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A Study of Particle Filter Smoother

Ehsan Taghavi

Department of Signals and Systems
Division of Signal Processing and Biomedical Engineering
Chalmers University of Technology

Abstract

In the recent decade, sequential Monte Carlo (SMC) methods emerged as
one of the solutions to non-linear and/or non-Gaussian state-space models
(SSM). Smoothing, because of the twist in factorizing the problem, was not
receiving enough attention. In recent years, researchers tried to find better
solutions for the smoothing and proposed interesting smoothing algorithms
with properties that makes them applicable for many of the problems. The
most important property of recent proposed smoothing algorithms is that the
complexity of these methods are linear in term of number of the particles.
The goal of this thesis is to give a brief review of the available smoothing
methods in a comprehensive way.

In this thesis we investigate some important advantages and disadvan-
tages of existing smoothing algorithms with linear complexity and discuss
about them in detail such as optimality of proposal choices and problems of
methods which use rejection sampling to target the smoothing. Moreover,
there is a discussion about the design variables for each of the algorithms
as well as possible choices for these parameters. We also proposed solution
to some of the problems of these algorithms, like the situations when fast
forward-filtering backward-simulation (FFBSi) algorithm spend a lot of time
to just sample one particle. Other than that we introduce methods to em-
power us for implementing new linear smoother algorithms and give one such
example by using the backward information filter.

Keywords: Kalman filter, Kalman smoother, particle filter, particle
smoother, complexity.
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Chapter 1
Introduction

One of the most interesting models that is used in a vast number of applica-
tions is state-space model. It has been for many years that researchers are
trying to find a general solution for non-linear and/or non-Gaussian models
by modifying the famous Kalman filter. In the recent decade, sequential
Monte Carlo (SMC) methods emerged as one of the solutions to non-linear
and/or non-Gaussian state-space models. Smoothing, because of the twist in
factorizing the problem, was not receiving enough attention. In recent years,
researchers tried to find better solutions for the smoothing and proposed in-
teresting smoothing algorithms with properties that makes them applicable
for many of the problems. The most important property of recent proposed
smoothing algorithms is that the complexity of these methods are linear in
term of number of the particles.

There are many problems both in engineering and statistics for which one
needs to apply smoothing algorithms to target the desired density. Before
running a smoothing algorithm, we need to run a particle filter, which has
linear complexity in number of the particles. The linear complexity of parti-
cle filters helps us to run them with large number of the particles when it is
necessary, like when we have a high dimension state-space model. But when
it comes to smoothing algorithms, until recent years they were not able to
satisfy researchers goals easily but at the cost of an algorithm with quadratic
complexity in number of the particles.

Now that there are two algorithms available with linear complexity, it
is an interesting topic to investigate them more in depth. One interesting
aspect is that there is still no comparison between these two algorithms and
by doing a comparison, it can be shown which of them performs better in
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different scenarios. Moreover, each algorithm has its own design variables to
be set. It is also important to understand how we can set these variables to
be able to run the algorithms with higher performance.

1.1 Aim of study

The goal of this thesis is to review the methods and their implementations
in detail as well as explaining them in a complete, comprehensive way. One
of the important parts in reviewing the SMC algorithms is how to select the
design variables like proposal densities. In this thesis, after explaining the
different algorithms, we try to introduce different ways to find these choices
which will give us a very good insight about the smoothing problem and how
we can improve the algorithms.

One other important aspect in the implementation of the algorithms is
how they perform for different problems. To cover the performance of the
algorithms in different scenarios, a two-dimensional linear-Gaussian SSM is
used to show how different algorithms will perform when one can use the op-
timal proposal densities. In addition, because the main goal of SMC smooth-
ing algorithms are to face with non-linearities, a non-linear examples is also
investigated to gain more insight on how and with which settings one can
select the design variables.

1.2 Thesis outline

Outline of the thesis is as follows: In Chapter 2 we formulate a general state-
space model and give the notations used in the next chapters. As Kalman
filter/smoother gives us the optimal solution to the state estimation in the
case of having a linear-Gaussian model, we describe this method briefly in
Chapter 3 and use the results as benchmark for our comparisons.

In Chapter 4 the auxiliary particle filter is introduced as the standard
sequential Monte Carlo (SMC) filtering method in this thesis. Then we
describe filter-smoother (Kitagawa, 1996), fixed-interval smoothing (Doucet
et al., 2000), forward-filtering backward-simulation (FFBSi) (Godsill et al.,
2004), two-filter smoother (Briers et al., 2010) and new two-filter smoother
(Fearnhead et al., 2010). Besides, the main two algorithms which are new
linear complexity smoother (Fearnhead et al., 2010) and fast FFBSi (Douc
et al., 2010) are introduced in detail. In Chapter 5, a different way of find-
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ing the optimal proposal densities is given with complete detail as well as
a comparison between these new optimal densities to the ones introduced
in (Fearnhead et al., 2010). Chapter 6 is about introducing a new method
which is an extension to backward information filter as the suggestion given
in (Fearnhead et al., 2010) for the smoothing. This algorithm has the same
linear complexity in our comparisons but further issues is discussed in the
same section.

In Chapter 7 we discuss the design variables of the linear methods intro-
duced recently and after that the results of simulations for a linear-Gaussian
model and a simple non-linear model are shown in Chapter 9. Finally, in
Chapter 10 a brief talk on the findings and open problems is given to con-
clude and discuss the main advantages and disadvantages of SMC smoother
algorithms.
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Chapter 2
Problem formulation

The general problem, which we work on, is a state-space model (SSM) in
which the system is assumed to be a discrete Markov process with unobserved
states. Figure 2.1 shows the general architecture of an SSM in which the
arrows in the diagram denote conditional dependencies.

· · · // xt−1

��

// xt

��

// xt+1

��

// · · ·

yt−1 yt yt+1

Figure 2.1: Graphical model of an SSM.

In Figure 2.1 the random variable xt is the hidden state at time t and yt
is the observation at time t. This model can be formulated as

xt+1 | (x1:t,y1:t) ∼ f(· | xt) (2.1)

yt | (x1:t,y1:t−1) ∼ g(· | xt), (2.2)

where f(·) and g(·) denote arbitrary probability density functions (pdf) and
y1:t = {y1, y2, ..., yt} and x1:t = {x1, x2, ..., xt} are the collection up to time t
of the data and states respectively. This means here we do not have any re-
striction on having linear-Gaussian models (Roweis and Ghahramani, 1999).
The model will be completed by defining an initial distribution for x0 at
t = 0 , i.e. x0 ∼ ν(x0), where ν is an arbitrary density function.

Here our interest is to approximate p(xt | y1:T ), where T denotes the last
time step which we receive data from observation. This distribution is called
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the smoothing density. Moreover to be able to approximate the smoothing
density we need to have access to an approximation of the filtering that is
p(xt | y1:t).

SSM is one of the general models that cover many of the problems in
engineering and statistics as the densities and also the noises in the processes
can be of any form. The problem arises here that how we can solve the
filtering or the smoothing in the case of having a non-linear and/or non-
Gaussian SSM? In the rest of this thesis we try to give a clear answer to this
question. In Chapter 3 the classic method of solving this problem for a linear-
Gaussian model (Kalman filter and smoother) is given with its derivations
in a Bayesian framework. But in all other sections, our focus is to solve
a general SSM and compare the different methods with each other from
different perspectives such as accuracy and complexity.
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Chapter 3
Kalman filter/smoother

3.1 Kalman filter

Kalman filtering (Kalman et al., 1960) is an iterative method of prediction-
correction by using the measurements and state model available. In this
method, the assumed model is a general linear state-space model and can be
presented as

xt = Ftxt−1 + wt−1 (3.1)

yt = Gtxt + vt, (3.2)

where xt ∈ Rn is the state vector at time t, yt ∈ Rn is the measurement
vector at time t, Ft is transition matrix, Gt is measurement update matrix
and wt and vt are independent random Gaussian samples with distribution
N (0,Σw) and N (0,Σv) respectively. Because later on we will use Bayesian
framework to derive any algorithm for particle filter/smoother, here we use
the same framework to derive the formulas for Kalman filter.

Here we wish to recursively compute p(xt | y1:t) given that we know
p(xt−1 | y1:t−1). To find the optimal solution for filtering which is p(xt | y1:t),
we start with factorizing it by using Bayes’ rule as

p(xt | y1:t) =
p(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
. (3.3)

Assuming that we know the posterior distribution of previous time step,
i.e. p(xt−1 | y1:t−1), the joint distribution of xt, xt−1 given y1:t−1 can be
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computed as

p(xt,xt−1 | y1:t−1) = p(xt | xt−1,y1:t−1)p(xt−1 | y1:t−1)

= f(xt | xt−1)p(xt−1 | y1:t−1), (3.4)

which integrating over xt−1 gives the Chapman-Kolomogorov equation (Gar-
diner, 1985)

p(xt | y1:t−1) =

∫
f(xt | xt−1)p(xt−1 | y1:t−1)dxt−1, (3.5)

where normally we call it the prediction step of the optimal filter.
The posterior distribution can be computed by Bayes’ rule

p(xt | y1:t) =
1

Zt
p(yt | xt,y1:t−1)p(xt | y1:t−1)

=
1

Zt
g(yt | xt)p(xt | y1:t−1), (3.6)

where Zt =
∫
p(yt | xt)p(xt | y1:t−1)dxt is a normalization factor. Equation

(3.6) is called update step of the optimal filter.
Now if we want to drive analytically what are the prediction step and

update step in a linear-Gaussian model, we can start with using the fact
that

f(xt | xt−1) = N (xt; Ftxt−1,Σw) (3.7)

g(yt | xt) = N (yt; Gtxt,Σv). (3.8)

Furthermore we should assume that the posterior distribution of previous
step is Gaussian with

p(xt−1 | y1:t−1) = N (xt−1; x̂t−1|t−1, P̂t−1|t−1). (3.9)

Now the Chapman-Klomogorov equation gives

p(xt | y1:t−1) =

∫
f(xt | xt−1)p(xt−1 | y1:t−1)dxt−1

=

∫
N (xt; Ftxt−1,Σw)N (xt−1; x̂t−1|t−1, P̂t−1|t−1)dxt−1.

(3.10)

Using the Gaussian distribution computation rules, we get the prediction
step as

p(xt | y1:t−1) = N (xt; Ftx̂t−1|t−1,FtP̂t−1|t−1F
T + Σw), (3.11)
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where for simplicity in representing the equations we define m−t = Ftx̂t−1|t−1

and P−t = FtP̂t−1|t−1F
T
t + Σw.

The joint distribution of yt and xt is

p(xt,yt | y1:t−1) = g(yt | xt)p(xt | y1:t−1)

= N (

[
xt
yt

]
;

[
m−t

Gtm
−
t

]
,

[
P−t P−t GT

t

GtP
−
t GtP

−
t GT

t + Σv

]
).

(3.12)

Finally, the conditional distribution of xt given yt is then given as

p(xt | yt,y1:t−1) = p(xt; y1:t)

= N (xt; mt,Pt),

where

St = GtP
−
t GT

t + Σv

Kt = P−t GT
t S−1

t

mt = m−t + Kt

(
yt −Gtm

−
t

)
Pt = P−t −KtStK

T
t .

As result if we want to do the Kalman filtering we should start with initial-
izing the states at t0 with a Gaussian distribution with x0 ∼ N (m0,P0) and
then iteratively do the following steps:

• Prediction step

m−t = Ftmt−1

P−t = FtPt−1F
T
t + Σw,

• Update step

St = GtP
−
t GT

t + Σv

Kt = P−t GT
t S−1

t

mt = m−t + Kt

(
yt −Gtm

−
t

)
Pt = P−t −KtStK

T
t .

3.2 Kalman smoother

The derivation of Kalman smoother can be found in (Anderson and Moore,
1979; Shumway and Stoffer, 1982). The Kalman smoother calculates re-
cursively the state posterior distributions p(xt | y1:T ). The formulation in
backward step is as follows
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Pt,t+1 = FtPtF
T
t + Σw (3.13)

Ct = PtF
T
t P−1

t,t+1 (3.14)

x̂smootht = x̂t + Ct

(
x̂smootht+1 − Ftx̂t

)
(3.15)

Psmooth
t = Pt + Ct

(
Psmooth
t+1 −Pt,t+1

)
CT
t , (3.16)

starting from last step T , with x̂smoothT = x̂T and Psmooth
t = Pt and going

backward to t = 1.
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Chapter 4
Sequential Monte Carlo methods

The main goal of this thesis is to review the particle smoother algorithms in
detail, therefore, we need to start with some basic informations about particle
filtering. A particle filter is an SMC method which gives a general solution
to the filtering problem. To apply any smoothing algorithm to any problem,
we need first to run a particle filter. Due to that, this chapter starts with
giving some information about particle filter and specially auxiliary particle
filter which is a powerful particle filtering approach introduced by Pitt and
Shephard (1999).

After particle filter, we need to know how particle smoother algorithms
work. In the rest of the chapter we try to introduce and give detailed infor-
mation about these algorithms in the order of their appearance in the history
of particle filter/smoother algorithms. Moreover, after introducing each al-
gorithm, we talk about the advantages, disadvantages, complexity issues and
drawback of them.

4.1 Particle filter

The goal of particle filtering is to approximate the joint smoothing distri-
bution using a sequence of weighted particle systems. As result, the target
distribution is p(x1:t | y1:t). To draw samples from the target distribution
by using importance sampling, first we should introduce a proposal density
such that it can be factorized according to

qt(x1:t | y1:t) = ht(xt | x1:t−1,y1:t)qt−1(x1:t−1 | y1:t−1), (4.1)

where qt−1(x1:t−1 | y1:t−1) is the proposal density at t− 1. This factorization
allows us to run a sequential method for approximating the target distribu-
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tion. If we assume that we have a set of particles
{

x
(i)
1:t−1

}N
i=1

at time t − 1,

where N is number of the particles, then by sampling N new particles from
ht(xt | x1:t−1,y1:t) at time t and add them to the joint distribution, we have

x
(i)
1:t :=

{
x

(i)
1:t−1,x

(i)
t

}
. (4.2)

Here we sample from a proposal density but not the target density. Therefore,
the samples must be weighted in order to approximate the target distribution
with

w
(i)
t =

pt(x
(i)
1:t | y

(i)
1:t)

qt(x
(i)
1:t | y

(i)
1:t)

, (4.3)

where it can be factorized according to

w
(i)
t =

g(yt | x(i)
t )f(x

(i)
t | x

(i)
t−1)

ht(x
(i)
t | x

(i)
1:t−1,y1:t)

pt(x
(i)
1:t | y

(i)
1:t)

qt(x
(i)
1:t | y

(i)
1:t)

=
g(yt | x(i)

t )f(x
(i)
t | x

(i)
t−1)

ht(x
(i)
t | x

(i)
1:t−1,y1:t)

w
(i)
t−1. (4.4)

Now that we have a sequential updating formula for the importance weights
as well as the importance sampling, we can perform an algorithm to draw
samples and also update the weights recursively in forward direction. For
more details on particle filters and their various implementations, see also
(Doucet et al., 2000; Arulampalam et al., 2002; Fearnhead et al., 2010; Lind-
sten, 2011).

4.2 Auxiliary particle filter (Pitts & Shep-

herd)

In many Bayesian filtering problems, we are interested to find the solution
of p(xt | y1:t) by receiving the observation data yt. The analytical solution
to this problem is given in Equation (3.3). If we cross out the denominator,
which is a normalizing factor and include

p(xt | y1:t−1) =

∫
f(xt | xt−1)p(xt−1 | y1:t−1)dxt−1 (4.5)

into Equation (3.3), we have
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p(xt | y1:t) = g(yt | xt)
∫
f(xt | xt−1)p(xt−1 | y1:t−1)dxt−1, (4.6)

which is a relation between p(xt | y1:t), p(xt−1 | y1:t−1) and yt. We know
that this recursion is intractable in general.

Here we use particle filters (Doucet et al., 2000) and specially auxiliary
particle filter (Pitt and Shephard, 1999) to overcome this problem. In this
framework if we approximate the distribution p(xt−1 | y1:t−1) with a set of

particles
{

x
(i)
t−1

}N
i=1

and their related weights
{
w

(i)
t−1

}N
i=1

, then we can replace

p(xt−1 | y1:t−1) with its approximation
∑N

i=1w
(i)
t−1δ(x − x

(i)
t−1). Putting this

approximation it into Equation (4.6) gives

p(xt | y1:t) ' cg(yt | xt)
N∑
i=1

f(xt | x(i)
t−1)w

(i)
t−1, (4.7)

where c is a normalizing constant.

As mentioned, here we use auxiliary particle filter of (Pitt and Shephard,
1999). In this method we intend to sample xt and i jointly. Therefore,
Equation (4.7) can be viewed as the marginal distribution of xt when (xt, i)
are generated from Equation (4.8) that is

cg(yt | xt)f(xt | x(i)
t−1)w

(i)
t−1. (4.8)

Finally, we should approximate Equation (4.8) with q(xt | x(i)
t−1,yt)β

(i)
t , where

q(xt | x
(i)
t−1,yt) is a proposal distribution that we can draw samples from,{

β
(i)
t

}N
i=1

are weights of a set of indices which can be depended on yt and

are normalized weights that sum to 1. The reason to use a proposal density
to draw sample form is that we are not able to sample from Equation (4.8)
directly. In hindsight, we should use importance sampling to propagate from
a density which is easy to draw sample form. Algorithm 1 from (Fearnhead
et al., 2010) gives a general algorithm for approximation of p(xt | y1:t) from

set of particles and weights
{

x
(i)
t , w

(i)
t

}N
i=1

.
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Algorithm 1 Auxiliary particle filter (Pitt and Shephard, 1999)

1. Initialize: Sample
{

x
(i)
0

}
from prior p(x0) and set w

(i)
0 = 1

N
for all i.

2. For t = 1, ..., T

(a) Resample: Use
{
β

(i)
t

}
as probabilities to sample N indices

j1, ..., jN from set {1, ..., N}.

(b) Propagate: Sample the new particles x
(i)
t independently from

q(· | x(i)
t−1,yt).

(c) Reweight: Assign each particle x
(i)
t the corresponding impor-

tance weights

w
(i)
t ∝

g(yt | x(i)
t )f(x

(i)
t | x

(ji)
t−1)w

(ji)
t−1

q(x
(i)
t | x

(ji)
t−1,yt)β

(ji)
t

.

We know that the efficiency of the particle filter is directly related to the
choice of proposal density q(xt | x

(i)
t−1,yt) and resampling probability β

(i)
t .

Few important choices are introduced in (Fearnhead et al., 2010), but when
it comes to a linear-Gaussian model, one can analytically finds the optimal
densities for propagation and resampling probabilities. The results of such
an approach is given as an appendix in (Fearnhead et al., 2010) and are as
follows for linear-Gaussian model given in Equation (2.1) and Equation (2.2)
with Σw = Q and Σv = R. The derivation for these proposal densities and
the ones that come in the next sections are given in Chapter 8.

q(xt | x(j)
t−1,yt)β

(j)
t = f(xt | x(j)

t−1)g(yt | xt)w(j)
t−1

= N
(
xt | µ(j)

t|t−1,Σt|t−1

)
×

N
(
yt | GFx

(j)
t−1,R + GQGT

)
w

(j)
t−1 (4.9)

where Σt|t−1 = Q−1 + GTR−1G and

µ
(j)
t|t−1 = Σt|t−1

(
Q−1Fx

(j)
t−1 + GTR−1yt

)
.

This can be used for any algorithm when the model is linear and Gaussian.
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4.3 The filter-smoother (Kitagawa)

The filter-smoother (Kitagawa, 1996) is a simple extension to particle filter.
We can easily show that the recursive solution for joint smoothing distribu-
tion is

p(x1:t | y1:t) ∝ g(yt | xt)f(xt | xt−1)p(x1:t−1 | y1:t−1). (4.10)

Here we can use the particle filter steps to the whole paths and their weights.

In this case we can set x
(i)
1:t =

(
x

(ji)
1:t−1,x

(i)
t

)
and use the final available weights{

w
(i)
t

}N
i=1

, so in hindsight we can use any filtering algorithm with O(N)

computational complexity for this problem. The drawback of this method
is given in (Chopin, 2004), which shows p(xt | y1:T ) will degenerate expo-
nentially fast as T − t grows. Recently a modification step is suggested in
(Dubarry and Douc, 2011). The drawback of this modification is that in high
dimensional problems the complexity grows fast and for good results we need
to run the modification step for too many times.

4.4 The forward-backward smoother (Doucet

et al.)

The forward-backward smoother proposed by Doucet et al. (2000) is based
on the backward recursion

p(xt | y1:T ) = p(xt | y1:t)

∫
f(xt+1 | xt)
p(xt+1 | y1:t)

p(xt+1 | y1:T )dxt+1. (4.11)

The derivation of Equation (4.11) is as follows,

p(xt | y1:T ) =

∫
p(xt,xt+1 | y1:T )dxt+1

=

∫
p(xt+1 | y1:T )p(xt | xt+1,y1:T )dxt+1

=

∫
p(xt+1 | y1:T )p(xt | xt+1,y1:t)dxt+1, (4.12)

which in Equation (4.12) we used the fact that knowledge of xt+1 is enough
to use observations up to time t and not more. By using Bayes’ rule we have

p(xt | y1:T ) =

∫
p(xt+1 | xt,y1:t)p(xt | y1:t)

p(xt+1 | y1:t)
p(xt+1 | y1:T )dxt+1

= p(xt | y1:t)

∫
p(xt+1 | xt, y1:t)

p(xt+1 | y1:t)
p(xt+1 | y1:T )dxt+1,(4.13)
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and by this the derivation of Equation (4.11) is completed.

If we assume that we have the set
{

x
(i)
t , w

(i)
t

}N
i=1

from filtering for t =

1, ..., T , then we can use the algorithm of the forward-backward smoother in
(Doucet et al., 2000) to calculate the weights for the particle smoother as in
Algorithm 2.

Algorithm 2 The forward-backward smoother (Doucet et al., 2000)

1. Initialize: Set all the weights at time T as w̃
(i)
T |T = w

(i)
T for i = 1, ..., N .

2. For t = T − 1, ..., 1

Update the new weights as follows for i = 1, ..., N

w̃
(i)
t|T =

N∑
j=1

w̃
(j)
t+1|T

w
(i)
t f(x

(j)
t+1 | x

(i)
t )[∑N

l=1 w
(l)
t f(x

(j)
t+1 | x

(l)
t )
] .

In Algorithm 2 we used the fact that if we have a set of weights and

particles
{

xt+1, w̃
(i)
t+1|T

}N
i=1

at time t + 1 in backward direction, then the ap-

proximation of the integration in Equation (4.11) will be

∫
f(xt+1 | xt)
p(xt+1 | y1:t)

p(xt+1 | y1:T )dxt+1 '
N∑
i=1

w̃
(i)
t+1|T

f(x
(i)
t+1 | xt)

p(x
(i)
t+1 | y1:t)

, (4.14)

where p(x
(i)
t+1 | y1:t) can be approximated by

p(x
(i)
t+1 | y1:t) =

∫
f(x

(i)
t+1 | xt)p(xt | y1:t)dxt

'
N∑
l=1

w
(l)
t f(x

(i)
t+1 | x

(l)
t ), (4.15)

which here we used the fact that we have the set
{

x
(i)
t , w

(i)
t

}N
i=1

from filtering

to approximate p(xt | y1:t). As result, an approximation of p(xt | y1:T ) will
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be

p(xt | y1:T ) '

[
N∑
i=1

w
(i)
t δ(x− x

(i)
t )

]
N∑
j=1

w̃
(j)
t+1|T

f(x
(j)
t+1 | xt)[∑N

l=1 w
(l)
t f(x

(j)
t+1 | x

(l)
t )
]

=
N∑
i=1

w
(i)
t

 N∑
j=1

w̃
(j)
t+1|T

w
(i)
t f(x

(j)
t+1 | x

(i)
t )[∑N

l=1w
(l)
t f(x

(j)
t+1 | x

(l)
t )
]
 δ(x− x

(i)
t ).

(4.16)

Therefore, Algorithm 2 follows Equation (4.16).

Equation (4.16) indicates that at each time step we need to do N3 op-
erations. In more detail, the denominator in the equation can be calculated
once in each time step and as result the complexity of this algorithm can
be reduced to the order of O(N2). Algorithm 2 has a quadratic complexity
in number of the particles due to using Equation (4.16) for updating the
weights. This is a huge drawback in SMC algorithms. The reason is that
in many situations we need to run the algorithms with large number of the
particles to approximate the target density more accurately. On the other
hand there is no design variable to choose or set for particle smoother algo-
rithm. In this algorithm we just simply update the weights for the samples
from particle filter in each time step, which makes the algorithm easy to
implement.

4.5 Standard forward-filtering backward-simulation

(FFBSi) (Godsill et al.)

This method that was proposed by Godsill et al. (2004) is an extension to
the method introduced by Doucet et al. (2000) as fixed-interval smoothing.
Here we assume that we have access to data from filtering, which is a set of

weighted particles
{(

x
(i)
t , w

(i)
t

)}N
i=1

for t = 1, ..., T . Further if we factorize

p(x1:T | y1:T ) as

p(x1:T | y1:T ) = p(x1:T−1,xT | y1:T )

= p(x1:T−1 | xT ,y1:T )p(xT | y1:T )
...

= p(xT | y1:T )
T−1∏
t=1

p(xt | xt+1:T ,y1:T ), (4.17)
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where, by using the properties of HMM and using Equation (4.5) and Equa-
tion (4.6), we can write

p(xt | xt+1:T ,y1:T ) = p(xt | xt+1,xt+2:T ,y1:T )

=
p(xt+1,xt+2:T | xt,y1:T )p(xt | y1:T )

p(xt+1,xt+2:T | y1:T )

= ((((
(((

((((
((

p(xt+2:T | xt+1,xt,y1:T )p(xt+1 | xt,y1:T )p(xt | y1:T )

((((
(((

((((p(xt+2:T | xt+1,y1:T )p(xt+1 | y1:T )

= p(xt | xt+1,y1:t),

which is a relation between xt, xt+1 and y1:t. Further we can reformulate
p(xt | xt+1:T ,y1:T ) as

p(xt | xt+1:T ,y1:T ) =
p(xt | y1:t)f(xt+1 | xt)

p(xt+1|y1:t)
. (4.18)

We know that p(xt | y1:t) can be approximated by a forward filter so that we
have set of weighted particles as said before. Furthermore, by using Equation
(4.18), we can approximate p(xt | xt+1:T ,y1:T ) by

p(xt | xt+1:T ,y1:T ) ≈
N∑
i=1

w
(i)
t f(xt+1 | x(i)

t )∑N
j=1w

(j)
t f(xt+1 | x(j)

t )
δ(xt − x

(i)
t ) (4.19)

where we used the fact that we can approximate p(xt+1|y1:t) =
∫
p(xt |

y1:t)f(xt+1 | xt)dxt in Equation (4.18) with
∑N

j=1 w
(j)
t f(xt+1 | x

(j)
t ). To

simplify the algorithm we can further use

w̃
(i)
t|t+1 =

w
(i)
t f(xt+1 | x(i)

t )∑N
j=1w

(j)
t f(xt+1 | x(j)

t )
, (4.20)

so

p(xt | xt+1:T ,y1:T ) ≈
N∑
i=1

w̃
(i)
t|t+1δ(xt − x

(i)
t ). (4.21)

By using Equation (4.17), Equation (4.20) and Equation (4.21) we can
perform an algorithm to compute the weights for our smoother. The algo-
rithm is as follows (Algorithm 3).
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Algorithm 3 Standard FFBSi (Godsill et al., 2004)

1. Forward filtering: Run a particle filter to obtain the set{(
x

(i)
t , w

(i)
t

)}
, which approximates p(xt | y1:t) for t = 1, ..., T .

2. Initialize: Sample the indices i1, ..., im from {1, ..., N} with probabil-

ities {w(i)
T }Ni=1 and set x̃

(i)
T = x

(im)
T .

3. Smoothing: For t = T − 1, ..., 1

For j = 1, ..., N

(a) Reweight: Update the new weights for each pair of {(i, j)}Ni=1 as
follows

w̃
(i,j)
t|T =

w
(i)
t f(x̃

(j)
t+1 | x

(i)
t )∑N

l=1 w
(l)
t f(x̃

(j)
t+1 | x

(l)
t )

.

(b) Resample: Use
{
w̃

(i,j)
t|T

}N
i=1

to sample J from set {1, ..., N} and

set x̃
(j)
t = x

(J)
t .

(c) Append: Append new sample to the backward trajectory, x̃
(j)
t:T ={

x̃
(j)
t , x̃

(j)
t+1:T

}
.

Although updating the weights does not have a quadratic complexity, but
this must be done for all the N particles at each time step that results in an
algorithm with quadratic complexity. Here after updating the weights for the
whole N particles, we resample them once according to the weights which is
a drawback because we just use all the weights once and discard them. On
the other hand, it is very simple to run this algorithm for any problem, even
those which suffer from severe non-linearities. But the point is the quadratic
complexity nature of the algorithm that is an obstacle in front of using large
number of the particles. Hence it cannot give an accurate approximation of
the smoothing distribution.

4.6 The two-filter smoother (Briers et al.)

The two-filter smoother that is introduced in (Briers et al., 2010) is based on
using samples from particle filter and also new samples from the backward
information filter. In this approach we combine the output of two indepen-
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dent filters: the standard (forward) filter and the backward information filter,
which is an approximation of p(yt:T | xt). But we know that the backward
information filter is not a probability measure on the space of the SSM. In
cases where backward information filter can be computed in close form, this
problem is not critical. But in non-linear and/or non-Gaussian SSM where
we are not able to analytically solve the backward information filter integra-
tions, SMC methods cannot be used for approximation. However, two-filter
smoother gives a solution for the smoothing by using forward filter and the
backward information filter which only requires approximating probability
distributions and as result it can be applied to a general SSM by using SMC
methods.

The desired smoother can be factorized as

p(xt | y1:T ) = p(xt | y1:t−1,yt:T )

=
p(xt | y1:t−1)p(yt:T | y1:t−1,xt)

p(yt:T | y1:t−1)

∝ p(xt | y1:t−1)p(yt:T | xt), (4.22)

It is clear that we can apply any filtering algorithm to reach the prediction
part that is

p(xt | y1:t−1) =

∫
f(xt | xt−1)p(xt−1 | y1:t−1)dxt−1. (4.23)

But p(yt:T | xt) is not a density function in xt, so we must find a way
to represent it as a density function to be able to apply SMC method for
approximating it. To do that Briers et al. (2010) introduced an artificial
distribution which we will explain it in the following.

Let us consider a sequence of probability densities {γt(xt)} where t =
1, ..., T and are defined such that

if p(yt:T | xt) > 0 then γt(xt) > 0. (4.24)

In (Briers et al., 2010) these are defined through first defining a prior γ0(x0).
Then they calculated the artificial prior at future time steps, i.e. t = 1, ..., T
recursively as

γt(xt) =

∫
f(xt | xt−1)γt−1(xt−1)dxt−1. (4.25)

It is clear that this formulation requires a close form expression of γt(xt)
which restricts the applicability of the method.
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Generally by defining γt(xt) as in Equation (4.24) we can change p(yt:T |
xt) into a term which consists of density functions with respect to xt as

p(yt:T | xt) = p̃(yt:T )
p̃(xt | yt:T )

γt(xt)
, (4.26)

or
p̃(xt | yt:T ) ∝ γt(xt)p(yt:T | xt). (4.27)

Equation (4.27) will then be used to perform the backward information filter
with a new representation. The steps to perform the new representation of
the backward information filter are as follows

p(yt:T | xt) =

∫
p(yt:T ,xt+1 | xt)dxt+1

=

∫
p(yt,yt+1:T ,xt+1 | xt)dxt+1

=

∫
p(yt+1:T | yt,xt+1,xt)p(yt,xt+1 | xt)dxt+1

=

∫
p(yt+1:T | xt+1)P (xt+1 | yt,xt)g(yt | xt)dxt+1

(4.26)
=

∫
p̃(xt+1 | yt+1:T )

γt+1(xt+1)
p̃(yt+1:T )f(xt+1 | xt)g(yt | xt)dxt+1.

(4.28)

If we replace p(yt:T | xt) with p̃(yt:T ) p̃(xt|yt:T )
γt(xt)

on the left hand side of Equation

(4.28), then we have

p̃(yt:T )
p̃(xt | yt:T )

γt(xt)
=

p̃(yt+1:T )

p̃(yt:T )

(∫
p̃(xt+1 | yt+1:T )

1
×

f(xt+1 | xt)g(yt | xt)
γt+1(xt+1)

dxt+1

)
, (4.29)

which can be represented as a proportion like

p̃(xt | yt:T ) ∝ γt(xt)g(yt | xt)
∫
f(xt+1 | xt)

p̃(xt+1 | yt+1:T )

γt+1(xt+1)
dxt+1. (4.30)

Further if we assume that we have a set of weighted particles{(
x̃

(j)
t+1, w̃

(j)
t+1

)}N
j=1

, that approximate p̃(xt+1 | yt+1:T ), we can show that

p̃(xt | yt:T ) ∝ γt(xt)g(yt | xt)
N∑
i=1

f(x̃
(j)
t+1 | xt)

γt+1(x̃
(j)
t+1)

w̃
(j)
t+1. (4.31)
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By this representation we can form an algorithm like forward filtering to re-
cursively calculate Equation (4.28) in backward direction. To do this we can,
for example, use an auxiliary backward filter similar to (Pitt and Shephard,

1999). For doing this we should find the distributions q̃(· | yt, x̃(j)
t+1) and β̃

(j)
t

which we can sample from such that

q̃(xt | yt, x̃(i)
t+1)β̃

(j)
t ' γt(xt)g(yt | xt)f(x̃

(j)
t+1 | xt)

w̃
(j)
t+1

γt+1(x̃
(j)
t+1)

. (4.32)

Now that we have an approximation to the backward information filter with
a set of particles and weights we can easily target the smoothing just in a
few steps. Back to Equation (4.22) the two-filter smoother is based on

p(xt | y1:T ) ∝
∫
f(xt | xt−1)p(xt−1 | y1:t−1)dxt−1

p̃(xt | y1:T )

γt(xt)
,

thus filter particles
{(

x
(i)
t−1, w

(i)
t−1

)}N
i=1

approximating p(xt−1 | y1:t−1) and

backward information filter particles
{(

x̃
(j)
t+1, w̃

(j)
t+1

)}N
j=1

approximating p̃(xt |
y1:T ) can be used to calculate the desired density as

p(xt | y1:T ) '
N∑
i=1

f(xt | x(i)
t−1)w

(i)
t−1 ×

N∑
j=1

w̃
(j)
t

γt(x̃
(j)
t )

δ(x̃t − x̃
(j)
t )

=
N∑
j=1

δ(x̃t − x̃
(j)
t )w̃

(j)
t|T , (4.33)

where

w̃t|T =
w̃

(j)
t

γt(x̃
(j)
t )

N∑
i=1

f(x̃
(j)
t | x

(i)
t−1)w

(i)
t−1. (4.34)

Now we can perform an algorithm as follows to calculate the weights and
samples we need for our desired density (Algorithm 4).
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Algorithm 4 The two-filter smoother (Briers et al., 2010)

1. Initialize: Set all the weights at time T as w̃
(i)
T = w

(i)
T for i = 1, ..., N .

2. For t = T − 1, ..., 1

(a) Resample: Use
{
β̃

(j)
t

}
as probabilities to sample N indices

m1, ...,mN from set {1, ..., N}.

(b) Propagate: Sample the new particles x̃
(j)
t independently from

q̃(· | yt, x̃(j)
t+1).

(c) Reweight: Assign each particle x̃
(j)
t the corresponding weights

w̃
(j)
t ∝

γt(x̃
(j)
t )g(yt | x̃(j)

t )f(x̃
(mj)
t+1 | xt)w̃

(mj)
t+1

q̃(x
(j)
t | yt, x̃

(mj)
t+1 )β̃

(j)
t γt+1(x̃

(mj)
t+1 )

.

3. For t = 1, ..., T

(a) Reweight: Assign new weights to the smoother particles
{

x̃
(j)
t

}
as follows

w̃
(j)
t|T ∝

w̃
(j)
t

γt(x̃
(j)
t )

N∑
i=1

f(x̃
(j)
t | x

(i)
t−1)w

(i)
t−1.

Although this approach is using the information from the backward infor-
mation filter to obtain the smoothing distribution, it has the same problems
as previous algorithms. Firstly, the complexity of this algorithm is again at
the order of O(N2). This means that it is computationally demanding to run
this algorithm with large number of the particles. Moreover, again it didn’t
use independent samples for the smoothing but samples form the backward
information filter. These drawbacks put this algorithm at the same level
as the older ones. In addition, the performance of this algorithm is highly
dependent on the choice of artificial density and need to be taken care of.

4.7 The two-filter smoother (Fearnhead et al.)

The aim of this new method is to overcome the weaknesses of the one pro-
posed by Briers et al. (2010). As mentioned before in the original two-filter
smoother, we do not use any new sample for the smoothing density. But here
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we draw new particles from marginal smoothing densities directly, rather that
reweighing those drawn from another distribution. To get more insight into
this new method we will try to explain and derive the formulas from the
begging. Firstly, it is important to see how the facotization should be done
for this new algorithm. We can represent the desired smoothing density as

p(xt | y1:T ) = p(xt | y1:t−1,yt,yt+1:T )

∝ p(xt | y1:t−1)g(yt | xt)p(yt+1:T | xt)

∝ p(xt | y1:t−1)g(yt | xt)
∫
p(yt+1:T ,xt+1 | xt)dxt+1

∝
∫
f(xt | xt−1)p(xt−1 | y1:t−1)dxt−1g(yt | xt)×∫
f(xt+1 | xt)

p̃(xt+1 | yt+1:T )

γt+1(xt+1)
dxt+1, (4.35)

which p̃(xt+1 | yt+1:T ) and γt+1(xt+1) previously defined in Equations (4.26)
and (4.27). Clearly, it is combination of the particle filter and the backward
information filter. Now if we assume that we have a set of weighted particles{(

x
(i)
t−1, w

(i)
t−1

)}N
i=1

from the forward filtering and
{(

x̃
(j)
t+1, w̃

(j)
t+1

)}N
j=1

from

the backward information filter, we can show that the smoothing density can
be approximated with

p(xt | y1:T ) ' c
N∑
i=1

N∑
j=1

f(xt | x(i)
t−1)w

(i)
t−1g(yt | xt)

f(x̃
(j)
t+1 | xt)

γt+1(x̃
(j)
t+1)

w̃
(j)
t+1, (4.36)

where c is a normalizing constant.
To sample from this approximation we can use the concept of auxiliary

particle filter given in (Pitt and Shephard, 1999) and sample (xt, i, j) jointly.
As here we have two indices i and j, we need to sample them first. After
sampling them, we can use a propagation density to sample xt from it ac-
cording to the indices we have drawn before. Therefore, if we can find a
propagation density q̄ and a resampling probability density β̄

(i,j)
t such that

they satisfy the approximation

q̄(xt | x(i)
t−1,yt, x̃

(j)
t+1)β̄

(i,j)
t ' f(xt | x(i)

t−1)g(yt | xt)f(x̃
(j)
t+1 | xt)

w̃
(j)
t+1w

(i)
t−1

γt+1(x̃
(j)
t+1)

,

(4.37)
then we can form an algorithm to find the proper weights and samples for
our desired density function as in Algorithm 5, i.e. first sampling the in-
dices from a joint distribution and then drawing samples from q̄ to target
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the smoothing density.

This is important to know what are the optimal proposal densities. To
clarify what is the optimal choice of propagation density, we can think of
that as

q̄(xt | x(i)
t−1,yt, x̃

(j)
t+1) = p(xt | x(i)

t−1,yt, x̃
(j)
t+1), (4.38)

so the optimal resampling density will be

β̄
(i,j)
t ∝

∫
f(xt | x(i)

t−1)g(yt | xt)f(x̃
(j)
t+1 | xt)dxt

w̃
(j)
t+1w

(i)
t−1

γt+1(x̃
(j)
t+1)

. (4.39)

Algorithm 5 The two-filter smoother (Fearnhead et al., 2010)

1. Forward filtering: Run a particle filter to obtain the set{(
x

(i)
t , w

(i)
t

)}N
i=1

, which approximates p(xt | y1:t) for t = 1, ..., T .

2. Backward filtering: Run a backward information filter to obtain the

set
{(

x̃
(j)
t , w̃

(j)
t

)}N
j=1

, which approximates p̃(xt | yt:T ) ∝ γt(xt)p(yt:T |
xt) for t = T − 1, ..., 1.

3. Smoothing: For t = 1, ..., T − 1

(a) Resample: Use the joint distribution β̄
(i,j)
t to sample N pairs

{(im, jm)}Nm=1.

(b) Propagate: Sample the new particles x̄
(m)
t independently from

q̄(· | x(im)
t−1 ,yt, x̃

(jm)
t+1 ).

(c) Reweight: For each particle x̄
(m)
t use the weight as follows

w̄
(m)
t ∝

f(x
(m)
t | x(im)

t−1 )g(yt | x(m)
t )f(x̃

(jm)
t+1 | x

(m)
t )w̃

(jm)
t+1 w

(im)
t−1

q̄(x̃
(m)
t | x(im)

t−1 ,yt, x̃
(jm)
t+1 )β̄

(im,jm)
t γt+1(x̃

(jm)
t+1 )

.

This is a very important improvement to draw samples for the approxi-
mation of the smoothing density independently as it helps to have a better
support of the smoothing. But the point is that the cost of running this
algorithm is still at the order of O(N2) and it comes from the fact that we
need to sample the indices jointly. Sampling the indices jointly not only have
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a quadratic complexity calculation but also needs a large amount of memory.
In hindsight, this algorithm is not practical even for a moderate size of N .

4.8 The new linear complexity smoother (Fearn-

head et al.)

Here we explain the method introduced in (Fearnhead et al., 2010), which
has a linear complexity in the number of the particles. As we can see the
only problem in Algorithm 5 is the joint distribution which we draw indices
(i, j) from. If one can find a solution so that i and j can be sampled indepen-
dently, then the algorithm will not be computationally demanding anymore.
To do that we should factorize β̄

(i,j)
t to β

(i)
t and β̃

(j)
t which we can sample the

indices independently from them. This work is done in (Fearnhead et al.,
2010), which here we explain it in more detail.

To find what is β
(i)
t we can start with marginalizing β̄

(i,j)
t over j. Marginal-

izing over j gives

β
(i)
t =

N∑
j=1

β̄
(i,j)
t

∝
N∑
j=1

∫
f(xt | x(i)

t−1)g(yt | xt)f(x̃
(j)
t+1 | xt)dxt

w̃
(j)
t+1w

(i)
t−1

γt+1(x̃
(j)
t+1)

≈
x

f(xt | x(i)
t−1)g(yt | xt)f(xt+1 | xt)dxt

w̃t+1w
(i)
t−1

γt+1(xt+1)
dxt+1

≈
∫
f(xt | x(i)

t−1)w
(i)
t−1 ×(∫

g(yt | xt)f(xt+1 | xt)
p̃(xt+1 | yt+1:T )

γt+1(xt+1)
dxt+1

)
dxt,

which instead a set of weighted samples
{(

x̃
(j)
t+1, w̃

(j)
t+1

)}
, we assumed that

we can analytically compute the integration over xt+1. To do that we must
change the summation with integration, and weights at time t + 1 with
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p̃(xt+1 | yt+1:T ) as we did above. So,

β
(i)
t ≈

∫
f(xt | x(i)

t−1)w
(i)
t−1 (g(yt | xt)p(yt+1:T | xt)) dxt

(4.27)
∝ w

(i)
t−1

∫
f(xt | x(i)

t−1) (p(yt:T | xt)) dxt

∝ w
(i)
t−1

∫
p(yt:T |��

�x
(i)
t−1,xt)f(xt | x(i)

t−1)dxt

∝ w
(i)
t−1

∫
p(yt:T ,xt | x(i)

t−1)dxt

∝ w
(i)
t−1p(yt:T | x

(i)
t−1). (4.40)

It is obvious that calculating Equation (4.40) analytically is impossible. But
Fearnhead et al. (2010) suggested that we should use two simple approxi-
mations. First is to sample particles at time t − 1 according to their filter-
ing weights w

(i)
t−1. Another approach that is suggested in (Fearnhead et al.,

2010) is to sample from an approximation of p(yt:T | x
(i)
t−1)w

(i)
t−1 which is

p(yt | x(i)
t−1)w

(i)
t−1. Clearly, the second approximation is better as it includes

the information from yt as well.

If we look into our particle filter, we used the auxiliary filter, which gave

us the set of particles
{

x
(i)
t

}N
i=1

with probability
{
β

(i)
t

}N
i=1

. In this new

smoothing approach we can use these probabilities as an approximation to
p(yt | x

(i)
t−1)w

(i)
t−1, therefore there is no need for further computations as we

already have them from forward filtering.

We can use the same approach for β̃
(j)
t . To find what is β̃

(j)
t we can

marginalize β̄
(i,j)
t over i this time. As result we have

β̃
(j)
t =

N∑
i=1

β̄
(i,j)
t

∝
N∑
i=1

∫
f(xt | x(i)

t−1)g(yt | xt)f(x̃
(j)
t+1 | xt)dxt

w̃
(j)
t+1w

(i)
t−1

γt+1(x̃
(j)
t+1)

≈
w̃

(j)
t+1

γt+1(x̃
(j)
t+1)

x
(p(xt | y1:t−1)g(yt | xt)dxt−1) f(x̃

(j)
t+1 | xt)dxt,

which instead of a set of weighted samples
{(

x
(i)
t−1, w

(i)
t−1

)}
, we assumed that

we can use their analytical expression. To do that we changed the summation
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into an integration and f(xt | x(i)
t−1)w

(i)
t−1 with p(xt | y1:t−1), which gives

β̄
(j)
t ≈

w̃
(j)
t+1

γt+1(x
(j)
t+1)

∫
p(xt | y1:t)f(x̃

(j)
t+1 | xt)dxt

∝
w̃

(j)
t+1

γt+1(x̃
(j)
t+1)

∫
p(xt | y1:t)f(x̃

(j)
t+1 | xt,y1:t)dxt

Bayes′∝
w̃

(j)
t+1

γt+1(x̃
(j)
t+1)

∫
p(xt, x̃

(j)
t+1 | y1:t)dxt

∝

(
p(x̃

(j)
t+1 | y1:t)

γt+1(x̃
(j)
t+1)

)
w̃

(j)
t+1

(4.27)
∝ p̃(y1:t | x̃(j)

t+1)w̃
(j)
t+1. (4.41)

Similar to Equation (4.40), it is impossible to compute Equation (4.41) an-
alytically but this time to draw indices for sampling from the backward
information filter at time t + 1. Instead, we can use an approximation of
that, which is p̃(yt | x̃(j)

t+1)w̃
(j)
t+1. By this approximation we can use β̃

(j)
t that

we have had from the backward information filter to use them as an approx-
imation to p̃(yt | x̃(j)

t+1)w̃
(j)
t+1.

Drawing indices independently by using the approximations above allows
to perform a simple algorithm with linear complexity in the number of the
particles that is described in Algorithm 6. Clearly, the main difference be-
tween Algorithm 6 and Algorithm 5 is that instead of sampling from a joint
distribution to draw indices i, j jointly, in Algorithm 6 we sample the indices
independently. Moreover, because we already have a good approximation
for β

(i)
t and β̄

(j)
t from the forward filter and the backward information filter

respectively, we can use them again without any further modification.
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Algorithm 6 The new linear complexity smoother (Fearnhead et al., 2010)

1. Forward filtering: Run a particle filter to obtain the set{(
x

(i)
t , w

(i)
t

)}N
i=1

, which approximates p(xt | y1:t) for t = 1, ..., T .

2. Backward filtering: Run a backwards information filter to obtain the

set
{(

x̃
(j)
t , w̃

(j)
t

)}N
j=1

, which approximates p(xt | yt:T ) ∝ γt(xt)p(yt:T |
xt) for t = T − 1, ..., 1.

3. Smoothing: For t = 1, ..., T − 1

(a) Resample: Use
{
β

(i)
t

}
from forward filter to sample i1, ..., im

and
{
β̃

(j)
t

}
from backwards filter to sample j1, ..., jm from the set

{1, ..., N}.

(b) Propagate: Sample the new particles x̄
(m)
t independently from

q̄(· | x(im)
t−1 ,yt, x̃

(jm)
t+1 ).

(c) Reweight: For each particle x̄
(m)
t use the weight as follows

w̄
(m)
t ∝

f(x
(m)
t | x(im)

t−1 )g(yt | x(m)
t )f(x̃

(jm)
t+1 | x

(m)
t )w̃

(jm)
t+1 w

(im)
t−1

q̄(x̃
(m)
t | x(im)

t−1 ,yt, x̃
(jm)
t+1 )β

(im)
t β̃

(jm)
t γt+1(x̃

(jm)
t+1 )

.

It is clear that there is just a slight difference between these two methods,
which introduced by Fearnhead et al. (2010). Still, the linear complexity of
the second method is a huge reduction in complexity that makes it possible
to use many more particles in our smoothing algorithm.

One of the drawbacks of this algorithm is number of the design variables
that must be designed. For example, the choice of artificial density that can
change the performance of this algorithm by a large factor. In addition, it
is not always easy to use proposal densities such as q̄(xt | x

(im)
t−1 ,yt, x̃

(jm)
t+1 )

which are conditioned on three variables specially when the SSM is severely
non-linear and also the perturbations are not Gaussian. But if one can use
very good proposal densities and also could find a good choice for artificial
density, then it can outperform any other algorithm as it is shown in simu-
lation results.
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4.9 Fast FFBSi (Douc et al.)

In the last part of this chapter we are going to introduce another method,
which has asymptotically linear complexity in number of the particles. Here
we will mostly refer to the licentiate thesis that is defended by Fredrik Lind-
sten in Linköping University (Lindsten, 2011). The main paper of this new
method is (Douc et al., 2010), which covered the method and algorithm in
more details as well as asymptotic convergence results. The idea of this
algorithm is directly related to FFBSi which is introduced previously. In
FFBSi we evaluate all the smoothing weights to be able to sample from the
smoothing distribution which is the main reason to have a quadratic com-
plexity. Moreover, after drawing one sample from categorical distribution,
we discard all the weights. In (Douc et al., 2010) it is claimed that we do
not need to evaluate all those weights at each time step to be able to sample
from the smoothing and instead we can use a rejection sampling approach.
Because the main idea in this new method is related to rejection sampling,
first, we explain briefly what it is.

4.9.1 Rejection sampling

Suppose we wish to sample from a target density f(x) that is difficult or
impossible to sample from directly. If we assume that we have a proposal
density q(x) that we know how to draw samples from and probably a known
distribution like uniform probability density function, then if there is a con-
stant k such that

∀x kg(x) ≥ f(x),

then accepting samples draws in succession from kg(x) with ratio f(x)
kg(x)

close

to 1 will yield a sample that follows the target distribution f(x). On the other
hand we would reject the samples if the ratio is not close to 1. Figure 4.1
shows the pdf of f(x) (target distribution) and kg(x) (proposal distribution).

The proof of this fact is straight-forward. From Bayes’ theorem we have

Pr(X | accept) =
Pr(accept | X)× Pr(X)

Pr(accept)
.
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Figure 4.1: An example of a possible distribution of f(x) and kg(x). A sample
x is proposed from density kg(x). The sample is accepted if kg(x)U ≤ f(x).

Furthermore, we know that Pr(accept | X) = f(x)
kg(x)

and Pr(X) = g(x). So,

Pr(accept) =

∫
x

Pr(accept | X)Pr(X)dx

=

∫
x

f(x)

kg(x)
g(x)dx

=
1

k
.

In hindsight, we can show that

Pr(X | accept) =

f(x)
kg(x)

g(x)
1
k

= f(x),

as required. Rejection sampling algorithm can be performed easily and is
shown in Algorithm 7.

31



Algorithm 7 Rejection sampling

1. Initialize: L← {1, ..., N}.

2. While L is not empty

(a) n← card(L).

(b) δ ← φ.

(c) Sample independently {X ′t}
n
t=1 ∼ g.

(d) Sample independently {Ut}nt=1 ∼ U ([0, 1]).

(e) For t = 1, ..., n

i. If Ut ≤ f(x)
kg(x)

then XL(t) ← X ′t and δ ← δ ∪ {L(t)}.

(f) L← L \ δ.

4.9.2 Implementation of fast FFBSi

If we look at Algorithm 3 in more detail, it can be understood that we are

using
{
w

(i,j)
t|T

}N
i=1

to just sample one index. Douc et al. (2010) suggested that

we can reduce this by using a rejection sampling approach instead (see also
section 2.4.3 of (Lindsten, 2011)). To do this, we should assume that our
transition density function is bounded from above,

f(xt+1 | xt) ≤ ρ, (4.42)

which is true in many situations.
Here we want to sample index I(j), according to the forward filtering and

then append it to the jth backward trajectory. To do that we should sample

an index from set {1, ..., N} with corresponding probabilities
{
w

(i,j)
t|T

}N
i=1

,

which we don’t have them yet. So, we will do that with
{
w

(i)
t

}N
i=1

instead.

That is, we propose samples based on the filter weights rather than any
smoothing weights. If we assume that we have the index I(j), we should
compute its acceptance probability. This can be done by considering the
quotient between the target and the proposal. Using the definition of the
smoothing weights from Equation (4.19) , we have

w̃
(I(j),j)
t|T

w
(I(j))
t

=
1∑N

l=1 w
(l)
t f(x̃

(j)
t+1 | x

(l)
t )

f(x̃
(j)
t+1 | x

(I(j))
t ), (4.43)

32



which implies that the sample should be accepted with probability f(xt+1 |
xt)/ρ. The fast FFBSi is given in Algorithm 8.

Algorithm 8 Fast FFBSi (Douc et al., 2010)

1. Initialize: Use
{
w

(i)
t

}N
i=1

to sample I(1), ..., I(N) and then set x̃
(j)
T =

x
(I(j))
T for j = 1, ..., N .

2. Resample: For t = T − 1, ..., 1 do the following steps

(a) L← {1, ..., N}.
(b) while L is not empty do

i. M ← card(L)

ii. δ ← φ.

iii. Sample independently {C(m)}Mm=1 ∼ Cat

({
w

(i)
t

}N
i=1

)
.

iv. Sample independently {U(m)}Mm=1 ∼ U([0, 1]).

v. For m = 1, ...,M

A. If U(m) ≤ f(x̃
(L(m))
t+1 | x(C(m))

t )/ρ then I(L(m)) ← C(m)
and δ ← δ ∪ {L(t)}.

(c) L← L \ δ

3. Append: For j = 1, ..., N append the samples to the backward tra-
jectories as follows

x̃
(j)
t = x

(I(j))
t

x̃
(j)
t:T =

{
x̃

(j)
t , x̃

(j)
t+1:T

}
.

The main problem of this algorithm is related to the fact that we used
the rejection sampling method and as it is said in section 2.4.3 (Lindsten,
2011) that the applicability of the rejection sampling algorithm relies on a
sufficiently high acceptance probability. In section 5.2.2 (Lindsten, 2011)
it is indicated that most of the time required by Algorithm 8 is spent on
just a few particles. In other words, after a few steps in the while loop the
cardinality of L becomes very low but can linger for a long time close to zero.
To overcome this problem, a “time out” check can be added to Algorithm 8.
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After for instance Rmax iteration, if L is not empty, we can jump out from
the while loop and the remaining weights for indices in L can be taken care
of in Algorithm 3 to draw sample from. By doing this the execution time
can be reduced by a large factor. A good value for Rmax could be N/2 or
N/3 but it depends on the problem and the number of the particles which
we use. Further modifications are discussed in Chapter 7.
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Chapter 5
On optimality of proposal distribution
choices

5.1 Optimal proposals

One of the important parts in implementation of particle methods is to have
insights about the optimal choices for proposal distributions. There are dif-
ferent ways to define the optimal densities and in each we can use different
factorization that can help us to have a better understanding of the meth-
ods and also enable us to find new low complexity Monte Carlo solutions
for smoothing problems. In this chapter we mostly introduce the optimal
choices for a general smoothing algorithm by using a triple joint smoothing
density. Here we start by finding the smoothing density p(xt | y1:T ) by using
p(xt−1,xt,xt+1 | y1:T ). In this way we derive the optimal proposal densities,
in a different way as in (Fearnhead et al., 2010), because they use samples
from a particle filter and a backward information filter at times t−1 and t+1
respectively. Then they directly factorized p(xt | y1:T ) to use those particles
to approximate the smoothing density. We know that the smoothing density
can be expressed as 1

p(xt | y1:T ) =
x

p(xt−1,xt,xt+1 | y1:T )dxt−1dxt+1

∝
x

p(xt | xt−1,yt,xt+1)p(xt−1 | xt+1,y1:t)×
p(xt+1 | y1:T )dxt−1dxt+1,

(5.1)

1Note that an alternative factorization is obtained by simply exchanging the roles of
xt−1 and xt+1 in Equation (5.1).
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where we assume that we are going backward in time so that we have access
to the approximation of p(xt+1 | y1:T ) with a set of particles and their re-

lated weights
{

x̃
(j)
t+1, w̃

(j)
t+1

}N
j=1

. Then instead of p(xt+1 | y1:T ) we can use its

approximation
∑N

j=1 w̃
(j)
t+1δ

(
xt+1 − x̃

(j)
t+1

)
in the integral. As result, we have

p(xt | y1:T ) ∝
x

p(xt−1,xt,xt+1 | y1:T )dxt−1dxt+1

∝
N∑
j=1

∫
w̃

(j)
t+1p(xt | xt−1,yt, x̃

(j)
t+1)p(xt−1 | x̃(j)

t+1,y1:t)dxt−1.

As a matter of fact we must approximate p(xt−1 | x̃
(j)
t+1,y1:t) as well. Un-

fortunately, when xt−1 and xt+1 are significantly correlated, it is typically
very difficult to approximate this density accurately. This problem can be
illustrated easily with a toy scalar Gaussian model.

5.2 Illustration of the problem

To be able to understand the situation when there is a correlation between
the states through the time, i.e. xt−1 and xt+1, we try to use a toy example
to be able to investigate it easily. Here we assume a simple two dimensional
pdf with variables x1 and x2, which we want to draw samples from. Clearly,
we also obtain information from the observation. Our goal is to have samples
from p(x1, x2) that suggests to first sample from a proposal density f(x1, x2)

and then set the weights to w ∝ p(x1,x2)
f(x1,x2)

.

To obtain a method that addresses our problem, we should factorize the
proposal density according to

f(x1, x2) = f(x1 | x2)f(x2),

and first generate x2 and then x1. The optimal choice is to first sample x2

form f(x2) = p(x2) =
∫
p(x1, x2)dx1 and then select f(x1 | x2) = p(x1 | x2).

In many problems it is not easy to have access to p(x1 | x2), but we can
use an approximation instead. A simple example of this problem is a scalar
linear-Gaussian model with different mean and covariances. If we assume
that p(x2) = N (x2; 2, 1) and p(x1 | x2) = N (x1; 2.5x2; 0.3) then p(x1, x2) has
a pdf in (x1, x2) plane (see Figure 5.1).
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Figure 5.1: [•] Pdf of p(x1, x2) over 2-dimensional space (x1, x2).

Here we have two different scenarios. First we will design our algorithm
by having knowledge about the optimal proposal density p(x1 | x2) and a
fairly good approximation of p(x2) to draw samples form first. In this case
we choose f(x2) = N (x2; 2, 3) and f(x1 | x2) = p(x1 | x2). So to have samples
from joint distribution p(x1, x2), we should first draw samples independently
from f(x2) and then sample from the conditional distribution f(x1 | x2). In
this special case as we used the optimal proposal density, the weights of the
samples from f(x1 | x2) will have the same value 1/M where M is number
of the samples we have drawn. As the weights are evenly distributed we can
omit the weights for the samples drawn from f(x1 | x2) and plot f(x1, x2)
which is an approximation of p(x1, x2) as in Figure 5.2.
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Figure 5.2: [• ] Pdf of p(x1, x2) and [• ] pdf of f(x1, x2) over 2-dimensional space
(x1, x2).

A more interesting scenario is when we cannot draw samples from p(x1 |
x2). In this case we choose our proposal density to be similar to p(x1 | x2)
and easy to draw samples from. To illustrate how this choice will change the
efficiency of our approximation we keep f(x2) the same as our first scenario.
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But this time we will go to choose a few different proposal densities as f(x1 |
x2). The choices for f(x1 | x2) will be

• f(x1 | x2) = N (x1; 0.1x2, 0.3)

• f(x1 | x2) = N (x1; 0.5x2, 0.3)

• f(x1 | x2) = N (x1; 5x2, 0.3)

• f(x1 | x2) = N (x1; 10x2, 0.3)

The results for these four different choices are shown in Figure 5.3. In this
scenario, the samples and their according weights should approximate x1,
which is a unimodal distribution with the mean equal to x̄1 = 5.
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Figure 5.3: [• ] Pdf of p(x1, x2) and [• ] its approximation f(x1, x2) in four differ-
ent scenarios (N (x1; 0.1x2, 0.3) top-left, N (x1; 0.5x2, 0.3) top-right, N (x1; 5x2, 0.3)
bottom-left and N (x1; 10x2, 0.3) bottom-right).

Figure 5.3 shows where and for which samples the weights will have high
value. Unfortunately, the intersection between p(x1 | x2) and f(x1 | x2)
does not have a good support of the real mean. This results in a poor
approximation of x̄1 in all four scenarios. To overcome this problem we can
increase the variance of our proposal density to force it have a larger support.
Then the intersection between p(x1 | x2) and f(x1 | x2) might be enough and
samples with large weights can approximate the mean and the covariance of
target density more accurately. The choices for f(x1 | x2) in this scenario
will be
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• f(x1 | x2) = N (x1; 0.1x2, 5)

• f(x1 | x2) = N (x1; 0.5x2, 5)

• f(x1 | x2) = N (x1; 5x2, 5)

• f(x1 | x2) = N (x1; 10x2, 5).

The results for these proposal densities are illustrated in Figure 5.4. Although
the approximations are better than the four previous proposal densities but
the mean and covariance approximation is good just in the second scenario
due to the good support of the samples.
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Figure 5.4: [ • ] Pdf of p(x1, x2) and [ • ] its approximation f(x1, x2) in four
different scenarios (N (x1; 0.1x2, 5) top-left, N (x1; 0.5x2, 5) top-right, N (x1; 5x2, 5)
bottom-left and N (x1; 10x2, 5) bottom-right).

Even in the second scenario, where we chose the variance to be larger
(more that ten times), because of poor approximation of the mean in all
cases, the ellipsoid which represents the joint distribution is rotated and
the intersection between the optimal density and the proposal density has
reduced. Clearly, if we do resampling to have evenly distributed weights,
then we will have samples just in the region that two distributions have
intersection. The important part in this problem is to find a very good
proposal density that can have a good support of the desired density, which
needs a good approximation of the mean at the first place. If we are not able
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to choose a good mean close to the mean of the target density then with high
probability we will not have enough samples with large weights. This was just
simple scenario to show how important and tricky is to approximate a state
given the information of that state in a future time, i.e. p(xt−1 | x̃(j)

t+1,y1:t).
If we are not able to approximate this density with high accuracy, then we
cannot achieve good results from the optimal algorithm for smoothing. But
if we are able to do that then we can approximate p(xt−1 | x̃

(j)
t+1,y1:t) with

a set of particles and their related weights
{

x̂
(j)
t−1, ŵ

(j)
t−1

}N
j=1

. Then instead of

p(xt−1 | x̃(j)
t+1,y1:t) we can use its approximation

∑N
i=1 ŵ

(i)
t−1δ

(
xt−1 − x̂

(i)
t−1

)
in

the integration. Thus we have

p(xt | y1:T ) ∝
N∑
j=1

∫
w̃

(j)
t+1p(xt | xt−1,yt, x̃

(j)
t+1)p(xt−1 | x̃(j)

t+1,y1:t)dxt−1

∝
N∑
j=1

N∑
i=1

ŵ
(i)
t−1w̃

(j)
t+1p(xt | x̂

(i)
t−1,yt, x̃

(j)
t+1)p(x̂

(i)
t−1 | x̃

(j)
t+1,y1:t),

which suggest first to sample the indices according to β̃
(j)
t+1 and β̂

(i)
t−1 if we ap-

proximate them in an auxiliary particle filter manner, and then approximate
p(xt | y1:T ) with N particles by using

ŵ
(i)
t−1w̃

(j)
t+1p(xt | x̂

(i)
t−1,yt, x̃

(j)
t+1)p(x̂

(i)
t−1 | x̃

(j)
t+1,y1:t).

One other way to approximate p(xt−1 | x̃(j)
t+1,y1:t) is to omit the informa-

tion form the observation at time t and use p(xt−1 | x̃(j)
t+1,y1:t−1) instead. In

this way we have

p(xt−1 | x̃(j)
t+1,y1:t) ' p(xt−1 | x̃(j)

t+1,y1:t−1)

'
p(x̃

(j)
t+1 | xt−1)p(xt−1 | y1:t−1)

p(xt+1 | y1:t−1)

∝ p(x̃
(j)
t+1 | xt−1)p(xt−1 | y1:t−1),

where we are able to factorize it but at the cost of eliminating yt. Here, the
problem is that by omitting the information from observation at time t we
are loosing some valuable information and with a high probability we end
up in a same problem as our toy example in approximating the mean and
variance of the proposal densities.
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5.3 Illustration of degeneracy in Fearnhead’s

linear smoother

One of the drawbacks mentioned in (Fearnhead et al., 2010) about the linear
smoother is that this algorithm performs poorly when there is a correlation
between the states through time. To get more insight, we can use our toy
example and illustrate the problem visually. To do so we start with the
fact that in Fearnhead’s linear smoother we should sample xt−1 and xt+1

independently which is the main reason for having a linear computational cost
O(N) algorithm. More precisely, in the approximations done in (Fearnhead
et al., 2010), we should use a forward filter and a backward information filter
to draw samples independently at times t − 1 and t + 1 respectively. This
means if there is a high correlation between the states through times t − 1,
t and t + 1, we do not include this information into the approximation of
the smoothing distribution. To illustrate how poor is independent sampling
at times t − 1 and t + 1, we can use our toy example with x1 = xt−1 and
x2 = xt+1 and draw samples independently from these distributions. We
should notice that there is a correlation between x1 and x2 but we do not
use this information. To do a similar comparison, we use the same settings
for the original data and also f(x2) as our previous setting, i.e.

p(x2) ∼ p(x2) = N (x2; 2, 1)

p(x1 | x2) ∼ N (x1; 2.5x2; 0.3)

f(x2) ∼ p(x2) = N (x2; 2, 3).

Here we use two different scenarios. In the first one, we draw samples from
f(x1) independently with different means but with the same variance as
f(x2). The choices for f(x1) in this scenario are

• f(x1) = N (x1; 0.2, 3)

• f(x1) = N (x1; 2, 3)

• f(x1) = N (x1; 10, 3)

• f(x1) = N (x1; 20, 3).

The results for these proposal densities are shown in Figure 5.6.
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Figure 5.5: [•] Pdf of p(x1, x2) and [•] its approximation f(x1, x2) in four different
scenarios (N (x1; 0.2, 3) top-left, N (x1; 2, 3) top-right, N (x1; 10, 3) bottom-left and
N (x1; 20, 3) bottom-right).

Figure 5.6 shows that by independent sampling, we are not able to give a
good support of the actual distribution p(x1, x2). It can be seen that the per-
formance of independent sampling is highly dependent of the approximation
of the conditional mean which is poor in most of the cases.

To overcome this problem we can use a larger variance to draw samples
form f(x1). In this case the approximation of the conditional mean has less
impact on the support of p(x1, x2). The choices for f(x1) in this scenario are

• f(x1) = N (x1; 0.2, 10)

• f(x1) = N (x1; 2, 10)

• f(x1) = N (x1; 10, 10)

• f(x1) = N (x1; 20, 10).
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Figure 5.6: [•] Pdf of p(x1, x2) and [•] its approximation f(x1, x2) in four different
scenarios (N (x1; 0.2, 10) top-left, N (x1; 2, 10) top-right, N (x1; 10, 10) bottom-left
and N (x1; 20, 10) bottom-right).

Figure 5.6 shows the results when we use a large variance to draw sample from
f(x1). This gives us the opportunity to have a better support of the desired
distribution which is p(x1, x2). Clearly, in situations where the mean of the
proposal density is a fairly good estimate of the actual mean of p(x1 | x2), we
have a good support of desired distribution. But if we use a large variance
in our proposal densities, we need to draw more samples to have enough
samples in all the regions. Moreover, if the mean of f(x1) is not a good
approximation of the conditional mean, the support of f(x1, x2) is very poor
even if we draw large number of samples.

In the cases that there is not a high correlation between the states through
time, combining the information (samples) from the forward filter and the
backward information filter in Fearnhead’s linear smoother gives a very good
approximation of the smoothing distribution. On the other hand, weak ap-
proximation of p(x1, x2),or equivalently p(xt−1, x̃

(j)
t+1 | y1:T ), gives a very poor

approximation of the smoothing distribution. This situation is happening
when there is a correlation between the states through time and we use
independent samples at times t − 1 and t + 1, i.e. using samples from
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p(xt−1 | y1:t−1) and p(x̃t+1 | yt+1:T ) respectively, the same as Fearnhead’s
linear smoother.
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Chapter 6
Backward information smoothing

The goal of this chapter is to give a new approach for particle smoothing by
using the suggestion given in (Fearnhead et al., 2010). The main concept
here is to use the backward information filter and turn it into a smoothing
algorithm. This needs a special choice of design variables as is explained in
this chapter. The algorithm proposed here is generally approximated since
the forward filter is at one point approximated as a Gaussian mixture. In
scenarios where this approximation is reasonably accurate, our initial studies
indicate that it is more efficient than the other particle smoothing algorithms.
Also, like the other algorithms, it is (asymptotically) exact for linear and
Gaussian settings.

The backwards information filter, used in Fearnhead’s algorithm, has a
design parameter in terms of the artificial prior γt(xt). The optimal choice for
that density is given by the forward (particle) filter, p(xt|y1:t−1), for which the
backwards information filter coincides with the FFBSi algorithm (Algorithm
3). It is therefore possible to use the optimal artificial prior, but at the price
of the complexity O(N2).

In this chapter we consider using a Gaussian approximation of the optimal
artificial prior. In other words, we find x̂t|t−1 and P̂t|t−1 such that

p(xt|y1:t−1) ' N (xt; x̂t|t−1, P̂t|t−1), (6.1)

and set

γt(xt) = N (xt; x̂t|t−1, P̂t|t−1). (6.2)

The output from this filter is hence an approximation of the optimal back-
ward filter. However, it is also an approximation of the FFBSi (Algorithm 3)
which means that the output is an approximation of the smoothing density
of interest itself.
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In more detail, to form this smoothing algorithm we start with formulat-
ing the target distribution as

p̃(xt | y1:T ) ∝ γt(xt)g(yt | xt)
∫
f(xt+1 | xt)

p̃(xt+1 | y1:T )

γt+1(xt+1)
dxt+1, (6.3)

where the choice of artificial density is the same as Equation (6.2). The
reason for using Equation (6.3) is that by this special choice of the artificial
density we have

p̃(xt | yt:T ) ∝ γt(xt)p(yt:T | xt)
∝ p(xt | y1:t−1)p(yt:T | xt)
∝ p(xt | y1:T ),

which indicates that p̃(xt | yt:T ) is an approximation of the smoothing distri-
bution itself and as result we can use the same formulation as in the backward
information filter for our smoothing algorithm. Further if we assume that we

have a set of weighted particles
{(

x̃
(j)
t+1, w̃

(j)
t+1

)}N
j=1

at t + 1, which approxi-

mates p̃(xt+1 | yt+1:T ) or equivalently p̃(xt+1 | y1:T ), it gives

p̃(xt | y1:T ) ∝ γt(xt)g(yt | xt)
N∑
i=1

f(x̃
(j)
t+1 | xt)

γt+1(x̃
(j)
t+1)

w̃
(j)
t+1. (6.4)

Here we use the concept of auxiliary particle filter to sample xt+1 and j
jointly in backward direction. This means we need to propose densities for
propagation and resampling probability densities such that

q̃(xt | x(j)
t+1,yt)β̃

(j)
t ' γt(xt)g(yt | xt)

f(x̃
(j)
t+1 | xt)

γt+1(x̃
(j)
t+1)

w̃
(j)
t+1. (6.5)

Therefore, in the algorithm we first sample the indices according to β̃
(j)
t and

then propagate the samples with q̃(xt | x
(j)
t+1,yt). This procedure allows to

perform Algorithm (9) to approximate the smoothing distribution.
It should be noticed again that the choice of artificial density make this

algorithm suffers from quadratic complexity in number of the particles. In
fact a more precisely representation of the artificial density would be

γt(xt) =
K∑
k=1

N
(
· | x̂(k)

t|t−1, P̂
(k)
t|t−1

)
, (6.6)

where K is total number of the Gaussian mixtures we used to approximate
γt(xt) = p(xt | y1:t−1). In its simplest setting K = N , this approximation
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results an algorithm similar to Algorithm 3 with a quadratic complexity in
number of the particles. This means for an efficient implementation of this
algorithm we need to use less number of Gaussian mixtures. The other issue
in the design of this algorithm is the dimension of the SSM. The higher the
dimension of the states are, the more complex is to find a suitable Gaus-
sian mixture for it. Although, there are new methods proposed recently to
approximate the Gaussian mixture with linear complexity in number of the
dimensions. Aside form all these complexities in performing this algorithm,
there are many problems that the artificial density can be approximated with
just a few number of the Gaussian mixtures. As it is said before, when we are
able to approximate γt(xt) accurately, this algorithm is more efficient that
other particle smoothing methods but at the cost of O(KN). In hindsight,
the applicability of the backward information smoothing (see Algorithm (9))
is directly related to the approximation of γt(xt) and the number of the
Gaussian mixtures we use for approximation.

Algorithm 9 Backward information smoothing

1. Forward filtering: Run a particle filter to obtain the set{(
x

(i)
t , w

(i)
t

)}N
i=1

, which approximates p(xt | y1:t) for t = 1, ..., T .

2. Gaussian mixture approximation: Find the proper Gaussian
mixture to approximate γt(xt) = p(xt | y1:t−1) and set γt(xt) =∑K

k=1N
(
· | x̂(k), P̂(k)

)
for t = 1, ..., T .

3. Initializing: Initialize Backward Filter at time T .

4. Backward filtering/smoothing: For t = T − 1, ..., 1

(a) Resample: Use the distribution β̃t to sample N indices
{(jm)}Nm=1.

(b) Propagate: Sample the new particles x̃
(m)
t independently from

q̃(· | yt, x̃(jm)
t+1 ).

(c) Reweight: For each particle x̃
(m)
t use the weight as follows by

using the new choice of artificial density

w̃
(m)
t ∝

γt(x̃
(m)
t )g(yt | x̃(m)

t )f(x̃
(jm)
t+1 | x̃

(m)
t )w̃

(jm)
t+1

q̄(x̃
(m)
t | yt, x̃(jm)

t+1 )β̃
(jm)
t γt+1(x̃

(jm)
t+1 )

.
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The backward information smoothing has some interesting properties.
One of them is that it has one step less than Fearnhead’s linear smoother
and therefore design variables. This is important when the problems are non-
linear and/or non-Gaussian and we cannot use optimal proposal densities.
The second one is that if we can approximate the artificial density with a
few Gaussian mixtures then it can approximately be a linear algorithm in
number of the particles, therefore, can be run with large N . Third, it is
optimal in the sense that we are using samples from the approximation of
the smoothing at time t + 1 for the approximation of the states at time t.
More detail of optimality of this algorithm is given in the next section. And
finally, it does not have the problem of Douc’s algorithm (remaining for a
long time to sample from a small set).

6.1 Optimality of the backward information

smoother

In this section we show the reason of optimality of this new algorithm. To
show it, we should start with formulating the smoother as

p(xt | y1:T ) =

∫
p(xt,xt+1 | y1:T )dxt+1, (6.7)

where both xt and xt+1 are from the smoothing distribution. Further if we
factorize the integrand in Equation (6.7), it gives

p(xt,xt+1 | y1:T ) = p(xt | xt+1,y1:T )p(xt+1 | y1:T ), (6.8)

so the optimal choices for propagation and resampling probability densities
are

q̃(xt | x̃(j)
t+1,y1:T ) = p(xt | x̃(j)

t+1,y1:T ), (6.9)

and

β̃
(j)
t = p(x̃

(j)
t+1 | y1:T ), (6.10)

which results in

q̃(xt | x̃(j)
t+1,y1:T )β̃

(j)
t ∝ p(xt | x̃(j)

t+1,y1:T )p(x̃
(j)
t+1 | y1:T ).

(6.11)

The final step to show that the backward information smoothing is the op-
timal smoother that one can derive form the backward information filter,
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we should show that the propagation and resampling probability densities in
Algorithm (9) are exactly the same as Equations (6.9) and (6.10). Clearly,
the choice of propagation density is exactly the same as in Equation (6.9).
But for resampling probability density, we start from the fact that in the
backward information filter with γt(xt) = p(xt | y1:t−1), we have

q̃(xt | x̃(j)
t+1,y1:T )β̃

(j)
t ∝

p(x
(j)
t+1 | y1:T )γt(xt)p(yt | xt)p(x(j)

t+1 | xt)
γt+1(x

(j)
t+1)

.

(6.12)

To find the optimal resampling probability density, we can marginalize Equa-
tion (6.12) over xt, which gives

β̃
(j)
t ∝

∫
p(x

(j)
t+1 | y1:T )γt(xt)p(yt | xt)p(x(j)

t+1 | xt)
γt+1(x

(j)
t+1)

dxt

∝
p(x

(j)
t+1 | y1:T )

p(x
(j)
t+1 | y1:t)

∫
p(xt | y1:t−1)p(yt | xt)p(x(j)

t+1 | xt)dxt

∝
p(x

(j)
t+1 | y1:T )

p(x
(j)
t+1 | y1:t)

∫
p(x

(j)
t+1 | xt,y1:t)p(xt | y1:t)dxt

∝
p(x

(j)
t+1 | y1:T )

p(x
(j)
t+1 | y1:t)

∫
p(xt,x

(j)
t+1 | y1:t)dxt

∝
p(x

(j)
t+1 | y1:T )

p(x
(j)
t+1 | y1:t)

× p(x(j)
t+1 | y1:t)

∝ p(x
(j)
t+1 | y1:T ), (6.13)

and clearly it is the same as Equation (6.10).
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Chapter 7
Design variables

In this chapter we go through design variables of Fearnhead’s linear smoother,
the backward information smoothing and fast FFBSi. The main goal of this
chapter is to give some useful information about the parameters we can con-
trol in particle smoothing algorithms mentioned above. This investigation
will give us the opportunity to understand if there are modifications avail-
able for a better approximation of the smoothing. In addition, it gives us
the opportunity to understand how sensitive are these algorithms to change
their design variables and if their complexities remain linear in all cases and
problems.

7.1 Design variables of Fearnhead’s linear smoother

As mentioned in previous chapters, this algorithm uses samples from one
forward filtering and one backward information filter to approximate the
smoothing density at time t. This approximation is done with a set of parti-

cles and their related weights
{

x̄
(k)
t , w̄

(k)
t

}N
k=1

. In this section we are going to

elucidate the design choices, trade-offs and the amount of their impact in the
performance of this algorithm in detail. From the results given in (Fearnhead
et al., 2010) and also our results for the same example, it is clear that this
algorithm performs poorly in the first and last time steps. To clarify how
the sampling can be done in a different way, we start with explaining the
factorization in (Fearnhead et al., 2010) once more. In (Fearnhead et al.,
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2010), they factorized the target density p(xt | y1:T ) as

p(xt | y1:T ) = p(xt | y1:t−1,yt,yt+1:T )

∝ p(xt | y1:t−1)g(yt | xt)p(yt+1:T | xt)

∝
∫
f(xt | xt−1)p(xt−1 | y1:t−1)dxt−1g(yt | xt)×∫
f(xt+1 | xt)

p̃(xt+1 | yt+1:T )

γt+1(xt+1)
dxt+1,

where they used particle approximation
∑N

i=1w
(i)
t−1δ

(
xt−1 − x

(i)
t−1

)
for ap-

proximating the filtering distribution p(xt−1 | y1:t−1) at time t− 1 and parti-

cle approximation
∑N

j=1 w̃
(j)
t−1δ

(
xt+1 − x

(j)
t+1

)
for approximating the backward

information filter p(xt+1 | yt+1:T ) at time t+ 1.

A more natural choice is to use the triple joint smoothing distribution
at times t − 1, t and t + 1 i.e., p(xt−1,xt,xt+1 | y1:T ). By studying the
factorization

p(xt | y1:T ) =

∫
p(xt−1,xt,xt+1 | y1:T )dxt−1dxt+1,

we conclude that xt−1 and xt+1 should ideally be generated from the joint
smoothing density p(xt−1,xt+1 | y1:T ). This suggestion comes from the fact
that we can further factorize p(xt−1,xt,xt+1 | y1:T ) as

p(xt | xt−1,yt,xt+1)p(xt−1,xt+1 | y1:T ).

A natural approximation of p(xt−1,xt+1 | y1:T ) could be

p(xt−1,xt+1 | y1:T ) ' p(xt−1 | y1:T )p(xt+1 | y1:T ),

i.e., from the independent smoothing densities. This approximation allows
to perform an algorithm with linear computational cost in terms of number
of the particles. But this approximation has two drawbacks. Firstly, as we
are going backward in time to approximate the smoothing distribution, we
do not have access to a particle approximation of p(xt−1 | y1:T ). In addition,
the exact factorization of p(xt−1,xt+1 | y1:T ) is

p(xt−1,xt+1 | y1:T ) ' p(xt−1 | xt+1,y1:T )p(xt+1 | y1:T ),

which indicates that we should sample xt−1 and xt+1 jointly. This yields to
an algorithm with quadratic complexity in number of the particles because
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we cannot factorize p(xt−1 | xt+1,y1:T ). This may be one of the reasons for
degeneracy of Fearnhead’s linear smoother and also other particle smoother
algorithms when there is a high correlation between the states through time.
Non of the algorithms includes this distribution because of the complexity it
adds to the algorithms.

One possible way to approximate p(xt−1,xt+1 | y1:T ) could be

p(xt−1,xt+1 | y1:T ) ' p(xt−1 | y1:t−1)p̃(xt+1 | yt+1:T ),

which seems a possible approximation in general and it is used by Fearnhead
et al. (2010). But here we face with another problem. The problem comes
form the fact that in different settings and problems, p(xt−1 | y1:t−1) gives
a poor approximation of the filtering distribution in times near t = 1. In
addition, approximation of p̃(xt+1 | yt+1:T ) is not accurate at times near t =
T . These poor approximations cause the smoothing distribution degenerates
or be likely to degenerate at times near to 1 and T . The reason is that
the particles from a forward filter and a backward information filter do not
always have a good support of the smoothing distribution at these time steps.

One way to improve part of the weaknesses of Feanhead’s linear smoother
is to choose the optimal artificial density which enables the backward infor-
mation filter targets the smoothing distribution directly. In Subsection 7.1.2,
we explain how this special choice of artificial density changes the settings in
the backward information filter in more detail.

7.1.1 Divergence due to time correlation

The second issue with this algorithm and almost all other smoothing al-
gorithms is the poor performance of them when there is a high correlation
between the states through the time. We have already investigated this prob-
lem in Chapter 5. If we want to overcome this weakness we need to use the
joint smoothing distribution at times t−1, t and t+1 or at least the relation
between the states at these three time steps, even if they are not from the
same density. This problem appears even for the seemingly accurate pro-
posal i.e., p(xt−1 | y1:T )p(xt+1 | y1:T ), because again it does not using any
condition between the states through time.

7.1.2 Design variables of backward information filter

Backward information filter as a smoother

In Chapter 6 we talked about a new choice for the artificial density and
we chose γt(xt) to be p(xt | y1:t−1). As mentioned in Chapter 6, this is the
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optimal choice for the artificial density in backward information filter and also
it changes this filter to a smoother. Moreover, we showed in the same chapter
that this new smoothing algorithm is optimal in the sense that we are using
a pair joint smoothing distribution so that we are using all the information
available in the backward direction. But we did not discuss about how this
choice will affect the algorithm in detail. We know that in a linear-Gaussian

model we can choose γt(xt) ∝ N
(
· | x̂, P̂

)
, where x̂ and P̂ are the mean and

covariance matrix of a Gaussian distribution approximating p(xt | y1:t−1).
But this is not possible in a general state-space model with non-linearity in
the states. In a general case we can go for two different approaches. First if
we use an approximation of p(xt | y1:t−1) i.e.

∑N
i=1 w

(i)
t−1f(xt | x(i)

t−1), which
here we used the fact that a particle filter preformed us with a set of particles

and weights
{

x
(i)
t−1, w

(i)
t−1

}N
i=1

to approximate p(xt−1 | y1:t−1), then we have

p̃(xt | yt:T ) ∝ p(xt | y1:T )

∝
N∑
i=1

w
(i)
t−1f(xt | x(i)

t−1)g(yt | xt)
N∑
i=1

f(x̃
(j)
t+1 | xt)∑N

k=1w
(k)
t−1f(x̃

(k)
t+1 | x

(k)
t )

w̃
(j)
t+1,

which suffer from a quadratic complexity in number of the particles and is
similar to the FFBSi (see Algorithm 3).

Second approach that has more interesting properties is to use a Gaus-
sian mixture approximation to p(xt | y1:t−1). One possible question here is
that why we do not go for other smoother algorithms when we can approx-
imate the densities with Gaussian mixture. The answer relies on the fact
that this algorithm has a very good performance if we are able to approx-
imate p(xt | y1:t−1) accurately with a Gaussian mixture. If we are able to
do it with less number of mixtures with linear complexity in high dimension
problems which is a hot research topic in recent years then we have a really
good smoother algorithm which can give us a good approximation with a
complexity order O(KTN), where K is the number of mixtures, T is num-
ber of time steps and N is number of the particles.

Relation between the backward information filter and Fearnhead’s
linear smoother

One interesting question is what does happen if we choose γt(xt) = p(xt)?
This is a huge reduction in the amount of information we use for the choice of
artificial density and it is far away from being the optimal one. Without any
doubt, the backward information smoother will not perform good with this
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choice. The reason is that the only choice to make the backward information
filter targets the smoothing distribution is to choose the artificial density
to be γt(xt) ∝ p(xt | y1:t−1). But an important question here is how these
choices of artificial density will change the performance of Fearnhead’s linear
smoother. From the studies that are done in the simulations, we found that
in linear-Gaussian models when we are able to use the optimal proposal
densities, if we choose the artificial density to be the actual prior p(xt),
which is a suboptimal choice, the results are acceptable and Fearnhead’s
linear smoother performs very well.

A more interesting result achieved when we used γt(xt) ∝ p(xt | y1:t−1)
for the backward information filter and also ran the third step of Fearnhead’s
linear smoother in a linear-Gaussian example. Although this special choice
of the artificial density gives the smoothing distribution directly in the back-
ward information filter (see Algorithm (9)), it is interesting to see the results
of Fearnhead’s linear smoother with different choices of the artificial density.
Surprisingly, the results indicates that there is nearly no difference between
the performance of the algorithm with different choices of the artificial den-
sity. The effects of changing the choice of the artificial density is still an open
area to work on. As it is stated in (Fearnhead et al., 2010), the choice of
artificial density has a large impact in the performance of particle smoother
algorithms based on using this density and it is interesting to understand
how this choice is affecting the general performance of particle smoother
algorithms in SSM with non-linearities in the model and non-Gaussian per-
turbations.

7.2 Design variables of fast FFBSi

In this section we investigate available design variables of fast FFBSi algo-
rithm. We already talk about the algorithm and rejection sampling in 4 and
here we want to show how we can overcome the problem time demanding of
this algorithm. As mentioned, one possible choice is to stop the while loop
when ever number of the iterations reach a number like Rmax which can be
equal to N/2 or N/3. But to trust these choices we need to see how exactly
rejection sampling step of the algorithm performs. To do this one can go for
calculating the acceptance probability for a fixed xt. As it is infeasible to
calculate this probability in general case we go for simplest case where the
model is scalar and linear-Gaussian. If we assume xt = axt−1 + wt−1 and
wt−1 ∼ N (0, σ2

w) and also assuming that we have access to a perfect approx-
imation to the states at time t− 1 with xt−1|t−1 and σ2

t−1|t−1, then using the
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fact that the acceptance probability is given by

U(0, 1) ≤ f(xt+1 | xt)/ρ,

we can show that this is equal to

Pr(accept) =

∫
N (xt−1;xt−1|t−1, σ

2
t−1|t−1)N (xt; axt−1, σ

2
w)dxt−1

=
1√

2π
(
σ2
w + a2σ2

t−1|t−1

) exp

− (
xt − axt−1|t−1

)2

2
(
σ2
w + a2σ2

t−1|t−1

)
 ,

which is a Gaussian distribution over xt with new mean and covariance. This
Gaussian density shows that the samples around the mean that is axt−1|t−1

will be accepted with high probability and those that are away from the
mean will have a less chance to be accepted. But the problem arises when

there is a sample in the set
{
x

(i)
t

}N
i=1

where it is far away from the mean.

In this case it takes a long time for the algorithm to accept this sample.
For better understanding, we can use the inverse of Pr(accept), which has
a linear relationship with the expected number of iterations in fast FFBSi
algorithm. To illustrate it easier we assume that xt−1|t−1 = 0, σ2

t−1|t−1 = 4,

a = 2 and σ2
w = 3. Figure 7.1 shows the relation between the probability

and number of iterations we need to have a successful sample. This figure
shows that Rmax is highly dependent on a problem that we are working on
and can be chosen wisely. Of course one must be able to find the probability
of acceptance analytically to be able to choose a good Rmax but still it is an
important design variable to choose in this algorithm.
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Figure 7.1: [−] Pdf and [−] expected number of iterations for a simple linear-
Gaussian example.
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Chapter 8
On derivation of optimal proposal
densities in linear-Gaussian model

When we are dealing with a linear-Gaussian model, we already has the opti-
mal solution for the filtering and smoothing as they are given in (Anderson
and Moore, 1979; Kalman et al., 1960). Although any other method is not
comparable with the results form the optimal solutions, still it is a good at-
tempt to derive the optimal proposal densities for this special case and for all
the algorithms as these derivations will give us an insight about how we can
really find the proposal densities. In addition, there are problems, which are
linear-Gaussian in part of the state or observation and in fact these methods
can be applied for them as well.

Here we start with giving the optimal proposal densities for auxiliary
particle filter and then for all other smoothing algorithms. So, the sections
will come in the same order as in Chapter 4.

8.1 Auxiliary particle filter

In auxiliary particle filter we know that the optimal choice must be

q(xt | x(i)
t−1,yt)β

(i)
t = g(yt | xt)f(xt | x(i)

t−1)w
(i)
t−1.

By using general refactorization lemma (GRL) for a linear-Gaussian model
we have

q(xt | x(i)
t−1,yt)β

(i)
t = N (xt; Fx

(i)
t−1,Q)N (yt; Gxt,R)w

(i)
t−1

= N (xt;µt|t−1,Σt|t−1)N (yt; GFx
(i)
t−1,R + GQGT),

where Σ−1
t|t−1 = Q−1+GTR−1G and µt|t−1 = Σt|t−1

(
Q−1Fx

(i)
t−1 + GTR−1yt

)
.
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8.2 Backward information filter

For the backward information filter we can use the actual prior γt(xt) =
p(xt) = N (xt | µt,Σt), where we should start with µ0 and Σ0 as initial mean
and covariance matrix and then use the state transition µt+1 = Fµt for the
mean and Σt+1 = FQFT + Q for the covariance matrix update. Here we
assume that the transition and covariance matrices are not varying over the
time. In addition to the prior, we need to have access to p(xt | xt+1). One
way to find the exact distribution of this density is to use the concepts similar
to reverse Kalman filter (Taplin, 1998). If the state space model equations
defined as {

xt = Fxt−1 + wt−1

yt = Gxt + vt
,

then the reverse formulation for that will be{
xt = Htxt+1 + Dt + ηt

Ht = ΣtF
TΣ−1

t+1, Dt = µt −Htµt+1

,

where ηt ∼ N (0,ut) and ut = Σt −HtΣt+1H
T
t . If we represent p(xt | xt+1)

with N (xt | mt,Mt), then for mt

mt = Htxt+1Dt

= ΣtF
TΣ−1

t+1xt+1 + µt − ΣtF
TΣ−1

t+1µt+1,

now if we use µt+1 = Fµt , form Σt+1 = FΣtF
T+Q we use F = (Σt+1 −Q) F−TΣ−1

t

and F̃ = ΣtF
TΣ−1

t+1 in the formula, then we have

mt = F̃xt+1 +

Q̃︷ ︸︸ ︷
ΣtF

TΣ−1
t+1QF−TΣ−1

t µt

= F̃xt+1 + Q̃Σ−1
t µt.

For covariance matrix we have

Mt = ut

= Σt − ΣtF
TΣ−1

t+1Σt+1Σ−T
t+1FΣT

t

(section 4, Taplin 1998)
= Σt − ΣtF

TΣ−1
t+1FΣt

= Σt − ΣtF
TΣ−1

t+1 (Σt+1 −Q) F−TΣ−1
t Σt

= Σt − ΣtF
TΣ−1

t+1Σt+1F
−TΣ−1

t ΣT
t + ΣtF

TΣ−T
t+1Σt+1QF−TΣ−1

t Σt

= Σt − Σt + ΣtF
TΣ−T

t+1Σt+1QF−T

= Q̃,
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so

p(xt | xt+1) = N (xt; F̃xt+1 + Q̃Σ−1
t µt, Q̃).

Now for backward information filter we have

q̃(xt | yt, x̃(i)
t+1)β̃

(j)
t ' γt(xt)g(yt | xt)f(x̃

(j)
t+1 | xt)

w̃
(j)
t+1

γt+1(x̃
(j)
t+1)

' p(xt)g(yt | xt)f(x̃
(j)
t+1 | xt)

w̃
(j)
t+1

p(x̃
(j)
t+1)

= g(yt | xt)p(xt | x̃(j)
t+1)w̃

(j)
t+1

= N (yt; Gxt,R)N (xt; F̃x̃
(j)
t+1 + Q̃Σ−1

t µt, Q̃)w̃
(j)
t+1.

Here the suggestion is again to use GRL. By using this lemma we have

q̃(xt | yt, x̃(i)
t+1)β̃

(j)
t ' N (yt; Gxt,R)N

(
xt; F̃x̃

(j)
t+1 + Q̃Σ−1

t µt, Q̃
)
w̃

(j)
t+1

= N
(
xt;µt|t+1,Σt|t+1

)
×

N
(
yt; G

(
F̃x̃

(j)
t+1 + Q̃Σ−1

t µt

)
,R + GQ̃GT

)
,

where

µt|t+1 = Σt|t+1

(
Q̃−1

(
F̃x̃

(j)
t+1 + Q̃Σ−1

t µt

)
+ GTR−1yt

)
= Σt|t+1

(
FTQ−1Σt+1F

−TΣ−1
t ΣtF

TΣ−1
t+1x̃

(j)
t+1+

Q̃−1Q̃Σ−1
t µt + GTR−1yt

)
= Σt|t+1

(
FTQ−1x̃

(j)
t+1 + Σ−1

t µt + GTR−1yt

)
,

and

Σ−1
t|t+1 = Q̃−1 + GTR−1G.

8.3 Two-filter smoother (Fearnhead et al.)

The optimal densities for Fearnhead’s two-filter smoother is given by

q̄(xt | x(i)
t−1,yt, x̃

(j)
t+1)β̄

(i,j)
t ' f(xt | x(i)

t−1)g(yt | xt)f(x̃
(j)
t+1 | xt)

w̃
(j)
t+1w

(i)
t−1

γt+1(x̃
(j)
t+1)

,
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where we can optimally choose q̄(xt | x(i)
t−1,yt, x̃

(j)
t+1) = p(xt | x(i)

t−1,yt, x̃
(j)
t+1),

which gives

q̄(xt | x(i)
t−1,yt, x̃

(j)
t+1) = p(xt | x(i)

t−1,yt, x̃
(j)
t+1)

=
p(x̃

(j)
t+1,yt | xt,x

(i)
t−1)f(xt | x(i)

t−1)

p(x̃
(j)
t+1,yt | x

(i)
t−1)

=
p(x̃

(j)
t+1 | yt,xt,x

(i)
t−1)p(yt | xt,x(i)

t−1)p(xt | x(i)
t−1)

p(x̃
(j)
t+1,yt | x

(i)
t−1)

∝ p(x̃
(j)
t+1 | xt)p(yt | xt)p(xt | x

(i)
t−1)

∝ N (x̃
(j)
t+1; Fxt,Q)

(
N (yt; Gxt,R)N (xt; Fx

(i)
t−1,Q)

)
∝ N

(
x̃

(j)
t+1; Fxt,Q

)
((((

((((
(((

((((
(

N
(
yt; GFx

(i)
t−1,R + GQGT

)
N
(
xt; Λ

(
Q−1Fx

(i)
t−1 + GTR−1yt

)
,(

Λ−1 = Q−1 + GTR−1G
))

∝ N
(
x̃

(j)
t+1; FΛ

(
Q−1Fx

(i)
t−1 + GTR−1yt

)
,Q + FΛFT

)
N
(
xt;
(

Λ̃��
�

Λ−1Λ
(
Q−1Fx

(i)
t−1 + GTR−1yt

)
+FTQ−1x̃

(j)
t+1

)
, Λ̃−1 = Q−1 + GTR−1G + FTQ−1F

)
.

The last density is the resampling probability of this algorithm and can be
calculated as

β̄
(i,j)
t ∝

∫
f(xt | x(i)

t−1)g(yt | xt)f(x̃
(j)
t+1 | xt)dxt

w̃
(j)
t+1w

(i)
t−1

γt+1(x̃
(j)
t+1)

∝
∫
p(xt | x(i)

t−1,yt, x̃
(j)
t+1)p(x̃

(j)
t+1,yt | x

(i)
t−1)dxt

w̃
(j)
t+1w

(i)
t−1

γt+1(x̃
(j)
t+1)

∝ p(x̃
(j)
t+1,yt | x

(i)
t−1)

w̃
(j)
t+1w

(i)
t−1

γt+1(x̃
(j)
t+1)

,

which cannot be factorized. But we can have access to a joint Gaussian
distribution that defines this density by a mean vector and a covariance
matrix. First we start with defining the target density as

p(x̃
(j)
t+1,yt | x

(i)
t−1) ∝ N

([
x̃

(j)
t+1

yt

]
;

[
µx
µy

]
,

[
Cxx Cxy
Cyx Cyy

])
.
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Cxx can be calculated as

Cxx = E
[(

x̃
(j)
t+1

)(
x̃

(j)
t+1

)T
]
−
(
E
[
x̃

(j)
t+1

])2

= E
[(

F
(
Fx

(i)
t−1 + wt

)
+ wt+1

)(
F
(
Fx

(i)
t−1 + wt

)
+ wt+1

)T
]

−
(
E
[
F
(
Fx

(i)
t−1 + wt

)
+ wt+1

])2

= Q + FQFT.

Cyy can be driven as

Cyy = E
[
yty

T
t

]
− (E [yt])

2

= E
[(

G
(
Fx

(i)
t−1 + wt

)
+ vt

)(
G
(
Fx

(i)
t−1 + wt

)
+ vt

)T
]

−
(
E
[(

G
(
Fx

(i)
t−1 + wt

)
+ vt

)])2

= R + GQGT.

As for the cross covariance Cxy we can write that

Cxy = E
[(

F
(
Fx

(i)
t−1 + wt

)
+ wt+1

)(
G
(
Fx

(i)
t−1 + wt

)
+ vt

)T
]

−
(
E
[
x̃

(j)
t+1yt

])2

= E
[
FFx

(i)
t−1

(
x

(i)
t−1

)T

GTFT + FFx
(i)
t−1w

T
t GT+

FFx
(i)
t−1v

T
t + Fwt

(
x

(i)
t−1

)T

GTFT +

Fwtw
T
t GT + Fwtv

T
t + wt+1

(
x

(i)
t−1

)T

GTFT +

wt+1w
T
t GT + wt+1v

T
t

]
−
(
E
[
x̃

(j)
t+1yt

])2

=
(
E
[
x̃

(j)
t+1yt

])2

+ FQGT −
(
E
[
x̃

(j)
t+1yt

])2

= FQGT.

In the same as for Cxy we can find Cyx = GQFT and by this we derived all
the densities needed for the implementation of smoothing algorithms for a
linear-Gaussian model.
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Chapter 9
Results and simulation studies

9.1 Linear Gaussian example

Here we use a linear-Gaussian model for our simulation study. This choice
allows us to compare different particle smoother algorithms with each other
and also with Kalman smoother (Anderson and Moore, 1979; Kalman et al.,
1960) as a benchmark in this special case. Although the optimal solution
is given by Kalman smoother in this case, this is the only fair comparison
between different algorithms as we have access to optimal propagation and
resampling probability densities.

To do that, we consider a model the same as the one used in Fearnhead
et al. (2010) with state and observation models as

xt+1 | (x1:t,y1:t) ∼ N (Fxt, Q) (9.1)

yt | (x1:t,y1:t−1) ∼ N (Gxt, R), (9.2)

where G =
[
1 0

]
, R = τ 2 , and

F =

[
1 1
0 1

]
, Q = ν2

[
1
3

1
2

1
2 1

]
.

Finally, the model is completed by choosing an initial state as x0 ∼ N (µ0,Σ0).
The state is derived from a pair of stochastic differential equations dxt,1 =

xt,2dt. A noisy observation of the first component is made at each time step.
The parameter ν2 determines the smoothness of the state over time. With a
large value of ν2, the state can move freely and thus follows the observations.
When ν2 is small, the model makes a linear fit to the observations.1

1This paragraph is taken from Fearnhead et al. (2010).
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Here we compare all the eight different smoother algorithms including
the new one from different aspects. As the Kalman smoother gives the best
possible solution, first we compare all the methods with Kalman smoother in
terms of the number of effective samples in a way similar to (Fearnhead et al.,
2010) and in addition for a running time of 20sec. After that we compare the
performance in terms of root mean square (RMS) between Kalman smoother
and particle smoother. Comparing the performance of different smoother
algorithms will give us an insightful view of how they behave if we run them
for different amount of time.

We first compare smoothing algorithms using model parameters of ν2 =
τ 2 = 1 with µ0 = (0, 0)T and Σ0 = I2 for the prior. We used 20 different
data-sets of length 200 and ran all the algorithms 20 times to remove the ef-
fects caused by a single data-set and a single run. In comparison to the work
done in Fearnhead et al. (2010), after comparing the performance for a con-
stant number of particles which are 10000, 300, 300, 300, 300, 1000, 3000, 3000,
respectively for filter-smoother, fixed-interval smoother, FFBSi, two-filter
smoother of Briers, two-filter smoother of Fearnhead, fast FFBSi, linear
smoother of Fearnhead and backward information smoother, we tried to run
all the algorithms for maximum of 20 sec and compare them with each other
for different computational time.

In our first type of comparisons, for the accuracy of our smoothing al-
gorithms’ estimates of the states, we estimate the effective sample size the
same as the method used in Fearnhead et al. (2010). Comes from the fact
that

E

{
(x− µ)2

σ2

}
=

1

N
, (9.3)

where x(1),x(2), ...,x(N) are independent and identically distributed withN (µ, σ2),
and x is their sample mean. Here we use

Neff (xt,d) =

[
E

{
(x̂t,d − µt,d)2

σ2
t,d

}]−1

,

where µt,d and σ2
t,d are the true mean and covariance of the smoother ob-

tained from Kalman smoother and x̂t,d is the random estimate form a parti-
cle smoother. By this, we can say that our algorithm is more accurate if it
has a larger Neff (xt,d).
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Figure 9.1: Neff for fixed number of particles.[−−] Backward information
smoother (N=3000), [−] Linear Smoother (Fearnhead, N=3000), [−−] Fast FF-
BSi (N=1000), [−] Two-Filter Smoother (Fearnhead, N=300), [−−] Two-Filter
Smoother (Briers, N=300), [−] Forward-Backward Smoother (N=300), [−−] FF-
BSi (N=300), [−] Filter Smoother (Kitagawa 1996, N=10000).

Figure 9.1 shows how the average effective number of particles for esti-
mating xt,1 varies through time steps for the eight algorithms in an approxi-
mately fixed running time. It is clear that filter-smoother does very well for
times close to T = 200. But this algorithm gets progressively worse as it
goes backward. This is not the case in other algorithms and their number
of effective samples mainly remain constant in all time steps except the first
and the last ones. In addition, although fast FFBSi is claimed to be linear
(at least asymptotically), it does not compare favourably with Fearnhead’s
linear smoother and also backward information smoother as it is much slower
than these two algorithm. On the other hand, fast FFBSi has a simpler im-
plementation and design parameters are just related to the filtering, i.e. for
smoothing there is no need to introduce any new proposal density. But Fig-
ure 9.1 cannot give us a full overview of the accuracy of these algorithms as
we should have the results for different computational time. To do that, we
ran all the algorithms for 20 sec and then compared them with each other.
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Figure 9.2: Neff for all algorithms in 20 sec run. [H] Backward information
smoother, [�] Linear Smoother (Fearnhead), [ ] Fast FFBSi, [−] Filter Smoother
, [−] Two-Filter Smoother (Briers), [−−] Two-Filter Smoother (Fearnhead), [−]
Forward-Backward Smoother, [−−] FFBSi.

Figure 9.2 illustrated a better view about how the effective samples size
differ for each algorithm. For a short time of run (up to 3sec) Neff has a non-
linear growth for all the algorithms. But for times greater than 5sec this rate
of growth becomes linear. As all the figures are in log scale, this linear growth
is shown as a constant slope. Because of this linear growth in number of the
effective samples, the linear algorithms are our best choices. This is because
in these algorithms we are able to run the algorithm with large number of
particles and as result we can have a better performance. Moreover, even for
a small period of running, the linear smoother of Fearnhead and backward
information smoother outperform all other algorithms. Our new algorithm
is by far the best algorithm among all. The only limitation of our new
smoother is that we should have access to a very good approximation of
p(xt | y1:t−1). This is possible only when the transition state updates are
linear and the additive noise is Gaussian. This will limit us to a special cases
of the problems. One suggestion that has been made previously, is to use a
Gaussian-mixture approximation of p(xt | y1:t−1). In the our next example
in this section, we will go through a non linear problem to deal with this
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problem.
Clearly, Fearnhead’s linear smoother is also a very good smoother and

non of other algorithms can compete with it. It is also has no limitation on
the choice of artificial density and as result it does not face with problems
similar to backward information smoother. Again, fast FFBSi is really not
a competitor for the other two linear smoother algorithms in this special
example, but the implementation of this algorithm is by far the easiest among
the linear smoother algorithms proposed recently, as there is no need to
introduce any new proposal density after filtering.
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Figure 9.3: RMS between Particle smoother estimate and Kalman smoother.
[H] Backward information smoother, [�] Linear Smoother (Fearnhead), [ ] Fast
FFBSi, [−] Filter Smoother , [−] Two-Filter Smoother (Briers), [−−] Two-Filter
Smoother (Fearnhead), [−] Forward-Backward Smoother, [−−] FFBSi.

In Figure 9.3 we compared all the algorithms in terms of RMS between
the Kalman smoother and Particle smoother, which here we used

RMS =

√∑T
t=1 (x̂t,d − µt,d)2

T
,

where µt,d is the true mean of the smoother obtained from Kalman smoother
and x̂t,d is the random estimate form a particle smoother. This gives us a way
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to compare different algorithms in a slightly different way than what is used
before, as we do not use the covariance matrix of the Kalman smoother in
this comparison. As RMS compare the different results in terms of euclidean
distance, it is easy to see how the algorithms perform and how much they are
nearer to the optimal solution (Kalman smoother estimate). Here again, for
computational times less than 5sec we can see a non-linear improvement in
the performance, which is very fast for linear smothers. But after that time
and up to 20 sec of running, all the algorithms have a linear improvement
in the performance. It is obvious that because of the linearity of the three
new algorithms, we are able to use large number of particles and that is the
reason of a better performance of these algorithms.
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Figure 9.4: Neff for fixed number of particles with τ2 = 100. [−−] Backward
information Smoother (N=3000), [−] Linear Smoother (Fearnhead, N=3000),
[−−] Fast FFBSi (N=1000), [−] Two-Filter Smoother (Fearnhead, N=300), [−−]
Two-Filter Smoother (Briers, N=300), [−] Forward-Backward Smoother (N=300),
[−−] FFBSi (N=300), [−] Filter Smoother (Kitagawa 1996, N=10000).

Another important aspect of the simulation results is to see how the algo-
rithms perform when there is a high correlation between the states through
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time. It is mentioned that this is still an issue for almost all of the smoothers
and they perform poorly in this case. Here we can give a comparison for this
case. To do so, we should change the parameter τ 2 = 100. In this setting,
we make the states to be high correlated through time to each other. Like
the way we discussed about the results for previous case, first we compare
the results for a set of fixed number of particles through all the time steps.
Figure 9.4 shows the results for this comparison.

It is clear that number of the effective samples reduced by a large factor
for all the algorithms. This is a big problem for particle smoother algorithms,
which must be taken into account. One way to look at this problem is that
when the states are highly correlated to each other through time, in non of
the smoother algorithms we use this information, because our algorithms are
based on the assumption that the states are not highly dependent to each
other through the time. To make this problem more obvious we can use a
three step of a Markov chain as the simplest example to describe it. If we
assume that we are looking at time t, then times t − 1 and t + 1 will be
its neighbors. In all the algorithms except linear smoother (Kitagawa, 1996)
and Fearnhead linear smoother, we just update the weights and samples in
backward direction by using the information available at time t+ 1. Even in
this case we do not use the information about the correlation between times
t and t+ 1. In Fearnhead linear smoother, the problem is more sever, as we
condition on both information at t − 1 and t + 1 but wrongly by assuming
independent transition between the states. Although, it is still not clear
why the performance reduces this much because of having correlated states
through time, but there may exist different solutions to this problem, like
weighting the conditions differently, i.e. if we know that information at time t
is highly correlated to t−1 then we can give more weight to this conditioning
in some way.

Here we also put the results of the performance for different computa-
tional time up to 20 sec in this scenario. The results show that the perfor-
mance is lower than the case with τ 2 = 1 in all the times. Figure 9.5 and
Figure 9.6 show the results for these comparisons.
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Figure 9.5: Neff for all algorithms in 20sec run with τ2 = 100. [H] Backward in-
formation smoother, [�] Linear Smoother (Fearnhead), [ ] Fast FFBSi, [−] Filter
Smoother , [−] Two-Filter Smoother (Briers), [−−] Two-Filter Smoother (Fearn-
head), [−] Forward-Backward Smoother, [−−] FFBSi.
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Linear−Gaussian model with τ2=100 and ν2=1

Figure 9.6: RMS between particle smoother estimate and Kalman smoother
with τ2 = 100. [H] Backward information smoother, [�] Linear Smoother (Fearn-
head), [ ] Fast FFBSi, [−] Filter Smoother , [−] Two-Filter Smoother (Briers),
[−−] Two-Filter Smoother (Fearnhead), [−] Forward-Backward Smoother, [−−]
FFBSi.

In Figure 9.5 and Figure 9.6 we can see the same trend as the case with
normal correlation between states. The only difference is that the number
of the effective samples is reduced for all the algorithms and in the same
manner RMS is higher for all of them. Backward information filter has by
far the best performance. This suggests us that there is a way to find a
low complex approximation of p(xt | y1:t−1), then we can approximate the
smoothing with high accuracy.

But generally, a linear-Gaussian model cannot give us a clear view of the
performance of different algorithms as we already applied optimal proposal
densities to all algorithms. In the next section we will compare Fearnhead’s
linear smoother, fast FFBSi and backward information smoother with each
other when the states space model is not linear to see which one can approx-
imate the smoother in a better and easier way.
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9.2 Tracking a robot arm with planar two-

link manipulator

So far, we talked mostly about linear-Gaussian state-space model. The power
of sequential Monte Carlo methods are to solve nonlinear problems. To com-
pare new linear smoother algorithms which we discussed in previous chapters,
here we try to give a different example to be able to compare these methods
in a more general case that we do not have access to optimal propagation
and resampling probability densities.

The model here is a robot arm with planar two-link manipulator. Figure
9.7 shows a simplified model of such a robot arm where l1 and l2 are the
lengths of the links and θ1 and θ2 are their respective angles.

𝑙2 

𝑙1 

𝜃1 

𝜃2 

𝑦1 

𝑦2 

End effector 

Figure 9.7: Simplified model of a robot arm with planar two-link manipulator.

We can show that the position of the end effector can be formulated as

y1 = l1 cos(θ1) + l2 cos(θ1 + θ2)

y2 = l1 sin(θ1) + l2 sin(θ1 + θ2),
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where y1 and y2 are the position of the end effector in Cartesian coordinates
(Y1,Y2) and l1 = 0.8, l2 = 0.2, θ1 ∈

[
0.3, 1.2

]
and θ2 ∈

[
π
2
, 3π

2

]
. Here there are

two different ways to look at the problem. One is called forward kinematics
which is a way to map from (θ1, θ2) to (y1, y2). The other one, which is a
more interesting and useful mapping is to map from (y1, y2) to (θ1, θ2) and
called inverse kinematics, because we mostly like to give a robot our desired
positions to for example drilling or painting and we expect the robot to be
able to manage how it can change the angles correctly.

An inverse kinematics can be formulated as a state space model. This
will give us the opportunity to implement the particle smoother algorithms

for this problem. Let state vector x be x =
[
θ1 θ2

]T
and the measurement

vector y be y =
[
y1 y2

]T
. The state-space model of the inverse kinematics

problem can now be written as

xt = xt−1 + wt−1

yt =

(
l1 cos(θ1,t) + l2 cos(θ1,t + θ2,t)
l1 sin(θ1,t) + l2 sin(θ1,t + θ2,t)

)
+ vt.

Further we assume the state equation to follow a random walk model per-
turbed by white Gaussian noise w ∼ N (0,Q), where

Q =

[
0.01 0

0 0.1

]
,

and measurement equation is nonlinear with measurement noise v ∼ N (0,R),
where

R =

[
0.005 0

0 0.005

]
.

For this example, first we compare the results of particle filter and particle
smoother for each algorithm to see if the smoother algorithms can give a
better estimate of the angles than the particle filter. We will run all the
three algorithms for 630 time steps and for roughly 25 sec, which is equal
to choose N = 12500 , 7500 and 500 for backward information smoother,
Freanhead’s linear smoother and fast FFBSi respectively. Before talking
about the results, it is worthy to show how the robot will perform with the
assumptions we made about the angles and noises. Figure 9.8 shows how the
position and angles change in the whole steps.
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Figure 9.8: The transition of θ1 through time [top-left], θ2 through time [top-
right] and (y1, y2) [bottom].

It is desirable for us to approximate (θ1, θ2) accurately for a given position.
To do this we first implemented a particle filter that can estimate the filtering
with good accuracy. The propagation and resampling density which we used
are

q(xt | x(i)
t−1,yt) ∝ f(xt | x(i)

t−1)

and

β
(i)
t ∝ w

(i)
t−1g(yt | x(i)

t−1),

respectively. This is clear that we did not use the measurement at time t in
propagation density, but in this way we can keep the algorithms as simple as
possible.

For fast FFBSi we do not need any proposal density. The only parameters
which are important to choose are ρ and Rmax, which here we used ρ = 1
and Rmax = N/2 like what we used for linear-Gaussian model.
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Figure 9.9: [−] True trajectory, [−−] filtered and [−] smoothed approximation
of angles (top) and RMSE (bottom) for fast FFBSi algorithm.

The results in Figure 9.9 show that even by choosing Rmax = N/2, which
is not an optimal choice for this algorithm and excluding the information
from the observation at time t in forward filtering, fast FFBSi can give a
very good approximation of the smoother in terms of roor mean square error
(RMSE) as the error is less than filtering and also is can be seen visually in
the approximation if the angles in the figure.

As for backward information filter we need to approximate
q̃(xt | x̃

(j)
t+1,yt)β̃

(j)
t in a way that the samples and the weights in backward

information filter can approximate the smoother accurately. As we do not
have access to optimal densities because of the nonlinearity in the observa-
tion, we need to approximate them with some densities that drawing samples
from them is easy. To be fair in our comparisons we exclude the information
from the observation at time t here as well in the propagation density. Here
we choose

q̃(xt | x̃(j)
t+1,yt) ∝ p(xt | x̃(j)

t+1)

β̃
(j)
t ∝ p(x̃

(j)
t+1 | y1:T ),
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where x̃
(j)
t+1 and their according weights are approximation of the smoothing.

The results for implementation of this algorithm are shown in Figure 9.10.
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Figure 9.10: [−] True trajectory, [−−] filtered and [−] smoothed approximation
of angles (top) and RMSE (bottom) for backward information smoother.

Results show that backward information smoother is also a powerful tool
for approximating the smoother density. But as we know, the bottleneck
of this algorithm is in approximating p(xt | y1:t−1) with a good Gaussian
mixture. To do this approximation in this special example, first we should
observe the filtering and see if it is Gaussian or not. Because the state evo-
lution is linear and Gaussian, if the filtering approximation is also Gaussian
then we can approximate p(xt | y1:t−1) with just one Gaussian density and
as result the complexity of the algorithm remains linear. Clearly, it is kind
of state of the art problem to approximate p(xt | y1:t−1), but when we can
do it in a simple way, the algorithm can outperform other algorithms and
has less problems in implementation. To clarify how we did the adjustments,
here we have shown five kernel density estimation of the filtering p(xt | y1:t)
at time steps 40, 45, 50, 55 and 60 for θ2 (Figure 9.11).
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Figure 9.11: Kernel smooth density estimate of p(θ2,t | y1:t).

It is obvious that p(xt | y1:t−1) can be approximated with just one Gaus-
sian density. The results for θ1 are not shown here but they follow the same
properties.

We implemented Feanhead’s linear smoother for this problem as our last
linear smoother algorithm. Here we should approximate
q̄(xt | x

(i)
t−1,yt, x̃

(j)
t+1)β̄

(i,j)
t as our proposal density. Like the other two algo-

rithms, we are not going to use the observation at time t and will try to
choose propagation density regardless of that information. As result, we will
have

q̄(xt | x(i)
t−1,yt, x̃

(j)
t+1) ∝ f(xt | x(i)

t−1)f(x̃
(j)
t+1 | xt)

β̄
(i,j)
t ∝ β

(i)
t,filterβ

(j)
t,information,

where x̃
(j)
t+1 and β

(j)
t,information are from backward information filter with artificial

density equal to a uniform distribution. This choice of artificial may case
degeneracy in different problems, but for this model it worked well. The
result of this implementation is shown in Figure 9.12.

Figure 9.12 shows the performance of Fearnhead’s linear smoother. RMSE
is almost the same as the other two smoothers that we used here, which means

79



200 400 600
0

0.5

1

1.5

Time step

θ 1

Fearnhrad’s linear smoother approximation of angles

 

 

200 400 600
1

2

3

4

5

Time step
θ 2

 

 

100 200 300 400 500 600
10

−2

10
−1

10
0

Time step

R
M

S
E

 

 

Figure 9.12: [−] True trajectory, [−−] filtered and [−] smoothed approximation
of angles (top) and RMSE (bottom) for Fearnhead’s linear smoother.

the propagations, resampling and artificial densities which we chose are well
defined. To have a better understanding of how proposal density and other
parameters can be designed for a specific problem, one can look at Fearnhead
et al. (2010, section 5), which gives a complete solution for a famous problem
in statistics.

Finally, as we have the results for these three linear smoother algorithms
we are going to compare them with each other. First we compare them in
terms of RMSE and then we compare them in terms of the accuracy of the
position which they could approximate in comparison with true trajectory.
Of course both of these comparisons will tell us the same results but the
second one is a more visual presentation of how good are these algorithms
for a non-linear problem. Figure 9.13 shows the comparison for all three
algorithms in terms of RMSE.
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Figure 9.13: RMSE for [−] fast FFBSi, [−] backward information smoother
and [−] Fearnhead’s linear smoother.

Clearly, fast FFBSi, the backward information smoother and Fearnhead’s
linear smoother are all giving a good approximation to the smoothing distri-
bution in terms of RMSE. The simplest algorithm to implement among these
three algorithms is clearly fast FFBSi. The only drawback of this algorithm
is that it suffers from time varying run over each realization. The backward
information smoother algorithm is also performing very good, but it should
be noticed that if we were not able to approximate the artificial density with
just one Gaussian distribution, then we could not run the algorithm with
linear complexity in terms of number of the particles.

Aside form many parameters to set before running Fearnhead’s linear
smoother, this algorithm is a reliable extension of two-filter smoother which
has linear computational cost O(N). Overall, it is really hard to choose an
algorithm as the best in this comparison and it is highly dependent on the
problems that one is interested to approximate the smoothing distribution
with these algorithms. Parameters like simplicity, speed of convergence and
design variables are important factors in choosing the best algorithm for each
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problem. As our last comparison, it is interesting to see how these algorithms
are able to approximate the position (y1, y2) correctly. Figure 9.14 shows how
these three algorithms approximate true trajectory in (Y1,Y2) plane.
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Figure 9.14: True trajectory (top-left) and approximation of the position for
backward information smoother (top-right), Feanhead’s linear smoother (bottom-
left) and fast FFBSi (bottom-right).
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Chapter 10
Discussion

In previous chapters we tried to give a complete and comprehensive expla-
nation of how each smoother algorithm works and how the state of the art
has changed between 1996 and 2011. As it is shown in the literature, the
quadratic complexity of smoother algorithms was an issue in the cases which
we needed to run the algorithms with large number of the particles until
recently researchers introduced two different algorithms but linear in com-
plexity (in terms of number of the particles). As these two algorithms using
completely different approaches to target the smoothing distribution it is
interesting to understand these two methods in depth. We were also able
to introduce and investigate the ideas given in (Fearnhead et al., 2010) and
suggest a new smoothing algorithm. Here in discussion chapter we will go
through the strengths and weaknesses of each of these three algorithms i.e.
Fearnhead’s linear smoother, backward information smoother and fast FF-
BSi once more and also discuss about open problems and possible updates
to all these algorithms.

Fearnhead et al. (2010) gave a new way for smoothing algorithm similar
to what we can see in (Briers et al., 2010) as two-filter smoother but with
linear complexity in number of the particles. Clearly, the linear complexity of
the algorithm in terms of number of the particles is an advantage that could
not achieve before. The main idea of this algorithm is given in (Briers et al.,
2005), but not so well written for a Markov chain Monte Carlo problem. The
idea behind this algorithm is to use samples from the forward filter and the
backward information filter to form a linear algorithm for smoothing. Besides
the advantage of a complete linear algorithm (in terms of number of the
particles) for any choice ofN , there are a few drawbacks about this algorithm,
which we explored in previous chapters. The first and most obvious problem
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is many of proposal densities you need to design as well as the artificial
density that algorithm is highly sensitive to these choices. It has been shown
in (Fearnhead et al., 2010) that for an optimal smoother we should use the
joint smoothing samples at time t − 1 and t + 1, but it will not be feasible
to sample from the joint smoothing with linear complexity O(N) due to the
problem for approximating p(xt−1 | xt+1,y1:t). On the other hand, if we are
able to find some wise choices for proposals and artificial density, the results
outperform other algorithms but it is state of the art how to choose them and
in sophisticated models it seems infeasible to be able to find such choices.

Backward information smoother is an extension to backward informa-
tion filter with a fixed choice of artificial density. The idea for this adjust-
ment is given in (Fearnhead et al., 2010), but further explorations have not
done. In this thesis we explored such an special choice of artificial density
i.e. γt(xt) = p(xt | y1:t−1) and designed a smoother algorithm, which can
perform better than Fearnhead’s linear smoother in the case that we have
access to optimal proposal densities in a linear-Gaussian model. The only
issue with this algorithm is how to design the artificial density in a gen-
eral case. One way would be to approximate it with a Gaussian mixture as

γt(xt) =
∑K

k=1N
(
xt; x̂

(k), P̂(k)
)

where K is total number of Gaussian mix-

tures we used for approximation of γt(xt). The problem here is that if we
choose K = N then the algorithm will be similar to FFBSi with quadratic
complexity in number of the particles. But there are many cases that we can
approximate this density with a very few number of Gaussian mixtures like
in our non-linear example, which we can do it with just one Gaussian den-
sity. In other cases the complexity of finding a proper Gaussian mixture will
grow quadratically when the dimensionality of the state-space goes higher.
But there are new methods which are coming into the research area with
linear complexity regarding dimension of the states for Gaussian mixture
approximation.

Finally, we had fast FFBSi which has a totally different concept than
the two other smoother algorithms and is based on rejection sampling. The
simplicity of this algorithm is at the center of the attention as there is no
need for any new design variables more than those in a particle filter. The
only drawback of this algorithm is that there is no time bound for running
this algorithm. It means that there are situations that this algorithm will
have many unsuccessful rejection sampling iterations and all the samples
will be rejected at any iteration. A very simple modification is given in
(Lindsten, 2011) which is used in simulations, but this modification does not
help to use large number of particles. To overcome this problem, we can
use other modifications which are related to the probability of acceptance
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of the particles. Giving a precise method as a wise stopping rule is part of
the future work in this project. These kinds of modifications are useful and
the reason is that although it is claimed that the computational complexity
of the fast FFBSi will grow linearly as N → ∞, in most cases we have
N = 5000 to N = 50000 particles and these choices of N were not applicable
before for this algorithm. This is a very crucial problem in this algorithm
and by solving this problem it becomes a very powerful smoother because
of simplicity and strong convergence results. In conclusion, all three new
algorithms has their own advantages and disadvantages and which one to
choose is depend on the problem we want to solve. But the easiest and most
reliable one to implement in most of the problems would be fast FFBSi with
the modifications given in this thesis and also (Lindsten, 2011). It is because
this algorithm is fast and also has less number of design variables. It should
be noticed that whenever we are able to design proposal densities in other
two algorithms with high accuracy, then they both perform better and faster
than fast FFBSi, but they are highly dependent on different choices of their
design variables like artificial density and Gaussian mixture approximations.
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Appendix A
Statistical efficiency of SIR-based
auxiliary variable particle filter

In this part we are going to explain the reason of using SIR-based auxiliary
variable particle filter instead of sequential importance sampling/resampling
(SIR). This can be done by comparing the variance of the weights for both
methods.

To measure the statistical efficiency of these two methods, we will min-
imize E [w̃t], which w̃ denotes the normalized weights. To be more clear in
reviewing the efficiency of these two methods, we start with some definitions
and assumptions. Firstly, we define that w̃

(i)
t = 1/N for both methods. Pitt

and Shepherd Pitt and Shephard (1999) suggested that to understand the
efficiency of the SIR method and be able to compare it with auxiliary par-
ticle filter (APF), it is useful to think of the weights of the SIR method as

w̃t = p(yt+1|xt+1)
p(yt+1|y1:t)

, and then look into the variance of these weights, which is

E
[
(w̃t)

2] = E
[(

p(yt+1|xt+1)
p(yt+1|y1:t)

)2
]
. To calculate this, we should notice that here

in SIR method, the function of the expectation is p(xt+1 | y1:t). Thus we
have

E
[
(w̃t)

2] = E

[(
p(yt+1 | xt+1)

p(yt+1 | y1:t)

)2
]

=

∫ (
p(yt+1 | xt+1)

p(yt+1 | y1:t)

)2

p(xt+1 | y1:t)dxt+1. (A.1)

Here it is easier to first calculate p(yt+1 | y1:t), which is not dependent on
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the function of expectation. Therefore for denominator we have

p(yt+1 | y1:t)
2 =

(∫
p(yt+1,xt+1 | y1:t)dxt+1

)2

=

(∫
p(yt+1 | xt+1,y1:t)p(xt+1 | y1:t)dxt+1

)2

=

(∫
g(yt+1 | xt+1)

[∫
p(xt+1,xt | y1:t)dxt

]
dxt+1

)2

=

(∫
g(yt+1 | xt+1)×[∫
p(xt+1 | xt,y1:t)p(xt | y1:t)dxt

]
dxt+1

)2

=

(∫
g(yt+1 | xt+1)×[

f(xt+1 | xt)
1

N

N∑
i=1

δ(x− x
(i)
t )

]
dxt+1

)2

=

(
1

N

N∑
i=1

∫
g(yt+1 | xt+1)f(xt+1 | x(i)

t )dxt+1

)2

, (A.2)

and for numerator ∫
g(yt+1 | xt+1)2p(xt+1 | y1:t)dxt+1 =

=

∫
g(yt+1 | xt+1)2

[
f(xt+1 | xt)

1

N

N∑
i=1

δ(x− x
(i)
t )

]
dxt+1

=
1

N

∫
g(yt+1 | xt+1)2p(xt+1 | x(i)

t )dxt+1. (A.3)

Further if we assume

p(i) =

∫ {
g(yt+1 | xt+1)

p(yt+1 | µ(i)
t+1)

}2

f(xt+1 | x(i)
t )dxt+1, (A.4)

and

p∗(i) =

∫ {
g(yt+1 | xt+1)

p(yt+1 | µ(i)
t+1)

}
f(xt+1 | x(i)

t )dxt+1, (A.5)
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then it is straight forward to show that

E
[
(w̃t)

2] =
N
∑N

i=1 λ
2
(i)p(i)(∑M

i=1 λ(i)p∗(i)

)2 · (A.6)

The calculations for SIR-based auxiliary variable particle filter is as follows.
Here we should notice that the function of expectation is p(xt+1, i | y1:t+1),
thus the expectation will be over two variables, an integration over xt+1 and
a summation over i. The expectation function can be defined similar to
[section 3 of Pitt and Shephard (1999)] as

p(xt+1, i | y1:t+1) ∝ p(yt+1 | µ(i)
t+1)f(xt+1 | x(i)

t )w̃
(i)
t , (A.7)

where µ
(i)
t+1 is the mean, the mode, a draw, or some other likely value that

has a relation with f(xt+1 | x(i)
t ). So to calculate the variance of weights in

this case we should calculate

Ex,i
[(
w̃

(i)
t

)2
]

(
Ex,i

[
w̃

(i)
t

])2 ,

where the denominator is a normalizing factor and w̃
(i)
t = g(yt+1|xt+1)

p(yt+1|µ(i)t+1)
. There-

fore, for denominator we have(
Ex,i

[
g(yt+1 | xt+1)

p(yt+1 | µ(i)
t+1)

])2

=

(
N∑
i=1

∫
g(yt+1 | xt+1)

p(yt+1 | µ(i)
t+1)
×

p(yt+1 | µ(i)
t+1)f(xt+1 | x(i)

t )w̃
(i)
t dxt+1

)2

=

(
N∑
i=1

λ(i)p
∗
(i)

)2

, (A.8)

and for numerator

Ex,i

(g(yt+1 | xt+1)

p(yt+1 | µ(i)
t+1)

)2
 =

N∑
i=1

∫
g(yt+1 | xt+1)2

p(yt+1 | µ(i)
t+1)2

×

p(yt+1 | µ(i)
t+1)f(xt+1 | x(i)

t )w̃
(i)
t dxt+1

=
N∑
i=1

λ(i)p(i), (A.9)
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so

Ex,i

[(
w̃

(i)
t

)2
]

(
Ex,i

[
w̃

(i)
t

])2 =

∑N
i=1 λ(i)p(i)(∑N
i=1 λ(i)p∗(i)

)2 , (A.10)

which p(i) and p∗(i) are the same as before and λ(i) = p(yt+1 | µ(i)
t+1)w̃

(i)
t . As

result, we can say an efficiency gain is existed if

N∑
i=1

λ(i)p(i) < N

N∑
i=1

λ2
(i)p(i). (A.11)

If p(i) does not vary over i, then the auxiliary variable particle filter will be

more efficient as
∑N

i=1 λ(i)

(
1
N

)
=
(

1
N

)
≤
∑N

i=1 λ
2
(i). More likely is that p(i)

depends on i, but only mildly, as f(xt+1 | x(i)
t ) will be typically quite tightly

peaked (much more tightly than p(xt+1 | y1:t)) compared to the conditional
likelihood1.

1This paragraph is directly taken from (Pitt and Shephard, 1999)
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Appendix B
General refactorization lemma

Derivation of optimal propagation and resampling densities for a linear-
Gaussian example can be simplified by introducing the following Gaussian
factorization lemma (GRL).

Lemma B.0.1. Given the L-dimensional vector x, the M-dimensional vector
y, appropriately sized nonsingular covariance matrices S and P, and the
M × L matrix , the product function

η(y,x) = N (y; Fx,S)N (x;µ,P)

can be refactored as

η(y,x) = N (y;ω,Ω)N (x;λ,Λ),

where the means and covariancees in the resulting product densities are

ω = Fµ

Ω = S + FPFT

λ = (I−HF)µ+ Hy

Λ = (I−HF)P,

with the supporting variable

H = PFTΩ−1.

The parameters can also be expressed in information terms, where the infro-
mation matrix is the inverse of the covariance matrix and the ”infromation
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vector” is the mean vector premultiplied by the infomation matrix. In this
format, the density parameters are

Λ−1λ = P−1µ+ FTS−1y

Λ−1 = P−1 + FTS−1F

Ω−1ω = DP−1µ

Ω−1 = (I−DFT)S−1,

with the supporting variable

D = S−1F(Λ−1)−1.

This is the main lemma that is used in the context to derive the formulas
for optimal densities when the model is a linear-Gaussian model.
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