in the function header, or an import
can be declared as a regular function without a body and with an import statement.

To the best of our knowledge, KWasm is the only Wasm implementation to in-
terpret the Wasm text format, where most other representations either compile the
code, interpret the binary format, or first convert concrete syntax into the abstract
syntax before interpreting. In KWasm, we try to use the text format as given,
desugaring and reordering in a streaming fashion as much as possible. Therefore, in
KWasm declarations are handled as they are encountered?. However, declarations
may depend on each other. Some declarations are allocations and create a new
structure—table, function, memory, or global—in the global store, and a pointer in
the current module to that location in the store. Other declarations are initializa-
tions, which modify the contents of structures in the global store. Then there are
export and import declarations, which create names for store pointers, and import
those pointers by name.

In Wasm, function, memory, table, global, import and export declarations are called “defini-
tions”, and the naming of the sorts in the KWasm specification will reflect this. However, we find
that the term “declaration” is a clearer description, and will prefer to use it.

2Note that “interpreting the text format” is not perfectly sound. The top-level (module ...)
may be omitted in a text format source file. However, in KWasm, each declaration is processed
as it is encountered, and declarations only get sorted when wrapped in a top-level (module ...)
constructor. So, for example, the valid source text (export "foo" (func 0)) (func), where
the export precedes the function definition, cannot be processed by KWasm. A future improvement
proposal is to perform a first pass over the parsed source to desugar the text format into the core
AST format. One transformation of this first pass would be to ensure there is a top-level (module

...) to each module. Another possible is approach is to push declarations that cannot be
processed right now to a “waiting” stack, to be processed before finishing the module.
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These declarations have certain natural dependencies on each other. To determine
in which order declarations need to be handled we studied the official specification
and cataloged the dependencies. Fig. 2.1 shows the dependency directed acyclic
graph between different types of declarations. At the bottom of the hierarchy are
the allocations—globals, functions, tables, and memories—and imports, which are
always declared with their full specification present. Exports rely on these alloca-
tions since what they export must have been allocated (and thus given an index
within the module, and an address in the store). However, exports do not require
any initialization, since they only need to know what index they are exporting, not
what is at the address the index points to. All initializations, unsurprisingly, depend
on what they initialize having been allocated. Thus, data depends on memory hav-
ing been allocated (or imported), elem depends on a table having been allocated (or
imported) as well as the function it is inserting, and initializing globals require that
they have been allocated (or imported). At the bottom of the hierarchy of initial-
izations is initializing globals. The reason is that both elem and data initialization
may make use of constant expressions, which is any sequence of instructions where
each element is either of the type t.const or of the type global.get, where the
global value being accessed has mutability const, i.e. it is immutable.[31, Sect. 3.7]
Finally, initializing a module with a start function means running that function,
the body of which can contain arbitrary code that may access memory, tables, and
globals and call other functions. Therefore, the start function may only be run when
the rest of the module is fully instantiated.

In handling a standard Wasm program, we encounter top-level modules, wrapped
in (module ...), containing declarations in any order, which we need to make sure
we handle in the right order. Furthermore, the text format allows nesting declara-
tions in a sugared way, for example allowing declaring the export of a function in
the definition of that function. Therefore we need to make sure that

1. when instantiating a module, its declarations are grouped, and

2. when desugaring nested declarations, it is turned into a sequence of declara-
tions,

so that each declaration has its dependencies fulfilled before being handled.

2.1.2 Grouping the Declarations in Top-Level Modules

When encountering a top-level module, we group the declarations in a module ac-
cording to sort. The first step is to make a different sort for each type of declaration,
and give them a common super-sort. For example, the syntax declarations for func-
tion declarations have the following form.

syntax Defn = FuncDefn
syntax FuncSpec ::= TypeUse LocalDecls Instrs
syntax FuncDefn ::= "(" "func" Optionalld FuncSpec ")"

3Currently, a constant expression may only access imported globals, a constraint that may be
lifted in the future. We do not enforce this constraint in KWasm. This may lead to trouble in an
invalid module, since a global initialization expression may contain global.gets of uninitialized
globals. According to the basic principles of KWasm, this is not a problem, since we assume we
are only dealing with valid modules, and thus only imported globals can be used, which must
necessarily have been initialized.
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start
elem export data
initialize
func table b=l memory
type global import

Figure 2.1: This directed graph shows how the different parts of a module’s dec-
larations depend on each other. Red hexagonal nodes indicate allocations, which
create a new structure in the store; blue elliptical nodes indicate initialization, which
alter the contents of that structure; and white boxed nodes indicate definitions that
only alters mappings in the current module. For example, an export depends on the
field it exports having been allocated (so that its index is known).

|

A module is defined to be a series of declarations. These declarations are first
grouped by type through an auxiliary function and turned into a structured for-

mat, and then the declarations are carried out in an order that respects the above

dependency graph.

//
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ModuleDecl
"(" "module" Optionalld Defns ")"
[ "module" Optionalld Map

syntax Stmt
syntax ModuleDecl

rule <k> ( module O0ID:Optionalld DEFNS ) => sortModule(
DEFNS, 0ID) ... </k>

rule <k> sortedModule(... id: 0ID, types: TS, importDefns
IS, funcsGlobals: FGS, allocs: AS, exports: ES,
inits: INIS, start: S)
=> TS ~> IS ~> FGS ~> AS ~> ES ~> INIS ~> S
</k>
<curModIdx> _ => NEXT </curModIdx>
<nextModuleIdx> NEXT => NEXT +Int 1 </nextModuleldx>
<moduleIds> IDS => #saveId(IDS, 0ID, NEXT) </
moduleIds>
<moduleInstances >
( .Bag
=> <modulelInst>
<modIdx> NEXT </modIdx>
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export
Y
elem type import data
table func global memory

Figure 2.2: This directed graph shows which declarations can be inlined in another.
For example, a table or memory can have their initializing declarations inlined, and
any allocation can be exported inline.

</moduleInst>

)

</modulelnstances>

The sortedModule rule uses record syntax: the sorting function returns a record,
which can be accessed with a leading ... symbol and field names followed by a :,
such as types: TS.

It is important that the grouping respects the internal order of each type of
definition since their order is used to assign them indices that they can be referred
to by internally.

2.1.3 Desugaring Inline Declarations

Due to the above-mentioned sugaring, the module sorting will not put all exports,
import, elem and data declarations in the correct order. For example, any allocation
may have an inlined import and any number of inlined exports, and memory and
table declarations may have inlined data or elem declarations, respectively. [31,
Sect. 6.6].

Fig. 2.2 shows which declarations can be inlined inside another. If we want to
be able to desugar these declarations as we encounter them, we need to make sure
that all the dependencies of the inlined declaration are in place at the time it is
encountered. We can check this in a structured manner by looking at each edge in
Fig. 2.2 and convincing ourselves that it can be suitably dealt with.

Every edge originating in the export node can be dealt with by performing the
allocation or import first, obtaining an index and exporting it. Due to the initial
grouping of the different declarations in a module, imports cannot be dealt with as
they are encountered, because the order of imports must be respected, and desug-
aring after grouping different kinds of declarations could mean that, for example,
a (func ... (import ...)) would always get reordered so that it would appear af-
ter an (import ... (func)). Therefore we make use of the [macro] annotation of
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K and immediately desugar these imports.*

The arrows from the elem and data nodes are dealt with by sequencing definitions
so that the allocation comes before the initialization. Here, too, we must ensure that
the order of data and elem segments is not changed since they should be processed
in given order in the module. For example, the following two Wasm modules are
equivalent and represent a sugared, desugared, reordered, and simplified module,
respectively.

Listing 2.2: Three equivalent text format modules.

(module (data (i32.const 0) "ab") (memory (data "cd")))

(module (data (i32.comnst 0) "ab") (data $id (i32.const 0) "cd
") (memory $id 1 1))

(module (memory $id 1 1) (data (i32.const 0) "ab") (data $id
(i32.const 0) "cd"))

(module (memory $id 1 1) (data $id (i32.const 0) "cd"))

In this instance, the first data declaration would be overwritten by the second.
However, using reordering before desugaring would cause the following modules to
be equivalent.

Listing 2.3: Three equivalent modules when (incorrectly) reordering before desug-
aring.

(module (data (i32.const 0) "ab") (memory (data "cd")))

(module (memory (data "cd")) (data (i32.const 0) "ab"))

(module (memory $id 1 1) (data $id (i32.const 0) "cd") (data
(i32.const 0) "ab"))

(module (memory $id 1 1) (data (i32.const 0) "ab"))

Note that the starting from the same module, if reordering comes before desug-
aring, the memory contains the byte representation of "ab" in the end, rather than
"cd".

The official specification instructs us to do this by placing the data or elem seg-
ment right after the memory or table allocation, introducing an identifier for the
memory or table if necessary. Since there can be at most one memory and one
table per module, we can choose a module-unique identifier and then perform the
expansion, again using the [macro] annotation.

The arrow from the type node is slightly more complex. In short, types can be
declared separately, and functions can then refer to the type by index or name. The
below module has functions of two types. The first type is declared explicitly at the
module level, while the second type is the implicit. Implicit types are only allowed
in the text format.

Listing 2.4: Examples of function type uses.

(module
(type (func (param i32) (result i64)))
(func $uses-type-O-explicit (type 0) (i64.

extend_1i32_u (local.get 0)))

4For historical reasons, KWasm has not used [macro], but desugaring text-format declarations
would be a good use of them. See this issue for discussion.
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(func $uses-type-O-implicit (param i32) (result i64) (i64.
const 0))

(func $declares-new-type (param i32) (result i32) (i32.
add (local.get 0) (local.get 0)))

(func $uses-type-1-implicit (param i32) (result i32) (i32.
add (local.get 0) (local.get 0)))

(func $uses-type-1l-explicit (type 1) (i32.
add (local.get 0) (local.get 0)))

The first two functions both use the same type, which was declared explicitly.
One of these references the declared type directly, while the other does so implicitly,
by having the same type. The next three functions all have the same type. When
a function is encountered in the text format, and its type is not already present as
a module-level type, a new module-level type is declared. This is the case for the
first function in the second group. The next function reuses the type implicitly, by
having the same type signature, while the third reuses this type explicitly: it will
have index 1 since it is the second type to be declared in the module.

Dealing with types was handled outside the scope of this project, by other KWasm
contributors before this project started. It involves desugaring, checking for the
existence of types and reusing them properly, using the correct index or identifier.

With that, all the arrows have been addressed and thus all the ways of inlining
declarations in each other can be handled correctly.

2.2 Testing KWasm Against the WebAssembly
Core Test Suite

WebAssembly has a reference test-suite for the core semantics, as well as equivalent
tests for a JavaScript embedding®. These test conformance for an implementation of
the core (or unembedded) Wasm semantics. After implementing modules in KWasm
it became possible to run these tests to identify missing functionality in KWasm since
the tests often declare one or more modules and test interaction between modules.
This presented us with some low-hanging fruit, where we could sanity-check KWasm
against the core test suite.

This section describes the process of setting up the test harness, the result of
running these core tests and what missing functionality was identified. In Chap. 4
we will discuss why we believe the core test suite is unsuitable as a standard test of
a pure Wasm implementation.

Shttps://github.com/WebAssembly/spec/tree/master/test
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2.2.1 The Reference Interpreter

The test suite contains definitions that are not in the official Wasm specification.®
To some extent this is necessary. Wasm can not be executed on its own—it must be
embedded. Thus, the reference interpreter provides an embedding. The embedding
has sparse documentation’, but its core functionality is simple:

 Files are processed from the top down, like a script.

o A module definition both defines a module, validates it and creates an instance
of it.

o Modules can be registered with the ( register <string> <name>? ) function.
If <name> is omitted, the last instantiated module is registered.

e An import ( import <modulename> <name> ) is resolved by looking up the
module name in the registry, and importing from the exports in that module.

e Functions can be invoked with a special ( invoke <name>? <exportname> <
arguments>* ) and exported globals can be accessed by ( get <name>? <exportname
> ).

o There is a set of assertions which check that calls return specific values (or fail
in some fashion), that they trap or that a module definition is somehow bad, either
malformed, invalid, or “unlinkable”, meaning imports cannot be resolved.

e Modules can be specified as byte arrays with ( module binary <bytestring>*

) or as strings with ( module quote <string>* ). Since the test files are parsed,
malformed modules would break parsing. These special module kinds allow putting
off parsing until run-time so that exceptions can be checked and caught using asser-
tions.

The reference interpreter also has two undocumented host modules, called "test"
and "spectest". Any calls to these can not be represented purely as Wasm code, so
an embedding is necessary. We have not yet reverse-engineered these host modules,
and therefore the tests invoking the host functions will not pass.

2.2.1.1 The WASM-TEST module

We extend KWasm with a module, WASM-TEST, that contains commands for writing
ad-hoc unit tests, as well as commands from the reference interpreter. The module
extends the Stmt sort with the Auxil sort which includes assertions and methods for
invoking function from outside a module.

However, we do not implement all the functionality of the reference interpreter.
For example, we do not implement assertions check for invalid or malformed mod-
ules, which we do not consider. Other assertions the reference interpreter supports
that we simply skip over (rewrite to . immediately) are those that check what kind of
NaN certain functions return; assert_unlinkable, which check that imports resolve
correctly; and assert_exhaustion which ensures that a non-terminating recursive
function will eventually cause the runtime to run out of resources since the seman-
tics do not allow tail-call optimization. The arguments for not implementing the

6There is, however, an appendix in the specification on a suitable interface between Wasm
and an embedding[31, Sect. 7.1]. The reference interpreter implements many of these interface
functions.

"https://github.com/WebAssembly/spec/tree/master/interpreter
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NaN assertions and assert_unlinkable are, respectively, that we have no ambition
to have official floating-point number support, and that we assume we are working
only with valid (linkable) modules. The reason that we skip exhaustion checking is
that it would complicate the semantics with no real benefit: we could add a cell to
the configuration with an integer that increments at each function call, and throw a
special exception when a certain number is reached; but we do not do any tail call
optimization, so resources will eventually exhaust, with failure of the runtime as a
result, rather than a catchable exception. Our chosen behavior matches the seman-
tics of Wasm—an infinite recursion without tail-call optimization must eventually
exhaust the machine—but the reference interpreter uses a special exception to catch
this type of error and test for it.

Perhaps the biggest piece missing from the WASM-TEST module is the host modules,
"test" and "spectest". KWasm, therefore, does not pass the conformance tests
which make use of the host modules. 9 of the total 73 test files contain these
imports. We have not investigated what would be necessary to add support for such
modules, but in private communication with other Wasm implementers, we have
been told that they have dealt with this by reverse-engineering the behavior of the
reference interpreter.

2.2.2 Discovering Missing Functionality

After implementing an embedding mimicking the reference interpreter, we set up a
simple harness. The core test files are written as scripts. If reference interpreter
halts at the end of the script with no result, all tests passed. The same is true of
the generated KWasm interpreter.

We pass each file in the core test suite gets to KWasm. If KWasm fails to parse
the program, the name of the file is appended to file called “unparseable.txt”. If
the test parses, the test is executed on both the concrete backends, OCaml and
LLVM. If the execution does not complete, it is appended to another file, either
“unsupported-ocaml.txt” or “unsupported-llvm.txt”. The tests that pass are thus
added to neither file, and we can inspect the lists of failing tests at our convenience.

Based on these lists we looked for unsupported functionality in KWasm.

2.2.2.1 Missing Floating-Point Representation

The core tests use the Wasm text format. The text format supports declaring
floating-point numerals in hexadecimal format, e.g. (£64.const -0x1p-1). K does
not have built-in support for parsing floating-point numbers in this format. We
introduced a simple Python preprocessor that turns hexadecimal floats into floats
given in decimal notation, and the preprocessor is now part of the KWasm runner.

2.2.2.2 Specifying Modules

By running the core tests that we found instances where incorrect reordering and
desugaring were causing incorrect behavior, the likes of which we described in Sect.
2.1.3.
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Furthermore, to run the tests we needed to add support for two special ways to
declare modules, (module quote <String>) and (module binary <String>). These
are features of the reference interpreter, not of Wasm. These allow passing a module
in one of the two concrete Wasm formats—text and binary—which will result in
either the module being decoded and validated and instantiated as usual or an
exception being raised if the module is malformed. This is a way to check, inside
the reference interpreter, if the parser works correctly. Since KWasm only deals
with the execution of valid modules, and the roles of these constructs in the core
test suite is to check if a concrete representation is malformed, we do not consider
such modules, but simply skip over them.

2.2.2.3 NaNs With Payloads

A regular NaN value has any sign, the largest possible exponent, and a non-zero signif-
icand (a zero-significand makes the value infinity, positive or negative) [9, Sect. 6.2.1].
The canonical NaN has a significand which has the most significant bit (bit 22 for
£32, and bit 52 for £64) set to 1, and the remaining bits in the significand set to
0[31, Sect. 2.2.3]. However, any non-zero significand is valid. The text format al-
lows specifying a NaN with any non-zero payload given as a hexadecimal number.
For example, the canonical £32 NaN value can be specified as (-nan:0x200000) [31,
Sect. 6.3.2].

The floating points of K do not have support for NaN payloads. Converting all NaNs
to canonical NaNs is also not an option: it would preserve the behavior of floating-
point arithmetic, but cause incorrect conversions and memory manipulations. While
the official specification allows an implementation to always give canonical NaNs as
the result for most® arithmetic operations on NaNs[31, Sect. 4.3.3, NaN Propagation],
other operations make use of the exact bit pattern of a floating-point number. For
example, converting a floating-point to an integer is simply reinterpreting the bits,
so that NaNs with different payloads will result in different integers. Also, storing
floating-point numbers in memory similarly must respect the actual binary repre-
sentation.

Since KWasm does not yet, and may not ever, have full support for floating-point
conversion to integers and to byte representations, the only ways to get an observable
difference between NaNs with payloads and canonical NaNs is through unsupported
operations. We can therefore safely, for now, use only canonical NaNs by stripping
the payload during preprocessing. Any tests that would fail due to this change
causing observable changes will fail anyway due to unimplemented behavior.

2.2.3 Conclusions

Setting up the test harness allowed us to address some shortcomings, but did not give
any conclusive answers as to whether KWasm is as conforming to the official Wasm
specification as we would like it to be. Our choice to not support floating-point
numbers causes many of the failures, as does our current lack of implementation

8Some arithmetic operations must respect the payload and only change the sign of the input:
fneg, fabs and fcopysign.
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of the host modules. Until KWasm becomes a complete Wasm interpreter, which
may require adding support for the byte format and floating points, we will not
be able to pass the remaining tests. We would be helped by more granular test
files, where modules are not grouped only by what operations or declarations they
concern themselves with, but where each file is also as self-contained as possible,
with modules (and their tests) that do not depend on any other modules being
given in separate files. The test suite could also be run with a JavaScript embedder,
which may require that we first implement support for the byte code representation

of Wasm.

2.3 EWasm Embedding

The WASM-TEST module was a bare-bones embedding, adding minimal functionality
to core Wasm. For a prototype of a more complex embedding for the blockchain
use case, we chose to formalize a subset of Ewasm based in the informal description
given here. Since the spec is not final, we chose to only implement the functionality
that is necessary to execute the WRC20 contract. Our embedding uses configuration
composition of the Wasm semantics and a prototype Ethereum Execution Interface
(EEI) semantics.

Both the subset of Wasm allowed in Ewasm and the EEI are deterministic.” That
is, for every state there is at most one applicable transition rule. A design goal of
the embedding, which we will call “KEwasm”, is that the composed semantics, too,
should be deterministic.!”

Determinism is achieved through a simple synchronization mechanism: any time
the Wasm code calls out to an EEI host function, they go into #waiting mode.
The EEI returns control to the Wasm semantics by leaving a #result as the only
element in the <eeik> cell. For those host functions that return control, there is a
rule that consumes the result and takes the Wasm execution out of #waiting, and
computation in Wasm can proceed.

2.3.1 The Ethereum Environment Interface (EEI)

A smart contract on Ethereum needs to access certain aspects of the states on
the blockchain. This is true of any smart contract language. While the KEVM
integrated the blockchain-related operations directly into the semantics, Ethereum
2.0 may introduce the concept of execution engines, which would imply there could
be any number of different smart contract languages available in the future. To
accommodate future semantics development we separate the EEI from EWasm so
that it may be reused. Some EEI operations are queries, for example:
o querying which address initiated the transaction

9If any smart contract had non-deterministic behavior, it would cause a consensus bug on the
blockchain, where the state of the virtual machine could not be agreed upon by honest nodes.

10Tn theory, we could just as well allow arbitrary interleaving of certain operations in the two
composed semantics, and use synchronization points. But even if we proved confluence of any two
possible interleavings of rules the prover would still try all possible interleavings, slowing down the
proof process, so we opt to be more strict.
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« what address is making the current call (could be another contract or the user
which initiated the transaction)

« account balances

o timestamp and height of the current block.

Other operations modify blockchain state, like:

» sending a message

« modify the contract’s storage (different from the Wasm memory in the con-
tract)

e emitting messages.

For our purposes, the important aspects of the blockchain state are accessed
through the following imported functions:

Listing 2.5: The currently implemented EEI API

(func $revert (import "ethereum" "revert") (param i32 i32))

(func $finish (import "ethereum" "finish") (param i32 i32))

(func $storageload (import "ethereum" "storageLoad") (
param i32 i32))

(func $storageStore (import "ethereum" "storageStore") (
param i32 1i32))

(func $getCaller (import "ethereum" "getCaller") (param

132))
(func $callDataCopy (import "ethereum" "callDataCopy") (

param i32 i32 i32))
(func $getCallDataSize (import "ethereum" "getCallDataSize")
(result i32))

All of these, except $getCallDataSize, either reads from or modifies the Wasm
memory. The i32 parameters specify offset and length of the portion of memory
results should be written to or read from. In essence, this makes the Wasm mem-
ory play the role the stack and registers play in the calling conventions used in
mainstream assembly languages.

$revert and $finish do not return control to the Wasm execution. Reverting in
Ethereum means undoing all state changes made by the transaction, but consuming
the gas. Finishing in Ethereum means committing the changes the transaction has
made.

The instructions $storageload and $storageStore operates on the persistent stor-
age that each contract has. This is a key-value store mapping, where both keys and
values are 32 bytes (256 bits)—essentially a word-addressable 256-bit memory. This
convention comes from EVM, which does not have a built-in concept of linear mem-
ory, like the Wasm memory. The Wasm memory store is temporary in Ewasm and
is reset (zeroed out) after each transaction. Therefore, these functions are needed to
access the persistent storage, for example, to store the token balance of an address
in the WRC20 contract. This is needed because persistent memory is expensive on
the blockchain, as it needs to be replicated by all nodes, and the Wasm semantics
dictates that Wasm memory comes in pages of 64 KiB.!!

At a cost of 20k gas per 256 bit word[40, Appendix G], making a single page persistent would

cost, 65’5363*% ~ 41,000,000 gas. The gas price in ether is set by the transaction sender, but
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In the EVM, when a contract is called it starts executing the EVM byte code
starting at the first instruction. The call-data is a sequence of bytes passed along
in the transaction, accessible through special opcodes. A common pattern in smart
contract interactions is to call a specific function in a contract by sending a selector
in the call-data. The contract is designed so that the first thing it does is check the
selector bytes. Each public function in the contract has a specific selector assigned
to it, and if the selector bytes in the call-data match any of these, the corresponding
function is called. This simulates a contract that can perform several different
functions and does so in a way that simulates the different methods of an object in a
higher-level language. The selector is the first four bytes of the hash of the function
signature, e.g. the Keccak-256 hash of "balance(address) : (uint64)"!2. In addition
to the selector, the call-data contains the parameters expected by the function. The
selector and parameter order is merely a calling convention, called the “Contract
Application Binary Interface” (Contract ABI)[1]. However, any contract can in
principle use the data any way it sees fit.

In Wasm, there is no single entry point to a module, the way there is for regular
bytecode, where the instruction pointer is simply set to the first instruction. Instead,
one of the ways that Ewasm constrains what a valid module is'3, is by enforcing
that the module exports a function called "main", and that this function takes no
parameters and returns no values. Instead, all parameters are passed through call-
data and are returned through the sequence of bytes called return-data.

The EEI configuration contains all available data of a transaction, the storage,
code, and addresses of every contract on the blockchain. It also has a cell where we
place commands, <eeik>, which will be used for passing control.

2.3.2 A General Template for Making a Wasm Embedding

As we have mentioned, Wasm is made to be embedded. In designing KEwasm
we wanted to come up with a general template for embedding Wasm in a host
environment while not needing to modify the host semantics or the Wasm semantics
in any way. That means we want to be able to pass control cleanly between the Wasm
engine and the embedder, without having a situation where both could proceed

a typical transaction February 2020 is priced at around 1-10 GWei (102 ether). Thus, creating
a contract with 1 page of storage would come out to between 8 and 80 USD. There is, however,
another solution. Just like in KWasm, memory could be treated as sparse, and only non-zero values
stored. Still, it could become quite expensive, since memory is where call-data gets stored and
many operations are performed on data that does not fit in the built-in data types. If memory was
used as persistent storage there would be several problems, such as the caller would have to pay
for their transient storage—which is at least the call-data—as if it was persistent, contracts would
need to have extra logic to separate persistent data from temporary, or there would be extra costs
associated with wiping memory after each invocation. While a scheme may be implemented in
the future that uses Wasm linear memory as persistent—perhaps allowing more than one memory
per module—in KEWasm we have chosen the semantics that linear memory is wiped after each
transaction.

12The interested reader could try it in Python with the following one-liner: sha3.keccak_256
("balance(address) : (uint64)".encode()) .digest () [0:4]. The result should be the
hexadecimal bytes 99 93 02 1la. Make sure the pysha3 package from pip is installed first.

13In the current, prototypical version of Ewasm, that is.
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concurrently. Since K is specifically designed to make concurrent semantics easy to
specify, this requires some care.

2.3.2.1 Dealing With Host Functions in KWasm

We extend the Wasm syntax with a new sort. We then resolve the function imports
by creating regular functions in Wasm, with a single HostCall in the function body.

Listing 2.6: Semantics of Ewasm host calls.

syntax Instr ::= HostCall
[/ mmmmmmmmmmmmmm oo
rule <k> ( import MODNAME FNAME (func 0ID:0OptionalId TUSE:
TypeUse) )
=> ( func 0ID TUSE .LocalDecls #eeiFunction (FNAME)
Instrs )
</k>

requires MODNAME ==K #ethereumModule

Here, #ethereumModule is a macro for the string "ethereum" and #eeiFunction is a
mapping between import names as seen in listing 7?7 and HostCalls. Each HostCall
is a single terminal. For each terminal, we define a chain of transitions that triggers
the corresponding execution on the host side and then wait for the result, before
consuming the result.

2.3.2.2 Creating a Wasm-Host Boundary

With the semantics for Wasm and the EEI specified separately, all that remains to
complete EWasm is to compose the two semantics and specify the interaction at the
boundary.

The following configuration specifies KEwasm:

configuration
<ewasm>
<eei/>
<wasm/>
<paramstack> .ParamStack </paramstack>
</ewasm>

The <paramstack> cell helps with translating between the two worlds. In the EEI
values are encoded as integers, implicitly 256-bit words. In Wasm words are at most
8 bytes. Linear memory serves as the glue between the worlds.

The following is an example of how KEWasm specifies the interaction with the
host functions. The example is of calling $getCaller, which returns the address
of the account that initiated the transaction. Addresses are 20 bytes long and get
returned to memory.

syntax HostCall ::= "eei.getCaller"
/] ——mmmmmmmm e
rule <k> eei.getCaller => #waiting(eei.getCaller) ... </k>
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<eeik> . => EEI.getCaller </eeik>

rule <k> #waiting(eei.getCaller) => #storeEeiResult (RESULTPTR
, 20, ADDR) ... </k>
<locals> O |-> <i32> RESULTPTR </locals>
<eeiK> #result (ADDR) => . </eeik>

The function #storeEeiResult is a helper that expands to a sequence of i32.
store8 calls, one for each byte to be stored. In the above case, the address will be
stored starting at RESULTPTR, continuing for 20 bytes, and the value to be stored will
be that returned in ADDR.

An example of how <paramstack> helps with calls is the $storageStore function.
The boundary between the EEI and Wasm is given below:

syntax HostCall ::= "eei.storageStore"
[/ = m e
rule <k> eei.storageStore => #gatherParams(eei.storageStore,
(INDEXPTR, 32) (VALUEPTR, 32)) ... </k>
<locals>

0 |-> <i32> INDEXPTR
1 |-> <i32> VALUEPTR
</locals>

rule <k> #gatheredCall (eei.storageStore) => #waiting(eei.

storageStore) ... </k>
<paramstack> VALUE : INDEX : .ParamStack => .ParamStack
</paramstack>
<eeiK> . => EEI.setAccountStorage INDEX VALUE </eeiK>
rule <k> #waiting(eei.storageStore) => . ... </k>
<eeiK> . </eeik>

In this call, there is an intermediate step before the EEI takes control. That step
gathers parameters from linear memory. #gatherParams takes a continuation in the
form of the host call that initiated the gathering, and a list of index-length pairs.
It then converts the corresponding memory locations into 32-byte integers and puts
them on the <paramstack> cell, before putting #gatheredCall (CONTINUATION) at the
top of the <k> cell. The middling function then consumes the parameter stack and
the continuation and passes control to the EEIL

With similar functions for each of the necessary host calls, we have a prototype
Ewasm embedding powerful enough to verify the WRC20 contract we have in mind.
The remaining host functions are left unimplemented until they are needed for ver-
ification of some contract, or until the final Ewasm hot interface has been decided.

2.3.2.3 Testing The Ewasm Semantics

In addition to unit testing the host calls, we add unit tests for the WRC20. We use
two different versions, one for storing the balances in reversed-byte order for fast
retrieval when calling the balance function, and one which stores the balances in as
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regular integers, for doing fast transfers. The unit tests do a single transfer, checking
that the balances are correct before and after. The test for the fast-balances ver-
sion can be found at https://github.com/kframework/ewasm-semantics/blob/
master/tests/simple/wrc20_fast_get_balance.wast, and the test for the fast-
transfers version can be found at https://github.com/kframework/ewasm-semantics/
blob/master/tests/simple/wrc20_fast_transfer.wast.
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Part 2: KWasm for Deductive
Program Verification

3.1 From Semantics to Proofs

As described in Sect. 1.7.4, a K semantics can be read and understood as a compu-
tational transition system specifying an interpreter. But it can also be understood
as a logic theory under which we can prove properties about programs. In addi-
tion to using a requires clause, these rules often use an ensures clause to state
postconditions.

We could express our semantics in mathematical notation the following way: Call
the set of rewrite rules in KWasm Y. These are axioms. Call the full theory (all
theorems which are provable from the axioms) 7. Of course, ¥ C T. If a rule
L = R requires C' € T, that means that given conditions C, any program that
matches L will eventually rewrite to R, or never terminate.

To use the K framework for deductive program verification, one writes proof
obligations which the K prover tries to prove or disprove belong to 7. A proof
obligation in K is specified exactly like a regular semantic rule, L = R requires C.
Just like in a semantic rule, the values mentioned in the obligation may be symbolic.
A set of these proof obligations, .9, is called a K spec . As an example, here we declare
a semantics of the language foo with only one production and two transition rules.
In the second module FOO-SPEC, we put a proof obligation.

Listing 3.1: A small proof in K.

module FOO
imports INT

configuration
<k> $PGM:P </k>

syntax P ::= "foo" Int Int
[/ === mmmmmm oo

rule [a]l: <k> foo X Y => foo Y X ... </k>

rule [b]: <k> foo X Y => X +Int Y +Int 1 ... </k>
endmodule

module FOO-SPEC
imports FO0O
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rule <k> foo X Y => ?Z ... </k>
ensures 7Z >Int X +Int Y

endmodule

The proof obligation is a theorem iff starting in the configuration <k> foo X Y

. </k> (with all cells except the <k> cell unspecified), all paths either

1. do not terminate, i.e. will perform rewrites forever, or

2. end up with an integer on top of the <k> cell, everything else that was initially
following foo X Y, indicated by ..., as well as the rest of the configuration was left
unchanged, and the final integer is larger than the sum of X and Y.

The 7 is an existential quantifier, saying that there is such an integer, rather than
that this claim works for any integer.

This spec is indeed provable. All paths which eventually apply rule b would
match with the right-hand side of the proof obligation. The path which applies rule
a forever will never terminate. This is enough for the spec to pass.

3.2 A Very Simple Proof

Below is a simple spec which asserts that copying the value of a local variable to the
stack with local.get and then writing that value back to the same variable with
local.set
1. terminates normally, as expressed by the whole program rewriting to ., and
2. produces no other changes in the state since there are no other rewrites.

Listing 3.2: A spec for reading from and writing to the value of local variables.

module LOCALS-SPEC
imports WASM-TEXT
imports KWASM-LEMMAS

rule <k> (local.get X:Int) (local.set X:Int) => . ... </k
>
<locals>
X |-> < ITYPE > VAL
</locals>

endmodule

The program in the <k> cell is simple to verify because, during the course of its
evaluation, only one semantic rule ever applies at a time. We will go over the process
in detail below.

The following are the relevant rules in KWasm for this proof:

Listing 3.3: The heating and unfolding rules in KWasm.

rule <k> (S:Stmt SS) => S ~> SS ... </k>
requires SS =/=K .Stmts
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rule <k> ( PI:PlainInstr ):FoldedInstr => PI ... </k>
rule <k> local.get I:Int => . ... </k>
<valstack> VALSTACK => VALUE : VALSTACK </valstack>
<locals> ... I |-> VALUE ... </locals>
rule <k> local.set I:Int => . ... </k>
<valstack> VALUE : VALSTACK => VALSTACK </valstack>
<locals> ... I |-> (_ => VALUE) ... </locals>

The initial configuration is exactly the left-hand side of the proof obligation.
First, the heating rule on line 1 applies, followed by the unfolding rule on line 4.
Now the configuration has become the following:

<k> local.get X ~> (local.set X) ... </k>
<valstack> VALSTACK </valstack>
<locals>

X |-> < ITYPE > VAL
</locals>

Here VALSTACK is whatever the stack contained before.

Next, the rule for local.get on line 6 applies' This produces a . on top of the
<k> cell, which is removed. Conceptually, K has a built-in rule that looks like rule

~> THEN => THEN, and the ... in a rule can be replaced by ~> THEN (as long as
the name THEN is free, of course). Then, unfolding applies again. This gives us a
new configuration:

<k> local.set X:Int ... </k>
<valstack> < ITYPE > VAL : VALSTACK </valstack>
<locals>
X |-> < ITYPE > VAL
</locals>

Lastly the rule for 1ocal.set? on line 10 applies: This gives the final configuration,
which matches the right-hand side of the configuration:

<k> . ... </k>
<valstack> VALSTACK </valstack>
<locals>

X |-> < ITYPE > VAL
</locals>

In this simple case, we were able to simply state how a program would terminate?
and leave the state unchanged, and the prover could infer it for us. Indeed, in making
this example, the specification above was written and proved on the first try. The
proving process is not always so straightforward, however.

IThe rule is paraphrased here, it actually is slightly more complex to deal with identifiers.

2 Again, paraphrased.

3We have not, however, produced a proof that this program must terminate—we have only
concluded partial correctness.
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3.3 A Proof With Heap Reasoning

Some proofs require that we further specify our intended semantics and encode the
invariants of the transition system. As an example, we take the exact analog of our
previous proof. Only this time, instead of modifying local variables we are modifying
heap storage.

#inUnsignedRange captures the invariants that all integer values, once passed
through an ITYPE.const, will be represented by their corresponding unsigned value,
regardless of signed representation. Il.e., any integer value in the state, except at
some points in the <k> cell, is assumed to be in Zirypg, and the representative is
chosen to be the value of the class in the range 0 to 2MTYPEI=1 " Ap invariant the
semantics have been designed to maintain is that of #isByteMap.

Listing 3.4: Specification for a simple memory property.

module MEMORY -SPEC
imports WASM-TEXT
imports KWASM-LEMMAS

rule <k> (i32:IValType.store (i32.const ADDR) (i32.1load (
i32.const ADDR)):Instr):Instr => . ... </k>
<curModIdx> CUR </curModIdx>
<modulelInst >
<modIdx> CUR </modIdx>
<memAddrs> 0 |-> MEMADDR </memAddrs>

</modulelnst >

<memInst >
<mAddr > MEMADDR </mAddr>
<msize> SIZE </msize>
<mdata> BM </mdata>

</memInst >
requires #chop(<i32> ADDR) ==K <i32> EA
andBool EA +Int #numBytes(i32) <=Int SIZE *Int #
pageSize ()
andBool #isByteMap (BM)

endmodule

The prover will not deduce that this spec holds. The reason is that storing to
and reading from memory is more complicated than storing local values. Wasm uses
byte-addressable storage. That is, when a value is stored to memory it is spliced into
bytes. When a value is read from memory, the bytes are assembled into an integer
value. Conceptually, the load operation will push the following onto the stack:

4Both the invariants that integers anywhere but the <k> cell are in a specific range, and that
the memory is indeed a valid byte map, has yet to be proven.
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val = bmladdr] + (bmladdr + 1] + (bm]addr + 2] + bm[addr + 3] x 256) % 256) * 256
(3.1)

The store operation pops a value off the stack, and stores the following sequence
of bytes to memory:

bmladdr] := val mod 256 (3.2)
bmladdr + 1] := (val/256) mod 256 (3.3)
bmladdr + 2] := (val/256%) mod 256 (3.4)
bmladdr + 3] := (val/256°) mod 256 (3.5)

If we plug val from Eq. 3.1 into the assignments 3.2—3.5 it becomes clear that
the modulus and division operators will cancel out exactly so all we are doing is
writing the values in each address back to their place in memory.

This type of reasoning presents a challenge for the K prover using the current
semantics. The semantics uses pure helper functions, #setRange and #getRange for
writing to and reading from the byte map. These functions expand to a series of
#set and #get, that do the obvious®.

There is only ever one rule which applies at each step in this proof, so there
is no branching. In the end, Z3 is queried and is tasked with deciding whether
the assignments 3.2-—3.5 really are identity operations—i.e., that each byte is just
written back to its original position. A human verifier with a pen and paper can
easily see this. However, Z3 can not reason about these functions in the way we
would like without giving full definitions in Z3 of the setter and getter functions
themselves. Since the getting and setting happen at the K level while the arithmetic
reasoning happens at the Z3 level, we are stuck. We can remedy this by either
extending Z3’s reasoning capabilities, or the K framework’s. In this case, we chose
to extend the K framework. We add the following lemmas, which should obviously
hold in integer and modular arithmetic®.

Listing 3.5: Five lemmas about arithmetic for heap reasoning.

rule (X *Int N +Int Y) modInt N => Y modInt N
rule (Y +Int X *Int N) modInt N => Y modInt N

rule O +Int X => X
rule X +Int 0 => X

rule (Y +Int X *Int N) /Int N => (Y /Int N) +Int X

5Actually, there is one non-obvious part of each function: when the stored value is 0, that is
represented by no entry. The two functions respect that by erasing 0-valued entries and interpreting
an empty entry as 0, respectively.

6N.B. that we cannot use the distributive property of division. It holds over the rational, real
and complex numbers (which are fields w.r.t. addition and multiplication), not over the integers
(which is a ring).
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Together, they help eliminate the expressions for assignment to:

bmladdr] := bm|addr] mod 256
bmladdr + 1] := bm[addr] /256 mod 256 + bm|addr + 1] mod 256
bmladdr + 2] := bm[addr] /256°  mod 256 + bm[addr + 1]/256 mod 256
+ bm[addr + 2] mod 256
bmladdr + 3] := bm[addr] /256  mod 256 + bm[addr 4+ 1]/256*  mod 256
+ bmladdr +2] /256 mod 256 + bm|addr + 3] mod 256

We can now make use of the invariant that we claim to maintain for the byte
map. We add the following two lemmas:

Listing 3.6: Two lemmas about #get for heap reasoning.

rule #get (BMAP, IDX) modInt 256 => #get (BMAP, IDX)
requires #isByteMap (BMAP)

rule #get (BMAP, IDX) /Int 256 => 0
requires #isByteMap (BMAP)

They state that as long as a byte map maintains its intended invariant—that
all values are integers from 0 to 255 inclusive—we may discard the modulus on the
values and the division amount to zeroing them. The lemma in itself is self-evident
since it assumes the byte map maintains the invariant. The claim that our semantics
maintain the invariant that memory is always a byte map is, at present, a conjecture.

With the lemmas from listings 3.5 and 3.6 added to our axioms, the proof goes
through.

3.3.1 Using a Symbolic Type

If we want to make a proof that uses a symbolic type, rather than i32 or 164, matters
become more complicated. Without knowing the type, #setRange and #getRange will
receive a symbolic WIDTH argument, and not be able to expand.

To make a proof like that go through, we introduce a more specialized idempo-
tence lemma. But rather than including it in the set of manual axioms for all our
verification, we can apply it locally where it is needed.

Listing 3.7: A lemma over #setRange and #getRange.

require "kwasm-lemmas.k"

module MEMORY-SYMBOLIC-TYPE-LEMMAS
imports KWASM-LEMMAS // The set of lemmas included in
every proof.

rule #setRange (BM, EA, #getRange(BM, EA, WIDTH), WIDTH) =>
BM

endmodule
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module MEMORY-SYMBOLIC-TYPE-SPEC
imports WASM-TEXT
imports MEMORY-SYMBOLIC-TYPE-LEMMAS

rule <k> (ITYPE:IValType.store (i32.const ADDR) (ITYPE.
load (i32.const ADDR)):Imnstr) :Instr => . ... </k>

By invoking the K prover with the option --def-module MEMORY-SYMBOLIC-TYPE-
LEMMAS instead of the usual --def-module KWASM-LEMMAS, the prover will include this
new lemma into its axioms, and the proof will go through.

3.4 Helping the K Prover With Inductive Rea-
soning

The following Wasm program calculates the arithmetic sum % i. That is, as-
suming the first local variable (index 0) contains N and the second local variable
contains 0.

Listing 3.8: A Wasm program for summing the numbers 1 to N.

block
( loop

(local.get 0)
(local.get 1)
(i32.add)
(local.set 1)
(local.get 0)
(i32.const 1)
(i32.sub)
(local.tee 0)
(i32.eqz)
(br_if 1)

(br 0)

end

The result will be that the sum, known to be N(N — 1)/2, is in the second
local variable at the end of execution. (Under which circumstances will this work
correctly?)

We aim to prove this using the following claim, where the above program is in
the <k> cell. The proof obligation is to show that

1. the program terminates (rewrites to .), and

2. the locals are updated according to our expectations of the program’s behavior.

We assume the standard invariants hold for integer values we encounter, namely
them being in range correct range. This includes the final result—we assume no
overflow occurs. The looping code is also written so that it assumes the first local
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is not 0 at the outset. The subtraction on line 9 occurs before the 0-check on line

11. These three assumptions are encoded in the requires-clause below.

Listing 3.9: Spec with the main proof obligation for the arithmetic sum program.

module LOOPS-SPEC
imports WASM-TEXT
imports KWASM-LEMMAS

// Main claim.
rule <k> block .TypeDecls
( loop .TypeDecls
(local.get 0)
(local.get 1)
(i32.add)
(local.set 1)
(local.get 0)
(i32.const 1)

(i32.sub)
(local.tee 0)
(i32.eqz)
(br_if 1)
(br 0)
)
end

=>

</k>

<locals>

0 |-> < i32 > (N => 0)
1 |-> < i32 > (0 => (N *Int (N +Int 1)) /Int 2)
</locals>
requires #inUnsignedRange (i32, N)
andBool #inUnsignedRange (i32, ((N *Int (N +Int 1)) /
Int 2))
andBool N >Int O

endmodule

However, the prover does not succeed in proving this claim. After 120 steps,

KLab shows the following view of the prover’s execution:

-0 (((N - 1) == 0) == false)
| - 0 ((((N - 1) - 1) == 0) == false)
| | -0 (CC((N - 1) - 1) - 1) == 0) == false)
l I | -0 (N - 1) = 1) - 1) - 1) == 0) == false)
L _ 1 % (N = 1) - 1) - 1) - 1) == 0)
1 _ 1 % (C((N - 1) - 1) - 1) == 0)
| _ 1 % (((N - 1) - 1) == 0)
1 = ((N - 1) == 0)
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It seems the prover can only prove the ground cases, where N gets a concrete
value because it is defined by an equation. For example, when (N —1)—1 = 0 is true
we have N = 2. However, when all we know is that N —1 # 0 and (N —1)—1 # 0,
the prover fails to conclude the claim. Instead, it keeps computing in another loop
iteration.

The prover can do inductive reasoning through the use of reachability logic’s
circularity proof rule[36, Sect. 3|. To help the prover along and make it succeed
in doing inductive reasoning, we show it what situation it will encounter over and
over in its attempt on the main claim. This differs slightly from the typical task of
identifying a loop invariant, where one specifies something that will always be true
at the end of each iteration. Instead, we identify the beginning of the loop and make
a claim from the beginning of the loop until the end of the program.

To help the prover in this instance, we give the following lemma.

Listing 3.10: The proof-obligation for inductive reasoning.

// Lemma
rule <k> br O
~> label // Loop label.
[ .ValTypes 1
{ loop .TypeDecls
(local.get 0)
(local.get 1)
(i32.add)
(local.set 1)
(local.get 0)
(i32.const 1)

(i32.sub)
(local.tee 0)
(i32.eqz)
(br_if 1)
(br 0)
end
}
.ValStack
~> label [ .ValTypes ] {.Instrs } STACK // Block
label.
=>
</k>
<valstack> _ => STACK </valstack>
<labelDepth> D => D -Int 2 </labelDepth>
<locals>

0 |-> < i32 > (I => 0)
1 1-> < i32 > (X => X +Int ((I *Int (I +Int 1)) /
Int 2))
</locals>
requires #inUnsignedRange (i32, I)
andBool I >Int O
andBool #inUnsignedRange(i32, X +Int I)
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andBool #inUnsignedRange (i32, X +Int ((I *Int (I +Int
1)) /Int 2))

The <k> cell contains exactly what it will contain at each branching point in
the proof. The rest of the configuration expresses the expected state transition.
In particular, the <locals> cell is specified to rewrite exactly as it would in the
main claim, except now it must start with some symbolic value in the second local
variable, instead of 0.

The prover succeeds in proving the lemma through inductive reasoning, and prov-
ing the main claim then becomes trivial by executing the program until the loop
and then using the lemma. In general, a fruitful approach is to simply examine the
exact state of the symbolic configuration at any branching point in the loop, and
considering how we expect it to have been transformed by the end of the program.

3.5 WRC20: Specifying and Proving Correct the

i64.reverse_bytes Function’

WRC20 is a Wasm version of an ERC20. In essence, the ERC20 standard specifies
an interface for smart contracts where Ethereum addresses can own a number of
tokens, transfer them, and give other addresses permission to spend tokens on their
behalf.

The WRC20 program can be found here. It is simpler than an ERC20: it only
has a function for transferring (the caller’s) funds to another address and a function
for querying the balance of any address. Keep in mind also that Ewasm is part
of Ethereum 2.0, phase 2. It is still a work in progress, so exactly what Ewasm
will look like is unclear. This is based on an early work-in-progress specification of
Ewasm.

In the end, we want to verify the behavior of the two external functions, transfer
and getBalance. This will require us to use the Ewasm embedding.

For now, we will focus on a helper function: $i64.reverse_bytes. This is a pure
Wasm function that takes an i64 as a parameter and returns the i64 you get by
reversing the order of the bytes.

Listing 3.11: $i64.reverse_bytes Wasm code. Copyright Paul Dworzanski et al.,
licensed under GNU General Public License v. 3.

(func $i64.reverse_bytes (param i64) (result i64)

(local i64 i64) ;;iter variable, val to return
block
loop
local.get 1 ;;iter variable
i64.const 8
i64.ge_u
br_if 1

"Parts of this section has been previously published by the author in a blog post, available
here:

https://medium.com/dlabvc/verifying-wasm-functions-part-2-i64-reverse-bytes-3590aedaa3cO.
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local.get O ;;original
i64.const 56 ;;8hift left
local.get 1
i64.const
i64 .mul
i64.sub
i64.shl
i64.const 56 ;;shift right
i64.shr_u
i64.const 56 ;;8hift left
i64.const
local.get 1
i64.mul
i64.sub
i64.shl
local.get 2 ; ;update
i64.add
local.set
local.get 1 ;yiter+=1
i64.const
i64.add
local.set 1
br 0
end
end
local.get 2
)

Suppose the input consists of the following bytes:
x 0 x_ 1 x 2 x_. 3 x_ 4 x5 x_6 x_7

Then the output becomes:
x 7 x 6 x b x 4 x 3 x_ 2 x_1x 0

This function exists because Wasm stores numbers to memory as little-endian,
while Ethereum uses a big-endian representation in the call data. So the contract
must reverse all integer balances: in transfer, it must reverse the amount to be
sent, and in getBalance it must reverse the result before returning.

3.5.1 The Proof Obligation
Without further ado, here is what we are going to prove®:

Listing 3.12: The spec for $i64.reverse_bytes function.

8We should note that this is slightly different from the lemma we will need in the end when ver-
ifying the transfer and getBalance functions. To make this spec useful, we need to make sure
the starting state of the spec matches the state of the program when transfer and getBalance
calls $164.reverse_bytes. If we do that, the prover will be able to go: “Aha!l This state
corresponds exactly to something I've proven, I can just jump to the conclusion!” But the above
version makes for a nice presentation.
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rule <k> #wrc20ReverseBytes // A macro. Expands to the
function defintion.

~> (i32.const ADDR)
(i32.const ADDR)
(i64.10ad)
(invoke NEXTADDR) // Invoke is an internal Wasm

command, similar to “call".

(i64.store)

=>

</k>
<curModIdx> CUR </curModIdx>
<modulelInst >
<modIdx> CUR </modIdx>
<memAddrs> O |-> MEMADDR </memAddrs>
<types> TYPES => _ </types>
/* These
five state changes */
<nextTypeldx> NEXTTYPEIDX => NEXTTYPEIDX +Int 1 </
nextTypeIldx> /* are due to the fact that */
<funcIds> _ => _ </funclds>
/* we
declare a new function */
<funcAddrs> _ => _ </funcAddrs>
/* in the first
step of the *x/
<nextFuncIdx> NEXTFUNCIDX => NEXTFUNCIDX +Int 1 </
nextFuncIdx> /* specification. x/

</modulelnst >
<funcs> _ => _ </funcs>
/* So is this
change. */
<nextFuncAddr > NEXTADDR => NEXTADDR +Int 1 </
nextFuncAddr > /* And this one. */
<memInst >
<mAddr> MEMADDR </mAddr>
<msize> SIZE </msize>
<mdata> BM => ?BM' </mdata>

</memInst >
requires notBool unnameFuncType (asFuncType (#
wrc20ReverseBytesTypeDecls)) in values (TYPES)
andBool #isByteMap (BM)
andBool #inUnsignedRange(i64, X)
andBool #inUnsignedRange (i32, ADDR)
andBool ADDR +Int #numBytes(i64) <=Int SIZE *Int #
pageSize ()
ensures #get (BM, ADDR +Int 0) ==Int #get(?BM', ADDR +
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Int 7 )

andBool #get (BM, ADDR +Int 1) ==Int #get(?BM', ADDR +
Int 6 )

andBool #get (BM, ADDR +Int 2) ==Int #get(?BM', ADDR +
Int 5 )

andBool #get (BM, ADDR +Int 3) ==Int #get(?BM', ADDR +
Int 4 )

andBool #get (BM, ADDR +Int 4) ==Int #get(?BM', ADDR +
Int 3 )

andBool #get (BM, ADDR +Int 5) ==Int #get(7BM', ADDR +
Int 2 )

andBool #get (BM, ADDR +Int 6) ==Int #get (?BM', ADDR +
Int 1 )

andBool #get (BM, ADDR +Int 7) ==Int #get(7BM', ADDR +
Int 0 )

The interesting parts are:

o the <k> cell,

o the <memInst> cell group, and

o the pre- and postconditions, requires and ensures.

3.5.1.1 The <k> Cell

Here we first declare the function, which we have saved, in pre-parsed form as a
macro. This will store the function in the state, which means several updates will
happen. A new type and a new function address pointer get added to the module
instance, and a new function gets added to the world of functions (<funcs>). After
that (remember, ~> should be read as “and then”), we run a few Wasm instructions
that load 8 bytes from memory, invokes the i64.reverese_bytes function, and stores
the result back to the same address.

3.5.1.2 The <memInst> Cell

The <memInst> cell simply states that there is a memory with address MEMADDR, the
same as int <memAddrs> in <moduleInst>, which makes this the memory belonging
to the module we are currently executing in. We also state that the memory gets
rewritten, from BM to 7BM'. Every part of the state that we do not state gets rewritten
will be assumed to stay the same. So if we omitted this rewrite, the proof obligation
would be stating that the memory does not change at all. We also take the SIZE of
the memory into account, given in the number of pages (each page is 64 KiB).

3.5.1.3 The Pre- and Postconditions

The requires and ensures sections say what we assume to be true when at the
outset of the proof and what we need to prove at the end of the proof. Note that
some pre- and postconditions are expressed in the rewrite rules themselves, such as
the value in <memAddrs> of the current module matching the <mAddr> of the <memInst
> that gets changed (precondition) and that the program in the <k> gets consumed
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(postcondition). The requires and ensures clauses are simply for stating facts that
we cannot express directly in the rewrite.

The first 4 requirements are really boilerplate relevant to the technicalities of the
semantics. The first states that the type of the i64.reverse_bytes function has
not already been declared.” The second, third and fourth rules all make sure that
integers, whether constants or stored in the byte map, are in the allowed range.
Without these assumptions, the prover assumes the values are unbounded integers.

The final clause in the requires section states that our memory accesses are
within bounds. This is why we need to know the size (SIZE) of the memory. A
separate (but less interesting) proof would show that the function causes a trap if
this precondition is violated.

The ensures section is straightforward. We are simply asking the prover to ensure
that the final memory has correctly flipped the bytes.

3.5.2 Helping the Prover Along

Simply stating the above proof obligation and giving it to the prover will result
in inconclusive results. The prover will fail having neither proven or disproved the
claim.

One reason for this failure is that under the hood, there is a good deal of modular
arithmetic going on. This happens when we transition from the bytes in memory to
integer values, and back. K does not (yet) have much support for reasoning about
modular arithmetic. This presents an excellent opportunity to add that support.
We will extend the set of axioms K knows, triple-checking each (so that we do not
introduce unsoundness), directed by the places where the prover gets stuck. K also
supports adding lemmas to Z3 to reason about, which is in some ways simpler. We
discuss the trade-offs between adding K and Z3 lemmas in Sec. 4.2, but for now it
suffices to say we prefer adding lemmas to K whenever possible.

3.5.2.1 Axiom Engineering: Avoiding Infinite Rewrites

The new axioms need to be designed with care. Apart from making sure that they
are correct, we want to ensure that they are simplifications: that is, they reduce
the state. This can be by making expressions or values smaller. The reason is that
we want to ensure we cannot get explosive growth. The prover will try to apply all
axioms whenever possible. Therefore, if we were to add statements like X +Int Y
=> Y +Int X, which does not reduce the state, we are in trouble—even though this
is perfectly sound.

If we were to add a rule that says X +Int Y => Y +Int X, then the prover will
apply this rewrite wherever it can, over every addition it sees. But once it is done,
there are still just as many additions in the state, and the prover will again apply
this rewrite on all additions it sees.

9This is a somewhat arbitrary choice. There is a semantic rule which declares the function type
if it is not already present. There are some technicalities associated with declaring and looking up
functions. By letting the prover go through those steps, it can construct the state of the TYPES
the way the semantics specifies. This way, the proof becomes more robust (and readable) than if
we wrote out the expected state of the types directly in the proof.
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To avoid this we follow a few general principles when engineering our axioms:

Every rule must do at least one of the following:

1. Reduce the number of modInt, >>Int or <<Int constructs, or push <<Int up
the parse tree, or >>Int down the parse tree!. This may alter the expression in any
other way, by making it larger or increase the values of integers.

2. Make the expression strictly smaller without introducing or moving new modInt
, >>Int or <<Int constructs.

3. Make some integer in the expression strictly closer to 0 without introducing or
moving any modInt, >>Int or <<Int, making the expression larger'! or making some
other integer farther from 0.

With these rules, we can avoid infinite rewrites. The only way for the expression
sizes or integer sizes to grow is by removing a modInt, <<Int or >>Int, or pushing
them towards some end of the parse tree. There is no way to introduce more of
these operations, and the shifts will, if nothing else, eventually reach either the
root or leaves. Therefore, the first rule can apply only a finite number of times.
This puts a hard upper limit on how large any given expression can grow through
axiom application. The third rule can also only be applied a finite number of times
since the expression sizes are bounded from above. The fourth rule can also not
apply infinitely often since there can only be a finite number of integers in a finite
expression, and once these all go to 0, the rule can no longer apply.

This trick is called making a “lexicographic product”. This is a product of three
orders. You can think of it as each expression being represented by a tuple of
three numbers, (b, e, n), for “bits”, “arithmetic” and “numbers”. b is the number
of modInt expressions plus the distances of all >>Int from their farthest leaf plus
the distances of <<Int constructors from the root!?in the expression, e is the total
number of constructors (nodes in the parse tree), and n is the sum of all integers'?
in the expression. Now, we introduce a total ordering over all expressions, by first
comparing their b numbers, then their e numbers, then their n numbers. It is like
comparing two words to figure out which goes first in a lexicon (hence the name
“lexicographic order”): first look at the initial letter, then the second, and so on,
until they are different, at which point you know which comes first. So (3, 4, 1) <
(3, 4, 2) and (1, 1000, 1000) < (2, 0, 0). Now revisit our rules for adding axioms.

o When rule 1 applies, the b number of the expression decreases, but the others
may increase.

o When rule 2 applies, the a number decreases, the b number stays the same,
and the n number may go up.

e And when rule 3 applies, the n number decreases, and b and a stay the same.

The result is that for every rule application, we get a “smaller” expression than
we had before, and no expression can become smaller than (0, 0, 0), which gives a

OFurther up or down means closer to the root, or closer to the farthest leaf below them.

HThe expression may grow by a single constructor, such as a —=Int with a constant right operand,
as long as the result is strictly closer to 0. This imposes some extra restrictions on how expressions
may shrink in other axioms.

12Really the sum of the absolute values, but since negative integers occur only in very specific
places in the semantics, the distinction is mostly irrelevant.

13Really the sum of the absolute values, but since negative integers occur only in very specific
places in the semantics, the distinction is mostly irrelevant.
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hard limit on how many rewrites can apply.

This kind of careful engineering is necessary for axioms we want to add to K’s
reasoning capabilities for all programs. For verifying specific languages or programs
we may get away with being a little less rigor. However, it is good practice to try
to ensure that your axioms are not causing your prover to loop forever!'4.

3.5.2.2 Adding New Axioms

When we conduct the proof without adding anything to the semantics, the prover
manages to symbolically run the program to termination. The contents of the <k>
cell are gone, rewrites have happened in all the expected places.

However, the memory array in <mdata>, BM, will have been replaced by a behemoth
of symbolic expression, see appendix A. The reason for the size is that the function
returns the following large expression, which is the reversed i64, and repeats it 8
times, once for each byte that gets inserted into memory.

Listing 3.13: The expression for integer interpretation of the reversed bytes

( ( ( #getRange ( BM , ADDR , 8 ) <<Int O ) modInt
18446744073709551616 >>Int 56 <<Int O ) modInt
18446744073709551616 +Int ( ( ( #getRange ( BM , ADDR , 8
) <<Int 8 ) modInt 18446744073709551616 >>Int 56 <<Int 8 )

modInt 1844674407370 9551616 +Int ( ( ( #getRange ( BM ,
ADDR , 8 ) <<Int 16 ) modInt 18446744073709551616 >>Int 56
<<Int 16 ) modInt 18446744073709551616 +Int ( ( ( #
getRange ( BM , ADDR , 8 ) <<Int 24 ) modInt
18446744073709551616 >>Int 56 <<Int 24 ) modInt
18446744073709551616 +Int ( ( ( #getRange ( BM , ADDR , 8
) <<Int 32 ) modInt 18446744073709551616 >>Int 56 <<Int 32
) modInt 18446744073709551616 +Int ( ( ( #getRange ( BM ,
ADDR , 8 ) <<Int 40 ) modInt 18446744073709551616 >>Int
56 <<Int 40 ) modInt 18446744073709551616 +Int ( (( #
getRange ( BM , ADDR , 8 ) <<Int 48 ) modInt
18446744073709551616 >>Int 56 <<Int 48 ) modInt
18446744073709551616 +Int ( ( ( #getRange ( BM , ADDR , 8
) <<Int 56 ) modInt 18446744073709551616 >>Int 56 <<Int 56
) modInt 18446744073709551616 +Int O ) modInt
18446744073709551616 ) modInt 18446744073709551616 )
modInt 18446744073709551616 ) modInt 18446744073709551616
) modInt 18446744073709551616 ) modInt
18446744073709551616 ) modInt 18446744073709551616 )
modInt 18446744073709551616

To make the proof go through, we will need to tell K how to reduce both the
above 164 expression a bit, and how to reduce the resulting #set expressions.

Now, our proof obligation states only that BM rewrites to something—even if it
ends up being a really big expression. See line 26. So even if the memory rewrites

14We are currently looking at adding more intermediate categories to the lexicographic order
to allow similar shrinking or pushing down of other operators, like multiplications and additions.
(These are really general cases of shifts.)
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modInt
+Int 2064
modInt 0
«Int 204
»Int

modInt

/ \ Figure 3.1: The symbolic value
«Int 264 of the result of $164.reverse_bytes

after one loop iteration. This ex-

/N

#getRange 56

RN

BM ADDR

pression is intended to have shifted
the least significant byte of the
input, #getRange(BM, ADDR, 8), to
be the most significant byte of the
result.

to a complex expression, it still satisfies that part of the spec.

The crux comes in the ensures section. K cannot immediately see that the post-
conditions hold. It is not immediately obvious to that, for example, #get (BM, ADDR
+Int 1)==Int #get(?BM', ADDR +Int 6). K then discharges the proof obligation to
73 and asks it to prove the postcondition. But since Z3 does not understand our
byte map functions, #get and #set, nor the bit shifts over integers, it does not stand
a chance.

So it is time for us to start doing axiom engineering. Our job is to ask ourselves:
“What are some true things that the prover does not seem to get?” and then expand
its knowledge base while sticking to the 3 principles we set out for ourselves.

Let us look at part of the resulting expression. The algorithm started with <i64
> 0 in the local 2. After one iteration of the loop, the value has changed to the
following, representing a single shifted byte:

Listing 3.14: The integer interpretation of a single shifted byte.

((((((C #getRange (BM, ADDR, 8) <<Int 56) modInt
18446744073709551616) >>Int 56) <<Int 56) modInt
18446744073709551616) +Int 0) modInt 18446744073709551616

Here it is as a syntax tree, with 18446744073709551616 converted to 2%4:
Looking at this expression, there are some obvious structural changes that we
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can tell K about. We do not include proof of our new axioms here, but there is a
formal proof included with the proof in our lemmas file at https://github.com/
kframework/wasm-semantics/blob/master/kwasm-lemmas.md.

First, let us get rid of the +Int 0. Z3, of course, knows that x + 0 is x, but until
today, we have not given these reasoning capabilities to K directly. We are moving
to add more reasoning to K for a variety of reasons. So we open by adding the
following, obvious claim to our set of axioms.

Listing 3.15: New axiom: addition by zero.

rule X +Int 0 => X

Then, we have a modInt outside a modInt. They are even modulus the same
number. We could say (X modInt N)modInt N => X modInt N, but let us be a bit
more general:

Listing 3.16: New axiom: seqgences of mod operations.

rule (X modInt M) modInt N => X modInt M
requires M >Int O
andBool M <=Int N

We also have a left-shift followed by a modulus. In unbounded integers, shifting
left by N is the same as multiplying by 2°N. That gives us the following rule:

Listing 3.17: New axiom: left shift followed by mod.

rule (X <<Int N) modInt POW => (X modInt (POW /Int (2 ~Int N)
)) <<Int N
requires N >=Int O
andBool POW >Int O
andBool POW modInt (2 ~Int N) ==Int O

This gives us a much smaller state, seen in Fig. 3.2
This presents a nice opportunity to get rid of some shifts. Again, recall that these
are unbounded integers, so shifting left does not get rid of any bits of information.

Listing 3.18: New axioms: rules for shifts.

rule (X <<Int N) >>Int M => X <<Int (N -Int M) requires N
>=Int M
rule X <<Int 0 => X

The state is further reduced, by deleting two of the shifts. This exposes yet
another situation where we have a (X modInt 2 “Int 8)modInt 2 ~Int 8 expression,
which gets simplified.

We also tell K something about the way getting values from (little-endian) mem-
ory works:

Listing 3.19: New axiom: getting a single byte.

rule #getRange (BM, ADDR, WIDTH) modInt 256 => #get (BM, ADDR)
requires WIDTH =/=Int O
andBool #isByteMap (BM)
ensures O <=Int #get (BM, ADDR)
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«Int
modInt
»Int
«Int
modInt
#getRange 928
Figure 3.2: The resulting expression
after applying the first three simplifi-
BM ADDR cations.
«Int
/ \ Figure 3.3:
H#get The fully simpli-
fied expression
of  the  first

BM ADDR iteration.

andBool #get (BM, ADDR) <Int 256

In the end, adding these rule leaves us with our final expression (for now):

You may recognize this as getting the least significant byte of the stored value
and putting it in the position of the most significant one in the resulting i64 value.
A good start!

3.5.2.3 The Full Set of Extensions

In the end, to get the proof to pass we added 40 new axioms. You can see them all
in our lemmas file.

e 25 of these are general lemmas that can be upstreamed into K’s reasoning
capabilities.

o 7 relate to the #get and #set operations of KWasm and can be used in any
KWasm verification

« 8 are specific to the proof we just wrote.

Of the 25 general ones, many are just trivial copies of each other. For example,
we need both these rules:

rule X +Int 0 => X
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rule O +Int X => X

This repeats for all rules over addition. We cannot tell K directly that addition
commutes, because, if you recall, the rule X +Int Y => Y +Int X would cause infinite
rewrites. So when it comes to stating true, simple things that K should know about,
we need to be a little repetitive.

The rules specific to this proof are a mixed bag. For example, it turns out to be
useful to add the following rule when doing this specific proof:

rule X /Int 256 => X >>Int 8

We probably do not always want to do this in every semantics, or not even in
ever KWasm proof. Therefore, it is made specific to the current proof. Other rules
are for the moment very specific, but could possibly be made more general in the
future, such as the following rule, which helps get rid of #get operations that will
be canceled by shift operations.

rule (#get(BM, ADDR) +Int X) >>Int 8 => X >>Int 8
requires X modInt 256 ==Int 0 andBool #isByteMap (BM)

We would like to conduct more proofs before deciding which are general enough
to warrant being promoted to general KWasm lemmas or even general K lemmas.
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Discussion

We were able to almost fully mechanize Wasm in K, except for certain floating-point
functionality. This required mapping certain dependencies between different types
of declarations. We also managed to mechanize a blockchain embedding and run
conformance tests on it. The method of embedding can serve as a template for future
language embeddings and requires only a little work for every host function—the
same kind of work that one would expect in creating an API for already implemented
functionality.

We also managed to use the symbolic execution engine our semantics generated to
prove properties of several small programs. One of the programs was a real helper
function which did something interesting: it performed byte reversal of integers.
This required adding 25 general axioms that are relevant to all K based proving,
7 axioms that are general to KWasm, and 8 special axioms. The main challenge
has turned out to be dealing with linear memory, and most of our proving time and
effort has been spent on finding the correct axioms for dealing with the gap between
byte-addressable memory and the 32/64 bit words of Wasm.

4.1 How Suitable is KWasm for Verifying Smart
Contracts?

This project is missing its proverbial capstone. While we have made progress on
making on finishing KWasm, making an Ethereum embedding, and writing proofs
for pure Wasm programs, we have not yet verified a smart contract. We must
conclude that after this project, KWasm and KEwasm are not yet mature enough
to automatically verify the WRC20 contract’s main functionality. However, the
progress we have made makes us confident that it will be with only a little more
development. We hypothesize is that the lemmas on memory we have added will be
useful in verifying the argument passing between the Wasm runtime and the EEI,
which uses linear memory.

4.1.1 Comparison to KEVM

Proving properties of smart contracts has come a long way in KEVM, unlike in
KWasm. There the strength of the automatic process has manifested in the repos-
itory of verified smart contracts’ maintained by Runtime Verification, Inc., where

"https://github.com/runtimeverification/verified-smart-contracts
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many different smart contracts with similar specificatons—such as ERC20 tokens—
have been verified for generic properties. With a good set of lemmas in place, it has
proven feasible to prove many properties with relatively little extra effort when the
property is applied to a new but similar contract.

Another strength of the KEVM is its use of a domain-specific language (DSL) for
Ethereum, called EDSL2, which deals with converting human-readable data struc-
tures into EVM bytes. For example, calling a specific function in a smart contract
is generally performed by hashing the function signature and taking the first four
bytes, called the “function selector”, encoding the parameters as bytes, and con-
catenating the selector and encoded parameters and passing it as call data. Upon
execution of the contract, it inspects the first four bytes of the call data and jumps
to the corresponding function code. This is a common pattern in EVM contracts,
and the DSL has a function for turning a function signature and parameters into call
data. When we have used KEwasm for running contracts, for example for making
unit tests for the WRC20 contract, we have simply input the data as bytes. Our
preliminary experience with trying to prove the main functionality of the WRC20
contract has supported this, in that our specs become verbose due to our lack of
useful helper functions for common operations.

4.1.2 Ergonomic Issues of Proving Working with KWasm

We perceived the overall experience of proving with KWasm while adding necessary
lemmas as slow due to a lack of interactivity with the tools. One needs to recompile
the semantics after adding lemmas and make note of how the states at each step
of the prover execution changes with the addition of lemmas. During the course of
this project, we were made aware of a Haskell REPL tool for interactive proving,
and associated scripts which can unparse the more verbose internal format, called
Kore, into more readable K format. These tools make proving more interactive and
gives good overview of the proof process, and we suspect that further development
of the REPL and the Haskell backend will improve the ergonomics of proving with
K. Indeed, during the course of the project we have seen it mature a great deal,
to the point where it is now the main tool we use. We found this very useful
for debugging and finding issues with our lemmas, but not yet mature enough to
supply an interactive proving experience similar to that of proof assistants. The
proof engineer is tasked with setting up initial conditions, running the machine, and
inspecting its output, which may take anything from a minute to half an hour to
produce. This slowness of iteration currently makes the proof process arduous. It is
an issue that is being addressed, but which has been significant during the project.

Another ergonomic issue is that lemmas need to be designed carefully since they
always apply. Some more manual control would allow us to, for example, group
parentheses left or right as needed for associative operations to make other lemmas
apply. Finding a set of lemmas which respect ensures a lexicographic product is
always diminishing, as described in Sect. 3.5.2.1, while making the spec pass is
time-consuming. Being able to manually apply certain lemmas, such as associativity
rules, at given points in the proof would have made matters easier. Again, this is

’https://github.com/kframework/evm-semantics/blob/master/edsl.md
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an issue which is being addressed and we suspect will soon be out of the way.

An ergonomic issue in using the K prover has been to inspect why a proof fails.
Error messages are quite often opaque, and failures to prove a specification has
more often resulted in error messages than in the intended, unparsed end states.
Using KLab when possible helps a great deal in seeing regular semantic rules apply,
but it does not show (or branch on) function application, which is how lemmas are
encoded. Therefore, reasoning about why lemmas failed to apply often turned into a
game of finding the corresponding Z3 query (printed out when --debug-z3-queries
is passed to the prover) in the prover output. Since the prover will try to apply all
matching functions and emit the side conditions to Z3 this was often feasible, but
searching was time-consuming.

In general, the current state of proving in K requires a good deal of searching
through textual output. The transition to using the Haskell backend promises to
allow more structured inspection. There is, for example, a REPL for inspecting the
symbolic execution of a spec, in which breakpoints can be added and an execution
graph can be obtained.

This project has pushed K into new domains which has led to us running up on the
edges of some of the tools. While there is, of course, an EVM semantics and several
other high-level language semantics, the combination of byte-based heap reasoning,
high-level features, and configuration composition seems to have posed some new
challenges. For example, the uncompleted proving efforts focused on using the
Ewasm embedding have been stuck on issues with calling out across configurations
which we have not yet been able to resolve.

All abstractions are leaky, and K is no exception. While we would like to keep
the semantics as similar to the official Wasm semantics as possible, certain rule
formulations—Ilike splitting a rule in two with different side conditions rather than
using the builtin #if ... #then ... #else ... #fi construct lets the prover branch
on the rule when it cannot resolve the condition, whereas if gets stuck on the single
rule with #if. This leads to certain wordiness and duplication. See for example
the changes in pull request #243 into KWasm, especially the splitting of the #
checkTypeUse rules.

Another way design goals interfere with function is the structure of the KWasm
modules, where we include syntax in the semantics module so that we may present
syntax productions together with their respective rules. When we tried to introduce
a specialized string sort for the kinds of strings that can occur in Wasm, the K parser
broke since it interpreted double-quotes in the Wasm specification—for example
when declaring multiplicity="#*" in a configuration—as these specialized strings.
We, therefore, needed to create separate syntax modules that imported the semantics
modules and declare the sort WasmString without any productions in the semantics
module.
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4.2 Increasing K’s vs. Z3’s Reasoning Capabilities

Our first successful attempts at proving the specs that required extra lemmas used
the annotation smt-lemma, which extends Z3’s reasoning capabilities. Our approach
was to make Z3 understand our domain well enough that we could leave as much
as possible of the reasoning to the SMT solver. After discussing the matter with
K framework maintainers we decided to change approaches and do the opposite.
There was a clear interest in making K more capable in reasoning about arithmetic
and leaving less of the work to Z3. Since Z3 is a black box to K it cannot be used
to construct proof objects, which is a long-term goal for the K prover.

So we changed our efforts to adding lemmas to K . This was extra time-consuming
in the last proof, shown in Sect. 3.5, which was the most complicated proof under-
taken during the project. Adding as many SMT lemmas as possible took about as
many developer days as adding as few as possible.

The result—several useful arithmetic lemmas that we are planning on upstream-
ing into the K prover—was worth the while. Not only does it make the K prover
more powerful, but we also conjecture it will make it faster, though this has not
yet been benchmarked. The lemmas reduce the state of the proof obligation which
means the size of the expression the prover is working on is reduced on all branches.

We took care to construct hand-written proofs of correctness to these lemmas, in
place of proving them with the K prover. See Sect. 4.4.2 for discussion about the
future direction in terms of proving lemmas.

4.3 Issues With the Core Test Suite

The core test suite supplied by the Wasm project has certain limitations. It is based
on the reference interpreter and makes unnecessary assumptions about the features
of an implementation. For example, tests of parsability, validity, and linkability are
mixed with tests of correct execution. For modularity purposes, we advocate that the
tests are split up as parser tests, validity tests, linkability tests, and execution tests.
KWasm is a tool that assumes validity, and a full-fledged Wasm implementation
using KWasm would likely use a separate validity checker. Furthermore, tests should
be separated into pure Wasm tests, and tests using host function calls. The issue
with mixing these types of tests is that it assumes that a specific host embedding
is available, with specific and—as far as we can tell—undocumented host functions.
Finally, the tests could also be split up over more files, which would facilitate running
them with a simpler setup. It also avoids possible issues, such as insufficient memory,
that large files can cause even in valid Wasm implementations—implementations
may be limited in many different ways[31, Sect. 7.2].

Furthermore, we would like to see a specification of the host modules that get
called in the core test suite, ideally by giving them an operational semantics. This
is a good use case for executable semantics, such as those written in K.
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4.4 Future work

This project is has been about taking an existing prototype and bringing it off
the ground, making it capable of doing useful work. Some work remains to fully
complete the current project, namely verifying the WRC20 contract. Other than
that, the completed Wasm semantics and Ewasm embedding leave us with many
interesting directions to take in the future.

4.4.1 WRC20 Contract

Completing the capstone of this project is the next priority. We have made pre-
liminary attempts at verifying the other WRC20 functions apart from the $i64.
reverse_bytes. The prover is not yet able to symbolically execute the code of the
functions, but halts at an earlier state when declaring the imported Ethereum func-
tions.

The current plan is to write a proof for a smaller program that interacts with the
Ethereum environment in some way, and incrementally add proofs that manipulate
call-data, that uses a selector, or returns values. KWasm is the first K semantics
of a language that is be used embedded in other semantics. Any proofs of embed-
ded Wasm using KWasm would be a first and will serve as a prototype for future
embeddings of KWasm.

4.4.2 Proving Our Lemmas Sound

The added lemmas have handwritten proofs adjacent to them in the source code.
Here is an example of a lemma together with its proof, from the kwasm-lemmas .md?
file:

Listing 4.1: A lemma with its handwritten proof

"k
rule (X modInt M) modInt N => X modInt N
requires M >Int O
andBool N >Int O
andBool M modInt N ==Int O
[simplification]

Proof:
Assume m = n * k for some k > O.
x =m * q + r, for a unique q and r s.t. 0 <= r < m
(x mod m) mod n
= r mod n

= (n* (k * g) + r) mod n

Shttps://github.com/kframework/wasm-semantics/blob/342f86d08ef9d9310d4ba66f963864b63fdf 105/

kwasm-lemmas.md
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m * q + r mod n

x mod n

This uses standard facts of algebra, the behavior of the modInt operation (selecting
the unique positive smallest remainder) and the side conditions to prove the rewrite
is sound. This may be fragile. It is not guaranteed, for example, that the backend
implements the mod function in this way. It may, for example, select a negative
remainder. It is also too easy to mix up algebraic properties of congruence classes
with the computational behavior of a mod function. Nested mod operations do not
necessarily even make sense in standard arithmetic over congruence classes, where
all operands are assumed to be congruence classes over a single positive integer.[12,
Sect. 11]

We will want to prove our lemmas—at the moment, they are really axioms of
our theory. Ideally, this would be an automatic or semi-automatic process. One
published approach manages to automatically turn “tactlets” into proof obligations,
which are then validated against a rewriting semantics in Maude[3]. The lemmas
that use the KWasm operational semantics—currently, that would be those symboli-
cally unravels memory accesses—could be amenable to a similar approach, where we
could show that any application of the lemmas would render an identical result as a
sequence of rules from the semantics. There are ongoing efforts to merge several op-
erational semantic rules in KWasm into tactlet-like rules for verification purposes*.
This approach may still be overkill since all our lemmas are pure functions rather
than operational semantic rules. The simplest approach would be to translate the
arithmetic statements into SMT formulas and have Z3 validate them.

4.4.3 Upstreaming Lemmas

KWasm is currently the only project adding lemmas for upstreaming into K. The
lemmas we have added serve our purposes well and have strong arguments of sound-
ness attached. Still, there may be objections to using some of our lemmas due to
different design choices in different languages. For example, X >>Int N could be bet-
ter represented as X /Int (2 “Int N) in some languages, while others may the other
way around. The user base of K is still relatively small, and it would be feasible
to make a tentative committee decision on what principles should apply for adding
axioms.

4.4.4 Interactive Proving

A major inconvenience in this verification effort is that the K prover is non-interactive.
The lexicographic product in Sect. 3.5.2.1 is a complicated solution to avoid infinite
rewrites. If we could gain some control of when certain lemmas apply, or rather when
they do not apply, we could do away with the constraints of the lexicographic prod-
uct and instead use manual verification, supplying a list of do-not-apply instructions
with our proof to make the prover go through. Assuming the lemmas are sound,

“https://github.com/runtimeverification/polkadot-verification/issues/42
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applying them can not change the meaning of the program, and the only possible
difference between applying and not applying certain lemmas would be whether the
prover manages to decide if the spec is correct, not the result of that decision (which
is either #True or #False).

One possible solution would be to have the prover output a table of which lemmas
it applied in which steps, and to what expressions, until execution halts. This table
would be human-readable and editable, and the verifier could remove entries. By
supplying an edited table, the prover would only apply the table-specified lemmas
in each step.® With such a feature in place, the verifier could prototype the different
lemmas and add lemmas that would otherwise cause infinite rewrites. In a certain
step, for example, it may be convenient to right-associate additions, commute a
multiplication, or similar. If the prover could also be halted at different nodes in
the execution tree, the set of lemmas for that set changed, and the prover re-run, it
would be a significant step towards an interactive prover.

4.4.5 An Ewasm DSL and Spec Language

In Sect. 4.1.1 we discussed the DSL used in KEVM for simplifying spec writing,
called EDSL. We plan on making a similar DSL for KEwasm. The initial efforts
of proving embedded KWasm have become verbose and clunky. We would prefer a
more human-readable language.

For EVM contracts, there exist many different spec languages that differ in ex-
pressive power and ergonomics. KLab uses the ACT® language, which translates
into KEVM specs, while the verified smart contracts in the Runtime Verification
repository uses .ini macro files” for the same purposes. VerX[30] uses a tempo-
ral logic language in the style of JavaScript with function-style combinators. We
would like to survey the field of specification languages to decide on a suitable spec
language for KWasm or build our own.

4.4.6 Benchmarking Lemmas

We would like to test our hypothesis that simplifying lemmas (which strictly reduce
expression size) makes the prover faster or less resource-hungry. We could do this by
setting up a series of verification claims which use modular arithmetic that can pass
by leaving all the arithmetic reasoning to Z3, and applying early simplifications. We
could also simulate the same situation by setting up different claims with different
sized expressions and evaluate whether the time spent proving them goes down.
Such an analysis should split up the benchmarks between time spent in symbolic
execution and time spent in Z3. Yet another possible benchmarking method would
be to use the proof of $i64.reverse_bytes and switch to using Z3 lemmas instead
of K lemmas, and measure how proving time is affected, and how much time is

5The question arises what to do if the verifier modifies the table so that it contains a lemma
that does not apply. Initially, the prover may be naive and simply fail in such cases, or report an
error and move on. The important first step is to get some control over the prover, not building a
sophisticated interactive prover.

Shttps://github.com/dapphub/klab/blob/master/acts.md

"https://github.com/runtimeverification/verified-smart-contracts
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spent on symbolic execution compared to querying in Z3. If our hypothesis that
applying simplification lemmas tend to shorten execution time hold, then we should
see time spent on symbolic execution going up, even though the number of lemma
applications goes down.

4.4.7 JavaScript Embedding

While we have focused on smart contract verification in this project, Wasm is not
primarily known as a smart contract language. It is made to a portable bytecode for
many different platforms. As its name suggests, its most prominent use case is for
near-native speed computations on the web, embedded in JavaScript[17]. To the best
of our knowledge, there is little interest in formally verifying specific Wasm programs
on the web, and for use cases such as cryptography, there are other approaches
to ensure certain properties, for example, type-based approaches to guaranteeing
constant-time computation to avoid side-channel attacks[39]. Nevertheless, with
both a Wasm and JavaScript semantics in place in Wasm, we conjecture it would
require few development hours to create an embedding semantics, should the need
arise, or as a proof of concept of the composability of K semantics for real-world
languages.
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Conclusion

This project has been guided by the overall target of verifying an Ewasm token
smart contract, WRC20. While that goal has not yet been met, several strides have
been made towards it.

o« KWasm has been completed, giving an almost full Wasm semantics, omitting
only certain floating point functionality.

o The semantics have been tested against the conformance test suite, giving
unclear results—certain fixes have been made, but a full test run would require
implementing a specific embedder or hooking KWasm up to a JavaScript engine.

e An Ethereum embedding for KWasm, KEwasm, that gives meaning to the
WRC20 code, has been constructed and tested.

o Several pure Wasm programs have been fully verified, including sequences of
memory manipulations.

« Foremost of the verified programs is a single helper function from WRC20.

5.1 Contributions to Wasm and Ethereum

We believe that the following contributions stand out as helpful to the future of
verifying Wasm and Ewasm:

5.1.1 Examples of Verifying in Wasm

As mentioned in Sect. 1.4, we are not aware of any other framework for verifying
Wasm programs. With this project, we have verified several small programs us-
ing demonstrably sound axioms and a well-known verification framework. While
there must be little doubt that such verification can be done—Wasm has a formal
semantics, after all—engineering examples are nevertheless useful. The official spec-
ification of Wasm uses a similar memory representation as KWasm and storing to
and loading from memory uses similar recursive functions to #setRange. Thus, any
Wasm verification manipulating memory would need similar reasoning capabilities
to those of K, after our extensions. Our collection of lemmas can, therefore, serve
as a basis for other verification projects.

5.1.2 Ewasm Embedding

The Ewasm embedding of KWasm not only serves as a prototype virtual machine
but also as a formal semantics of Ewasm. We have given a rewriting based op-
erational semantics of the interaction of the EEI and Wasm, a similar formalism
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to the one officially used by Wasm. The Ethereum community could accept the
Ewasm formalization as canonical and have a runnable, readable formal specifica-
tion. Furthermore, it offers an example of how embedder for Wasm can be written
in general using rewriting rules. The current JavaScript embedding specification[26]
uses JavaScript syntax to specify behavior. When building a verification engine it
may be useful to use the same formalism all the way. For example, our embedding
approach with synchronizations could be used to obtain a prover for JavaScript with
embedded Wasm by combining KJS [28] with Kwasm.

Our approach uses synchronization mechanisms to avoid verifying many possible
interleavings. If parallel execution is to be allowed between the embedder and the
Wasm execution, some care must be taken that reads and writes to memory, globals
and tables are synchronized. These are readable and writable from the embedder,
and memory and globals are writable from inside Wasm as well, while tables are
simply readable.

5.1.3 Evaluation of the Wasm Tests as Conformance Tests

We found in our evaluation of the conformance tests in Sect. 2.2.1 that the two host
modules test and spectest are undocumented, yet required to pass the test suite.
We found that for testing our semantics it would be beneficial if the tests were split
up more granularly, with independent modules in different files.

5.2 Contributions to K and KWasm

Zooming in, we have made the following contributions to the tools we have used for
the project: the K framework in general and to KWasm in particular.

5.2.1 Completing KWasm

This project finalized KWasm into a ready state by adding module support. The only
missing features of KWasm are floating-point operations, which we do not intend to
support unless a clear use case materializes. For now, the main use case is verifying
smart contract and blockchain client code, which makes no use of floating-point
operations.

5.2.2 Lemmas for Integer and Modular Arithmetic

We contributed 25 lemmas to KWasm which can be safely upstreamed into K as
general axioms for integer and modular arithmetic. These mostly act as pure sim-
plification, reducing the size of expressions and therefore likely also execution time
(though this hypothesis is still untested, see Sect. 4.4.6). Which lemmas should be
upstreamed into K and how to evaluate that this causes no breaking changes are
still being discussed.

We have added seven other lemmas local to KWasm which deal with loading from
and storing to memory. These have proven useful to verify two programs that modify
memory, and we believe they will be useful for future such programs as well. Since
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memory is where heap objects live in many Wasm programs, especially complied
ones, we believe these lemmas will prove useful in future verification efforts.

We also developed a lexicographic order which shows that our lemmas do not
cause infinite rewrites. While this order may be changed in the future depending on
the needs of K we believe this puts us on a solid foundation where we can discuss
the merits and pitfalls of different standard lemma sets, and think formally about
what changes may cause the prover to loop forever.

5.2.3 Embedded K Semantics

KEwasm is the first example of taking to real-world semantics—an Ethereum client
and Wasm—and combining them into a useful semantics. As such, it works as
an example of how K can allow for this, as well as a spearhead for proofing and
benchmarking the semantics combining features.
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A

Reverse Bytes: Final Expression

The following is the final map data produced by the $i64.reverse_bytes function
on a symbolic input map BM and integer address ADDR, when reversing 8 bytes of
memory.

#set (
#set (
#set (
#set (
#set (
#set (
#set (
#set (BM,
ADDR, _modInt_(_modInt_((_modInt_(_<<Int_(_>>
Int_(_modInt_(_<<Int_(#getRange (BM, ADDR, 8)
, 0), pow64), 56), 0), pow64) + _modInt_((
_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 8), pow64) , 56), 8),
pow64) + _modInt_((_modInt_(_<<Int_(_>>Int_
(_modInt_(_<<Int_(#getRange (BM, ADDR, 8),
16), pow64), 56), 16), pow64) + _modInt_ ((
_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 24), pow64), 56), 24)
, pow64) + _modInt_((_modInt_(_<<Int _(_>>
Int_(_modInt_(_<<Int_(#getRange (BM, ADDR, 8)
, 32), pow64), 56), 32), pow64) + _modInt_ ((
“modInt_ (_<<Int_(_>>Int_( _modInt_ (_<<Int_(#
getRange (BM, ADDR, 8), 40), pow64), 56), 40)
, pow64) + _modInt_((_modInt_(_<<Int_(_>>
Int_(_modInt_(_<<Int_(#getRange (BM, ADDR, 8)
, 48), pow64), 56), 48), pow64) + _modInt_ ((
_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 56), pow64), 56), 56)
, pow64) + 0), pow64)), pow64)), pow64d)),
pow64)), pow64)), pow64)), pow64)), pow64d),
256)) ,
(ADDR + 1), _modImt_((_modInt _((_modInt_(_<<Int_
(_>>Int_(_modInt_(_<<Int_(#getRange (BM, ADDR,
8), 0), pow64), 56), 0), pow64) + _modInt_ ((
“modInt_(_<<Int_(_>>Int_(_modInt_ (_<<Int_ (#
getRange (BM, ADDR, 8), 8), pow64), 56), 8),
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IT

pow64) + _modInt_((_modInt_(_<<Int_(_>>Int_(
_modInt_(_<<Int_(#get Range(BM, ADDR, 8), 16),
pow64), 56), 16), pow64) + _modInt_((_modInt_
(_<<Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM
, ADDR, 8), 24), pow64), 56), 24), pow6d) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_
<<Int_(#getRange (BM, ADDR, 8), 32), pow64),
56), 32), pow64) + _modInt_((_modInt_(_<<Int_(
_>>Int_(_modInt_(_<<Int_(#getRange (BM, ADDR,
8), 40), pow64), 56), 40), pow64) + _modInt_ ((
_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 48), pow64), 56), 48),
pow64) + _modInt_((_modInt_(_<<Int_(_>>Int_(_
modInt_(_<<Int_(#getRange (BM, ADDR, 8), 56),
pow64), 56), 56), pow64) + 0), pow64)), pow64)
), pow64)), pow64)), pow64)), pow64)), pow64))
, pow64) / 256), 256)),

(CADDR + 1) + 1), _modInt_(((_modInt_((_modInt_(_<<
Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM, ADDR
, 8), 0), pow64), 56), 0), pow64) + _modInt_((
_modInt_ (_<<Int_(_>>Int_(_modInt_ (_<<Int_(#
getRange (BM, ADDR, 8), 8), pow64), 56), 8),
pow64) + _modInt_((_modInt_(_<<Int_(_>>Int_(
_modInt_(_<<Int_(#getRange(BM, ADDR, 8), 16),
pow64), 56), 16), pow64) + _modInt_((_modInt_(_
<<Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM,
ADDR, 8), 24), pow64), 56), 24), pow64) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<
Int_(#getRange (BM, ADDR, 8), 32), pow64), 56),
32), pow64) + _modInt_((_modInt_(_<<Int_(_>>Int_
(_modInt_(_ <<Int_(#getRange (BM, ADDR, 8), 40),
pow64), 56), 40), pow64) + _modInt_((_modInt_(_
<<Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM,
ADDR, 8), 48), pow64), 56), 48), pow64) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<
Int_(#getRange (BM, ADDR, 8), 56), pow64), 56),
56), pow64) + 0), pow64)), pow64)), pow64)),
pow64)), pow64)), pow64)), pow64)), powbd) /
256) / 256), 256)),

(CC(ADDR + 1) + 1) + 1), _modInt_((((_modInt_((
~modInt_ (_<<Int_(_>>Int_(_modInt_ (_<<Int_(#
getRange (BM, ADDR, 8), 0), pow64), 56), 0), pow64)

+ _modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<
Int_(#getRange (BM, ADDR, 8), 8), pow64), 56), 8),
pow64) + _modInt_((_modInt_(_<<Int_(_>>Int_(
_modInt_(_<<Int_(#getRange(BM, ADDR, 8), 16),
pow64), 56), 16), pow64) + _modInt_((_modInt_(_<<
Int_(_>>Int_(_modInt_(_<< Int_(#getRange(BM, ADDR,

8), 24), pow64), 56), 24), pow64) + _modInt_((
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~modInt_ (_<<Int_(_>>Int_( _modInt_ (_<<Int_(#
getRange (BM, ADDR, 8), 32), pow64), 56), 32),
pow64) + _modInt_((_modInt_(_<<Int_(_>>Int_(
_modInt_(_<<Int_(#getRange(BM, ADDR, 8), 40),
pow64), 56), 40), pow64) + _modInt_((_modInt_(_<<
Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM, ADDR,
8), 48), pow64), 56), 48), pow64) + _modInt_ ((
~modInt_ (_<<Int_(_>>Int_(_modInt_ (_<<Int_(#
getRange (BM, ADDR, 8), 56), pow64), 56), 56),
pow64) + 0), pow64)), pow64)), pow64)), pow6d)),
pow64)), pow64)), pow64)), pow64) / 256) / 256) /
256), 256)),

(CCCADDR + 1) + 1) + 1) + 1), _modInt_(((((_modInt_((
_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#getRange(
BM, ADDR, 8), 0), pow64), 56), 0), pow64) + _modInt_
((_modInt_(_<<Int_(_>>I nt_( _modInt_(_<<Int_ (#
getRange (BM, ADDR, 8), 8), pow64), 56), 8), pow6d) +

_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_
(#getRange (BM, ADDR, 8), 16), pow64), 56), 16),
pow64) + _modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_
(_<<Int_(#getRange(BM, ADDR, 8), 24), pow64), 56),
24), pow64) + _modInt_((_modInt_(_<<Int_(_>>Int_(
_modInt_(_<<Int_(#getRange (BM, ADDR, 8), 32), pow64)
, 56), 32), pow64) + _modInt_((_modInt_(_<<Int_(_>>
Int_(_modInt_(_<<Int_(#getRange (BM, ADDR, 8), 40),
pow64), 56), 40), pow64) + _modInt_((_mo dInt_(_<<
Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM, ADDR, 8)
, 48), pow64), 56), 48), pow64) + _modInt_((_modInt_
(_<<Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM, ADDR
, 8), 56), pow64), 56), 56), pow64) + 0), pow64)),
pow64)), pow64)), pow64)), pow64)), pow64)), pow64d))
, pow64) / 256) / 256) / 256) / 256), 256)),

(CCCCADDR + 1) + 1) + 1) + 1) + 1), _modInt_ ((C(((

_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#

getRange (BM, ADDR, 8), 0), pow64), 56), 0), pow64) +

“modInt_((_modInt_ (_<<Int_(_>>Int_( _modInt_ (_<<Int_ (#

getRange (BM, ADDR, 8), 8), pow64), 56), 8), pow6d) +

_modInt_ ((_modInt_ (_<<Int_(_>>Int_( _modInt_ (_<<Int_ (#

getRange (BM, ADDR, 8), 16), pow64), 56), 16), pow64) +

_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 24), pow64), 56), 24), pow6d) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 32), pow64), 56), 32), pow64) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_ (#
getRange (BM, ADDR, 8), 40), pow64), 56), 40), pow64) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_ modInt_(_<<Int_
(#getRange (BM, ADDR, 8), 48), pow64), 56), 48), pow64)
+ _modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_
(#getRange (BM, ADDR, 8), 56), pow64), 56), 56), pow64)
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+ 0), pow64)), pow64)), pow64)), pow64d)), pow6d)),
pow64)), pow64)), pow64) / 256) / 256) / 256) / 256) /
256) , 256)),

(CCCCCADDR + 1) + 1) + 1) + 1) + 1) + 1), _modInt_ (((((((
~modInt_ ((_modInt_ (_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 0), pow64), 56), 0), pow64d) +
~modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 8), pow64), 56), 8), pow6d) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 16), pow64), 56), 16), pow64) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 24), pow64), 56), 24), pow64) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 32), pow64), 56), 32), pow64) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#
getRange (BM, ADDR, 8), 40), pow64), 56), 40), pow64) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_ <<Int_(#
getRange (BM, ADDR, 8), 48), pow64), 56), 48), pow64) +
“modInt_ ((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_ (#
getRange (BM, ADDR, 8), 56), pow64), 56), 56), pow64) +
0), pow64)), pow64)), pow64)), pow64)), pow64)), pow64))
, pow64)), pow64) / 256) / 256) / 256) / 256) / 256) /
256) , 256)),

(CCCCCCADDR + 1) + 1) + 1) + 1) + 1) + 1) + 1), _modInt_

((((((((_modInt_((_modInt_ (_<<Int_(_>>Int_(_modInt_ (_<<
Int_(#getRange (BM, ADDR, 8), 0), pow64), 56), 0), pow64d) +
_modInt_((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#getR
ange (BM, ADDR, 8), 8), pow64), 56), 8), pow64) + _modInt_
((_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM,
ADDR, 8), 16), pow64), 56), 16), pow64) + _modInt_ ((
_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM,
ADDR, 8), 24), pow64), 56), 24), pow64) + _modInt_ ((
_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM,
ADDR, 8), 32), pow64), 56), 32), pow64) + _modInt_ ((
_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM,
ADDR, 8), 40), pow64), 56), 40), pow64) + _modInt_ ((
_modInt_(_<<Int_(_>>Int_(_ modInt_(_<<Int_(#getRange (BM,
ADDR, 8), 48), pow64), 56), 48), pow64) + _modInt_ ((
_modInt_(_<<Int_(_>>Int_(_modInt_(_<<Int_(#getRange (BM,
ADDR, 8), 56), pow64), 56), 56), pow64) + 0), pow64)),
pow64)), pow64)), pow64)), pow64)), pow64)), pow64d)),
pow64) / 256) / 256) / 256) / 256) / 256) / 256) / 256),
256))
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Printed here for completeness is the full WRC20 code, parsed from the concrete
syntax into KWasm’s internal syntax.

1| ( module

2

3 // Imports from host module.

4

5 (func String2Identifier ("$revert")

6 ( import #unparseWasmString("\"ethereum\"")
7 #unparseWasmString ("\"revert\"")

8 )

9 param i32 i32 .ValTypes .TypeDecls

10 )

11

12 (func String2Identifier ("$finish")

13 ( import #unparseWasmString ("\"ethereum\"")
14 #unparseWasmString ("\"finish\"")

15 )

16 param i32 i32 .ValTypes .TypeDecls

17 )

18

19 (func String2Identifier ("$getCallDataSize")
20 ( import #unparseWasmString ("\"ethereum\"")
21 #unparseWasmString ("\"getCallDataSize\"")
22 )

23 result i32 .ValTypes .TypeDecls

24 )

25

26 (func String2Identifier ("$callDataCopy")

27 ( import #unparseWasmString ("\"ethereum\"")
28 #unparseWasmString ("\"callDataCopy\"")

29 )

30 param i32 132 i32 .ValTypes .TypeDecls

31 )

32

33 (func String2Identifier ("$storageload")

34 ( import #unparseWasmString("\"ethereum\"")
35 #unparseWasmString ("\"storageLoad\"")

36 )

37 param i32 i32 .ValTypes .TypeDecls
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VI

(func String2Identifier ("$storageStore")
( import #unparseWasmString ("\"ethereum\"")
#unparseWasmString ("\"storageStore\"")
)
param i32 i32 .ValTypes .TypeDecls
)

(func String2Identifier ("$getCaller")
( import #unparseWasmString ("\"ethereum\"")
#unparseWasmString ("\"getCaller\"")
)
param i32 .ValTypes .TypeDecls

)
// Instantiate a memory.
( memory ( export #unparseWasmString ("\"memory\"") ) 1 )

// Entry point to the module---"main" gets called when
contract gets called.

(func ( export #unparseWasmString ("\"main\"") ) .TypeDecls
.LocalDecls
block .TypeDecls
block .TypeDecls
call String2Identifier ("$getCallDataSize")
i32.const 4
i32.ge_u
br_if O
i32.const 0
i32.const O
call String2Identifier ("$revert")
br 1
.EmptyStmts
end
i32.const O
i32.const O
i32.const 4
call String2Identifier ("$callDataCopy")
block .TypeDecls
i32.const 0
i32.1load
i32.const 436376473:1Int
i32.eq
i32.eqz
br_if O
call String2Identifier ("$do_balance™")
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br 1
.EmptyStmts
end
block .TypeDecls
i32.const 0 i32.1load
i32.const 3181327709:Int
i32.eq
i32.eqz
br_if O
call String2Identifier ("$do_transfer")
br 1
.EmptyStmts
end
i32.const O
i32.const O
call String2Identifier ("$revert")
.EmptyStmts
end
.EmptyStmts

(func String2Identifier ("$do_balance") .TypeDecls
LocalDecls
block .TypeDecls
block .TypeDecls
call String2Identifier ("$getCallDataSize")
i32.const 24
i32.eq
br_if O
i32.const 0
i32.const 0
call String2Identifier ("$revert")
br 1
.EmptyStmts
end
i32.const O
i32.const 4
i32.const 20
call String2Identifier ("$callDataCopy")
i32.const O
i32.const 32
call String2Identifier ("$storageLoad")
i32.const 32
i32.const 32
i64.load
call String2Identifier ("$i64.reverse_bytes")
i64.store
i32.const 32
i32.const 8
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call String2Identifier ("$finish")
.EmptyStmts

end

.EmptyStmts

(func String2Identifier ("$do_transfer") .TypeDecls 1local

VIII

i64 i64 i64 .ValTypes .LocalDecls
block .TypeDecls
block .TypeDecls
call String2Identifier ("$getCallDataSize")
i32.const 32
i32.eq
br_if O
i32.const O
i32.const 0
call String2Identifier ("$revert")
br 1
.EmptyStmts
end
i32.const O
call String2Identifier ("$getCaller")
i32.const 32
i32.const 4
i32.const 20
call String2Identifier ("$callDataCopy")
i32.const 64
i32.const 24
i32.const 8
call String2Identifier ("$callDataCopy")
i32.const 64
i64.load
call String2Identifier ("$i64.reverse_bytes")
local.set O
i32.const O
i32.const 64
call String2Identifier ("$storageload")
i32.const 64
i64.1load
local.set 1
i32.const 32
i32.const 64
call String2Identifier ("$storageload")
i32.const 64
i64.load
local.set 2
block .TypeDecls
local.get O
local.get 1
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i64.1le_u
br_if O
i32.const 0
i32.const O
call String2Identifier ("$revert")
br 1
.EmptyStmts
end
local.get 1
local.get O
i64.sub
local.set 1
local.get 2
local.get O
i64.add
local.set 2
i32.const 64
local.get 1
i64.store
i32.const O
i32.const 64
call String2Identifier ("$storageStore")
i32.const 64
local.get 2
i64.store
i32.const 32
i32.const 64
call String2ldentifier ("$storageStore")
.EmptyStmts
end
.EmptyStmts

(func String2Identifier ("$i64.reverse_bytes") param i64
ValTypes result i64 .ValTypes .TypeDecls local i64 i64
ValTypes .LocalDecls

block .TypeDecls

loop .TypeDecls

local.get 1
i64.const 8
i64.ge_u
br_if 1
local.get O
i64.const 56
local.get 1
i64.const
i64 .mul
i64.sub
i64.shl
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i64.const 56
i64.shr_u
i64.const 56
i64.const
local.get 1
i64 .mul
i64.sub
i64.shl
local.get 2
i64.add
local.set
local.get 1
i64.const 1
i64.add
local.set 1
br O
.EmptyStmts
end
.EmptyStmts

end

local.get 2

.EmptyStmts

)

.Defns




The Complete Configuration of
KWasm

Listing C.1: The complete K configuration of KWasm.

configuration

© 00 N O Ut W N

O W W W W WD NDNDNDNDDDDDNDDNDDN DN = e e e e e e
U W OO0 I UUER WNDRFE O WOWOWIO Uk WNH=O

<wasm>
<k> $PGM:Stmts </k>

<valstack> .ValStack </valstack>

<curFrame >

<locals> .Map </locals>
<locallds> .Map </locallds>
<curModIdx> .Int </curModIdx>

<labelDepth> O

</labelDepth>

<labellds> .Map </labellds>

</curFrame>

<moduleRegistry> .Map </moduleRegistry>
<moduleIds> .Map </modulelds>

<modulelnstances>

<modulelInst multiplicity="*" type="Map">

<modIdx> 0

<exports> . Map
<typelds> . Map
<types> . Map
<nextTypeIdx> O

<funcIds> .Map
<funcAddrs> . Map
<nextFuncIdx> 0

<tabIds> . Map
<tabAddrs> .Map
<memIds > . Map
<memAddrs > .Map
<globIds> . Map

<globalAddrs> .Map
<nextGlobIdx> 0
</modulelnst >
</modulelnstances >

</modIdx >
</exports>
</typelds>
</types>
</nextTypeldx>
</funclds>
</funcAddrs>
</nextFuncIldx>
</tablds>
</tabAddrs>
</memIds >
</memAddrs >
</globlds>
</globalAddrs>
</nextGlobIdx>

<nextModuleIdx> 0 </nextModuleIdx>

<mainStore>
<funcs>
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<funcDef multiplicity="*" type="Map">

<fAddr> 0 </fAddr>
<fCode> .Instrs:Instrs </fCode>
<fType> .Type </fType>
<fLocal> .Type </fLocal>
<fModInst> O </fModInst >
</funcDef >
</funcs>
<nextFuncAddr> 0 </nextFuncAddr>
<tabs>
<tabInst multiplicity="*" type="Map">
<tAddr> 0 </tAddr>
<tmax> .Int </tmax>
<tsize> 0 </tsize>

<tdata> .Map </tdata>
</tabInst>

</tabs>
<nextTabAddr> 0 </nextTabAddr>
<mems >
<memInst multiplicity="*" type="Map">
<mAddr> O </mAddr >
<mmax > .Int </mmax >
<msize> 0 </msize>

<mdata> ByteMap <| .Map |> </mdata>
</memInst >

</mems >
<nextMemAddr > 0 </nextMemAddr >
<globals>
<globallInst multiplicity="*" type="Map">
<gAddr> O </gAddr >
<gValue> undefined </gValue>
<gMut > .Mut </gMut >

</globallnst>

</globals>

<nextGlobAddr> 0 </nextGlobAddr>
</mainStore>
<deterministicMemoryGrowth> true </

deterministicMemoryGrowth>
<nextFreshId> 0 </nextFreshId>

</wasm>
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