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ABSTRACT 

CFRP has been an interesting alternative while it comes to rehabilitation and repair 
work of structures whether made of concrete or steel. However since the combination 
of CFRP and the latter is more recent there has been a need to think of the best way to 
model the adhesive interface between the two in a composite beam. 

The initial task was to make a lighter FE model (less use of 3D solid elements) of the 
laboratory set-up so that the results obtained from tests, conducted in the laboratory, 
could be verified. Also for the purpose of comparison, the results from a high detail 
3D solid element FE model, as part of the ongoing PhD research of Dag Linghoff was 
available. 

The present model was created with 2D shell elements and spring connectors to model 
the adhesive interface, as it was a more easily applicable solution. Difficulties were 
faced during the process of modelling the interface since ABAQUS® the general 
purpose FE tool used did not have such an option to use spring connectors as a 
modelling element for the adhesive. Yet the model was constructed successfully and a 
method to extract the results from it was found out. 

The results from the model showed an excellent agreement to the analytical interfacial 
shear stresses, though the process of result extraction was very complicated and 
laborious. However it was not possible to study the normal (peeling) stresses in this 
way since the method involved an almost manual process of calculating the peeling 
stress.  

The model is very easy to create on simple 2D surfaces but would be get extremely 
complicated when there would be 3D adhesive layer shape. The process would then 
have to be built into the software as a function for easy use by just selection of 
surfaces rather than manual set up.  

 

Key words: Adhesive interface, CFRP-Steel composite, Epoxy modelling, Finite 
element modelling, ABAQUS®, interfacial Shear stresses, Spring 
Connectors 
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SAMMANFATTNING 

CFRP är ett interessant alternativ när det kommer till återställande och reparation av 
byggnader, både när det gäller betong och stål. Eftersom kombinationen av CFRP och 
det sistnämnda är nyare, har det varit nödvändigt att fundera över det bästa sättet att 
modellera limmet mellan dessa två i en sammansatt balk. 

Den första uppgiften var att göra en lättare FE modell (mindre användning av solida 
3D element) av labratorie-strukturen så att resutaten från laborationerna, kunde 
verifieras. Resultaten från en hög detalj 3D solida element FE modell, från en del av 
den pågående PhD forskningen av Dag Linghoff, användes för jämförelse. Den 
nuvarande modellen är framställd med 2D skal element och fjäderkopplingar för att 
modellera limmet mellan materialen, eftersom detta var en enkel och användbar 
lösning. Svårigheter dök upp under modelleringen eftersom ABAQUS®, FE 
hjälpmedlet som använts, inte hade något alternativ för fjäderkopplingar som ett 
modellerande element för limmet. Modellen kunde ändå konstrueras med framgång 
och en metod för att få fram resultaten hittades. 

Resultaten från modellen visade en bra överensstämmelse med den analytiska 
skjuvningen mellan materialen, även fast processen för att få fram resultaten var 
komplicerad. Det var dock inte möjligt att studera normalspänningarna pga. att 
modellen involverade en nästan helt manuell process för att beräkna 
normalspänningarna. 

Modellen är väldigt enkel att skapa med 2D ytor, men skulle bli väldigt komplicerad 
om man använde sig utav 3D. Den processen skulle behövts byggas in i mjukvaran 
som en funktion för lätt användning bara med valfrihet av yta hellre än manuell 
uppbyggnad. 

Nyckelord: Limfog, CFRP-stål komposit, epoxi modellering, Finite element 
modellering, ABAQUS, skjuvspänningar i limfog, fjäder förbindning 
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Notations 
Roman upper case letters 
A1 Area of adherent 1 
A2 Area of adherent 2 
ACFRP Area of CFRP Laminate  
As Area of steel 
B Breadth of element 
D11 Elastic relative stiffness along the first axis 
D22 Elastic relative stiffness along the second axis 
E1 Young’s Modulus of Elasticity of adherent 1 
E2 Young’s Modulus of Elasticity of adherent 2 
ECFRP Young’s Modulus of Elasticity of CFRP 
ES Young’s Modulus of Elasticity for Steel 
F Force 
Ga Shear Modulus of Elasticity 
H Height of Element  
ICFRP.el Moment of Inertia of composite section with CFRP 
Iel.no_CFRP  Moment of Inertia of composite section without CFRP 
L Length of the element 
LS1  Longitudinal normal stress at point 1 
M Moment applied 
N Axial load 
P Point load applied 
R Ratio of the elastic stiffness 

 

Roman lower case letters 
b1 Breadth of adherent 1 
b2 Breadth of adherent 1 
bCFRP Breadth of CFRP laminate 
hCFRP Height of CFRP laminate 
u Displacement along x-axis 
v Displacement along y-axis 
w Displacement along z-axis 
x Co-ordinate along x-axis 
y Co-ordinate along y-axis 
z Co-ordinate along z-axis 

 

Greek lower case letters 
� Constant 
� Constant 
� Strain 
� Strain 
� Stress 
� Shear stress 
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1 Introduction 
Man has always wanted to better what he has done so far and as a step towards this he tries to 
stretch all that he can to its limits. When he knows he cannot go any further with what he has, 
he tends to replace it. But replacement is not always a solution, one can also modify what 
already exists to suit the needs of the day and this is definitely a more cost effective way than 
replacement. One could like in this case, as is the subject of study, use CFRP (Carbon fibre 
Reinforced Polymer) strips to reinforce or strengthen the existing member. But further study 
on this is required so as to understand how this composite member would react to loads. It is 
also necessary to know what improvements made to the composite member would optimize 
its performance while keeping in mind the economic feasibility. For this the present thesis 
would deal with the Modelling of the experimental composite member for Finite Element 
Analysis. 

This chapter will give the reader some information about the background of the present study 
as well as the aim, objectives and its limitations. A general description of the main method 
that has been adopted is also given, together with an overview of the earlier research. 

1.1 Background 

A lot of work in this field has been done and among them the works by Bogdanovich & 
Kizhakethara [1] prove enlightening, this paper deals with the sub-modelling approach of 
dealing with modelling composite materials. Then there is the earlier work of Wu and 
Crocombe [2] who have dealt with the simplified approach of modelling adhesive joints of 
composite material. From their works we can see how the task of strengthening the steel beam 
with CFRP has been carried out. The setup is loaded and tested not only in the ULS but also 
for its deformations in the service state. 

1.2 Aim and Objectives 

The Aim of the project is to model the interface between the CFRP and steel beam for Finite 
Element Analysis in ABAQUS. The experimental analysis has been made earlier so now the 
exact same conditions have to be simulated in ABAQUS so that the results match with those 
from the experiments and they would also have to be cross checked analytically. 

The completion of this master’s thesis will lead to better understanding of how to model the 
interaction between the adhesive and metal and composite adherends.  

1.3 Limitations 

This thesis has a few limitations like in the case of comparison with or to the results from the 
laboratory, the tests in the laboratory though have been carried out by the predecessors 
researchers of this project yet not much of the details from them will be used for this thesis 
and it will be out of the scope.  
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2 Literature Study  
The literature study was done with an extensive search of journals, papers and other reading 
material which deals with the state of the art information connected to the subject and which 
could contribute to the project and so the study was categorized into the following headings.  

2.1 Carbon Fibre Reinforced Polymer (CFRP) 

The Encyclopaedia defines CFRP as: 

Carbon fibre reinforced Plastic (CFRP), is a strong, and light composite material or fibre 
reinforced polymer. Like glass-reinforced plastic, the composite material is commonly 
referred to by the name of its reinforcing fibres (carbon fibre). The polymer is most often 
epoxy, but others plastics, like polyester or vinyl ester, are also sometimes used. 

There are many ways to manufacture CFRP out of which the most important continuous 
manufacturing process is Pultrusion, which we will discuss in brief now and is described in 
Norling [3]. 

In this method continuous fibre reinforcement is impregnated with a resin and then 
continuously formed into a solid composite profile. The fibres are pulled in creels and are 
gradually brought together and pulled into an open resin bath where the fibres are 
impregnated with resin. After that the fibres pass though a die where all excess resin is 
squeezed out and the die is heated and this heat is transferred to the resin to initiate the 
hardening process. The fibres emerge from the other end of the die as a hot solid composite 
profile and it is allowed to cool off before being cut into required lengths. 

Altenbach and Kissing [4] point that the modelling of this fibre can be done in three stages in 
which the first level is in the micro level (individual fibre layer orientation is taken into 
consideration) and then in the macro level (averages values of the parameters in question are 
taken) and finally in the structural level or global level which is more important for us at a 
structural point of view. Here the mechanical response of structural members like beams, 
plates, and shells etc. have to be analysed taking into account possibilities to formulate 
structural theories of different order. 

The Classic Laminate Theory (CLT)1 is commonly used along with First-order Shear 
Deformation Theory (FSDT) and Equivalent Single Layer Theory (ESLT). But CLT requires 
C1 continuity of transverse displacement i.e. the displacements and the derivatives must be 
continuous while FSDT only requires C0 continuity. 

Basic assumption of the modelling structural elements in the framework of anisotropic 
elasticity is an approximate expression of the displacement components in the form of 
polynomials are limited to third degree and can be written in the form:  

                                                

1 The concept of CLT is not used in present project. However it is presented for better understanding of the 
concept for future extension of this project. 
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According to the CLT the values of the constants in the above equations will be  

1, 0α β γ δ β γ= − = = = = =  

According to the FSDT the values of the same constants would be 

0, 1, 0α β γ δ β γ= = = = = =  

 

So the same Equation (2.1) would be reduced in the CLT or FSDT as  

),(),(),,( 2113213211 xxxxxuxxxu ψ+=  

1 1 2 3 1 2 3 2 1 2( , , ) ( , ) ( , )u x x x v x x x x xψ= +       
           (2.2) 

3 1 2 3 1 2( , , ) ( , )u x x x w x x=  
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1 1 2 2 1 2
1 2

( , ) , ( , ) ,
w w

x x x x
x x

ψ ψ∂ ∂= − = −
∂ ∂

 

The above equations yield the classical approximation and the number of unknown functions 
reduces to three unknown functions, which are u, v and w. 
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For in-plane strains one can write in contracted form 

( ) ( ) ( ) ( )1 1 2 3 1 2 3 1 2, , , , , 1, 2,6ix x x x x x k x x iε ε= + =  

i.e. the in place strains �1, �2 and �6 vary linearly through thickness h. The stress strain 
relations in axis coordinates are  

' ' ', , 1, 2,6i ij jc i jσ ε= =  

Using transformation rule, 

3 3TC T CTε ε=  

CLT makes the additional assumptions 

• All layers are in a state of plane stress i.e. 3 4 5 0σ σ σ= = =  
 

• Normal distances from the middle surface remain constant. i.e. the transverse normal 
strain �3 is negligible compared with the in plane strains �1, �2 

 
• The transverse shear strains �4 and �5 are negligible. This assumption implies that 

straight lines normal to the middle surface remain straight and normal to that surface 
after deformation. 

∴Equation (2.3) becomes with above assumptions as  

1 1 2 2 1 2
1 2

( , ) , ( , )
w w

x x x x
x x

ψ ψ−∂ −∂= =
∂ ∂

     (2.4) 

and the displacement approach in Equation (2.2) and the strain components in Equation (2.3) 
are written by 
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The condensed form for in-plane strain can be noted as 
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( ) ( ) ( ) ( )1 1 2 3 1 2 3 1, , , , 1, 2,6ix x x x x x k iε ε= + =  
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[ ]1 2 6
Tε ε ε ε= is the vector of mid plain strains (stretching and shearing) &  

[ ]1 2 6
Tk k k k= is the vector of curvature (bending & twisting) 

For all k layers 

( ) ( ) ( )
1 3

, 1, 2,6

k k k
ij i ij ijQ x Q k

here

i j

σ ε= +

=
        (2.8) 

2.2 Adhesives and its failure 

The adhesives are used to make the CFRP adhere to the steel member and it is also the 
medium through which the forces are transferred from the steel to the CFRP strips.  

There are many types of adhesives and the type of adhesive used in the present analysis is the 
plastic epoxy with a Young’s Modulus of 7 GPa and a Poisson’s ratio of 0.29. The 
commercial name of this epoxy is Sikadur®. During the analysis in this thesis it will assumed 
that the epoxy is linear elastic.  

Adhesives may fail in one of two ways: 

• Adhesive failure is the failure of the adhesive to stick or bond with the material to be 
adhered (also known as the substrate or adherend). 

• Cohesive failure is structural failure of the adhesive. Adhesive remains on both 
substrate surfaces, but the two items separate. 

Two substrates can also separate through structural failure of one of the substrates, this is not 
a case of failure of the adhesive. The adhesive remains intact and is still bonded to one 
substrate and the remnants of the other.  
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2.3 Interfacial Stresses in Composite Beams  

Smith and Teng [5] have formulated the interfacial stresses in their paper on Interfacial 
Stresses in Plated Beams. There were many existing solutions but most of them were either 
inaccurate or not valid in all load cases and also complex. So the new solution took into effect 
the bending deformations in the plate and the axial deformations in the beam. 

The new solution uses the following assumptions, and the solution is described in terms of 
adherents 1 and 2, where adherent 1 is the beam and adherent 2 is the soffit plate. Adherent 2 
can be either steel or FRP but not limited to these two. Linear elastic behaviour of adherents 1 
and 2, as well as of the adhesive layer, is assumed. Deformations of adherents 1 and 2 are due 
to bending moments, axial and shear forces. The adhesive layer is assumed to be subject to 
stresses invariant across its thickness. This is the key assumption, which enables us to obtain 
relatively simple closed-form solutions. Under normal stresses in the thickness wise direction, 
the adhesive layer will deform, so the vertical displacements at the bottom of adherent 1 and 
the top of adherent 2 differ. As a result, the curvature of the beam will differ from that of the 
soffit plate. These thickness wise deformations of the adhesive are assumed to have a 
negligible effect on the interfacial shear stresses. That is, in finding the interfacial shear 
stresses, the curvatures of both adherents are assumed to be the same. This assumption is not 
used in the determination of interfacial normal stresses. 

 

Figure 2.1  Differential segment of a soffit-plated beam. 

2.3.1 Governing differential equation for the interfacial stresses 

The governing differential equation for the interfacial stresses can be derived as followed. A 
differential segment of a plated beam is shown in Figure 2.1, where the interfacial shear and 
normal stresses are denoted by �(x) and �(x), respectively. Figure 2.1 also shows the positive 
sign convention for the bending moment, shear force, axial force and applied loading. The 
shear strain � in the adhesive layer can be written as 

dx
yxdv

dy
yxdu ),(),( +=γ         (2.9) 
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Where u(x, y) and v(x, y) are the horizontal and vertical displacements respectively at any 

point in the adhesive layer. The corresponding shear stress is given as 

��
�

�
��
�

�
+=

dx
yxdv

dy
yxdu

Gx a

),(),(
)(τ       (2.10) 

Where Ga is the shear modulus of the adhesive layer. Differentiating the above expression 

with respect to x gives  

dx
xd )(τ

= ��
�

�
��
�

�
+ 2

22 ),(),(
dx

yxvd
dxdy

yxud
Ga       (2.11) 

The curvature of a differential element can be related to the applied moment, MT(x), by the 

following 
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EIdx

xvd
T

t

−=        (2.12) 

Where (EI)t is the total flexural rigidity of the composite section considering the partial 
interaction between the two adherents. The adhesive layer is assumed to be subjected to 
uniform shear stresses and therefore u(x, y) must vary linearly across the adhesive thickness 
ta, then 

[ ])()(
1

12 xuxu
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du

a

−=        (2.13) 

and 

�
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dx

xdu
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xdu
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a

)()(1),( 12
2

      (2.14) 

Where u1(x) and u2(x) are the longitudinal displacements at the base of adherent 1 and the top 
of adherent 2, respectively, and ta is the thickness of the adhesive layer. Equation (2.11) can 
be rewritten using Equation (2.12) and Equation (2.14)as 

��
�

�
��
�

�
−−= )(

)(
)()()( 12 xM

EI
t

dx
xdu

dx
xdu

t
G

dx
xd

T
t

a

a

aτ
     (2.15) 

In calculating (EI)t, interfacial shear stresses should be considered but to do so would 
complicate the solution. The third term in parentheses in Equation (2.15) is very small and 
thus is ignored in the following derivation. The strains at the base of adherent 1 and the top of 
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adherent 2, considering all three components of axial, bending and shear deformations, are 
given as 

[ ])()(
1

)()( 2
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1

11
1

11

11
1 xbq
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y

xN
AE

xM
IE

y
dx
du

x σ
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and 

[ ])()(
1

)()( 2
22

2
2

22
2

22

22
2 xb
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xM
IE

y
dx

du
x σ

α
ε +−==    (2.17) 

Where E is the elastic modulus, G the shear modulus, b2 the width of the soffit plate, A the 
cross-sectional area, I the second moment of area and � is the effective shear area multiplier, 
which is equal to 5/6 for a rectangular section. The subscripts 1 and 2 denote adherents 1 and 
2, respectively. M(x), N(x) and V(x) are the bending moment, axial and shear forces in each 
adherent while y1 and y2 are the distances from the bottom of adherent 1 and the top of 
adherent 2 to their respective centroid. Consideration of horizontal equilibrium gives 

)(
)()(

2
21 xb

dx
xdN

dx
xdN τ==         (2.18) 

where 

===
x

dxxbxNxNxN
0221 )()()()( τ        (2.19) 

Assuming equal curvature in the beam and the soffit plate, the relationship between the 
moments in the two adherents can be expressed as 

)()( 21 xRMxM =          (2.20) 

With, 
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11

IE
IE

R =           (2.21) 

Moment equilibrium of the differential segment of the plated beam in Figure 2.1 gives 

))(()()()( 2121 aT tyyxNxMxMxM ++++=     (2.22) 

The bending moment in each adherent, expressed as a function of the total applied moment 
and the interfacial shear stress, is given as 
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             (2.24) 

The first derivative of the bending moment in each adherent gives 
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Substituting Equation (2.16) and Equation (2.17) into Equation (2.15) and differentiating the 
resulting equation once yields 
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Substitution of the shear forces [Equation (2.25) and Equation (2.26)] and axial forces 
[Equation (2.19)] in both adherents into Equation (2.27) gives the following governing 
differential equation for the interfacial shear stress 
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2.3.2 Governing differential equation for the interfacial normal stresses 

The governing differential equation for the interfacial normal stress is derived in this section. 
When the beam is loaded, vertical separation occurs between adherents 1 and 2. This 
separation creates an interfacial normal stress in the adhesive layer. The normal stress, s(x), is 
given as 

[ ])()()( 12 xvxv
t
E

x
a

a −=σ         (2.29) 

Where v1(x) and v2(x) are the vertical displacements of adherents 1 and 2, respectively. The 
equilibrium of adherents 1 and 2, neglecting second-order terms, leads to the following 
relationships. 

Adherent 1: 
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dx

xdV
−−= )(

)(
2

1 σ        (2.32) 

Adherent 2: 
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Based on the above equilibrium equations, the governing differential equations for the 
deflections of adherents 1 and 2, expressed in terms of the interfacial shear and normal 
stresses, are given as follows. 
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Adherent 2: 
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Substitution of Equation (2.36) and Equation (2.37) into the fourth derivative of the 
interfacial normal stress obtainable from Equation (2.29) gives the following governing 
differential equation for the interfacial normal stress 
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  (2.38) 

 

2.3.3 The final solution Equations for the interfacial stresses 

The governing differential equations for the interfacial shear and normal stress [Equation 
(2.28) and Equation (2.38)] are coupled and hence a solution is not easily found. To uncouple 
the equations, the effects of shear deformations in both adherends are now neglected. The 
governing differential equation for the interfacial shear stress then reduces to 
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For simplicity, the general solutions presented below are limited to loading which is either 
concentrated or uniformly distributed over part or the whole span of the beam, or both. For 
such loading, d2VT(x)/dx2=0, and the general solution to Equation (2.39) is given by 

1 2 1 T(x)=B cosh( x)+B sinh( x)+m V (x)τ λ λ       (2.40) 

Where 
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The governing differential equation for the normal stress, with the effects of shear 
deformations neglected, becomes 
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The general solution to this fourth-order differential equation is 

- x x
1 2 3 4 1 2

d (x)
(x)=e [C cos( x)+C sin( x)]+e [C cos( x)+C sin( x)]-n -n q

dx
β β τσ β β β β  (2.44) 

For large values of x it is assumed that the normal stress approaches zero, and as a result 
C3=C4=0.  

The general solution therefore becomes 

- x
1 2 1 2

d (x)
(x)=e [C cos( x)+C sin( x)]-n -n q

dx
β τσ β β      (2.45) 
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and 
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In deriving Equation (2.45) it has been assumed that d5
�/dx5=0, because d5

�/dx5 generally has 

negligible significance to the final answer.  

2.4 Analytical modelling of interfacial stresses  

From the above equations we can arrive at the formulation for the theoretical values in the 
ideal case. For this calculation it was necessary to use MathCAD, a math-software that made 
the process of calculation easier and if once done it would be easy to reuse with minor 
changes. This MathCAD file was created by Dag Linghoff and is attached in the Appendix A. 
However minor changes were made to suit the particular test conditions given.  

The shear stresses are calculated by using the formula according to Smith and Teng [5]  

(2.49) 
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( ).k b aλ= −                          (2.52) 
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2.5 Finite element modelling of adhesive joints 

Types of Elements in ABAQUS 

In finite element modelling there are many types of elements. The choice of the element 
depends on which set results the analysis is aimed at and how much computing power is 
available. Care should be taken as the choice of a wrong type of element could also give 
inaccurate results. Bogdanovich & Kizhakethara [1] in their paper talk about the three types of 
elements, which are: 

• The first order (linear displacement) element or the 8-node hexadron.  
• The second order (quadratic displacement) element or the 20-node serendipity 

hexadron. 
• The 27 node full Lagrange hexadron element. 
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In the numerous works by the authors it was noted that the third type of element was the most 
accurate and computationally efficient. So they have worked with this type of element. 

 How ever Wu and Crocombe [2] have modelled Adhesive joints using three methods rather 
than elements. 

• Simplified modelling- beam version. 
• Two dimensional continuum modelling. 
• Simplified modelling- hybrid version. 

2.5.1 Simplified modelling - beam version 

 In this version the substrates are modelled by beam elements with the two connecting nodes 
of any element, and the adhesive will be modelled by plane four-node iso-parametric 
elements, the elements are not connected naturally so a rigid coupling relation is adopted to 
link the two kinds of connecting nodes. The displacements of a connecting node of the 
adhesive element are determined by those of a corresponding connecting node of the substrate 
element. 

2.5.2 Two Dimensional Continuum Modelling  

 In the above-simplified modelling approach the effects of local deformations are ignored and 
the displacement compatibility is satisfied only at the connected nodes. To account for these 
the two dimensional continuum model is adopted where the adhesives are modelled in a 
similar way as the earlier method but the substrates are also modelled by four node iso-
parametric elements in a compatible way.  

2.5.3 Simplified Modelling – Hybrid version  

 This is basically a combination of the two above models. It was noted that the results of the 
above two methods matched except at locations of local deformation. So the adhesive is 
modelled in the same way as the above two methods but the substrates instead of using plane 
beam elements or four-node iso-parametric elements, a mixture of the two with the latter at 
the critical locations of local deformations is used. Thus the new model will have the 
simplicity of the earlier model and the accuracy of the second one. This way the hybrid 
method significantly reduces the computational effort. 

2.5.4 The Sub-modelling concept 

As we already know from the works of Wu and Crocombe [2] we can see that some parts of 
the joint model are critical so cannot be modelled by simple meshing. For example, the areas 
close to the lap ends in the case of a lap joint. Bogdanovich & Kizhakethara [1] suggests that 
these areas require more complex meshing like a non-uniform element mesh. The newer 
versions of ABAQUS® have a procedure called “sub-modelling”. This is a multi step 
procedure where the displacement and stresses for a successively reduced local region is 
calculated in several steps. The nodal displacement values in the previous step are applied as 
external boundary conditions for the next step so the new step should get a more accurate 
answer than the previous step. 



 14 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:61 

 

2.6 A comparative study of ways to model an adhesive joint 

Let us now compare and study different ways to model our problem in general. By ignoring 
the details and only considering the ways of modelling an adhesive joint, which is made of 
steel and CFRP as adherent and an epoxy as adhesive.  

The whole exercise is aimed at finding out a method to model the three materials in ABAQUS 
and decide what sort of elements have to be used for the three materials. 

Element selection has to be done carefully as complicated elements with more number of 
nodes would no doubt give an accurate result but it would also make the computation tedious 
and time taking and less efficient. If we could simplify those elements where required 
accuracy can be attained with just simple elements and hence reducing the over all 
computational effort required. So different people in this field have used many techniques to 
model this sort of a joint and here is a summary of some of them. 

The first form of modelling in 3D is by the use of solid elements. The reason why this is not 
preferred is that the number of nodes is more making the amount of computational effort 
required extremely enormous. Besides as mentioned by Xinran Xio et al [6] solid element 
model for the adhesive would cause time step problems in dynamic analysis especially in LS 
DYNA. 

So the two simplified models, which the author investigates, are described in the following 
sections 

2.6.1 Tied (or) tie break contact  

Here the surface-to-surface tiebreak contact is used. The tie break contact functions the same 
way as a common contact in compressive loads but under tension it allows the separation of 
the tied surface under a failure criteria like  

2 2

1n s

NFLS SFLS

σ σ� � � �
+ ≥� � � �

� � � �
 

Where NFLS is the normal failure stress and SFLS is the shear failure stress. This type of 
arrangement is shown in Figure 2.2 

While using LS DYNA it is highly recommended to use tiebreak contact for adhesives and in 
ABAQUS the tied contact model is set up as tied node to surface contact (Tie break model is 
not allowed in ABAQUS Standard). ABAQUS XPLICIT allows separation of the bonded 
joint through bond command.  
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Figure 2.2 The tied-contact model for a DLS specimen. The adhesive bond is modelled as a 
tied contact between nodes and surface. 

2.6.2 A line of rigid Links  

It is defined as rigid links between the nodes of mating substrate pieces along a line across the 
width of the DLS specimen through the centre point of the overlap (Figure 2.3). In ABAQUS 
the line of rigid links model uses rigid beam elements of RB2D2 as rigid links. 

The authors concluded that for the substrates if modelled with shell elements and the adhesive 
with solid elements and rigid links between them to represent adhesive bonds result in a more 
compliant structural response. But using the contact definition in ABAQUS to represent the 
adhesive resulted in a much stiffer response as compared to the test results. 

 

Figure 2.3  The line-rigid model for a double lap shear specimen. The adhesive bond is 
modelled as a line of rigid links (arrow). 

Colombi & Poggi [7] also used the similar model with beam elements for adherents and 8-
node plane stress elements for adhesive with rigid line links. The author also decreased the 
element size near the edges to account for local deformation due to stress concentration. 
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Figure 2.4  Modelling of the bonded reinforcement and necessary constraints to the steel 
beam. 

Raul et al [11] has a different 2D-nonlinear adhesive formulation where adherents are 
modelled as Bernoulli/Euler beam elements with axial and bending deformation modes. The 
adhesive is a standard plane strain quadrilateral element except that the nodes are offset to 
coincide with the mid plane of the corresponding adherent the special adhesive element called 
ADH2D. This is shown in Figure 2.5 

  

Figure 2.5 Two-dimensional adhesive finite elements. 

 
A practical finite element approach has been developed at NASA Goddard Space Flight 
Centre to model the adhesive in a bonded joint. Numerical examples have shown good 
agreement with classical solutions. 
According to Farhad [8] the method uses a gap with a thickness of the adhesive, two rigid 
elements, and three zero-length spring elements between coincident nodes. One rigid element 
stretches from one adherent to a node at the centre of the gap, while the second rigid element 
stretches from the other adherent to a coincident node also at the centre of the gap. The spring 
elements connect the two rigid elements between the coincident nodes. The Figure 2.6 shows 
the layout. For clarity, the coincident nodes are shown separated. No rotational springs are 
used in this modelling technique. 
Forces, stresses, strains, etc., can be recovered directly for the adherent elements. Recovery of 
spring forces and deformations can in turn be used to determine the stresses and strains in the 
adhesive.  
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Figure 2.6 Farhad Tahmasebi’s model with springs simulating the adhesive layer. 

This model was interesting and seemed to have a logical method to calculate the interfacial 
stress components. Hence it was decided to use this model as a base in the present project and 
modify it to suit the present scenario. 
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3 Model and analysis method description 

3.1 Modelling in ABAQUS 

The process of modelling in ABAQUS was started early during the project immediately after 
the literature study but it only considered the basic features. The ABAQUS online reference 
manual [5] was a constant companion and proved to be an ocean of information. 

The model consists of three physical parts and the rest of the conditions were applied as loads 
or boundary conditions. They are the steel beam, the CFRP laminate and the adhesive layer 
see Figure 3.1. Since it was decided to use spring elements to model the adhesive and its 
interfaces it is better to use two-dimensional shell elements both for the steel beam and the 
CFRP laminate. 

To make the model time efficient the geometric symmetry of the beam in two directions were 
considered. To apply the symmetry only half of the beams both in the longitudinal and 
transverse directions are modelled and the boundary conditions applied in such a way so as to 
simulate the effect of the whole beam as shown in Figure 3.2 

 

Figure 3.1 The model of the beam studied made in ABAQUS®. 
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Figure 3.2 The Load application, symmetry, and boundary conditions. 
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3.1.1 Steel Beam 

The steel beam was modelled with two-dimensional shell elements. The plates of different 
dimensions were first input as parts and then assembled by rotating and translating them into 
their place as if they were welded together. The flange plates were 9.5 mm thick and the web 
plate is actually 6 mm thick but due to symmetry it is set as only 3 mm. There are two 
stiffeners, each 10 mm thick as shown in the Figure 3.1 

After the process of assembly, the whole beam is merged so that the parts don’t act 
independent of each other. Necessary partitions for load application and meshing are also 
made and this is elaborated in the chapters that follow. 

The material steel was modelled as elastic with a Young’s modulus of elasticity of 212GPa 
and a Poisson’s Ratio of 0.3 later on the material is upgraded to have a plastic property, which 
is dealt with in Chapter 6. The constitutive model used for steel is shown in Figure 3.3 

 

Figure 3.3 The Constitutive model for steel in the elastic state. 

3.1.2 The CFRP laminate 

Similar to the steel beam even the CFRP laminate is modelled with two-dimensional shell 
elements and is placed exactly below the beam with the spacing exactly enough to fit the 
adhesive layer in between the. The partitions on this laminate are made to facilitate meshing 
with different densities just as in the flange of the beam.  

The material CFRP was modelled as elastic with a Young’s Modulus of Elasticity of 200GPa 
and a Poisson’s Ratio of 0.29 later on when the steel material was upgraded to have a plastic 
property the CFRP was assumed to be absolutely elastic which is dealt with in Chapter 6  

3.2 Modelling of the interface 

The interface was modelled using the spring connector elements and these connectors were 
given a property such that they represent the response of the adhesive layer. 

Strain 

Stress 

E=212 GPa 
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An adhesive, which is not only a physical, layer it also shows interface properties of 
transferring shear and normal forces. Theses forces are transmitted either completely or 
partially depending on the capacity of the adhesive to transmit these forces. 

The connector elements are the translation cartesian connectors CONN2D2 that stands for 2-
dimensional 2-node connectors in ABAQUS.  

 

Figure 3.4 The model of the spring connector used as taken from the ABAQUS 
documentation [9]. 

These connectors can have three-dimensional action where they act along all the three major 
axes directions and have respective properties for each of them. The stresses in the third 
direction (along Z-axis) are not very dominant, so we can lock the displacement along this 
axis. Hence, the connector element that has been used has only 2-dimensional properties; they 
have a D11 and a D22. D11 as the name suggests is the relative elastic stiffness of the 
connector in that direction namely the X-axis direction and the D22 is the relative elastic 
stiffness of the connector in the 2-2 direction namely the Y-axis.  

Relative elastic stiffness in a particular direction is the force (in the same direction) required 
to generate a unit displacement in that direction. Making use of this to simulate the behaviour 
of the adhesive, the force on the adhesive element to generate unit displacement can be 
calculated. 

AF *σ=  

F
Stiffness

δ
=  

AEF **ε=  

* *F E A
l
δ=  

The stiffness an be defined as 

F EA
lδ

=    

In case of single dimension (D22) use young’s modulus of Elasticity and l=thickness of 
adhesive 

F GA
lδ

=  
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In case the spring replaces shear (D11) then G is used where G= Shear modulus of elasticity. 

 

Figure 3.5 The analytical modelling of the adhesive with spring connectors. 

To be able to place the connectors in the gap between the steel flange and the CFRP laminate 
it is necessary to have coincident nodes above and below so that we can have vertically 
connected nodes and the calculation is easy by avoiding the possibility of inclined springs. 

This type of arrangement of the spring connectors gives us three types of springs for each 
mesh density where one single spring replaces one solid element cuboid of adhesive and thus 
has to replicate the effect of the force on this element cuboid. So the corner springs has to act 
as the cuboid of just one quarter the area of the element above and below it. Similarly for the 
springs on the edge it would have to act as the cuboid of half the area of the element above 
and below, and those away from the edges will act as the cuboid of cross sectional area equal 
to the area of the elements above and below. 

The idea was to arrange these springs between two coincident meshes that would form an 
arrangement as shown in the Figure 3.5 shown above. But this was not very easy in the 
present versions of ABAQUS®. The main reason being that each spring has to be placed 
manually and configured manually and with the highest mesh density tested it would be a 
colossal task to place 16441 spring connectors manually. So a method of placing the 
connectors had to be devised.  

CFRP laminate element 

Beam flange element 

Spring connector elements 
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F11 = D11 x �l11 
F22 = D22 x �l22 
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The suggestions for accomplishing this task were to place the spring connector into the input 
file by specifying the co-ordinates or re-numbering the nodes to make the coincident nodes 
have the same type of number and then follow a fresh user defined numbering pattern. But 
this proved difficult since the first method required heavy file operations using MATLAB and 
the latter was cumbersome and time consuming.  

Instead of this, the node numbering in ABAQUS® was used to solve the problem of placing 
the spring connectors in place. Time was spent trying to study the numbering pattern that 
ABAQUS® follows and the mesh which was decided to be used was numbered in the same 
way both on the lower flange and the CFRP when they were meshed in a particular order.  

The next task was to make a MATLAB code, which would follow this order and write the 
input code for ABAQUS® which when in turn was imported applied the spring connectors at 
coincident nodes. After successful completion of this part test drives were conducted to see it 
worked well and random checks were made to see the accurateness of the method.  

How ever this method had one disadvantage that once there was any change in the meshing 
even a slight change it would make a whole new numbering pattern requiring the rewriting of 
the code to replicate the springs so care was taken not to disrupt it or change it as little as 
possible. This MATLAB code can be seen in Appendix C, and the part of the input generated 
by it will be the 9057 spring connectors and their locations. 

3.3 Boundary conditions and load application 

The beam was tested as a simply supported beam. To model it using symmetry, a support 
condition was applied to mimic the existence of the rest of the beam. This support condition 
allows rotation about the horizontal Z-axis and allows no other rotation or translation. On the 
line of the symmetry at the mid section for a simply supported beam the rotation about the Z-
axis is locked and only the translation along the Y-axis is allowed. 

 

Figure 3.6 Boundary conditions of the beam model after making use of symmetry. 

The longitudinal symmetry line which runs along the web of the beam reduces its thickness to 
3 mm from 6 mm and to prevent it from lateral sway, the entire web is restricted from motion 
in the Z-direction. 

The loads are applied as point loads on the top of the beam at the distance of 0.79m from each 
support. But since in ABAQUS it’s not possible to put point loads on shell elements, the loads 
are distributed over a length of 50 mm and a breadth equal to the width of the web. Because of 
symmetry the load is divided into four to simulate the condition in the laboratory. 
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3.4 Meshing 

Meshing is done in stages as a step-by-step development. Those regions of the composite 
beam that were found to be interesting were meshed again more finely after partitioning and 
seeding along the boundaries of those partitions.  

First Meshing: 

 The first mesh used was coarse all over and had no partition except under the load since it 
was needed to demarcate the area of loading. But this mesh with 20 x 20 mm element size 
was not good enough to describe the shear along the length of the CFRP laminate. 

Second Meshing: 

During the second meshing the mesh size was reduced to 2mm square elements through out. 
But this gave rise to about 16441 nodes on the CFRP laminate and the density of the 
connectors connecting them was too high and it made the files very huge and the programme 
became time consuming. So this meshing was abandoned and the mesh density in the areas 
where the shear stress distribution was of less importance was decreased. 

Third Meshing: 

The CFRP laminate is partitioned into three parts with fine meshing (2mmx2mm elements) for 
the first 100 mm on both sides along the length and in between a coarser mesh (2mmx5mm 
elements) is used. 
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Figure 3.7 The mesh intensity illustrated on the lower flange. 
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4 Model Verification 
To check the validity of the results and the accuracy of the model to deliver reasonable results 
it was necessary to compare it with an analytical solution or previously conducted tests and 
analysis. During such a comparison any variation in the results can be accepted if the reason 
for the variation can be explained. 

4.1 Verification based on comparison with theoretical 
calculations 

The deflection is calculated at the mid point of the beam with the CFRP bonded to the lower 
flange. These analytical results and the produced FE model should give the same deflection at 
the mid-section of the beam. To simplify the calculation of deflection for the purpose of 
model verification a load of 170 kN is chosen so that the section of the beams still is in elastic 
range  

The deflection at mid point can be calculated as  

EI
aLaP

Ymid 48
)*4*3(***2 2

1
2

1 −
=   

When P=load=85 KN. 

1a  =Distance to first load as in=0.79m 

L=Length of beam=1.8m 

EI=Young’s modulus*moment of inertia= 5.E6 N.m2 

=4.042 mm 

The midpoint deflection from the FE model gives a value of 4.5mm as can be seen from the 
graph in Figure 4.1 

The deflection along the entire length of the beam was calculated using the MathCAD® file 
attached in Appendix B 

The results are in good agreement as can be seen from the representation shown in Figure 4.1 

There is a noticeable difference in the deflections of the FE models and the analytical solution 
because the analytical solution assumes that the elastic stiffness of the beam remains constant 
along the length of the beam while in reality for the first 100 mm from the support there is 
only the steel beam and no CFRP or adhesive and this is ignored and the analytical values are 
calculated assuming that the EI is constant along the entire length of the beam. Another 
reason for this for this behaviour can be the difference in the second moment off inertial. In 
the model with 2D shell elements there are no fillets while they are considered in the 
remaining cases and so the second moment of inertia of this model will be lower compared to 
the other two. 
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Figure 4.1 Comparison of Deflections along the length of the model. 

4.2 Verification based on comparison with previous models 

The tests carried out as a part of the Ph.D. research by Dag Linghoff was compared to the 
results from the FE analysis. The research consisted of both experiments in the laboratory and 
an FE model constructed was used and the results from them are studied in detail.  

The model prepared by Dag Linghoff is similar to the one in this project except that it is 
modelled with three dimensional solid elements and it has a physical solid element adhesive 
layer. Also the fillets between the flanges and the web are also taken into consideration while 
they are ignored in this project. 

In spite of the above differences a comparison between the deflections between the two 
results show very good agreement since the effect of these details on the total deflection are 
too minor to be noticed as can be seen in Figure 4.1.  

Also studied was the comparison of the longitudinal normal stress distribution along the 
height of the beam at the mid section. As we can see from the Figure 4.2. 
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Figure 4.2 Comparison of longitudinal normal stress distribution along the height of the 
beam at the middle section of the beam. 

It can be seen from this stress distribution the stresses are almost identical except at the lower 
flange where there is a small variation which can be explained by the difference in the type of 
modelling of the adhesive which contributes to the EI of the 3D solid element model but does 
not exists as a physical layer which in turn reduces the EI for the model with 2D shell 
elements and spring connectors for the adhesive. 

The above two comparisons help us to arrive at the conclusion that the model is verified and 
can be used for further testing. 
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5 Analysis of interfacial stresses in the elastic phase 
The analysis was run on the Chalmers UNICC (UNIX Numerical Intensive Computation at 
Chalmers) cluster of computers. The average runtime of the job is about 6 hours with a RAM 
utilization of 900 MB. 

5.1 Comparison of shear stresses 

Since the emphasis was on the interfacial stresses right from the beginning of the project and 
how these stresses change along the length and the breadth of the beam, let us now see how 
we can extract those values from the result files. 

It was not possible to get the values of the shear stresses like in the model with 3D solid 
elements, as there was no such option given by ABAQUS, so these stresses had to be 
calculated by deriving the longitudinal normal stresses and the received shear stresses were 
plotted as shown in the Figure 5.3 

The longitudinal normal stresses are taken from ABAQUS at every node on the line in 
consideration and then the difference between the stresses (longitudinal normal stresses) at 
each node and the node before it was taken and multiplied by the area of the region that the 
stress acts, then dividing it with the area between the two consecutive nodes would give us the 
mean shear stress between the two nodes in consideration. It is important that the order of 
calculating the difference be maintained along the entire line. For example in the Figure 5.1 
the difference if from the beginning was LS1-LS2 then it should be followed by LS2-LS3 in 
the next element. 

 

Figure 5.1 The derivation of longitudinal normal stresses to get shear stresses. 

 

L

B 

H 
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Difference in the longitudinal stresses at consecutive nodes is  

= LS1 - LS2 

Difference in forces is = (LS1 - LS2) x B x H 

Shear stress is the difference in force/area 

= (LS1 - LS2) x B x H / L x B  

Shear stress = (LS1 - LS2) x H / L 

In comparison with these stresses are the analytical shear stresses obtained by the method 
described by Smith and Teng [5]. 

The comparison is made along three lines, which run along the length of the bond line. Their 
locations are chosen as close as possible to the inner edge, mid, outer edge of the adhesive 
layer as shown in the Figure 5.2 below 

 

Figure 5.2 The location of the three lines along which the shear stress distribution is 
studied. 

5.1.1 Shear stress distribution along the mid of the CFRP 

The stresses are obtained from the centre of the CFRP strip along mid line to both the long 
edges of the laminate. 

Outer Line 

Mid Line 

Inner Line 
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Figure 5.3 The shear stresses along the mid line of CFRP at 170kN. 

The good agreement between the analytical and the FE results can be seen in the Figure 5.3. 
The differences in the FE result from model with 2D shell elements and the result from 
theoretical calculations are caused due to the following two reasons; 

• The sudden abnormal disturbance situated exactly 100 mm from the edges is caused 
due to the change in the mesh size. The spring connectors on this common border have 
only the properties of the smaller sized element. This creates a 1.5 mm void in the 
adhesive layer which can be fixed by the use of the new properties which are 
calculated from the average properties of the two types of connectors on both sides. 

• The slight variation of the shear stresses between the FE result and the theoretical 
results in the length of the beam between the load application points at the mid section 
of the beam can be explained. The theoretical calculation assumes that there is no 
shear stress acting between the load positions and in the FE analysis which is closer to 
the reality condition, there will be some shear stress between the CFRP and the beam 
due the curvature of the beam. 
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Figure 5.4 Effect of curvature on interfacial shear stress. 

5.1.2 Shear stress distribution along the outer edge of the CFRP 

Shear Stresses along the outer edge of the CFRP laminate is plotted in the similar way in 
Figure 5.5 and then compared with the same analytical result as the shear stress distribution is 
assumed to be constant along the width of the laminate. Here too we notice that the shear 
stress curve from the 2D finite element model has a point every fixed interval, which has a 
value of shear stress equal to zero. This happens because the XY-data for the model in the 
form of distance (along X-axis) and longitudinal normal stresses are extracted from the ODB 
file, ABAQUS® allows an option where any missing value would be allowed to be 
interpolated for its value of x and some of these extra points are coincident points. During 
interpolation these coincident points have the same value as the previous point. If a graph 
showing the longitudinal stresses were to be plotted then it is not that visible in it since the 
adjacent points have the same value but when these stresses are derived, the difference in 
stresses between any interpolated value and its previous point is a zero and hence the shear 
stress at that point will be zero too. The real graph can be considered ignoring these 
abnormalities at fixed intervals as shown in Figure 5.5.  
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Figure 5.5 The shear stresses distribution along the outer edge of CFRP at 170kN. 

5.1.3 Shear stress distribution along the inner edge of the CFRP 

These stresses are obtained from the mid thickness of the CFRP strip along the inner edge of 
the laminate. Since these stresses come almost directly below the web they exhibit more 
extreme shear stresses variation from the analytical model given by Smith and Teng [5]. 

 

Figure 5.6 The shear stresses distribution along the inner edge of CFRP at 170kN. 
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5.2 Comparison of stresses across the width of the flange of the 
beam 

The above comparisons only show the development of shear stresses along the three lines 
lengthwise. To get a better understanding of how shear stress varies along the width of the 
beam flange the shear stresses are plotted along a line at the edge of the laminate close to the 
support of the beam, see Figure 5.7. This is the location where there are maximum shear 
stresses (only in the elastic phase). 

 

Figure 5.7 The shear stress distribution along the width of the flange. 

5.3 Comparison of Normal stresses 

The peeling stresses are also an important part of interfacial stresses. The 2D shell element FE 
model with spring connectors did not allow for the extraction of the Normal stresses directly 
since it wasn’t possible to get the connector forces. But instead it was decided to get the 
difference in the displacements of the vertically coincident nodes and then by multiplying it 
with the stiffness of the spring connector we could arrive at the normal forces. But the 
difference in the displacement was so small in adjacent nodes that after 9 significant digits the 
difference in displacements ended getting rounded up giving abnormal rise and falls in the 
normal stress plot. Apart from this problem there is also another problem where though the 
nodes in the CFRP were made to coincide with the nodes on the lower flange, yet there was 
minor difference in the exact values of their coordinates, which generated additional points 
with null variables in the displacement extraction. Thus making the process of plotting almost 
manual and so it would be easier to not use this method for plotting the normal stresses. 
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6 Analysis of the interfacial stresses in the plastic phase 
After the comparison of the results from the analysis done in the elastic state with the 
theoretical values the plastic properties of steel are input as material properties and the 
analysis run with the CFRP and the adhesive properties unchanged. 

The elastic region of steel and the plastic stress strain relation based on the material tests 
conducted at CTH is input into the material properties. This relation is represented in Figure 
6.1 

 

Figure 6.1 The constitutive relation for both the linear elastic and non-linear plastic 
behaviour of steel. 

6.1 Comparison of shear stresses 

The shear stresses along the length of the beam are compared in the same fashion as in the 
earlier chapter. Three lines, one near the inner edge, the second along the mid and third along 
the outer edge of the bond line between CFRP and the steel beam, are chosen to see how the 
shear stress changes along the length of the beam. 

For the 2D shell element model the shear was calculated in the same way as described in 
Section 5.1. 

Along with the series showing 2D shell elements model the older elastic analytical solution at 
360kN is also plotted so that the shear in the interface when most of the beam is in the plastic 
state can be studied in comparison.  

6.1.1 Shear stress distribution along a line through the middle of the CFRP 

The stresses are obtained from the mid thickness of the CFRP strip along a line running mid 
way to both the edges of the laminate. 
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Figure 6.2 The shear stresses distribution along the mid line of CFRP at 360kN. 

It can be seen from Figure 6.2 that except in the plastic region where the beam is loaded, on 
the rest of the interface the shear stresses match the analytical results very well. So, for the 
non-plastic region that method is still valid and instead gives a safer solution too. These 
analytical results for the same beam are calculated for the load of 360kN using the same 
method as described earlier in Section 2.4  

The disturbances in the smoothness in the FE result from model with 2D shell elements 
especially those situated exactly 100 mm from the edges is caused due to the change in the 
mesh size the spring connectors on this common border have only the properties of the 
smaller sized element. This creates a 1.5 mm void in the adhesive layer which can be fixed by 
the use of the new properties which are calculated from the average of properties of the type 
of connectors on both sides. 

6.1.2 Shear stress distribution along the outer edge of the CFRP 

Shear stresses along the outer edge of the CFRP laminate are plotted in the similar way. The 
results are then compared with the corresponding values from the analytical shear stress 
calculations. 
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Figure 6.3 The shear stresses distribution along the outer edge of CFRP at 360kN. 

We can see here the spring connector model shows shear stress very close to the analytical 
values away from the plastic region. 

6.1.3 Shear stress distribution along the inner edge of the CFRP 

These set of stresses are obtained from a line running along the inner edge of the bond line. 

 

Figure 6.4 The shear stress distribution along the inner edge of CFRP at 360kN. 

The Figure 6.4 illustrates that the analytical stresses are valid for the region beyond the part 
where the beam is plastic and conservative too. In the laboratory tests there have been failures 
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occur near the support edge of the adhesive. Therefore the analytical solution is sufficient as it 
is very close to the real values for that region which is not yet plasticized. 

6.1.4 Shear stress distribution across the width of the beam flange 

The elastic analysis chapter it is necessary to see if in the plastic stage the shear stress 
distribution across the beam flange and it is found to have exactly the same pattern and shows 
little change except that it was higher due to increase in stresses. Shown in the Figure 6.5 is 
this distribution along with the similar distribution at the elastic distribution of 170kN. 

 

Figure 6.5 The shear stresses distribution along the width of the beam flange. 

6.1.5 Shear stress development along the length of the bond line as load is 
increased 

It would be interesting to study the effect of a step-by-step increase in the load and see how it 
affects the interfacial shear stresses. To achieve this, the loads when applied in ABAQUS® 
were done not at once, but in steps and each step was increased with small increments. Then 
after the analysis the following few important steps were chosen. These loads are 170kN for 
elastic, 270kN when yielding starts and then 292.5, 315 and 360kN for increasing degrees of 
plasticity of the beam.  
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Figure 6.6 The shear stresses development along the length as load is increased stepwise. 

The development clearly shows that the point of the beam with the highest shear stress clear 
moves towards the supports as the load on the beam increases (Figure 6.6). However on the 
shorter edge of the laminate the location of maximum shear does not change but the shear 
stress magnitude does increase. This increase can then be plotted as a shear stress against 
load-applied plot and it is shown in Figure 6.7. 

 

Figure 6.7 The shear stress at the edge of the laminate plotted against the applied load. 

If the maximum shear stresses in the middle of the beam along the length are plotted it does 
not look like the Figure 6.7 since those points do not occur at the same point as in the case of 
the stresses at the edge. A plot with the max shear stress development can be seen in Figure 
6.8 
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Figure 6.8 The maximum shear stress in the middle of the beam plotted against the applied 
load. 

While referring to Figure 6.8 it is good to remember that the points on the plot are not 
occurring at the same point and the points of maximum shear move towards the support, 
explaining the difference between the Figure 6.7 and Figure 6.8 
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7 Conclusions and Recommendations 
The results from the analysis with 3D solid elements and the 2D shell elements with the 
spring connectors proved to be satisfactory though the latter has a more laborious process for 
the result calculation. 

7.1 Recommendations for further research 

Some further research can be carried out since the results from this method of modelling the 
adhesive interface has been so close to the analytical results and especially if any better 
software can be used which can handle this sort of arranging of the springs and allow for 
working on a region of springs rather than each spring individually. 

• Work could be done on using other software like ANSYS to do the same where 
modelling of that interface is much easier to handle.  

• If three-dimensional solid elements are used instead of the 2D shell elements and the 
adhesives are modelled with spring connectors it would give an interesting result to 
study. 

• May be it will be more advantageous to study current application where the CFRP is 
prestressed before being adhered to steel. 

7.2 Final Conclusions 

The development of the interfacial shear stress in the adhesive interface between CFRP and 
Steel in a composite beam modelled by the use of 2D shell elements and spring connectors for 
the adhesive interface was satisfactory. The following summarizes the conclusion of this 
thesis work. 

• The interfacial shear stresses calculated from this result is in excellent agreement with 
the theoretical values. 

• The process of making an array of springs was easy in this case but will get extremely 
complicated in the case of three dimensional shape of adhesive layer. 

• The extraction of normal forces from the difference in the displacement should not be 
tried for small-scale models where displacements are very low since the values, which 
get rounded of, will affect these and therefore a better method should be followed for 
it. 

• Plastic analysis shows that except under the load where the shear stresses are too high 
where the failure occurs (i.e. near the support edge of the CFRP) the stresses 
calculated by the conventional theoretical methods are still valid and in fact on the 
safer side (conservative).   
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Appendix A 
Analysis of the I-section with two point loads 170kN 

MathCAD file that calculates the interfacial Shear stress according to Smith and Teng [5] 

Analysis of an I-Section: Point load  

This program calculates moment and the interfacial shear and normal stresses, in the elastic 
phase 

Annotation: 

b=beam,   s=steel,   CFRP=CFRP,  adh=adhesive,  y=yield,   el=elastic,   pl=plastic,  
ue=upper edge,   le=lower edge  

MPa 10e 6⋅ Pa:=  

GPa 10e 9⋅ Pa⋅:=  

kN 1000N:=  

kNm 1kN m⋅:=  

Beam (Steel): 

HEA 180 

σy.s 328 MPa⋅:=  

Es 212GPa:=  

vs 0.3:=  

hw 152mm:=  

tw 6.0mm:=  

Lb 1.8 m⋅:=  

ds 7800
kg

m
3

⋅:=  

bfl 180mm:=  

tfl 9.5mm:=  

Gs
Es

2 1 vs+( )⋅
:=  
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Gs 1.995 10
4× Pa=  

R 15 10
3−
m⋅:=  

hb hw 2tfl+:=  

hb 0.171m=  

εy.s
σy.s

Es
:=  

εy.s 1.031=  

AR_tot 2 R⋅( )
2 π R

2⋅−:=  

As 2 bfl tfl⋅( )⋅ hw tw⋅+ AR_tot+:=  

As 4.525 10
3−× m

2=  

b

a

L b

2 L C F R Px

b
 

Aw hw tw⋅:=  

Afl tfl bfl⋅:=  

a 0.10 m⋅:=  

b 0.790m:=  

 

Composite material 

σy.CFRP 3100 MPa⋅:=  

ECFRP 200 GPa⋅:=  

hCFRP 0.0014m⋅:=  

bCFRP 0.120m⋅:=  
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vCFRP 0.3:=  

dCFRP 1600
kg

m
3

⋅:=  

GCFRP
ECFRP

2 1 vCFRP+( )⋅
:=  

tfl

bCFRP/2 bCFRP/2hlam

bfl

tw

hw

 

GCFRP 1.882 10
4× Pa=  

ICFRP.el
bCFRP hCFRP

3⋅

12
:=  

εy.CFRP
σy.CFRP

ECFRP
:=  

εy.CFRP 10.333=  

ACFRP bCFRP hCFRP⋅:=  

ACFRP 1.68 10
4−× m

2=  

Adhesive material 

Eadh 7 GPa⋅:=  

hadh 0.002m⋅:=  

vadh 0.3:=  

τadh.max 25 MPa⋅:=  
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Gadh
Eadh

2 1 vadh+( )⋅
:=  

Gadh 658.661Pa=  

STEP I: Elastic state 

Distance between upper edge and the center of gravity.  

yCG

tfl bfl⋅ tfl 3
tfl

2
⋅+ hw+

�
�
�

�
�
�

⋅ hw tw⋅ tfl
hw

2
+

�
�
�

�
�
�

⋅+
�


�

	
�
�

ds⋅ hCFRP bCFRP⋅ 2 tfl⋅ hw+
hCFRP

2
+

�
�
�

�
�
�

⋅ dCFRP⋅+

As ds⋅ ACFRP dCFRP⋅+
:=  

yCG 0.0843m=  

Distance from the top of the upper flange to the centre of gravity. 

yCG.bott 2 tfl⋅ hw+ hCFRP+ yCG−:=  

Distance from the bottom of the CFRP to the centre of gravity. 

Distance between upper edge and the neutral axis 

yNA

tfl bfl⋅ tfl 3
tfl

2
⋅+ hw+

�
�
�

�
�
�

⋅ hw tw⋅ tfl
hw

2
+

�
�
�

�
�
�

⋅+
�


�

	
�
�

hCFRP bCFRP⋅ 2 tfl⋅ hw+
hCFRP

2
+

�
�
�

�
�
�

⋅+

As ACFRP+
:=  

yNA 0.087m=  

Distance from the top of the upper flange to the neutral axis (NA) of the cross-section 

yNA.bott 2 tfl⋅ hw+ hCFRP+ yNA−:=  

yNA.bott 0.086m=  

Distance from the bottom of the CFRP to the neutral axis (NA). 

Cross-sectional constants, for the beam without CFRP 

Iel.no_CFRP 2 bfl
tfl

3

12
⋅ Afl

hw

2

tfl

2
+

�
�
�

�
�
�

2

⋅+
�



�

	�
�
�

⋅ tw
hw

3

12
⋅+:=  

Moment of inertia 

Iel.no_CFRP 2.408 10
5−× m

4=  

Wel.no_CFRP
2Iel.no_CFRP

hb
:=  
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Wel.no_CFRP 0.282L=  

Maximum elastic moment and point load, for the beam without CFRP 

Mel.no_CFRP σy.s Wel.no_CFRP⋅:=  

Mel.no_CFRP 15.068N m⋅=  

Pel.no_CFRP
Mel.no_CFRP

b
:=  

Pel.no_CFRP 0.019m
kN

m
=  

Cross-sectional constants, for the beam with CFRP 

Iel.CFRP bfl
tfl

3

12
⋅ Afl yNA

tfl

2
−

�
�
�

�
�
�

2

⋅+ tw
hw

3

12
⋅+ Aw yNA tfl

hw

2
+

�
�
�

�
�
�

−
�


�

	
�
�

2

⋅+

bfl
tfl

3

12
⋅ Afl yNA.bott hCFRP−

tfl

2
−

�
�
�

�
�
�

2

⋅+
ECFRP

Es
bCFRP

hCFRP
3

12
⋅ ACFRP yNA.bott

hCFRP

2
−

�
�
�

�
�
�

2

⋅+
�



�

	�
�
�

⋅++

...:=  

Iel.CFRP 2.523 10
5−× m

4=  

Wel.CFRP
Iel.CFRP

yNA
:=  

Wel.CFRP 0.291L=  

Maximum elastic moment and point load, for the beam with CFRP 

Mel.CFRP σy.s Wel.CFRP⋅:=  

Mel.CFRP 15.551N m⋅=  

Pel.CFRP
Mel.CFRP

b
:=  

Pel.CFRP 0.02kN=  

Calculation of strain and stress over the cross-section for a specific load (Elastic): 

No CFRP: 

Applied load: 

P1
170

2
kN⋅:=  
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(Total load/number of loadpoints) 

Ms P1 b⋅:=  

Ms 67.15kNm=  

σs
Ms

Wel.no_CFRP
:=  

σs 1.462 10
6× MPa=  

εs
σs

Es
:=  

εs 4.597 10
3×=  

εs

1.05 10
3−⋅

4.378 10
6×=  

Analytical strain compared with result from FEM. 

Moment and straindistribution over a length xs for the apllied load P1:  

xs 0m 0.01m, b..:=  

Msd xs( ) P1 xs⋅:=  

σsd xs( )
Msd xs( )

Wel.no_CFRP
:=  

εsd xs( )
σsd xs( )

Es
:=  

0 0.2 0.4 0.6
0

2000

4000

6000

εsd xs( )

xs

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:61  49 

0 0.2 0.4 0.6 0.8
0

5 .104

1 .105

Msd xs( )

xs

 

Calculation of shear stress and normal (peeling) stress in the elastic phase: (S.T. Smith and 
J.G. Teng) 

This solution describes the stresses in the adhesives at the end of the CFRP. The solution for 
the shear stress is only valid for two symmetrically positioned point loads, while the solution 
concerning normal stress is valid for both uniformly distributed loads and point loads. 

P
170

2
kN:=  

P 85kN=  

b 0.79m=  

x1 0m 0.001m, 0.690m..:=  

x2 0.691m 0.692m, 0.80m..:=  

Shear stress: 

y1
hw

2
:=  

y2
hCFRP

2
:=  

λ
Gadh bCFRP⋅

hadh

y1 y2+( ) y1 y2+ hadh+( )⋅

Es Iel.no_CFRP⋅ ECFRP ICFRP.el⋅+
1

As Es⋅
+

1

ACFRP ECFRP⋅
+

�


�

	
�
�

⋅:=  

m2
Gadh y1⋅

hadh Es⋅ Iel.no_CFRP⋅
:=  

m1
Gadh

hadh λ
2

⋅

y1 y2+

Es Iel.no_CFRP⋅ ECFRP ICFRP.el⋅+

�
�
�

�
�
�

⋅:=  

k λ b a−( )⋅:=  
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τ1 x1( )
m2 P⋅ a⋅

λ
e

λ− x1⋅
⋅ m1 P⋅+ m1 P⋅ cosh λ x1⋅( )⋅ e

k−⋅−:=  

τmax τ1 0mm( ):=  

τmax 1.657 10
4× MPa=  

0 0.02 0.04 0.06 0.08

2

4

τ1 x1( )
106

x1

 

 

τ2 x2( )
m2 P⋅ a⋅

λ
e

λ− x2⋅
⋅ m1 P⋅ sinh k( )⋅ e

λ− x2⋅
⋅+:=  

τmax τ2 0.791m( ):=  

τmax 0.717MPa=  

0.68 0.69 0.7 0.72 0.73 0.74 0.75 0.76 0.78 0.79 0.8

0.05

0.1

0.15

0.2

Sh
ea

rs
tr

es
s 

(M
Pa

)

τ2 x2( )
106

x2

 

 

Normal stress: 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:61  51 

n1
y1 ECFRP⋅ ICFRP.el⋅ y2 Es⋅ Iel.no_CFRP⋅−

Es Iel.no_CFRP⋅ ECFRP ICFRP.el⋅+
:=  

n2
ECFRP ICFRP.el⋅

bCFRP Es Iel.no_CFRP⋅ ECFRP ICFRP.el⋅+( )⋅
:=  

n3
Eadh bCFRP⋅

hadh

y1

Es Iel.no_CFRP⋅

y2

ECFRP ICFRP.el⋅
−

�
�
�

�
�
�

⋅:=  

β

4
Eadh bCFRP⋅

4 hadh⋅
1

Es Iel.no_CFRP⋅
1

ECFRP ICFRP.el⋅
+�

�
�

�
�
�

⋅:=  

V x1( ) P

2
:=  

V 0 mm⋅( ) 4.25 10
4× N=  

M x1( ) P
x1 a+

2
⋅:=  

D1 x1( )
x1

τ1 x1( )d
d

:=  

D3 x1( ) 3
x1

τ1 x1( )d

d

3
:=  

D4 x1( ) 4
x1

τ1 x1( )d

d

4
:=  

C1 x1( )
Eadh

2 β
3

⋅ hadh⋅ Es⋅ Iel.no_CFRP⋅
V 0m( ) β M 0m( )⋅+( )⋅

n3

2 β
3

⋅
τ1 0m( )⋅−

n1

2 β
3

⋅
D4 x1( ) β D3 x1( )⋅+( )⋅+:= * 

C2 x1( )
Eadh−

2 β
2

⋅ hadh⋅ Es⋅ Iel.no_CFRP⋅
M 0m( )⋅

n1

2 β
2

⋅
D3 x1( )⋅−:=  

σ x1( ) e
β− x1⋅

C1 x1( ) cos β x1⋅( )⋅ C2 x1( ) sin β x1⋅( )⋅+( )⋅ n1 D1 x1( )⋅−:=  

σmax σ 0m( ):=  

σmax 7.972 10
3× MPa=  
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0 0.02 0.04 0.06 0.08

1

1

2

σ x1( )
106

x1
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Appendix B 
Deflection in the Composite beam at 170kN  

MathCAD file that calculates the deflection according to Smith and Teng[5] 

 

0 1 2

P

L

a

x

b

 

Pref 148 10
3× N:=  

L 1.8m:=  

a1 0.79m:=  

a2 L a1−:=  

a2 1.01 m=  

b1 L a1−:=  

b2 0.79m:=  

EI 5 10
6⋅ N m

2⋅( ):=  

Deflection at midpoint for two point loads 

Expression 1: 

ymitt_Ref
2Pref a1⋅ 3 L

2⋅ 4 a1
2⋅−�

�
�
�⋅

48 EI⋅
:=  

ymitt_Ref 7.038 10
3−× m=  

ymitt
2P a1⋅ 3 L

2⋅ 4 a1
2⋅−�

�
�
�⋅

48 EI⋅
:=  



 54 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:61 

 

ymitt 4.042 10
3−× m=  

Ratio
ymitt

ymitt_Ref
:=  

Ratio 0.574=  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

Deflection at midpoint for one point load 

Expression 2: 

x1 0 0.01m, a1..:=  

x2 a1 0.01m+ a1 0.02m+( ), L..:=  

y0.1 x1( )
P L⋅ b1⋅ x1⋅

6 EI⋅
1

b1
2

L
2

−
x1

2

L
2

−
�
�
�
�

�
�
�
�

⋅:=  

y1.2 x2( )
P L⋅ a1⋅ L x2−( )⋅

6 EI⋅

2 x2⋅

L

a1
2

L
2

−
x2

2

L
2

−
�
�
�
�

�
�
�
�

⋅:=  

y0.1 x1( )
0
-53.529·10
-57.057·10
-41.058·10
-41.411·10
-41.763·10
-42.114·10
-42.465·10
-42.815·10
-43.165·10
-43.513·10
-43.861·10
-44.208·10
-44.553·10
-44.897·10
-45.24·10

m

= y1.2 x2( )
-32.009·10
-32.014·10
-32.017·10
-32.02·10
-32.023·10
-32.024·10
-32.025·10
-32.025·10
-32.024·10
-32.023·10
-32.021·10
-32.018·10
-32.015·10
-32.011·10
-32.007·10
-32.001·10

m

=  
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0 0.5 1 1.5 2
0.0025

0.002

0.0015

0.001

5 .10 4

y0.1 x1( )−

y1.2 x2( )−

x1 x2,

 

 

x3 0 0.01m, a2..:=  

x4 a2 0.01m+ a2 0.02m+( ), L..:=  

y0.1 x3( )
P L⋅ b2⋅ x3⋅

6 EI⋅
1

b2
2

L
2

−
x3

2

L
2

−
�
�
�
�

�
�
�
�

⋅:=  

y1.2 x4( )
P L⋅ a2⋅ L x4−( )⋅

6 EI⋅

2 x4⋅

L

a2
2

L
2

−
x4

2

L
2

−
�
�
�
�

�
�
�
�

⋅:=  

0 0.5 1 1.5 2
0.003

0.002

0.001

0

y0.1 x3( )−

y1.2 x4( )−

x3 x4,
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x4
1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

m

= y1.2 x4( )
-31.998·10
-31.992·10
-31.984·10
-31.976·10
-31.967·10
-31.958·10
-31.948·10
-31.937·10
-31.925·10
-31.913·10
-31.9·10
-31.886·10
-31.872·10
-31.857·10
-31.842·10
-31.826·10

m

= x3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

m

= y0.1 x3( )
0
-53.253·10
-56.505·10
-59.755·10
-41.3·10
-41.625·10
-41.949·10
-42.273·10
-42.596·10
-42.919·10
-43.24·10
-43.562·10
-43.882·10
-44.201·10
-44.52·10
-44.837·10

m

=  

For two pointloads (superposition) 
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Appendix C 
MATLAB® file for generation of the spring connectors between coincident meshes. 

The file “aacradv.txt” is the file where the code that is to be pasted in the input file of the 
ABAQUS processor after the lines where the four initial corner connectors are described. 

clear all 

fid = fopen('aacradv.txt','a') 

c=5; 

% ----------------for the left 2mm grid--------------------------------- 

% half connectors left edge nodes 

kc=[511:1:549]; 

kb=[592:-1:554]; 

    for i=1:39 

fprintf(fid,'*Element, type=CONN3D2, elset=_Conn-%g_CnSet_\n%g, Part-1-1.%g, CFRP3-
1.%g\n*Connector Section, elset=_Conn-%g_CnSet_, behavior=ConnProp-
3\nCartesian,\n',c,c,kb(i),kc(i),c) 

    c=c+1; 

end 

% half connectors top and bottom edge nodes 

kc=[550:1:598   2 

    510:-1:462  1]; 

kb=[553:-1:505  12 

    39:1:87 3]; 

    for i=1:2 

    for j=1:50 

fprintf(fid,'*Element, type=CONN3D2, elset=_Conn-%g_CnSet_\n%g, Part-1-1.%g, CFRP3-
1.%g\n*Connector Section, elset=_Conn-%g_CnSet_, behavior=ConnProp-
4\nCartesian,\n',c,c,kb(i,j),kc(i,j),c) 

    c=c+1; 

end 
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end 

% full connectors centre fill and right edge merged nodes 

kc=[7151:1:9061 47:-1:9]; 

kb=[2878:1:4788 678:1:716]; 

    for i=1:1950 

fprintf(fid,'*Element, type=CONN3D2, elset=_Conn-%g_CnSet_\n%g, Part-1-1.%g, CFRP3-
1.%g\n*Connector Section, elset=_Conn-%g_CnSet_, behavior=ConnProp-
5\nCartesian,\n',c,c,kb(i),kc(i),c) 

    c=c+1; 

end 

% ----------------for the right 2mm grid--------------------------------- 

% half connectors right edge nodes 

kc=[374:1:412]; 

kb=[639:1:677]; 

    for i=1:39 

fprintf(fid,'*Element, type=CONN3D2, elset=_Conn-%g_CnSet_\n%g, Part-1-1.%g, CFRP3-
1.%g\n*Connector Section, elset=_Conn-%g_CnSet_, behavior=ConnProp-
3\nCartesian,\n',c,c,kb(i),kc(i),c) 

    c=c+1; 

end 

% half connectors top and bottom edge nodes 

kc=[373:-1:325   3 

    413:1:461  4]; 

kb=[337:1:385  11 

    255:-1:207 4]; 

    for i=1:2 

    for j=1:50 

fprintf(fid,'*Element, type=CONN3D2, elset=_Conn-%g_CnSet_\n%g, Part-1-1.%g, CFRP3-
1.%g\n*Connector Section, elset=_Conn-%g_CnSet_, behavior=ConnProp-
4\nCartesian,\n',c,c,kb(i,j),kc(i,j),c) 
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    c=c+1; 

end 

end 

% full connectors centre fill  

kc=[5240:1:7150 205:-1:167]; 

kb=[967:1:2877 600:1:638]; 

    for i=1:1950 

fprintf(fid,'*Element, type=CONN3D2, elset=_Conn-%g_CnSet_\n%g, Part-1-1.%g, CFRP3-
1.%g\n*Connector Section, elset=_Conn-%g_CnSet_, behavior=ConnProp-
5\nCartesian,\n',c,c,kb(i),kc(i),c) 

    c=c+1; 

end 

% ----------------for the centre 2mm x 5mm grid(advanced)--------------------------------- 

% half connectors right edge nodes(already considered) 

% kc=[374:1:412]; 

% kb=[639:1:677]; 

%     for i=1:39 

%     fprintf(fid,'*Element, type=CONN3D2, elset=_Conn-%g_CnSet_\n%g, Part-1-1.%g, 
CFRP3-1.%g\n*Connector Section, elset=_Conn-%g_CnSet_, behavior=ConnProp-
3\nCartesian,\n',c,c,kb(i),kc(i),c) 

%     c=c+1; 

% end 

% half connectors top and bottom edge nodes 

kc=[48:1:166 

    324:-1:206]; 

kb=[504:-1:386 

    88:1:206]; 

    for i=1:2 

    for j=1:119 
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fprintf(fid,'*Element, type=CONN3D2, elset=_Conn-%g_CnSet_\n%g, Part-1-1.%g, CFRP3-
1.%g\n*Connector Section, elset=_Conn-%g_CnSet_, behavior=ConnProp-
6\nCartesian,\n',c,c,kb(i,j),kc(i,j),c) 

    c=c+1; 

end 

end 

% full connectors centre fill  

kc=[599:1:5239]; 

kb=[9429:-1:4789]; 

    for i=1:4641 

fprintf(fid,'*Element, type=CONN3D2, elset=_Conn-%g_CnSet_\n%g, Part-1-1.%g, CFRP3-
1.%g\n*Connector Section, elset=_Conn-%g_CnSet_, behavior=ConnProp-
7\nCartesian,\n',c,c,kb(i),kc(i),c) 

    c=c+1; 

end 

fclose(fid) 
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Appendix D 
AutoCAD® file with the cross sectional details of the Composite beam. 

 

 


