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ABSTRACT 

When the temperature of a diesel fuel is reduced far enough, the paraffins, inherent to all 

diesel fuels, will begin to aggregate, crystallise and form waxy solids. This wax will then 

block motor filters and thus reduce motor effectiveness and lifetimes. The temperature at 

which this happens is called the cold filter plugging point (CFPP) and is of constant concern 

for all fuel producers. Preemraff Lysekil wants to be able to predict the CFPP of a diesel 

product in order to speed up the analysis process. Experience shows that the CFPP is non-

linearly dependant on the properties of the input diesel components and the conventional 

analysis of the CFPP is slow. This work focuses secondly on the understanding of the CFPP, 

but mainly on the construction of a CFPP prediction function to be used by Preem in their 

day-to-day process structure. This task will be performed using the design of experiments 

(DOE) software MODDE®, which allows for a user to vary several factors at once instead of 

one factor at a time. Two models are analysed in this work; predicting the CFPP of a diesel 

blend based on the volume percentages of the input diesel components; predicting the additive 

dosage needed to reach the desired CFPP based on the cloud point of the input diesel 

components. There are two datasets used for both models, resulting in four different designs. 

The two data sets include 24 laboratory samples created by MODDE, and 483 refinery 

samples created by Preem during the past years. The results show relatively promising results, 

most of the designs seemingly lacking model validity. The overall most significant and 

promising design is design B, which predicts CFPP based on the refinery samples with an 

R2=0,774, Q2=0,757 and RSD=2,848. Future models should be made as to include property 

variations of the diesel components, for example using the quantitative paraffin distribution of 

the input component tanks as a basis for the model. 
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INTRODUCTION 
BACKGROUND 
A selection of the products made at Preemraff Lysekil in Sweden is diesel for use in both 

Sweden and abroad. When diesel is exposed to cold environments, there is an increased risk 

of the diesel components waxing. The waxing is a phenomenon which results in motor effect 

losses as the wax clogs the fuel filters and lines. The temperature at which the waxing indeed 

becomes a problem is called the cold filter plugging point (CFPP). 

 

There are two main ways to lower the CFPP and thus allow for colder weather before waxing 

occurs; add certain additives called cold flow improvers (CFI) to the diesel or choose diesel 

components that have inherently lower the CFPP. The diesel components are distilled crude 

oil fractions, such as kerosene and diesel oil, which are stored in individual component tanks 

at the refinery. Mixing the diesel components and the optional additives according to a recipe 

that follows the required specifications of the buyer is what makes up a diesel product blend. 

 

One of the main difficulties with the CFPP, especially when using additives, is that it is not 

easy to anticipate the value of the CFPP by looking at the recipe for the diesel. This is because 

the relationship between a recipe and the following value of the CFPP is non-linear. This 

issue stretches even further as the cycle time of a conventional CFPP analysis is extensive, 

meaning that the CFPP is both hard to predict and slow to determine. By finding significant 

terms, a prediction model would be implemented into diesel optimisation software which 

would assist the diesel production at Preem, reducing wait times and costs.  

 

Several similar studies have been performed previously, many of which are found in the Fuel 

(The Science and Technology of Fuel and Energy) journal.  Many of the studies touch on the 

improvement or prediction of cold flow properties of biodiesels. [1, 2, 3, 4, 5, 6] Fewer 

reports are touching on the cold flow properties of regular diesel. [7, 8, 9, 10] There are very 

few studies regarding the cold flow properties of regular diesel that is mixed with CFPP 

additives. [11, 12, 13] Waxing of diesel fuels is relevant today and even more so in the future 

because of the increased mixing of biofuels, such as the pine tree oil in the Evolution diesel 

produced by Preem. 

GOAL 
The goal of this master thesis is to investigate and chart how the additives and diesel 

components used at Preem will affect the winter properties - mainly the CFPP - of the final 

diesel product. A rough CFPP prediction function will be created using the design of 

experiments (DOE) software MODDE®, developed by Umetrics which is part of Sartorius 

Stedim Biotech. The prediction function construction is also covered in another master thesis 

on the MSc-programme "Systems and Control Design" at Chalmers University of 

Technology. The implementation of the prediction function into the optimisation software 

will not be covered. 

BOUNDARIES 
This work focuses secondly on the chemistry behind the CFPP which will act as a foundation, 

primarily on the construction of a CFPP prediction function. Not discussed in this work are 

the different types of crude oils and in what way they might affect the CFPP and thus the 
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validity of the prediction model. The model constructed in this work is susceptible to property 

variations of the component tanks. 
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THEORY 
Definitions of cold flow properties 
Three specific temperatures describe the cold flow properties of a diesel solution. The first 

temperature references the point where the first sign of waxing occurs in the form of small 

crystals formed around nucleation sites. This temperature is called the cloud point (CP), so 

named because the wax crystals affect the light passing through the solution, effectively 

reducing its transparency. 

 

At a specific temperature below the cloud point, the CFPP is reached. The CFPP is defined as 

the temperature at which the amount of wax that has accumulated on a standardised filter is 

large enough to block a standardised amount of diesel from passing through the filter within 

60 seconds. [14] At even colder temperatures, the crystals are so numerous and so significant 

in size that the diesel fuel loses its possibility to flow like a liquid. This temperature is called 

the pour point.  

The chemical composition of a standard diesel fuel 
Conventional diesel fuel is made up of hydrocarbons, of which 75 % comprises saturated 

hydrocarbons, primarily paraffin of type n, iso or cyclo. [15] Cycloparaffin is also called 

naphthene and is saturated alkanes but with ring structures CnH2n instead. Naphthenes are not 

to be confused with naphthalenes which are aromatic. The last 25 % of a standard diesel fuel 

comprises aromatic hydrocarbons, such as naphthalenes and alkylbenzenes. Cyclic structures 

but the rings have the structure of CnHn and are not single bonded. [16, 15] 

 

 
 

Figure 1. Structures of general examples of the hydrocarbons that make up 

diesel. A. n-dodecane, normal paraffinic. B. Iso-dodecane, branched 

paraffinic. C. Cyclododecane, naphthenic. D: Naphthalene, aromatic. 

The different types of compounds affect cold flow properties in specific ways, as shown in 

Table 1. The most interesting parameter for this work is the low-temperature operability, 
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which is shown to be negatively affected by n-paraffins only. [16] All the other compounds 

affect cold flow properties positively or not at all. 

 

Table 1. Three parameters and their molecular dependencies. Low-

temperature operability is of interest to this work. Essentially as [16]. 

Fuel property n-paraffin Iso-paraffin Naphthene Aromatic 

Cetane number + 0/+ 0/+ 0/- 

Low-temp. operability - 0/+ + + 

Volum. Heating Value - - 0 + 

+ Indicates a positive or beneficial effect on the fuel property 

0 Indicates a neutral or minor effect 

- Indicates a negative or detrimental effect 

 

There are many studies on the low-temperature operability, mainly on biodiesels. Different 

functional groups seem to influence the CP of a blend. In order they are alkanes, ethers, 

esters, ketones and diesters, where the latter is the least effective at reducing the CP and the 

former is the most effective. [1] Degrees of unsaturation of fatty acids affect cold flow 

properties, where a higher degree of unsaturation yields fuel with superior cold flow 

performance. [2] A higher degree of desulphuration of the diesel seem to increase the global 

paraffin content, making the diesel heavier. [8] The CP of a blend depends very non-linearly 

on the CP of the individual components, where the CP of the heavier fuel dominates. [10] The 

length of the alcohol chain used for transesterification of a biodiesel affects its CP and CFPP, 

where a longer alcohol chain results in decreased CP and CFPP. [17] 

Waxing mechanisms 
Waxing is the crystallisation of paraffin within the diesel blend. When the diesel is cooled, 

nucleation sites begin to form, where the paraffin start their conglomeration. The crystalline 

structure that is built up by coagulation of paraffin will form a plate-like structure as the 

paraffin will mostly only adsorb along the x- and y-axis of the structure. [15] 

 

The crystallisation of wax depends on intermolecular forces, which is generated when the 

temperature of the diesel blend is reduced below the melting point. There are two steps to the 

crystallisation; first the nucleation, where liquid molecules aggregate and form crystallites 

with nucleation sites; then the crystal growth, where the crystal lattices grow and thus give 

room for more nucleation to occur. [18] 

 

By the dependencies shown in Table 1, it is mainly n-paraffins that tend to cluster together 

since they are more flexible and will be more affected by intermolecular forces. Iso-paraffins 

can delay the formation of wax nuclei due to their branching, resulting in unstable waxy 

solids. The cyclic nature of naphthenes makes them bulky, and they disrupt the wax 

nucleation or the growth processes, resulting in fewer or smaller crystals. The aromatics are 

usually good solvents for paraffin waxes. [15] 

 

To view the wax crystal morphology and their crystallisation behaviour, both polarising 

microscopy (POM) and differential scanning calorimetry (DSC) can be used. When subjected 

to POM, the wax crystals of the blend will reflect the polarised light and show up as bright 

white areas on an image. [7] This is an easy way to visualise what the effect of an additive has 

on a diesel blend. 
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Fractional distillation 
Diesel components are obtained through fractional distillation of crude oil, shown in Figure 2. 

Within a fractioning column, the input vaporised crude oil is condensed and will split up into 

different fractions which consist of hydrocarbons with a similar number of carbon atoms. The 

fractional splitting depends on the boiling points of the various compounds; the heaviest 

fractions condense early at the hot bottom of the fractioning column, while the lightest 

fractions condense at the colder top of the column. At the very top of the column, the 

remaining gas that has yet to be condensed is extracted. [19, 20] 

 

 
Figure 2. A fractioning column and the products obtained via fractional 

distillation. Lighter fractions come out the top; heavier fractions come out 

the bottom. Essentially as [21]. 

Viscosity and boiling point decreases and flash point increases as one move from the bottom 

of the column to the top. Regarding the CFPP, this means that the lighter fractions in the 

upper part of the column yield a low CFPP since they have little tendency to form nucleation 

sites and crystallise. The more substantial components in the bottom of the column, however, 

do pose a problem regarding the CFPP, since they have large paraffin that readily forms 

crystallites. [20] 

 

It might then seem desirable to avoid using heavy fractions and only use lighter fractions for a 

fuel. If all the heavy fractions from the diesel blend were to be removed leaving, for example, 

C18 and below, the CFPP would still be present but at much colder temperatures. This could 

be beneficial in that the blend itself would have a low inherent CFPP, even without additives, 

but the reason why there is heavy paraffin in the blend is due to the increased yield. 

Removing the heavy paraffin should produce a less energy-rich diesel, which is unwanted.  

CFPP additive mechanics 
There are two common types of CFPP additives; middle-distillate flow improver (MDFI) and 

wax anti-settling agents (WASA). MDFI are all polymers which modify the crystal growth 

towards a particular direction, mainly in needle-like structures. [22] However, even when 

using MDFI, there will still appear crystals, however they will be smaller and more numerous. 

Furnace Crude oil 

Gas (20 C°)  

Gasoline/petrol 

Kerosene 

Diesel oil 

Fuel oil 

Lubricating oil, 

paraffin wax, 

asphalt 

400 C° 

370 C° 

300 C° 

200 C° 

150 C° 



 

 

  

Theory 

 

10 

 

 

If the amount of crystals make it difficult to avoid blocking of fuel filters, even with MDFI, 

then WASA can be used in order to help disperse the crystals. [23] Adding WASA to a blend 

will result in reduced size of wax crystals and increased sedimentation stability. This is done 

by WASA adsorbing to the wax crystals and, via an electrical polar layer, repelling other wax 

crystals. [12, 13] Neither MDFI or WASA affect the CP, as they only change the size or 

morphology of the crystals and do not remove them. [5, 24] 

The plate-like crystals that comprise the wax of standard diesel fuel is countered by using 

CFPP additives such as MDFI or WASA. The additive components are copolymers consisting 

of a polar polymer backbone with paraffinic side chains. [22] The paraffinic side chains is 

similar in size to the problematic paraffin in the diesel, allowing for co-crystallisation between 

the paraffinic side chains of the additive and the paraffin of the diesel. When this happens, the 

polar backbone of the additive hinders further crystallisation by repelling the non-polar diesel 

paraffin. Figure 3 visualises the crystalline growth of a diesel blend without a CFPP additive, 

and Figure 4 shows the effect of mixing an MDFI into a diesel blend. 

 

Figure 3. The crystallisation of wax molecules (black) without MDFI 

treatment. Large wax plates are formed since the diesel paraffin can 

crystallise continuously. Essentially as [22]. 

 
Figure 4. Co-crystallisation of wax molecules (black) with the paraffinic side 

chains of the MDFI (yellow) along with the polar backbone (red) of the latter. 

Smaller wax aggregates are formed as sites necessary for plate formation are 

blocked by the paraffinic side chains of the MDFI. Essentially as [22]. 

A previous study that analysed the combination of surfactants and MDFI, namely 

ethylene/vinyl acetate (EVA), showed that the combination yielded excellent synergistic 

Initial structure 

just below CP. 

Early formation of plate 

via lateral growth. 

Large plate due to unhindered 

crystallisation along lateral axes. 

Initial structure 

just below CP. 

Inhibited lateral growth by the 

polar backbone of the MDFI 

A needle-like structure is 

formed due to the favoured 

vertical growth 
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effects. This is due to that the surfactants act as nucleation sites for wax growth, and the rapid 

co-crystallisation between EVA and the wax molecules of the blend. [11] 

Prediction model start-up 
One of the primary difficulties with creating any prediction model is finding the most relevant 

properties to include as model variables. General design of such a model would be described 

as equation (1), showing the general linear model,  

 

 
𝑌𝑥 = 𝛽0 +∑𝛽𝑗𝑥𝑗

𝑚

𝑗=1

+ 𝜀𝑥 (1) 

 

which is estimated by the following equation (2), 

 

 
𝐸(𝑌𝑥) = 𝛽0 +∑𝛽𝑗𝑥𝑗

𝑚

𝑗=1

 (2) 

 

In this work, Yx is the actual CFPP, E(Yx) is the estimation, or prediction, of the CFPP made 

by the prediction model, εj is an error random variable satisfying 𝐸(𝜀𝑥) = 0, β0 is constant 

coefficient, βj represents the model coefficients for each process parameter, and xj represents 

the values of each process parameter. [25] There are a lot of options of what xj can represent 

and determining which xj to use is an important step in the right direction. This work will 

mostly focus on using the component tank volume fractions as xj, as these allow for an early 

CFPP prediction before the product is mixed.  

 

Another model will also be examined. Instead of predicting the final CFPP of a blend, it 

might be possible to construct a model that outputs the additive dosage required for a 

particular difference between CP and CFPP. If one knows the CP of a blend, this model 

would then say how much additive is needed to reach the desired CFPP. 

 

The methods used for the laboratory analysis of CP and CFPP are shown in Table 2.  

 

Table 2. Standard methods (ASTM) used for the laboratory analyses on the 

diesel products.  

Analysis Standard method 

CFPP ASTM D6371-17 

CP ASTM D2500-17 

 

Another model that is covered in a similar study includes the use of a DSC to measure the 

onset and peak temperatures as the sample is cooled and heated. This model can be used to 

predict the CFPP and CP of a biodiesel blend. [3, 5] 

Design of experiments 
Before talking about DOE, some terminology must be addressed. Factors include all the input 

variables and responses are all the output variables. The values of the factors are referred to as 

levels. [26] This can be explained further by applying these terms to the procedure of baking a 

cake. In this example, the factors can be sugar, flour, eggs and the oven. These factors are 

controllable factors, as opposed to uncontrollable factors which are not possible to adjust 

during experimentation. An example of an uncontrollable factor could be air pressure, which 
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in most households is not possible to change. Continuing the cake example, the responses 

could be characteristics such as cake colour, form, taste and consistency. This example is 

shown in its entirety in Table 3.  

 

Table 3. An explanation of factors (inputs), levels (settings) and responses 

(outputs), all of which are used in DOE. 

Factors (inputs)  Levels (settings)  Responses (outputs) 

Flour → Grams  

Taste, colour, consistency, 

form 

Sugar → Grams 
→ 

Eggs → Quantity 

Oven → Temperature  

  
If there is only a few factors and responses to be assessed, the go-to method is usually the 

one-factor-at-a-time (OFAT) procedure. OFAT means that the value of only one factor will be 

changed at a time, while the other ones are kept constant. [27] This is repeated for all factors 

and can yield reliable, albeit slow, results. If there are more than a few factors and responses 

to be assessed, however, a more robust procedure is required. This is where DOE comes in. 

 

As a branch of applied statistics, DOE involves planning, conducting and analysing 

experiments to determine which factors will have a significant effect on a given parameter. 

The way that tests are set up in DOE allows for obtaining the most amount of information 

possible in the least amount of time and work. DOE accomplishes this by in one way or 

another changing the values of the factors simultaneously, as opposed to the OFAT method. 

[27] 

 

DOE usually follows three consecutive steps. First off is screening, a broad range analysis 

where the most critical factors and their most effective ranges are found. Next up is the 

optimisation, where an area of optimal performance levels is searched for, while still 

satisfying all the possible demands of different responses. Lastly, the newly found optimal 

settings are checked for their robustness. [28] 

 

This work will only perform the screening part of DOE. When the most relevant factors have 

been found, a model can be created using their coefficients. 



 

13 

 

METHOD 
DATA AND DESIGN SET-UP 
In this work, two sets of sample data were used. One data set consists of recipes for and lab 

results from 483 real diesel product samples (preem blends). The other dataset includes 

recipes for and lab results from 24 diesel samples (thesis blends), all of which were created in 

a lab environment for use in this work only. 

 

MODDE was used to prepare all designs. The replicate tolerance of MODDE was changed 

from the default value of 0,1 to 0,01 as some of the preem blends became replicates when 

they were not intended to. This change does not affect the thesis blends at all as they do not 

depend on decimals of that size. 

 

This work contains two different models that might assist Preem. Both models have been 

determined twice; one for each type of blend (thesis and preem). Thus, there are four designs 

in total. Designs A and C are based on the thesis blends and designs B and D are based on the 

preem blends. This layout is further explained in Table 4. 

 

Table 4. Design set-up. An explanation of the combinations of the two blends 

and two model types included in this work. 

 Thesis blends Preem blends 

CFPP prediction Design A Design B 

Additive dosage prediction Design C Design D 

 

In order to keep company confidentiality intact, the real names and levels of the component 

tanks is blocked in this report. 

DESIGN A: predicting the CFPP using thesis blend component 
volume %. 
The factors were designed as shown in Table 5. The five formulation factors represent the five 

diesel component tanks used in the experiment, and they have their respective intervals of 

total volume percentage derived from their usual ranges at Preem.  

 

The additive concentration and the five component tank fractions were set up as controllable 

factors. Note that only the five component tanks that make up the formulation factors are 

considered by MODDE when adding to a total volume of 100 %; the additive is added 

afterwards, netting a total volume of slightly more than 100 %. However, this should not be a 

problem as the volume that the additive represents is negligible. [19] 
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Table 5. Factors used in design A. The levels of all factors and the true names 

of the component tanks are blocked from view due to company 

confidentiality. 

Name Abbr. Units Type Use Settings 

XX Add ppm Quantitative Controlled XX 

XX T1 % (V/V) Formulation Controlled XX 

XX T2 % (V/V) Formulation Controlled XX 

XX T3 % (V/V) Formulation Controlled XX 

XX T4 % (V/V) Formulation Controlled XX 

XX T5 % (V/V) Formulation Controlled XX 

 

The CFPP is the only response factor included, as shown in Table 6. No minimum, target or 

maximum value of the CFPP was set. 

 

Table 6. Response used in design A. 

Name Abbr. Units Transform Type Min Target Max 

CFPP CFPP °C None Regular - - - 

 

The objective of this design was screening, as shown in Table 7. This was chosen to find the 

critical factors that might have a significant beneficial or detrimental effect on the value of the 

CFPP. D-optimal was the only option, and it allows for a maximum spread of the points in the 

generated recipes. The standard amount of three centre points was used to observe any 

variance in blending technique or apparatus usage.  
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Table 7. Design summary of design A. 

Objective Screening   

Process model Interaction  

Mixture model Linear  

   Design D-Optimal   

Runs in design 19*  

Center points 3  

Replicates 0  

N = actual runs 22*  

Maximum runs 12000  

Constraints No  

   Candidate set     

Extreme vertices 110  

Edge points 0  

Centroids of high dim. surfaces 55  

Total runs 165  

   D-Optimal     

Potential terms Interaction Quadratic 

Number of inclusions 0  

Constraints No  

Selected design number 25  

Design statistics G-efficiency 73.5755 

 log(Det. of X'X) 12.0408 

 Norm. log(Det. of X'X) -0.11814 

 Condition number 1.93055 

 

After MODDE had created a design using the 24 experimental samples according to the input 

factor levels, they were mixed by hand mixing of the component tanks and additive in a lab 

environment according to the recipes created by MODDE. The analysis run order of the 24 

samples was randomised to avoid any day-to-day aberrations in lab method or technique. The 

analysis methods yield results similar to the standard methods listed in Table 2 on page 11. 

 

The final step before viewing the results produced in MODDE was to fit the experimental 

data to a model. In this case, partial least squares (PLS) without pseudo components were 

used. The model was then sculpted by adding and removing specific model terms. The five 

formulation factors are required to be a part of the model however it is a free choice whether 

to include the amount of additive or any interactions between the additive and the different 

component tanks. The model terms that were included in this design are listed in Table 8. 

Note that amount of additive was not included as a term in design A, due to lack of 

confidence. This is explained further in the results and discussion on page 19 and onward. 
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Table 8. Model terms used in design A. 

Full Name Abbreviation 

CFPP   

Constant Cst 

XX TK1 

XX TK2 

XX TK3 

XX TK4 

XX TK5 

XX TK4*TK4 

XX TK4*TK5 

 

All laboratory analyses performed on the thesis blends were done according to methods 

yielding results similar to the standard techniques shown in Table 2. 

 

The results and discussion of this design start on page 19. 

DESIGN B: predicting the CFPP using preem blend component 
volume %. 
This design was performed with many similarities to design A. However, as the preem blends 

are not created using MODDE, the preem blend data had to be imported into MODDE and 

pasted into a custom design. The objective is still screening, and the factors include all the 

component tanks in design A, but also some additional tanks not used in the thesis blends. 

The factors are listed in Table 9. Note that the component tanks are listed as quantitative 

factors instead of formulation factors. This is done as to allow for removal of individual 

component tanks as model terms later. 

  

Table 9. Factors used in design B. The levels of all factors and the true names 

of the component tanks are blocked from view due to company 

confidentiality. 

Name Abbr. Units Type Use Settings 

XX Add ppm Quantitative Controlled XX 

XX T1 Fraction Quantitative Controlled XX 

XX T2 Fraction Quantitative Controlled XX 

XX T3 Fraction Quantitative Controlled XX 

XX T4 Fraction Quantitative Controlled XX 

XX T5 Fraction Quantitative Controlled XX 

XX T6 Fraction Quantitative Controlled XX 

XX T7 Fraction Quantitative Controlled XX 

XX T8 Fraction Quantitative Controlled XX 

 

The response is identical to the response used in design A, which is shown in Table 6. As the 

preem blend data is pasted into MODDE, and not designed within MODDE, the design 

summary is much more lightweight, as shown in Table 10. 
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Table 10. Design summary of design B. 

Objective -- 

Process model Linear 

Mixture model Linear 

    

Design Custom 

Runs in design 483 

Center points -- 

Replicates -- 

N = actual runs 483 

Maximum runs 12000 

Constraints No 

 

The preem blend data is then fit to a model, using PLS. The model is again adjusted by 

removing and adding various model terms, with the goal to maximise R2 and Q2, while 

minimising the RSD. The abbreviated model terms included in design B are listed in Table 

11. Note that not all component tanks are included as some were deemed insignificant to 

CFPP prediction. 

 

Table 11. Model terms used in design B. 

Full Name Abbreviation 

CFPP   

Constant Constant 

XX Add 

XX T5 

XX T4 

XX T3 

XX Add*Add 

XX T4*T4 

XX T5*T3 

 

The laboratory analyses previously performed on the preem blends during production were 

done according to methods yielding results similar to the standard techniques shown in Table 

2. 

 

The results and discussion of this design start on page 23. 

DESIGN C: predicting additive dosage using thesis blend CP & 
CFPP difference. 
This is a lightweight model; the only factor is additive dosage, as shown in Table 12. 

 

Table 12. Factor used in design C. 

Name Abbr. Units Type Use Settings 

XX Add ppm Quantitative Controlled XX 

 

The response is the difference between CP and CFPP, as listed in Table 13.  
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Table 13. Response used in design C. 

Name Abbr. Units Transform Type Min Target Max 

CP-CFPP Diff °C None Regular       

 

As this model does not consider the component tanks used for the blend, the data from the 

thesis blends is copied and pasted into MODDE, as opposed to design A where it was created 

in MODDE. The design summary is listed in Table 14. 

 

Table 14. Design summary of design C. 

Objective -- 

Process model Linear 

Mixture model -- 

    

Design Custom 

Runs in design 24 

Center points -- 

Replicates -- 

N = actual runs 24 

Maximum runs 12000 

Constraints No 

 

The model terms included in design C are listed in Table 15. Note that the only factor in this 

model is the additive dosage. Thus it is also the only model term apart from the constant. 

 

Table 15. Model terms used in design C. 

Full Name Abbreviation 

CP-CFPP   

Constant Cst 

XX Add 

 

The 24 thesis samples and their analyses were prepared and performed as mentioned in design 

A. The results and discussion of this design start on page 26. 

DESIGN D: predicting additive dosage using preem blend CP & 
CFPP difference. 
This design is very similar to design C with few notable differences. The factor is as the one 

for design C shown in Table 12, but with a different additive dosage as these are the preem 

blends and not the thesis blends. The response is identical to Table 13, and the design 

summary is as the one listed in Table 10 for design B, but with 483 design runs instead of 24. 

The results and discussion of this design start on page 28. 
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RESULTS & DISCUSSION 
DESIGN A: predicting CFPP using thesis blend component volume 
%. 

Outliers and potential errors 
No experiments were excluded from the MODDE worksheet. The residual normal probability 

plot is shown in Figure 5 and does not show any experiments outside the limits of -4 and +4 

standardised standard deviations. 

 
Figure 5. Residuals normal probability plot for design A. 

Including dosage of additive as a model term caused issues with MODDE. The contribution 

of the additive on the CFPP was smaller than all the other interaction terms. This was likely 

because approximately two-thirds of the 24 samples consist of a significant amount (40 or 

more volume %) of kerosene, which according to theory does not interact with the CFPP 

additive. If most of the samples consisted of HGO, the additive coefficient might be more 

substantial. 

 

Another problem with an additive as a model term is that it made the coefficient plot unable 

to calculate confidence intervals for all terms. Due to these issues, the additive dosage was 

excluded as a model term in design A, even though it is expected to have a significant 

influence on CFPP. 

Model robustness 
The ANOVA shown in Table 16 shows an RSD of approximately 3,1 °C which is relatively 

large. The high values of both R2 and Q2 signify a good measure of fit and predictable power 

in the model. The F-distribution value of 46 for the regression yields a 95 % significance, 

meaning that the model is statistically good. The F-distribution value of 33 for the lack of fit, 

however, does also reach the 95 % significance, resulting in a model with significant lack of 

fit, statistically speaking.  
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Table 16. ANOVA for design A. 

CFPP DF SS MS F p SD 

Total 24 21743 905,958       

Constant 1 18872 18872       

Total corrected 23 2870,96 124,824     11,1725 

Regression 6 2704,64 450,773 46,0743 0,000 21,2314 

Residual 17 166,321 9,78359     3,12787 

Lack of Fit (model error) 15 165,654 11,0436 33,1309 0,030 3,3232 

Pure error (repl. error) 2 0,666667 0,333333     0,57735 

  N = 24 Q2 = 0,807 Cond. no. = 7,297   

  DF = 17 R2 = 0,942 RSD = 3,128   

  Comp. = 3 R2 adj. = 0,922       

 

Some of the values in ANOVA are shown as columns in the summary of fit plot shown in 

Figure 6, along with the model validity and the reproducibility. The model validity is less than 

0,25 which implies that there is significant lack of fit in the model; the model error is larger 

than the pure error. 

 
Figure 6. Summary of fit plot for design A. 

The predictive power that the relatively large Q2 indicates is shown further in Figure 7 where 

the observed CFPP is compared to MODDES predicted CFPP. A perfect model would have 

all the samples perfectly aligned with the black dotted line. 
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Figure 7. Observed vs predicted CFPP plot for design A. 

Significant CFPP contributors 
The influence that the factors and the added interaction model terms have on CFPP is 

visualised in the loading scatter plot shown in Figure 8. The axes represent the X- and Y-

weights (w and c) of two PLS dimensions. This shows how the X-variables influence the Y-

variables and the correlation structure of the X:s and Y:s. The further a factor is from the plot 

origin, the more influence it has on the response, which in this case is CFPP. If the factor is in 

the same quadrant as the response, the influence is in the positive direction, and if the factor is 

in the opposite quadrant, the influence is in the negative direction. 

 

This means that T4 increases the CFPP by quite a lot, while T3 decreases CFPP by a lesser, 

but still substantial amount. These are both expected results; T4 contains HGO which should 

yield a warmer CFPP, and T2 and T3 contains kerosene which has a colder CFPP. Thus, 

MODDE has shown it is on the right track. 

 
Figure 8. Loading scatter plot for design A. 

The coefficient plot in Figure 9 displays the scaled and centred regression coefficients. Again, 

similar to the loading plots, the most significant contributors to CFPP is shown to be T4 

containing HGO and the two kerosene component tanks T2 and T3. The least significant 

model term shown here is the tank T5 containing diesel oil, having a confidence interval 
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crossing the y-value of zero. If the factors in this design were not formulation factors but 

instead quantitative factors, the model terms of the individual tanks could be removed. It 

would then be an option to remove T5 as a model term. As it stands now, all the five 

formulation factors must be included in the model.  

 
Figure 9. Coefficient plot for design A (scaled and centred). 

Prediction function construction 
When forming an equation to use as a prediction function, the factors should be multiplied by 

their respective unscaled coefficients. Table 17 shows the exact values of the unscaled 

coefficients.  

 

Table 17. Unscaled coefficients for design A. 

Model term Coefficients Standard error Probability Conf. interval(±) 

Constant -27,9739 3,5027 3,7357e-07 7,3901 

T1 -25,0387 5,5118 2,8819e-04 11,6290 

T2 -21,0790 5,1395 7,4448e-04 10,8434 

T3 -20,9317 5,0687 7,0044e-04 10,6942 

T4 60,8090 9,0271 3,4855e-06 19,0456 

T5 6,2404 3,8410 1,2262e-01 8,1038 

T4*T4 -46,0893 14,0586 4,4323e-03 29,6613 

T4*T5 -33,4668 15,5213 4,5685e-02 32,7474 

 

Using the unscaled coefficients, a CFPP prediction function can then be constructed as 

according to the general linear equation (2). 

 

 𝐶𝐹𝑃𝑃𝑃𝑅𝐸𝐷𝐼𝐶𝑇𝐸𝐷 = β0 + 𝑥1β1 + 𝑥2β2 + 𝑥3β3 + 𝑥4β4 + 𝑥5β5 + 𝑥4𝑥4β6 + 𝑥4𝑥5β7 (3) 

 

Where βi represents the unscaled coefficients, starting with β0 as the constant coefficient, and 

xi represents the factors included in the model. 
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DESIGN B: predicting CFPP using preem blend component volume 
%. 

Outliers and potential errors 
Three preem blend samples were excluded from the MODDE worksheet due to being outside 

the limits of -4 and +4 standardised standard deviations. Shown in Figure 10 are two residual 

normal probability plots for design B; the left plot includes all 483 samples, and the right plot 

has excluded the three deviating samples. 

 
Figure 10. Residuals normal probability plots for design B; the left plot 

includes all 483 samples; the right plot has excluded three deviating samples. 

Model robustness 
The ANOVA in Table 18 shows results both good and bad. The pros include a high F-

distribution value of the regression, allowing a regression probability significant at 95 % and 

thus a statistically good model. The values of Q2 and R2 are close but could be higher. The 

probability of lack of fit is significant at 95 %, meaning the model statistically has lack of fit. 

The RSD shows approximately 2,8 ℃ which is relatively large. 

 

Table 18. ANOVA for design B. 

CFPP DF SS MS F p SD 

Total 480 99507 207,306       

Constant 1 82556,3 82556,3       

Total corrected 479 16950,7 35,3877     5,94876 

Regression 7 13121,1 1874,44 231,026 0,000 43,2948 

Residual 472 3829,6 8,11357     2,84843 

Lack of Fit (model error) 436 3772,94 8,65352 5,49753 0,000 2,94169 

Pure error (repl. error) 36 56,6667 1,57407     1,25462 

  N = 480 Q2 = 0,757 Cond. no. = 3,854   

  DF = 472 R2 = 0,774 RSD = 2,848   

  Comp. = 3 R2 adj. = 0,922       

 

The summary of fit plot shown as Figure 11 agrees with the lack of fit, as the model validity 

bar is through the floor. 
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Figure 11. Summary of fit plot for design B. 

The data so far does not promise a good prediction model, which is shown further in Figure 

12 where the data points are spread far apart around the diagonal of the prediction plot. 

 

 
Figure 12. Observed vs predicted CFPP plot for design B. 

Significant CFPP contributors 
Starting with the loading scatter plot, shown in Figure 13, it can be immediately noted that the 

additive dosage is the most significant contributor to the CFPP, as it is far from the origin. As 

the additive factor is in the quadrant opposite to the CFPP response, the contribution is 

negative which is expected. 
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Figure 13. Loading scatter plot for design B. 

The coefficient plot, shown as Figure 14, agrees with the loading scatter plot in that the 

additive dosage massively outweighs all the other model terms regarding CFPP contribution. 

All coefficients are significant at 95 % probabilities, however, and their confidence intervals 

are not crossing the y-value of zero.  

 
Figure 14. Coefficient plot for design B (scaled and centred). 

Prediction function construction 
The prediction function would be the same as Equation (3) shown on page 22, except with the 

new unscaled coefficients of design B, shown in Table 19. 
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Table 19. Unscaled coefficients for design B. 

Model term Coefficients Standard error Probability Conf. interval(±) 

Constant -3,0871 -- -- -- 

Add -0,0419 -- -- -- 

T5 -0,4296 -- -- -- 

T4 -7,6586 -- -- -- 

T3 -8,9517 -- -- -- 

Add*Add 0,0000 -- -- -- 

T4*T4 27,5206 -- -- -- 

T5*T3 -58,8890 -- -- -- 

 

Note that the additional unscaled data, such as probability, is missing. This is likely because 

the value of the unscaled additive dosage coefficient is several magnitudes lower than the 

values of the other coefficients, resulting in an ill-conditioned matrix. The reason why the 

additive dosage coefficient is very low is due to the additive factor being input as ppm in the 

hundreds, while the component tanks are input as fractions between 0 and 1. This is not an 

issue that affects the model, however, if the additive dosage is input in the model in ppm. 

DESIGN C: predicting additive dosage using thesis blend CP & 
CFPP difference. 

Outliers and potential errors 
See the same chapter for design A on page 19. 

Model robustness 
The ANOVA shows very poor R2 and Q2, as well as a high value of RSD. The regression 

probability is relatively far from being significant at 95 %, which signifies a statistically poor 

model.  

 

Table 20. ANOVA for design C. 

CFPP DF SS MS F p SD 

Total 24 6644,41 276,85       

Constant 1 6243,6 6243,6       

Total corrected 23 400,808 17,4264     4,1745 

Regression 1 33,0741 33,0741 1,97868 0,173 5,75101 

Residual 22 367,734 16,7152     4,08842 

Lack of Fit (model error) 1 13,2613 13,2613 0,785636 0,385 3,6416 

Pure error (repl. error) 21 354,473 16,8797     4,10849 

  N = 24 Q2 = 0,050 Cond. no. = 1,022   

  DF = 22 R2 = 0,083 RSD = 4,088   

  Comp. = 1 R2 adj. = 0,041       

 

A seemingly positive side is that the ANOVA shows that the probability of lack of fit is far 

from being significant at 95 %, meaning the model statistically has no lack of fit. However, 

this is because the pure error is unusually large. 

 

The pure error is significant because MODDE assumes that all experiments with the same 

additive dosage are replicates with very different CFPP. These replicates are shown in Figure 
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15, where each “column” represent a certain level of additive dosage. Replicates exist in all 

four designs in this work, but they become extreme when one can only choose from three 

different factor levels. This behaviour is expected in such a model as this.  

 
Figure 15. Replicate plot for design C. 

The poorness of the model is further visualised in Figure 16 where the only column worth 

noting is the model validity, which is skewed due to the sizeable pure error. 

 
Figure 16. Summary of fit plot for design C. 

Not too unexpected, the prediction created by this model will be worthless, as shown in 

Figure 17 where the data points are severely misaligned with the diagonal. 
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Figure 17. Observed vs predicted CFPP plot for design C. 

Significant CFPP contributors 
Since there is only one factor included in this model, there are no contributors to compare 

with. The coefficient plot for the additive dosage is shown in Figure 18. Note that the 

confidence interval is considerable compared to the column value, further indicating that this 

is not a significant model.  

 
Figure 18. Coefficient plot for design C (scaled and centred). 

Prediction function construction 
As this model is statistically inferior and of no use, no prediction function will be constructed. 

DESIGN D: predicting additive dosage using preem blend CP & 
CFPP difference. 

Outliers and potential errors 
See the same chapter for design B on page 23. 

Model robustness 
The ANOVA shows some promising values. The R2 and Q2 are relatively high and close to 

each other. The RSD is the lowest of all the designs, sitting at 2,6 ℃. The regression 
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probability is significant at 95 %, and thus the model is statistically good. However, the lack 

of fit is also significant at 95 %, meaning that there is lack of fit, statistically speaking.  

 

Table 21. ANOVA for design D. 

CFPP DF SS MS F p SD 

Total 482 52761,5 109,464       

Constant 1 39186,1 39186,1       

Total corrected 481 13575,3 28,2231     5,31255 

Regression 2 10346,9 5173,45 767,579 0,000 71,9267 

Residual 479 3228,44 6,73996     2,59614 

Lack of Fit (model error) 19 427,001 22,4737 3,69022 0,000 4,74065 

Pure error (repl. error) 460 2801,44 6,09008     2,46781 

  N = 482 Q2 = 0,759 Cond. no. = 8,02   

  DF = 479 R2 = 0,762 RSD = 2,596   

    R2 adj. = 0,761       

 

Like design C, the pure error is substantial since the replicates have very different values of 

CFPP on one given level of additive dosage. The replicates are shown in Figure 19. 

 
Figure 19. Replicate plot for design D. 

The summary of fit plot shown in Figure 20 further shows how close the R2 and Q2 are for 

design D. However; the poor model validity is also noted, as the model validity column is at 

the lowest possible value to be shown in MODDE. 
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Figure 20. Summary of fit plot for design D. 

The observed vs predicted CFPP plot for design D further shows how the predictions made by 

this model are often far from correct. 

 
Figure 21. Observed vs predicted CFPP plot for design D. 

Significant CFPP contributors 
The coefficient plot for the additive dosage is shown in Figure 22. What differs this model 

from design C is that the additive dosage is also included as a square model term here. Here, 

the confidence intervals are much more promising than the ones shown in design C; they 

intervals are small compared to the columns, and they do not cross the y-value of zero. 
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Figure 22. Coefficient plot for design D. 

Prediction function construction 
The prediction function would be the same as Equation (3) shown on page 22, except with the 

new unscaled coefficients of design D, shown in Table 22. See the explanation on page 26 as 

to why the three rightmost columns are lacking values. 

 

Table 22. Unscaled coefficients for design D. 

Model term Coefficients Standard error Probability Conf. interval(±) 

Constant 1,03955 -- -- -- 

Add 0,0435224 -- -- -- 

Add*Add -3,31605e-05 -- -- -- 
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CONCLUSION 
The goal of this work is to understand and predict the CFPP of a diesel blend. Preem can then 

apply this knowledge to their production and reduce expensive waiting times and potential 

delays. There are pros and cons for all four designs that have been performed and analysed in 

this work. Now, all that is left is to pick out the best version of the respective models. 

 

The first model had the goal to predict the CFPP of a blend based on the volume percentages 

of the input component tanks and the additive dosage in ppm. The relevant designs here are 

designs A, using the thesis blends as a data set, and B, using the preem blends as a data set. 

Here, design B showed the most promise. Both A and B yielded relatively similar results, but 

when it comes to the data sets, the size does matter. Design B relies on 483 data points, all of 

which are taken straight from the production at Preem during the past years. This means that 

design B must be the most prepared for real-world application out of the two. Design B also 

includes the additive dosage as a model term, something which design A did not find 

significant. Out of experience, the additive dosage is indeed significant and thus design B 

again shows the most promise. 

 

The second model had the goal to predict the additive dosage required to reach the desired 

CFPP based on the CP of the input component tanks. The relevant designs here are designs C, 

using the thesis blends as a data set, and D, using the preem blends as a data set. Both designs 

had their faults, but design D showed the most promise. For design C, there were just no 

advantageous values to be found. 

 

Design B and design D are similar in many ways even though they are different models. This 

is obviously much because they rely on the same data set. The model validity is low for both 

designs, something which can be explained by the fact that the properties of the component 

tanks are not static. Overall, out of all four designs, design B showed the most promise with 

an R2=0,774, Q2=0,757 and RSD=2,848. 

 

To avoid the problem with varying component tank properties, another model could be 

constructed that takes the variation into account. For example, a model that predicts the CFPP 

of a diesel blend based on the quantitative paraffin distribution of the input component tanks. 

Assuming frequent analysis of the quantitative paraffin distribution of the component tanks, 

one could just add together all of the input paraffin in order of size. Any property variations of 

the component tanks would then be noticed as the quantitative paraffin distribution should 

change. This model would also require the additive dosage as a model term, as the additive 

should not be noticeable on the paraffin analysis. 
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