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AGNES LINDBOM
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Antibiotic resistance is increasing globally and is a substantial threat to the public health
with higher costs and longer hospital stays. Infections of antibiotic resistant bacteria are
harder to treat and without actions, there is a risk common infections eventually can be-
come life-threatening again. Antibiotic resistance can be acquired by mutations in existing
genes or from resistance genes transferred from other bacteria by horizontal gene transfer.
The reason why some genes are transferred could be explained by the compatibility of the
gene, but currently, there is not so much information what would be needed to make a
gene compatible and able to be transferred and make new antibiotic resistant bacteria.

The aim of this project is to investigate whether there are compatibility patterns in antibi-
otic resistant genes in the pathogens Escherichia coli and Klebsiella pneumoniae. This was
done by three analyses, kmer analysis, frequency analysis and analysis of regions surround-
ing the gene. The project also included predictive models to investigate the predictive
ability of a logistic regression model. The data was collected from NCBI and ResFinder
and core genomes from the species were used. The antibiotic resistant genes were divided
into groups whether they were present or not in the species after using BLAST.

The kmer analysis used the kmer distributions of different kmer lengths in three meth-
ods; squared Euclidean distance, absolute maximum values and maximum value and gave
similar results for both species. For smaller kmer lengths, differences could be seen for
the species in the median and p-values between the antibiotic resistant genes and the
core genome genes. For increasing kmer lengths less differences could be seen. In the
frequency analysis the genes were merged into genes groups and the values from kmer
analysis were compared against the number of hits from the BLAST results. Many values
clustered around the median values and the gene groups with the most hits were close to
the median values while the values far away from the median values did not have many
hits. No clear conclusion about different antibiotic classes could be seen. In the analysis
of regions surrounding the gene, sequences of 100 bp upstream and downstream of each
gene were cut and the genes were divided into groups whether they were present in both
or one species. There could be seen differences between the unique groups of the species,
while the difference between the shared groups were surprisingly low. On kmer level, the
kmers that differed most between the species had no clear correlation, potentially they
could be related to the higher GC content in K. pneumoniae. Predictive models were
created with logistic regression for all genes and three different antibiotic classes. The
model for all genes included the length and 21 kmers out of 64 possible kmers. The model
performed better than a random classification with the best values of true positive rate of
72% and false positive rate of 11%. The other models included fewer kmers and most of
the classifier performed better than a random classification.

In this project analyses have developed and from the results it has been found compatibility
patterns of the antibiotic resistant genes by looking at the gene sequences and the regions
surrounding the genes. From the gene sequences it has also been possible to predict the
gene compatibility in a predictive model.
Keywords: antibiotic resistance, pathogens, horizontal gene transfer, gene compatibility,
predictive model, logistic regression, bioinformatics
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1
Introduction

Antibiotic resistance is increasing globally and is a substantial threat to the public
health with higher costs, longer hospital stays and increased mortality. Infections of
antibiotic resistant bacteria are harder or impossible to treat and without actions,
there is a risk that common infections and minor injuries eventually can become
life-threatening again [1].

Antibiotic resistance can be acquired either by mutations in existing genes or from
resistance genes transferred from other bacteria by horizontal gene transfer. The
number of resistance genes found in pathogenic bacteria is increasing but the reason
why some genes are transferred and some are not is not clear. One reason could
be explained by the compatibility of the gene i.e., if the gene is able to be incorpo-
rated into the genome of the pathogen. Currently, there is not so much information
what would be needed to make a gene compatible and therefore it is not possible
to predict which resistance genes that could be transferred and make new antibiotic
resistant bacteria [2].

With the knowledge of why genes would be transferred it could increase the un-
derstanding of antibiotic resistance helping future research on how to develop new
antibiotics and predict future resistant genes in bacteria to mitigate the potentially
damage.

Aim
The aim of this project is to investigate whether there can be seen any patterns in
antibiotic resistant genes related to gene compatibility in the pathogens Escherichia
coli and Klebsiella pneumoniae. This will be done by looking at various features
including distribution of kmers and the surroundings of the genes by developing
different methods. The project will also include a predictive model to investigate the
predictive ability of a logistic regression model using data from previously developed
methods.

1



1. Introduction

2



2
Theory

In this chapter theory about why and how antibiotic resistance is acquired and the
bacteria used in the project are described. Also, there can be found sections about
predictive models, logistic regression and concepts related to the performance of a
model.

2.1 Antibiotic resistance
Antibiotic resistance occurs when bacteria develop the ability to protect them from
antibiotics that will stop their growth or kill them. It can occur by a mutation in the
genome of the bacteria or by acquiring antibiotic resistance genes from other bacteria
by horizontal gene transfer. The antibiotics are grouped based on their chemical
structure, for example aminoglycosides, macrolides, beta-lactams (penicillin) and
tetracyclines. The targets of the antibiotics include the main mechanisms; to inhibit
cell wall synthesis, depolarize the cell membrane, inhibit protein synthesis, inhibit
nuclei acid synthesis and inhibit metabolic pathways in bacteria. To avoid the
mechanisms of the antibiotics the pathogen develop mechanisms from the resistance
genes to inactivate the drugs in different ways as to limit the uptake of the drug,
modify the drug target and to inactive the drug or the active efflux of a drug [3].

2.2 Horizontal gene transfer
Horizontal gene transfer is a naturally occurring process between bacteria to ex-
change genetic material and is the primary mechanism to spread the antibiotic
resistance in bacteria. It has a big role in the evolution of bacterial genomes, the
bacteria can rapidly acquire new capabilities to survive and adapt to environmental
changes. There are three main types of horizontal gene transfer: transformation,
transduction and conjugation. In transformation, the bacteria take up foreign ge-
netic material from the environment, transduction is the process in which bacterial
DNA is moved from a bacteria to another by a virus bacteriophage and bacterial
conjugation is a process where the transfer of DNA occurs via a plasmid from a
donor cell to a recipient cell during direct cell contact [2].

3



2. Theory

2.3 Bacteria
In this project genomes from two species of pathogenic bacteria have been used,
Escherichia coli and Klebsiella pneumoniae.

2.3.1 Escherichia coli
Escherichia coli is a gram-negative bacteria part of the family Enterobacteriaceae.
Most E. coli strains are harmless and can be found in human as an important part
of a healthy intestinal tract [4]. E. coli is well-studied with an extensive knowledge
of its genetics and genomics and has become the most important model organism.
Particularly the strain K-12, adapted to the laboratory environment, is one of the
most frequently used strains and was already in 1997 one of the first organisms to
be fully sequenced [5]. The genome of an E. coli strain consist of between 4000-5000
genes, where the K-12 strain consists of around 4400 genes [6].

2.3.2 Klebsiella pneumoniae
Klebsiella pneumoniae is also a gram-negative bacteria member of the Enterobac-
teriacae family and a relative to previously described E. coli. Normally K. pneu-
moniae can be found in the human intestine, where it does not cause any disease,
but typically infect people with compromised immune systems. In hospital-acquired
infections K. pneumoniae is an important pathogen and tends to acquire multidrug-
resistance, with limited options for treatment of related infections [7]. A genome of
K. pneumoniae consists of around 5400 genes [8].

2.4 Predictive model
A predictive model uses statistics to make predictions. The model typically uses
a machine learning algorithm to learn from a training data set with known results
to be able to make predictions from different or new data. The modeling results
in predictions representing a probability of the target variable based on estimated
significance from a set of input variable. Predictive models can broadly be classified
into two categories, parametric and non-parametric and basically any statistically
method can be used [9].

2.4.1 Logistic regression
In classification problems the logistic regression can be used as the statistical method
to the predictive model. The logistic regression model is parametric, a type of a
generalised linear model, where the dependent or response variable is binary and
uses the logit function with the probability p, see Equation 2.1.

logit(p) = log
(

p

1− p

)
(2.1)
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In the logistic regression model, the parameters βi are estimated and fixed into the
model. With predictors xi from the input data, the model evaluates the probabil-
ity by calculate the log-odds, the logarithm of the odds ratio, by using the logit
function [10]. An example with three parameters and two predictors can be seen in
Equation 2.2.

log-odds = log
(

p

1− p

)
= β0 + β1x1 + β2x2 (2.2)

In the equation, β0 is the intercept and β1 and β2 are the parameters affecting the
log-odds when the predictors increase or decrease. For example if β1 = 1 would
mean when increasing x1 by 1 the log-odds would increase by 1.

2.4.2 Sensitivity and specificity
Sensitivity and specificity are used in classification models and measure the per-
formance of the model. From a test there are four possible outcomes, if the test
is positive and it is classified as positive, it is a true positive, if it is classified as
negative, it is a false negative. If the test instead is negative and it is classified as
negative, it is a true negative, if it is classified as positive, it is a false positive. [11]

The sensitivity of a test represents the probability of correctly identify the positives.
In a highly sensitive test, there are few false negative results, meaning few positives
are missed. When identification of all positives is of interest the sensitivity is not
useful as it does not take into consideration the false positives [11]. The sensitivity
can be calculated according to Equation 2.3.

sensitivity = true positives

true positives+ false negatives
(2.3)

In contrast, the specificity of a test represents the probability of correctly identify
the negatives. In a high specific test, there are few false positive results and few
negatives are missed. When identification of all negatives is of interest the sensitiv-
ity is not useful as it does not take into consideration the false negatives [11]. The
specificity can be calculated according to Equation 2.4.

specificity = true negatives

true negatives+ false positives
(2.4)

2.4.3 Receiver operating characteristic curve
To illustrate the specificity and sensitivity a receiver operating characteristic (ROC)
curve can be used. The ROC curve is a graph created by plot the true positive
rate (TPR) on the y-axis against the false positive rate (FPR) on the x-axis at
various cutoffs for the classification. The true positive rate is the sensitivity and
also known as the probability of detection, while the false positive rate is known as
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2. Theory

the probability of false alarm and can be calculated as (1-specificity) [11]. Examples
of ROC curves can be seen in Figure 2.1.
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Figure 2.1: Examples of ROC curves. The sensitivity or true positive rate is on
the y-axis and (1-specificity) or false positive rate is on the x-axis. The line y=x,
in red, represents a random classification, the points below the line would perform
worse than a random classification while the green, yellow and blue curves perform
better than a random classification. The point (0,1), in dark blue, represents a

perfect classification.

In the ROC plot there are some parts to note, the point (0, 1) represents a test with
perfect classification, if a point is on the diagonal line y=x the performance of the
test represents random classification and any point under the line performs worse
than a random classification. Points on the lower left side make positive classifi-
cations with strong evidence with few false positive errors, but also have low true
positive rates. On the other hand, points on the upper right side make positive
classifications with weak evidence and all positives correctly, but they often have
high false positive rates.

If the usefulness of the total test is of interest, the area under the curve can be
calculated. Then the total measure of performance is provided across all possible
classification cutoffs with the highest possible value of 1 [11].
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3
Methods

In this chapter the methods used to investigate the gene compatibility of the antibi-
otic resistant genes are described. This includes how the DNA was collected, three
different types of analyses and a predictive model.

3.1 DNA collection
Genomes and genes together with core genomes were collected for the species Es-
cherichia coli and Klebsiella pneumoniae. The antibiotic resistant genes were ob-
tained from ResFinder.

3.1.1 Genomes and genes
The genomes were downloaded through FTPs from the NCBI Reference Sequence
Database (RefSeq) for genomes. For the species all available genome sequences at
the time were downloaded and used in the analyses to get as much data as possible.
The dates for downloading of the genomes were 2020-09-18 for E. coli and 2020-
10-26 for K. pneumoniae. The number of genomes for each species can be seen in
Table 3.1.

Table 3.1: Number of genomes downloaded from NCBI for the species.

Species Number of genomes
E. coli 3 750 821
K. pneumoniae 1 237 986

3.1.1.1 ResFinder

The antibiotic resistant genes were obtained from ResFinder, a database using
BLAST to identify acquired antibiotic resistant genes or to find chromosomal muta-
tions mediating antibiotic resistance in input sequences from bacteria [12]. To this
project the FASTA files of the antibiotic resistant genes were downloaded (2020-08-
31) and then used [13].

ResFinder contained 2156 genes in 15 classes, listed below in Table 3.2. Note there
are a total of 2134 unique genes and an additional 19 genes existing in two or
three classes. For example, the gene cfr_1_AM408573 exists in both macrolides,
oxazolidinones and phenicols.
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Table 3.2: The number of antibiotic resistant genes from each antibiotic class
obtained from the database ResFinder.

Antibiotic class Number of genes
Aminoglycosides 169
Beta-lactams 1309
Colistin 3
Fosfomycin 21
Fusidic acid 2
Macrolides 131
Nitroimidazoles 14
Oxazolidinones 16
Phenicols 50
Quinolones 103
Rifampicin 9
Sulphonamides 49
Tetracyclines 104
Trimethoprim 53
Vancomycin 123
Total 2156

3.1.2 Core genomes
The core genome is defined as the set of genes present in the vast majority of the
strains of a species. Usually the genome includes the essential genes, with genes
for translation, transcription and metabolism [14]. Study the core genome genes
could show if there are some features those genes have in common related to gene
compatibility, as all genes are existing in all strains of the species.

The core genomes used in this project were obtained from Anna Johnning. The
genes in the core genome were present in more than 95% of the input species data
and the number of genes in the used core genomes can be seen in Table 3.3.

Table 3.3: Number of genes in the core genomes for the species.

Species Number of genes
E. coli 1656
K. pneumoniae 2798

8
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3.2 Analyses

In the project, three types of analyses were done; kmer analysis, frequency analysis
and analysis of regions surrounding the gene. All used scripts were written in Python
in the Linux terminal and example scripts of each analysis can be found in the
Appendix A.1.1. The workflow of the analysis methods can be seen in Figure 3.1,
the same data and methods were used in multiple of the analyses.

Antibiotic 
resistance genes 
from ResFinder

Species genomes 
from NCBI

FormatdbBLAST

Core genomes

Kmer distribution

Squared 
Euclidean 
distance

Maximum 
absolute value

Maximum value

Existing in 
specie

E. coli 
unique

Shared

K. 
pneumoniae 

unique

Upstream and 
downstream sequences 

100 bp 

Kmer 
distribution

Upstream vs 
downstream

Comparison of 
kmers

Histogram

Not existing 
in specie

Gene groups

Average values 
per gene group

Scatter plot

Number of hits per 
gene group

Comparison of 
gene groups

Squared 
Euclidean 
distance

Bar plot

Figure 3.1: Workflow of the different analysis methods. Steps used in two or
three analyses have black arrows, steps in kmer analysis have green arrows, steps

in the frequency analysis have red arrows and steps in analysis of regions
surrounding the gene have blue arrows.

3.2.1 Pre-processing of data

For each species, the core genome was provided in a FASTA file together with a
file containing the gene positions. For each gene, the positions were used to cut the
gene from the core genome, removing the gaps and then written into a new FASTA
file.

A database per species was created from all the downloaded genomes from NCBI
RefSeq using the tool formatdb for nucleotides. The database and the antibiotic
resistant genes from ResFinder were run in BLAST to find which genes that were
present in the species. To be considered as a hit, the conditions identity >95% and
a length >75% were required to be fulfilled.
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3.2.2 Kmer analysis
In the kmer analysis the two species E. coli and K. pneumoniae were run separately.

The BLAST result was used to separate the antibiotic resistant genes into two
groups, genes present in the species and genes not present in the species. The
number of genes in each group can be seen in Table 3.4.

Table 3.4: Number of antibiotic resistant in the two groups, genes present and
not present in the species.

Species Genes present in species Genes not present in species
E. coli 1122 1012
K. pneumoniae 1174 961

For kmer of lengths from 1 to 8, three groups of genes, the antibiotic resistant genes
present respectively not present in the species and the core genome genes, had their
kmer distribution calculated by taking the frequency of each kmer in the gene and
divide by the total number of kmers to get the fraction as the value. From all of the
core genome genes also the kmer distribution of the average core genome gene was
calculated.

The kmer distribution of the genes from each of the three groups were compared
to the kmer distribution of the average core genome genes to calculate values with
three different methods described later in this chapter; squared Euclidean distance,
maximum absolute value and maximum value. This gave a value per gene and the
values were visualized with histograms.

For each group of values the median value was obtained and the non-parametric
Wilcoxon rank-sum test was used at all values from two groups at a time to see how
the distribution of values differed, resulting in p-values [9].

3.2.2.1 Squared Euclidean distance

The squared Euclidean distance values were calculated for each gene as the sum
of the squared value of the difference between the kmer distribution of the average
core genome gene and the gene. The squared Euclidean distance takes all kmers
into consideration, for kmer of length 3, see Equation 3.1.

squared Euclidean distancegene =
∑

i=AAA,AAC....T T T

(core genomei − genei)2 (3.1)
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3.2.2.2 Maximum absolute value

The maximum absolute values were calculated for each gene as the maximum abso-
lute value of the difference between the kmer distribution of the average core genome
gene and the gene, for the equation for kmer of length 3, see Equation 3.2.

maximum absolute valuegene = max|core genomei − genei|i=AAA,AAC....T T T (3.2)

3.2.2.3 Maximum value

The maximum values were calculated for each gene as the positive difference of the
kmer distribution values of the most common kmer in the average core genome gene
and the most common kmer of the gene, for the equation for kmer of length 3, see
Equation 3.3.

maximum valuegene = |max(core genomei)−max(genei)|i=AAA,AAC....T T T (3.3)

3.2.3 Frequency analysis
To investigate whether the number of hits from the BLAST results had some corre-
lations with the values from the kmer analysis a frequency analysis was done. Also
in this analysis the two species E. coli and K. pneumoniae were run separately, but
only the genes present in the species were used.

The number of hits in the BLAST result for the genes were counted. Some of the
genes with only one or few different nucleotide would give the same number of hits
and to avoid counting the same hits multiple times, the antibiotic resistant genes
were merged into fewer group, for example the genes aac(3)-Ia, aac(3)-Ib and aac(3)-
Ic were grouped in the new group aac(3)-I. Also, when hits overlapped with more
than 50% only one hit was counted. It resulted in gene groups and the number of
hits per groups. The number of gene groups used for each species from the present
genes can be seen in Table 3.5.

Table 3.5: Number of gene groups used for each species from the present genes.

Species Number of gene groups
E. coli 182
K. pneumoniae 240

For the kmer of lengths 1 to 8, the values from the three kmer analysis methods were
used, for each gene group the average value was plotted against the square root of
the number of hits in a scatter plot. Each antibiotic class were shown with different
colors. To see the trend of the points a local regression smoothing method called
Locally Weighted Scatterplot Smoothing (lowess) line was added to all the plots of
the analysis to fit a function through the points [15].
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3.2.4 Analysis of regions surrounding the gene
The analysis of regions surrounding the gene was done for E. coli and K. pneumoniae
at the same time to investigate if surroundings of the genes could be of importance
of the gene compatibility between the two species.

Based on the BLAST result the antibiotic genes were divided into three groups;
genes that only were present in E. coli (called E. coli unique), genes that only
were present in K. pneumoniae (called K. pneumoniae unique) and genes that were
present in both of the two species (called shared). The number of genes for each
group were 91 genes, 146 genes and 1001 genes but in the analyses the shared groups
were done with randomly selected genes, 93 genes for E. coli and 143 genes for K.
pneumoniae, different genes for each species, to more correspond to the number of
genes in the unique groups.

For each gene, from the hits in the BLAST file the gene positions were used to cut
a sequence of 100 base pairs upstream and downstream of the gene in the reference
sequences found in the database. The sequences from the same shared gene for E.
coli and K. pneumoniae were kept apart in two separate groups. The cut sequences
had their kmer distribution calculated for kmer of lengths 1 to 7.

3.2.4.1 Upstream and downstream

An analysis was done to see whether there was a difference between the upstream and
downstream sides of the genes. The sequences from the upstream and downstream
sides were split into two quantities per group for the unique and shared groups. All
sequences were converted to kmers and the total kmer distribution was calculated
for each quantity. Then for each group the upstream and downstream quantities
were compared using the non-parametric Wilcoxon signed-rank test to test if there
were any statistical differences between the upstream and downstream sides [9].

3.2.4.2 Comparison of gene groups

In the next analysis the unique groups from before where used but the shared group
was split into two groups, one each for the species. Then comparisons were done
between the kmer distributions between the groups of genes:

E. coli unique vs K. pneumoniae unique
E. coli unique vs E. coli shared
E. coli shared vs K. pneumoniae shared
K. pneumoniae unique vs K. pneumoniae shared

The sequences from each group were converted to the total kmer distribution for
each group and then the kmer distributions for the groups were compared with the
method squared Euclidean distance, using the Equation 3.1, to get a value for each
comparison.
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3.2.4.3 Comparison of kmers

Not only to look at the groups in total, but an analysis was also done to look at the
single kmers. The difference of kmer distribution value for each kmer was calculated
between the unique respectively shared groups; E. coli unique vs K. pneumoniae
unique and E. coli shared vs K. pneumoniae shared. A positive value meant a
higher kmer distribution value in E .coli, while a negative value meant a higher
kmer distribution in K. pneumoniae. From the two differences a third dataset was
produced as the difference of the two previously data sets ((E. coli unique vs K.
pneumoniae unique) vs (E. coli shared vs K. pneumoniae shared)), this to scale the
numbers by remove the differences from the shared genes. The values from the third
data set were sorted by absolute values and the top kmers were plot in a bar plot.

3.3 The predictive model
To investigate the prediction ability of classification, a logistic regression model was
used. The model was done for E. coli in R with generalised linear model with the set-
tings glm(response variable∼predictors, data=input data, family="binomial"). The
input data was obtained from the previous analyses, the classification parameter if
the antibiotics resistant genes were present or not present in E. coli based on the
BLAST results, length of the gene and the kmer distribution values of kmers of
length 3 of each gene. Out of the kmers the last kmer TTT was removed to avoid
over-parameterization, resulting in 63 kmers. The genes members of several classes
were removed, resulting in 2115 genes.

To create a model the binary response variable 0/1 (present/not present in E.coli)
and the lengths of all genes were fixed in a loop where the kmer with the lowest
p-value for each round was added into the model until the threshold 0,001 was
exceeded. The model was used in the next step where the data was randomly
split in half training and half testing data and for different cutoff values for the
classification the model was run 100 times. Each round generated values of the
specificity and sensitivity and for the total model, the average values were used and
were plotted with a ROC curve.

3.3.1 All genes
In the first model all 2115 genes were used, where 1117 genes were present and 998
genes were not present in E. coli. An example script can be found in Appendix A.1.2.

3.3.2 Antibiotic classes
Models were also done for the genes from the larger antibiotic classes, seen in Ta-
ble 3.6, resulting in three models. For these models the kmers were added until the
p-value of 0,01 was exceeded, to include more kmers.
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Table 3.6: Antibiotic classes and the number of genes used in the models.

Antibiotic class Total genes Present in E. coli Not present in E. coli
Beta-lactams 1309 773 536
Aminoglycosides 166 72 94
Macrolides 129 40 89
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4
Results

In this chapter the results from the project are presented in one section each for the
three analyses and the predictive model. The sections are divided into subsections
for the species and methods for kmer analysis and frequency analysis, the different
comparisons for analysis of regions surrounding the gene and for all genes and the
antibiotic classes for the predictive model.

4.1 Kmer analysis
In the kmer analysis three groups of genes, the antibiotic resistant genes present
respectively not present in the species and the core genome genes, had their kmer
distribution calculated. From all core genome genes the kmer distribution of the
average core genome gene was calculated and compared to the kmer distribution of
the genes from each of the three groups. It was done with three different methods
to give a value per gene. For each group the median value was calculated and the
Wilcoxon rank-sum test was used at two groups at a time to get a p-value and to
see how the distribution of values differed.

The most interesting results from the three methods squared Euclidean distance,
maximum absolute value and maximum values are presented first for E. coli and
then for K. pneumoniae.

4.1.1 Escherichia coli
In this section the most interesting results for E. coli are presented. Additional plots
can be seen in Appendix A.2.

4.1.1.1 Squared Euclidean distance

For the method squared Euclidean distance, the values were calculated for each gene
as the sum of the squared value of the difference between the kmer distribution of the
average core genome and the gene. The squared Euclidean distance took all kmers
into consideration to give a value per gene in the three different groups. The median
values from each of the three groups and p-values for the comparisons between the
groups for kmer of lengths 1 to 8 are presented in Table 4.1.
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Table 4.1: The median values from the calculation with the method squared
Euclidean distance between the average core genome gene and the genes from

three groups, core genome genes, antibiotic resistant genes present and not present
in E. coli and the p-values for the comparisons between the groups.

Median values P-values
Core Not Present vs Present vs Not present vs
genome Present present not present core genome core genome

kmer 1 0,001993 0,005467 0,01815 5,43e-100 5,61e-59 8,54e-256
kmer 2 0,002910 0,004300 0,01168 8,49e-101 1,30e-53 6,91e-242
kmer 3 0,002079 0,003100 0,006169 1,90e-107 1,33e-36 3,41e-204
kmer 4 0,001782 0,002156 0,003225 2,43e-107 1,00e-07 7,09e-108
kmer 5 0,001622 0,001607 0,001939 5,41e-87 2,61e-04 1,09e-16
kmer 6 0,001562 0,001335 0,001445 2,93e-36 1,71e-19 2,96e-03
kmer 7 0,001547 0,001229 0,001307 2,68e-17 1,89e-29 3,55e-17
kmer 8 0,001542 0,001172 0,001259 9,03e-12 8,25e-34 1,09e-25

For the shorter kmer lengths, the difference of median values between the three
groups was larger and with increasing kmer length the difference decreased. From
kmer of length 5 the values of the groups were more similar with more or less the
same median values.

The small p-values indicated significant differences between all three groups, with
a larger difference between the core genome genes and genes not present in E. coli
than the difference between the core genome genes and genes present in E. coli. The
largest differences were for kmer of lengths 2 and 3, the values for all genes in the
three groups can be seen in Figure 4.1.
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Figure 4.1: Squared Euclidean distance values for E. coli, kmer of lengths 2 and
3. On the x-axis there are the values from the calculation with the method square
Euclidean distance between the average core genome gene and the genes from the

three groups and on the y-axis the frequency.
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The distribution of the core genome genes looked similar in both figures for the
two kmer lengths. The values of the antibiotic resistant genes present in E. coli
were more similar to the core genomes genes than the antibiotic resistant genes not
present in the E. coli, which had more spread values.

4.1.1.2 Maximum absolute value

For the method maximum absolute values, the values were calculated for each gene
in the three different groups as the maximum absolute value of the difference between
the kmer distribution of the average core genome gene and the gene. The median
values from each of the three groups and p-values for the comparisons between the
groups for kmer of lengths 1 to 8 are presented in Table 4.2.

Table 4.2: The median values from calculation with the method maximum
absolute value between the average core genome gene and the genes from three

groups, core genome genes, antibiotic resistant genes present and not present in E.
coli and the p-values for the comparisons between the groups.

Median values P-values
Core Not Present vs Present vs Not present vs
genome Present present not present core genome core genome

kmer 1 0,03320 0,04834 0,08812 1,75e-106 5,70e-40 7,34e-238
kmer 2 0,02550 0,03769 0,05657 1,41e-76 4,44e-63 1,54e-218
kmer 3 0,01625 0,02090 0,02955 3,09e-72 1,57e-49 7,90e-179
kmer 4 0,01044 0,01182 0,01562 4,61e-53 8,36e-18 1,97e-105
kmer 5 0,007174 0,006752 0,008454 2,87e-52 2,15e-06 2,37e-23
kmer 6 0,005096 0,004646 0,005243 8,87e-08 2,87e-04 0,270
kmer 7 0,003875 0,003418 0,003596 1,91e-03 2,95e-12 1,02e-06
kmer 8 0,003098 0,002320 0,002621 1,71e-25 2,93e-45 4,48e-15

For the method maximum absolute value, the trends were similar to the squared
Euclidean distance. The median values of the shorter kmer lengths differed and the
p-values were low between all groups. Also, here from kmer of length 5 the groups
started to have similar median values.
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Figure 4.2: Maximum absolute values for E. coli, kmer of lengths 2 and 3. On
the x-axis there are the values from the calculation with the method maximum

absolute value between the average core genome gene and the genes from the three
groups and on the y-axis the frequency.

The distribution of the core genome genes was similar in both figures. The values
of the antibiotic resistant genes present in E. coli respectively not present in E. coli
were more spread than for the squared Euclidean values, but the genes present in
E. coli had their median values more similar to the core genome genes.

4.1.1.3 Maximum value

For the method maximum value, the values were calculated for each gene in the
three different groups as the positive difference of the kmer distribution values of
the most common kmer in the average core genome gene and the most common
kmer of the gene. The median values from each of the three groups and p-values
for the comparisons between the groups for kmer of lengths 1 to 8 are presented in
Table 4.3.
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Table 4.3: The median values from the calculation with the method maximum
values between the average core genome gene and the genes from three groups,

core genome genes, antibiotic resistant genes present and not present in E. coli and
the p-values for the comparisons between the groups.

Median values P-values
Core Not Present vs Present vs Not present vs
genome Present present not present core genome core genome

kmer 1 0,01322 0,02454 0,05441 2,73e-82 4,84e-47 4,27e-193
kmer 2 0,01143 0,02005 0,04514 1,36e-36 1,70e-63 2,48e-175
kmer 3 0,009873 0,01308 0,02253 2,81e-57 8,10e-10 3,79e-122
kmer 4 0,005858 0,005844 0,01066 1,81e-55 0,2203 4,33e-72
kmer 5 0,004716 0,004176 0,005464 5,17e-40 7,13e-15 3,56e-10
kmer 6 0,003913 0,003338 0,004016 1,13e-05 6,65e-06 0,2993
kmer 7 0,003339 0,002832 0,002986 6,73e-02 6,91e-14 3,92e-09
kmer 8 0,002866 0,002073 0,002358 9,17e-24 2,27e-47 2,35e-16

For the method maximum value, the trends of the median and p-values were similar
to the two previously described methods. The median values of the shorter kmer
lengths differed and the p-values were low between all groups, though the differences
between the groups were smaller. For kmer of length 4 the comparison between the
core genome genes and the genes present in E. coli the p-value of 0,2203 indicated no
statistically significant difference between the groups. Already from kmer of length
4 the groups started to have similar values. All values from kmer of lengths 3 and
4 can be seen in Figure 4.3.
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Figure 4.3: Maximum values for E. coli, kmer of lengths 3 and 4. On the x-axis
there are the values from the calculation with the method maximum value between

the average core genome gene and the genes from the three groups and on the
y-axis the frequency.

The values from antibiotic resistant genes present in E. coli respectively not present
in E. coli were more spread than previous methods, with higher peaks at values
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up to the frequency of 100. Despite the spread, the median values of the genes
present in E. coli can be seen in the figures to be more similar to the core genome,
than the ones not present. The p-value of 0,2203 for kmer of length 4 between the
core genome genes and the genes present can be seen to be explained by the similar
distributions of the values.

4.1.2 Klebsiella pneumoniae
In this section the most interesting results for K. pneumoniae are presented. Addi-
tional plots can be seen in Appendix A.2.

4.1.2.1 Squared Euclidean distance

Same as for E. coli, the method squared Euclidean distance took all kmers into
consideration and the distribution were compared to the average core genome gene
to calculate a value for each gene in the three different groups. The median and
p-values for K. pneumoniae for kmer of lengths 1 to 8 are presented in Table 4.4.

Table 4.4: The median values from the calculation with the method squared
Euclidean distance between the average core genome gene and the genes from

three groups, core genome genes, antibiotic resistant genes present and not present
in K. pneumoniae and the p-values for the comparisons between the groups.

Median values P-values
Core Not Present vs Present vs Not present vs
genome Present present not present core genome core genome

kmer 1 0,002429 0,003782 0,0326 1,42e-92 4,93e-73 3,12e-262
kmer 2 0,002385 0,003456 0,01904 2,91e-103 3,89e-75 1,04e-283
kmer 3 0,001967 0,0026681 0,008813 1,37e-115 6,34e-50 1,61e-272
kmer 4 0,007209 0,009918 0,01503 1,37e-116 8,61e-25 3,96e-210
kmer 5 0,001437 0,001461 0,002417 1,66e-103 9,28e-03 5,78e-91
kmer 6 0,001350 0,001265 0,001604 7,14e-53 2,92e-02 9,57e-15
kmer 7 0,001315 0,001204 0,001361 8,88e-22 9,91e-06 8,96e-01
kmer 8 0,001304 0,001184 0,001279 5,41e-12 1,08e-07 5,41e-04

The patterns of the median values and p-values could be recognized from E. coli. For
the shorter kmer lengths, the difference of median values between the three groups
was larger and with increasing kmer length the difference decreased. But while the
values of core genome genes and genes present in K. pneumoniae were similar, the
difference to the genes not present in the species was almost 10-fold for kmer of
length 1. Not until the kmer of length 6 the median values for all three groups
started to be similar. This was also supported by the p-values, there was a larger
difference between the genes not present in the species and the core genome genes
than the difference between the genes present in the species and the core genome
genes. Plots of the values for kmer of lengths 2 and 3 can be seen in Figure 4.4.
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Figure 4.4: Squared Euclidean distance values for K. pneumoniae, kmer of
lengths 2 and 3. On the x-axis there are the values from the calculation with the
method square Euclidean distance between the average core genome gene and the

genes from the three groups and on the y-axis the frequency.

The distribution of the core genome genes looked similar in the plots for kmer of
lengths 2 and 3, where there can be see that the antibiotic resistant genes not present
in the species had a large spread in values. Even though the spread of antibiotic
resistant genes present in K. pneumoniae had a larger spread than the core genome
genes, the peaks were around the same values.

4.1.2.2 Maximum absolute value
In the method maximum absolute value, the values were calculated for each gene as
the maximum absolute value of the difference of the average core genome gene and
for each gene for the three different groups. The median and p-values for kmer of
lengths 1 to 8 are presented in Table 4.5.

Table 4.5: The median values from the calculation with the method maximum
absolute value between the average core genome gene and the genes from three

groups, core genome genes, antibiotic resistant genes present and not present in K.
pneumoniae and the p-values for the comparisons between the groups.

Median values P-values
Core Not Present vs Present vs Not present vs
genome Present present not present core genome core genome

kmer 1 0,03654 0,04404 0,11675 8,72e-101 4,08e-47 2,64e-246
kmer 2 0,02579 0,03258 0,06902 2,14e-101 1,06e-88 1,72e-281
kmer 3 0,01601 0,01974 0,03328 8,57e-105 4,86e-72 1,01e-258
kmer 4 0,01062 0,01160 0,01605 8,20e-110 2,28e-16 1,26e-164
kmer 5 0,007116 0,005838 0,008603 2,16e-119 4,19e-28 2,03e-42
kmer 6 0,005108 0,004565 0,005246 2,91e-13 2,08e-09 2,54e-01
kmer 7 0,003824 0,003423 0,003655 5,24e-05 1,30e-16 2,78e-06
kmer 8 0,003010 0,002325 0,002583 2,45e-18 1,95e-54 4,99e-16
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For the method maximum absolute value, the trends were similar to the squared
Euclidean distance. The median values for shorter kmer lengths differed and the
p-values were low between all groups. From kmer of length 6 the groups started to
have similar median values. The values from kmer of lengths 2 and 3 can be seen in
Figure 4.5.
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Figure 4.5: Maximum absolute values for K. pneumoniae, kmer of lengths 2 and
3. On the x-axis there are the values from the calculation with the method

maximum absolute value between the average core genome gene and the genes
from the three groups and on the y-axis the frequency.

The distribution of the core genome genes was similar in both figures. The values
of the antibiotic resistant genes present in K. pneumoniae respectively not present
in K. pneumoniae were more spread and values consisted of many higher peaks. It
could be seen that the genes the core genome values were more similar to the genes
present in K. pneumoniae than to the genes not present in K. pneumoniae.

4.1.2.3 Maximum value

In the method maximum value, the values were calculated for each gene as positive
difference of the most common kmer in average core genome gene and the genes in
the three different groups. The median and p-values for kmer of lengths 1 to 8 are
presented in Table 4.6.
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Table 4.6: Median and p-values for antibiotic resistant genes present respectively
not present in K. pneumoniae and core genome genes from the method maximum

value.

Median values P-values
Core Not Present vs Present vs Not present vs
genome Present present not present core genome core genome

kmer 1 0,01528 0,02242 0,03288 2,77e-30 2,86e-41 1,18e-104
kmer 2 0,01059 0,02236 0,02328 4,00e-03 2,01e-94 9,93e-82
kmer 3 0,007209 0,009918 0,01503 4,56e-31 2,69e-06 1,14e-60
kmer 4 0,004737 0,003178 0,006494 2,07e-51 9,68e-34 1,79e-16
kmer 5 0,003822 0,002195 0,003794 1,16e-47 1,17e-91 1,28e-01
kmer 6 0,003532 0,00246 0,003097 8,79e-06 7,58e-41 2,19e-14
kmer 7 0,002876 0,002231 0,002496 9,29e-04 2,55e-40 3,46e-19
kmer 8 0,002594 0,001831 0,002102 1,66e-18 1,43e-65 4,03e-21

For the method maximum value, the values had the least differences of the methods
described. The similar trends could still be seen for some groups, the core genome
and genes not present were different. For kmer of length 2 the genes present and
not present had similar median value and p-value, for kmer of length 3 the values
again differed and for the rest of kmers the values did not fully stabilize around the
same median as the previous methods. The values from kmer of lengths 2 and 3 can
be seen in Figure 4.6.
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Figure 4.6: Maximum values for K. pneumoniae, kmer of lengths 2 and 3. On
the x-axis there are the values from the calculation with the method maximum
value between the average core genome gene and the genes from the three groups

and on the y-axis the frequency.

The values consisted of many high peaks, the antibiotic resistant genes present in
K. pneumoniae had more peaks at several values while the genes not present had
values where the peaks were more distinct. There could not be clearly seen that the
core genome values were more similar to the genes present in the species than to the
genes not present in the specie, compared to in the other methods and in E. coli.
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4.2 Frequency analysis
In the frequency analysis the values from the antibiotic resistant genes present in
the species from the kmer analysis were used. This to see whether there could be
some correlations between the values and the number of hits for the gene groups.
The results are presented first for E. coli and then for K. pneumoniae.

4.2.1 Escherichia coli
In this section the most interesting results for E. coli are presented. Additional plots
can be seen in Appendix A.2.

4.2.1.1 Squared Euclidean distance
The square root of the number of hits was plotted against the values from the method
squared Euclidean distance. The plots for kmer of lengths 2, 3 and 6 can be seen in
Figure 4.7.
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Figure 4.7: Frequency analysis, squared Euclidean distance for E. coli, kmer of
lengths 2, 3 and 6. On the x-axis there are the values from the kmer analysis and

the method squared Euclidean distance for gene groups from the antibiotic
resistant genes present in E. coli and on the y-axis the square root of the number

of hits for the gene groups. The lowess trend line can be seen in blue.
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For kmer of lengths 2 and 3 the trend line went down away from the values around
the median values. The values around the median values had large spread in hits
but the values with higher values had fewer hits. There could not be seen any
specific trends of the antibiotic classes. For kmer of length 6 the values were more
compact and here the values for the same classes were more clustered, especially for
beta-lactams. Though, there was still a large spread in the number of hits within
each antibiotic class.

4.2.1.2 Maximum absolute value

The square root of the number of hits was plotted against the values from the
method maximum absolute value. The plots for kmer of lengths 2 and 3 can be seen
in Figure 4.8.
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Figure 4.8: Frequency analysis, maximum absolute values for E. coli, kmer of
lengths 2 and 3. On the x-axis there are the values from the kmer analysis and the

method maximum absolute value for gene groups from the antibiotic resistant
genes present in E. coli and on the y-axis the square root of the number of hits for

the gene groups. The lowess trend line can be seen in blue.

Similar to squared Euclidean distance, kmer of lengths 2 and 3, the trend line
went down away from the values around the median values. The values around the
median values had large spread in hits but the values with higher values had fewer
hits. There could not be seen any specific trends of the antibiotic classes.

4.2.1.3 Maximum value

The square root of the number of hits was plotted against the values from the method
maximum value. The plots for kmer of lengths 2 and 3 can be seen in Figure 4.9.
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Figure 4.9: Frequency analysis, maximum value for E. coli, kmer of lengths 2 and
3. On the x-axis there are the values from the kmer analysis and the method

maximum value for gene groups from the antibiotic resistant genes present in E.
coli and on the y-axis the square root of the number of hits for the gene groups.

The lowess trend line can be seen in blue.

The plots looked similar to the previously methods with the trend line went down
away from the values around the median values. The values around the median
values had large spread in hits but the values with higher values had fewer hits.
There could not be seen any specific trends of the antibiotic classes.

4.2.2 Klebsiella pneumoniae
In this section the most interesting results for K. pneumoniae are presented. Addi-
tional plots can be seen in Appendix A.2.

4.2.2.1 Squared Euclidean distance

Similar as for E. coli, for K. pneumoniae the square root of the number of hits was
plotted against the values fromthe method squared Euclidean distance, the plots for
kmer of lengths 2, 3 and 6 can be seen in Figure 4.10.
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Figure 4.10: Frequency analysis, squared Euclidean distance for K. pneumoniae,
kmer of lengths 2, 3 and 6. On the x-axis there are the values from the kmer
analysis and the method squared Euclidean distance for gene groups from the

antibiotic resistant genes present in K. pneumoniae and on the y-axis the square
root of the number of hits for the gene groups. The lowess trend line can be seen

in blue.

In the plots the slope of the trend line decreased with increased value. The values
around the median values had large spread in hits but the values with higher values
had fewer hits. Compared to E. coli there were more groups over 25 at the y-axis
and one group around 70. For the shorter kmers there could not be seen any specific
trends of the antibiotic classes, except for vancomycin that seemed to all have low
number of hits. For kmer of length 6 the values were more compact and here the
values of the same classes were more clustered, especially for the resistance genes
of beta-lactams, tetracyclines and most trimethoprimes. Though, there was still a
large spread in the number of hits in those groups.
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4.2.2.2 Maximum absolute value

The square root of the number of hits was plotted against the values from the
method maximum absolute value. The plots for kmer of lengths 2 and 3 can be seen
in Figure 4.11.
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Figure 4.11: Frequency analysis, maximum absolute value for K. pneumoniae,
kmer of lengths 2 and 3. On the x-axis there are the values from the kmer analysis

and the method maximum absolute value for gene groups from the antibiotic
resistant genes present in K. pneumoniae and on the y-axis the square root of the
number of hits for the gene groups. The lowess trend line can be seen in blue.

Similar to the squared Euclidean distance, the slope of the trend line decreased
with increased value. The values around the median values had large spread in
hits but the values with higher values had fewer hits. For the shorter kmers there
could not be seen any specific trends of the antibiotic classes, except again the class
vancomycin that seems to all genes had low number of hits.

4.2.2.3 Maximum value

The square root of the number of hits was plotted against the values from squared
Euclidean distance, the plots for kmer of lengths 2 and 3 can be seen in Figure 4.12.
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Figure 4.12: Frequency analysis, maximum value for K. pneumoniae, kmer of
lengths 2 and 3. On the x-axis there are the values from the kmer analysis and the
method maximum value for gene groups from the antibiotic resistant genes present
in K. pneumoniae and on the y-axis the square root of the number of hits for the

gene groups. The lowess trend line can be seen in blue.

Similar to the previous methods, the slope of the trend line decreased with increased
value. The values around the median values had large spread in hits but the values
with higher values had fewer hits. For the shorter kmers there could not be seen
any specific trends of the antibiotic classes, except for vancomycin where all genes
had low number of hits. The values for maximum values were also closer to zero
than for the other methods.

4.3 Analysis of regions surrounding the gene
In the analysis of regions surrounding the gene, the genes were divided into three
groups, genes that only were present in E. coli (called E. coli unique), genes that
only were present in K. pneumoniae (called K. pneumoniae unique) and genes that
were present in both two species (called shared). The groups were used in compar-
isons between the upstream and downstream sides, comparisons of gene groups and
comparison of kmers. The results from the analysis of regions surrounding the gene
are presented for the species E. coli and K. pneumoniae simultaneously.

4.3.1 Upstream and downstream
In the first analysis of regions surrounding the gene the difference between the kmer
distribution values of the sequences of the upstream and downstream sides were
investigated for kmer of lengths 1 to 7 with the Wilcoxon sign-rank test. This to see
if there could be seen a statistically difference between the two sides, the p-values
for kmer of lengths 1 to 7 can be seen in Table 4.7.
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Table 4.7: P-values of the comparisons between the values from kmer distribution
of the upstream and downstream sequences of three groups of genes

E. coli unique K. pneumoniae unique Shared
n=95 n=146 n=93+143

kmer 1 (4 kmers) too few values too few values too few values
kmer 2 (16) 1.0 0,8361 0,7960
kmer 3 (64) 0,743 0,7891 0,9520
kmer 4 (256) 0,5906 0,6715 0,9315
kmer 5 (1024) 0,8690 0,9321 0,9192
kmer 6 (4096) 0,9592 0,9921 0,6098
kmer 7 (16 384) 0,02897 0,001446 0,7431

From kmer of lengths 2 to 6 the p-values were high, the difference between the groups
of upstream and downstream sides of the genes could not be statistically explained
to be different. From kmer of length 7 there could be seen some difference between
the two sides, but the difference was not large. The other analyses were done not
separating those groups.

4.3.2 Comparisons of gene groups
In the next analysis the unique groups from before were used together with the
shared group, which was split into two, one each for the species. Then comparison
values were calculated with the squared Euclidean distance of the kmer distribu-
tions between the four groups in four combinations. If there would not exist any
differences between the species and genes, the hypothesis of the values would be;

E. coli unique vs K. pneumoniae unique = difference of unique genes (δu)
E. coli unique vs E. coli shared≈0
E. coli shared vs K. pneumoniae shared=difference of shared genes (δs)
K. pneumoniae unique vs K. pneumoniae shared≈0

The differences between the two species δs and δu would be equal. The calculated
values can be seen in Table 4.8.

Table 4.8: Values from comparison of two groups of genes with the method
squared Euclidean distance for kmer of lengths 1 to 7.

E. coli unique vs E. coli unique vs E. coli shared vs K. pneumoniae unique vs
K. pneumoniae unique E. coli shared K. pneumoniae shared K. pneumoniae shared

kmer 1 0,006336 0,001024 0,0006482 0,001891
kmer 2 0,003910 0,0008370 0,0003919 0,001077
kmer 3 0,002674 0,0006822 0,0002590 0,001116
kmer 4 0,001741 0,0004803 0,0001882 0,0008875
kmer 5 0,001273 0,0004197 0,0001511 0,0007186
kmer 6 0,001081 0,0003933 0,0001399 0,0006456
kmer 7 0,0009981 0,0003890 0,0001342 0,0006334
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The values between the shared genes were low for all kmers. For E. coli unique
and shared genes, the values were also low but not as low as the comparison of the
two shared groups. The values for comparison of unique and shared genes in K.
pneumoniae were also slightly higher than the same comparisons for E. coli. Then
the values between the two groups of unique genes were distinctly higher for all
kmers.

4.3.3 Comparisons of kmers
There could be seen a larger difference between the unique groups of the two species
then between the shared groups and the next step was to look which single kmers
contributed to the difference. First the difference of kmer distribution value for each
kmer was calculated between the unique group (E. coli unique vs K. pneumoniae
unique) and shared group (E. coli shared vs K. pneumoniae shared). A positive
value means a higher kmer distribution value in E .coli. From the two differences a
third dataset was produced as the difference of the two previously data sets ((E. coli
unique vs K. pneumoniae unique) vs (E. coli shared vs K. pneumoniae shared)), this
to scale the numbers by remove the differences from the shared genes. A positive
value means a higher kmer distribution value in E .coli The values from the third
data set were sorted by absolute values and the top kmers were plot. The kmer
comparisons of kmer of length 1 can be seen in Figure 4.13.
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Figure 4.13: Comparison of kmers, kmer of length 1. The upper bars are the
difference between the unique groups, the middle bars the difference of the shared
groups and the lower bars the difference between the two previous differences. On
the x-axis are the kmers and on the y-axis are the values from the difference of the
kmer distributions, for the two upper bars a positive value means a higher kmer
distribution value in E .coli. All values are sorted by the absolute value of the

kmers in the third dataset.
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Kmer of length 1, represents the GC content, from the figure there was a higher GC
content in K. pneumoniae in both the comparisons with unique and shared genes,
though the difference was not as large in the shared. In the total plot, the was still
seen that the GC level was higher in K. pneumoniae than E. coli.

The kmer comparison of kmer of length 3 can be seen in Figure 4.13.
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Figure 4.14: Comparison of kmers, kmer of length 3. The upper bars are the
difference between the unique groups, the middle bars the difference of the shared
groups and the lower bars the difference between the two previous differences. On
the x-axis are the kmers and on the y-axis are the values from the difference of the
kmer distributions, for the two upper bars a positive value means a higher kmer
distribution value in E .coli. All values are sorted by the absolute value of the

kmers in the third dataset.

Kmer of length 3, represents the codon level. The top kmers, CAA, CGG and GGC
had all the same direction of the bar in all three plots, with higher absolute values
for the unique genes. Many of the bars for the shared comparison were around zero,
while the unique groups differed more.

The kmer comparison of kmer of length 6 can be seen in Figure 4.15.
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Figure 4.15: Comparison of kmers, kmer of length 6. The upper bars are the
difference between the unique groups, the middle bars the difference of the shared
groups and the lower bars the difference between the two previous differences. On
the x-axis are the kmers and on the y-axis are the values from the difference of the
kmer distributions, for the two upper bars a positive value means a higher kmer
distribution value in E .coli. All values are sorted by the absolute value of the

kmers in the third dataset.

The kmers of length 6 could be related to transcription factors, here the most of
the bars were negative, with higher fractions in the K. pneumoniae, while the bars
in the shared genes had small differences. The kmers with the highest (absolute)
values were TTATTC, AAGGAA and CCCGGC.

4.4 The predictive model
To create the models the response variable (present/not present in E. coli) and
the length were fixed in a loop while the kmer of length 3 with lowest p-value for
each round was added into the model until a threshold was exceeded. To get the
specificity and sensitivity values the data was split in half training and half testing
for the different cutoff classification values and was run for 100 times. The generated
specificity and sensitivity values were plotted with a ROC curve.
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4.4.1 All genes
For all genes, out of 63 possible kmers, the final model included 21 kmers. Using
the selected kmers on all data, the p-values and estimates for the model can be seen
in Table 4.9. The p-values and estimates when each kmer were added can be seen
in Appendix A.3.

Table 4.9: Model parameters, estimates and p-values for all genes, with the
kmers in the order they were added to the model.

Parameter Estimate P-value
Intercept -13,73 1,87e-20
Length 4,16e-04 6,87e-02
AAG -111,59 7,94e-16
ACT 173,07 3,30e-26
CAG 85,72 7,73e-10
GAG 172,06 2,12e-35
AGG -80,85 2,03e-06
ACC -21,83 1,34e-01
GGA 40,48 1,10e-02
TGT -104,98 6,44e-10
CCC -24,03 8,82e-02
GCT 118,78 1,87e-16
CGG -70,30 9,10e-08
CGC 69,34 1,34e-12
TAA 124,10 3,37e-22
TTC 112,37 1,63e-13
TTG 23,94 1,16e-01
GCA 79,81 9,41e-08
GTC 106,41 2,12e-10
TGA 64,38 2,30e-05
ATC 65,41 7,34e-06
CTC -59,09 3,59e-04
GTT 59,08 5,18e-04

In the final model all kmers still had an impact of the result, with the kmers GAG,
ACT and TAA with the largest influences.
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4.4.2 Antibiotic classes

4.4.2.1 Beta-lactams

For beta-lactams, the final model included 16 kmers. The p-values and estimates
for the model can be seen in Table 4.10.

Table 4.10: Model parameters, estimates and p-values for the antibiotic class
beta-lactam, with the kmers in the order they were added to the model.

Parameter Estimate P-value
Intercept -15,75 4,13e-11
Length 2,62e-03 4,65e-04
AAG -274,88 5,92e-18
AGA -105,37 4,10e-03
ACT 379,39 2,82e-22
GCA 218,36 1,37e-11
CCT -462,29 8,16e-26
ACA -318,25 8,44e-17
CAG 269,40 4,90e-13
GTA 197,92 4,90e-13
GAG 474,86 2,33e-22
GAA 366,80 8,13e-17
GTG -161,86 3,58e-06
TCG 380,73 9,28e-17
CGA -281,24 1,01e-12
TCT -174,37 9,12e-08
TTA 152,56 5,25e-08
CAC 137,25 6,75e-04

In the model for beta-lactams, the kmers CCT, GAG and ACT were of importance.

4.4.2.2 Aminoglycosides

For aminoglycosides, the final model included three kmers, CCT, TAA and TTG.
The p-values and estimates for the model can be seen in Table 4.11.

Table 4.11: Model parameters, estimates and p-values for the antibiotic class
aminoglycosides, with the kmers in the order they were added to the model

Parameter Estimate P-value
Intercept -6,50 6,77e-09
Length 4,29e-03 1,57e-04
CCT 157,32 8,49e-04
TAA -95,19 8,94e-05
TTG 89,64 5,89e-03
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4.4.2.3 Macrolides

For macrolides, the final model included three kmers, GGT, CAG and TTC. The
p-values and estimate for the model can be seen in Table 4.12.

Table 4.12: Model parameters for the antibiotic class macrolides, with the kmers
in the order they were added to the model

Parameters Estimate P-value
Intercept 6,98e-01 6,37e-01
Length -3,94e-03 1,12e-03
GGT -316,57 6,41e-06
CAG 233,21 1,43e-04
TTC 167,95 1,12e-03

4.4.3 ROC curves
The sensitivity and specificity values were obtained from the four models all genes
and three antibiotic classes at different cutoff values for the classification, generating
ROC-curves seen in Figure 4.16.
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Figure 4.16: ROC curves for the four models, all genes and three antibiotic
classes. The numbers next to the dots represents the cutoff value for the

classification and the dashed line (y=x) represents a random classification. On the
x-axis is the false positive rate or (1-specificity) and on the y-axis the true positive

rate or the sensitivity.
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Discussion

In the results for the kmer analysis, tables of median and p-values were presented
for kmer of lengths 1 to 8 together with plots of all values for some kmer lengths.
The results from the three methods squared Euclidean distance, maximum absolute
value and maximum value showed differences for the shorter kmers for all methods.
In the frequency analysis the correlation between number of hits was plotted against
the values from the kmer analysis in scatter plots for some kmer lengths, where the
genes with the highest values had fewer hits. For the analysis of regions surrounding
the gene the upstream and downstream sides of the genes were compared without
seeing any differences of the two sides. Also, comparisons between unique and shared
gene on both group and kmer level was done and differences could be seen. Finally,
logistic regression predictive models were created to predict gene compatibility for
all genes and three antibiotic classes. The most important kmers of the models were
shown as well as ROC-curves for the models, where the most classifiers performed
better than a random classification.

5.1 Kmer analysis
In the kmer analysis three different methods were used to compare core genome
genes and antibiotic resistant genes present respectively not present in E. coli and
K. pneumoniae. In the method squared Euclidean distance all kmers of the gene
had impact on the value, to describe the distance from the kmers to the average
core genome gene and similar patterns could be seen in both E. coli and K. pneumo-
niae. The distribution of the genes present in the species had, for the shorter kmer
lengths, a distribution similar to the core genome genes, while the genes not present
in species were more spread. Also, the p-values of the comparisons between the
groups were low. The differences decreased around kmer of length 5 for E. coli and
kmer of length 4 for K. pneumoniae, so the method was interesting for the shorter
kmer lengths.

In the method maximum absolute value, the largest absolute difference of kmer dis-
tribution values in both core genome and genes present respectively not present in
the species were calculated, only involving maximum two kmers in each value. The
patterns were similar to the ones from squared Euclidean distance for both species.
The values were not that spread but there were differences for the shorter kmer
lengths between the groups and also for the median values for the shorter kmer
lengths up to kmer of length 5 for E. coli and kmer of length 4 for K. pneumoniae.
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The method maximum value compared only the value of the most frequent kmers
from the average core genome gene and the antibiotic resistant genes. From the av-
erage core genome gene, it was the same value every time, while the value from the
antibiotic resistant gene varied. The plots had fewer values with higher frequency
but there could still be seen differences similar to the other methods, though the
differences were not that large. For K. pneumoniae the values were not following
exactly the same patterns as for the previous methods but the median values stabi-
lized for the longer kmers.

5.2 Frequency analysis
The frequency analysis was done to see if there were any correlations between the
frequency of the antibiotic resistant genes and the values from the kmer analysis.
The values showed differences of the genes to the average core genome genes kmer
distribution and with this analysis it was interesting to look if the number of hits
could relate to be more likely to be compatible in the species.

From the plots there could be seen that K. pneumoniae had more hits for the gene
groups with highest number of hits, even though there were fewer genomes in the
database. The number of hits did not tell how many of the strains the gene was
present in as hits at the same positions in multiple species only were counted as one
hit.

There could not be seen any specific differences between the three used methods,
squared Euclidean distance, maximum absolute value and maximum value for this
analysis. Most gene group values clustered around the median values and had vari-
ous number of hits, there the genes with most hits also could be found. The values
far away from the median value did not have as many hits, which also could be
seen by the decreasing lowess trend line for higher values. The more hits the more
probable the value was around the median value, but if the value was around the
median value did not mean there was many hits. From these results there could be
concluded that the more the antibiotic resistant genes differed compared to the core
genome genes, the more rare they were in the species.

To give the antibiotic classes different colors was a reason to see if a specific class,
where the genes should have similar mechanisms, had trends between or within the
class. No clear patterns could be seen, for all kmer lengths the number of hits varied
within the classes, while for higher kmers the values where more similar and could
be seen to group in the plots. This showed on a more distinct distribution of longer
kmers within the classes to distinguish them from each other. The only antibiotic
class had similar number of hits for all genes was vancomycin in K. pneumoniae,
which was an interesting result as the vancomycin affects gram-negative bacteria
and is ineffective against gram-negative bacteria as K. pneumoniae [16].
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5.3 Analysis of regions surrounding the gene
The first step was to see if there were any differences of the upstream and downstream
regions of the genes. There could not be seen a statistically significant difference
between the two sides and the rest of the analyses did not separate the groups. If
there would have been a difference, it could have been necessary to separate the two
sides in the analyses, for example are the promoters at the upstream side.

Comparing the groups and following the hypothesis that if there would not exist any
difference between the species and genes, within the species the values would have
been close to zero and between the species the values would have been equal for
the shared and unique comparisons. When looking at the values, within the same
species the values were low, maybe little higher than expected. The values for the
unique groups were higher, suggesting a difference of the surrounding of the genes.
The more surprisingly results were the values for the shared genes, that were lower
than the values for the genes within the same species. This low difference could
been explained by taking the same genes for both groups, but the analysis was done
multiple times, taking different random genes in each group with various sizes of the
groups, in all runs giving low values.

Next analysis was to look at the kmers of different lengths that contributed to the
difference between the groups. The GC content was represented by the kmer of
length 1, with more G and C in K. pneumoniae than E. coli, this result was follow-
ing the full genome GC content percentages in the species K. pneumoniae (57%)
and E. coli (51%) [17].

On the codon level, kmer of length 3, the top three codons were explored more.
CAA, was more common in the unique genes of E. coli and CGG and GGC were
more common in the unique genes of K. pneumoniae. No clear differences of the
frequency of these codons in the full genomes could be seen, possibly CGG could
be related to the higher frequency in K. pneumoniae of 10,6 (per thousand codon)
compared to 5,0 (per thousand codons) in E. coli [17].

For kmer of length 6, the kmers could be transcription factors, here the most of
the kmers were more common in the unique genes of K. pneumoniae. No specific
transcription factors of interest could be found, though it was noted that many of
the kmers included a lot of C and G, which could be connected to the higher GC
content in K. pneumoniae. It could have been interesting to look at longer kmer
lengths to further investigate if specific transcription factors could be found.

5.4 The predictive model
Predictive models were created for all genes and three antibiotic classes to see the
predictive ability of the classification, how well the models could perform. When
looking at the ROC curves, the models performed well, for most point better than
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a random classifier.

For all genes 21 kmers were used in the model, when comparing the kmers to a codon
frequency table, the estimates for many of the kmer followed the usage frequency
in the full genome of E. coli. For example, AAG was the least used codon for K
(lysine), CAG was the most used codon for Q (glutamine) and TAA was the most
used stop codon. If a gene should be compatible in E. coli, it would be reasonable
the gene would include the preferred codons of the species [17].

The models were also done for antibiotic classes, to see how well the model could
perform on a smaller set of data with more similar genes. The model for beta-
lactams included 16 kmers and except from the first added kmer AAG, the most
kmers were different from the model with all genes.

The models for aminoglycosides and macrolides contained only three kmers each
and they were able to perform good. The ROC-curve of the model for macrolides
was similar to the model for beta-lactams and did not differ much from the model
for all genes. For the cutoff values 0,9 and 0,8 the model for aminoglycosides per-
formed worse than a random classification but was then able to have the highest
true positive rate out of all models.

In the desired outcome for this type of classification, new genes would be identified
to be transferred to and be resistant in E. coli after input of the data of the genes.
The model should rather avoid false positives than false negatives and it would be
more favourably to have a low false positive rate. Preferably the true positive rate
would have been 100% and the false positive rate 0%, but that is often not the case.

To give an example, from the ROC curve in Figure 4.16, for the point 0,7 for all
genes, the true positive rate was 0,72 and the false positive rate was 0,11. Of the
2115 genes the values would mean, out of 1117 genes present or positive in this case,
804 would be correctly classified while 313 would be false negatives. For the 998 not
present or negative genes, 888 genes would be correctly classified while 110 genes
would be classified as false positives.

To get an even better model more input parameters could have been used to test
the predictive ability, now only the length and distribution values of kmer of length
3 were used. Also, other methods as random forest could have been used to create
models.
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Through different analyses some patterns of gene compatibility have been found. In
the kmer analysis differences could be seen for both the species E. coli and K. pneu-
moniae. For the shorter kmer lengths the median values differed and was smaller
between the core genome and antibiotic resistant present in the species than differ-
ence between the core genome and the genes not present in the species. Also, the
p-values were small for the comparisons between the groups for the shorter kmer
lengths and the differences decreased with increasing kmer length. The method
squared Euclidean distance took all kmer into consideration and seemed to be the
method with the most differences between the antibiotic genes. On the other hand,
the method maximum value had the lowest differences and also for the K. pneumo-
niae the values were not following the rest of the trends. The kmer distributions
can be used to see differences for the genes between the different groups, primarily
for smaller kmer lengths.

In the frequency analysis many values clustered around the median values, with var-
ious number of hits. The gene groups with the most hits were close to the median
values and the values far away from the median values, did not have many hits. No
clear conclusion about differences between or within classes could be done, for all
kmer lengths the number of hits varies within the classes, while for higher kmers the
values were more similar and could be seen to group in the plots. No clear trends of
hits could be seen within the classes. The analysis was able to see how high values,
and the more the antibiotic resistant genes differed from the core genome, the more
rare they were in the species.

For analysis of regions surrounding the gene the genes were divided into groups if
they were present in both or only one specie and when comparing the gene groups
of unique and shared genes. There could be seen differences between the unique
genes of the species, while the shared gene values were surprisingly low. On kmer
level, the kmers that differed most between the species had no clear correlation,
potentially they could be related to the higher GC content in K. pneumoniae. The
analysis found differences between the unique and shared groups and were able to
tell which kmers had the biggest influence on that differences.

Lastly, looking at the four created predictive models, the model for all genes included
with the length 21 kmers out of 63 possible. The model was able to find some of the
least and most frequent used codons in E. coli. The models for the antibiotics classes
did perform similar than the model for all genes, but for aminoglycosides the low
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cutoff values gave high true positive rates. In this kind of classification, a low false
positive rate would be of interest and with the model for all genes the best values of
true positive rate of 72% and false e positive rate of 11%. From the gene sequence
it was possible to predict gene compatibility from a logistic regression predictive
model, both for all genes and when dividing the genes into antibiotic classes.

To summarize, in this project analyses have developed and from the results it has
been found compatibility patterns of the antibiotic resistant genes by looking at the
gene sequences and the regions surrounding the genes. From the gene sequences it
has also been possible to predict the gene compatibility in a predictive model.
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A
Appendix

A.1 Example scripts

A.1.1 Python code
Python version 2.7.11.

A.1.1.1 Kmer analysis

# Kmer a n a l y i s f o r E. c o l i
import matp lo t l i b . pyplot as p l t
from numpy import median
import ex t r a c t_b la s t_re su l t s
import f unc t i on_sc r ip t s , s e e s e c t i o n below
from s c ipy . s t a t s import ranksums

e c o l i=" core_genomes/ e c o l i / ecoli_core_genome . f s a " # f a s t a f i l e o f
the core genome

ant i=" r e s f i n d e r / a l l_ f rom_res f inder . f s a " # f a s t a f i l e wi th a l l
the a n t i b i o t i c r e s i s t a n t genes

b l a s t=" b l a s t_e c o l i . tx t " # the l i n e s from the BLAST r e s u l t s

for k in range ( 1 , 9 ) :
print ( " kmer=␣ "+str ( k ) )
b l a s t r e s u l t=ex t r a c t_b l a s t_re su l t s . b l a s t_ r e s u l t s ( b l a s t ) #

e x t r a c t on ly the genes f u l f i l l i n g the h i t s
cond i t i on s 95% i d e n t i t y , 75% l e n g t h

# the core genome and a n t i b i o t i c r e s i s t a n t genes in t o
nes ted d i c t i o n a r i e s , gene name and kmers as keys and
kmer d i s t r i b u t i o n va l u e s as va l u e s

n_eco l i=func t i on_sc r i p t s . eco l i_to_nested ( e c o l i , k )
n_anti=func t i on_s c r i p t s . r e s f inder_to_nested ( ant i , k )

medel_ecol i=func t i on_sc r i p t s . medel_kmer ( n_eco l i ) # the
average core genome kmer d i s t r i b u t i o n

d i s t_ant i=func t i on_sc r i p t s . d i s t anc e ( medel_ecol i , n_anti )
# squared Eucl idean d i s t ance between average core

genome gene and a n t i b i o t i c r e s i s t a n t genes
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d i s t_ e c o l i=func t i on_sc r i p t s . d i s t anc e ( medel_ecol i ,
n_eco l i ) # squared Eucl idean d i s t ance between average

core genome gene and core genome genes

max_abs_anti=func t i on_s c r i p t s . max_abs_value ( medel_ecol i ,
n_anti )

max_abs_ecoli=func t i on_s c r i p t s . max_abs_value ( medel_ecol i
, n_eco l i )

max_anti=func t i on_s c r i p t s . max_value ( medel_ecol i , n_anti )
max_ecoli=func t i on_s c r i p t s . max_value ( medel_ecol i ,

n_eco l i )

i tems =[ [ d i s t_ant i , d i s t_ e c o l i ] , [ max_abs_anti ,
max_abs_ecoli ] , [ max_anti , max_ecoli ] ]

names=[ " Squared␣Eucl idean ␣ d i s t anc e " , "Maximum␣ abso lu t e ␣
value " , "Maximum␣value " ]

f i l enames=[ " d i s t anc e " , " max_absolute_value " , "max_value "
]

for i in range ( len ( i tems ) ) :
p re s ent =[ ]
not_present =[ ]
for key , va lue in i tems [ i ] [ 0 ] . i tems ( ) :

i f key in b l a s t r e s u l t :
p re s ent . append ( value )

else :
not_present . append ( value )

# Wilcoxon rank−sum t e s t between the groups
print ( ranksums ( present , not_present ) )
print ( ranksums ( present , i tems [ i ] [ 1 ] . va lue s ( ) ) )
print ( ranksums ( not_present , i tems [ i ] [ 1 ] . va lue s ( )

) )

x1=[ f loat ( j ) for j in present ]
x2=[ f loat ( j ) for j in not_present ]

# Median va l u e s f o r the t h r ee groups
print (median ( items [ i ] [ 1 ] . va lue s ( ) ) )
print (median ( pre sent ) )
print (median ( not_present ) )

f i g , ( ax1 , ax2 , ax3 )=p l t . subp lo t s (3 )
f i g . s u p t i t l e ( str ( names [ i ] )+" , ␣kmer␣ o f ␣ l ength ␣ "+

str ( k ) , f o n t s i z e =18)
f i g . t ight_layout ( pad=1.4)

ax1 . h i s t ( i tems [ i ] [ 1 ] . va lue s ( ) , b ins =1500)
ax1 . s e t_ t i t l e ( " Genes␣ in ␣ core ␣genome␣$\ i t {E. ␣ c o l i

}$ " )
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ax2 . h i s t ( x1 , b ins =1500)
ax2 . s e t_ t i t l e ( " An t i b i o t i c ␣ r e s i s t a n t ␣ genes ␣

pre sent ␣ in ␣$\ i t {E. ␣ c o l i }$ " )
ax3 . h i s t ( x2 , b ins =1500)
ax3 . s e t_ t i t l e ( " An t i b i o t i c ␣ r e s i s t a n t ␣ genes ␣not␣

pre sent ␣ in ␣$\ i t {E. ␣ c o l i }$ " )

xmin , xmax1=ax1 . get_xlim ( )
xmin , xmax2=ax2 . get_xlim ( )
xmin , xmax3=ax3 . get_xlim ( )
xmax=max( [ xmax1 , xmax2 , xmax3 ] )

ax1 . set_xlim ( [ 0 , xmax ] )
ax2 . set_xlim ( [ 0 , xmax ] )
ax3 . set_xlim ( [ 0 , xmax ] )
p l t . subplots_adjust ( top=0.88)
p l t . s a v e f i g ( " histogram_ecol i_ "+f i l enames [ i ]+ "_k"

+str ( k )+" . eps " , format=’ eps ’ , dpi=1200)
p l t . show ( )
p l t . c l o s e ( )

A.1.1.2 Frequency analysis

# Frequency a n a l y s i s f o r E. c o l i
import matp lo t l i b . pyplot as p l t
import f unc t i on_sc r ip t s , s e e s e c t i o n below
import r e s f i n d e r_ c l a s s e s
import math
import s ta t smode l s . ap i as sm

lowess=sm . nonparametric . l owess

e c o l i=" core_genomes/ e c o l i / ecoli_core_genome . f s a "
an t i=" r e s f i n d e r / a l l_ f rom_res f inde r . f s a "
b l a s t=" b l a s t_e c o l i . tx t "

ant ib i o t i c_groups=r e s f i n d e r_ c l a s s e s . a n t i b i o t i c_ c l a s s e s ( ) #
s c r i p t to e x t r a c t d i c t i o n a r i e s wi th the d i f f e r e n t
a n t i b i o t i c c l a s s e s as keys and the genes be l ong ing to
each c l a s s as va l u e s

f r equency={}
with open( " hits_per_gene_group_ecol i . txt " , ’ r ’ ) as f : # f i l e

wi th the gene groups and the number o f h i t s per gene
group

for l i n e in f :
l i n e s=l i n e . s p l i t ( ’ \ t ’ )
f requency [ l i n e s [ 0 ] ]= l i n e s [ 1 ]
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for k in range ( 1 , 9 ) :
n_eco l i=func t i on_s c r i p t s . eco l i_to_nested ( e c o l i , k )
n_anti=func t i on_sc r i p t s . r e s f inder_to_nested ( ant i , k )

medel_ecol i=func t i on_s c r i p t s . medel_kmer ( n_eco l i )

d i s t_ant i=func t i on_sc r i p t s . d i s t anc e ( medel_ecol i ,
n_anti )

average_gene_group_dist_anti=func t i on_s c r i p t s .
average_gene_group_value ( d i s t_ant i )

max_abs_anti=func t i on_s c r i p t s . max_abs_value (
medel_ecol i , n_anti )

average_gene_group_max_abs_anti=func t i on_sc r i p t s .
average_gene_group_value (max_abs_anti )

max_anti=func t i on_s c r i p t s . max_value ( medel_ecol i ,
n_anti )

average_gene_group_max_anti=func t i on_sc r i p t s .
average_gene_group_value (max_anti )

i tems=[average_gene_group_dist_anti ,
average_gene_group_max_abs_anti ,
average_gene_group_max_anti ]

names=[ " Square␣Eucl idean ␣ d i s t anc e " , "Maximum␣
abso lu t e ␣ value " , "Maximum␣value " ]

f i l enames=[ " d i s t ance " , " max_absolute_value " , "
max_value " ]

for i in range ( len ( i tems ) ) :
f requency_dict={}
va lues_dic t={}
frequency_values =[ ]
va lues_values =[ ]

for key in a n t i b i o t i c_ c l a s s e s :
i f key in [ " n i t r o im ida zo l e " , " vancomycin " , "

f u s i d i c a c i d " ] : # the c l a s s e s not e x i s t i n g f o r
E. c o l i
continue

f r equency_dict [ key ]= [ ]
va lues_dic t [ key ]= [ ]
for j in a n t i b i o t i c_ c l a s s e s [ key ] :

i f j in f r equency . keys ( ) :
f requency_dict [ key ] . append ( (math . s q r t (

f loat ( f requency [ j ] . s p l i t ( ’ \n ’ ) [ 0 ] ) ) ) )
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va lues_dic t [ key ] . append ( items [ i ] [ j ] )

f requency_values . append ( (math . s q r t ( f loat
( f requency [ j ] . s p l i t ( ’ \n ’ ) [ 0 ] ) ) ) )

va lues_values . append ( items [ i ] [ j ] )

c o l o r_ l i s t =[ ’ b lack ’ , ’ grey ’ , ’ brown ’ , ’ red ’ , ’ orange ’ ,
’ ye l low ’ , ’ lawngreen ’ , ’ green ’ , ’ t u rquo i s e ’ , ’ b lue

’ , ’ d a r kv i o l e t ’ , ’ pink ’ ]
counter=0
anti_keys= [ " r i f amp i c i n " , " aminog lycos ides " , "

c o l i s t i n " , " fo s fomyc in " , " macro l ide s " , "
qu ino lones " , " tr imethoprim " , " t e t r a c y c l i n e s " , "
oxazo l i d i none s " , " sulphonamides " , " beta−lactams " ,
" phen i c o l s " ]

for keys in va lues_dic t :
p l t . s c a t t e r ( va lues_dic t [ keys ] , f r equency_dict [

keys ] , c o l o r=( c o l o r_ l i s t [ counter ] ) , l a b e l=
anti_keys [ counter ] )

counter+=1

# Lowess l i n e crea t ed
z=lowess ( frequency_values , values_values , f r a c =0.66 ,

i t =0)
d=l i s t ( l i s t ( zip (∗ z ) ) [ 0 ] )
c=l i s t ( l i s t ( zip (∗ z ) ) [ 1 ] )
p l t . p l o t (d , c )

p l t . l egend ( l o c=’ bes t ’ , shadow=True , fancybox=True ,
s c a t t e r p o i n t s =1, f o n t s i z e =11)

p l t . xl im ( l e f t =0)
p l t . yl im ( bottom=0)
p l t . s u p t i t l e ( str ( names [ i ] )+" , ␣kmer␣ o f ␣ l ength ␣ "+str ( k

) , f o n t s i z e =18)
p l t . t i t l e ( " $\ i t {E. ␣ c o l i }$ " , f o n t s i z e =13)
p l t . y l ab e l ( ’ Square␣ root ␣ o f ␣ the ␣number␣ o f ␣ h i t s ’ ,

f o n t s i z e =12)
p l t . s a v e f i g ( " s ca t t e r_eco l i_ "+f i l enames [ i ]+ "_k"+str ( k

)+" . eps " , format=’ eps ’ , dpi=1200)
p l t . show ( )
p l t . c l o s e ( )

A.1.1.3 Analysis of the regions surrounding the gene

import cP i ck l e
import f unc t i on_sc r ip t s , s e e s e c t i o n below
import random

V



A. Appendix

import matp lo t l i b . pyplot as p l t
from s c ipy import s t a t s

e c o l i_b l a s t_ f i l e=" f u l f i l l _ l i n e s_ i n_ e c o l i . tx t " # t e x t f i l e s
wi th the l i n e s o f h i t s from BLAST

k l e b s i e l l a_b l a s t_ f i l e=" f u l f i l l _ l i n e s _ i n_ k l e b s i e l l a . txt "

e c o l i _ f i l e=open( " p ick le_dict_ecol i_genomes " ) # sto rage o f
a l l E. c o l i genomes from the database

e c o l i_d i c t=cP i ck l e . load ( e c o l i _ f i l e )
e c o l i _ f i l e . c l o s e ( )

k l e b_ f i l e=open( " p i c k l e_d i c t_k l e b s i e l l a " )
k l e b s i e l l a_d i c t=cP i ck l e . load ( k l e b_ f i l e )
k l e b_ f i l e . c l o s e ( )

# Add the genes o f the s p e c i e s in t o l i s t s
eco l i_genes =[ ]
k l e b s i e l l a_g en e s =[ ]

with open ( e c o l i_b l a s t_ f i l e , ’ r ’ ) as f1 , open (
k l e b s i e l l a_b l a s t_ f i l e , ’ r ’ ) as f 2 :

for l i n e in f 1 :
gene=l i n e . s p l i t ( " \ t " ) [ 0 ]
i f gene not in eco l i_genes :

e co l i_genes . append ( gene )
for l i n e in f 2 :

gene=l i n e . s p l i t ( " \ t " ) [ 0 ]
i f gene not in k l e b s i e l l a_g en e s :

k l e b s i e l l a_g en e s . append ( gene )

# S p l i t the genes in groups o f shared and unique
unique_eco l i =[ ]
un i que_k l eb s i e l l a =[ ]
a l l_shared_genes =[ ]

for gene in eco l i_genes :
i f gene not in k l e b s i e l l a_g en e s :

un ique_eco l i . append ( gene )
else :

a l l_shared_genes . append ( gene )

for gene in k l e b s i e l l a_g en e s :
i f gene not in eco l i_genes :

un i que_k l eb s i e l l a . append ( gene )
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## Pick some o f the shared genes and remove the genes in
common of the two groups

random . seed (3 )
shared_genes1=random . sample ( al l_shared_genes , 105 )
random . seed (23)
shared_genes2=random . sample ( al l_shared_genes , 155 )

for i in shared_genes1 :
i f i in shared_genes2 :

shared_genes1 . remove ( i )
shared_genes2 . remove ( i )

upstreams_shared =[ ]
downstreams_shared =[ ]

# Get the upstream and downstream sequences o f E. c o l i f o r
the unique genes and a l s o the sequences f o r the shared
genes

upstreams_ecol i =[ ]
downstreams_ecol i =[ ]
shared_eco l i =[ ]

with open( e c o l i_b l a s t_ f i l e , ’ r ’ ) as f :
for l i n e in f :

gene=l i n e . s p l i t ( " \ t " ) [ 0 ]
genome=l i n e . s p l i t ( " \ t " ) [ 1 ]
s t a r t=l i n e . s p l i t ( " \ t " ) [ 8 ]
end=l i n e . s p l i t ( " \ t " ) [ 9 ]

i f gene in unique_eco l i : #1
surrounding=func t i on_sc r i p t s .

gene_surrounding ( [ s t a r t , end ] ,
e c o l i_d i c t [ genome ] , 100)

upstreams_ecol i . append ( surrounding
[ 0 ] )

downstreams_ecol i . append ( surrounding
[ 1 ] )

e l i f gene in shared_genes1 :

surrounding=func t i on_sc r i p t s .
gene_surrounding ( [ s t a r t , end ] ,
e c o l i_d i c t [ genome ] , 100)

upstreams_shared . append ( surrounding
[ 0 ] )
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downstreams_shared . append (
surrounding [ 1 ] )

shared_eco l i . extend ( [ surrounding [ 0 ] ,
surrounding [ 1 ] ] )

# same fo r K. pneumoniae
ups t r eams_k l eb s i e l l a =[ ]
downstreams_klebs i e l l a =[ ]
s h a r ed_k l eb s i e l l a =[ ]

with open( k l e b s i e l l a_b l a s t_ f i l e , ’ r ’ ) as f :
for l i n e in f :

gene=l i n e . s p l i t ( " \ t " ) [ 0 ]
genome=l i n e . s p l i t ( " \ t " ) [ 1 ]
s t a r t=l i n e . s p l i t ( " \ t " ) [ 8 ]
end=l i n e . s p l i t ( " \ t " ) [ 9 ]

i f gene in un i que_k l eb s i e l l a :
surrounding=func t i on_sc r i p t s .

gene_surrounding ( [ s t a r t , end ] ,
k l e b s i e l l a_d i c t [ genome ] , 100)

ups t r eams_k l eb s i e l l a . append (
surrounding [ 0 ] )

downstreams_klebs i e l l a . append (
surrounding [ 1 ] )

e l i f gene in shared_genes2 :
surrounding=func t i on_sc r i p t s .

gene_surrounding ( [ s t a r t , end ] ,
k l e b s i e l l a_d i c t [ genome ] , 100)

upstreams_shared . append ( surrounding
[ 0 ] )

downstreams_shared . append (
surrounding [ 1 ] )

s h a r ed_k l eb s i e l l a . extend ( [
surrounding [ 0 ] , surrounding [ 1 ] ] )

for i in range ( 1 , 8 ) :
kmer_length=int ( i )

kmers_up_ecoli=func t i on_s c r i p t s . l i st_to_kmers (
upstreams_ecol i , kmer_length )

kmers_down_ecoli=func t i on_s c r i p t s . l i st_to_kmers (
downstreams_ecoli , kmer_length )

kmers_up_klebs ie l la=func t i on_sc r i p t s . l i st_to_kmers (
ups t r eams_klebs i e l l a , kmer_length )
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kmers_down_klebsiel la=func t i on_sc r i p t s . l i st_to_kmers
( downstreams_klebs ie l la , kmer_length )

kmers_up_shared=func t i on_sc r i p t s . l i st_to_kmers (
upstreams_shared , kmer_length )

kmers_down_shared=func t i on_sc r i p t s . l i st_to_kmers (
downstreams_shared , kmer_length )

# P−va l u e s o f the upstream vs downstream s ides , need
to match in the order o f kmers in l s i t s

al l_kmers=[ ’ ’ . j o i n (x ) for x in i t e r t o o l s . product ( ’
ACGT’ , r epeat=kmer_length ) ]

x=l i s t ( range ( len ( al l_kmers ) ) )

upva lues_eco l i =[ ]
downvalues_ecol i =[ ]

upva l u e s_k l eb s i e l l a =[ ]
downva lue s_k l ebs i e l l a =[ ]

upvalues_shared =[ ]
downvalues_shared =[ ]

for kmer in al l_kmers :
i f kmer in kmers_up_ecoli . keys ( ) :

upva lues_eco l i . append ( kmer_up_ecoli [ kmer ] )
else :

upva lues_eco l i . append ( int (0 ) )

i f kmer in kmers_down_ecoli . keys ( ) :
downvalues_ecol i . append ( kmers_down_ecoli [

kmer ] )
else :

downvalues_ecol i . append ( int (0 ) )
i f kmer in kmers_up_klebs ie l la . keys ( ) :

upva l u e s_k l eb s i e l l a . append (
kmers_up_klebs ie l la [ kmer ] )

else :
upva l u e s_k l eb s i e l l a . append ( int (0 ) )

i f kmer in kmers_down_klebsiel la . keys ( ) :
downva lue s_k l ebs i e l l a . append (

kmers_down_klebsiel la [ kmer ] )
else :

downva lue s_k l ebs i e l l a . append ( int (0 ) )
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i f kmer in kmers_up_shared . keys ( ) :
upvalues_shared . append ( kmers_up_shared [ kmer ] )

else :
upvalues_shared . append ( int (0 ) )

i f kmer in kmers_down_shared . keys ( ) :
downvalues_shared . append ( kmers_down_shared [

kmer ] )
else :

downvalues_shared . append ( int (0 ) )

print ( "E . ␣ c o l i ␣upstream␣vs␣downstream " )
print ( s t a t s . wi lcoxon ( upvalues_eco l i ,

downvalues_ecol i ) )

print ( "K. ␣pneumoniae␣upstream␣vs␣downstream " )
print ( s t a t s . wi lcoxon ( upva lue s_k l eb s i e l l a ,

downva lue s_k l ebs i e l l a ) )

print ( " Shared␣ genes ␣upstream␣vs␣downstream " )
print ( s t a t s . wi lcoxon ( upvalues_shared ,

downvalues_shared ) )

# Comparisons o f gene groups
al l_kmers_unique_ecol i=func t i on_s c r i p t s .

l i st_to_kmers ( upstreams_ecol i+downstreams_ecoli ,
kmer_length )

a l l_kmers_unique_klebs i e l l a=func t i on_sc r i p t s .
l i st_to_kmers ( ups t r eams_k l eb s i e l l a+
downstreams_klebs ie l la , kmer_length )

al l_kmers_shared_ecol i=func t i on_s c r i p t s .
l i st_to_kmers ( shared_eco l i , kmer_length )

a l l_kmers_shared_klebs i e l l a=func t i on_s c r i p t s .
l i st_to_kmers ( sha r ed_k l eb s i e l l a , kmer_length )

# Values
print ( "E . ␣ c o l i ␣ unique ␣vs␣K. ␣pneumoniae␣unique " )
print ( f unc t i on_sc r i p t s . d istance_two_dicts (

al l_kmers_unique_ecol i ,
a l l_kmers_unique_klebs i e l l a ) )

print ( "E . ␣ c o l i ␣ shared ␣vs␣K. ␣pneumoniae␣ shared " )
print ( f unc t i on_sc r i p t s . d istance_two_dicts (

al l_kmers_shared_ecol i ,
a l l_kmers_shared_klebs i e l l a ) )
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l i s t_un ique=func t i on_s c r i p t s .
abs_di f ference_two_dicts ( al l_kmers_unique_ecol i ,
a l l_kmers_unique_klebs i e l l a )

l i s t_sha r ed=func t i on_s c r i p t s .
abs_di f ference_two_dicts ( al l_kmers_shared_ecol i ,
a l l_kmers_shared_klebs i e l l a )

# Di f f e r ence o f unique and shared groups
l i s t _ d i f f=func t i on_s c r i p t s . abs_di f ference_two_dicts (

l i s t_un ique [ 3 ] , l i s t_sha r ed [ 3 ] )
nr_of_hits =[4 , 16 , 50 , 50 , 50 , 50 , 50 ] # number o f

kmers w i l l be p r in t ed in bar p l o t

# Sort the va l u e s by the t h i r d da t a s e t
unique_values =[ ]
unique_kmers =[ ]
shared_values =[ ]
shared_kmers =[ ]
for kmer in l i s t _ d i f f [ 1 ] [ : nr_of_hits [ i −1 ] ] :

i f kmer not in l i s t_un ique [ 3 ] :
unique_values . append ( f loat (0 ) )

else :
unique_values . append ( l i s t_un ique [ 3 ] [ kmer ] )

i f kmer not in l i s t_sha r ed [ 3 ] :
shared_values . append ( f loat (0 ) )

else :
shared_values . append ( l i s t_sha r ed [ 3 ] [ kmer ] )
unique_kmers . append (kmer )
shared_kmers . append (kmer )

f i g , ( ax1 , ax2 , ax3 )=p l t . subp lo t s (3 )
f i g . s u p t i t l e ( "Kmer␣ o f ␣ l ength ␣ " + str ( kmer_length ) ,

f o n t s i z e =18)

ax1 . bar ( range ( nr_of_hits [ i −1]) , unique_values , a l i g n
=’ cen te r ’ , t i c k_ labe l=unique_kmers )

ax1 . s e t_ t i t l e ( " $\ i t {E. ␣ c o l i }$␣unique ␣vs ␣$\ i t {K. ␣
pneumoniae}$␣unique " , f o n t s i z e =12)

ax2 . bar ( range ( nr_of_hits [ i −1]) , shared_values , a l i g n
=’ cen te r ’ , t i c k_ labe l=shared_kmers )

ax2 . s e t_ t i t l e ( " $\ i t {E. ␣ c o l i }$␣ shared ␣vs␣$\ i t {K. ␣
pneumoniae}$␣ shared " , f o n t s i z e =12)

ax3 . bar ( range ( nr_of_hits [ i −1]) , l i s t _ d i f f [ 2 ] [ :
nr_of_hits [ i −1 ] ] , a l i g n=’ cent e r ’ , t i c k_ l abe l=
l i s t _ d i f f [ 1 ] [ : nr_of_hits [ i −1 ] ] )
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ax3 . s e t_ t i t l e ( " $\ i t {E. ␣ c o l i }$␣unique ␣vs ␣$\ i t {K. ␣
pneumoniae}$␣unique ) ␣vs ␣ ( $\ i t {E. ␣ c o l i }$␣ shared ␣vs
␣$\ i t {E. ␣ c o l i }$␣ shared ) " , f o n t s i z e =12)

for ax in [ ax1 , ax2 , ax3 ] :
ax . axh l ine ( y=0.0 , c=" black " , l i n ew id th =0.5)

i f int ( kmer_length ) >=3:
p l t . s e tp ( ax1 . g e t_x t i c k l ab e l s ( ) , r o t a t i on =45)
p l t . s e tp ( ax2 . g e t_x t i c k l ab e l s ( ) , r o t a t i on =45)
p l t . s e tp ( ax3 . g e t_x t i c k l ab e l s ( ) , r o t a t i on =45)

ymin1 , ymax1=ax1 . get_ylim ( )
ymin2 , ymax2=ax2 . get_ylim ( )
ymin3 , ymax3=ax3 . get_ylim ( )
ymin=min ( [ ymin1 , ymin2 , ymin3 ] )
ymax=max( [ ymax1 , ymax2 , ymax3 ] )

p l t . subplots_adjust ( l e f t =0.075 , r i g h t =0.925 , bottom
=0.1 , top=0.9 , wspace=0, hspace =0.5)

p l t . s e tp ( ( ax1 , ax2 , ax3 ) , xl im=[−0.5 , nr_of_hits [ i
−1]−0.5] , yl im=[ymin , ymax ] )

p l t . s a v e f i g ( " gene_surrounding_k "+str ( i )+" . eps " ,
format=’ eps ’ , dpi=1200)

p l t . show ( )
p l t . c l o s e ( )

A.1.1.4 Function scripts

# Function s c r i p t s
import copy

def re s f inder_to_nested ( f i l e , k ) : # r e s f i n d e r f i l e i n t o a
nes ted d i c t i o n a r y wi th kmers and va l u e s
nested={}
counter=0
s e q_ l i s t =[ ]
with open( f i l e , ’ r ’ ) as f :

for l i n e in f :
l i n e=l i n e . s t r i p ( )
i f l i n e [0]== ">" :

i f not s e q_ l i s t : # f i r s t time
current_dic t=l i n e [ 1 : ]
nested [ cur rent_dic t ]={}
continue

else :
for seq in s e q_ l i s t :

for i in range (0 , len ( seq )−k+1) :
kmer=seq [ i : i+k ]
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i f "N" in kmer :
continue

i f kmer in nested [ cur rent_dic t ] :
nested [ cur rent_dic t ] [ kmer

]+=1
else :

nested [ cur rent_dic t ] [ kmer]=1
nested [ cur rent_dic t ] = {k : v / f loat (

t o t a l ) for t o t a l in (sum( nested [
current_dic t ] . va lue s ( ) ) , ) for k , v in
nested [ cur rent_dic t ] . i tems ( ) }

current_dic t=l i n e [ 1 : ]
nested [ cur rent_dic t ]={}
s e q_ l i s t =[ ]
continue

s e q_ l i s t . append ( l i n e )
s e q_ l i s t = [ ’ ’ . j o i n ( s e q_ l i s t ) ]

# the l a s t one
for seq in s e q_ l i s t :

for i in range (0 , len ( seq )−k+1) :
kmer=seq [ i : i+k ]
i f kmer in nested [ cur rent_dic t ] :

nested [ cur rent_dic t ] [ kmer]+=1
else :

nested [ cur rent_dic t ] [ kmer]=1
nested [ cur rent_dic t ] = {k : v / f loat ( t o t a l ) for

t o t a l in (sum( nested [ cur rent_dic t ] . va lue s ( ) )
, ) for k , v in nested [ cur rent_dic t ] . i tems ( ) }

for key in nested . keys ( ) :
i f "N" in key :

nested [ key ]
return nested

def max_value ( d ict1 , nested2 ) : # f ind the max va lue f o r
each gene and the max va lue f o r the E. c o l i , the
d i f f e r e n c e and then c rea t e a new d i c t i o n a r y wi th the ( abs
) d i s t ance .

max_dict = 0
max_nested={}
max_value_dict={}

for k , v in nested2 . i tems ( ) :
# p r i n t ( k , v )
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max_nested [ k ] = max( v . va lue s ( ) )

max_dict=max( d i c t 1 . va lue s ( ) )
for key , va lue in max_nested . i tems ( ) :

max_value_dict [ key ]=1.0∗abs (max_dict−value )

return max_value_dict

def medel_kmer ( nested ) : # ge t the average kmer d i s t r i b u t i o n
dict={}
sum_kmer = 0

# i t e r a t i n g key va lue pa i r
for key , va lue in nested . i tems ( ) :

sum_kmer+=1
for kmer in value :

i f kmer in dict :
dict [ kmer]+=value [ kmer ]

else :
dict [ kmer]=value [ kmer ]

dict = {k : v / f loat (sum_kmer) for k , v in dict .
i t e r i t em s ( ) }

return dict

def d i s t ance ( d ict1 , nested2 ) : # compare the d i s t ance f o r the
same kmer f o r a l l genes

d i s tance_d ic t=copy . deepcopy ( nested2 )

for key , va lue in d i s tance_d ic t . i tems ( ) :
for kmer in value :

i f kmer in d i c t 1 :
d i s tance_d ic t [ key ] [ kmer

]=1.0∗abs ( va lue [ kmer]−
d i c t 1 [ kmer ] ) ∗∗2

else :
d i s tance_d ic t [ key ] [ kmer

]=1.0∗abs ( va lue [ kmer ] ) ∗∗2

for key2 , value2 in d i c t 1 . i tems ( ) :
i f key2 not in value :

d i s tance_d ic t [ key ] [ key2
]=1.0∗abs ( value2 ) ∗∗2
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d i s tance_d ic t = {k : sum( v . va lue s ( ) ) for k , v in
d i s tance_d ic t . i tems ( ) }

return d i s tance_d ic t

def max_abs_value ( d ict1 , nested2 ) : # f ind the maxiumum abs
va lue between kmers f o r each gene

abs_dict=copy . deepcopy ( nested2 )

for key , va lue in abs_dict . i tems ( ) :
for kmer in value :

i f kmer in d i c t 1 :
abs_dict [ key ] [ kmer ]=1.0∗abs (

va lue [ kmer]− d i c t 1 [ kmer ] )
else :

abs_dict [ key ] [ kmer ]=1.0∗abs (
va lue [ kmer ] )

for key2 , value2 in d i c t 1 . i tems ( ) :
i f key2 not in value :

abs_dict [ key ] [ key2 ]=1.0∗abs (
value2 )

max_abs_dict={}
for k , v in abs_dict . i tems ( ) :

max_abs_dict [ k]=max( v . va lue s ( ) )

return max_abs_dict

def eco l i_to_nested ( f i l e , k ) : # E. c o l i f i l e i n t o a nes ted
d i c t i o n a r y wi th kmers and va l u e s
nested={}
s e q_ l i s t =[ ]
with open( f i l e , ’ r ’ ) as f :

for l i n e in f :
l i n e=l i n e . s t r i p ( )
i f l i n e [0]== ">" :

i f not s e q_ l i s t : # f i r s t time
current_dic t=l i n e [ 1 : ]
nested [ cur rent_dic t ]={}
continue

else :
for seq in s e q_ l i s t :

for i in range (0 , len ( seq )−k+1) :
kmer=seq [ i : i+k ]
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i f "N" in kmer :
continue

i f kmer in nested [ cur rent_dic t ] :
nested [ cur rent_dic t ] [ kmer

]+=1
else :

nested [ cur rent_dic t ] [ kmer]=1
nested [ cur rent_dic t ] = {k : v / f loat (

t o t a l ) for t o t a l in (sum( nested [
current_dic t ] . va lue s ( ) ) , ) for k , v in
nested [ cur rent_dic t ] . i tems ( ) }

current_dic t=l i n e [ 1 : ]
nested [ cur rent_dic t ]={}
s e q_ l i s t =[ ]
continue

s e q_ l i s t . append ( l i n e )
s e q_ l i s t = [ ’ ’ . j o i n ( s e q_ l i s t ) ]

#the l a s t one
for seq in s e q_ l i s t :

for i in range (0 , len ( seq )−k+1) :
kmer=seq [ i : i+k ]
i f kmer in nested [ cur rent_dic t ] :

nested [ cur rent_dic t ] [ kmer]+=1
else :

nested [ cur rent_dic t ] [ kmer]=1
nested [ cur rent_dic t ] = {k : v / f loat ( t o t a l ) for

t o t a l in (sum( nested [ cur rent_dic t ] . va lue s ( ) )
, ) for k , v in nested [ cur rent_dic t ] . i tems ( ) }

# i f empty keys , d e l e t e
empty_keys = [ k for k , v in nested . i t e r i t em s ( ) i f not v ]
for k in empty_keys :

del nested [ k ]

return nested

def average_gene_group_value ( dict ) : # input a d i c t i o n a r y
wi th gene names and va lues , output a new d i c t wi th the
average va lue f o r each o f the gene group
new_dict={}
for key in dict :

gene=key . s p l i t ( ’_ ’ )
gene_group=gene [ 0 ]
i f gene_group in new_dict :

new_dict [ gene_group ] . append ( dict [ key ] )
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else :
new_dict [ gene_group ]=[ dict [ key ] ]

average_dict={}
for key in new_dict :

average_dict [ key ]=sum( new_dict [ key ] ) / len ( new_dict [
key ] )

return average_dict

def l i st_to_kmers ( l i s t , kmer_length ) : # have a l i s t o f
sequences and make them in to kmer d i s t r i b u t i o n s o f kmer
o f l e n g t h k
kmer_dict={}
k=int ( kmer_length )
sum_kmer=0
for seq in l i s t :

for i in range (0 , len ( seq )−k+1) :
kmer=seq [ i : i+k ]
l s t =[ "K" , "M" , "N" , "Y" , "R" ]
f = any( f in kmer for f in l s t )
i f f :

continue
sum_kmer+=1

i f kmer in kmer_dict . keys ( ) :
kmer_dict [ kmer]+=1

else :
kmer_dict [ kmer]=1

kmer_dict={k : v/ f loat (sum_kmer) for k , v in kmer_dict .
i t e r i t em s ( ) }

return kmer_dict

def distance_two_dicts ( d ict1 , d i c t 2 ) : # compare the d i s t ance
f o r the same kmer f o r a l l genes to ge t a va lue
d i s tance_d ic t={}
for kmer , va lue in d i c t 1 . i tems ( ) :

i f kmer in d i c t 2 :
d i s tance_d ic t [ kmer ]=1.0∗abs ( d i c t 1 [ kmer]− d i c t 2 [

kmer ] ) ∗∗2
else :

d i s tance_d ic t [ kmer ]=1.0∗abs ( d i c t 1 [ kmer ] ) ∗∗2

for kmer2 , va lue2 in d i c t 2 . i tems ( ) :
i f kmer2 not in d i s tance_d ic t . keys ( ) :

d i s tance_d ic t [ kmer2 ]=1.0∗abs ( value2 ) ∗∗2
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di s tance_value = sum( d i s tance_d ic t . va lue s ( ) )
return distance_value

def abs_di f ference_two_dicts ( d ict1 , d i c t 2 ) : # compare the
d i s t ance f o r the same kmer f o r a l l genes to ge t a va lue
and s o r t the va l u e s
new_dict={}
for kmer , va lue in d i c t 1 . i tems ( ) :

i f kmer in d i c t 2 :
new_dict [ kmer]= d i c t 1 [ kmer]− d i c t 2 [ kmer ]

else :
new_dict [ kmer]=value

for kmer2 , va lue2 in d i c t 2 . i tems ( ) :
i f kmer2 not in new_dict . keys ( ) :

new_dict [ kmer2]=0−value2

d i c t l i s t =[ ]
for key , va lue in new_dict . i t e r i t em s ( ) :

d i c t l i s t . append ( [ key , va lue ] )

abs_sor ted_l i s t=sorted ( d i c t l i s t , key=lambda s u b l i s t : abs
( s u b l i s t [ 1 ] ) , r e v e r s e=True )

key_abs=[ ]
value_abs =[ ]
for i in abs_sor ted_l i s t :

key_abs . append ( i [ 0 ] )
value_abs . append ( i [ 1 ] )

return abs_sorted_l i s t , key_abs , value_abs , new_dict

def gene_surrounding ( po s i t i on s , genome , l ength ) : # to use in
loop , input one genome , the p o s i t i o n s and the l e n g t h .

Output the sequences o f upstream and downstream
start_value , end_value=po s i t i o n s

i f s tar t_va lue < end_value : # f i r s t s t rand
i f int ( s tar t_va lue )−int ( l ength )<=0:

l ength=int ( s tar t_va lue )−1

s t a r t=int ( s tar t_va lue )
end=int ( end_value )

upstream=genome [ s t a r t−int ( l ength )−1: s t a r t −1]
downstream=genome [ end : end+int ( l ength ) ]
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else : # other s t rand
i f int ( end_value )−int ( l ength )<=0:

l ength=int ( end_value )−1

s t a r t=int ( s tar t_va lue )
end=int ( end_value )
t rans_tab le=s t r i n g . maketrans ( "ATCG" , "TAGC" )

upstream_rev=genome [ end−int ( l ength )−1:end−1]
upstream=upstream_rev . t r a n s l a t e ( t rans_tab le )

downstream_rev=genome [ s t a r t : s t a r t+int ( l ength ) ]
downstream=downstream_rev . t r a n s l a t e ( t rans_tab le )

return upstream , downstream

A.1.2 R kod

# R ver s i on 4 . 0 . 0
# Creat ing the model from input t e x t f i l e wi th pre sen t/not

present , l e n g t h and va l u e s f o r kmer o f l e n g t h 3
a l l_data <− read . table (

" model_f i l e . txt " ,
sep=" \ t " , header=TRUE)

a l l_va lues<−a l l_data [ , c(−length ( a l l_va lue s ) ) ] # remove the
kmer TTT

kmer_columns<−a l l_va lues [ 3 : 6 5 ] # the columns wi th kmer

model_l i s t<−a l l_va lues [ , 1 : 2 ] # the f i x e d parameters
kmer_l i s t<−l i s t ( )
c o e f f_l i s t<−l i s t ( )
cont inue=TRUE
while ( cont inue ) # add the kmer wi th the l owe s t p−va lue
{

for ( i in 1 : length ( kmer_columns ) ) {
sub_va lues<−c (model_l i s t , kmer_columns [ i ] )
f i t <− glm( in_e c o l i ~ . , data=sub_values , family=binomial )
pva lues<−summary( f i t )$coef f ic ients [ , 4 ] # a l l p−va l u e s
pvalue_kmer<−pvalues [ length ( pva lues ) ] # the l a s t p−va lue
# ( the added one )
kmer_l i s t<−append( kmer_l i s t , pvalue_kmer ) # append to l i s t

c o e f f<−summary( f i t )$coef f ic ients [ , 1 ] # same fo r e s t ima t e s
c o e f f_kmer<−c o e f f [ length ( c o e f f ) ]
c o e f f_l i s t<−append( c o e f f_l i s t , c o e f f_kmer )
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}
low<−kmer_l i s t [which .min( kmer_l i s t ) ] # f ind the l owe s t p−

va lue
i f ( low >0.001) { ## stop when excedd the p−va lue c u t o f f

cont inue=FALSE
print ( "DONE" )
break

}
# save the parameters b e f o r e z e ro ing and cont inue wi th the

next round
model_l i s t<−c (

model_l i s t , kmer_columns [match(names( low ) ,names( kmer_
columns ) ) ] )

kmer_columns<−kmer_columns[−match(names( low ) ,names( kmer_
columns ) ) ]

kmer_l i s t<−l i s t ( )
c o e f f_l i s t<−l i s t ( )

}

model_names<−names(model_l i s t )

# t r a i n i n g and t e s t i n g data , run 100 t imes
set . seed (33)
random_nr<−f loor ( runif (100 , min=0, max=1000) )
smp_s i z e <− f loor ( 0 . 5∗ nrow( a l l_va lues ) )
model_names_columns<−a l l_va lues [model_names ]

s p e c i f i c i t y_l i s t=l i s t ( )
s e n s i t i v i t y_l i s t=l i s t ( )
for ( i in 1 : 100 ) {

set . seed ( random_nr [ i ] )
t r a i n_id <− sample ( seq_l en (nrow( a l l_va lues ) ) , s i z e = smp_

s i z e )
t r a i n_data<−model_names_columns [ t r a i n_id , ]
t e s t_data <− model_names_columns[− t r a i n_id , ]
glm . f i t <− glm( in_e c o l i ~ . , data=t r a i n_data , family=binomial )
glm . probs <− predict (glm . f i t , t e s t_data ,

type = " response " )
glm . pred <− i f e l s e (glm . probs > 0 . 5 , 1 , 0) # cut o f f f o r

the c l a s s i f i c a t i o n

model_table<−table (glm . pred , t e s t_data$ in_e c o l i )
i f (dim(model_table ) [1]==1) { # i f a l l v a l u e s exceed or

f a l l be low the c u t o f f
i f (rownames(model_table )==0)
{ s e n s i t i v i t y<−0
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s p e c i f i c i t y<−1}
else { s e n s i t i v i t y<−1
s p e c i f i c i t y<−0}

} else {
s p e c i f i c i t y<−(model_table [ 1 , 1 ] / (model_table [ 1 ,1 ]+model_

table [ 2 , 1 ] ) )
s e n s i t i v i t y<−(model_table [ 2 , 2 ] / (model_table [ 1 ,2 ]+model_

table [ 2 , 2 ] ) )
}
s p e c i f i c i t y_l i s t<−c ( s p e c i f i c i t y_l i s t , s p e c i f i c i t y ) # save

the s p e c i f i c i t y in t o the l i s t
s e n s i t i v i t y_l i s t<−c ( s e n s i t i v i t y_l i s t , s e n s i t i v i t y ) # same

fo r s e n s i t i v i t y
}
# Print the s p e c i f i c i t y and s e n s i t i v i t y va l u e s
print ( " s p e c i f i c i t y " )
mean( unlist ( s p e c i f i c i t y_l i s t ) )
print ( " s e n s i t i v i t y " )
mean( unlist ( s e n s i t i v i t y_l i s t ) )
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A.2 Plots

A.2.1 All plots kmer analysis for E. coli, squared Euclidean
distance
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A.2.2 Additional plots
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A.3 Predictive model
For all genes, the final model included 21 kmers. The values for the kmers, when
added to the full model.

Table A.1: Model parameters for all genes for the kmers in the order they were
added.

Kmer added Estimate P-value
AAG -98,23 2,05e-58
ACT 129,46 7,50e-35
CAG 97,24 5,42e-27
GAG 73,97 2,23e-15
AGG -114,80 1,89e-20
ACC -85,46 3,52e-16
GGA -75,97 1,40e-10
TGT -54,05 5,91e-06
CCC -67,99 2,48e-09
GCT 48,86 6,41e-07
CGG -50,63 9,57e-08
CGC 40,28 6,48e-07
TAA 42,68 1,29e-06
TTC 77,91 2,77e-09
TTG 60,80 2,18e-06
GCA 59,73 2,16e-05
GTC 56,72 1,52e-04
TGA 61,84 2,61e-05
ATC 56,71 6,96e-05
CTC -57,04 5,29e-04
GTT 59,06 5,18e-04

A.3.1 Antibiotic classes
A.3.1.1 Beta-lactams

For beta-lactams, the final model included 16 kmers. Values for kmers when added
to the full model.
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Table A.2: Model parameters for beta-lactams for the kmers in the order they
were added.

Kmer added Estimate P-value
AAG -136,29 5,88e-56
AGA 168,84 1,91e-28
ACT 160,81 2,29e-18
GCA 125,31 6,73e-16
CCT -220,54 7,31e-21
ACA -165,17 2,57e-13
CAG 157,48 6,28e-12
GTA 189,58 2,07e-09
GAG 120,76 5,64e-07
GAA 226,79 1,02e-13
GTG -139,69 1,17e-07
TCG 105,77 1,20e-05
CGA -169,50 2,30e-09
TCT -140,86 9,61e-06
TTA 120,55 2,12e-06
CAC 137,25 6,75e-04

A.3.1.2 Aminoglycosides

For aminoglycosides, the final model included three kmers, CCT, TAA and TTG.
Values for kmers when added to the full model.

Table A.3: Model parameters fo aminoglycosides for the kmers in the order they
were added.

Kmer added Estimate P-value
CCT 194,92 2,97e-08
TAA -73,48 1,74e-04
TTG 89,64 5,89e-03

A.3.1.3 Macrolides

For macrolides, the final model included three kmers, GGT, CAG and TTC. Values
for kmers when added to the full model.

Table A.4: Model parameters for macrolides for the kmers in the order they were
added.

Kmer added Estimate P-value
GGT -197,46 6,74e-05
CAG -73,48 1,74e-04
TTC 167,95 1,12e-03
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