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Abstract

It is interesting to be able to calculate the dynamics of a simple structure affected by
sea loads from both an academic and an industrial perspective. The focus of this master
thesis project was to implement sea loads on simple offshore structures made of cylindrical
elements in Adams, a software for multibody system simulation. The thesis resulted in a
Adams plug-in.

A subroutine has been created based on relevant theories. The subroutine describes
the sea loads on a cylindrical element, including buoyancy, wave loads and current loads. A
number of macros, that executes Adams/View commands, have also been created. The
macros build riser pipes made of cylindrical elements and apply the subroutine to each
element. A dialog box has been designed so that the user can control the macros and the
subroutine. Finally everything has been packaged as a plug-in.

To verify the functionality of the plug-in, simulation results from Adams have been compared
to both analytical solutions and simulation results from other softwares. The results agree
well. However, there are still a number of features left to be verified.
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1 Introduction

1.1 Project background

MSC Software is a worldwide company that develops engineering softwares such as Adams
and MSC Nastran for various industries, mainly for the automotive and aerospace industries.
To attract new customers in the offshore industry, MSC Software would like to include sea
loads into Adams, a software for multibody system simulation.

In general, sea loads including loads due to currents, waves and buoyancy are very complex
and require CFD analyses. However, there exist some theories that describe the sea loads
on simple offshore structures analytically. MSC Software wants to implement some of these
theories into Adams, making it possible to solve some common offshore structure problems
using Adams, this will make it easier for the offshore industry to do accurate simulations to
complex mechanical systems.

1.2 Purpose

The purpose of this master thesis is to implement sea loads on simple offshore structures.

1.3 Objectives

This master thesis should result in a user-friendly toolkit in Adams so that sea loads can
easily be applied on structures made of cylindrical elements. To achieve this the following
five objectives need to be accomplished:

• Study and understand different theories regarding modelling of sea loads

• Investigate which methods that are suitable to implement in Adams

• Implement sea loads on a cylindrical element

• Build or complement an offshore structure model using the cylindrical elements

• Package the sea load functionality as a user-friendly Adams/View plug-in

1.4 Limitations

The thesis is limited to modelling and implementation of sea loads on slender cylindrical
structures. Nonlinear wave theory will not be implemented. The current is assumed to be
time independent and uni-directional. No physical tests will be executed during the project.

1.5 Approach

A literature review was carried out to get an understanding of different theories regarding
sea loads on offshore structures. Relevant theories were then used to implement sea loads on
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a simple cylindrical element. The modelling started out from a simple one degree of freedom
model with only a buoyancy load and progressed by continuously adding complexity, such
as more degrees of freedom and other types of sea loads. After all relevant types of sea loads
had been implemented on a cylinder with six degrees of freedom, a more complex structure
was built using the cylindrical elements. The verification of the model was performed by
comparing the results to both analytical solutions and the existing simulation results from
the softwares USFOS and OrcaFlex, see [6]. Macros and a dialog box were then created to
automate the modelling of offshore structures containing cylindrical elements. Finally the
codes were packaged and added to Adams as a plug-in.

1.6 Outline of the report

The outline of the report can be divided into the following chapters:

• Theoretical background (Chapter 2): presents relevant theories used in the thesis.

• Model structure (Chapter 3): gives an overview of the model construction process.

• The dialog box (Chapter 4): describes the created dialog box.

• Pipe construction (Chapter 5): describes the automated pipe construction process.

• Calculation of sea loads (Chapter 6): describes how the sea loads are calculated.

• Wave visualization (Chapter 7): describes how the waves are visualized in Adams.

• Plug-in (Chapter 8): describe how the toolkit was packaged as a plug-in.

• Verification (Chapter 9): presents the results from the verification.

• Conclusion and discussion (Chapter 10): discusses the results from the verification
chapter.

• Recommendations (Chapter 11): suggests actions to improve the toolkit.
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2 Theoretical background

2.1 Three dimensional motion

According to [7] the velocity of a point P in a body can be calculated with help of two
reference frames, one local body-fixed reference frame and a global reference frame, with
the following equation:

vP = vO′ + ω × rP/O′ [2.1.1]

where:

vP = velocity at point P relative to a global reference frame
vO′ = velocity of the body-fixed reference frame
ω = angular velocity of the body-fixed reference frame xyz
rP/O′ = displacement vector from the point O’ to point P expressed in the global

coordinate system

The corresponding acceleration vector of point P can be calculated with the following
equation:

aP = aO′ +α× rP/O′ + ω × (ω × rP/O′) [2.1.2]

where:

aO′ = acceleration of the body-fixed reference frame
aP = acceleration at point P relative to a global reference frame
α = angular acceleration of the body-fixed reference frame

2.2 Fluid and relative motion

According to [4], it is general practice to add the current velocity vector to the wave velocity
vector when calculating the fluid velocity vector:

vf = vw + vc [2.2.1]

vf = fluid velocity vector
vw = wave velocity vector
vc = current velocity vector

The fluid acceleration is approximately equal to the wave acceleration since the current
acceleration is insignificant according to [4], see the following equation:

af = aw [2.2.2]

af = fluid acceleration vector
aw = wave acceleration vector

9



The fluid velocity and acceleration relative to a moving cylinder are calculated with equation
2.2.3-2.2.4. Henceforth, vr and ar are referred to as the relative velocity and the relative
acceleration respectively.

vr = vf − vcyl [2.2.3]

ar = af − acyl [2.2.4]

vr = relative velocity vector
ar = relative acceleration vector

2.3 Morison’s equation

Morison’s equation is used to describe the forces on a cylinder due to fluid motion. The
Morison force is directed normal to the cylinder axis. Equation 2.3.1 is the most general
form of Morison’s equation, based on [4].

Fn =
π

4
ρswD

2(afn + CAarn) +
1

2
ρswCDDvrn|vrn| [2.3.1]

where:

Fn = Morison’s force with direction normal to the axis of the cylinder
D = diameter of the cylinder
CD = drag coefficient
CA = added mass coefficient
A = frontal area of the cylinder
afn = normal fluid acceleration relative to earth
arn = normal fluid acceleration relative to the cylinder
vrn = normal fluid velocity relative to the cylinder

The Morison’s equation includes two contributions, one is from the drag force and the
other is from the hydrodynamic inertia force. The first term is sometimes referred to as
the inertia force. It can be divided into a Froude-Krylov force and a hydrodynamic mass
force. The second term in the equation 2.3.1 is the drag force. The Morison force is a force
per unit length and is positive in the wave propagation direction. The determination of
the drag coefficient CD and the added mass coefficient CA shall be performed empirically
and depends on the chosen wave theory and various parameters, such as the Reynolds
number, roughness effect and a relative current number. Typical values for CD and CA are
1.0-1.4 and 1.0, respectively, based on the linear theory for a circular cylinder, according to
[2]. However, Morison’s equation can only be applied when the diameter of the cylinder is
small relative to the wave length. Otherwise, the Morison’s equation has to be replaced by
diffraction theory, see [3].

2.4 Equivalent force systems

Consider figure 2.4.1, a force FP is acting at point P on a rigid body. It is possible to
move that force to another point, Q, and still get the same system response by adding a
moment MQ. If the response is the same for two systems with different set-ups of forces

10



Figure 2.4.1: Example of three dimensional equivalent force systems

and moments they are referred to as equivalent force systems. For the systems shown in
figure 2.4.1 the force and moment in point Q are described by equations 2.4.1-2.4.2.

FQ = FP [2.4.1]

MQ = r× FP [2.4.2]

where:

MQ = the torque vector
r = displacement vector QP, see figure 2.4.1
FP = force vector

2.5 Archimedes’ principle

If a body is situated in water it will be subjected to a buoyancy force. The buoyancy force
arises due to a static pressure field that varies linearly with depth, see equation 2.5.1.

p = pa + ρswgz [2.5.1]

where:

pa = atmospheric pressure at sea surface
ρsw = density of sea water
g = acceleration of gravity
z = the depth beneath the sea surface

Generally a force due to a varying pressure field is calculated by integrating the pressure
over the body surface. In this particular case the pressure field is linear. It could then
be shown that the buoyancy force is directed upwards and is governed by equation 2.5.2.
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This relationship was discovered by the Greek mathematician Archimedes and is therefore
referred to as Archimedes’ principle.

FB = ρswgV [2.5.2]

where:

FB = buoyancy force
V = volume of displaced water

2.6 Ocean currents

Currents in the ocean are the result of many independent phenomena. In [1] the current
velocity is described by equation 2.6.1.

U = Ut + Uw + Us + Um + Uset−up + Ud [2.6.1]

where:

U = current velocity
Ut = tidal current
Uw = current due to local winds
Us = current due to Stokes’ drift
Um = current due to major ocean circulation
Uset−up = current due to set-up phenomena
Ud = density driven current

There exists empirical equations that describe the behaviour of some of the components.
However, in a general case these equations give an insufficient prediction of currents. There-
fore it is common to simply measure the current profile.

Since the velocity field in a current varies slowly in time relative to the velocity field
in a wave the current can be assumed to be stationary, according to [4].

2.7 Ocean waves

In theory, there are three common types of waves, regular waves, irregular waves and
nonlinear waves. These will be discussed in this section along with other relevant wave
theory.

2.7.1 Underlying theory

To establish the velocity and acceleration fields in a wave it is assumed that the fluid is
incompressible and inviscid. The wave should satisfy the continuity equation and some
boundary conditions at the surface and at the seabed. The boundary conditions are
nonlinear and states that:

• the pressure at the surface is constant (dynamic boundary condition)

• the surface is impermeable (kinematic boundary condition)

12



• the seabed is impermeable (kinematic boundary condition)

If the the nonlinear boundary conditions are linearized the wave dynamics could be described
with relatively simple expressions. These types of waves are referred to as linear waves,
which include both regular waves and irregular waves. For a more detailed description of
the theory, see [4].

2.7.2 Regular waves

In a regular wave the velocity, the acceleration, the wave profile, the wave frequency, the
wave number and wavelength are given by equations 2.7.1-2.7.8.

vx = ωζa
cosh(k(z + h))

sinh(kh)
sin(ωt− kx cos(θ)− ky sin(θ)) [2.7.1]

vz = ωζa
sinh(k(z + h))

sinh(kh)
cos(ωt− kx cos(θ)− ky sin(θ)) [2.7.2]

ax = ω2ζa
cosh(k(z + h))

sinh(kh)
cos(ωt− kx cos(θ)− ky sin(θ)) [2.7.3]

az = −ω2ζa
sinh(k(z + h))

sinh(kh)
sin(ωt− kx cos(θ)− ky sin(θ)) [2.7.4]

ζ = ζa sin(ωt− kx cos(θ)− ky sin(θ)) [2.7.5]

ω =
2π

T
[2.7.6]

k =
2π

λ
[2.7.7]

λ =
g

2π
T 2 tanh(

2π

λ
h) [2.7.8]

where:

vx, vy, vz = wave velocity components
ax, ay, az = wave acceleration components
ω = wave frequency
T = wave period
ζa = wave amplitude
k = wave number
λ = wave length
h = average water depth
ζ = wave profile
z = wave z-position with respect to the mean sea surface
θ = wave angle

To describe a regular wave the wave amplitude and either the wave period or the wavelength
has to be specified. It is most common that the wave period is specified. Note that equation
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2.7.8 is an implicit function, as a consequence λ has to be solved iteratively for a specified
wave period.

For regular waves it is common to distinguish between finite and infinite water depth.
If h

λ
> 0.5 the water is considered infinitely deep and a number of simplifications can be

made to equations 2.7.1-2.7.8. The biggest gain of assuming infinite water depth is that
tanh(2π

λ
h)→1, turning equation 2.7.8 into an explicit function and λ could be calculated

directly.

As discussed in section 2.7.1 the regular waves are a result of linearized boundary conditions.
As a consequence the regular waves only give good results when the wave steepness is low.
That is the wave height, i.e. H, is small relative to the wave length, λ. The meaning of a
low wave steepness in this context may vary depending on the purpose of the analysis.

2.7.3 Extension methods

Equations 2.7.1-2.7.8 are only valid from the seabed to the mean sea surface. This is a bit
problematic since the field variables, such as the velocity and acceleration, is then unknown
between the wave crest and the mean sea surface.

The simplest way to deal with this issue is to assign all field variables above the mean sea
surface their corresponding mean sea surface value. This method is known as constant
extension, see figure 2.7.1.

Another way to deal with the issue is to do an extrapolation of higher order. For ex-
ample, the tangent at the mean sea surface could be used to make a linear extrapolation.
This type of extrapolation method is known to exaggerate the magnitude of the field
variables.

It is also possible to stretch out the profile of the field variable. This is done by evaluating
eq 2.7.1-2.7.4 at a displaced z coordinate, z′, see equation 2.7.9. Wheeler stretching and
constant extension are shown in figure 2.7.1.

z′ = z
h

h+ ξ
+ h(

h

h+ ξ
− 1) [2.7.9]

where:

ξ = the z-coordinate of the sea surface

All extension methods can also be used on a current profile. It is therefore sufficient to
define the current field from the mean sea surface to the seabed. It should be noted that
wheeler stretching is used differently for currents. The current profile is stretched under the
wave crest, but unlike the wave field variables it is also compressed under the wave thrust.
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Figure 2.7.1: An illustration of wheeler stretching and constant extension

2.7.4 Irregular waves

Figure 2.7.2: The irregular wave components generated by a wave spectrum

The perk of utilizing regular waves are that these are linear in the sense that two or more
different regular waves could be summed and thus make a new wave, a so called irregular
wave. The velocity field, acceleration field and wave profile for such a wave are described
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by equations 2.7.10-2.7.14.

vx =
N∑
j=1

ωjζj
cosh(kj(z + h))

sinh(kjh)
sin(ωjt− kjxcos(θ)− kjy sin(θ) + εj) [2.7.10]

vz =
N∑
j=1

ωjζj
sinh(kj(z + h))

sinh(kjh)
cos(ωjt− kjx cos(θ)− kjy sin(θ) + εj) [2.7.11]

ax =
N∑
j=1

ω2
j ζj

cosh(kj(z + h))

sinh(kjh)
cos(ωjt− kjx cos(θ)− kjy sin(θ) + εj) [2.7.12]

az = −
N∑
j=1

ω2
j ζj

sinh(kj(z + h))

sinh(kjh)
sin(ωjt− kjx cos(θ)− kjy sin(θ) + εj) [2.7.13]

ζ =
N∑
j=1

ζj sin(ωjt− kjx cos(θ)− kjy sin(θ) + εj) [2.7.14]

where:

εj = randomized phase displacement
j = the j:th wave component
N = total number of wave components

ζ, ζj, ωj, kj are explained in section 2.7.2. The field variables for an irregular wave are
obtained simply by summing different set-ups of equation 2.7.1-2.7.5 and adding a random-
ized phase displacement.

To create a realistic sea state a wave spectrum should be used. A wave spectrum is
created based on measurements of waves in the ocean. It defines the constellation of
regular waves that occur in an irregular wave. A wave spectrum expresses how the energy
is distributed over the wave frequencies, S (ω). For a certain wave frequency, ωj, the
corresponding wave number, kj, is obtained in the same way as for a regular wave. The
wave amplitude however is obtained by equation 2.7.15.

ζj =

√
2

∫ ωjU

ωjL

S (ω) dω [2.7.15]

where:

ωjU = upper boundary of the j:th bar in the wave spectrum
ωjL = lower boundary of the j:th bar in the wave spectrum

2.7.5 The Pierson-Moskowitz spectrum

To create a wave spectrum Pierson and Moskowitz assumed that: if the wind blows with
constant speed over a sufficiently large area, the resulting waves will reach an equilibrium
state, referred to as a fully developed sea. Pierson and Moskowitz investigated fully
developed seas in the North Atlantic and concluded that it could be described with equation
2.7.16, see [9]. There exists empirical equations that relates ωp to the wind speed, this is
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Figure 2.7.3: The Pierson-Moskowitz spectrum and the JONSWAP spectrum

very useful since it is easier to specify the wind speed than ωp. The Pierson-Moskowitz
spectrum is shown in figure 2.7.3.

S (ω) =
αg2

ω5
exp

(
−β
(ωp
ω

)4)
[2.7.16]

where:

α = intensity of the spectrum, default: α = 0.0081
β = shape factor, default: 1.25
ωp = peak wave frequency

2.7.6 The JONSWAP spectrum

During the Joint North Sea Wave Observation Project, JONSWAP, it was found that a fully
developed sea in the Pierson-Moskowitz sense does not exist. The waves with frequencies
around the wave peak continue to grow with the distance travelled. To cope with this
phenomenon the Pierson-Moskowitz spectrum was modified to equation 2.7.17, see [8]. A
JONSWAP spectrum is shown in figure 2.7.3.

S (ω) =
αg2

ω5
exp

(
−β
(ωp
ω

)4)
γa [2.7.17]

where:

γ = peak enhancement factor, default: γ = 3.3

a = exp(− (ω−ωp)2

2ω2
pσ

2 )

σ = 0.07 if ω ≤ ωp, σ = 0.09 if ω > ωp
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2.7.7 Directional spectrum

A irregular wave is propagating in a single direction. If only one wave spectrum is used the
resulting irregular wave will also propagate in one direction. In a real ocean waves propagate
in different directions. To introduce that behaviour in a realistic way a directional spectrum,
f (θ), could be multiplied with the wave spectrum. Thus creating a new 2-dimensional
spectrum that takes the propagation direction into account, see eq 2.7.18. A directional
spectrum often used to describe short crested waves is given by equation 2.7.19.

F (ω, θ) = S (ω) f (θ) [2.7.18]

f (θ) =

{
2
π

cos2(θ − θw) if − π
2

+ θw ≤ θ ≤ π
2

+ θw
0 elsewhere

[2.7.19]

To include the directional spectrum in an irregular wave equation, equations 2.7.10-2.7.15
are modified to equations 2.7.20- 2.7.25

vx =
N∑
j=1

M∑
k=1

ωjζjk
cosh(kj(z + h))

sinh(kjh)
sin(ωjt− kjx cos(θk)− kjy sin(θk) + εjk) [2.7.20]

vz =
N∑
j=1

M∑
k=1

ωjζjk
sinh(kj(z + h))

sinh(kjh)
cos(ωjt− kjx cos(θk)− kjy sin(θk) + εjk) [2.7.21]

ax =
N∑
j=1

M∑
k=1

ωj
2ζjk

cosh(kj(z + h))

sinh(kjh)
cos(ωjt− kjx cos(θk)− kjy sin(θk) + εjk) [2.7.22]

az = −
N∑
j=1

M∑
k=1

ωj
2ζjk

sinh(kj(z + h))

sinh(kjh)
sin(ωjt− kjx cos(θk)− kjy sin(θk) + εjk) [2.7.23]

ζ =
N∑
j=1

M∑
k=1

ζjk sin(ωjt− kjx cos(θk)− kjy sin(θk) + εjk) [2.7.24]

ζjk =

√
2

∫ ωjU

ωjL

∫ θkU

θkL

S (ω, θ) dωdθ [2.7.25]

2.7.8 Discetization of wave spectrum

The wave spectrum must be discretized in order to create an irregular wave. Two common
discretization methods will be discussed in detail in the following subsections.

Equal frequency spacing

Equal frequency spacing is the simplest discretization method. The wave spectrum is simply
divided into bars of equal width. Each bar defines a wave component in the irregular wave.
The frequency value in the center of the bar defines the wave frequency and the area of the
bar is used in equation 2.7.25 to define the wave amplitude. The equal frequency spacing is
illustrated in figure 2.7.4.
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Figure 2.7.4: The equal frequency spacing method

Figure 2.7.5: The equal energy approach
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Equal energy approach

In the equal energy approach the wave spectrum is divided into bars of equal area. Like the
equal frequency spacing approach each bar defines a wave component in the irregular wave.
The wave frequency of each wave component is chosen so that the area of the bar below the
chosen frequency is equal to the area above the chosen frequency. The area of the bar is
used in equation 2.7.25 to define the wave amplitude. It should be noted that the amplitude
is the same for all wave components since the areas of the bars are the same. The equal
energy approach discretization is illustrated in figure 2.7.5. As a consequence the maximum
amplitude of the irregular wave is usually larger when the equal energy approach is used
compared to when equal frequency spacing is used. The irregular waves generated with
this method are usually less periodical than those generated with equal frequency spacing.

2.7.9 Nonlinear waves

If the nonlinearities in the boundary conditions described in section 2.7.1 are preserved
to some extent, the resulting waves are called nonlinear waves. A popular nonlinear wave
theory are the Stokes’ theory. By making some assumptions Stokes concluded that the field
variables in a wave could be calculated with a Fourier expansion. The more terms that are
included in the Fourier expansion the better the solution becomes, but on the other hand
the solution becomes more complex. The type of Stokes wave used is usually named after
the number of terms included in the Fourier expansion. For example if two terms are used
the resulting wave are referred to as a 2nd order Stokes wave.

Nonlinear wave theory gives a more accurate description of a wave than linear wave
theory. Typically nonlinear waves gets sharper and higher crests and a more shallow thrust
than linear waves. The main advantage of using linear waves are that they could be used to
create irregular waves, see section 2.7.4, this is not possible with nonlinear waves. Another
advantage with linear waves are that ocean currents can be included by just adding the
current velocity field to the wave velocity field. In nonlinear wave theory the ocean current
will modify the wave shape, so the underlying differential equations need to be reformulated
and resolved for every current field.
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3 Model structure

The outcome of this master thesis project is a pipe construction toolkit. The toolkit is
designed to build straight pipes and is therefore suitable to use when modeling riser pipes.
A riser pipe is a long straight vertical pipe that is used to pump oil in the offshore industry.
In this chapter the basic structure of the pipe model and the pipe construction toolkit will
be discussed.

3.1 Basic set-ups

The pipe is constructed out of cylindrical elements. Furthermore, each cylindrical element
is divided into a number of subelements. An illustration of a pipe structure is shown in
figure 3.1.1. The cylindrical elements are rigid bodies connected with beams. Increasing
the number of cylindrical elements will improve the structural dynamics of the pipe. The
subelements are a theoretical division of the cylindrical elements used for numerical inte-
gration. The center point of a subelement is referred to as an integration point. When
integrating, the relevant field variables are evaluated at the integration points and assumed
to be constant over each subelement.

Figure 3.1.1: A pipe created by the pipe construction toolkit

In Adams, the coordinate systems are referred to as markers, the origin of a marker also
specifies an interactable point. For example, if the user wants to add a spring into the
model, the ends of the spring must be attached to the origins of two markers. When
creating a new model, a global fixed coordinate system is set by default, it defines the
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global origin of the model and is used as a basic reference. A ’ref sea’ marker is set at
the origin, (0,0,0), and has the same orientation as the global coordinate system. The x,
y plane of ’ref sea’ defines the mean sea surface and the z axis is pointing towards the
sky. Hence, gravity needs to be oriented in the negative z direction for the model to work
properly. ’ref sea’ is also a important reference frame, henceforth it will be referred to
the global coordinate system. Every cylindrical element has a ’gforce’ marker placed in
the center of the cylinder. The ’gforce’ marker is another important reference frame. All
forces acting on a each cylinder are expressed in this system.

3.2 Toolkit structure

!

!

Create&beam&
Offshore&_beam&

Create&markers&
Offshore_markers&

Subroutine:&
Calculation&of&
sea&loads&

Dialog&box&&&

Adams&model&

Pipe%construction%macros%

Main&macro&
Offshore_main&

Dialog%box%

Subroutine:&
Z&translation&

Subroutine:&
X&rotation&

Wave%visualization%part%

Calculation%of%sea%loads%

Subroutine:&
Y&rotation&

!

Create&cylinder&
Offshore_cylinder&

Wave&
visualization&

macro&

Figure 3.2.1: An overview of the pipe construction toolkit

The pipe construction toolkit comprises four main parts, the dialog box, the pipe construc-
tion macros, a subroutine that calculates the sea loads, and a wave visualization part. Figure
3.2.1 shows an overview of the structure of the the pipe construction toolkit. The dialog box,
discussed in chapter 4, is the toolkit’s graphical user interface. It retrieves all user inputs
and sends them to the pipe construction macros, discussed in chapter 5, and the wave visu-
alization part, discussed in chapter 7. The pipe construction macros is a generic name for a
set of macros that will create a pipe in accordance with the user preferences. These macros
will also process the user input and forward it to a subroutine, discussed in chapter 6, that
calculates the sea loads acting on the pipe. During a simulation the subroutine will be called
in every time step, calculate the sea load and send back that information to the cylindrical
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elements. As mentioned above there is also a visualization part included in the toolkit.
The wave visualization part consists of a macro that creates plates that are used to visu-
alize the sea surface. It also consists of three subroutines that define the motion of the plates.
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4 The dialog box
To be able to define the parameters required to utilize the model construction and the wave
visualization macros, an Adams dialog box was created. Throughout this chapter different
terms related to the interface of dialog box are frequently used, these are shown shown in
figure 4.0.1.

!

Option'menu'

Container'

Button'
Toggle'box'

Field'box'

Figure 4.0.1: The name of the dialog box’s components

4.1 Macro structure

When the user interacts with the dialog box there are a number of underlying macros
that executes the user’s actions. For example, if the user checks the ’Current’ toggle
box, the checked box is transformed into a input parameter to a macro connected to
that box. The macro is executed every time the button is clicked. The macro struc-
ture behind the dialog box is shown graphically in figure 4.1.1. In this particular case
the macro will show the current container and activate the current by modifying a parameter.
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Figure 4.1.1: A detailed picture of the structure of the dialog box

When the user opens up the dialog box the ’start macro’ is executed. The ’start macro’
sets the default appearance of the dialog box, see figure 4.1.2, sets all internal macro
parameters so that these correspond to the default appearance, fills all the field boxes with
default values and creates the current velocity spline, ’current0’. A spline in this context
is a smooth curve fitted to table data containing the current velocity and the corresponding
z-coordinates. If the ’Buoyancy’ toggle box is pressed a macro will modify a parameter
that controls the buoyancy force. The macros connected to the ’Current’, ’Wave’, ’Wave
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Visualization’ and the ’Direction Spectrum’ toggle boxes and the two option menus
in the wave container works in a similar way. In addition these macros show or hide the
containers discussed in section 4.2.

Figure 4.1.2: The start up appearance of the dialog box

At any time the user can choose to press on the ’Regenerate’, ’OK’, ’Apply’ or ’Cancel’
button. If the ’Apply’ button is pressed the ’execution macro’ will run. The ’execution
macro’ calls the ’pipe construction macros’ discussed in section 5 and forwards the user
specified input parameters. If pressed, the ’OK’ and ’Regenerate’ button will also call the
’execution macro’. In addition ’OK’ will shut down the dialog box while ’Regenerate’ will
delete everything previously created by the ’pipe construction macros’. Pressing the
’Cancel’ button will only shut down the dialog box.

4.2 Appearance

Figure 4.0.1 shows the dialog box when all containers are shown, and table 4.2.1 gives
a short description of all the input parameters. To the left some field boxes are shown,
these are the basic input parameters and must be filled out to run the program. At
the left bottom of the dialog box four toggle boxes can be seen, these are unchecked by
default. If the ’Buoyancy’ toggle box is checked the buoyancy force will be activated. If
the ’Current’ toggle box is checked, the current will be activated and a container where
current data need to be filled in appears. If the ’Wave Visualization’ toggle box is
checked, the wave visualization feature will be activated and a container where relevant
data need to be filled in will appear. If the ’Wave’ toggle box is checked a container will
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appear. There are two option menus in that container. In the first one the extension
method must be selected, two options are available: ’Wheeler Stretching’ and ’Constant
Extension’. In the second option menu the type of wave must be selected. Three wave types
are available: ’Regular Wave’, ’Irregular Wave Pierson Moskowitz ’ and ’Irregular
Wave JONSWAP’. If ’Regular Wave’ is chosen, another container appears where regular wave
data needs to be filled in, see figure 4.2.1. If ’Irregular Wave Pierson Moskowitz ’ or
’Irregular Wave JONSWAP’ is chosen, a container appears where irregular wave data needs
to be filled in, see figure 4.2.2. The difference between the two latter options is that the
parameter ’gamma’ cannot be changed when ’Irregular Wave Pierson Moskowitz ’ is
chosen. In the irregular wave container there is a Direction Spectrum toggle box. If this is
checked the direction spectrum will be activated and yet another container appears. The
number of directions for the irregular waves must be defined.

Figure 4.2.1: When regular waves are chosen
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Figure 4.2.2: When irregular waves are chosen

Table 4.2.1: User input parameters

Input parameter
Default
value

Design
vari-
able

Description

Model Name - No The name of the model
Density Seawater, ρw 1024 [kg/m3] Yes The density of the seawater
Density Pipe, ρp 800 [kg/m3] Yes The density of the pipe
Density Pipe Fluid, ρf 1024 [kg/m3] Yes The density of pipes internal fluid
CD 1 Yes The drag coefficient
CA 1 Yes The added-mass coefficient
Outer Radius, ro 0.1 [m] Yes The outer radius of the pipe
Inner Radius, ri 0.05 [m] Yes The inner radius of the pipe
Young’s Modulus, E 210 [GPa] Yes The Young’s modulus of the pipe
Shear Modulus, G 81 [GPa] Yes The shear modulus of the pipe
Shear Correction Fac-
tor, κ

2 Yes
Correction factor from the Timo-
shenko beam theory

Number Of Elements,
ncyl

2 No
Number of cylindrical element
used to create the pipe

Number Of Subele-
ments, ni

3 Yes
Number of integration points on
each element

Top Location,
[xs, ys, zs]

[1, 1, 1] [m] No The starting point of the pipe

Bottom Location,
[xe, ye, ze]

[0, 0,−5] [m] No The ending point of the pipe
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Ramp Time, TR 5 [s] Yes
The Morison force is ramped up
from 0 to TR

Velocity Field
.current0
[m/s]

No
The current velocity field ex-
pressed as a spline function

Current Direction, θc
2π
3

Yes The current propagation direction

Wave Direction, θw
π
9

No
The main propagation direction of
the waves

Water depth, h 500 [m] No The average waterdepth

Wave Period, T 20 [s] No
The time it takes for a wave to
repeat itself

Wave Amplitude, ζ0 20 [m] No
Distance from mean surface to the
wave crest

Minimum Frequency,
ωL

0.2 [1/s] No
The lower frequency limit in the
wave spectrum

Maximum Frequency,
ωU

1.6 [1/s] No
The upper frequency limit in the
wave spectrum

Peak Frequency, ωP 0.5 No
The most common wave frequency
in the sea state

Alpha, α 0.0081 No
Wave spectrum parameter α in eq
2.7.16

Gamma, γ 3.3 No
Wave spectrum parameter γ in eq
2.7.17

Number Of Waves, nw 10 No
Number of discretization points in
ω-direction in eq 2.7.18

Number Of Directions,
nd

2 No
Number of discretization points in
θ-direction in eq 2.7.18

Interval X [−10, 10] [m] No
The x range of the visualization
area

Interval Y [−10, 10] [m] No
The y range of the visualization
area

Number Of Plates X,
npx

2 No
Number of visualization plates
used in x-direction

Number Of Plates Y,
npy

2 No
Number of visualization plates
used in y-direction

4.2.1 Input parameters

All field boxes except ’Model Name’ are already filled with default values. There are two
reasons for this. One of the reasons is to give the user a hint of how the field boxes should
be filled in. The other reason is that some parameters need initial values for the underlying
macros to run correctly.

Almost all field boxes require single scalar values. ’Model Name’ and ’Velocity Field’ are
exceptions since these require the name of the model and the name of the spline function,
respectively. The name could either be typed in or selected from a list, the list is shown by
double clicking in the field box. ’Top Location’, ’Bottom Location’, ’Interval X’ and
’Interval Y’ are also exceptions, these requires an array as input. ’Top Location’ and
’Bottom Location’ are location coordinates, the coordinates could either be typed in or
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the coordinates of an existing marker could be selected by double clicking in the field
box. ’Interval X’ and ’Interval Y’ are the intervals in which the wave surface will be
visualized, the input must be typed in.

’Velocity Field’ need some extra attention, here the current velocity profile described
by a spline need to be selected. The x-axis of the spline describes the water depth and
the y-axis of the spline describes the current velocity. By default it is filled out with an
automatically generated spline called ’current0’, the y values in ’current0’ are set to zero
for all x values, this is equivalent to no current at all. There are two ways to change the
current velocity profile, either by modifying the default current profile ’current0’ or by
replacing it with a new user-defined spline.

’Wave Direction’ needs to be expressed in radians if irregular waves are used. If the units
are set to radians the underlying macros will assume that the input in ’Wave Direction’ is
in radians. If the units are set to degrees the input in ’Wave Direction’ must be followed
by an ’r’ for the underlying macros to interpret the input in radians.

After all the input parameters have been inserted a pipe structure can be created by
pressing the ’Apply’ or the ’OK’ button. After the pipe has been created the user might want
to change one of the input parameters. Some parameters can be changed without deleting
and recreating the pipe, see the design variable column in table 4.2.1. These parameters are
set as design variables and can be found in the model tree. To change the parameter value,
simply modify the corresponding design variable. If the parameters that are not set as
design variables need to be changed, the pipe must be recreated. To simplify the recreation
process the ’Regenerate’ button could be used after these parameters are changed in the
dialog box. By double clicking the ’Regenerate’ button a macro that deletes and recreates
the pipe will be executed. In the model tree a design variable named ’Dont touch’ can be
found, within this design variable some necessary internal macro parameters are stored.
These are stored here to make the model independent of the macros and they should not
be modified.
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5 Pipe construction
The user input parameters defined in the dialog box are forwarded to the pipe construction
macros. The pipe construction macros is a generic name for a set of macros designed to build
a riser pipe. It consists of a main macro that calls the three submacros: ’Offshore marker’,
’Offshore cylinder’ and ’Offshore beam’. The structure of the pipe construction macros
are shown in figure 3.2.1. The following sections will describe how the user input parameters
are used to build the pipe. All the input parameters are accounted for in table 4.2.1.

5.1 Main macros

The input parameters are imported into the main macro. First, those parameters which
can be changed without rerunning the marcos are set as design variables, see the design
variable column in table 4.2.1. If irregular waves are chosen, a wave spectrum, a set of wave
amplitudes, wave frequencies, wave numbers and phase displacements need to be calculated.
The wave spectrum is obtained from either equation 2.7.16 or 2.7.17 depending on the
choice of the spectrum. The wave amplitudes are then calculated by using equation 2.7.15.
The parameters used in the equations in this chapter are accounted for in table 4.2.1. The
wave frequencies are obtained from equation 5.1.1. The wave numbers are calculated by
using equation 5.1.2 assuming deep water condition. The set of phase displacements are
randomized values in the interval [0, 2π]. In addition, if the directional spectrum is chosen,
the wave spectrum will be altered according to equation 2.7.18. A set of wave propagation
angles will also be created according to equation 5.1.3.

ωi = ωmin +
(ωmax − ωmin)

nw
(i− 0.5) [5.1.1]

ki =
ωi

2

g
[5.1.2]

θi = θw −
π

2
+

π

nd
(i− 0.5) [5.1.3]

5.1.1 Create markers

The main macro calls upon ’Offshore marker’, a sub-macro file that creates some basic
markers. ’Offshore marker’ creates the ’ref sea’-marker that are placed at the global
origin with the global orientations. The x, y-plane of the ’ref sea’-marker henceforth
defines the mean sea surface. The two markers ’pipe top’ and ’pipe bot’ are also created,
these define the two ends of the pipe. The created markers can be seen in figure 5.1.1.
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Figure 5.1.1: Markers created by Offshore marker

5.1.2 Create cylindrical elements

The main file then creates the pipe geometry by calling ’Offshore cylinder’ multiple
times. ’Offshore cylinder’ starts off by creating the local markers ’cyl top’, ’cyl bot’
and ’gforce’, according to figure 5.1.2. ’cyl top’ and ’cyl bot’ are placed at the center
points of the cylinders end. These defines two crucial locations that are later used in the
subroutine. The ’cyl bot’ marker is also used as a reference marker when creating the
cylinder geometry. The ’gforce’ marker defines the center of mass and is oriented in the
directions of the principal axes of inertia of the cylinder. The mass properties are calculated
using ρp, ρf , ri, ro and L, see equations 5.1.8-5.1.11. The mass properties correspond to
a pipe with density ρp filled with a solid cylinder with density ρf . The inertia matrix is
expressed in the ’gforce’ marker’s coordinate system. No cross terms need to be calculated
since these are zero, due to the orientation of the ’gforce’ marker. The appropriate length
of the cylindrical elements are calculated utilizing the user specified (xs, ys, zs), (xe, ye, ze)
and ncyl, see equation 5.1.12. The specified parameters ri, ro and the calculated parameters
L, m ,Ixx, Iyy, Izz are then assigned to the pipe. Finally a general force that calls upon
the ”calculation of sea loads’ subroutine is then connected to the ’gforce’ marker,
see chapter 6.

mp = (r2o − r2i )πLρpipe [5.1.4]
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Figure 5.1.2: The cylindrical element created by Offshore cylinder

mf = r2i πLρfluid [5.1.5]

mpo = r2oπLρpipe [5.1.6]

mpi = r2i πLρpipe [5.1.7]

m = mf +mp [5.1.8]

Ixx =
1

4
mp(r

2
o + r2i ) +

1

12
mpL

2 +
1

4
mfr

2
i +

1

12
mfL [5.1.9]

Iyy =
1

4
mp(r

2
o + r2i ) +

1

12
mpL

2 +
1

4
mfr

2
i +

1

12
mfL [5.1.10]

Izz =
1

2
mfr

2
i +

1

2
mpor

2
o −

1

2
mpir

2
i [5.1.11]

L =

√
((xs − xe)2 + (ys − ye)2 + (zs − ze)2)

ncyl
[5.1.12]
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5.1.3 Create beam elements

The main macro then connects the cylindrical elements with flexible Timoshenko beams by
calling ’Offshore beam’ multiple times. ’Offshore beam’ creates the ’osb st’ and ’osb en’
markers at the ’gforce’ marker of cylindrical elements. A beam element between two
cylindrical elements can be seen in figure 5.1.3. These markers are oriented with their
x-axes parallel to the symmetry axes of the cylinders. A flexible beam element is created
between neighboring cylinders ’osb st’ and ’osb en’ markers, the x-axes defines the axial
direction of the beam element and the y and z axes defines the cross section plane of the
beam element. The pipe cross section area and the area of inertia are then calculated using
ro, ri, see equations 5.1.13-5.1.16. Then all necessary properties are assigned to the beam
element, that is the user specified E, G, κ and the calculated Ap, IAxx, IAyy, IAzz.

Figure 5.1.3: The beam and the markers created by Offshore beam

Ap = π(r2o − r2i ) [5.1.13]

IAxx =
1

2
π(r4o − r4i ) [5.1.14]

IAyy =
1

4
π(r4o − r4i ) [5.1.15]

IAzz =
1

4
π(r4o − r4i ) [5.1.16]
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6 Calculation of sea loads

As discussed in section 5.1.2, the riser pipe is made of cylindrical elements. The pipe should
be able to interact with a sea environment. To do this, the loads acting on the pipe must be
known. The sea loads are therefore calculated in an Adams/Solver subroutine that is called
by the cylindrical elements. The subroutine ’Calculation of sea loads’ is programmed
in C language. An overview of the subroutine structure is illustrated in the figure 6.0.1
below.

	  For	  each	  cylindrical	  element	  

Regular	  waves	  

Irregular	  
waves	  

Wave	  
parameters	  

Current	  profile	  

Wave	  profile	  

Current	  angle	  

Wetted	  length	  

Instant	  sea	  
surface	  	  

Velocity	  	  
𝒗𝒄𝒚𝒍,𝒊  	  

Current	  
velocity	  

Wave	  
velocity	  

Gforce	  

Acceleration	  	  
𝒂𝒄𝒚𝒍,𝒊	  

Wave	  
acceleration	  

Buoyancy	  force	  

Morison	  
Moment	  

Morison	  
hydrodynamic	  
inertia	  force	  

Morison	  drag	  
force	  

For	  each	  integration	  points	  

Buoyancy	  
Moment	  

Input	  from	  marco	  

Wheeler	  
stretching	  

Vertical	  
stretching	  

Step	  
function	  

Morison	  force	  

Check	  wave	  

Back	  to	  Adams	  

Figure 6.0.1: Overview of the presented subroutine
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6.1 Buoyancy

This section discusses how the buoyancy load is implemented into the subroutine. A lot of
attention is focused on how the buoyancy load is calculated when the cylindrical element is
breaking the surface.

6.1.1 Relating cylinder to a sea surface

To calculate the buoyancy force of an object it is crucial to know the position and orientation
of objects relative to the sea surface. This master thesis deals only with long and slender
cylinders. Based on this fact an approximate position and orientation are calculated by
measuring the vertical distance between the cylinder ends centerpoints and the sea surface,
see 6.1.1. If the centerpoint of an end is beneath the sea surface the measured value
is negative, if it is above the sea surface the measured value is positive. The following
definitions are then made:

Figure 6.1.1: Overview of a cylindrical element with important definitions

Definition 1.

• If both the measured values are negative, the cylinder is assumed to be fully submerged.

• If both the measured values are positive the cylinder is assumed to be fully emerged.

• If the measured values have different signs the cylinder is breaking the water surface,
see figure 6.1.1.
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6.1.2 The buoyancy force

The buoyancy force is calculated according to Archimedes’ principle, equation 2.5.2. To use
it the volume of the displaced water must be calculated. This could be troublesome if the
cylinder is breaking the surface. However, in this master thesis the cylinders are assumed
to be nearly vertically oriented. The displaced water volume could therefore be calculated
with equation 6.1.1.

V = LwAc [6.1.1]

where:

Lw = wetted length, see definition 2 below
Ac = cylinders cross sectional area

The wetted length is defined as follows:

Definition 2.

• The wetted length is equal to the length of the cylinder for a fully submerged cylinder.

• The wetted length is equal to zero when the cylinder fully emerged.

• The wetted length is equal to the distance from the centerpoint of the submerged
cylinder end to the water surface, along the cylinder axis if breaking the surface.

It is straight forward to calculate the wetted length when the cylinder is fully submerged
and emerged. However, when it is breaking the surface it is more complicated since the
surface is nonlinear. This problem and how it is dealt with is discussed in more detail in
section 6.1.4

6.1.3 The buoyancy center

The buoyancy force is acting in the buoyancy center, that should be the center of the
displaced water volume. The buoyancy center in the cylinder is assumed to be located on
the symmetry axis, half the wetted length from the submerged end, see figure 6.1.1. When
the cylinder is fully submerged the buoyancy center will coincide with the center of gravity.

6.1.4 Approximate sea surface

The sea surface is described by one or many sine terms, see equation 2.7.5. In order to
calculate Lw in equation 6.1.1 the position where the cylinder symmetry axis intersects the
sea surface must be calculated. The symmetry axis could be described with the 3D line
equation 6.1.2.

x− x0
sx

=
y − y0
sy

=
z − z0
sz

[6.1.2]

where:

(sx, sy, sz) = a vector parallel to the symmetry axis
(x0, y0, z0) = a point on symmetry axis
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Reordering so that z is alone on the left hand side gives:

z =
x− x0
sx

sz + z0 [6.1.3]

z =
y − y0
sy

sz + z0 [6.1.4]

For the intersection point, the z position of the line should be equal to the z position of the
wave surface, see equation 2.7.5 . This gives the following nonlinear equation system 6.1.5.

f (x, y) =

{
x−x0
sx

sz + z0 =
∑N

j=1

∑M
k=1 ζjk sin(ωjt− kjx cos(θ)− kjy sin(θ) + εjk)

y−y0
sy
sz + z0 =

∑N
j=1

∑M
k=1 ζjk sin(ωjt− kjx cos(θ)− kjy sin(θ) + εjk)

[6.1.5]
In general equation 6.1.5 must be solved numerically. In addition the solution might not
be unique. To avoid these issues an approximate sea surface is calculated at every time
step, see definition 3. In this way an approximate wetted length could be calculated easily
through an explicit expression.

Definition 3.
The approximate sea surface is the tangent plane to the sea surface at the (x, y) position of
the center of mass of the cylinder.

The tangent plane is described by eq 6.1.6, see [5] for more information about tangent planes.

z = ζ (xt, yt) + (x− xt)
∂ζ

∂x

∣∣∣∣
xt,yt

+ (y − yt)
∂ζ

∂y

∣∣∣∣
xt,yt

[6.1.6]

where:

∂ζ

∂x
= −

N∑
j=1

M∑
k=1

ζjkkj cos(θ) cos(ωjt− kjx cos(θ)− kjy sin(θ) + εjk) [6.1.7]

∂ζ

∂y
= −

N∑
j=1

M∑
k=1

ζjkkj sin(θ) cos(ωjt− kjx cos(θ)− kjy sin(θ) + εjk) [6.1.8]

(xt, yt) = x, y coordinates of the center of mass of the cylinder

Assume that the axis of symmetry intersects the tangent plane at point P, see figure
6.1.2, the tangent plane is expressed with equation 6.1.9. The axis of symmetry is then
expressed using the line equation in vector form, see equation 6.1.10. If point P is the
intersection point, equation 6.1.11 is given by substituting the line equation 6.1.10 into the
plane equation 6.1.9. Finally the wetted length Lw can be obtained by equation 6.1.12.

~n · (P−Pp) = 0 [6.1.9]

where

~n = (− ∂ζ
∂x
|xt,yt ,−∂ζ

∂y
|xt,yt , 1), normal vector to the tangent plane

Pp = arbitrary point in the tangent plane
P = the intersection point
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Figure 6.1.2: The instant sea surface and the symmetry axis intersection point P

P = Pb + Lw · v̂ [6.1.10]

where

Pb = lowest end center point on a cylindrical element
v̂ = unit vector pointing upwards along the axis of symmetry

~n · (Pb + Lw · v̂ −Pp) = 0 [6.1.11]

Lw =
~n · (Pp −Pb)

~n · v̂
[6.1.12]

When the cylinder symmetry axis is nearly parallel to the tangent plane, ~n · v̂ becomes
small. This might cause numerical issues that lead to unrealistically large Lw values. An
extra constraint is therefore introduced so that the wetted length never could be longer
than the cylinder length.

6.2 Current

The current profile, the relationship between current velocity and z position, needs to be
defined. A one-dimensional current profile is defined by the user with a spline object in
Adams. It is assumed that the current profile is uni-directional, that is, the current direction
is constant. It is also assumed that the current direction only can vary in the horizontal
plane. In this master thesis, the current is assumed to be time independent. The current
velocity vector could then be calculated from equation 6.2.1.
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vc =

cos(θc)
sin(θc)

0

 vspline [6.2.1]

vc = Current velocity vector
θc = Current propagation direction
vspline = User-defined current profile

Figure 6.2.1: The current travelling in direction θc

Since the current velocity field is assumed time independent, the inertia force in Morison’s
equation due to the current becomes insignificant. The drag force is calculated by numerical
integration over the cylindrical element. The number of integration points are specified
by the user in the dialog box, see table 4.2.1. The total force on a cylindrical element is
calculated by equation 6.2.2:

Fcyl =
N∑
i=1

1

2
ρswCdAfdLivrn,i|v|rn,i [6.2.2]

where:

Fcyl = Morison force on a cylindrical element
dLi = length of a subelement i

The relative normal velocity vr,i is calculated by projecting the relative velocity, obtained
by equation 2.2.3, onto the cylinder cross sectional plane. In the subroutine the projection
is done by transforming the velocity vector to the ’gforce’ marker coordinate system,
then the z component is set to zero and the velocity vector is transformed back to global
coordinates. In this case the wave velocity is set to zero so equation 2.2.3 is rewritten to
equation 6.2.3.

vrn,i = projn(vc,i − vcyl,i) [6.2.3]
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The velocities of the current at the integration points, vc,i, are obtained by evaluating
the user-defined spline. If constant extension is used the spline is evaluated at the global
z-positions of the integration points. If wheeler stretching is used equation 2.7.9 is used
to evaluate the spline. Equation 2.1.1 is used to calculate the velocity of the integration
point vcyl,i. To do this, the global velocity, vcm and the global angular velocity, ω, of the
bodyfixed ’gforce ’ marker is measured. The coordinate systems are discussed in section 5.
The distance from the ’gforce’ marker to the integration point, rcm−>i, is also measured
in the global coordinates. Then vcyl,i is calculated with equation 6.2.4.

vcyl,i = vcm + ω × rcm→i [6.2.4]

where:

vcm = the velocity at the center of mass of the cylindrical element
rcm→i = displacement vector from the center of mass for each element to the integration

point

The forces on the cylindrical element must be moved to the ’gforce’ marker, see section
5.1.2. A moment must therefore be added for each integration point according to section
2.4. The moment is calculated with equation 6.2.5.

Mcyl =
N∑
i=1

rcm→i × Fcyl,i [6.2.5]

6.3 Current and waves

If both current and waves are taken into account, all terms must be preserved in Morison’s
equation. Using numerical integration, the Morison force on a cylindrical element is given
by equation 6.3.1.

Fcyl =
N∑
i=1

(
π

4
ρswD

2dLiawn,i +
π

4
ρswD

2dLiCAarn,i +
1

2
ρswCDDdLivrn,i|vrn,i|) [6.3.1]

The relative normal velocity, vrn,i, is obtained by projecting the relative velocity onto the
cylindrical element’s cross sectional plane, see equation 6.3.2.

vrn,i = projn(vw,i + vc,i − vcyl,i) [6.3.2]

The velocities of the current and the cylinder are discussed in section 6.2. The wave velocity
depends on the user-defined wave type, for more information about available wave types,
see Chapter 4. If regular deep water waves are used, the velocity components of the waves,
vw,i, are given by equation 2.7.1 and 2.7.2. For irregular deep water waves, the directional
spectrum, described by equation 2.7.19, can be used to model multi-directional irregular
waves. If irregular waves are used without a directional spectrum, the velocity components
of the waves, vw,i, are given by equation 2.7.10 and 2.7.11. If a directional spectrum is
used, the wave velocities are determined by equation 2.7.20 and 2.7.21.

The fluid normal accelerations and the relative normal accelerations, awn and arn,i, are
obtained by projections onto the cylindrical element’s cross sectional plane, see equation
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6.3.3 and 6.3.4.

awn,i = projn(aw,i) [6.3.3]

arn,i = projn(aw,i − acyl,i) [6.3.4]

The wave acceleration depends on the user-defined wave type. If regular deep water waves are
used, the accelerations of the waves, aw,i, are given by equation 2.7.3 and 2.7.4. If irregular
waves are used without a directional spectrum, the accelerations of the waves, aw,i, are
given by equation 2.7.12 and 2.7.13. If a directional spectrum is used, the wave accelerations
are determined by equation 2.7.22 and 2.7.23. Equation 2.1.2 is used to calculate the
cylinder acceleration at each integration point, acyl,i. To do this, the acceleration at the
cylinders center of mass, acm, the angular velocity and the angular acceleration of the
’gforce’ marker, ω and α respectively, and the distance from the center of mass to the
integration point’s position, rcm→i, are measured. The acceleration, acyl,i, is then given by:

acyl,i = acm +α× rcm→i + ω × (ω × rcm→i) [6.3.5]

The force is moved to the ’gforce’ marker, a moment must be added as in the section 6.2
and can be calculated by equation 6.2.5.

6.4 The subroutine output

After all the sea loads have been calculated, the loads related to the ocean current and the
waves are multiplied by a smooth ramp function. The ramp function is introduced to ensure
that the initiation phase of the simulation runs smoothly. The loads are stepped from zero
to full scale in Tr seconds. All sea loads are then compiled into three force components and
three moments and sent back to the cylindrical elements.
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7 Wave visualization
In many cases it is convenient for the user to be able to see the waves. An optional wave
visualization feature has therefore been added.

Figure 7.0.1: The waves visualized with tangent plates

The motion of the sea surface is visualized with moving rigid body plates, see figure 7.0.1.
The sea surface is visualized over the rectangular area specified by the user-defined intervals
(xmin, xmax) and (ymin, ymax). The intervals are expressed in the global coordinates. The
number of plates along the edges of the rectangular area are the user-defined parameters
npx, npy. The side length of the plates are calculated with equations 7.0.1-7.0.2.

Lpx =
|xmax − xmin|

npx
[7.0.1]

Lpy =
|ymax − ymin|

npy
[7.0.2]

The plates used to visualize the sea surface are created by calling ’Wave visualization

macro’ multiple times. A single plate is shown in figure 7.0.2. ’Wave visualization macro’
starts off by creating a ’georef’ marker, this is used as reference when creating the plate
geometry. Two additional markers at the center of the plate are then created, that is ’mmark’
and ’mmark refxx’ markers, both has global orientations. The ’mmark’ marker belongs to
the plate and the ’mmark refxx’ marker belongs to the ground. Since there might be many
plates and thus many ’mmark refxx’ markers belonging to the ground, xx in ’mmark refxx’
represent a unique number used to distinguish between these markers. The motion of
the plate is prescribed to the ’mmark’ marker relative to the ’mmark refxx’ marker and is
defined by prescribing the six displacements, here the x, y translation and the z rotation are
set to zero. The x, y rotation and the z translation are prescribed with subroutines. The
motion of each plate corresponds to the motion of the wave surface’s tangent plane at the
center of the plate. The z translation is the same as the wave profile at the point motion
marker, ’mmark refxx’ marker. For a regular wave, the value of this point motion can be
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Figure 7.0.2: A tangent plate

calculated by using equation 2.7.5. The rotation around the x axis is relatively small and
can therefore be approximated by the derivative of the wave profile with respect to y, see
equation 7.0.3. In the same way, the rotation around the y axis can be approximated as the
negative derivative of the wave profile with respect to x, see equation 7.0.4. For irregular
waves, a similar approach is used to determine the x, y rotation and the z translation.

θx ≈ ξ′y = −k sin(θ)ξa cos(ωt− kx cos(θ)− ky sin(θ)) [7.0.3]

θy ≈ ξ′x = k cos(θ)ξa cos(ωt− kx cos(θ)− ky sin(θ)) [7.0.4]
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8 Plug-in
The plug-in is basically a way to package the pipe construction toolkit so that it is easily
accessible in Adams/View. In order to do this a library is created, and all macros that
are used in the pipe construction toolkit are loaded into that library. The library is then
written to a binary file that is moved to the Adams installation folder along with the dll
file containing all subroutines. An xml file that defines practical things concerning the
plug-in is created and moved to the Adams installation folder. It is defined that it can
be accessed in Adams/View only. The plug-in could be accessed under the plug-in ribbon
in the ‘Offshore’ container, see figure 8.0.1. If the icon is pressed the dialog box will appear.

Figure 8.0.1: A picture of Plug-in ribbon and offshore container
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9 Verification

Now the rise pipe construction toolkit can be accessed as an Adams plug-in. It is important
to verify that the models constructed with the toolkit behave realistically. Minor parts of
the model like the mass properties are checked by performing simple tests. More crucial
parts, like the sea loads calculated in the subroutine, are verified by comparing simulation
result from the toolkit to results from other softwares.

9.1 Verification of buoyancy

Two verification cases have been performed to verify the calculated buoyancy load. In the
first case results from an Adams simulation was compared to an analytical solution for
a vertical cylinder. In the second case, the buoyancy load in the presence of waves was
examined.

9.1.1 Case 1. Vertical pipe

In this case, the equation of motion was solved for a vertical pipe. It was assumed that the
sea surface was still and that the cylinder was breaking the sea surface at all times. The
cylinder was only allowed to move up and down. The forces acting on the cylinder were
only gravity and a buoyancy force. An illustration of the described cylinder can be seen in
figure 9.1.1.

Figure 9.1.1: A picture of the cylinder used to derive equation 9.1.3

The equation of motion for cylinder with mass mc is described by equation 9.1.1 :

mcz̈ −mcg + ρswgA(z +
Lc
2

) = 0 (9.1.1)
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where the cylinder is homogeneous with a density ρc and has a length Lc, The equation of
motion can be rewritten as

z̈ +
ρswg

ρcLc
z + (

ρsw
2ρc
− 1)g = 0 (9.1.2)

The differential equation can then be solved by using two initial conditions. When the time
is zero, the center of the cylinder is located at a given location, z(0) = z0. The cylinder is
also assumed to start from rest, ż(0) = 0. The solution to the differential equation is then
given by equation 9.1.3 :

z =

(
z0 −

(ρsw
2ρc
− 1)g

ρswg
ρcLc

)
cos(

√
ρswg

ρcLc
t) +

(ρsw
2ρc
− 1)g

(ρswg
ρcLc

)
(9.1.3)

The solution was plotted and compared to the simulation result in Adams. The displacements
of the center of mass agree with each other, see figure 9.1.2.

Table 9.1.1: The maximum and minimum values in case 1

Adams MATLAB

zmax -0.2 -0.2
zmin -0.9250 -0.9249
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Figure 9.1.2: Verification of buoyancy for a vertical cylinder, plotted in the interval 0 to 5
seconds
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9.1.2 Case 2. Oblique pipe

Figure 9.1.3: A picture of an oblique pipe

In this case, the approximate sea surface concept discussed in section 6.1.4 was examined.
The buoyancy load on an oblique pipe in the presence of regular waves was studied, see
figure 9.1.3. A MATLAB code was created to solve the exact wetted length using equation
system 6.1.5 for two different set-ups. The difference between the two set-ups is that the
oblique pipe in the second set-up was tilted much more than in the first set-up. The set-ups
specifications are shown below in table 9.1.2 and table 9.1.3. The results are shown below
in figure 9.1.4, 9.1.5 and table 9.1.4.

Table 9.1.2: Buoyancy test Set-ups 1

r [m] 0.1
density [kg/m3] 1024
Wave amplitude [m] 10
Average waterdepth [m] 1000
Wave period [s] 20
Cylinder top point [m] (4 -1 15)
Cylinder bottom point [m] (2 2 -20)
θwave 50◦
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Table 9.1.3: Buoyancy test Set-ups 2

r [m] 0.1
density [kg/m3] 1024
Wave amplitude [m] 10
Average waterdepth [m] 1000
Wave period [s] 20
Cylinder top point [m] (4 -1 15)
Cylinder bottom point [m] (100 100 -20)
θwave 50◦
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Figure 9.1.4: The buoyancy load calculated in MATLAB and Adams for set-up 1

Table 9.1.4: The maximum and minimum values in case 2

Set-up 1 Set-up 2
Adams MATLAB Adams MATLAB

FB,max 9514.7 9513.9 40729 38850
FB,min 3171.4 3171.6 12304 12952
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Figure 9.1.5: The buoyancy load calculated in MATLAB and Adams for set-up 2
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9.2 Comparison with USFOS

To assure that the current and the regular wave functionalities in the pipe construction
toolkit work properly, comparisons to the simulation results from the software USFOS was
made. The model specifications and the simulation results from USFOS were found in [6].
The riser pipe construction toolkit was used to replicate the models and the simulation
results were then compared.

9.2.1 Current verification

In the USFOS theory manual [6] the reaction forces from two simulations of a pipe structure
exposed only to an ocean current is presented. One of the simulations was done in USFOS
and the other was taken from an Excel macro, that had been used to verify USFOS. In the
test the current varied linearly from 1.5 [m/s] at the surface to 0 at the seabed. The pipe
was straight and stretching from [30 30 20] to [0 0 -70] in meters. The pipe was also rigid
and fixed. The rest of the test parameters used by USFOS are shown in table 9.2.1.

Table 9.2.1: Current load, test parameters

h 70 [m]
D 0.2 [m]
CD 1
CM 0
Ne 1000
NIe 1000
θcurrent 270◦

The USFOS report lacks information about some settings. These are obtained by doing
some trial and error. It was found that the pipe was massless, no buoyancy exists and
the coordinate system was oriented in the same way as the global coordinate system used
in this thesis. The test was recreated in Adams with some differences. Since the results
seemed to converge after 20 elements and 10 integration points, 1000 elements with 1000
integration points would take unnecessarily long time. So only 100 cylindrical elements
with 10 integration points were used instead. The load was ramped up in Adams in order
to get a stable initiation process. The time scale in Adams was therefore displaced a few
seconds.

Figure 9.2.1 shows the results from USFOS and figure 9.2.2 shows the results from Adams.
The maximum and minimum values of the reaction forces from Adams, USFOS and Excel
are presented in table 9.2.2.
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Figure 9.2.1: The reaction forces due to an ocean current, from the USFOS theory manual

Figure 9.2.2: The reaction forces due to an ocean current, from the Adams simulation
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Table 9.2.2: Current load, test results

Adams USFOS Excel

Rx -515.28 -513.98 -515.432
Ry 5148.6 5162.84 5156.3
Rz -1545.8 -1548.8 -1546.8
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9.2.2 Regular wave verification

In the USFOS theory manual [6] the reaction forces from four simulations of a pipe structure
exposed only to a regular deep water wave is presented. Two simulations were done in
USFOS, one with CD = 1, CM = 0 and one with CD = 0, CM = 2. The other two were
done in an Excel macro with the same set-up as in USFOS. The pipe was straight and
stretching from [10 10 7] to [0 0 -20] in meters. The pipe was also rigid and fixed. The rest
of the test parameters used by USFOS are shown in table 9.2.3.

Table 9.2.3: Wave load, test parameters for the two set-ups

Set-up 1 Set-up 2

h [m] 70 70
D [m] 0.2 0.2
CD 1 0
CM 0 2
Twave [s] 5 5
ξ0 [m] 2.5 2.5
Ne 1000 1000
NIe 1000 1000
θwave [rad] 0◦ 0◦

As mentioned in section 9.2.1, information about some settings are missing. In addition to
those settings already discussed, it was found that constant extension was also used as the
extension method, the gravity was assumed to be g = 9.80655 m/s2 and the wave started
with the wave crest at the global origin. For the same reason as discussed in section 9.2.1,
only 100 cylindrical elements with 10 integration points were used instead. The load was
ramped up in Adams in order to get a stable initiation process. The time scale in Adams is
therefore displaced one wave period.

Figure 9.2.4, 9.2.6 shows the results from USFOS and figures 9.2.3, 9.2.5 show the re-
sults from Adams. The maximum and minimum values of the reaction forces from USFOS
and Adams are presented in Table 9.2.4.

Table 9.2.4: Maximum and minimum reaction forces from the regular wave simulations

CD = 1 CM = 0 CD = 0 CM = 2
Adams USFOS Excel Adams USFOS Excel

Rx,max [N] 1463.6 1475.9 1468.0 1662.7 1663.4 1659.0
Rx,min [N] -5771.5 -5778.3 -5778.1 -1652.6 -1647.3 -1654.7
Ry,max [N] 896.99 905.30 903.04 336.44 336.91 336.46
Ry,min [N] -812.76 -813.19 -814.67 -720.42 -717.25 -719.78
Rz,max [N] 2154.4 2162.7 2165.2 703.19 704.86 703.99
Rz,min [N] -586.07 -590.22 -586.40 -566.82 -566.77 -566.73
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Figure 9.2.3: The reaction forces in Adams when CD = 1, CM = 0

Figure 9.2.4: The reaction forces from the USFOS theory manual when CD = 1, CM = 0
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Figure 9.2.5: The reaction forces in Adams when CD = 0, CM = 2

Figure 9.2.6: The reaction forces from the USFOS theory manual when CD = 0, CM = 2
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9.3 Irregular wave verification

The irregular wave functionality in the pipe construction toolkit was verified by comparing
simulation results with OrcaFlex. OrcaFlex is a dynamic simulation software specialized to
model offshore structures. Since OrcaFlex requires a license, the OrcaFlex model was built
by the company 4Subsea in Norway.

Figure 9.3.1: A vertical pipe model fixed at the top end with irregular waves

A vertical riser pipe located in a sea with irregular waves based on the JONSWAP spectrum
without a directional spectrum was modelled in both Adams and OrcaFlex, see figure 9.3.1.
The upper end of the pipe was fixed and the lower end was free. No current was applied to
the model. The pipe was assumed to be rigid. The other parameters used in the model
construction are listed below in table 9.3.1. Both simulations were performed in a 1000 s
interval with the time step 0.1 s. The output of the simulations were the reaction forces in
the fixed joint. Since the waves only propagated in the x-direction and the pipe is vertical,
the force components in the y- and z-directions, Fy, Fz, and the torque components around
the x- and z-axes, Mx, Mz, were irrelevant. This leaves the force components in x direction,
Fx, and the torque component around the y-axis, My, to be studied and compared. The
simulation results are shown below in figure 9.3.2-9.3.5 and table 9.3.2.
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Table 9.3.1: Input for irregular waves verification

Sea environment

Density seawater [kg/m3] 1024
Water depth [m] 100

Wave Parameters
Wave Type JONSWAP
Number of Components 10
Min frequency [rad/s] 0 - 0.5
Max frequnecy [rad/s] 1.6 - 2
Gamma 3.3
Alpha fetch 0.015
σ1 7.00E-2
σ2 0.09
Peak frequency [rad/s] 0.56
Pipe parameters

Upper end [m] (0,0,10)
Lower end [m] (0,0,-100)
Outer diameter [m] 0.35
Inner diameter [m] 0.25
Density pipe [kg/m3] 7800
CD 1
CA 1

Table 9.3.2: RMS values calculated from OrcaFlex and Adams

OrcaFlex Adams with Adams waves
(10 nodes) (10 nodes)

Fx [N] 8505.6 6357 - 10713
My [Nm] 173560 172160 - 261720
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Figure 9.3.2: The force Fx in Adams with Adams waves (10 nodes)
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Figure 9.3.3: The torque My in Adams with Adams waves (10 nodes)
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Figure 9.3.4: The force Fx from OrcaFlex (10 nodes)
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Figure 9.3.5: The torque My from OrcaFlex (10 nodes)
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It can be seen that the results are different in Adams and OrcaFlex. This is because the
irregular waves are not the same. There are two reasons for that. The irregular waves are
generated by two different approaches in the pipe construction toolkit and in OrcaFlex. The
pipe construction toolkit uses the equal frequency spacing approach mentioned in section
2.7.8 when discretizing the wave spectrum. OrcaFlex on the other hand uses the equal energy.
In addition, randomized phase displacements are used in both programs when creating the
wave components. To be able to compare the result sets Root Mean Square values, so called
RMS values, are calculated and shown in table 9.3.2. Since only ten wave components are
used, the RMS values will be depending on the interval in which the wave spectrum is
discretized. The RMS values will also be depending on the random phase displacements.
Therefore RMS values from Adams in table 9.3.2 are given in intervals. The intervals have
been obtained by running many simulations with different phase displacements and different
minimum and maximum frequencies.

Table 9.3.3: Wave components used in OrcaFlex

Component Amplitude Phase Lag Wave number Direction
Frequency (Hz) m rad 1/m (deg)

7.4159E-2 0.94860 1.3570 2.2625E-2 0
8.2427E-2 0.94860 4.1351 2.7572E-2 0
8.6364E-2 0.94860 8.9834E-2 3.0171E-2 0
8.9333E-2 0.94860 3.2883 3.2228E-2 0
9.2326E-2 0.94860 2.6988 3.4386E-2 0
9.6037E-2 0.94860 2.8369 3.71730E-2 0
0.10197 0.94860 0.87264 4.1874E-2 0
0.11308 0.94860 2.1861 5.1487E-2 0
0.13182 0.94860 4.7597 6.9954E-2 0
0.17733 0.94860 3.0745 0.12659 0

It is hard to verify the calculation of the wave loads when the waves are different. To make
the results more comparable, the wave components used in OrcaFlex, listed in table 9.3.3,
were inserted into Adams. The simulation results are shown in figure 9.3.6 and 9.3.7. To
make a better comparison, the simulation results for the interval between 0 s and 100 s are
plotted together, see figure 9.3.8, 9.3.9 and table 9.3.4.
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Figure 9.3.6: The force Fx from Adams with OrcaFlex waves (10 nodes)
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Figure 9.3.7: The torque My from Adams with OrcaFlex waves (10 nodes)

Table 9.3.4: RMS values calculated from OrcaFlex and Adams with OrcaFlex waves

OrcaFlex Adams with OrcaFlex waves
(10 nodes) (10 nodes)

Fx [N] 8505.6 8472
My [Nm] 173560 213050
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Figure 9.3.8: A comparison of the forces Fx from OrcaFlex and Adams with OrcaFlex waves,
10 nodes each
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Figure 9.3.9: A comparison of the torques Ty from OrcaFlex and Adams with OrcaFlex
waves, 10 nodes each
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Looking at figure 9.3.8 and 9.3.9, it can be seen that the forces agrees very well, while
the moment in OrcaFlex is consistently slightly lower than the moment in Adams. That
is very strange since the forces and the moments are closely related. In order to make a
well-founded conclusion the moment need to be examined further. To do this, a MATLAB
program that model a vertical pipe according to the specifications in table 9.3.1 was created.
The wave components generated by OrcaFlex, table 9.3.3, was used. When testing the
MATLAB program it was noticed that the results still depended on the number of nodes.
Therefore 1000 nodes was used in MATLAB, the Adams model with the OrcaFlex waves
was also re-simulated with 1000 nodes to make sure that the model results had converged.
The response from the MATLAB simulation is shown in figure 9.3.10 and 9.3.11. The RMS
values from both MATLAB and the new Adams simulation are shown in table 9.3.5.

Figure 9.3.10: The force Fx from MATLAB with OrcaFlex waves (1000 nodes)
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Figure 9.3.11: The torque My from MATLAB with OrcaFlex waves, (1000 nodes)

Table 9.3.5: RMS values calculated in MATLAB and Adams with OrcaFlex waves with
1000 nodes compared to the results from OrcaFlex with 10 nodes

Adams with OrcaFlex waves MATLAB with OrcaFlex waves OrcaFlex
(1000 nodes) (1000 nodes) (10 nodes)

Fx [N] 8386.3 8398.6 8505.6
My [Nm] 210410 210780 173560

65



10 Conclusion and discussion
Considering the verification results in section 9.1, the results suggest that the buoyancy force
is correctly calculated. Due to the instant sea surface approximation, the buoyancy force on
a pipe that breaks the surface is most accurately calculated when the pipe is close to upright.
In section 9.1.2 it is shown that the largest error deviation is approximately 5 percents when
the pipe is tilted 75 degrees from the upright position. When the pipe is tilted 6 degrees the
error is negligible. These results should only be considered as approximate error estimations.
Except for the tilt angle, the error will also vary depending on the wave set-up and the length
of the cylindrical element. As a rule of thumb the cylindrical element should never be longer
than one quarter of the wavelength. It should be stressed that in a riser pipe model there
are only a few cylindrical elements that will break the surface. The majority of the elements
will be either fully emerged or fully submerged. Since the buoyancy force calculation will
be correct for those elements the total error will be small. Consequently, there is little to
gain by improving the buoyancy calculations for a cylindrical element that breaks the surface.

The results in section 9.2 suggests that the loads due to currents and regular waves have
been calculated correctly. Neither of the graphs in that section display any noticeable
difference between the results from Adams, USFOS and Excel. In table 9.2.2 and 9.2.4
it could be seen that the maximum and minimum values of the reaction forces deviates
a little bit. However, the results from Adams are within the deviation range between the
USFOS and Excel results. The small deviation could depend on different solver settings, it
could also depend on the gravity constant that was assumed due to the lack of information.
The verification described in this section was done for specific set-ups. As a consequence
there are still functionalities related to both currents and regular waves left to be verified.

Compare figures 9.3.2 to 9.3.4 and figures 9.3.3 to 9.3.5, they are very different. In table
9.3.2 the corresponding RMS values are presented. The RMS value of the force from
OrcaFlex is within the RMS range from Adams. The RMS value of the reaction moment
My in OrcaFlex is just within the RMS range from Adams. This suggests that the irregular
waves generated with equal frequency spacing in Adams are comparable to those generated
with the equal energy approach in OrcaFlex. In figures 9.3.6 and 9.3.7, the irregular waves
generated in OrcaFlex have been used in Adams. Comparing with figures 9.3.4 and 9.3.5 is
hard to see any noticeable difference. A closer comparison could be made by looking at
figure 9.3.8 and 9.3.9. The reaction forces are very similar while the reaction moment from
OrcaFlex seems to be consistently lower than that from Adams. The RMS values in table
9.3.4 suggest the same thing. Since table 9.3.5 shows that the results from the MATLAB
model converge towards the same values as the Adams model, it indicates that the moment
in Adams is correct. It is possible that OrcaFlex has some extra active settings that is not
included in the toolkit, for instance, there might be some kind of structural damping that
reduces the moment in OrcaFlex. To overcome this problem the irregular wave verification
should be redone in OrcaFlex. Overall the verification results indicate that the sea loads
has been implemented correctly.
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11 Recommendations
To improve the pipe construction toolkit, the following actions are recommended:

• Solve the implicit equation 2.7.8 to obtain wave length for finite water depth.

• There are two irregular wave spectrums implemented in the toolkit, JONSWAP and
Pierson-Moskowitz. More wave spectrums can easily be implemented if it is needed.
Other common wave spectrums are for example Ochi-Hubble spectrum, Torsethaugen
spectrum, Gaussian Swell spectrum.

• Implement the equal energy approach in the toolkit.

• Currently flexible Timoshenko beams are used to connect the cylindrical elements by
the toolkit. OrcaFlex on the other hand uses translational and rotational springs and
damper when modelling pipe structures. How the structure should be modelled need
to be studied further.

• Currently a simple directional spectrum is used in the pipe construction toolkit. Since
it is only valid for short crested waves, an additional directional spectrum valid for
long crested waves should be added. Alternatively a single directional spectrum valid
for both short crested and long crested waves should be added.

• Functionalities like wheeler stretching, directional spectrum, relative motion and the
structural dynamics of the pipe are still left to be verified. Since the OrcaFlex moment
in the irregular wave verification was consistently lower than the one in Adams the
irregular wave verification should be remade. When recreating the OrcaFlex model
more nodes should be used to check if the results converge. It is also important that
all the active settings are investigated thoroughly in the OrcaFlex model, especially
deactivate the seabed friction.

• When a directional spectrum is introduced the energy in the sea state changes. A
user defined scaling factor should therefore be multiplied to the directional spectrum
so that the user can control the energy in a sea state, see OrcaFlex Manual [10].

• Irregular waves are created by defining a lot of user parameters, it is therefore easy to
get it wrong. Currently the user must run a simulation to see how the irregular waves
turn out. This is unnecessary since the irregular waves are generated in the pipe
construction macros. This makes it possible to see how the irregular waves turned
out after the pipe is constructed. The toolkit could therefore be improved by plotting
both the wave spectrum and the resulting irregular wave automatically after the pipe
has been created.

• In reality the riser pipes are attached to a mobile structure at the top end. The
motion of the top end is usually described with a response amplitude operator, RAO.
To make a more realistic model an RAO should be implemented into the toolkit.

• Currently the pipe construction macros are adapted to build long straight pipes, the
cylindrical elements could also be used to create other structures like flexible pipes.

• The toolkit needs extensive testing to debug and fix inflexibilities in the macros and
in the dialog box.
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• Insert help texts into the dialog box that explain the meaning of the parameters and
give useful tips.
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A Regular wave torque verification
To verify the torque calculation in a regular wave, a MATLAB model and an Adams model
of a vertical pipe were created, see figure 9.3.1. The upper end of the pipe was fixed and
the lower end was free. No current was applied to the model. The pipe was assumed to be
rigid. The other parameters used in the model construction are listed below in table A.0.1.
The simulations time was 20 s with the time step 0.1 s. The output of the simulations
were the reaction forces in the fixed joint. The torques My from Adams and MATLAB are
plotted in figure A.0.1 and the extreme values from both calculations were listed in table
A.0.2. It can be seen that the maximums and minimums from MATLAB and Adams agree
well. The same conclusions can be made by studying figure A.0.1.

Table A.0.1: Input for torque verification in a regular wave

Sea environment
Density seawater [kg/m3] 1024
Water depth [m] 100
Wave Parameters
Wave Type Regular
Wave Period [s] 20
Wave Amplitude [m] 7
Pipe parameters
Upper end [m] (0,0,10)
Lower end [m] (0,0,-100)
Outer diameter [m] 0.05
Inner diameter [m] 0
Density pipe [kg/m3] 7800
CD 1
CA 1
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Figure A.0.1: The torque My calculated in MATLAB and Adams

Table A.0.2: The maximums and minimums for the calculated My in the joint from both
MATLAB and Adams

My,[Nm] MATLAB Adams
maximum 1.3220e+06 1.3210e+06
minimum -1.2649e+06 -1.2639e+06
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