

Behavior Classification based on Sensor Data

Classifying time series using low-dimensional manifold representations

Master’s thesis in Engineering Mathematics and Computational Science

John Rosén

Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015
Master’s thesis 2015:51

MASTER´S THESIS IN ENGINEERING MATHEMATICS AND COMPUTATIONAL SCIENCE

Behavior Classification based on Sensor Data

Classifying time series using low-dimensional manifold representations

John Rosén

Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2015

Behavior Classification based on Sensor Data
Time series classification using low-dimensional manifold representations
JOHN ROSÉN

© JOHN ROSÉN, 2015

Master´s thesis 2015:51
ISSN 1652-8557
Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Projection of data onto manifold warped by the Kohonen Self-Organizing Map methodology.

Chalmers Reproservice
Gothenburg, Sweden 2015

i

Behavior Classification based on Sensor Data
Time series classification using low-dimensional manifold representations
Master´s thesis in Engineering Mathematics and Computational Science
JOHN ROSÉN
Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology

ABSTRACT

This master´s thesis focuses on developing and testing methods that can automatically classify a
given time series as having a certain behavior, chosen from a set of pre-specified, known
behaviors.

The first part of the thesis focused on finding statistical values where the empirical cumulative
distribution of these values could be used for classification. The inverse of the cumulative
distributions where then sampled at equally distanced sampling points and the resulting vector of
sample values were treated as points in a high-dimensional Euclidean space. These points were
then dimensionally reduced using projections onto a 2-dimensional manifold, where the manifold
was warped in the high-dimensional Euclidean space using the elastic map and Kohonen Self-
Organizing Map methodologies. The outputs from the manifold projections were then clustered
using a 𝑘-nearest-neighbor algorithm.

Both methodologies gave fairly good classification result for the two behaviors under
consideration (86.5% / 80.3%, class 𝐶1 / 𝐶2 for elastic map, 83.6% / 78.3%, class 𝐶1 / 𝐶2 for
Kohonen SOM). It was also shown that there truly were convergence in distribution for the
behaviors under consideration.

Key words: Time series classification, convergence in distribution, dimensionality reduction Elastic
map, Kohonen SOM, 𝑘-nearest neighbors

ii

iii

PREFACE

This master´s thesis has been carried out at Saab Electronic Defense Systems in Kallebäck,
Gothenburg, and is the final part of my M.Sc. degree at Chalmers University of Technology.

 Electronic Defense Systems (EDS) is a business area within Saab group and is a world leading
supplier of surveillance solutions, flight electronics and systems that can discover, localize and
protect against threats.

ACKNOWLEDGEMENTS

First of all I would like to thank my supervisor Christoffer Brax at Saab EDS, for providing the
opportunity to write this thesis as well as giving great support when needed. I would also like to
thank my examiner at Chalmers, Dr. Krister Wolff, for providing outstanding support and guide-
lines for the thesis.

 In addition, I would like to thank all my wonderful colleagues at Saab EDS for providing
laughter, friendship and a sense of compassion and responsibility.

 My final thanks goes to the founders and/or creators of Matlab, Microsoft Paint, the color
black and the inventor of the table-function in Microsoft Word.

Göteborg June 10, 2015
John Rosén

iv

v

 CONTENTS

Abstract 𝐢

Preface 𝐢𝐢

Acknowledgements 𝐢𝐢𝐢

Contents 𝐯

𝟏 Introduction 𝟏
1.1 Background . 1
1.2 Purpose/Objective . 1
1.3 Limitations . 2
1.4 Reading guidance . 2
1.5 Related work . 3

𝟐 Theory 𝟑
2.1 Key features . 3
2.1.1 Distance function . 3
2.1.2 Manifold . 4
2.1.3 Expectation-maximization algorithm . 4
2.1.4 𝑘-means clustering . 5
2.1.5 𝑘-nearest-neighbor classification . 5
2.2 Dimensionality reduction . 6
2.2.1 Principal component analysis . 7
2.2.2 Elastic map . 8
2.2.3 Kohonen self-organizing map . 10
2.2.4 Manifold output . 11

𝟑 Data structure and Methodology 𝟏𝟑
3.1 Given type of data . 13
3.2 The problem with distance measures . 14
3.3 PDF/CDF . 15
3.4 Methodology . 16
3.5 Chosen statistical values . 17
3.6 Sampling and concatenation . 18

𝟒 Computational complexity 𝟏𝟗
4.1 Operation . 19
4.1.1 Generating CDF and sampling . 19
4.1.2 Dimensionality reduction . 19
4.1.3 Classification . 20
4.2 System training . 20
4.2.1 Elastic map . 21
4.2.2 Kohonen SOM . 22

𝟓 Experiment setup and Result 𝟐𝟑
5.1 System setup . 23
5.2 Resulting manifolds . 24

vi

5.2.1 Elastic map . 24
5.2.2 Kohonen SOM . 25
5.3 Classification . 26
5.4 Changing model parameters . 27
5.4.1 Exponential-decay parameter B . 27
5.4.2 𝑘-NN neighbors . 28
5.4.3 Time series length . 28
5.4.4 Sampling points per distribution . 29

𝟔 Discussion and conclusion 𝟑𝟎

𝟕 Future work 𝟑𝟏

 References 𝟑𝟐

1

𝟏 Introduction

𝟏. 𝟏 Background

With the aid of sensor systems it is possible to measure properties of a wide range of physical
objects. Working with radar systems, such properties may include position, velocity and an
apparent size of the object (e.g. the amount of reflected radar energy). All these measured
properties taken together over time may be denoted as the behavior of the target.

Examples of such behaviors could be commercial flights landing/taking off from airports or
following flight corridors, but it is possible to define any number of different behaviors arbitrarily.
However, only a handful of these will have practical use, such as the examples given. The true
number of needed behaviors is for this reason quite small. The real challenge is to classify any
observed target behavior to a known set of pre-specified behaviors.

The need for an applied classification methodology that can do this task is to make classification
independent of whether the object divulges its own intentions; It will be able to classify behaviors
regardless of any interactive communications - as well as finding anomalous behaviors (behaviors
that cannot be easily classified to the set of pre-defined behaviors).

In general, any behavior classification methodology will provide great support for a (human) radar
operator as it will highlight certain behaviors (or anomalous such) and can find these behaviors
among a large number of radar objects simultaneously. One real-world example where such
classification would have been of great use is the hijackings during the 9/11 attacks.

𝟏. 𝟐 Purpose/Objective

This thesis aims at finding, implementing and evaluating different models that can classify the
behavior of an object based on sensor data.

To be considered successful, the following constraints should remain unbroken:

 1. One minute of observations should be sufficient for classification

 2. The model should have low dependence on the direct numerical values of the sensor data

 3. The model should be able to use different lengths of observational data for classification

 4. In real-time operation, the model should be able to classify 1000 objects each second using
limited amounts of computational resources (e.g. running on a laptop)

The 1-minute observational constraint is set in accordance to the longest acceptable period for an
object to remain unclassified. Longer periods would likely be better in terms of correctly classified
objects, though, requiring such observational lengths would defeat the purpose of the intended
classifier.

Being independent of the direct numerical values means that the model, for example, should be
independent of the direction, position or velocity in terms of absolute values – what is only of
interest are the relative values. This would be equivalent to the model using the subsequent
changes in the direct values or some transformation removing the direct dependencies
altogether.

2

The different-length constraint is due to the method in which the data is collected. In real-time
operation, it will be a continuously increasing time-series and any model should be able to use all
given data, preferably without the need of using different system parameters for different time-
series lengths.

The last constraint, regarding the capacity of the model, is set to ensure that any plausible
scenario will not result in system overloading – classification should be possible even given a fairly
large set of radar objects. 1000 objects is well above the common number of objects observed,
thus setting a large margin for computation.

𝟏. 𝟑 Limitations

Classification of time series is often a truly nontrivial matter. This is especially true for this project
as there likely is no single easily calculated quantity that can accurately classify the given set of
behaviors; It is the evolution of the observed properties over time that distinguishes them. Some
simplifications are therefore introduced to make data processing and classification feasible:

 1. Each given time series, no matter what original length, is split into individual,

shorter time series that may have some overlap. Yet, each segmented time series is
treated as an independent observation.

 2. Each time series may originally contain more than one behavior at different times.
However, this overlap of behaviors is ignored and each segmented time series is
considered to have only one corresponding behavior.

 3. Due to the sensor system itself, the given data contains lots of holes (i.e. missed
updates) as well as uncertainties in some of the measured properties. These holes
are filled using simple linear interpolation and the measurement uncertainties are
not considered at all.

 4. A fully functional classifier should be able to handle an arbitrary set of pre-specified
behaviors. However, only two main behaviors are considered in this project. These
are denoted as 𝐶1 and 𝐶2. Class 𝐶2 is sometimes regarded as a superclass to a set of
subclasses, denoted as 𝐶2𝑎, 𝐶2𝑏, 𝐶2𝑐, 𝐶2𝑑 and 𝐶2𝑒, but any classification result for
𝐶2 is the mean of the classification result for all the subclasses.

𝟏. 𝟒 Reading guidance

The next chapter, Chapter 2 (Theory) gives a short description of some common notations,
algorithms, clustering techniques and general concepts encountered in this thesis, described both
from a general point of view as well as mathematical when needed.

Chapter 3 (Data structure and methodology) contains descriptions of the given data, the
methodology in which this data is processed and the statistical values derived from the data. It
also contains descriptions of some commonly encountered problems when working with high-
dimensional data such as the one given and motivates the chosen way in which the data is
processed.

3

In chapter 4 (Computational complexity) the required computational resources of the intended
classification methodology is analyzed, both in the context of model parameter estimation as well
as real-time operation.

The result of the classification is presented in Chapter 5, both as the result from the “main” model
setup but also the result obtained when changing some model parameters. The experimental
setup is described first.

In Chapter 6 and 7 (Discussion and conclusion and Future work) conclusions are drawn from the
result and some suggestions for future work are given.

𝟏. 𝟓 Related work

There exist many different classification methodologies that can be used to classify time series
data, such as Dynamic Time Warping and related methods. However, it is suspected that this
method have a lot of drawbacks if the constraints are to be fulfilled, especially the constraint
regarding the independency of direct numerical values (e.g. an classified behavior should always
be the same regardless if the trajectory of the object is rotated around any axis). Classification of
time series using the distribution of some observed (and further processed) properties is used
instead.

A method that was used with fairly good results is the elastic map methodology applied to the
problem of identifying the correct flow regime in an air-water pipe flow based on differential
pressure measurements[1]. In this case, many different classification methodologies were tested
and it was shown that the elastic map method outperformed the others. But more importantly so,
this work showed that it was truly possible to classify time series using (non-parametric)
distributions.

Another method used with good result when applied to the problem of estimating stock prices is
Kohonen self-organizing map (Kohonen SOM)[2]. In this case, stock data (e.g. price, volume) for
the previous 65 days were used to predict the stock price for the following day. This method did
not use the distribution of the time series for classification, but it showed that self-organizing
maps can be used for time series prediction (in practice, classification) with fairly good accuracy.

𝟐 Theory

𝟐. 𝟏 Key features

𝟐. 𝟏. 𝟏 Metric, Distance metric or Distance function
A metric, or distance function [3], is a function that introduces the notion of distance between
objects in a set. It is a function that for any two objects in a set returns a positive scalar value,
representing the distance between the objects. If the main set is denoted by 𝑋, in
mathematical terms the distance function is defined as

𝑑: 𝑋 × 𝑋 → 𝑹

For any objects 𝑥1, 𝑥2 and 𝑥3 in 𝑋, the following properties must apply for a distance
function𝑑:

4

 1. 𝑑(𝑥1, 𝑥2) ≥ 0 (non-negativity) 3. 𝑑(𝑥1, 𝑥2) = 𝑑(𝑥2, 𝑥1) (symmetry)
 2. 𝑑(𝑥1, 𝑥2) = 0 iff 𝑥1 = 𝑥2 4. 𝑑(𝑥1, 𝑥3) ≤ 𝑑(𝑥1, 𝑥2) + 𝑑(𝑥2, 𝑥3) (triangle inequality)

In this thesis, the notion of norm is treated as equivalent to a distance function. Norms are
denoted as ‖∙‖.

𝟐. 𝟏. 𝟐 Manifold
In mathematical terms, a manifold [4] is defined as a topological space that resembles the
Euclidean space near each point in the manifold. Specifically, in the local neighborhood around
any point in an 𝑛-dimensional manifold there exists a homeomorphism to the 𝑛-dimensional
Euclidean space, meaning that there exists a continuous, bijective (one-to-one) mapping
between the manifold and the Euclidean space

One example of a manifold is Earth’s surface, where the surroundings around any point on the
surface can be appropriately mapped by a 2-dimensional chart. Another good example is to
crumple up a piece of paper, where the paper, if intact, can be stretched to its original form.
This stretching of the paper represents the continuous mapping between the “crumpled up”
space (manifold) and the straight space (Euclidean)

𝟐. 𝟏. 𝟑 Expectation-Maximization algorithm
In its original setting, the expectation-maximization (EM) algorithm [5] is an iterative method
used in statistics to find the maximum likelihood estimates for latent (i.e. hidden or inferred)
model parameters. However, in this project the notion of usage of the expectation-
maximization algorithm will not necessarily be related to maximum likelihood estimates (or
statistics for that matter) but will refer to the iterative process employed in the EM-algorithm
for finding local extrema.

In general, problems for which the EM-algorithm is suitable are those where data points are to
be clustered in separate classes in such a way that the summarized “fitness” for all data points
of a given set (i.e. how well each data point belongs to its given class) is to be maximized.
Typically, having the objective of finding the global optimum is an NP-hard problem (as all
different clustering settings must then be evaluated) but the EM-algorithm provides an
efficient method of finding at least a local optimum.

The algorithm starts with assuming some clustering for all data points. In the expectation step,
all parameters associated with any certain class are optimized given the data points that
belong to this class and with respect to some specified fitness function (i.e. a measure of how
well the entire system (parameters and clustering) is optimized). This is applied for all classes
while the clustering is kept unchanged. Then, in the following maximization step, the fitness
between any given data point and the given classes is calculated and the data point is clustered
to the class where the fitness is the largest while the class parameters are kept constant. Most
importantly, the fitness is calculated using the same measure as in the expectation step. With a
new clustering given, the algorithm is repeated until there is no change, after which it is
terminated.

5

The usage of the same fitness measure in both the expectation and maximization step is what
guarantees a convergence to at least a local optimum. The reason is that in both steps, the
summarized fitness can never decrease and thus after each iteration the clustering will always
be better or unchanged with respect to this fitness measure.

𝟐. 𝟏. 𝟒 𝒌-means clustering
𝑘-means clustering [6] is a clustering method which aims at dividing 𝑛 data points (from the
same metric space) into 𝑘 classes, where each data point belongs to the cluster with the
nearest mean, thus partitioning the data points into 𝑘 Voronoi cells.

It is not clear from this description which type of distance measure that is to be used. The
standard Euclidean distance metric is mostly used in the literature (and then sometimes used
in the main definition of the method itself), but the main purpose of this method does not
exclude the usage of some different distance metric. However, it will henceforth in this
method description be assumed to be the Euclidean distance.

A great advantage of this metric is the ability to describe this method in terms of a fairly easily
solved minimization problem. Assume 𝑛 observations from the metric space (𝑋, ‖⋅‖𝑙2) which
are to be divided into 𝑘 clusters. Denote by 𝑆𝑗 the set of observations that belong to cluster 𝑗

and 𝑺 the superset of these, i.e. 𝑺 = { 𝑆1, 𝑆2, … , 𝑆𝑘}. The objective is then to find 𝑺 such that

𝐸 = ∑ ∑‖𝒙 − µ𝑗‖
2

𝒙∈𝑆𝒋

𝑘

𝑗=1

is minimized. Here, µ𝑗 denotes the mean of cluster 𝑆𝑗. The advantage of using the Euclidean

distance is then made clearer since the point that minimizes the within-cluster sum of squares
is equal to the mean of the cluster points, which need not be true for different metrics.

The expectation-maximization algorithm can be appropriately applied to this problem. Starting
out by randomly assigning each data point a class membership, then for each class the mean is
calculated. All the data points are then re-clustered to the cluster with the nearest mean, after
which a new cluster mean is calculated and so forth. As such, both in the expectation and
“maximization” step, the value of 𝐸 will either decrease or remain constant and thus insuring
convergence to at least a local minimum.

𝟐. 𝟏. 𝟓 𝒌-Nearest Neighbor Classification
Clustering method (commonly denoted as 𝑘-NN [7]) which assigns a class membership to any
new observation based on the most numerous class among the new observations 𝑘 nearest
neighbors. It is very much different from 𝑘-means clustering, where the entire set of
observations is clustered simultaneously. Here, observations are introduced individually and
given a class membership based on the closeness to a set of observations of known classes.

The method itself is fairly straight forward. Given a set of 𝑁 observations of known class, the
distance between these observations and any new observation of unknown class can be

6

calculated given a distance metric. The distances to all the known observations may then be
sorted, and the new observation is said to belong to the most common class found for the 𝑘
first entries in this sorted distance list. In this setting, 1-NN corresponds to the simple nearest
neighbor, where each new observation belongs to the single nearest observation of known
class. A graphical example for 2-, 5-, and 10-NN is given below.

 Figure 𝟐. 𝟏: 𝒌-NN example

In the example above, the red square is to be classified either as a ring or triangle. Note that
the resulting classification is dependent on how many neighbors that are considered.

𝟐. 𝟐 Dimensionality reduction

Dimensionality reduction may generally be stated as a method of representing points of data
using fewer parameters than the dimensionality of the data space[8]. This parameter space may
belong to the same metric space as the dataspace does (e.g. projection in Euclidean space) or
belong to some metric space where the distance metric is fundamentally different (e.g.
parametrization of a curve).

Two examples of dimensionality reduction of data
from a 2-dimensional Euclidean space, one linear and
one non-linear, are given to the right. In the left figure
it is evident that the data is heavily linearly correlated
and can adequately be represented as points along a
single straight line. In the right figure, the data set can
also be appropriately described as points along a line,
though this line is not straight – it is bent in order to
better encapsulate the general shape of the data set.

 Figure 𝟐. 𝟐: Example of dimensionality reduction

It is also clear from both figures that the dimensionality reduction need not be exact; There will be
some errors in the dimensionally reduced representation. In these specific cases, the error occurs
when the data points are projected onto the lines, after which the information about the original
positions of the data is lost. It will rarely be the case that the data can be perfectly represented by
a lower-dimensional system (if it could be, the additional dimensions would be truly redundant).
The hope is that the information lost is not vital for the purpose of this project.

As previously stated, the dimensionally reduced system need not belong to the same metric space
as the original system. One such example is the normal (Gaussian) distribution. The distribution
itself, as a curve describing the probability of some event (as a probability density or cumulative
distribution) belongs to an (uncountable) infinite-dimensional function space. The common

7

Euclidean distance metric is for this reason inappropriate for measuring distances between
‘points’ in this space and different distance metrics needs to be used instead. However, knowing
that the function is normal (Gaussian), it can be parametrized using just two fundamental
parameters; It’s mean and variance. In this parameter space, the standard Euclidean distance
metric can be applied to measure distances. Thus, the dimensionality is substantially reduced and
the notion of distance is quite different. In mathematical terms, these spaces represent two
different metric spaces.

𝟐. 𝟐. 𝟏 PCA
Principal Component Analysis (PCA) [9] is one of the simplest ways of making a low-
dimensional representation of high-dimensional data. In practice, it is an orthogonal
transformation of the original and possibly linearly correlated data space into a ‘new’ data
space of equal or lower dimensionality where the data has no linear correlation with itself at
all.

Another way of describing this procedure is to say that the data is represented using
coordinates of a different, new set of basis vectors. The basis vectors of this set are pairwise
orthogonal (i.e. the angle between two basis vectors is always 90o) but may, when represented
in the original data space, have different lengths. This set of new basis vectors is thus the stiff
rotation and individual scaling of the original set of basis vectors.

For PCA, the rotation and scaling of the basis vectors is chosen in such a way that the data,
when expressed using the coordinates of the new basis vectors, has lost all linear correlations.
The basis vector with the largest scaling then corresponds to the direction at which most
variance is seen in the data and is set to be the first principal component; the basis vector with
the second largest scaling is the second principal component and so forth. From this setting it
is clear that the choice of principal components is dependent on relative scaling of the original
data set. However, it is invariant to rotations of the data in the original data space.

The transformation may be found as follows. Denote by 𝑋 the data set and 𝐶 the covariance
matrix of the data set, i.e. cov(𝑋) = 𝐶. What is to be found is a linear transformation matrix 𝑃
such that cov(𝑋𝑃) = 𝐼, that is, the covariance matrix in the transformed system is equal to 1
at the diagonals and 0 elsewhere.

From the general properties of the covariance matrix and the desired result we have that

cov(𝑋𝑃) = 𝑃𝑇cov(𝑋)𝑃 = 𝑃𝑇𝐶𝑃 = 𝐼 ⇔ (𝑃𝑇𝐶𝑃)𝑇 = 𝑃𝐶𝑇𝑃𝑇 = 𝑃𝐶𝑃𝑇 = 𝐼𝑇 = 𝐼

For any eigenvector 𝜈𝑖 of the covariance matrix 𝐶 we have that 𝐶𝜈𝑖 = 𝜆𝑖𝜈𝑖 , where 𝜆𝑖 is the
corresponding eigenvalue. Then if we by 𝑉 denote the eigenvector matrix (i.e. 𝑉 =
[𝜈1 𝜈2 𝜈3 …]) and Λ the eigenvalue matrix (i.e. matrix with eigenvalues on the diagonals but
otherwise empty) and noting that for any eigenvector it must hold that 𝜈𝑖

𝑇𝜈𝑗 = 1 if 𝑖 = 𝑗 and

0 otherwise, we have that

𝐶𝑉 = VΛ ⇒ 𝑉𝑇𝐶𝑉 = 𝑉𝑇𝑉Λ = Λ

One may now define the matrix √Λ as the eigenvalue matrix with the square root of the

eigenvalue on the diagonals and inv(√Λ) as the inverse of this matrix, i.e. √Λ ⋅ inv(√Λ) = 𝐼

(this inverse matrix will be diagonal with 1/√𝜆𝑖 on the diagonals). Now it is easily seen that if

we set 𝑃 = 𝑉 inv(√Λ) we get that

8

cov(𝑋𝑃) = 𝑃𝑇cov(X)𝑃 = 𝑃𝑇𝐶𝑃 = inv(√Λ) 𝑉𝑇CV inv(√Λ) = inv(√Λ) Λ inv(√Λ) = 𝐼

Thus we have that this new set of basis vectors is precisely the set of eigenvectors to the
covariance matrix, each eigenvector scaled by the square root of the corresponding
eigenvalue. As for PCA, the N first principal components are then taken as the N eigenvectors
with the largest corresponding eigenvalue, with the length of the eigenvector scaled to match
the square root of the corresponding eigenvalue.

With a given set of principal components vectors, less than the dimensionality of the data
space, the data may be projected onto these vectors and thus be represented in the lower-
dimensional principal-component coordinate system.

𝟐. 𝟐. 𝟐 Elastic map
What the elastic map [10, 11] does is providing a more generalized method of representing
data from a high-dimensional space on a lower dimensional manifold. With a manifold given,
any point from the data space may be projected onto the manifold, where the projected point
may be represented both in the coordinate system of the original data space and the
coordinate system of the manifold space. Then if the manifold encapsulates the general
structure of the data well in the data space, the structure will be inherited in the manifold
system as well, thus substantially simplifying any additional data analysis or interpretation.

The manifold itself, when expressed in the coordinate system of the data space, need not be
linear. A linear manifold would be equivalent to a principal component analysis (PCA).
However, a good low-dimensional representation of the data using PCA is dependent on the
data being generally linearly correlated over the entire domain – an assumption that may
prove to be erroneous. Elastic maps may here be regarded as a generalization, where the
manifold is warped in the data space to better represent the data. This warping of the manifold
is what may be denoted as the learning stage.

For some given manifold warped in the higher-dimensional dataspace one may define the
energy of the manifold as the sum of the bending, stretching and approximation energy. The
bending and stretching energy is a measure of the amount of warping and stretching of the
manifold, where a minimization of the bending energy would result in a flat geometry of the
manifold and a minimization of the stretching energy would result in a contraction of the
manifold. Both of these are dependent only on the geometry of the manifold itself, regardless
of any data points. In contrast, the approximation energy is a measure of the distance between
the data points and the manifold. A complete minimization of this energy would result in the
manifold passing through every data point in the data space.

Minimizing the summarized energy of this warped manifold is what is denoted as the learning
phase. The mathematical description is given below.

Let 𝑠 ∈ 𝑆 be data points in an 𝑁-dimensional Euclidean space (the data space), 𝑊 be a set of
nodes belonging to the manifold, 𝐽 be the index set of the individual nodes of 𝑊 (i.e. 𝑤𝑗 ∈

𝑊 ∀ 𝑗 ∈ 𝐽), 𝐾𝑗 ⊆ 𝑆 be the set of data points belonging to node 𝑤𝑗 and ‖⋅‖ 𝒟 be the Euclidean

norm (i.e. the 𝑙2 distance metric) in the data space.

9

The approximation energy is then defined as:

𝐷 =
1

2
∑ ∑ ‖𝑠 − 𝑤𝑗‖

𝒟

2

𝑠∈𝐾𝑗𝑗∈𝐽

In the manifold space, two nodes that are directly adjacent form pairs connected by elastic
edges and three adjacent nodes on a line form triplets connected by bending ribs. Let 𝐸 denote
the set of node pairs and 𝐺 the set of triplets. The stretching and bending energy (𝑈𝐸 , 𝑈𝐺) on
the manifold are then defined as:

𝑈𝐸 =
1

2
𝜆 ∑ ‖𝑤𝑖 − 𝑤𝑗‖

𝒟

2

(𝑖,𝑗)∈𝐸

 𝑈𝐺 =
1

2
µ ∑ ‖𝑤𝑖 − 2𝑤𝑗 + 𝑤𝑙‖

𝒟

2

(𝑖,𝑗,𝑙)∈𝐺

Here, 𝜆 and µ are two constants determining the overall weights for the elastic and bending
energy.

The summarized energy, 𝑈𝑡𝑜𝑡 = 𝐷 + 𝑈𝐸 + 𝑈𝐺 , is then to be minimized for given 𝐾𝑗. Due to

the quadratic form of all terms, the problem is convex with respect to the nodal positions and
the minimum energy can be obtained by solving for the nodal positions when the gradient of
the summarized energy is zero. Taking the derivative of the summarized energy with respect to
the nodal positions, a linear system of equations is obtained which, when solved for, gives the
optimal solution for given 𝐾𝑗. Solving this system may be done using iterative or direct

numerical methods, but since most nodes are only connected to their closest neighbors, the
resulting linear system is sparse (i.e. mostly zero’s) and direct numerical calculations are
feasible.

With the energy minimized for a given clustering, 𝐾𝑗 is updated for each node. Here, a data

point is clustered to a node 𝑤𝑗 if the distance between the data point and node 𝑤𝑗 is the

smallest for all nodes, i.e.

𝐾𝑗 = {𝑠 ∶ ‖𝑠 − 𝑤𝑗‖
𝒟

 ≤ ‖𝑠 − 𝑤𝑙‖𝒟 ∀𝑙 ∈ 𝐽}

With the new clusters 𝐾𝑗 the minimum energy nodal positions 𝑤𝑗 may be solved for again,

after which new clusters 𝐾𝑗 are calculated and so forth. This is repeated until the new clusters

are equivalent to the old ones, in which case the algorithm is terminated.

Also, since the clustering choice function has the same form as the approximation energy
function, the energy for any new cluster setup will always be lower than or equal to the old
setup. Combined with the fact that the energy minimizing step given a cluster setup will also
yield a solution with lower or equivalent energy due to the convexity property of the problem,
the energy will always either decrease or remain constant between iterations. This guarantees
convergence to at least a local minimum. Thus, this is a form of expectation-maximization
algorithm.

10

 Figure 𝟐. 𝟑: Example of 𝟏-D elastic-map approximation of 𝟐-D data

Figure 2.3 above depicts an example of how the EM-algorithm proceeds in fitting a 1-
dimensional elastic map to a set of 2-dimensional data points generated for the purpose of
visualization. The blue straight line represents the 1-dimensional PCA (which is used as the
nodal starting positions). The red line represents the nodal positions after convergence.

𝟐. 𝟐. 𝟑 Kohonen SOM
Self-organizing maps [12] is another dimensionality reduction method that produces similar
solutions as elastic maps does, though the method of warping (i.e. learning) the lower-
dimensional manifold is quite different. Instead of minimizing the overall energy of a manifold
with respect to all the given data simultaneously, a single data point is fed to the algorithm at
once after which the closest point in the manifold is found. The entire manifold is then dragged
towards this data point, where the closest point in the manifold is dragged the most.

Let 𝒟 and ℳ denote the data space and manifold space respectively, ‖⋅‖ 𝒟 and ‖⋅‖ ℳ be the
corresponding norms (i.e. distance function) to each space, 𝜆(𝑛) the learning rate function and
𝜃(𝑢, 𝑣, 𝑛) the neighborhood function. Let 𝑆 be the set of data points and 𝑊 be the set of nodal
points of the manifold.

The learning rate 𝜆(𝑛) is set to be a monotonically decreasing function of the number of
iterations 𝑛. It is set to be a value smaller than or equal to 1 in the first iterations and then to
progressively decrease to 0 as the number of iterations increases. The value of this function
represents how much a point in the manifold should be dragged towards a data point 𝑑; 𝜆 = 1
means that the manifold point is dragged all the way along a straight line towards the data
point 𝑑 and 𝜆 = ½ means that the manifold point is dragged half the distance along the same
line.

The neighborhood function 𝜃(𝑢, 𝑣, 𝑛) is a monotonically decreasing function both of the
number of iterations 𝑛 and the distance between the two manifold points 𝑢 and 𝑣 as
measured in the manifold space. This function determines how much any manifold point 𝑣
should be dragged towards a data point 𝑑 as its neighbor 𝑢 is dragged towards the same data
point, where 𝑢 is the closest manifold point to the data point 𝑑 as measured in the data space.

11

The properties of the learning rate and neighborhood functions are given below.

𝜆(𝑛) ∈ (0, 𝑎] ∀𝑛 ∈ ℕ, 𝑎 ∈ (0,1]
𝜆(1) = 𝑎, lim

𝑛→∞
𝜆(𝑛) = 0,

𝜆(𝑛 + 1) ≤ 𝜆(𝑛)

𝜃(𝑢, 𝑣, 𝑛) ∈ (0,1] ∀𝑢, 𝑣 ∈ ℳ, 𝑛 ∈ ℕ
‖𝑢 − 𝑣‖ ℳ = 0 ⇒ 𝜃(𝑢, 𝑣, 𝑛) = 1 ∀𝑛 ∈ ℕ
‖𝑢 − 𝑣‖ ℳ ≠ 0 ⇒ 𝜃(𝑢, 𝑣, 𝑛) < 1 ∀𝑛 ∈ ℕ
‖𝑢 − 𝑣1‖ ℳ < ‖𝑢 − 𝑣2‖ ℳ ⇔ 𝜃(𝑢, 𝑣1, 𝑛) < 𝜃(𝑢, 𝑣2, 𝑛)
‖𝑢 − 𝑣1‖ ℳ = ‖𝑢 − 𝑣2‖ ℳ ⇔ 𝜃(𝑢, 𝑣1, 𝑛) = 𝜃(𝑢, 𝑣2, 𝑛)
𝜃(𝑣, 𝑣, 𝑛 + 1) ≤ 𝜃(𝑣, 𝑣, 𝑛)

With suitable learning rate and neighborhood functions given the initial positions of the
manifold points may be distributed randomly in the data space or by using some form of
predefined mesh. Then any following algorithm iterations (sometimes referred to as cycles) are

as follows (manifold point positions in the data space denoted as 𝑣𝒟):

 1. Choose a data point 𝑠 ∈ 𝑆 at random

 2. Find the manifold point 𝑢 ∈ 𝑊 that is closest to data point 𝑠 as measured in the

data space, i.e.

 𝑢 = argmin

𝑣∈𝑊
(‖𝑠 − 𝑣𝒟‖ 𝒟)

 3. Update the data-space positions of all manifold points by ‘dragging’ them closer

to 𝑠, weighted by the learning rate 𝜆 and the distance to 𝑢 as measured in the
manifold space, i.e.

 ∀𝑣 ∈ 𝑊,

 𝑣𝑛+1

𝒟 = 𝑣𝑛
𝒟 + 𝜆(𝑛)𝜃(𝑢, 𝑣, 𝑛)(𝑠 − 𝑣𝑛

𝒟)

𝟐. 𝟐. 𝟒 Manifold output
With the nodes from the dimensionality reduction step given, the distance between these
nodes and any point (i.e. vector) in the data space can easily be calculated using the standard
Euclidean distance metric. With these distances given, the data vector may be expressed in the
internal coordinate system of the manifold (e.g. by projection onto the manifold, or simply
saying that the vector belongs to the nearest node). In this setting, the data vector is
dimensionally reduced to a single point in the two-dimensional manifold space. If successful,
the different classes/behaviors under consideration should be placed separately on the
manifold. Cluster analysis may thus be appropriate for this setting, given that the classes are
fairly well separated.

It is, however, not the only option. Instead of projecting the vector onto the manifold, where
the vector is dimensionally reduced to a single point in the two-dimensional manifold, each
node in the manifold may be given an output based on the distance between each node and
the vector (as measured in the data space). Preferably, this output should be inversely
proportional to the distance, meaning that the further the vector is from the node, the smaller

12

is the output from that node. This output for each node may, for example, be based on a
Gaussian function or any other monotonically decreasing function. The output may further be
normalized with respect to the summarized output from all nodes or to make it fit some
predefined range. In either case, the output generated in this setting will not be a single point
but a distance-dependent imprint on the entire manifold. This imprint will henceforth be
denoted as a signature.

 Figure 𝟐. 𝟒: Example of manifold output
(signature inversely proportional to distance)

Using a Gaussian for calculating outputs for each node has some advantages. One is that the
output from each node will always remain bounded between 0 and 1 regardless of
normalization procedure (range of manifold output or summarized output), another is that the
signature-based output type is reduced to normal projection when the parameter describing
the amount of exponential decrease is set to 0 – that is, the projection is a special type of the
signature-type output. Specifically, defining the output from each node by

𝑂𝑛 = 𝑒
−(

‖𝑠−𝑣𝑛
𝒟‖

𝐵)

2

where 𝑠 is any CDF-vector (i.e. data point) fed to the system, 𝑣𝑛
𝒟 is the nodal position of node

𝑛 in the data space, 𝐵 is the parameter describing the amount of exponential decrease per unit
length and 𝑂𝑛 is the output from node 𝑛, it is quite clear that the largest output will tend to
dominate. To show this even more clearly, divide all outputs by the maximum output. Then the
new maximum output will be equal to 1 and all other outputs strictly smaller than 1, assuming
the maximum output is unique. Then, for any other output,

𝑂𝑛 = 𝑒
𝑑𝑚𝑖𝑛

2 −‖𝑠−𝑣𝑛
𝒟‖

2

𝐵2

where

𝑑𝑚𝑖𝑛
2 = min

𝑛
(‖𝑠 − 𝑣𝑛

𝒟‖
2

)

13

we have that for any other node but the nearest node,

𝑑𝑚𝑖𝑛
2 − ‖𝑠 − 𝑣𝑛

𝒟‖
2

< 0 ⇒ lim
𝐵→0+

(
𝑑𝑚𝑖𝑛

2 − ‖𝑠 − 𝑣𝑛
𝒟‖

2

𝐵2
) = −∞ ⇒ lim

𝐵→0+
(𝑒

𝑑𝑚𝑖𝑛
2 −‖𝑠−𝑣𝑛

𝒟‖
2

𝐵2) = 0

𝟑 Data structure and methodology

𝟑. 𝟏 Given type of data

The data is given in the form of time series where 10 target properties are updated roughly once
every second. From these properties an additional set of 6 properties may be inferred that are
much more easily understood, namely the positions in Euclidean coordinates and the velocity
components for each Euclidean direction. The following tables contain the given and calculated
properties.

Given Calculated

Name Unit Description Name Unit Description

𝑡 (s) Time 𝑥 (m) x-position
𝐵𝑒 (o) Bearing 𝑦 (m) y-position
𝐷𝑖 (m) Distance to radar 𝑧 (m) z-position (Height)
𝐸𝑙 (o) Elevation 𝑉𝑥 (m/s) Velocity in x-direction
𝐶 (o) Course 𝑉𝑦 (m/s) Velocity in y-direction

𝑉𝑡𝑜𝑡 (m/s) Absolute velocity 𝑉𝑧 (m/s) Velocity in z-direction
𝑅𝐶𝑆 (m2) Radar Cross Section
𝑉𝐷𝑖 (m/s) Radial velocity
𝑉𝐵𝑒 (o /s) Bearing differential
𝑉𝐸𝑙 (o /s) Elevation differential

The total set of data points for each specific target is denoted as one track. The length of a track
can vary greatly, typically depending on whether the target remains within range of the radar and
if the radar software can properly distinguish the target data from background noise. The latter
imposes an additional problem when the target is on the verge of being detected – the time series
data for the track contain “holes”. It skips some updates. This problem is handled by preprocessing
the data and filling these holes using some suitable interpolation technique (simple linear
interpolation was used in this case).

14

𝟑. 𝟐 The problem with distance measures

The main purpose of this project is to be able to classify specific behaviors, pre-specified or
anomalous, based on a given time series of data. This objective will inevitably lead to the necessity
of being able to measure distances between different time series, which is a truly non-trivial
matter.

Treating the data as points embedded in a high-dimensional Euclidean space, equipped with the
standard Euclidean distance measure, poses several problems. One of the most obvious problems
is the necessity of the time series having the same length. Another is a possible lack of
autocorrelations in the time series, meaning that there is a low correlation for the time series with
itself if it is shifted in time. However, the most serious problems arising when attempting to deal
with the data in this manner is commonly denoted as the curse of dimensionality[13]. This is not a
single problem but a set of problems encountered when attempting to classify high-dimensional
data – problems that are usually not seen when working in low-dimensional spaces.

The problem specific for the choice of a distance function, in particular the Euclidean distance, may
be illustrated in several ways. One way is to compare the volume of a hypersphere embedded in a
hypercube of the same dimension to the volume of the hypercube itself. Doing so one finds that
the volume of the hypercube grows much faster than that of the hypersphere as the
dimensionality increases and thus that the ratio between the volume of the sphere and the cube
tends towards zero, meaning that under the assumption of uniformly distributed data, most points
will be found in the corners of the hypercube.

Another way to illustrate the deteriorating notion of distance for these types of distance measures
is to first assume that the data points are placed randomly and given a coordinate for each
dimension governed by some distribution R. Then, by the definition of the Euclidean distance
function, the measured distance between some reference point P and a data point placed in this
manner will in effect be the sum of d independent and identically distributed (IID) random
variables, where d is the number of dimensions and the distribution under consideration, which

may be denoted as �̃�𝑗, is the squared distance between the reference point P and the distribution

R in dimension j.

By the law of large numbers, the sum
1

𝑑
∑ �̃�𝑗 will tend towards the mean of �̃� with a diminishing

standard deviation. What this implies is that any finite set of points placed randomly in this
manner will in effect all have the same measured distance to the reference point P.

One way to resolve these problems is to assume that the distribution for the target properties is
sufficient to classify the behaviors. In other words, if each new entry in the time series is treated as
a random variable X, it is assumed that the distribution of X is different for different behaviors. In
practice, a distribution for the properties is generated for each track and this distribution is
compared to a stored set of distributions of known classification to find a best match. This type of
convergence is commonly called convergence in distribution [14].

If it is assumed that each distribution belongs to a specific type of distributions (e.g. Gaussian,
exponential etc.) it is possible to represent each distribution using a small set of parameters (e.g.
mean, variance, skewness etc.). It is also possible to make no assumption at all of the underlying
type of distribution and make a comparison of the of the measured distribution data directly. The
latter approach will be employed in this thesis, in practice by taking a finite set of equally spaced
points along the estimated distribution.

15

An additional intriguing feature of comparing distributions is that one also relaxes the constraint of
the time series having the same length.

𝟑. 𝟑 PDF/CDF

When talking about comparing distributions it is not stated whether it refers to the probability
density function (henceforth denoted as PDF) or the cumulative distribution function (henceforth
denoted as CDF). Both of these could work as a choice of distributions to work with since
convergence in any of these, in this setting, implies convergence in the other. However, there are
different properties for the PDF and CDF that could be difficult to deal with for the proposed
classification methods and, as such, the choice of type of distribution must be specified
beforehand. Of course, this choice is irrelevant if the distribution function is pre-specified; If it
assumed to be Gaussian, the calculated parameters do not depend on whether the distribution is
given in the form of a PDF or CDF. This choice only concerns the case when no assumption of
underlying distribution function is made.

Figure 𝟑. 𝟏: Example of PDF and CDF of the same property for three different cases

In practice, for the case of the PDF, the distribution may be represented using a finite set of points
by taking the probability density at different positions along the x-axis. This can be done for the
CDF as well. For the CDF, however, there is an additional method. For any probability on the CDF-
curve (i.e. any position on the y-axis) there is only one corresponding position on the x-axis. This
means that the CDF curve is invertible, that is, there exists an inverse. This second method for the
CDF is thus to take points along the y-axis and find the corresponding x-value.

Different problems are imposed by these methods. One common problem is encountered for the
method of taking values along the x-axis, both for the PDF and CDF distributions. This problem is
due to the distributions being heavily shifted along the x-axis for different classes. Being able to
encapsulate the distributions properly would require sampling over a wide range along the x-axis,
which is equivalent to representing the distributions using a large set of values. This is especially
true for the PDF case since there are narrow sections where the probability density is big, thus
requiring the sampling positions being densely distributed along the x-axis. Also, if the set of data
points is too small, using the PDF would additionally require some method of density estimation
since a normal histogram would likely be insufficient.

16

One problem common for all methods, but especially for the CDF, is the correlation between
subsequent sampling points. If both the PDF and CDF are continuous functions (which they are
assumed to be here, at least in the limiting case of an infinite amount of data), points that are close
to each other along the x-axis will also be close along the y-axis. This correlation is even larger for
the CDF since it is a monotonically increasing function; a larger x-value always corresponds to a
larger or equal y-value. The hope is that this correlation will be accounted for in the dimensionality
reduction step.

The type of distribution chosen is the CDF, inversely sampled. The reason is the relatively small
amount of sampling points needed as well as the non-necessity of using any type of density
estimation.

The number of measurement points placed in the CDF is set to 60, corresponding to one whole
minute of measurements of a target. This is roughly the longest period that can be accepted for a
target to remain unclassified, and for the sake of the generated distributions, the longer the period
the better. All tracks are therefore split into slightly overlapping 60-second intervals, each treated
as an individual measurement. It is, from each of these intervals, that a distribution of some
statistical value will be calculated.

𝟑. 𝟒 Methodology

The overall method that will be employed in this thesis is to first derive a set of relevant statistical
values, empirically or theoretically justified, and then to dimensionally reduce the space of
statistical values to a Euclidean 2-dimensional space. Cluster analysis will later be conducted in the
dimensionally reduced space. The figure below gives a schematic view of this process. In this case,
there are two main behaviors to be classified, represented as red and blue.

Figure 𝟑. 𝟐: Schematic view of classification procedure

17

𝟑. 𝟓 Chosen statistical values

For this project, 8 different statistics have been chosen to be used in the classification procedure.
The choice of these statistical values is only vaguely theoretically justified – rather it is a highly
arbitrary choice of values that might, naively reasoned, correspond to the different classes to be
identified. Some values are also chosen based on some apparent visually identified differences in
the cumulative distributions for the different classes.

Before all statistical values are presented it should be noted that the Euclidean coordinates, for
some of these statistical values, are processed further still, namely by applying a smoothing spline
on the positions. The reason is some seemingly erroneous positional updates for some tracks.
These spline-smoothed coordinated will be denoted by a small spline-notion. Spline-smoothed
values for the velocities are found by calculating the distance between succeeding spline-
smoothed coordinates.

The following list contains all statistical values under consideration.

 sign (mean(∆𝐶𝑠𝑝𝑙𝑖𝑛𝑒)) ⋅ ∆𝐶𝑠𝑝𝑙𝑖𝑛𝑒 = 𝑆1: Course change according to the spline-interpolated

coordinates

 log (|𝑧 − mean(𝑧)|) = 𝑆2: Difference between current altitude and mean

 log (|𝑉𝑧 − mean(𝑉𝑧)|) = 𝑆3: Difference between current altitude velocity and
mean

 log (|∆𝐶|) = 𝑆4: Absolute value of course change (without applying
smoothing spline)

 log (𝑅𝐶𝑆) = 𝑆5: Radar Cross Section

 log (𝑉𝑡𝑜𝑡) = 𝑆6: Total velocity

 log (|

𝑅𝐶𝑆𝑡

𝑅𝐶𝑆𝑡−1
− 1|) = 𝑆7:

 Relative difference between succeeding updates
for RCS

 log (|

𝑅𝐶𝑆

𝑉𝑡𝑜𝑡
𝑠𝑝𝑙𝑖𝑛𝑒

− 𝑉𝑡𝑜𝑡

|) = 𝑆8:
 Current RCS divided by difference between

smoothed and non-smoothed velocity

𝑺𝟏, 𝑺𝟒: ∆𝐶 is the course change between subsequent measurement updates as calculated
for each 60-second interval. The idea behind S1 is to properly distinguish a circulation
behavior from more or less straight movements. The sign-function for S1 is applied in
order to make all circulating behaviors clockwise. The idea behind S4 is to distinguish
erratic behaviors from smooth ones. It does not depend on which way the target
turns, but on how much it turns and how often this occurs.

𝑺𝟐, 𝑺𝟑, 𝑺𝟔: These values are motivated by the idea that the classes to be properly distinguished

will either retain the same altitude, make changes of altitude at roughly the same

18

pace throughout or keep some specific velocity more or less constant.

𝑺𝟓, 𝑺𝟕: The motivation behind these values is both the absolute of the apparent surface area
of the target and the measured differences between subsequent updates.

𝑺𝟖: There is no real theoretical justification for using this value other than some apparent

visual differences in the plotted cumulative distributions.

𝟑. 𝟔 Sampling and concatenation

It should hereby be stressed that the distribution for several quantities will be used simultaneously
in the classification procedure, not just a single one. As such, the sampled points from each
distribution must be added together in some form and treated as a single vector of sampled
points. This is done by simple concatenation; The sampled points for the first distribution are
placed on the first rows in this sample-vector. Then, the sampled values from each succeeding
distribution are placed ‘below’ the former ones, thus forming the sample-vector. The figure below
gives a graphical explanation of this procedure.

Figure 𝟑. 𝟑: Concatenation of distributions

The number of points along the y-axis (i.e. the number of sampling points for each distribution)
may be chosen arbitrarily. In this case, 15 equally distanced sampling points are placed along the y-
axis. In order to avoid problems related to outliers, the entire range is not considered. Instead, the
sampling points are placed between 0.05 and 0.95 (i.e. between the 5’th and 95’th percentile). If
any sampling point does not correspond perfectly to a measured value placed in the empirical CDF,
the value is estimated using linear interpolation.

19

With 8 distributions and 15 sampling points from each the resulting CDF-vector will contain 120
entries. The choice of 15 sampling points is quite an arbitrary choice and merely motivated as a
suitable number to fulfill the criterion of maximum amount of required computational time. See
the next chapter on computational complexity.

𝟒 Regarding computational complexity

Some of the computational complexity encountered during system training and operation (which
are considered separate) are examined in this section. It is henceforth in all descriptions of the
manifold assumed that the manifold itself consists of a regular 2-dimensional grid.

𝟒. 𝟏 Operation

System operation refers to the real-time functioning system operating with a given set of fixed
parameters. Analyzing the computational complexity is thus the evaluation of the computational
time required to generate and sample from the chosen statistics, dimensionally reduce the
generated CDF-vector using the manifold nodes and then to classify the resulting dimensionally
reduced vector using some form of cluster analysis.

𝟒. 𝟏. 𝟏 Generating CDF and sampling
Generating the CDF will typically involve calculating the desired statistical values and sorting
them ascendingly. The computational time will thus at least be proportional to the product of
the length of the time series and the number of different statistical values under consideration.
In addition, a sorting algorithm is to be applied to the resulting list of values after which
interpolated points in this list are to be calculated.

If we by 𝑛 denote the number of points in the generated distribution, the computational time
required for sorting will in general be proportional to 𝑛log(𝑛), assuming an efficient sorting
algorithm is used[15]. As for the interpolation step it will require both the sorting of sample-
data-list and the operations to estimate the values at each sample point. If we by 𝑚 denote the
number of sample points, the sorting of the list will thus be proportional to (𝑚 + 𝑛)log (𝑚 + 𝑛)
while the sample value estimation will simply be directly proportional to 𝑚.

As such, the overall computational complexity for these steps is proportional to (𝑚 +
𝑛)log (𝑚 + 𝑛), where 𝑚 and 𝑛 are the number of sample and data points respectively

𝟒. 𝟏. 𝟐 Dimensionality reduction
Assuming a manifold consisting of 𝑁 nodes embedded in a 𝑑-dimensional (Euclidean) data
space, dimensionally reducing the 𝑑-dimensional CDF-vector will involve calculating the
distance to the manifold, thus making 𝑁 distance calculations. Using the Euclidean metric, each
distance calculations will be the summarized squared distance in each dimension - a sum of 𝑑
different terms. As such, the computational time required for calculating the distance from a
data point to the manifold will be proportional to 𝑑 ⋅ 𝑁. Here, 𝑑 is the total number of
sampling points summarized for all distributions.

20

However, the computational time will in general be independent of the desired type of
manifold output as all output types requires this manifold distance calculation. For example,
the projection type requires finding the nearest node to the data point which leads to the
necessity of measuring the distance between the data point and all nodes in the manifold.
Using the signature output method also requires this calculation, but here every manifold node
is given an output based on this distance. Thus, the computational complexity with respect to
the number of nodes will be the same for both of these output types.

𝟒. 𝟏. 𝟑 Classification
Depending on the type of classification method to be used computational time for this part may
be already incorporated in the previous steps. Treating each manifold node as a member of
either class, the 𝑘-NN algorithm using the data-space distances can be directly applied to the
distances calculated in the dimensionality reduction step (in fact, dimensionally reducing the
CDF-vector to a point on the manifold will then be unnecessary). If, however, the distances are
calculated as internal distances on the manifold, the distances between the dimensionally
reduced data point and the manifold nodes must then be calculated. This corresponds
to 𝑁 ⋅ 𝑑ℳ, where 𝑁 is the number of nodes and 𝑑ℳ is the dimensionality of the manifold.

As for the signature-type classification, each signature will consist of 𝑁 entries which are to be
compared to a set of stored signatures of known class to find the best correspondence. Using
the Euclidean metric for these calculations, the computational time required will thus be
proportional to 𝑁 ⋅ 𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠. The number of typical signatures stored need not be the same

as the number of classes to be identified, as several signatures may belong to the same class.
However, every class must contain at least one signature.

It has been previously specified that each time series under consideration is to be 60 entries (i.e.
seconds) long, where the time series are used in the creation of 8 different statistical values. The
distributions for these values are then sampled using 15 sampling points for each distribution,
resulting in a total of 120 entries in the CDF-vector for each time series.

The requirement of being able to classify 1000 targets each second poses no problem during
generation of the CDF’s. However, the dimensionality reduction and classification step may need
some carefully chosen setups as to avoid overloading.

A manifold consisting of 30 × 30 nodes (900 nodes in total) combined with the usage of at most
120 typical signatures is on the verge of clearing the 1-second mark for CDF generation,
dimensionality reduction and classification. This will henceforth be the setup used.

𝟒. 𝟐 System training

System training refers to the process of finding all system parameters based on a given set of data.
Specifically, it incorporates the process of finding the manifold nodes for the dimensionality
reduction part and possibly the case of cluster analysis, e.g. calculating manifold areas that belong
to specific classes or inferring a set of typical signatures for each class.

21

For both the elastic map and Kohonen SOM, all the given data must be clustered to its nearest
node (in each iteration for the elastic map and in each ‘cycle’ for Kohonen SOM). Using the
Euclidean metric, the distance between a data point and a node will be summarized squared
distance in each dimension, thus scaling this computational time linearly with the number of
dimensions 𝑑. Combined with the requirement of calculating the distance between every data-
node-pair, the total computational time for clustering the data to its nearest node will scale
according to

𝑡𝑐𝑜𝑚𝑝 ∝ 𝑑 ⋅ 𝑁𝑛𝑜𝑑𝑒 ⋅ 𝑁𝑑𝑎𝑡𝑎

𝟒. 𝟐. 𝟏 Elastic map
Here, all grid nodes are connected in a regular mesh-like structure where two neighboring
nodes are connected forming “elastic edges” and three adjacent nodes are connected forming
“bending ribs”. If the manifold is 2-dimensional, any internal node (i.e. not at the edge of the
manifold membrane) will be part of four elastic edges and six bending ribs. In total, each node
will be connected to eight other nodes. This implies that each row in the system of linear
equations resulting when minimizing the quadratic summarized energy of the manifold will
contain at most 9 non-zero elements, one of which will always be at the diagonal. In addition, if
the enumeration of the nodes in the manifold follows an efficient system (e.g. the enumeration
moves along one “line” in the manifold grid at a time) the resulting matrix will also be banded
(all non-zero elements are confined to a diagonal band centered on the diagonal).

As such, in each expectation step in the EM-algorithm used to find the nodes for the elastic map
system, a sparse, banded matrix system is to be solved, where the size of the matrix system
corresponds to the total number of nodes in the manifold. It is a very good idea to take
advantage of the sparse structure of this matrix when solving the system. In Matlab, the user
may specify the structure of the matrix (i.e. using the sparse-command) as well as the desired
method of solution (i.e. direct or iterative methods). Matlab uses direct numerical methods
unless an iterative method is specified.

Figure 4.1 below depicts the advantage of using the built-in sparse system solver. It is a log-log-
plot of the number of rows in a sparse matrix (generated in the same way as the systems
encountered in the elastic-map algorithm) versus the computational time as measured using
Matlab’s timer function. The inclination of the resulting scatterplots gives a hint of the
polynomial order of the computational time. It is here seen that the computational times
increases almost directly proportional to the number of nodes when using the sparse-solver,
while it increases almost cubically when using the standard full-size form. However, this
difference is only seen when using more than a few hundred nodes.

22

 Figure 𝟒. 𝟏: Measured computational time for matrix

solution when using full-size and sparse matrices

𝟒. 𝟐. 𝟐 Kohonen SOM
For the Kohonen SOM, in each iteration a single data point will be fed into the system and the
manifold nodes will be dragged towards this data point. Feeding the system with all the data
points is denoted as one cycle. The computational time for one cycle is considered henceforth.

First, in each iteration, the nearest manifold node to the data point is to be found. Using the
Euclidean metric this computational time will be equivalent to that of the clustering part
described for the elastic map method. Second, each node in the manifold is to be dragged
towards this data point where the amount of “dragging” is determined partly by the learning
rate but, most importantly, by the distance between each node and the nearest node as
measured in the manifold space. This is commonly denoted as the neighborhood function.
What this implies is that the neighborhood function value between two nodes is independent
of the manifold warping in the data space. Thus, it is possible to calculate all the internal
distances in the manifold beforehand and then use these distances when calculating the values
of the neighborhood function. This will save a whole lot of computational time, especially if the
number of nodes is large.

In summary, both the elastic map and Kohonen SOM will scale approximately according to the
product of the number of nodes, number of data points and dimensionality of the data space.

23

𝟓 Experimental setup and result

𝟓. 𝟏 System setup

The following list describes the system setup for the elastic map and Kohonen SOM algorithms.
For the elastic map, two parameters are set (informally representing the contractive strength and
rigidity of the resulting manifold, respectively) and for Kohonen SOM, the neighborhood and
learning rate functions are defined as well as corresponding parameters to these functions.

Elastic map Kohonen SOM

Manifold nodes 900 (30 × 30) Manifold nodes 900 (30 × 30)
Nodal starting positions 2-D PCA Nodal starting positions 2-D PCA

Elasticity 1 Learning rate function 𝜆(𝑛) = 𝜆0e

−𝑛
𝛼⁄

Rigidity 10
 Neighborhood function 𝜃(𝑢, 𝑣, 𝑛) = e

−(
‖𝑢−𝑣‖

𝛽0+𝛽1⋅𝑛
)

2

 𝜆0 = 0.5
 𝛼 = 4 ⋅ 103
 𝛽0 = 4.6
 𝛽1 = −4.5 ⋅ 10−5

All parameters, both for the elastic map and for Kohonen SOM, are set somewhat arbitrarily to
values that seemed to result in some fairly good clustering when tested on a small amount of
data. The resulting manifold projections when using these parameters are shown in the following
section.

24

𝟓. 𝟐 Resulting manifolds

𝟓. 𝟐. 𝟏 Elastic map
The figures below show the resulting data projections on the manifold after the manifold have
been warped using the elastic map methodology. The eight different distributions have all been
used to warp the manifold separately creating eight different manifold setups, as well as
combined, creating the manifold shown as the largest subfigure. As can be seen, the
combination of all distributions gives the greatest separation of the classes.

 All distributions concatenated (𝐒𝟏-𝐒𝟖)
 Figure 𝟓. 𝟏: Projection on elastic-map-manifold

25

𝟓. 𝟐. 𝟐 Kohonen SOM
The figures below show the resulting data projections on the manifold after the manifold nodal
positions have been found using Kohonen SOM. It is here evident that the result is fairly similar
to that obtained when using the elastic map methodology, both in the sense of the similar
projections and that the best separation of the classes is obtained when using all distributions
simultaneously.

 All distributions concatenated (𝐒𝟏-𝐒𝟖)

 Figure 𝟓. 𝟐: Projection on Kohonen SOM-manifold

26

𝟓. 𝟑 Classification

The table below contains the classification result when using the standard setup for the elastic
map and Kohonen SOM methods.

Correct classification (%) Training (Validation)

 𝐶1 𝐶2

Elastic map 86.4 (86.5) 91.7 (80.3)

Kohonen SOM 83.8 (83.6) 88.7 (78.3)

The following figures show some examples of the classification correspondence for 𝐶1 and 𝐶2. In all
eight figures, a 60-second CDF is generated based on the time-series past 60 updates. The four left
figures are examples for known classes of 𝐶1 and the rights are for 𝐶2. In all eight figures, the red
line corresponds to the classification value for 𝐶1 and the black line for 𝐶2. The top line will yield
the classification. The value on the y-axis is of less importance; It corresponds to the (summarized)
inverse distance to the class-clusters.

Figure 𝟓. 𝟑: Classification for 𝟖 examples of (at least) 𝟑𝟔𝟎-second
long time series for class 𝑪𝟏(left) and 𝑪𝟐(right). At each time step,

the CDF is generated using the past 60 time series updates.

27

𝟓. 𝟒 Changing model parameters

In this section the effect of changing the model parameters is investigated. The parameters under
consideration are those that are common for both the elastic map and Kohonen SOM methods.
This incorporates the time series length considered and all parameters related to the manifold
output and clustering. The manifold nodal positions used for all these cases were found using the
elastic map algorithm.

Using a Gaussian for calculating the manifold output combined with a 𝑘-NN classification, the
following figures depict the resulting classification errors for different sets of system parameters.
As the “main” set, the exponential-decay-parameter ‘𝐵’ is set to 10, the total number of typical
signatures to be found is set to 50 ([𝐶1, 𝐶2𝑎, 𝐶2𝑏 , 𝐶2𝑐, 𝐶2𝑑 , 𝐶2𝑒] = [25, 6, 6, 1, 6, 6]), the number of
neighbors considered in the 𝑘-NN classification step is set to 10 and the weighting for each
neighbor is set to be inversely proportional to distance.

𝟓. 𝟒. 𝟏 Exponential-decay parameter 𝑩
The following figure depicts the effect of changing the exponential-decay-parameter 𝐵 while
keeping all other system parameters constant. The clustering was conducted 20 times for each
𝐵-value. Each time a clustering was conducted, different clustering means was found (due to
the randomized initiation of the cluster means in the EM-algorithm) and, as such, different
classification results was obtained each time the classification was conducted. The bars show
the percentage of correct classification for 𝐶1 (red) and the mean of all subclasses in 𝐶2 (black)
in the form of 25% - 75% quantiles. The subfigure shows Pearson’s correlation coefficient. A
negative value of the correlation coefficient implies that if the correct classification percentage
was high for 𝐶1, it was low for 𝐶2 and vice versa.

A smoothing spline has been applied to the empirical values of the mean and
upper/lower quantiles to better visually emphasize the general changes in the
classification results.

Figure 𝟓. 𝟒: Classification result when changing

the exponential-decay parameter 𝑩

28

𝟓. 𝟒. 𝟐 𝒌-NN neighbors
The following figure depicts the effect of changing the number of neighbors considered in the
𝑘-NN classification step. The clustering was conducted 15 times for each 𝑘-NN value between 1
and 20 and due to the randomized initiation in the EM-algorithm, 15 different classification
results were obtained for each 𝑘-NN value. The mean and band between lower/upper 25% -
75% quantiles are shown for 𝐶1 and 𝐶2. The subfigure shows Pearson’s correlation coefficient.

Figure 𝟓. 𝟓: Classification result when changing the number
of neighbors considered in the 𝒌-NN classification algorithm

𝟓. 𝟒. 𝟑 Time series length
The following figure shows the effect of using different time-series lengths. Note that different
time series lengths for classification and manifold estimation are used here. There are 5
subfigures where in each subfigure a different time-series length for the manifold generation is
used (set to 30, 45, 60, 90 and 120 seconds) and for each manifold, classification-CDF’s varying
between 20 and 120 seconds are dimensionally reduced and clustered on these manifolds.

 Figure 𝟓. 𝟔: Classification result when changing the length of
the time series used for generating the CDF’s

29

𝟓. 𝟒. 𝟒 Sampling points per distribution
The following figure shows the effect of changing the number of sample points in each
distribution. The standard setup uses 15 sample points taken at equally distanced positions
between the 5´th and 95´th percentiles. The data spans between 2 and 20 sampling points
where the clustering and classification algorithm is re-run 12 times.

Figure 𝟓. 𝟕: Classification result when changing the
number of sampling points for each distribution

30

𝟔 Discussion and Conclusion

Both the elastic map and Kohonen SOM methodologies produce fairly good and almost equivalent
2-dimensional manifold representations of the given data sets. The elastic map methodology gives
somewhat better classification results, though, the differences are not extreme and it may be
possible that some other system setups will yield better classification results. In addition, though
not previously stated, the training phase for the Kohonen SOM is substantially shorter than the
corresponding phase for the elastic map (30-60 seconds for Kohonen SOM, 10-30 minutes for
elastic map).

As for changing the parameters used in the clustering phase it should first be noted yet again that
different classification results were obtained each time a clustering was conducted (due to the
randomized initiation of the EM-algorithm used to find the signature means) and when rerunning
the clustering using the same parameter setup many times, it is possible to calculate Pearson’s
correlation coefficient. As it turns out, the correlation coefficient is almost always close to -1. What
this implies is that if a good classification result were obtained for class 𝐶1, it was bad for 𝐶2 and
vice versa.

When changing the exponential-decay parameter to a low value, the signature output from the
manifold are, in the extreme, reduced to a single point. When this stage is approached, class 𝐶1
has low classification correctness while it is high for 𝐶2. However, the variance in the obtained
classification results is high for both classes. In the other extreme, when increasing the
exponential-decay-parameter to a large value, the manifold output is “smoothed” and blurred. The
classification correctness for 𝐶1 is here smaller than that of 𝐶2, but the difference is less extreme
and the variance in the classification results is, for both classes, fairly small. In the middle section,
when the exponential-decay parameter varies between approximately 2 and 10, the classification
for class 𝐶1 is higher than that for 𝐶2 and the variance is also smaller for 𝐶1.

Why this effect is seen is unknown. It may be due to class 𝐶1 being much more widely separated in
the high-dimensional space as compared to 𝐶2, meaning that the behavior for 𝐶2 is much more
“typical” when compared to itself while 𝐶1 is more erratic, possibly consisting of several sub-
behaviors or such. It may also be simply due to bad choices of statistical values.

The ´best´ exponential-decay parameter to choose is obviously dependent on the importance of
identifying any of the two classes, but if it is assumed that both should be classified approximately
equivalently, the best parameter would lie somewhere between 8 and 15.

Changing the number of neighbors considered in the 𝑘-NN algorithm does show interesting effects
when changing from 1-2 to 5+ neighbors. When considering a single neighbor, the classification is
better for 𝐶1 while the effect is more or less indistinguishable when increasing to 5 or more
neighbors. However, when increasing the number of neighbors, the classification variance
increases substantially. It appears that the best 𝑘-NN setup would be to use between 5 and 10
neighbors.

The effect of using different length of the time series, both for feeding the trained system as well
as for training the system itself, is quite interesting. What the figure shows is that the classification
correctness, for both classes, increases as the length of the time series increases, and it continues
to increase regardless of the length of the times series used to warp the manifold. In fact, the
figures for the 30-, 45-, 60-, 90- and 120-second are almost equivalent. What it implies is that the
length of the time series used to warp the manifold is of no great importance; The same

31

classification result is obtained whether 45-second or 120-second CDF’s are used (30-second
CDF’s does show some lower classification result for class 𝐶1). This does imply that there truly is
convergence in distribution (which is further implied by the greater classification result when using
longer time series to feed the trained systems).

The effect of changing the number of sampling points per distribution is shown in figure 5.7. It
shows that the classification is ´best´ at around 10 sampling points per distribution. It also shows
that better classification results for 𝐶1 is obtained when increasing the number of sampling points,
whereas the classification correctness decreases for 𝐶2.

𝟕 Future work

The most obvious additions that can be made for any future work is to simply change the statistical
values under consideration. Those used in this project are chosen fairly arbitrarily and only vaguely
theoretically justified. However, the theoretical justification is not necessarily the best method to
find statistical values that can distinguish between these classes in particular – any statistical value
that can do so is justified for use, regardless of it having steady theoretical grounds. The future
work that can be done is thus to test a wide range of statistical quantities to see whether they
yield any desirable results, for example by fitting a manifold to sampled points from the
distribution and see if the classes do separate.

Another addition that can be made regards the preprocessing of the data. The problem is that the
given data contains lots of empty holes. These missing data points are filled in using simple linear
interpolation, but this is likely not the best method. For example, this interpolation method will fill
the empty holes equivalently, regardless of any past or future behaviors of the time series except
the nearest updates, thus making the interpolation equal for any classes. Using a Kalman filter, for
example, would mean that one makes an assumption of an internal state of the observed object,
where the internal state is estimated from the observations. Filling the holes would then be
equivalent to calculating the object properties based on the best estimate of the internal state at
that time, thus making use of much more of the observational data.

32

References

[1] H. Shaban, S. Tavoularis. “Identification of flow regime in vertical upward air-water pipe flow

using differential pressure signals and elastic maps.” In: International Journal of Multiphase
Flow. (Jan. 2014).

[2] M.O. Afolabi, O. Olude. “Predicting Stock Prices Using a Hybrid Kohonen Self Organizing Map
(SOM)”. Proc. 40th Hawaii International Conf. on System Sciences. 2007.

[3] J.K. Hunter. An Introduction to Real Analysis. University of California at Davis. 2012. pp. 93-94.
URL: https://www.math.ucdavis.edu/~hunter/m125a/intro_analysis_ch7.pdf [2015, May 22]

[4] R. Sjamaar. Manifolds and Differential Forms. Cornell University. Aug 2006. pp. 67-68. URL:
http://www.math.cornell.edu/~sjamaar/papers/manifold.pdf [2015, May 22]

[5] D.B. Chuong, B. Serafim. “What is the expectation maximization algorithm?” In: Nature
Biotechnology 26 (2008), pp. 897 - 899. DOI: 10.1038/nbt1406 URL: http://www.nature.com/
nbt/journal/v26/n8/full/nbt1406.html [2015, May 22]

[6] Cambridge University. K-means. Cambridge University. 2008. URL: http://nlp.stanford.edu/IR-
book/html/htmledition/k-means-1.html [2015, May 22]

[7] O. Sutton. Introduction to k Nearest Neighbor Classification and Condensed Nearest Neighbour
Data Reduction. University of Leicester. Feb. 2012. URL: http://www.math.le.ac.uk/people/
ag153/homepage/KNN/OliverKNN_Talk.pdf [2015, May 22]

[8] C.O.S. Sorzano, J. Vargas, A. Pascual‐Montano. A survey of dimensionality reduction techniques.
Autonomous University of Madrid. Mar. 2014. URL: http://arxiv.org/abs/1403.2877 [2015, May
22]

[9] L.I. Smith. A tutorial on Principal Component Analysis. University of Otago. Feb. 2002. URL:
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
[2015, May 22]

[10] A.N. Gorban, A.Y. Zinovyev. Principal Graphs and Manifolds. University of Leicester, Institut
Curie. May 2011. DOI: 10.4018/978-1-60566-766-9 URL: http://arxiv.org/abs/0809.0490 [2015,
May 22]

[11] A.N. Gorban, A.Y. Zinovyev. Elastic Maps and Nets for Approximating Principal Manifolds and
Their Application to Microarray Data Visualization. University of Leicester, Institut Curie. DOI:
10.1007/978-3-540-73750-6_4 URL: http://arxiv.org/abs/0801.0168 [2015, May 22]

[12] S.M Guthikonda. Kohonen Self-Organizing Maps. Wittenberg University. Dec. 2005. URL:
http://www.shy.am/wp-content/uploads/2009/01/kohonen-self-organizing-maps-shyam-
guthikonda.pdf [2015, May 22]

[13] V. Spruyt. “The Curse of Dimensionality in classification.” In: Computer vision for dummies. Apr.
2014. URL: http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
[2015, May 22]

[14] D. Gamarnik, J. Tsitsiklis. Class lecture. Lecture 17: Convergence of random variables.
Massachusetts Institute of Technology. Nov. 2008. URL: http://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-436j-fundamentals-of-probability-fall-2008/lecture-
notes/MIT6_436JF08_lec17.pdf [2015, May 22]

[15] J.H. Reif. Class lecture. Lecture 6: Analysis of Quicksort. Duke University. Jan. 1999. URL:
http://db.cs.duke.edu/courses/spring99/cps130/lectures/lect06.pdf [2015, May 22]

