

Detecting usage patterns
A study on developmental benefits achieved through detecting usage
patterns in applications by using a logging component

Master of Science Thesis in Software Engineering

Jacob Larsson
Thorvaldur Gautsson

Department of Computer Science and Software Engineering
Chalmers University of Technology
Gothenburg, Sweden, June 2015

The authors grant to Chalmers University of Technology the non-exclusive right to pub-
lish the work electronically and in a non-commercial purpose make it accessible on the
internet. The authors warrant that they are the authors to the work, and warrant that
the work does not contain text, pictures or other material that violates copyright law.

The authors shall, when transferring the rights of the work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
authors have signed a copyright agreement with a third party regarding the work, the
authors warrant hereby that they have obtained any necessary permission from this third
party to let Chalmers University of Technology store the work electronically and make
it accessible on the internet.

Detecting usage patterns

A study on developmental benefits achieved through detecting usage patterns in
applications by using a logging component

JACOB LARSSON
THORVALDUR GAUTSSON

c© JACOB LARSSON, June 2015.
c© THORVALDUR GAUTSSON, June 2015.

Supervisor: MIROSLAW STARON
Examiner: MATTHIAS TICHY

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden, June 2015

Acknowledgements

Many people supported and helped us during the project. We wish to express our
gratitude to Oscar Lund and Henrik Fagrell for their constant and invaluable feedback.
They gave us suggestions, set up meetings with various companies and enthusiastically
encouraged us throughout the whole process. We are very grateful for their help.

Our thesis supervisor, Miroslaw Staron, offered us help, support and guidance throughout
the project. We are also very grateful for his help.

We would like to extend our thanks to the employees of Diadrom Systems AB. They
welcomed us as one of them and invited us to social gatherings, company meetings and
treated us well throughout our time at the company.

Finally, we would like to thank everybody who participated in our workshops, held
meetings with us, or gave us feedback in more informal settings.

Jacob Larsson & Thorvaldur Gautsson

Gothenburg, Sweden

Monday 1st June, 2015

Abstract

Background: The inherent complexity of software development has in recent decades
necessitated the advancement of engineering methods in order to facilitate the construc-
tion of software applications in an efficient manner. For this reason, many different
methodologies and processes have been developed. Problems still remain however, for
example in the field of usage pattern analysis. In many cases there is a gap between the
assumed use of an application and its actual use. Understanding e.g. which features are
used, when they are used, and whether they can cause crashes can enable developers to
better focus their efforts towards productive development and thus contribute towards
further engineering knowledge which can then be applied in software development.

Aim: To explore how logs can be used to understand usage patterns in order to improve
a software application. This is achieved by building a logging component which can with
a minimum effort be integrated into an existing application.

Method: The study presents and analyzes a logging component developed using the
design science research methodology. The process consisted of five steps, in which the
problem domain was analyzed, requirements were identified, a prototype was designed,
built and evaluated, and finally conclusions drawn. Evaluation took place through quan-
titative measurements as well as a survey which was posed to employees at four different
companies. After being completed, the logging component was then additionally assessed
through a case study in which the logging component was integrated with two different
applications and semi-structured interviews held with participants at two workshops.

Results: The research found that a logging component that visually presents usage
patterns is useful for developers in order to to aid further development of an application.
Participants of the workshops as well as those who were surveyed considered the most
useful information to be data on exceptions and crashes, but data on feature usage
was also considered important. All developers interviewed and over 90% of the people
surveyed knew one or more projects which would have benefited from an external logging
component with the functionality presented in this research.

Conclusion: The study confirms that a visual presentation of logs by an external logging
component can aid developers in further developing an application through presenting
information about exceptions and crashes as well as features used by users of the applica-
tion. An external logging component of the type developed in this research can therefore
lead to faster and more efficient development. Recommended future work includes ex-
tending the study to cover applications written in more programming languages, as well
as testing the logging component through an experimental study.

Keywords: Logging, usage patterns, features, code injections, data analysis

Contents

1 Introduction 1

2 Background 3
2.1 C# . 3
2.2 WPF . 4
2.3 Intermediate Languages . 4
2.4 Weaving and Fody . 5
2.5 Visual Studio and NuGet . 6
2.6 NoSQL and MongoDB . 6
2.7 Dashboards . 7
2.8 Business Intelligence . 8
2.9 Aspect Oriented Programming . 9
2.10 Visual GUI Testing and SikuliX . 9
2.11 Dynamic Program Analysis . 10
2.12 Profiling of programs . 10

3 Related Work 11
3.1 Dashboards . 11
3.2 Visual GUI Testing . 12
3.3 Post-deployment data collection . 13

4 Research Methodology 14
4.1 Research Question . 14
4.2 Research Structure . 15

4.2.1 Design Science Research . 15
4.2.2 Case Study . 16

4.3 Research Workflow . 17

5 Research Design 19
5.1 Design Science Research . 19

5.1.1 Awareness of the Problem . 19

ii

CONTENTS

5.1.2 Suggestion . 21
5.1.3 Development . 22
5.1.4 Evaluation . 23
5.1.5 Conclusion . 23

5.2 Case Study . 23
5.2.1 Objectives defined and case study planned 24
5.2.2 Preparation for data collection . 24
5.2.3 Analysis of collected data . 26
5.2.4 Reporting . 26

6 Results and Analysis 27
6.1 System architecture . 27

6.1.1 Weaving Component . 29
6.1.2 Logging Component . 31
6.1.3 GUI Component . 33

6.2 Quantitative metrics . 39
6.3 Interviews . 41

6.3.1 ScreenToGif . 41
6.3.2 Application X . 43

6.4 Survey . 45
6.5 Analysis . 49

7 Discussion 53
7.1 Design decisions . 53
7.2 Performance issues . 54
7.3 Ethical considerations . 55
7.4 Threats to validity . 57

8 Conclusions 59

Bibliography 63

A Screenshots 64

B Interview Questions 69

C Survey Questions 73

D Quantitative measurements 75

E User Stories 81

iii

1

Introduction

The objective of most software development projects is to release or to update a functional
software product, within a reasonable amount of time after the project started, within a
certain budget, and which satisfies a particular set of requirements [1]. Since the birth
of software engineering as a discipline however, software development has become more
and more complex, which makes attaining such an objective increasingly difficult [2].

One of the main reasons for the increasing complexity in the field is the rapid progress of
computer hardware development. It is likely that no other technology in human history
has progressed as rapidly. Indeed, the number of transistors which can be put cost
efficiently on an integrated circuit has doubled every two years for many decades [3].
Edsger W. Dikjstra diagnosed this as the chief cause of increased complexity when he
wrote in 1972 that "as long as there were no machines, programming was no problem at
all; when we had a few weak computers, programming became a mild problem, and now
we have gigantic computers, programming had become an equally gigantic problem." [4]

Gigantic problem or not — complexity now appears to be a fundamental property of
software development [2] and it has many different manifestations. One example is a
general decrease in the performance of applications, which inspired Niklaus Wirth to
famously remark in 1995 that "software is getting slower more rapidly than hardware
becomes faster" [5]. Performance decrease can e.g. be caused by developers adding new
and unnecessary features which make the source code more intricate and convoluted than
needed. This often results in less stable applications which are consequently more prone
to crashes.

At a fundamental level, complexity can also prevent developers from correctly grasping
how an application should preferably function according to its users. The more features
and possibilities an application offers, the more difficult it is to know how it is used. This

1

CHAPTER 1. INTRODUCTION

means that there often exists a gap between the assumed use of an application and its
actual use. In some cases an application can have a vast quantity of features, but only
a limited amount which constitutes a majority of the total usage time. In other cases,
the features most commonly used may be different ones from the preconceived notions
of the developers.

There are a few ways in which the gap between the assumed use of an application and
its actual use can be bridged. This thesis concerns itself with one approach: logging user
behavior. For this purpose, the research question investigated is how can an external
logging component be used to aid in the process of software development by providing
developers with information about usage patterns? The term usage pattern is defined in
the study as how users use an application at a high level, i.e. how they interact with
the application through mouse clicks and keyboard input, which pre-defined features of
the application they use, when and how often they use those features, and when and
how they cause exceptions. The logging component scrutinized in the research therefore
requires the developers of an application to determine and specify what exactly defines
a feature. The usage pattern is the relationship between the users of the application and
those features.

In order to answer the research question, an external logging component which can report
usage patterns to a developing organization was constructed from scratch. The logging
component was thereafter evaluated and the results of the evaluation analyzed. The
study was conducted in cooperation with the IT company Diadrom Systems AB, which
is primarily active in the area of diagnostics for high-tech products. Diagnostics — which
includes logging — and data analysis, is an area of sustained and long-term growth due
to the expanding technology content of various products and their increased complexity.

This study documents the investigative process and its results. The following chapters of
the thesis describes the background for the problem, related work within the field, and
then introduces the research methodology and design which was used to investigate the
research question. After the results are presented, a discussion on ethical issues as well
as various benefits of usage pattern detection follows. Finally, conclusions are drawn and
future work is suggested.

2

2

Background

The thesis includes a range of different topics from different fields and areas which the
reader might not be familiar with. In this chapter, concepts and tools which were used
in the development of the logging component but which the general reader cannot be
presumed to know are presented. Academic topics and fields of research which are related
to the study are likewise explained. This information is intended to give sufficient context
for the study and to place it in a frame of reference.

2.1 C#

C# is an object-oriented programming language which has its roots in the C family
of languages. The C# language was developed at Microsoft within the .NET software
framework but was later standardized by ECMA International as the ECMA-334 stan-
dard and by ISO/IEC as the ISO/IEC 23270 standard [6].

C# is a popular programming language. A recent study of the popularity of programming
languages in 100.000 open source projects found that by measuring lines of code, C#
was the 8th most popular programming language [7]. This is despite the language having
only been introduced in 2001 and generally being more commonly used in corporate
environments than typical open source projects.

3

2.2. WPF CHAPTER 2. BACKGROUND

2.2 WPF

Windows Presentation Foundation (hereafter: WPF) is a graphical presentation system
for applications which run on the Microsoft Windows family of operations systems. WPF
allows developers to construct applications that incorporate vector graphics, interactive
animations, and media-rich front ends [8]. WPF employs a declarative markup language
called XAML to define various interface elements and link them together. XAML is
based on the XML markup language.

WPF is intended by Microsoft to replace older graphical presentation systems — and
could be said to be the heir apparent to the older Windows Forms presentation model.
[8].

2.3 Intermediate Languages

Before a code written in C# is translated into machine code, the C# compiler first
translates the code into an intermediate language (hereafter: IL), which as the name
suggests is a language that lies between the high-level language the programmer writes
code in, and machine code executed by the computer. The purpose of an IL is to translate
the code into a form which is suitable for transformations in order to optimize the code.
An IL can also function as the lowest level programming language that can reasonably
be read by humans before the code is translated into a continuous string of numerical
machine code.

The IL which the C# compiler translates into is called the Common Intermediate Lan-
guage (CIL) which is a specification constructed by Microsoft for the .NET framework.
There are other intermediate languages available; the GNU Compiler Collection (GCC)
uses several different ILs for instance. Only the C# intermediate language (i.e. CIL) will
be considered in this study.

To illustrate CIL, a C# program and its corresponding translation into CIL are shown
in code snippets 2.1 and 2.2.

4

2.4. WEAVING AND FODY CHAPTER 2. BACKGROUND

1 us ing System ;

3 c l a s s Program
{

5 s t a t i c void Main ()
{

7 i n t i = 0 ;
whi l e (i < 10)

9 {
Console . WriteLine (i) ;

11 i++;
}

13 }
}

Code snippet 2.1: C# code

. method pr i va t e h idebys i g s t a t i c void Main () c i l managed
2 {

. ent rypo in t
4 . maxstack 2

. l o c a l s i n i t ([0] in t32 num)
6 L_0000 : ldc . i 4 . 0

L_0001 : s t l o c . 0
8 L_0002 : br . s L_000e

L_0004 : l d l o c . 0
10 L_0005 : c a l l void [mscor l ib] System . Console : : WriteLine (in t32)

L_000a : l d l o c . 0
12 L_000b : ldc . i 4 . 1

L_000c : add
14 L_000d : s t l o c . 0

L_000e : l d l o c . 0
16 L_000f : l dc . i 4 . s 10

L_0011 : b l t . s L_0004
18 L_0013 : r e t

}

Code snippet 2.2: IL translation of the C# code in code snippet 2.1

2.4 Weaving and Fody

Weaving is a technique that can be used in programming languages that use ILs or
other forms of pre-compilation steps. The technique is closely linked to aspect oriented
programming in which it is common to combine many different components into a single
application at compile time [9]. The weaving concept refers to injecting some type of
functionality into the code of an existing program before it is compiled. This can be done

5

2.5. VISUAL STUDIO AND NUGET CHAPTER 2. BACKGROUND

for example by injecting code into a project after it is translated into an IL but prior to
it being transformed into machine code.

By using weaving, it is possible to achieve better modularization through the separation
of concerns. For example, injecting calls to a logging component during compile time
enables developers to keep their code separate from the logging code, and in effect to not
have to think about the logging code at all.

Fody is a tool which can be used for weaving projects developed in the .NET framework by
Microsoft. Fody simplifies the weaving mechanism by providing a structure to simplify
the process of manipulating the CIL of a .NET application. Fody therefore makes it
possible to e.g. weave together two or more projects without intricate knowledge of how
the weaving process itself works.

2.5 Visual Studio and NuGet

Visual Studio is an integrated development environment (IDE) from Microsoft meant for
developing applications for the Windows family of operating systems. The IDE supports
a number of different programming languages, but is mainly used for those which were
designed by Microsoft, i.e. C#, F#, VB.NET and so on. Visual Studio can additionally
be used for developing web applications.

NuGet is the package manager for the .NET framework developed by Microsoft. NuGet
automates the process of downloading, installing, configuring and updating packages for
a given project in Visual Studio. If a package is dependent on another NuGet package, it
is defined in the NuGet. If a NuGet is installed but a dependency is missing, the package
manager will install the missing dependencies automatically.

2.6 NoSQL and MongoDB

NoSQL stands for not only SQL and concerns database management systems that employ
other mechanisms of storage than the traditional table based SQL relational databases.
NoSQL databases can have advantages over SQL databases, for instance they generally
process data faster than relational databases - but they also have disadvantages, such as
e.g. query complexity and overhead [10].

One advantage of NoSQL systems is that unlike traditional relational database man-
agement systems, they have the ability to scale horizontally [11]. This means that it is
possible to add a new server to the database cluster without generating much overhead

6

2.7. DASHBOARDS CHAPTER 2. BACKGROUND

as would be the case with most relational databases, which force the different servers to
communicate frequently.

MongoDB is a NoSQL database management system. It uses a JSON-like format which
is called BSON for storing data and JavaScript for querying the database. Various
programming languages such as e.g. C# have so called MongoDB drivers in which
native queries can be written.

2.7 Dashboards

A dashboard can be defined as a measurement system for visualizing indicators which
have been chosen in order to adequately represent data [12]. The purpose of a dashboard
is to display the most important information to achieve a certain objective, arranged
and concentrated so that it can be glanced at relatively quickly [13]. In addition to
visualization, dashboards can contain calculations derived from the data, performance
indicators, textual representations of data, or other forms of presentation.

Dashboards can be of value to many different stakeholders in an organization. They can
for example be used by upper management to gain information which can help to take
high level decisions. They can also be used by software developers to monitor e.g. the
quality of a particular software product [12]. An example of a dashboard is displayed in
figure 2.1.

7

2.8. BUSINESS INTELLIGENCE CHAPTER 2. BACKGROUND

Figure 2.1: Example of a Dashboard

2.8 Business Intelligence

The area of Business Intelligence concerns analysis of large amounts of data and providing
information which can assist in the business decision making process [14]. Two areas
within Business Intelligence relevant to the study are Data Mining and Process Mining.
Data Mining is about finding patterns and relationships between data. Process Mining
focuses more on analysing and finding process relationships [15].

8

2.9. ASPECT ORIENTED PROGRAMMING CHAPTER 2. BACKGROUND

2.9 Aspect Oriented Programming

Aspect oriented programming refers to a particular programming paradigm which has as
its main aim the goal of increasing modularity within the source code of an application
by separating concerns — and in particular so called cross-cutting concerns — into sepa-
rate components. Cross-cutting concerns are concerns which by their nature span many
different modules which makes it difficult to create separate and independent entities out
of them. Examples of cross-cutting concerns are: security, synchronization, persistence
— and logging [16].

In aspect oriented programming, different aspects are created and then integrated to-
gether at compile time in a so called weaving step.

2.10 Visual GUI Testing and SikuliX

Visual GUI testing is a script based test technique which uses image recognition to
interact with the GUI components of an application [17]. A script in the visual GUI
testing style might for instance locate a particular image, write text in a box below it,
or find a certain button and click it. In this way it is possible to mimic user behavior as
the script locates the elements which have been predefined by the tester.

However, little research has been done within the field and industrial use is small [17].
The research done within the field seems to suggest that while the technique is promising
and can in many cases yield positive results, but that there are many challenges within
the field, for instance script maintenance costs, and how to support test execution [17].

There are many fields of contact between visual GUI testing and the research conducted
in this thesis, just as there are between logging and testing in general. It is for instance
possible to find defects in a problem both by testing it and by logging user behavior and
analysing which user actions lead to crashes. In this sense, a logging component could
decrease the need for visual GUI testing. If the logs obtained from the logging component
yield similar data to that gained by visual GUI testing, then it means less testing will
probably be needed.

SikuliX is a visual GUI testing automation tool which executes pre-defined tasks in
sequential order. It uses python as a scripting language for defining the tasks to be
executed. A task can consist of keyboard inputs, mouse clicks etc. SikuliX can use image
recognition to locate objects on the screen and then executing a task on that image, e.g
performing a mouse click or waiting for a certain image to appear before another task
is executed. As an example, code snippet 2.3 writes "Hello world!" in notepad and then
closes the file without saving it.

9

2.11. DYNAMIC PROGRAM ANALYSIS CHAPTER 2. BACKGROUND

1 openApp("notepad . exe ")
wait (1)

3 type (" He l lo World ! ")
type (Key . F4 , KeyModif ier .ALT) # Close Notepad

5 type (Key .TAB) # Se l e c t "Don ’ t Save"
type (Key .ENTER)

Code snippet 2.3: Python code executed by SikuliX

2.11 Dynamic Program Analysis

Dynamic program analysis is a term which refers to analysis of the properties of a running
application. This is in contrast to static program analysis which considers the source code
of an application without actually executing it [18]. Static program analysis can help to
maintain code quality and should be integrated with the build process of an application,
whereas dynamic program analysis happens after the application has been built, which
makes it possible to evaluate for instance temporal issues.

Dynamic program analysis — unlike its static counterpart — cannot prove whether
an application satisfies a given property, but can detect violations of properties which
happen during runtime [18]. Dynamic program analysis can additionally provide other
useful information to the developers of an application.

The logging component which is the subject of this research employs dynamic program
analysis through reporting how an application is used after it has been compiled and
shipped to its users.

2.12 Profiling of programs

Profiling of programs is a type of dynamic program analysis in which variables such as
e.g. the time complexity of an application or its memory usage are measured. The idea
is to study the behavior on a program based on the previous times it has been used.
Each of these previous usage times utilize a different set of input parameters or files and
then the information required for analysis is collected and evaluated [19].

In order to profile a program, a profiler tool which is integrated with the program is
needed. The information then obtained by profiling a program is generally used to help
with application optimization.

10

3

Related Work

The study touches on many different fields and areas of research. In the background
chapter those areas were discussed, and various terms and concepts which the reader
might be unfamiliar with were explained. In this chapter, the work of others within fields
considered relevant to the study is presented. In cases where design recommendations
were given, such as by Staron et al. regarding dashboards [12], they were generally
followed for the design of the logging component.

3.1 Dashboards

Staron et al. studied in 2013 how three different companies used dashboards to monitor
and control quality aspects of software products under development [12]. The study gave
recommendations based on their analysis for other companies which wished to introduce
dashboards in their projects. Among the recommendations given for constructing the
dashboards were:

• The number of indicators in a dashboard should be limited. The term indicator
refers to an observed value of some sort in this context

• The indicators selected should match the ones desired by stakeholders who have
the mandate and means to act in the project

• Multiple parts of the developing organization should be involved

The recommendations for choosing the right indicators and measures were that it was
imperative to focus on the product, and to focus on the end result. The reason for putting

11

3.2. VISUAL GUI TESTING CHAPTER 3. RELATED WORK

the focus on the product instead of a process or project is that companies generally do
not sell their projects or processes but rather their products. The same reasoning also
explains why focus should be put on the end result. The end result is what companies
provide to their customers — not the intermediate versions which precede it. Monitoring
artifacts such as requirements or architecture instead of the end result is therefore not
sufficient and can lead to short-sighted decisions [12].

Dashboards can have many different indicators. Staron, Meding & Palm studied in
2012 the value of indicators and concluded that an indicator called release readiness was
particularly important [20]. The indicator was developed in an action research project
conducted at Ericsson AB. Further work was done on indicators by Staron et al. in 2013
by studying code stability indicators at three different software development companies:
Ericsson AB, Saab AB and Volvo Group [21].

3.2 Visual GUI Testing

Although some research has been conducted within the field of Visual GUI testing, it is
still a relatively new field. There are many fields of contact between visual GUI testing
and visual logging, as there are between logging and testing in general. One important
relationship between these two fields is that a logging component could decrease cost for
testing and perhaps decrease the need for visual GUI testing; if the logs obtained from
the logging component yield similar data to that gained by visual GUI testing, then its
importance decreases.

Börjesson and Feldt evaluated in 2012 two tools for automated visual GUI testing on
software system developed by a Swedish aerospace company. They found that visual GUI
testing can perform better than manual system test practices and that it furthermore
has benefits over alternative GUI testing techniques. They stated however that visual
GUI testing still had challenges which had not been addressed [17].

Emil Algéroth presented in a paper in 2013 a proof of concept for a novel technique which
combined GUI based testing, visual GUI testing and random testing [22]. Evaluation of
the technique showed that the technique was applicable for both functional and quality
requirement conformance. Furthermore, the results showed that there existed a need in
the industry for the technique.

Liebel et al. evaluated in 2013 how GUI based testing is performed in industrial practice
by conducting a multiple-case study at six different software development companies.
They found that manual GUI based system testing is widespread, but automated GUI
based testing exists only on a small scale. The study also found that there were a number
of problems with GUI based testing, such as e.g. tool limitations and high costs [23].

12

3.3. POST-DEPLOYMENT DATA COLLECTIONCHAPTER 3. RELATED WORK

3.3 Post-deployment data collection

Backlund et al [24] studied post-deployment data collection by conducting a case study
on a web-based portal system. They began by identifying which data needed to be
collected, then implemented the data collection and finally performed an experiment
by comparing the collected data with answers from test subjects. The data used was
collected through aspect-oriented programming and included various user actions, such
as e.g. button clicks and task completion times. They found a correlation between the
survey data and the measurements. For instance, both the survey and the measurements
suggested that a task called change password was the most difficult task for the users to
perform.

13

4

Research Methodology

The study was conducted over a six month period, starting in January and ending in
June of 2015. The study utilized a mixed design which combined two research methods:
design science research and a case study. The design science research approach was used
to construct a logging component which serves as a proof of concept for detecting usage
patterns in external applications. After the logging component had been constructed
it was integrated with a prototype application and then assessed. Further evaluation
was conducted in a case study in which both qualitative and quantitative aspects were
considered.

The logging component was developed in cooperation with Diadrom Systems AB (here-
after: Diadrom) at their company office in Gothenburg. Representatives from Diadrom
provided continuous feedback, both in formal as well as informal settings. Employees
from the company were also part of the requirement elicitation and evaluation processes.

4.1 Research Question

The research question which the study analyzed was:

How can an external logging component be used to aid in the process of software develop-
ment by providing developers with information about usage patterns?

In this context the term usage pattern is defined as how users use an application at a
high level, i.e. how they interact with the application through mouse clicks and keyboard
input, which pre-defined features of the application they use, when and how often they
use those features, and when and how they cause exceptions to be executed. The logging

14

4.2. RESEARCH STRUCTURE CHAPTER 4. RESEARCH METHODOLOGY

component scrutinized in the research therefore requires the developers of an applica-
tion to determine and specify what exactly defines a feature. The usage pattern is the
relationship between the users of the application and those features.

4.2 Research Structure

In order to investigate the research question, a custom made logging component which
could be integrated into an existing application was built from scratch. A research
methodology which combined design and development with research and analysis was
therefore needed for the study. The methodology chosen for this purpose was design
science research, where a model proposed by Vaishnavi and Kuechler was used as a
guideline [25]. After development had ceased, the finished logging component was then
evaluated in a case study using the model proposed by Runesson and Höst [26] in order
to obtain credible results.

4.2.1 Design Science Research

Design science research is by its nature a problem solving process, in which knowledge
and understanding is acquired through building an artifact and then applying it in a
specific problem domain. That is, design science research revolves around creating an
innovative, novel, and purposeful artifact in some specific domain for the purpose of
solving a problem by using the knowledge gained from building and applying the artifact
[27]. The artifact which was to be developed — i.e. the logging component — was an
innovative idea to address a problem, and after the artifact was completed, it was used
to research whether it could aid in the development of an application. For this reason,
design science research was an appropriate methodology, as it aims at creating a part of
the phenomenon which is under investigation.

The design science research model adopted for the study describes a process which is
composed of five steps [25]. The idea is that following these steps enables practitioners
to approach problems in a systematic fashion and to continuously progress towards more
specific solutions. Although the process is structured in a sequential order, it is not
necessary to follow it consecutively. Each step should increase the knowledge about the
research at hand, which means that in some cases it is logical to e.g. start at a different
step than the first one, or move backwards from one step to another [28]. The steps of
the process are:

15

4.2. RESEARCH STRUCTURE CHAPTER 4. RESEARCH METHODOLOGY

1. Awareness of the Problem

2. Suggestion

3. Development

4. Evaluation

5. Conclusion

The process, the flow between the steps, and the output of each step is illustrated in figure
4.1. The Development, Evaluation and Conclusion steps can contribute new knowledge,
which can lead to an increased awareness of the problem, and the Conclusion step can
lead to new design theories. Each step has a distinctive output: a proposal, a tentative
design, an artifact, performance measurements and finally results.

Figure 4.1: The design science research model used, based on the model by Vaishnavi and
Kuechler

4.2.2 Case Study

After the design science research phase was over, the logging component was further
evaluated through a case study. A case study is an empirical method which has as its
objective the investigation of contemporary phenomena in their appropriate context [26].
The data collected can be either quantitative, qualitative or a combination of both types.

16

4.3. RESEARCH WORKFLOW CHAPTER 4. RESEARCH METHODOLOGY

In the case study phase, the limited evaluation which had taken place within the design
science research phase was extended to cover previously developed applications which
were already in use.

The evaluation in the case study was conducted on two applications which had already
been developed and were both in actual use. The assessment involved both qualitative
and quantitative aspects, using both metrics which were measured as well as structured
group interviews.

The case study process model which was used to evaluate the logging component consists
of five steps. As is the case with design science research, the case study research method-
ology is a flexible style of research and proceeding from one step to the next is often
not a sequential process. Iterating between the different steps of the process is relatively
commonplace [26]. However, since the case study conducted in the research centered
on evaluating a finished version of an application and had a clear objective from the
beginning, the steps of the process were followed consecutively and without any overlap.

The steps of the process are:

1. Objectives defined and case study planned

2. Preparation for data collection

3. Collecting evidence

4. Analysis of collected data

5. Reporting

4.3 Research Workflow

The workflow of the research consisted of three main stages. Figure 4.2 illustrates the
entire workflow process.

17

4.3. RESEARCH WORKFLOW CHAPTER 4. RESEARCH METHODOLOGY

Figure 4.2: Study methodology

Before work on the logging component began, a software application called Person-
Database was built in order to have an application which the logging component could
be built around. This application had the purpose of storing information about employees
of a company.

After PersonDatabase was completed, the design science research phase commenced.
The logging component was developed from scratch, with feedback coming from many
different sources. While the logging component was developed primarily around Person-
Database, it was constructed to be as comprehensive and broad as possible. For this
reason it was also regularly tested on the source code of various other applications while
being built.

After the logging component was finished it was then evaluated on two different appli-
cations in a case study.

18

5

Research Design

The study consisted of two different phases, as previously described in chapter 4. In
the design science research phase, a logging component was iteratively built and then
evaluated. In the case study phase, the logging component was further analyzed through
integration with external applications which it had not been previously tested on.

5.1 Design Science Research

The workflow which was followed in the design research phase is illustrated in figure 4.1
in chapter 4. The following sections describe the steps of the process.

5.1.1 Awareness of the Problem

A major problem in software development is that it is often difficult for developers to
know how an application is used by its users. There can be several reasons for this. The
requirements elicitation process may for instance not correctly have predicted what the
users want, or the user needs may have changed as the application has evolved. In these
cases a gap between the assumed use of an application and its actual use has emerged.
This gap can have particularly detrimental effects in cases where only a limited set of the
features of a system constitutes the majority of the total usage time. It can for example
lead to focus being put on the development of features which do not contribute much
business value, instead of the few features which are truly important.

In order to effectively improve an application, it is therefore important to close this gap

19

5.1. DESIGN SCIENCE RESEARCH CHAPTER 5. RESEARCH DESIGN

by obtaining information pertinent to the actual usage pattern of the application. Such
knowledge can reveal in which way the application should be changed and aid in the
prioritization of development work.

There are three main empirical methods which can be used for this purpose:

• User interviews

• User observations

• User logs

The first two approaches both have their disadvantages. Interviewing users is a laborious
process [29] and can lead to incorrect conclusions being drawn. The interviewees may for
example have incentives to provide incorrect information if they want to appear smart
to the interviewer. Another possibility is that the interviewer does not have enough
domain knowledge and as a consequence asks the users the wrong questions. Preparing
and conducting interviews is also an expensive process which may have to be repeated
for every new change which is made to the application.

Observing a user is likewise problematic and can lead to unreliable results. The so called
Hawthorne effect, which states that individuals generally improve or modify an aspect
of their behavior in response to their awareness of being observed [30], is particularly
relevant in this context. Furthermore, it is difficult to observe users while they use
the application in their normal environment — e.g. at home or at their workplace.
As is the case with interviews, the process of observing users additionally requires a
considerably amount of resources, and it needs to be repeated if changes are introduced
to an application.

An alternative way to understand usage patterns is to log how users use the application.
This could theoretically lead to more reliable results since no human to human interaction
is necessary. Some problems exist with this method — building and integrating a logging
component requires e.g. both time and resources. As opposed to the first two methods
however, the time and resources spent will likely decrease drastically in future iterations
of an application since a logging component can be reused once it been developed. If
a change to the application is introduced later, the logging component will be able to
provide new information about usage pattern without any greater expenditure. This
is because it is only the integration step which needs to be repeated — not the actual
development of the logging component. A logging component which can be reused and
quickly integrated with an application would therefore be preferable.

Logging user behavior does have some disadvantages which are not present in the inter-
view or the observation methods. Logging the usage pattern requires resources in the

20

5.1. DESIGN SCIENCE RESEARCH CHAPTER 5. RESEARCH DESIGN

form of CPU, memory and disc space. It will therefore lead to a decrease in performance
for the application. Depending on the implementation of the logging component, this
can affect performance in different aspects. It is however clear that there are limits to
how much performance can be sacrificed, as a large decrease in performance could make
the application unusable.

Another disadvantage is the ethical aspect. Logging user interaction requires explicit
knowledge and allowance from the user — else it would be unethical. A logging compo-
nent could also potentially capture passwords and other private information by mistake.
A logging component would therefore have to be configured by the developers of the ap-
plication to minimize the collection of private information. This issue is further discussed
in section 7.3

5.1.2 Suggestion

After the problem domain had been analyzed, the suggested approach to the problem
was to develop a logging component in order to evaluate whether such a component
could in an effective way be used to improve understanding about the usage pattern of
an application. Before development commenced, a few fundamental requirements had to
be specified.

The requirements were collected by giving presentations and receiving feedback after-
wards, conducting workshops, holding meetings — but also through informal discussions.
Employees and customers of the company Diadrom were the main source of information
during the requirements elicitation process. A part of the requirements were gathered
before development started and more were then added alongside the developmental pro-
cess. The requirements were documented through user stories which can be found in
appendix E.

During the requirements elicitation process three different stakeholders were identified:
Developers, managers and IT support. People in IT support would likely be interested in
viewing the activities of a particular user before that user contacted support. Managers
would be interested in statistics, e.g. which features of an application are most commonly
used, but also how high-value customers use the application. The developers on the
other hand would be interested in information about exceptions, and general application
statistics.

Conducting a thorough research on all these stakeholders was not possible considering the
time frame for the study. There is however a considerable overlap in the area of interest
between the different stakeholders and by satisfying one stakeholder it is therefore also
possible to partly satisfy the others. The focus of the research was put on the developers
and the benefits they could attain from a logging component.

21

5.1. DESIGN SCIENCE RESEARCH CHAPTER 5. RESEARCH DESIGN

The requirements elicitation process led to the following criteria which the logging com-
ponent was required to address:

• It should be possible to reuse the logging component

• It should be easy to integrate the logging component with an already developed
application

• It should not reduce performance to a degree where it affects the usage of the
application

• It should be possible to use the logging component on a computer that is not
continuously connected to the remote database

• It should be possible to regulate what will be logged

• It should be possible to see how the user interacted with the GUI

• It should be possible to see which features of an application are used the most

• It should be possible to see what the user did before an exception occurred

The research focused on investigating whether logging can be a more precise way of
identifying usage patterns for an application while satisfying these criteria.

5.1.3 Development

The criteria defined in section 5.1.2 and the user stories presented in appendix E were
used as fundamental requirements for the logging component and its development was
therefore centered around satisfying the needs documented there.

A decision was taken to divide the logging component into different components which
each had its separate function within the whole project. The organization of these
components changed gradually throughout the project as the logging component evolved.
The development was done in an agile style with iterations where every new iteration
contained improvements over the preceding one.

The final version of the logging component is presented and analyzed in chapter 6 and
further discussed in chapter 7.

22

5.2. CASE STUDY CHAPTER 5. RESEARCH DESIGN

5.1.4 Evaluation

Evaluation on a small scale took place throughout the entire project. Every large design
decision necessitated discussion and planning meetings, and smaller design decisions were
often preceded by an assessment of the current state of the project. During the course
of the development, presentations with a question and answer session were additionally
held at four different organizations:

1. A Swedish automotive company

2. A Swedish truck manufacturing company

3. A civil authority under the Swedish Ministry of Defence

4. Diadrom Systems

These presentations were an important forum for receiving feedback on how development
should proceed, as well as what the audience considered to be valuable. After the presen-
tations, the attendees were given a survey with 10 questions. The purpose of the survey
was to find out whether the logging component could aid in the process of software de-
velopment by providing information about usage patterns, as well as to investigate which
of its functionalities were considered most valuable and whether there were any ethical
objections to the component. The survey questions can be found in appendix C and the
results are presented in chapter 6.

5.1.5 Conclusion

As the PersonDatabase application which was used in the evaluation step was rather
basic, further evaluation of the logging component was considered to be necessary. For
this reason, a case study was conducted where the logging component was integrated with
two applications which were far more complex than PersonDatabase. This is documented
in section 5.2. Both applications had left the development stage and had been released
to the end users.

5.2 Case Study

The finished logging component was evaluated on two applications which were consid-
erably larger and more complicated than the PersonDatabase program which had been
used during the design science research phase. Both of these applications were developed
before work on the logging component commenced and both have been released to their
end users.

23

5.2. CASE STUDY CHAPTER 5. RESEARCH DESIGN

5.2.1 Objectives defined and case study planned

The purpose of the case study was to see whether the conclusions drawn in the evaluation
step of the design science research phase were still valid in cases with complex real-life
applications.

The first application which was assessed was an application developed at Diadrom for a
Swedish aerospace company (hereafter Company X and Application X). This application
consists of approximately 40 thousand lines of code and is considered by employees at
Diadrom to be one of the most complicated applications they have developed. For reasons
of confidentiality the application cannot be described further.

The second application was an open source application named ScreenToGif which allows
its users to record a selected area of their screen, manipulate and edit, and finally save
as a gif image file [31]. The application is released under the open source Microsoft
Reciprocal License which is a copyleft licence from Microsoft. As of May 15th 2015, the
application has been downloaded close to 25 thousand times from SourceForge.

5.2.2 Preparation for data collection

The data collected was both quantitative and qualitative. The quantitative data was
used to support the conclusions drawn from the qualitative data.

Qualitative data

In order to obtain qualitative data, two workshops were held where semi-structured
interviews were conducted. Application X was evaluated through a workshop held at
Diadrom which was attended by developers at the company. ScreenToGif was evaluated
through a workshop held at Chalmers University of Technology which was attended by
students in the Software Engineering M.Sc. programme, all of which had experience as
developers in industrial companies. The complete list of questions asked in the interview
can be found in appendix B.

Both workshops followed the same structure. First, a background was given to the project
and the research question presented. Next the integration of the logging component and
the target application was shown. The attendees were then asked a series of open-ended
questions relating to how difficult they perceived the integration process to be. There-
after a live demonstration was given to show how the logging component worked on the
application which it had been integrated with. Following that, the various functionalities
of the logging component were discussed and questions about its benefits were posed. The

24

5.2. CASE STUDY CHAPTER 5. RESEARCH DESIGN

remaining part of the workshop was then used to present open-ended questions about
the logging component and ask the attendees what their general impressions of it were.

Quantitative data

Several criteria which the logging component had to fulfill had been defined in the aware-
ness of the problem step in the design science research phase. These criteria were used
as a foundation for constructing the measurements that were used to obtain quantitative
data. The following aspects were measured:

• Time to execute a sequence of operations with or without the logging component

• CPU usage with the logging component

• The size of the database after a sequence of operations

• The size of an average screenshot

In order to obtain data which could be generalized, measurements were taken for three
different applications. The applications tested were the applications used in the work-
shops, i.e. ScreenToGif and Application X, as well as the PersonDatabase application
which was used in the evaluation step of the design science research phase. The mea-
surements were conducted using the Visual Studio Profiler, the db.stats() function in
MongoDB and SikuliX. The Visual Studio Profiler is a tool for analyzing performance
issues in an application and gathering performance data. The MongoDB function returns
statistics about a particular database. SikuliX is a visual GUI testing tool and is further
explained in section 2.10.

The first aspect was measured on the target application, both with and without the
logging component. To measure the time to execute a sequence of operations in the ap-
plication, SikuliX was used. The tool was used to define a sequence of operations which
was then executed 100 times using a loop. The time of each execution was then measured
from when the pre-defined sequence started until it stopped. By doing this on the appli-
cation with and without the logging component it was possible to investigate whether the
logging component significantly slowed down the application. The python code which
was run in SikuliX for the PersonDatabase application can be found in appendix D. The
code used for ScreenToGif and Application X was similar.

To measure CPU usage the Visual Studio Profiler was used. Due to restricted access
and technical limitations it was not possible to measure CPU usage for Application X,
as permission was not granted to install the application on computers which had the
measuring tools needed. The size of an average screenshot as well as the size of the
database were measured using the db.stats() function in MongoDB.

25

5.2. CASE STUDY CHAPTER 5. RESEARCH DESIGN

5.2.3 Analysis of collected data

After all data had been collected it was then analyzed to determine whether the criteria
that had been laid out were fulfilled. The Student’s t-test was used to verify that there
was a statistically significant difference between the time it took for the PersonDatabase
and ScreenToGif applications to execute a sequence of operations with and without the
logging component. Since the variance of the data sets for Application X varied greatly,
the Welch t-test was used in that case since it performs better for data sets of unequal
variance.

The null hypothesis was that there should not be a time difference in executing the
sequence of operations dependent on whether the logging component was integrated with
the application or not. The results of the measurements can be found in appendix D and
analysis of the data can be found in chapter 6. The analysis of the quantitative data was
used to support the conclusions drawn from the qualitative data.

5.2.4 Reporting

The results obtained from the analysis of the collected data are presented in chapter 6.

26

6

Results and Analysis

The system which was built evolved throughout the development process as requirements
changed, tests revealed bugs and new information was obtained. Gradually the system
began to take shape, and its usefulness continued to increase. When the development
process ended, the system was then evaluated using the methods which were discussed
in chapter 5. In this chapter, the final version of the logging component is presented and
the results from the evaluation are analyzed.

6.1 System architecture

The logging component provides a way to log various user actions and program behavior
of an application and store those logs in a remote database. Among the user actions which
are logged are e.g. user clicks and button clicks. Handled and unhandled exceptions
as well as method calls are additionally logged. Screenshots are taken when the user
interacts with the application to make it possible to understand how the application
behaved from the users’ point of view. This is further explained in section 6.1.2.

The system which was developed operates by weaving logging statements into the source
code of an application at compile time. Weaving is a technique for automatically injecting
code into previously written code and is further explained in section 2.4. The first version
of the logging component required developers to define precisely what would be logged
in the source code of their application, but since this was considered unpractical, an
automatic weaving functionality was soon added.

Immediately after the logging component started to generate data, the need for a graphi-
cal user interface (GUI) to view the data emerged. It became necessary to develop a GUI

27

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

both for verifying that the correct data was being logged, and to be able to view how
the logging component worked. A decision was taken to completely separate the GUI
component from the rest of the code. This was done for several reasons. The primary
reason was that it should be made possible to change the GUI component — e.g. to a
web application — without affecting the structure of the logging component itself. If the
logging component were extended to cover applications written in more programming
languages, it would also be possible to use an unchanged GUI component to view all the
data. Another reason was to uphold the principle of separation of concerns. Finally, not
all users of an application should necessarily be able to view the collected data and by
separating the GUI component, only those with access to it can view the data.

The development therefore resulted in three different components:

• OzzyLogging — a logging component for logging usage patterns

• IterateDatabase — a GUI component for presenting the data

• Weaver — a weaving component for code injections

Together these three components constitute a system which defines the logging and pre-
sentation of data for C# WPF applications. The system was given the name Ozzy. The
relationship between the components parts of Ozzy is presented in figure 6.1. The GUI
component and the Weaving component are dependent on the logging component. The
weaving component needs to know which methods in the logging component it should
inject calls to. The GUI component requires knowledge about the model of the logging
component where different types of logs are defined.

28

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

Figure 6.1: Component diagram of the system architecture.

6.1.1 Weaving Component

The Weaving component (hereafter: Weaver) only has one purpose: to inject code into
a target application to connect it with the logging component. To achieve this, an open
source weaving tool called Fody was used. By using Fody it was possible to define how
and where code should be injected into the application without specific knowledge about
the Microsoft Build Engine and the Visual Studio APIs. Since Fody had been released as
a NuGet package it was possible to create a NuGet package out of the Weaving component
that would automatically install Fody.

As shown in figure 6.1, Weaver is dependent on the logging component. The logging
component contains a class called logger that exposes several methods which could be
used to create logs. Since Weaver injects calls to those methods it is necessary for Weaver
to have a reference to it. In code snippet 6.1 the log statements that is inserted into the
beginning of every method is shown, with example input parameters.

Logger . LogMethodCall (nu l l , LogLevel . Debug , "System . Object parameter " , "
turbo_spice .Commands" , "PersonEditCommand" , "Execute") ;

Code snippet 6.1: An example of a log statement which is inserted into the beginning of
a method. The input parameters represent the following in ordered sequence: tag, log level,
method parameters, namespace, class name, method name.

29

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

The logging component also has a number of defined attributes which can be used to
put an attribute on a class or a method. The attribute is interpreted by Weaver which
performs an action dependent on the attribute. An example of an attribute used on a
method can be seen in code snippet 6.2, where the attribute has the purpose of instructing
Weaver to avoid adding a log statement to that method. This can be useful if one method
is called a disproportionate number of times which could slow down an application and
affect usage pattern statistics in unwanted ways. It is also possible to specify namespaces,
classes and methods in the settings if the developer do not want to use the attributes.

1 [NoMethodCallLog]
pub l i c void Execute (ob j e c t parameter)

3 {
Person person = parameter as Person ;

5 viewModel . EditPerson (person) ;
}

Code snippet 6.2: An example of using the NoMethodCallLog Attribute to prevent
Weaver from injecting a log statement

All the logic for the weaving component is written in C#. However, since the injection
targets the intermediate language (i.e. CIL) it is necessary to define how the CIL code
should look like and how it should be changed. This means that a large part of Weaver
is written in a way that is similar to CIL code. The CIL code for code snippet 6.1 is
shown in code snippet 6.3. The instructions begin by pushing all parameters that are
necessary for the log statement to a stack. Then the method LogMethodCall in the class
Logger is called.

IL_0000 : l d nu l l
2 IL_0001 : ldc . i 4 0

IL_0006 : l d s t r "System . Object parameter "
4 IL_000b : l d s t r " turbo_spice .Commands"

IL_0010 : l d s t r "PersonEditCommand"
6 IL_0015 : l d s t r "Execute"

IL_001a : c a l l void [OzzyLogging] OzzyLogging . Logging . Logger : : LogMethodCall (
s t r i ng , va luetype [OzzyLogging] OzzyLogging . Model . LogLevel , s t r i ng ,
s t r i ng , s t r i ng , s t r i n g)

8 IL_001f : nop

Code snippet 6.3: An example of CIL code that is inserted into a method. Similar code
is inserted into the beginning of all methods. The corresponding C# code is displayed in
code snippet 6.1

30

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

6.1.2 Logging Component

The logging component (hereafter: OzzyLogging), was developed using C# WPF. The
reason for this choice was that it is a commonly used language at Diadrom, and the com-
pany could provide applications written in C# WPF to evaluate the logging component
on. To store the large amount of data which the logging component produces a deci-
sion was taken to use a NoSQL database called MongoDB. Unlike relational databases,
NoSQL databases do not require users to define a structure for storing the data before it
can be entered, and since it was not clear at the start of the project which kind of data
would be logged, it was considered better to use a NoSQL database such as MongoDB.
By using MongoDB instead of a traditional SQL relational database, less time was there-
fore required for database configuration and instead focus could be put on logging and
analysing usage patterns. NoSQL databases also has the ability to scale horizontally[11]
which also is an advantage when dealing with large datasets.

When the logging component has been integrated with a target application, each time a
new user uses the target application the logging component looks up whether the user
already exists in the database. If that is not the case, a new user is created. User IDs are
created automatically by the logging component through hyphenating the user’s account
name and computer name. This results in the user of the target application never having
to specify a username or ID.

The logging component provides an interface for logging information and timestamps for
the following:

• Method Calls

• Handled Exceptions

• Unhandled Exceptions

• Mouse Clicks

• Mouse Scroll (start and stop)

• Button Clicks

• Specified Keyboard Shortcuts

The logging component logs method calls in order to track the data flow of an applica-
tion. The method logs contain data about the namespace, class name, method name,
parameter types, parameter names and the time of execution. This can allow developers
to find any given method in their source code, and the associated timestamp makes it
possible to view the sequential order of execution.

31

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

Logging all method calls would not have been feasible without the weaving component,
which injects all the method calls during compilation. After the method calls have
been logged, it becomes possible for the GUI component to calculate statistics about
application flows and features. The GUI component is described in section 6.1.3.

Logging exceptions is also an important aspect of the logging component. An interface is
provided for logging both handled and unhandled exceptions. To log the handled excep-
tions it is necessary to insert a log statement into every "catch"-block in the application,
which is automatically done by the weaving component. To log unhandled exceptions, an
event handler in C# WPF is used. All that is necessary is to provide a method that the
WPF framework calls when an unhandled exception occurs. The exception logs contain
data about the exception type, stacktrace, timestamp, message, and data about inner
exceptions.

To capture the user interaction, screenshots are taken for mouse clicks, mouse scroll, but-
ton clicks and specified keyboard shortcuts. All screenshots contain a timestamp which
makes it possible to follow the interaction between user and computer in a sequential or-
der. All of the logs, except for the exception logs, are accompanied by a screenshot. The
purpose of the screenshots is to allow developers to view what actions a user has taken.
By taking a screenshot for the different ways the user interacts with an application it
is e.g. possible to view what the user did before an exception occurred or how the user
used a certain feature.

The logging component was released as a NuGet package and is meant to be installed
using the NuGet package manager in Visual Studio. It can be installed using other
means, but as a NuGet it becomes fast and simple for developers to add it to their
projects. However, this only adds the logging component to their project and nothing
more. By just adding the logging component it would still be necessary to manually add
all the log statements into the source code of a target application. To be able to use
automated integration, the weaving component also has to be added.

One of the goals with the logging component was to make it possible to seamlessly
integrate it with an application. However, it is not realistic to assume that there will
never be a need for configuring the logging component. For this reason, the logging
component is released with a set of default settings which can be changed to better fit
each application it is used on. For example, it is possible to change how many logs should
be kept in a buffer before sending them to the database, and how the logging component
should behave when the connection to the database is lost.

The underlying model used by the logging component can be seen in figure 6.2. IMon-
goDBObject defines an interface for methods and properties that are necessary for a
model class to implement, in order for the object to be stored in the MongoDB database.
ILog is an interface that defines all the standard methods and properties needed by all
the logs. Since all the logs should be possible to store in the database, the ILog inter-

32

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

face also requires that the IMongoDBObject is implemented. The two abstract classes,
AbstractMongoDBObject and AbstractLog, are standard implementations of the their
corresponding interfaces. The AbstractLog is then extended by ImageLog, MethodCal-
lLog, SessionLog, ExceptionLog and UserMarkedLog. Each of the five different logs are
stored in a separate collection in the database. ImageLog, MethodCallLog, SessionLog
and ExceptionLog all contain what their names suggest. The UserMarkedLog is a log
that can be created by a user of an application by using a keyboard shortcut. This
enables the user to create a mark when they experience problems with the application,
e.g latency issues and crashes.

Figure 6.2: UML Diagram of the Model in the Logging Component

6.1.3 GUI Component

The GUI component was developed in C# WPF. In order to present data in a clear and
understandable way, two external libraries were used. Firstly, a library called Blacklight
Toolkit was used to create a dashboard in which different views could be displayed.
Secondly, views which show charts are rendered using a library called Modern UI (Metro)
Charts. Both libraries are open source projects released under the Microsoft Public
License.

33

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

The GUI component displays data for a selected individual user or aggregated data for
all users. A menu of tabs at the top of the GUI component is provided to change from
viewing data for one user or all users, as shown in figure 6.3.

Figure 6.3: The menu for changing between viewing information for one user or all users

The select user sub-menu consists of a list of all users in the database along with a times-
tamp showing when that user was created. When a particular user has been selected, it
is possible to navigate between the sub-menus of the user specific tab shown in figure 6.3.

If the exceptions sub-menu is selected, all the exceptions which have occurred in the
target application while the user has used it are shown. Unhandled exceptions are shown
separately from handled exceptions, and selecting a particular exception shows a tree of
its inner exceptions. When an exception has been selected, a sequence of screenshots
is shown which documents the actions taken by the user from 40 seconds before the
exception occurred to 10 seconds afterwards. Associated with each screenshot is a list of
method calls which were performed after the user action shown in the screenshot.

If the sessions sub-menu is selected, a window opens which makes it possible to select
one of many sessions, each of which corresponds to the unique times when the selected
user has used the application. For each session it is possible to see screenshots taken at
strategic points which reveal user actions, as well as a list of method calls executed by the
application after the action revealed by the screenshots. This is illustrated in figure 6.4.

34

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

Figure 6.4: In the top left corner, a screenshot of a user clicking the Add button in shown.
To the right, the associated method calls are shown.

The statistics and features sub-menus are available for both one selected user as well as
in the form of aggregated data from all users under the all users tab. A figure of the
statistics view for one users is displayed in figure 6.5. The statistics sub-menu contains
information about the following:

• Most common exceptions

• Most used features

• Most called methods

• At what time of day the application is used

35

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

Figure 6.5: Statistics for most used features, method calls and most common exceptions
are displayed. To see, for example, the name of a particular feature, the mouse can be used
to hover over the bar in the chart to view the name. In the bottom right corner there is a
view for displaying at what time of day the application has been used.

General statistics about an application are only shown under the all users tab. These
include the following:

• Total number of users

• Average number of sessions per user

• Average sessions which crashed the application per user

• Total number of sessions which crashed the application

• Total number of sessions

• Average time for a session

• Average number of different flows used per session

• Average number of features used per session

36

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

Feature Definition

In order to be able to understand and analyze the relationship between the users of an
application and its features, the application features need to be defined in some way.
This is done through a Settings tab in the GUI component, in which functionality for
defining and mapping what a feature consists of is provided. How the mapping process
functions is illustrated in figure 6.6.

Figure 6.6: Showing the different steps in the mapping of a feature.

To give a concrete example of how this works in practice, an application that allows
its users to save person names to a database and then read from that database can be
considered. This application might enable its users to add a person to the database by
pressing an add button, then entering the first and last names in respective input boxes,
and finally clicking on a save button to transfer the information to the database. In this
case, the add feature would not be used until the save button is pressed. Clicking these
buttons will trigger methods to be called in the application. Since all method calls are
logged by default, and each feature is mapped using these method calls, it is possible to
keep the feature definition completely detached from the source code of the application
that is being logged. This also makes it possible to re-define features at will, without
affecting the underlying data. However, every time features are re-defined, the whole
database needs to be read and data relating to the features re-calculated.

To module this, a sequence of method calls is mapped to a feature, e.g add and save.
Then, for every feature, there can be several flows that will lead to the same feature
being used. For example, a person could be added by using the add button or perhaps
by using a keyboard shortcut. Each flow in itself is defined by one or several events. An
event is a method call that has been defined by developers as important using the GUI
component. An example of an event would be the method call triggered when clicking
the add button. When executing the feature calculation, all method calls are mapped
to the defined events. In case there is a defined event for a method call, the method call
will be marked as an event. After all the events have been found, they are iteratively

37

6.1. SYSTEM ARCHITECTURE CHAPTER 6. RESULTS AND ANALYSIS

mapped towards flows. If the events appear in a sequence, as defined by a flow, the flow
is marked as having been used once — together with the feature that is represented by
the flow. In this way it is possible to do calculate statistics about both feature usage, as
well as the flows that constitute a feature.

After features have been defined in the GUI component, and the information on feature
usage calculated, calculated data is then presented in the GUI component under the
feature sub-menu. The feature view for all users is displayed in figure 6.7. For every
feature, it is possible to view statistics for the average execution time, number of times
it was used, number of session it was used in, how many session have used it, and the
percentage of users that have used it. Information about the flows for the feature is
available and provides statistics for how many times each flow have been used, how
many users have used the flow and what is the average time for each flow. A similar
view is available if a user is selected, but then no information is displayed about the
relationship between the feature and how many users have used it.

Figure 6.7: Statistics for features is displayed in this view. The bottom row shows infor-
mation about the flows for the feature

Further screenshots of the GUI component as well as explanations of its various views
and displays are shown in appendix A

38

6.2. QUANTITATIVE METRICS CHAPTER 6. RESULTS AND ANALYSIS

6.2 Quantitative metrics

To evaluate the logging component several quantitative metrics were collected. The
purpose was to investigate whether the integration of the logging component would lead
to any large performance issues for the hosting application and to get an idea of how
much data would be generated. The performance was assessed by conducting a test
that measured execution time and collected information about the CPU usage of the
logging component. Three different application were used during the measurements:
PersonDatabase, ScreenToGif and Application X.

ScreenToGif revealed a performance limitation in the logging component by having a
method that was called for every pixel of several images which the application used to
generate a Gif image. This led to many hundred of thousands of method calls being
executed in a short time frame. The result was not just a noticeable performance impact
for the user, but also that more logs were added to the buffer than the logging component
could transfer to the database. If nothing was done, this would eventually cause the
logged application to run out of memory. To avoid this, the attribute NoMethodCallLog
was used on the method to avoid logging it.

Execution time

The average time it took to run a pre-defined sequence of steps in ScreenToGif, Per-
sonDatabase and Application X with and without the logging component integrated is
summarized in table 6.1. The sequence of steps was executed 100 times using a GUI
testing tool named SikuliX and the results were then averaged. The data gathered was
then tested by using a t-test with α=0.05 to see if there were any significant difference
between the mean time with and without the logging component. The complete data can
be found in appendix D. For PersonDatabase and ScreenToGif there was a significant
difference between the mean times, but not for Application X. That means that for Per-
sonDatabase and ScreenToGif the difference observed is likely caused by the integration
of the logging component, but for Application X it could as well be caused by something
else. The data collected for Application X had a much higher variance than the data col-
lected for the other two applications, which is the reason to why no significant difference
could be confirmed.

39

6.2. QUANTITATIVE METRICS CHAPTER 6. RESULTS AND ANALYSIS

PersonDatabase ScreenToGif Application X

With the logging component 43.88 s 18.23 s 56.36 s

Without the logging component 42.64 s 17.44 s 55.87 s

Difference 1.24 s 0.79 s 0.49 s

Table 6.1: Average time to execute a pre-defined sequence of steps in seconds

CPU usage

Measurements of CPU usage were gathered using a tool in Visual Studio. PersonDatabase
and ScreenToGif were executed together with the logging component while using the CPU
measurement tool. The result is presented in table 6.2. To give a hint about performance
bottlenecks in the logging component the CPU usage of the logging component was
divided into three areas: MethodCall, Screen events and buffer & DB (DataBase). The
logging component constituted 25.93% of the CPU usage of PersonDatabase and 11.91%
of the CPU usage of ScreenToGif. The reason for the large difference between the CPU
usage in PersonDatabase compared with ScreenToGif is that ScreenToGif requires more
CPU computation in general just to run the application, for example when encoding
GIF images. PersonDatabase is a small application with a relative low CPU usage. For
this reason the CPU usage for logging method calls, gathering screen events and manage
buffers becomes large relative to the CPU usage of the application.

MethodCall Screen Events Buffer & DB Total

PersonDatabase 0.55 % 14.01 % 11.37 % 25.93 %

ScreenToGif 0.2 % 4.45 % 7.26 % 11.91 %

Table 6.2: Percentage of how much CPU the logging component is using relative to the
total CPU usage of each Application.

Database size

To measure the size of the data generated by the logging component, a built in measure-
ment tool in MongoDB was used. The size of an individual image and of a log statement
for a method call was calculated from the data. The results are presented in table 6.3
and table 6.4. Count defines how many logs the database contained and Avg. Object
Size is calculated by dividing the total size with count. The results are further discussed
in section 7.2.

40

6.3. INTERVIEWS CHAPTER 6. RESULTS AND ANALYSIS

Database Image Collection Size
Approx. Image Size Count Total Size Avg. Object Size

Small (300x350) 560 7200 kB 12.86 kB

Medium (880x600) 200 12907 kB 64.5 kB

Large (1550x840) 206 26416 kB 128.23 kB

Table 6.3: Database size for storing images using the logging component

Database MethodCall Collection Size
Application Count Total Size Avg. Object Size

PersonDatabase 17452 8656 kB 0.496 kB

ScreenToGif 6475 3217 kB 0,496 kB

Table 6.4: Database size for storing method calls using the logging component

6.3 Interviews

In order to evaluate the research question of whether an external logging component
could be used to aid in the process of software development by providing developers with
information about usage patterns, two workshops were held to obtain qualitative data.
The workshops consisted of semi-structured group interviews, as described in section 5.2.
The complete list of questions asked in the interview can be found in appendix B.

6.3.1 ScreenToGif

The participants in the first workshop were four students in the Software Engineering
M.Sc. programme at Chalmers University of Technology. All of them considered software
development to be their area of work and they all had previous industrial experience which
ranged from 2 to 7 years. Three out of four participants had previous experience with
Visual Studio, in addition to having used external logging components, such as Log4Net
and log4j. Two participants had furthermore used custom made logging components
in order to trace exceptions, and one participant had used a logging component which
utilized aspect oriented programming by using PostSharp.

The workshop began by downloading the ScreenToGif application source code from
SourceForge and importing it as a solution in Visual Studio. The NuGet package man-
ager was then used to integrate the logging component with the solution. Before the

41

6.3. INTERVIEWS CHAPTER 6. RESULTS AND ANALYSIS

application was started, it was necessary to write [NoMethodCallLog] immediately pre-
ceding a method called getPixel() which returned the color of every pixel in a recorded
video. Without this minor modification of the application source code, the method would
be logged a disproportionate number of times compared to other methods, resulting in
skewed statistics and a poorer performance of the logging component. The ScreenToGif
application was thereafter started and a sequence of operations performed before the
application was then closed.

The participants all thought that the integration process was easy and straightforward.
One participant wondered whether modifications generally needed to be made, such as
stating that the getPixel() method should not be logged. A discussion then ensued on
the difficulty of building software which can be generalized to work on as many platforms
as possible, as it is often difficult to predict corner cases. One method being called
exceedingly more often than all others, as was the case with getPixel(), illustrates this
quite well.

The participants opined that if they had access to videos showing how the integration
process worked, along with good documentation about configuration options such as the
[NoMethodCallLog] statement used in ScreenToGif, they would not have any qualms
about integrating the logging component on their own without any more training. All
participants stated that the integration looked easier than what they had expected prior
to the start of the workshop.

After demonstration of a typical usage of the ScreenToGif application had been given, the
GUI component was started to show how the logged data was visualized. A discussion on
a range of topics then ensued. The participants e.g. wondered about performance issues,
and especially how well the logging component would perform if used on an application
with thousands of users. For most normal desktop applications, the logging component
does not appear to affect performance to any noticeable degree. However, under some
conditions this may not be the case. The previously mentioned getPixel() method was
called so often for instance that it had a noticeable impact on performance. Generally
speaking, applications with loops which call an methods an enormous amount of times
are most likely to be problematic. Further work on analyzing performance on these kinds
of applications would be needed in order to rectify the problem. Performance could also
be affected if the logging component attempts to save too large amounts of data in the
remote database for the bandwith of the internet connection to handle. The database
additionally needs to have enough storage space if e.g. data for thousands of users is
logged. Performance issues are further discussed in section 7.2.

The participants were adamant that the users of an application should have the right to
know that their actions are being logged. One idea which was suggested to accomplish
this was to inject a pop-up to the application the logging component is integrated with,
which asks the users on the first application start whether they wish to send anonymous
usage statistics to the developers or not.

42

6.3. INTERVIEWS CHAPTER 6. RESULTS AND ANALYSIS

The shared opinion of the participants was that they thought most users would be more
comfortable knowing they were being logged at work but not in applications they use at
home. They also made the distinction that the logging component only logs what users
do in one application — not everything they do on their computer. Most users would
therefore be more likely to consent to logging on applications which do not reveal much
personal information about them. As an example of applications which the participants
mentioned they had no problems with being logged using were project management
software tools, drawing applications, spreadsheets. The main cases where they did not
want to be logged were their Internet browser and applications where they did not know
that they were being logged.

One participant mentioned that it might be possible to do less testing if the application
was used. In his workplace, applications were often released to beta testers before being
shipped, and by using the logging component at that stage to catch exceptions which
occur it might be possible to cover more ground than were otherwise possible and spend
more time in the beta testing phase instead of testing.

All participants thought that their companies would be interested in using an external
logging component of the type that was developed. They all also opined that the logging
component would be useful for them to understand how an application was truly used
by its users and that such information would help to move development in the right
direction. The participants were also of the opinion that the logging component would
be beneficial for debugging an application. Three participants thought that the debugging
functionality was more useful than seeing user flows, and one thought it was the other
way around. One participant opined that the question was not relevant as the logging
component was useful for both purposes and that being good at one thing did not exclude
being good at another.

6.3.2 Application X

The second workshop was held at Diadrom and the participants were four developers
with years of experience in developing, debugging and maintaining software applications.
All participants had previous experience with Visual Studio and all had used logging
tools of some kind at some point in their career. The second workshop followed the
same structure as the first: the background of the project and the research question
were presented, the integration of the logging component and the target application was
shown, a live demonstration of of the application was given and the logged data was
then shown. Several open-ended questions concerning various aspects of the logging
component were asked throughout the process, but the conversation also diverged from
the script several times. The final part of the workshop was used to ask the workshop
participants what their general impressions of the logging component were and ask them
whether they had anything to add.

43

6.3. INTERVIEWS CHAPTER 6. RESULTS AND ANALYSIS

The target application which the logging component was integrated with in the workshop
was built for a Swedish aerospace company. For reasons of confidentiality, neither the
application nor the company it is used at can be discussed further.

On the whole, the participants were impressed with the logging component. Their com-
ments on the integration process were that it looked uncomplicated and clear-cut, which
could greatly aid its adoption in industry. The comments on the data which the GUI
component visualizes were that it could be helpful, especially the screenshots and infor-
mation of steps users take before exceptions occur.

The participants however wondered how the logging component would work in appli-
cations whose source code is obfuscated at compile time. They also wondered whether
the data generated was too much in cases where thousands of users use an application.
They also had many concrete suggestions for how the logging component could further be
developed. One participant said that it would be useful to add a view to the GUI compo-
nent which enabled developers to select which namespaces, classes or methods should be
logged and which should not. This would enable developers to log only relevant informa-
tion for a given purpose, e.g. the debugging of a particular class in a program. Another
participant mentioned that it might be useful for the logging component to present in-
formation about the state of the computer using an application, such as memory usage
or CPU time. Other suggestions which were discussed include:

1. Splitting the logging component into different parts: one focused at developers and
another one focused on managers.

2. Generating statistics to present which features lead to the most exceptions.

3. Being able to select a particular feature and see statistics for what users did before
and after they used it.

4. Comparing different groups of users, e.g. seeing whether there is a difference be-
tween how people in Sweden and Denmark use an application.

5. Seeing what type of features are used at what hours of the day, which could help
to e.g. determine when a system should undergo maintenance.

6. Presenting heatmaps of user clicks

Incorporating all these suggestions would take a great deal of time and would be out of
scope for the thesis. The suggestions however illustrate the myriads of possibilities in
which the data the logging component generates can be analyzed and presented. They
also illustrate that even more types of data can be logged than what is currently done.

Finally, the participants said that they would not mind using an application which was
logged by the logging component — as long as the data was not used to try to measure the

44

6.4. SURVEY CHAPTER 6. RESULTS AND ANALYSIS

productivity or performance of an employee. They did not want the logging component
to be use as a tool which upper management could use to monitor the employees of a
company. As long as the logging component was used for debugging or developmental
purposes, they opined that it would be a great tool for developers.

6.4 Survey

During the course of the research, the logging component was presented at four different
companies, using the PersonDatabase application as an example target application with
which the logging component was integrated. After each presentation, the survey in
appendix C was handed out to those who were present. The total number of participants
in the survey was 27 and the results are displayed in figures 6.8 to 6.17.

1. My area of work is:

Figure 6.8: The participants’ area of work

2. I have this many years of work experience:

Figure 6.9: The participants’ work experience

45

6.4. SURVEY CHAPTER 6. RESULTS AND ANALYSIS

3. I would be comfortable if an application that I use for private matters is
being logged by the logging component

Figure 6.10: The participants’ level of comfort with logging an application they use pri-
vately

4. I would be comfortable if an application that I use at work is being
logged by the logging component

Figure 6.11: The participants’ level of comfort with logging an application they use at
work

46

6.4. SURVEY CHAPTER 6. RESULTS AND ANALYSIS

5. I would be more comfortable using an application that is being logged at
work rather than one I use for private matters

Figure 6.12: Comparison of level of comfort between applications used at home and at
work

6. I know one or several projects that I have been part of where the logging
component would have been useful

Figure 6.13: The number of projects the participants know of where the logging component
would have been useful

47

6.4. SURVEY CHAPTER 6. RESULTS AND ANALYSIS

7. I believe the logging component has potential to provide information that
will facilitate the debugging of an application

Figure 6.14: The potential of the logging component to help the debugging process

8. I believe the logging component has potential to provide information that
could aid in further development of an application

Figure 6.15: The potential of the logging component to help the development process

48

6.5. ANALYSIS CHAPTER 6. RESULTS AND ANALYSIS

9. Of all the information provided by the logging component, the most
important for me is:

Figure 6.16: The most important type of information gained from the logging component

10. I believe my company would be interesting in investing money to get
functionality similar to the one provided by the logging component

Figure 6.17: The participant’s belief on whether their companies would be willing to pay
for the functionality provided by the logging component

6.5 Analysis

The research question which was investigated during the course of the study was how can
an external logging component be used to aid in the process of software development by
providing developers with information about usage patterns. The data from the workshops
and the survey supported the hypothesis that the logging component could aid in the
process of software development. All participants in the workshops and over 90% of the
respondents in the survey said that they knew of one or more projects they had worked
on where the logging component would have been useful. The semi-structured interviews
revealed two main ways in which the logging component could help:

49

6.5. ANALYSIS CHAPTER 6. RESULTS AND ANALYSIS

1. By giving information about exceptions and crashes, to help developers to debug
an application

2. By giving information about feature usage, to help developers to decide which
features are important and which ones should not be developed further

Opinions were split on which one of these was more important. Around 60% of the
survey respondents said that information about exceptions and crashes while 40% thought
information about feature usage was more important. There was a statistically significant
difference between the opinions of developers and managers, as shown in figure 6.18.
Around 70% of the developers considered exception information to be more important
than feature usage information, compared to under 40% of managers.

Of all the information provided by the logging component, the most
important for me is:

Figure 6.18: Most important information by profession

However, there seemed to be a correlation in the other direction between years of expe-
rience and preference between the aforementioned aspects, as can be seen in figure 6.19

50

6.5. ANALYSIS CHAPTER 6. RESULTS AND ANALYSIS

Of all the information provided by the logging component, the most
important for me is:

Figure 6.19: Most important information by experience

This was misleading however, since a disproportionate number of managers surveyed
had high levels of experience, as shown in figure 6.20. Over 70% of managers had 10+
years of experience compared to under 40% for developers. After correcting for this, the
correlation did not appear to hold any more. Since the focus of the research question in
this study was on the developer point of view, the data suggests that information about
exceptions and crashes is more important than information about feature usage.

Experience of each profession surveyed

Figure 6.20: Work vs experience

However, whether the logging component is more useful at one of these two aspects does
not exclude it being good at the other. The participants of the workshops were all of
the opinion that the logging component could aid in developing an application through
both of the aforementioned aspects. The survey yielded the same results, with 100% of
respondents agreeing that the logging component has potential to provide information
that could aid in further development of an application, and around 90% agreeing that it
has potential to provide information that would facilitate the debugging of an application.

The conclusions drawn from the data therefore suggest that an external logging compo-
nent can be used to aid in the process of software development by providing developers

51

6.5. ANALYSIS CHAPTER 6. RESULTS AND ANALYSIS

with information about usage patterns by providing information about:

• Exceptions and crashes

• Feature usage

The performance measurements conducted in section 6.2 indicates that the logging com-
ponent have some negative effect on the performance of an application. The performance
impact of the logging component will always vary depending on the application, but by
using the tools provided by the logging component it is possible for the developer to fine
tune the logging to avoid cases where the logging component will decrease performance
to a degree where it is noticeable by the users. The observed time difference for Person-
Database would be almost impossible for a users to notice and after removing the logging
from one method in ScreenToGif it would either not be possible for a user to notice a
difference. Further discussion about performance issues are found in section 7.2.

The final question is then whether an external logging component of the sort which was
built during this research is useful enough to warrant further development and analysis.
In order to answer that question, it is instructive to view the results from figure 6.17.
The most important test of whether an application is truly useful or not is often whether
people are willing to pay for it. In this respect, the logging component also performed
favorably, with around 65% of respondents believing that their company would be inter-
esting in investing money to get functionality similar to the one provided by the logging
component.

52

7

Discussion

The logging component which was built during the course of the research was designed
to be generalizable and easy to implement. The semi-structured interviews that were
conducted in two evaluation workshops fully supported the hypothesis that this objective
had been achieved. In both workshops the total time to integrate the logging component
took under five minutes and the participants said that the integration was easy and
straightforward and that it looked uncomplicated. Such a swift and effortless integration
is in most respects a positive feature, but it also has a potential drawback: the possibility
of use as spyware for malicious purposes. This potential drawback, along with a host of
other issues, is further discussed in this chapter.

7.1 Design decisions

Throughout the project development, decisions were taken which impacted the final
version of the logging component in various ways. For instance, as the system was
designed with the focus of being easy to integrate, some trade-offs regarding performance
were unavoidable. How the easy to integrate design principle affected the final outcome
is particularly well illustrated by two issues which came up.

1. The logging component logs all methods calls. This will inevitably decrease the
performance of an application, especially if it calls methods unusually frequently.
Another way to implement the logging would have been to log only those methods
which have been specified by developers and nothing else. That would however
have meant that the developers would need to spend time deciding which methods
should be logged and marking them as such. To avoid that, every method call

53

7.2. PERFORMANCE ISSUES CHAPTER 7. DISCUSSION

is logged and a possibility of specifying which methods should not be logged is
provided instead.

2. The way features of an application are defined is done in the GUI component. This
means that when a feature is defined or re-defined, the whole database needs to
be read through, data aggregated and results calculated. It would also have been
possible to define features in the source code of the logged application instead,
which would avoided spending as much time on feature calculation. However, this
would have meant putting a great deal of calls to the logging component in the
source code, making it less readable, and it would mean re-defining features after
an application has shipped would not be possible.

Another important design decision was how the logged data should be visually presented.
This was done by building a GUI component using C# WPF and employing two external
libraries to complete the GUI. The data could just as well have been presented through
other libraries or methods, or even written in a totally different framework, such as e.g.
as a web application. If the logging component were extended to cover applications
written in more programming languages than just C#, this would likely be desirable. If
the logging component were however used by an organizations which have some internal
data visualizing tools or an organization-wide intranet, the data visualization would likely
fit better if added to these previously existing tools.

Just as some of the design decisions which were taken in order to develop the logging
component affected the final result, so will the decision of other developers to use an
external logging component affect their software applications. As the logging component
injects functionality into applications at compile time, the final code released by develop-
ers would not be exactly the same code as what they wrote. This is no different from any
other external library of framework however; using external libraries or products always
represents some loss of control.

7.2 Performance issues

One of the requirements of the logging component was that it should not reduce the
performance of an application to a degree where it affects the usage of an application.
Whether this requirement has been fulfilled or not is a question still open for discussion.
An application that has a method that is called thousands of times during a short interval
will create latency issues and might even cause the logging component to run out of
memory. This was a problem that appeared during the development phase and the
current solution to the problem is to remove the logging of that method by using the
provided NoMethodCallLog attribute or by specifying the method in the settings file. One
could argue that the performance should be improved instead. Doing that is certainly

54

7.3. ETHICAL CONSIDERATIONS CHAPTER 7. DISCUSSION

possible, but it would still not solve the problem. It would only move the boundary of
when the issue will arise, making the problem appear less often. One noticeable issue
is that this enormous amount of method calls is rarely caused directly by a GUI event.
In the ScreenToGif application it was caused by the encoding of an image, which is a
background calculation to produce the GIF image. To understand the usage patterns of
an application, knowledge about all of those method calls is therefore often not necessary.
It could however be useful to know the complete call hierarchy if an exception occurred,
but the intention with the logging component was not to replace a normal error log.
Instead it focuses on providing information about what the user did before the exception
occurred, making it easier and faster for the developer to correct the error. Removing the
log statements in certain performance critical methods was therefore seen as acceptable.

Another concern is the large volumes of data that the logging component will create if it
is ever used in a released application. If an application for instance has 1000 active users
and each user generates 1000 images per day, it would result in:

1000× 1000× 128.23kB = 128230000 kB/day = 128.230GB/day

This is calculated using the size presented in table 6.3, where the size for the large
images is used. Storing 128 GB of data every day will be both expensive and result in
problems managing and querying the large volumes. No time has however been spent
on minimizing the image size due to time constraints for the thesis. It is therefore most
likely possible to greatly reduce the size for each image. In many cases there is also no
need to store all the data after a couple of weeks or months, and by developing a script
that removes unnecessary data could reduce large volumes of data. But with a growing
number of users and applications that require extensive GUI interaction and are used
during a major part of the day, another solution will be needed. One alternative could
be to implement an on/off functionality for remotely controlling which users should be
logged. By doing that it is possible to only monitor a smaller part of all the users, which
would make logging more manageable. The users could be randomly selected, and then
by using statistics estimates could be made for the whole population, or they could be
specifically selected to eventually cover the whole population of users.

7.3 Ethical considerations

There are two main ethical aspects relating to the logging component which need to
be considered. Firstly, there is the issue of potential malicious use as spyware which
was previously mentioned. If the logging component were to be released as open source
software, it would theoretically be easy for the developers of any C# WPF application
to easily bundle it together with their application in order to gain access to personal
information about users, their usernames and passwords, or their bank and credit card

55

7.3. ETHICAL CONSIDERATIONS CHAPTER 7. DISCUSSION

information. Information about computer usage habits which users do not wish to dis-
close could likewise be obtained. Such usage of the logging component would not only be
unethical, but also illegal. Unauthorized access to a computer or user data is illegal in
most jurisdictions, as e.g. defined by the Computer Fraud and Abuse Act in the United
States and the computer fraud section in the 4th chapter of the criminal code in Sweden.

However, there is not much that can be done to prevent this. There are many logging
and monitoring tools which can be used for the same nefarious purposes, and if the
logging component were not released because of these concerns that would in effect be a
form of security through obscurity. In the academic security community, security through
obscurity is generally considered to be bad practice [32]. In this context it is therefore the
responsibility of the developers of an application to use the logging component responsibly
and to notify users if the user actions are logged.

In the event that the logging component will be formally released, either as an open-source
or proprietary software, code will be written which injects a pop-up into the application
which the logging component is integrated with for the first time a user starts the logged
application. This will be done to underscore that the users of an application need to be
aware that they are logged. The pop-up would inform a user that he or she is being logged,
and give instructions on how to turn the logging on or off. User confidentiality should
be paramount in cases where user interactions are logged, and the logging component
was not developed for unauthorized logging. As long as users of an application are aware
that they are being logged, user confidentiality is not breached.

The second issue is that the logging component could be used for productivity measure-
ments, i.e. to measure which employees of a company are the most productive and which
ones are the least productive. This was an issue raised in one workshops which were
held; participants said that they would not mind using a logged application as long as
the logged data was not used for productivity measurements. This is a bit of an ethical
grey area. It is not clear whether any ethical limits are crossed if all employees are aware
and accepting of the fact that the logged data is analyzed in this fashion. Whether it
crosses ethical limits can depend on cultural issues, such as how the concept of personal
integrity is reconciled with the commitment made to an organization or company. There
may also be local laws to consider which can vary from jurisdiction to jurisdiction.

However, the same applies as in the issue of unauthorized logging, namely the issue of
original intent. The logging component was neither built for the purposes of unauthorized
logging nor for logging productivity. The onus therefore lies with those who use it to
proceed in an ethical and responsible fashion. Any tool can be misused, and the logging
component is no different.

56

7.4. THREATS TO VALIDITY CHAPTER 7. DISCUSSION

7.4 Threats to validity

In order for research to be considered scientific, its conclusions must be reproducible
using the defined parameters in the research [33]. There are many aspects which can
influence the reproducibility, and by extension the validity, of a research. In this section
the threats to the validity of this study which were identified are discussed.

The external validity of a research refers to the extent to which it is possible to gener-
alize research findings and to what extent the findings are of interest to people, tools,
organizations or companies outside of the investigated case [34]. The logging component
was evaluated with a survey, quantitative measurements on three different applications of
which two were real-life applications in actual use, and workshops with semi-structured
interviews. In order to obtain more generalizable results it would be necessary to test
the logging component for a longer period on applications and analyze how they evolve.
The logging component also only functions on applications written in C# WPF. There
may possibly be factors in the language which could lead to biased results which are not
reproducible in other languages.

Internal validity refers to the threat that unrelated factors which are not under investiga-
tion might cause the effect observed in the study [34]. Put differently, internal validity is
the risk that a third factor is the cause of an observed effect — and not the factor which
was under investigation. This can be particularly dangerous if researchers are not aware
of other factors which could influence an outcome. The quantitative measurements made
in this research only had one factor which differed — whether the logging component
was integrated into the target application or not. The semi-structured interview used in
the workshops consisted of questions which related solely to the benefits of the logging
component and no third factor was ever involved. For these reasons no internal threats
to validity were identified in the study.

Construct validity refers to whether the values measured in a research reflect the intended
ones. For example, if the questions discussed in an interview are not interpreted the same
way by the interviewer and the interviewee, there is a threat to construct validity [34].
The qualitative data used for evaluation the logging component used interviews. In order
to minimize the construct validity threat, the interviews were in a semi-structured format,
in which the questions could be discussed and the interviewers explain the questions in
cases where the interviewees were uncertain. However, a survey was used in one part of
the evaluation. In this case, it was not possible to expand upon the questions which were
listed. There was therefore a certain threat to validity in that case, but the questions
were worded as clearly and succinctly as possible in order to minimize it.

The conclusion validity of a research refers to whether it is possible to draw the correct
conclusions, i.e. whether there is a statistical relationship between the factors under
investigation. If other researchers later on conduct a similar study, they should be able

57

7.4. THREATS TO VALIDITY CHAPTER 7. DISCUSSION

to reproduce the results [34]. This study was conducted by two researchers, which mini-
mized the single researcher bias. All data collected was digitalized and documented and
reviewed many times. Employees at Diadrom read the results and agreed with their in-
terpretation. Conclusion validity was also minimized by strictly separating the collection
and analysis of the data which was obtained in the two different target applications in
the case study.

58

8

Conclusions

This study examined how a logging component could be used to aid in the process of soft-
ware development by providing developers with information about usage patterns. The
results of the study, which are presented in chapter 6, indicate that a logging component
that can enable developers to obtain information about usage patterns has developmental
value. All participants in the workshops that were held and over 90% of the respondents
in the survey which was posed said that they knew of one or more projects they had
worked on where the logging component would have been useful. The study revealed
many developmental benefits for the developing organization of an application, but the
most important of these benefits were the ability to obtain information about exceptions
and crashes, as well as information about which features the users of an application use.
Opinions were split on which one of these two was more important, with developers and
managers in particular taking a different stance. Developers generally thought that in-
formation about exceptions and crashes was the most valuable, while managers thought
that information about feature usage was of greater value.

The logging component developed during the course of the study can be integrated with
applications developed in the C# language which use WPF. In order to obtain more
general results which are valid for a greater range of applications, it might be pertinent
to port the logging component so that it could work on applications written in other
languages. The Java programming language uses a compact collection of numeric codes,
constants and references called bytecode as an IL before java code is compiled to machine
code. It is possible to inject functionality to the bytecode in a similar fashion as the IL
injections used in the logging component. Recommended future work therefore involves
porting the logging component to Java, and possibly other languages as well.

The evaluation of the logging component focused on developers and the benefit they can
attain from it. As already stated however, there are two other possible focus groups for

59

CHAPTER 8. CONCLUSIONS

the component: people in IT support and managers. Recommended future work includes
analyzing the benefits of the logging component from their perspective.

The logging component was evaluated through both a survey as well as a case study in
which it was integrated with two different applications. While the conclusions seem to
be relatively robust, further evaluation could be conducted. It would be interesting to
conduct a blind experiment in which two groups of developers were given the task of
debugging an application and one group would have access to the logging component but
the other one wouldn’t.

A more long term experiment could also be conducted in which the evolutionary path of
two different applications was compared, where one application was developed over time
using information about features gained from the logging component and the other one
was developed over time using traditional methods. This type of an experiment would
be difficult to perform however due to the considerable amount of time and resources
needed.

60

Bibliography

[1] I. Schnabel, M. Pizka, Goal-Driven Software Development, in: Software Engineering
Workshop, 2006. SEW’06. 30th Annual IEEE/NASA, IEEE, 2006, pp. 59–65.

[2] F. P. Brooks, N. S. Bullet, Essence and Accidents of Software Engineering, IEEE
computer 20 (4) (1987) 10–19.

[3] C. A. Mack, Fifty Years of Moore’s Law, Semiconductor Manufacturing, IEEE
Transactions on 24 (2) (2011) 202–207.

[4] E. W. Dijkstra, The Humble Programmer, Commun. ACM 15 (10) (1972) 859–866,
turing Award lecture.

[5] N. Wirth, A Plea for Lean Software, Computer 28 (2) (1995) 64–68.

[6] A. Hejlsberg, S. Wiltamuth, P. Golde, The C# Programming Language, Adobe
Press, 2006.

[7] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, L. Réveillere, Popularity, Interoper-
ability, and Impact of Programming Languages in 100,000 Open Source Projects,
in: Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th
Annual, IEEE, 2013, pp. 303–312.

[8] A. Troelsen, Pro C# 2010 and the .NET 4 Platform, Apress, 2010.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Ir-
win, Aspect-oriented programming, in: ECOOP’97—Object-oriented programming,
Springer, 1997, pp. 220–242.

[10] N. Leavitt, Will NoSQL Databases Live Up to Their Promise?, Computer 43 (2)
(2010) 12–14.

[11] R. Cattell, Scalable SQL and NoSQL Data Stores, ACM SIGMOD Record 39 (4)
(2011) 12–27.

61

BIBLIOGRAPHY BIBLIOGRAPHY

[12] M. Staron, W. Meding, J. Hansson, C. Höglund, K. Niesel, V. Bergmann, Dash-
boards for Continuous Monitoring of Quality for Software Product Under Develop-
ment.

[13] S. Few, Information Dashboard Design, O’Reilly, 2006.

[14] D. Loshin, Business Intelligence: The Savvy Manager’s Guide, Newnes, 2012.

[15] W. Van Der Aalst, A. Adriansyah, A. K. A. de Medeiros, F. Arcieri, T. Baier,
T. Blickle, J. C. Bose, P. van den Brand, R. Brandtjen, J. Buijs, et al., Process
Mining Manifesto, in: Business process management workshops, Springer, 2012, pp.
169–194.

[16] N. Påhlsson, Aspect-Oriented Programming, Topic Report for Software Engineering
(2002) 11–03.

[17] E. Borjesson, R. Feldt, Automated System Testing Using Visual GUI Testing Tools:
A Comparative Study in Industry, in: Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on, IEEE, 2012, pp. 350–359.

[18] T. Ball, The Concept of Dynamic Analysis, in: Software Engineer-
ing—ESEC/FSE’99, Springer, 1999, pp. 216–234.

[19] F. Gabbay, A. Mendelson, Can Program Profiling Support Value Prediction?, in:
Microarchitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM International
Symposium on, IEEE, 1997, pp. 270–280.

[20] M. Staron, W. Meding, K. Palm, Release Readiness Indicator for Mature Agile and
Lean Software Development Projects, in: Agile Processes in Software Engineering
and Extreme Programming, Springer, 2012, pp. 93–107.

[21] M. Staron, J. Hansson, R. Feldt, W. Meding, A. Henriksson, S. Nilsson, C. Hoglund,
Measuring and Visualizing Code Stability–A Case Study at Three Companies, in:
Software Measurement and the 2013 Eighth International Conference on Software
Process and Product Measurement (IWSM-MENSURA), 2013 Joint Conference of
the 23rd International Workshop on, IEEE, 2013, pp. 191–200.

[22] E. Alégroth, Random Visual GUI Testing: Proof of Concept, 2013.

[23] G. Liebel, E. Alégroth, R. Feldt, State-of-Practice in GUI-based System and Ac-
ceptance Testing: An Industrial Multiple-Case Study, in: Software Engineering and
Advanced Applications (SEAA), 2013 39th EUROMICRO Conference on, IEEE,
2013, pp. 17–24.

[24] E. Backlund, M. Bolle, M. Tichy, H. H. Olsson, J. Bosch, Automated User Inter-
action Analysis for Workflow-based Web Portals, in: Software Business. Towards
Continuous Value Delivery, Springer, 2014, pp. 148–162.

62

BIBLIOGRAPHY

[25] V. Vaishnavi, W. Kuechler, Design Research in Information Systems.

[26] P. Runeson, M. Höst, Guidelines for Conducting and Reporting Case Study Research
in Software Engineering, Empirical software engineering 14 (2) (2009) 131–164.

[27] R. H. von Alan, S. T. March, J. Park, S. Ram, Design Science in Information Systems
Research, MIS quarterly 28 (1) (2004) 75–105.

[28] K. Peffers, T. Tuunanen, M. A. Rothenberger, S. Chatterjee, A Design Science
Research Methodology for Information Systems Research, Journal of management
information systems 24 (3) (2007) 45–77.

[29] R. Mason, Evaluation Methodologies for Computer Conferencing Applications, in:
Collaborative learning through computer conferencing, Springer, 1992, pp. 105–116.

[30] J. G. Adair, The Hawthorne Effect: A Reconsideration of the Methodological Arti-
fact., Journal of applied psychology 69 (2) (1984) 334.

[31] N. Manarin, ScreenToGif.
URL https://screentogif.codeplex.com

[32] J.-H. Hoepman, B. Jacobs, Increased Security Through Open Source, Communica-
tions of the ACM 50 (1) (2007) 79–83.

[33] S. M. Downing, T. M. Haladyna, Validity Threats: Overcoming Interference with
Proposed Interpretations of Assessment Data, Medical Education 38 (3) (2004) 327–
333.

[34] P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Research in Software
Engineering: Guidelines and Examples, John Wiley & Sons, 2012.

63

https://screentogif.codeplex.com

A

Screenshots

In this section screenshots of some of the views of the GUI component are shown.

Figure A.1: The GUI component, showing data about features for all users of a logged
application

64

APPENDIX A. SCREENSHOTS

Figure A.2: The same view as in figure A.1, but with the surrounding border removed.
The 3 views in the top shows statistic about a feature and the 3 bottom views show statistics
for the different flows that can be used to perform a feature

Figure A.3: The feature usage of one selected user

65

APPENDIX A. SCREENSHOTS

Figure A.4: A tree of exceptions, along with the exception stacktrace — as well as screen-
shots and method calls showing what the user did before the exception occurred

Figure A.5: Showing all the sessions for a selected user together with screenshots and
method calls

66

APPENDIX A. SCREENSHOTS

Figure A.6: Mapping method calls to an event. (An event is just an intermediate step in
the mapping of flows and features)

Figure A.7: Mapping events (method calls) to flows

67

APPENDIX A. SCREENSHOTS

Figure A.8: Mapping flows to a given feature

68

B

Interview Questions

Introduction

The workshop was started by outlining the purpose of the study. This was done by first
introducing the research question, giving relevant background information to the project,
and then briefly discussing technical aspects such as e.g. intermediate languages. There-
after, the participants were guaranteed anonymity and finally asked for their consent about
recording the workshop.

Background

The purpose of the background questions was to collect information about the participants.

1. Is your area of work within the field of software development?

(a) If not, what is your area of work?

(b) If yes, for how long have you been doing work related to software projects?

2. Do you have any experience with Visual Studio?

3. Do you have experience with any logging tools?

69

APPENDIX B. INTERVIEW QUESTIONS

The integration process

First a demonstration was given to show how the logging component (in the form of a
NuGet) can be integrated with the target application. The following questions were then
asked.

4. Would you say that the integration process is easy or difficult?

(a) Why was it easy or difficult?

5. Would you trust yourself to integrate the logging component to an application in
Visual Studio right now?

(a) If not, why not?

6. Having seen how the integration process can look like, would you be more or less
willing to use a similar logging component?

The target application

Next a demonstration of the target application (i.e. the one which the logging component
was going to be tested on) was given. The following questions were then asked in order
to see whether the workshop participants saw potential with a logging component prior to
seeing how it presented data.

7. What are your first impressions of the application which was shown?

8. Do you think that an external logging component could help to find out which
features of this application are used the most?

9. Do you think that an external logging component could help to debug this appli-
cation by finding exceptions which occur?

10. Which functionality do you believe to be more valuable: Information about features,
or about exceptions and crashes?

The logging component

Next the GUI component was opened to show how the logging component shows the data
gathered from the previously performed demonstration of the target application.

70

APPENDIX B. INTERVIEW QUESTIONS

11. After having seen how the logging component works, do you think that it gives
useful information about the application you saw it used on?

(a) If no, why?

12. What is the most useful feature of the logging component with regards to the
application you saw it used on?

13. Judging from what you saw, do you think that the logging component can help to
find faults in an application?

14. Do you think the logging component could help you to debug the application which
was shown?

(a) Do you think that it could help you generally to debug applications?

15. Do you think the logging component could help you to figure out which features of
this application are important and which ones are not important?

(a) Do you think that it could help you generally to do this?

16. After having seen all of this, which functionality do you think is more valuable:
Information about exceptions or features?

Final thoughts

Finally, questions were posed which related to ethical aspects, the possibility of further
features which could be added, the novelty of the logging component, and whether the
participants would used it or companies be willing to pay for it.

17. What is your general feeling about this level of logging. Would you be comfortable
with an application that you use at home being logged like this?

18. What about an application you use at work?

19. Does it matter whether it is an application you use in your free time or an enterprise
application used at work?

20. Have you used any similar tools?

(a) If yes, which ones?

21. Is there any important information which you feel that the logging component does
not show?

22. Would you want to use the logging component in your own projects?

71

APPENDIX B. INTERVIEW QUESTIONS

(a) If yes, which of its functionalities would you likely use the most?

23. Do you think a company which you worked at would be interested in investing
money to get functionality similar to the one provided by the logging component?

24. Is there anything you would like to add?

72

C

Survey Questions

1. My area of work is:
2 Development
2 Management
2 Technical support
2 Other (please specify)

2. I have this many years of work experience:
2 0-1 years
2 1-2 years
2 2-4 years
2 4-6 years
2 6-10 years
2 10+ years

3. I would be comfortable if an application that I use for private matters is being
logged by the logging component
2 Strongly agree
2 Agree
2 It doesn’t matter to me
2 Disagree
2 Strongly disagree

4. I would be comfortable if an application that I use at work is being logged by the
logging component
2 Strongly agree
2 Agree
2 It doesn’t matter to me

73

APPENDIX C. SURVEY QUESTIONS

2 Disagree
2 Strongly disagree

5. I would be more comfortable using an application that is being logged at work
rather than one I use for private matters
2 Yes
2 No, it’s the same

6. I know one or several projects that I have been part of where the logging component
would have been useful
2 No, I don’t
2 Yes, 1-2 projects
2 Yes, 3-4 projects
2 Yes, 5-6 projects
2 Yes, 7+ projects

7. I believe the logging component has potential to provide information that will
facilitate the debugging of an application
2 Strongly agree
2 Agree
2 Neither agree nor disagree
2 Disagree
2 Strongly disagree

8. I believe the logging component has potential to provide information that could
aid in further development of an application
2 Strongly agree
2 Agree
2 Neither agree nor disagree
2 Disagree
2 Strongly disagree

9. Of all the information provided by the logging component, the most important for
me is:
2 Information about feature usage
2 Information about crashes/exceptions

10. I believe my company would be interesting in investing money to get functionality
similar to the one provided by the logging component
2 Strongly agree
2 Agree
2 Don’t know
2 Disagree
2 Strongly disagree

74

D

Quantitative measurements

The quantitative data collected provided information about time to execute a sequence
of operations in an application with and without using the logging component.

SikuliX script

Three applications where used with and without the logging component. For each appli-
cation a number of operations where defined using a GUI-testing tool called SikuliX. For
each application the script where used with and without the logging component. The
sequence of operations where ran 100 times and the mean where then calculated. The
SikuliX code used on PersonDatabase can be seen in code snippet D.1. Due to the length
of the python code which SikuliX iterated through, only the code for PersonDatabase is
presented in here. The code for the other two applications was structured similarly, but
used features native to each application.

from c o l l e c t i o n s import deque
2

t imes = []
4 i = 0

totalTime = time . time ()
6

whi le (i < 100) :
8 f i r s tNames = deque (["Zula" , "Cinda" , "Terrence " , "Tatyana" , "Alba" , "Lemuel"

, "Brandon" , "Mao" , " C l a r i c e " , "Manie" , "Lars " , "Finn"])
lastNames = deque ([" P i t t " , "Chandler " , " Jones " , "Sims" , "Ward" , "Maynard" , "

Bryant" , "Kinney" , "Preston " , "Wiggins" , "Kim" , " F i o l "])
10 numberOfDownClicks = deque ([1 , 4 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2])

75

APPENDIX D. QUANTITATIVE MEASUREMENTS

12 # Star t tak ing time and open app l i c a t i o n
s = time . time ()

14 c l i c k (" logo . png")
wait (" t i t l e b a r . png" ,100)

16

Add 5 persons
18 f o r names in range (0 , 5) :

c l i c k ("add . png")
20 type (Key .TAB)

type (f i r s tNames . p op l e f t () + Key .TAB + lastNames . p op l e f t ())
22 type (Key .TAB + Key .ENTER)

type (Key .TAB + Key .TAB)
24

Edit 2 persons
26 f o r name in range (0 , 2) :

type (Key .DOWN)
28 i f name == 1 :

type (Key .DOWN)
30 c l i c k (" ed i t . png")

type (Key .TAB)
32 type (’ a ’ , KeyModif ier .CTRL)

type (Key .BACKSPACE)
34 type (f i r s tNames . p op l e f t ())

type (Key .TAB)
36 type (’ a ’ , KeyModif ier .CTRL)

type (Key .BACKSPACE)
38 type (lastNames . p op l e f t ())

type (Key .TAB + Key .ENTER)
40

Delete 3 persons
42 f o r names in range (0 , 3) :

f o r y in range (0 , numberOfDownClicks . p op l e f t ()) :
44 type (Key .DOWN)

c l i c k (" d e l e t e . png")
46

Add 5 persons
48 f o r names in range (0 , 5) :

c l i c k ("add . png")
50 type (Key .TAB + f i r s tNames . p op l e f t () + Key .TAB + lastNames . p op l e f t ()

+ Key .TAB + Key .ENTER)
type (Key .TAB + Key .TAB)

52

Delete 5 persons
54 f o r names in range (0 , 5) :

f o r y in range (0 , numberOfDownClicks . p op l e f t ()) :
56 type (Key .DOWN)

c l i c k (" d e l e t e . png")
58

Delete the l a s t person
60 c l i c kLo ca t i on = f i nd (" 1430747830097. png") . below (10)

c l i c k (c l i c kLo ca t i on)
62 c l i c k (" d e l e t e . png")

76

APPENDIX D. QUANTITATIVE MEASUREMENTS

64 # Close the app l i c a t i o n and append the va lue s
c l i c k (" c l o s e . png")

66 t imes . append (time . time ()−s)
i += 1

68

pr in t "Each i t e r a t i o n took : " + s t r (t imes)
70 pr in t "Average time : " + s t r (reduce (lambda x , y : x + y , t imes) / l en (t imes)

)
p r i n t "Total loop time : " + s t r (time . time () − totalTime)

72 pr in t "Total time d iv ided by 100 : " + s t r ((time . time () − totalTime) /100)

Code snippet D.1: Python code executed by SikuliX

Application execution time

The data collected using PersonDatabase is presented in table D.1. The result is then
analyses using a two sample t-test for comparing the means (with and without the logging
component). The data is to be found in table D.2 and have been plotted to verify
that it follows the normal distribution. The result from the student’s t-test shows that
using the logging component has an affect on the execution time for the application. In
average the execution takes 1.24 s longer when having the logging component integrated.
The result gathered by using ScreenToGif yields a similar result, there is a significant
difference between the means. Here the difference is 0.79 s instead of 1.24 s. The analyse
on Application X provided less precise result. The variance of the samples varied and
therefore Welch t-test for unequal variance where used. Also the variance within each
sampling were larger. Therefore it was not possible to reject the null hypothesis of equal
means. That means that the time difference of 0.49 s does not necessarily have to be
caused by the logging component.

77

APPENDIX D. QUANTITATIVE MEASUREMENTS

With the logging component Without the logging component

43.2630000114 43.7130000591 44.0799999237 42.1959998608 42.4460000992 42.8459999561

43.3470001221 43.7139999866 44.0950000286 42.2460000515 42.4630000591 42.8470001221

43.3650000095 43.7149999142 44.1130001545 42.246999979 42.4650001526 42.881000042

43.3819999695 43.7289998531 44.114000082 42.3110001087 42.4789998531 42.8949999809

43.4140000343 43.7459998131 44.114000082 42.3129999638 42.4790000916 42.8949999809

43.4309999943 43.7470002174 44.114000082 42.3139998913 42.4790000916 42.8959999084

43.5130000114 43.7589998245 44.1430001259 42.3169999123 42.4790000916 42.8959999084

43.5150001049 43.7630000114 44.1459999084 42.3289999962 42.4800000191 42.9140000343

43.5289998055 43.7790000439 44.1480000019 42.3289999962 42.4949998856 42.9140000343

43.5290000439 43.7809998989 44.1480000019 42.3289999962 42.4959998131 42.9140000343

43.5310001373 43.7810001373 44.1640000343 42.3289999962 42.496999979 42.9190001488

43.5320000648 43.7969999313 44.1789999008 42.3299999237 42.5089998245 42.9299998283

43.5470001698 43.7979998589 44.1800000668 42.3300001621 42.513999939 42.9300000668

43.5629999638 43.8120000362 44.1840000153 42.3310000896 42.5249998569 42.9300000668

43.5659999847 43.8469998837 44.1969997883 42.3450000286 42.5299999714 42.9300000668

43.5810000896 43.8629999161 44.2139999866 42.3459999561 42.5310001373 42.9620001316

43.5959999561 43.9129998684 44.2150001526 42.3459999561 42.5480000973 42.9639999866

43.6129999161 43.9130001068 44.2299997807 42.3619999886 42.5780000687 42.9639999866

43.614000082 43.9300000668 44.243999958 42.3619999886 42.6130001545 42.9659998417

43.629999876 43.9649999142 44.2460000515 42.3630001545 42.6789999008 42.9800000191

43.6300001144 43.9679999352 44.2460000515 42.3630001545 42.6970000267 42.9800000191

43.631000042 43.9800000191 44.246999979 42.364000082 42.7620000839 42.9800000191

43.6460001469 43.9819998741 44.2479999065 42.3790001869 42.7799999714 43.0119998455

43.6470000744 43.9960000515 44.263999939 42.3800001144 42.7809998989 43.0149998665

43.6630001068 43.9970002174 44.2799999714 42.381000042 42.7810001373 43.0310001373

43.6639997959 44.0289998055 44.2969999313 42.3959999084 42.7960000038 43.0460000038

43.6639997959 44.0290000439 44.2969999313 42.3960001469 42.7969999313 43.0469999313

43.6640000343 44.0299999714 44.2969999313 42.4119999409 42.7969999313 43.0629999638

43.6750001907 44.0469999313 44.2969999313 42.4130001068 42.8090000153 43.0629999638

43.6789999008 44.0470001698 44.2970001698 42.4299998283 42.8130002022 43.0799999237

43.6970000267 44.0629999638 44.3819999695 42.4299998283 42.8289999962 43.1289999485

43.6970000267 44.0639998913 44.4769999981 42.4299998283 42.8299999237 43.1629998684

43.6979999542 44.0640001297 42.4300000668 42.8299999237

43.7090001106 44.0789999962 42.4309999943 42.8459999561

Table D.1: Time to execute code for PersonDatabase

With Without α=0.05 One sided Two sided

Mean 43.88762 42.64425 P(T<=t) 1.38859E-79 2.77719E-79

Variance 0.081394959 0.073413477 t-critical 1.652585784 1.972017478

Observations 100 100

Degrees of freedom 198

t-value 31.60116347

Table D.2: Statistics for PersonDatabase using student’s t-test for equal variance

78

APPENDIX D. QUANTITATIVE MEASUREMENTS

With the logging component Without the logging component

17.4310002327 17.7460000515 18.5690000057 16.5810000896 17.5009999275 17.5829999447

17.5410001278 17.746999979 18.5750000477 16.5880000591 17.5039999485 17.5879998207

17.5680000782 17.7569999695 18.5759999752 16.5900001526 17.5039999485 17.5920000076

17.5710000992 17.7599999905 18.5820000172 16.5939998627 17.5069999695 17.5930001736

17.5770001411 17.7709999084 18.5939998627 16.6019999981 17.5199999809 17.5970001221

17.6000001431 17.7899999619 18.5939998627 16.6070001125 17.5250000954 17.5980000496

17.6129999161 17.9580001831 18.5999999046 16.638999939 17.5290000439 17.5989999771

17.6330001354 18.0500001907 18.6019999981 16.6770000458 17.5309998989 17.6019999981

17.6370000839 18.0550000668 18.6150000095 16.6849999428 17.5350000858 17.6080000401

17.6400001049 18.114000082 18.623000145 16.6909999847 17.5360000134 17.6119999886

17.6460001469 18.1199998856 18.6349999905 16.6970000267 17.5379998684 17.6180000305

17.6460001469 18.1210000515 18.6429998875 16.7049999237 17.5389997959 17.6190001965

17.6480000019 18.1589999199 18.6519999504 16.7090001106 17.5390000343 17.625

17.6540000439 18.1610000134 18.6789999008 16.7309999466 17.5400002003 17.6289999485

17.6730000973 18.2269999981 18.6870000362 16.7660000324 17.5429999828 17.6349999905

17.6769998074 18.2780001163 18.7100000381 16.7730000019 17.5439999104 17.638999939

17.6790001392 18.3150000572 18.7109999657 16.8680000305 17.5479998589 17.6400001049

17.6839997768 18.379999876 18.7589998245 17.3059999943 17.5480000973 17.6410000324

17.6949999332 18.4259998798 18.7820000648 17.3110001087 17.5490000248 17.6419999599

17.6970000267 18.4849998951 18.9749999046 17.4039998055 17.5520000458 17.6419999599

17.6989998817 18.4919998646 18.9889998436 17.4079999924 17.5529999733 17.6430001259

17.7000000477 18.5039999485 19.0209999084 17.4149999619 17.5529999733 17.6510000229

17.7019999027 18.5050001144 19.0230000019 17.4390001297 17.5559999943 17.6519999504

17.7030000687 18.5069999695 19.0299999714 17.4409999847 17.5600001812 17.6519999504

17.7100000381 18.5120000839 19.0510001183 17.4500000477 17.5600001812 17.6800000668

17.7109999657 18.5169999599 19.0759999752 17.4659998417 17.5659999847 17.6829998493

17.7119998932 18.518999815 19.0780000687 17.4689998627 17.5679998398 17.6970000267

17.7200000286 18.5199999809 19.0920000076 17.4800000191 17.5699999332 17.7460000515

17.7219998837 18.5250000954 19.0999999046 17.4819998741 17.5699999332 17.7920000553

17.7290000916 18.5250000954 19.1199998856 17.4909999371 17.5750000477 17.9750001431

17.7349998951 18.5410001278 19.131000042 17.4940001965 17.5769999027 18.4909999371

17.7369999886 18.5450000763 19.1600000858 17.4989998341 17.5769999027 20.2509999275

17.7369999886 18.5539999008 17.4990000725 17.5789999962

17.7389998436 18.5620000362 17.4990000725 17.5829999447

Table D.3: Time to execute code for ScreenToGif

With Without α=0.05 One sided Two sided

Mean 18.23348 17.4485 P(T<=t) 1.16057E-23 2.32115E-23

Variance 0.265598756 0.211632487 t-critical 1.652585784 1.972017478

Observations 100 100

Degrees of freedom 198

t-value 11.36303013

Table D.4: Statistics for ScreenToGif using student’s t-test for equal variance

79

APPENDIX D. QUANTITATIVE MEASUREMENTS

With the logging component Without the logging component

51.4779999256 54.5720000267 57.4149999619 44.8919999599 53.3359999657 58.6900000572

51.7809998989 54.6960000992 57.7279999256 45.0269999504 53.5180001259 58.7859997749

51.8900001049 54.8510000706 57.7750000954 45.0279998779 53.5379998684 58.8129999638

52.1290001869 54.9200000763 57.8370001316 45.2820000648 53.7590000629 58.8289999962

52.137999773 55.0230000019 57.9379999638 45.7630000114 54.1779999733 59.0440001488

52.2029998302 55.0280001163 57.9679999352 46.5900001526 54.375 59.0480000973

52.2710001469 55.0490000248 58.0069999695 46.7129998207 54.5420000553 59.0859999657

52.3289999962 55.0590000153 58.0339999199 47.6480000019 55.1490001678 59.0889999866

52.3929998875 55.1979999542 58.2049999237 48.7650001049 55.2949998379 59.1279997826

52.5970001221 55.2249999046 58.3119997978 49.1840000153 55.3660001755 59.1510000229

52.8280000687 55.2449998856 58.4779999256 49.7860000134 55.3679997921 59.2110002041

52.8680000305 55.3090000153 58.6890001297 49.8819999695 55.3770000935 59.4049999714

52.8919999599 55.4300000668 59.4700000286 50.4190001488 55.7369999886 59.5429999828

52.9299998283 55.5680000782 59.5409998894 50.4819998741 55.9119999409 59.5710000992

53.0549998283 55.6399998665 59.763999939 50.496999979 55.9200000763 60.242000103

53.2269999981 55.6659998894 59.9319999218 50.9630000591 56.0900001526 60.2620000839

53.2339999676 55.7750000954 60.0359997749 50.9879999161 56.378000021 60.2869999409

53.2540001869 55.8129999638 60.4670000076 51.0069999695 56.4019999504 60.3910000324

53.2599999905 55.868999958 60.5069999695 51.0950000286 56.8429999352 60.5469999313

53.3070001602 55.9160001278 60.9560000896 51.4470000267 57.0940001011 60.6649999619

53.3230001926 56.0720000267 61.0609998703 51.4819998741 57.2320001125 60.7300000191

53.368999958 56.3970000744 61.1990001202 51.5099999905 57.254999876 60.8090000153

53.385999918 56.4070000648 61.2269999981 51.7870001793 57.3230001926 61.5989999771

53.4579999447 56.4169998169 61.4119999409 51.8199999332 57.4419999123 62.1669998169

53.518999815 56.5230000019 61.4769999981 52.3629999161 57.4560000896 62.8480000496

53.5550000668 56.6159999371 61.4800000191 52.4869999886 57.75 63.1330001354

53.5850000381 56.6910002232 61.5279998779 52.4990000725 57.7699999809 65.1800000668

53.7180001736 56.7779998779 62.3080000877 52.753000021 57.8880000114 65.381000042

53.7380001545 56.8870000839 63.371999979 52.8579998016 58.4149999619 65.9210000038

53.7839999199 56.9010000229 64.6410000324 52.8800001144 58.4479999542 67.6160001755

54.1619999409 57.0969998837 66.4070000648 53.0650000572 58.4539999962 68.8240001202

54.228000164 57.2599999905 68.0440001488 53.0729999542 58.4699997902 71.3499999046

54.2430000305 57.2739999294 53.253000021 58.6679999828

54.4190001488 57.3380000591 53.2790000439 58.6739997864

Table D.5: Time to execute code for Application X

With Without α=0.05 One sided Two sided

Mean 56.36276 55.87335 P(T<=t) 0.217769789 0.435539578

Variance 11.38949304 27.81692938 t-critical 1.653974208 1.974185191

Observations 100 100

Degrees of freedom 168

t-value 0.781617419

Table D.6: Statistics for Application X using Welch t-test for unequal variance

80

E

User Stories

The user stories are grouped into different viewpoints, depending on which target group
they relate to the most. The viewpoints are those of:

• A user of an application which have the logging component integrated (id: UL)

• A developer working on an application that is logged by the logging component
(id: DL)

• A user of the Ozzy GUI component (id: UG)

A user of a logged application

ID: UL1 Dependency:

Origin: User of logged application

User Story: Users should not have to specify a username for the logging component
to use

Description: The logging component should not require the user to enter any data
manually in order to get started using the applications, except for
accepting that the logging component is used

Rationale: The logging component should not require any data to be entered
by the users since that would have a negative impact on the user
experience

81

APPENDIX E. USER STORIES

ID: UL2 Dependency:

Origin: User of logged application

User Story: The logging component should not slow down the application

Description: A logging component is only useful if it does not negatively affect
performance and latency of an application to a degree where it is
possible for the user to notice a difference

Rationale: Performance is important since the user experience should not be
affected

ID: UL3 Dependency:

Origin: User of logged application

User Story: The logging component should notify the user that they are being
logged

Description: By asking the user for their permission when the application start for
the first time

Rationale: To make the user aware that they are being logged

A developer working on an application that is logged by the
logging component

ID: DL1 Dependency:

Origin: Developer using the logging component

User Story: The logging component should be possible to install through the
NuGet Package Manager in Visual Studio

Description: Visual Studio and the NuGet Package Manager is described in sec-
tion 2.5

Rationale: To shorten the time it takes to get started using the logging compo-
nent

82

APPENDIX E. USER STORIES

ID: DL2 Dependency:

Origin: Developer using the logging component

User Story: The logging component should be completely separate from the pre-
sentation layer (GUI component) of the logged data

Description: Create a separate component for the GUI

Rationale: No user of the application that is using the logging component should
have access to the presentation layer

ID: DL3 Dependency:

Origin: Developer using the logging component

User Story: The logging component should be able to integrate by using code
injections

Description: By using code injections the required code for the application that
want to use the logging component can be automatically added to an
application during compilation

Rationale: To shorten the time required for integration and to keep the original
application code more pristine

ID: DL4 Dependency: DL3

Origin: Developer using the logging component

User Story: The functionality for the code injection should be separated from the
logging component

Description: Create a separate component for the code injections

Rationale: To allow the developers to select whether they want to use the code
injection or not. If not, they can add the log statements themselves

ID: DL5 Dependency: DL3

Origin: Developer using the logging component

User Story: The logging component should provide a way for the developers to
manually select which methods to inject logging statements to

Description: By enabling the developers to manually remove the logging of certain
methods, the logging component can better be adapted to fit more
applications

Rationale: Performance problems can arise when a method, that is being logged,
is executed thousands of times in a short time slot

83

APPENDIX E. USER STORIES

ID: DL6 Dependency:

Origin: Developer using the logging component

User Story: The logging component should provide a way for the developers to
separate their own code from the code for the logging component

Description: By providing code injections and a separate settings file to specify
how the logging component should behave, there is no need for the
developers to modify their own code

Rationale: Some developers do not want to "contaminate" their code with for
example log statements

ID: DL7 Dependency:

Origin: Developer using the logging component

User Story: The data should be stored in a MongoDB database

Description: MongoDB is described in section 2.6

Rationale: MongoDB is easy to get started with since it does not require a pre-
defined database structure and it has ability to scale horizontally

ID: DL8 Dependency:

Origin: Developer using the logging component

User Story: The logging component should function even if the connection to the
remote database is lost

Description: By storing data locally for a defined time period, data can still be
collected without constant connection to the remote database. In
order to not consume large amount of hard drive space, the data will
be erased after a defined time period

Rationale: It is common e.g that people use applications offline or while they are
connected to a protected network, where it is not possible to reach
the remote database

84

APPENDIX E. USER STORIES

A user of the Ozzy GUI component

ID: UG1 Dependency:

Origin: User of the Ozzy GUI component

User Story: The GUI component should present parts of the data using dash-
boards

Description: Present data using a dashboard. Dashboards are described in sec-
tion 2.7

Rationale: By using a dashboard it is possible to quickly get an overview of the
data without having to navigate through many views

ID: UG2 Dependency: UG1

Origin: User of the Ozzy GUI component

User Story: The GUI component should be able to maximize and minimize dif-
ferent views of the dashboards

Description: By having a minimize and maximize button in the top right corner
of every small view in the dashboard

Rationale: Some views in the dashboards might be difficult for the user to read
or understand because of the limited space in the dashboard

ID: UG3 Dependency:

Origin: User of the Ozzy GUI component

User Story: The GUI component should be able to present logged data for a se-
lected user

Description: Selecting a user from a list and then presenting the screenshots and
exceptions for that user

Rationale: To better understand how a user interacts with the applications and
to see what the user did before an error occurred

85

APPENDIX E. USER STORIES

ID: UG4 Dependency: UG3

Origin: User of the Ozzy GUI component

User Story: The GUI component should present clearly which user is selected or
if statistics for all users are being displayed

Description: By always displaying, somewhere in each view, whether "all users"
are selected or whether a particular user is selected. If one user is
selected it will display the user ID for that user

Rationale: To help users navigate the GUI

ID: UG5 Dependency: UG1

Origin: User of the Ozzy GUI component

User Story: The dashboards of the GUI component should provide a way to move
the different views within each dashboard around

Description: My making it possible to drag and drop the different views in the
dashboard

Rationale: To view related data in the way that is best for the users

ID: UG6 Dependency: UG7, UG8

Origin: Developer using the GUI component

User Story: The GUI component should show the most common exceptions in the
application

Description: Showing a chart of the most common exceptions

Rationale: By knowing which exceptions that is most common the developers
can prioritize which exceptions to fix first

ID: UG7 Dependency:

Origin: Developer using the GUI component

User Story: The GUI component should show a list of all unhandled exceptions
for a user

Description: Viewing a list with the name of the exception and the time when it
occurred

Rationale: Providing a way for the developer to view the exceptions that have
crashed the application

86

APPENDIX E. USER STORIES

ID: UG8 Dependency:

Origin: Developer using the GUI component

User Story: The GUI component should show a list of all handled exceptions for
a user

Description: Viewing a list with the name of the exception and the time when it
occurred

Rationale: Sometimes an unhandled exception is caused by a handled exception.
In order to fix the unhandled exception, information about the han-
dled exception could therefore be necessary

ID: UG9 Dependency: UG7, UG8

Origin: Developer using the GUI component

User Story: The GUI component should show information about each exception

Description: For each exception the following information should be presented:
stacktrace, exception type, message, timestamp, target site, source
and inner exceptions

Rationale: To give the developers the data necessary to troubleshoot the appli-
cation

ID: UG10 Dependency: UG7, UG8

Origin: Developer using the GUI component

User Story: The GUI component should provide a way to browse through screen-
shots of all the steps performed by the user up to 40 seconds before
an exception occurred

Description: Browse through screenshots for a selected exception

Rationale: To help the developers to understand what the user did before the
exception occurred

87

APPENDIX E. USER STORIES

ID: UG11 Dependency:

Origin: User of the Ozzy GUI component

User Story: The GUI component should provide a way to show which features of
an application are used the most/least and the flow that where used
to access the features

Description: By mapping method calls to flows and then mapping flows to features
it should be possible to get statistics about features and information
about the flow that where used to access the feature

Rationale: To help the developing organization to better understand how their
application is used

ID: UG12 Dependency:

Origin: Developer using the Ozzy GUI component

User Story: The GUI component should provide a way to show which methods of
an application are called most often

Description: By mapping method calls to features it should be possible to get
statistics about features

Rationale: To help the developers to better understand where time could be
spent to improve the code

ID: UG13 Dependency:

Origin: Developer using the Ozzy GUI component

User Story: The GUI component should list all the sessions

Description: A list with all the sessions for a selected user containing information
about start time, end time and if the sessions ended with an exception

Rationale: Enables the developers to view what the user did in a session to help
them debug exceptions or to better understand how the users use the
application

88

APPENDIX E. USER STORIES

ID: UG14 Dependency: UG13

Origin: Developer using the Ozzy GUI component

User Story: The GUI component should provide a way to browse through all the
screenshots for a session

Description: To be able to go through, step by step, what the user did during the
session by showing screenshots accompanied by a timestamp

Rationale: Enables the developers to see what the user did

ID: UG15 Dependency: UG14

Origin: Developer using the Ozzy GUI component

User Story: The GUI component should display all the method calls from the
application code that corresponds to the action associated with the
screenshot

Description: For each screenshot a list with all the method calls should be dis-
played. The list should contain information about the namespace,
the class name and a timestamp for the method

Rationale: By viewing method calls it is possible for developers to follow the
execution of the code

ID: UG16 Dependency: UG11

Origin: Manager using the Ozzy GUI component

User Story: The GUI component should display a list with all the features used
by the users of the application that is being logged

Description: A list with all the features that have been used in the application and
information about the feature should be possible to view

Rationale: Gain better understanding about the application and to e.g better
prioritize further development

ID: UG17 Dependency:

Origin: Manager using the Ozzy GUI component

User Story: The GUI component should display at what time of day the applica-
tion is used the most

Description: By plotting a chart showing at what hours the application is used

Rationale: To e.g. know when to schedule for service downtime

89

APPENDIX E. USER STORIES

ID: UG18 Dependency:

Origin: Manager using the Ozzy GUI component

User Story: The GUI component should display general statistics for the applica-
tion

Description: Total number of users, average number of sessions for a user, total
number of sessions, average time for a session and average number of
features used per session

Rationale: To better understand the application usage

ID: UG19 Dependency: UG11

Origin: Manager using the Ozzy GUI component

User Story: The GUI component should display general statistics for a feature

Description: Average time to used the feature, how many times the feature have
been used, percentage of how many users who use the feature, per-
centage of how many sessions have the feature been used in, which
flows have been used for this feature, how many users have used each
flow and what is the average time for a flow

Rationale: To better understand the application usage

90

	Introduction
	Background
	C#
	WPF
	Intermediate Languages
	Weaving and Fody
	Visual Studio and NuGet
	NoSQL and MongoDB
	Dashboards
	Business Intelligence
	Aspect Oriented Programming
	Visual GUI Testing and SikuliX
	Dynamic Program Analysis
	Profiling of programs

	Related Work
	Dashboards
	Visual GUI Testing
	Post-deployment data collection

	Research Methodology
	Research Question
	Research Structure
	Design Science Research
	Case Study

	Research Workflow

	Research Design
	Design Science Research
	Awareness of the Problem
	Suggestion
	Development
	Evaluation
	Conclusion

	Case Study
	Objectives defined and case study planned
	Preparation for data collection
	Analysis of collected data
	Reporting

	Results and Analysis
	System architecture
	Weaving Component
	Logging Component
	GUI Component

	Quantitative metrics
	Interviews
	ScreenToGif
	Application X

	Survey
	Analysis

	Discussion
	Design decisions
	Performance issues
	Ethical considerations
	Threats to validity

	Conclusions
	Bibliography
	Screenshots
	Interview Questions
	Survey Questions
	Quantitative measurements
	User Stories

