
CFD for Underhood Modeling
Development of an Efficient Method
Master’s Thesis in Fluid Mechanics

EMIL LJUNGSKOG
ULF NILSSON

Department of Applied Mechanics
Division of Fluid Dynamics
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2014
Master’s Thesis 2014:37

MASTER’S THESIS IN FLUID MECHANICS

CFD for Underhood Modeling

Development of an Efficient Method

EMIL LJUNGSKOG
ULF NILSSON

Department of Applied Mechanics
Division of Fluid Dynamics

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2014

CFD for Underhood Modeling
Development of an Efficient Method
EMIL LJUNGSKOG
ULF NILSSON

c© EMIL LJUNGSKOG , ULF NILSSON, 2014

Master’s Thesis 2014:37
ISSN 1652-8557
Department of Applied Mechanics
Division of Fluid Dynamics
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Temperature and velocity field on a cut plane through the computational domain, with temperature profile on
the engine. The surface and volume meshes are also depicted. The car is a Volvo XC60.

Chalmers Reproservice
Göteborg, Sweden 2014

CFD for Underhood Modeling
Development of an Efficient Method
Master’s Thesis in Fluid Mechanics
EMIL LJUNGSKOG
ULF NILSSON
Department of Applied Mechanics
Division of Fluid Dynamics
Chalmers University of Technology

Abstract

Today’s development of cooling systems for passenger cars relies on one-dimensional system simulations, which
are heavily dependent on accurate input data obtained from testing or from CFD. Current three-dimensional
CFD methods are deemed too computational and workload expensive to be used, which is why the present work
was aimed at investigating the possibilities to develop a CFD model of the complete underhood compartment,
with a high degree of automation.

In the present work, two methods for CFD analysis of underhood flow in passenger cars were developed
and compared. Both methods used ANSA for geometry cleanup and STAR-CCM+ as CFD solver, while the
volume meshing differed. Method A used a polyhedral mesh created in STAR-CCM+, while a hexahedral mesh
was used in method B. Surface wrapping was extensively used in both methods to reduce the manual workload
in the geometry cleanup step.

In order to validate the methods, they were both applied to a validation case. Both methods underestimated
the heat rejection in the radiator with approximately 13 % compared to wind tunnel measurements, while the
heat rejection in the Charge Air Cooler was underestimated by 4.5 % and 6.0 % in method A and B, respectively.
However, there was a large uncertainty in the experimental results, why further research will be needed to
determine the validity of the developed methods.

It was concluded that method A showed a larger potential to be used in production cases due to its lower
time consumption and superior convergence behavior, even though more work is needed before it can be fully
incorporated into the work flow. The time reduction compared to similar methods currently in use at Volvo
cars was estimated to roughly 30 %.

Keywords: Computational Fluid Dynamics, CFD, underhood flow, heat exchanger modeling, MRF

i

ii

Preface

The report you are reading is the result of a project carried out during the spring of 2014 at the Outer Cooling
System group at Volvo Cars, aimed at investigating the possibilities of developing an efficient method for
performing underhood flow simulations.

The work was supervised by Cooling System CAE Analyst Anders Wedin at Volvo, and examined by
Professor Lars Davidson at the Division of Fluid Dynamics at Chalmers University of Technology.

Acknowledgements

As the authors of this thesis, we would like to thank everyone that have contributed to this project. We would
especially like to acknowledge the staff at the Outer Cooling System group at Volvo Cars, for hosting us during
this project. A special thanks goes to our supervisor Anders Wedin, for his support and very sucessful efforts
to make our time at Volvo both instructive and enjoyable. We would also like to thank Group Manager Stefan
Molén for allocating all the resources needed for us to complete this project.

Furthermore, we would like to acknowledge the staff at the Thermodynamic CFD department at Volvo,
who have been very helpful during the project.

We would also like to thank CD-adapco for providing licences for their CFD software suite STAR-CCM+, and
in particular Jonathan Thompson for his invaluable support on how to use this software for our applications.

iii

iv

Nomenclature

Abbreviations

CAC Charge Air Cooler
CAD Computer Aided Design
CAE Computer Aided Engineering
CFD Computational Fluid Dynamics
FANS Favre Averaged Navier-Stokes
LES Large Eddy Simulations
MRF Multiple Reference Frames
NURBS Non-Uniform Rational B-Splines
PLM Product Lifecycle Management
RANS Reynolds Averaged Navier-Stokes
TSTE Taylor Series Truncation Error
UDS Upwind Differencing Scheme

Greek symbols

εijk Levi-Civita tensor
µ Dynamic viscosity
ν Kinematic viscosity
νt Turbulent viscosity
ρ Density
ε Turbulent dissipation
τij Viscous stress tensor
δij Kronecker delta
〈φ〉 Time averaged quantity

φ̃ Favre averaged quantity

Roman symbols

e Specific internal energy
k Turbulent kinetic energy
Cp Specific heat capacity at constant pressure
Cv Specific heat capacity at constant volume
ni Normal vector, ith component
p Pressure
qi Heat flux vector, ith component
Sij Strain rate tensor
t Time
T Temperature
ui Velocity vector, ith component
xi Spatial coordinate, ith component

v

vi

Contents

Abstract i

Preface iii

Acknowledgements iii

Nomenclature v

Contents vii

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Limitations . 1

2 Theory 2
2.1 Governing equations . 2
2.2 Turbulent flow . 2
2.2.1 RANS . 3
2.2.2 Realizable k-ε . 4
2.3 Discretization methods . 5
2.3.1 First order UDS . 5
2.3.2 Second order UDS . 5
2.4 Cooling system . 6
2.4.1 Radiator . 6
2.4.2 Charge air cooler . 7
2.4.3 Condenser . 7
2.4.4 Axial fan . 7
2.5 Fan modeling . 7
2.5.1 Single and multiple reference frames . 7
2.6 Heat exchanger modeling . 9
2.6.1 Porous media model . 9
2.6.2 Single stream heat exchanger model . 9
2.6.3 Dual stream heat exchanger model . 10
2.7 Geometry representation . 11
2.7.1 Geometry clean-up . 12
2.8 Volume meshing . 15
2.8.1 Hexahedral mesher . 15
2.8.2 Polyhedral mesher . 17

3 Method 18
3.1 CFD software . 19
3.2 Geometry preparation . 19
3.3 CAD cleanup . 20
3.3.1 Method A . 20
3.3.2 Method B . 22
3.4 Volume meshing . 22
3.4.1 Method A . 24
3.4.2 Method B . 25
3.5 Case setup . 28
3.5.1 Model selection . 28
3.5.2 Boundary conditions . 28
3.5.3 Initial conditions . 28
3.5.4 Physics . 30

vii

3.5.5 Solver settings . 31

4 Results 32
4.1 Heat exchangers . 32
4.1.1 Radiator . 32
4.1.2 Charge air cooler . 34
4.1.3 Condenser . 35
4.2 MRF interfaces . 36
4.2.1 Flow behavior . 38

5 Discussion 39
5.1 Method comparison . 39
5.2 Validation . 40
5.2.1 Evaluation of the MRF model . 40

6 Conclusions 41

References 42

A Harpoon batch script I

B Matlab scripts III
B.1 Porous media coefficients . III
B.2 Coolant density . V

C STAR-CCM+ script for interface creation VI

viii

1 Introduction

1.1 Background

Development of the cooling circuit for all Volvo cars are done at the outer cooling system group, where early
concepts are evaluated using one-dimensional system simulations and simplified three-dimensional analysis.
These types of simulations need a lot of input data, since they basically just link different objects together
and simulate their combined response under different loads. The most important load case in the current
context is a hill climb with a trailer weight of 1800 kg (HCTR1800). The components of the cooling system are
dimensioned to manage a climb up a 6 % slope for a limited amount of time, and the experimental investigations
are set to resemble this situation.

Many input parameters are obtained from tests and suppliers, while others are obtained using CFD or
simpler methods. One such example is the mass flow through the front mounted heat exchangers, which is
obtained from a very simplified three-dimensional model of the engine bay combined with one-dimensional flow
analysis. This method is considered inaccurate, but the alternative approaches are deemed too expensive; both
in the computational and workload sense. Considering this, it is found that a need for a new method has arisen.

1.2 Purpose

The purpose of this thesis is to investigate the possibility to develop a method for obtaining a CFD model of
the complete underhood compartment of a car, with a high degree of automation. Since the method will be
used in early concept stages for evaluation of different designs, the focus is not mainly accuracy, but rather
ease of use and automation. In order for the method to be useful at the outer cooling systems department, the
amount of manual work has to be kept at an absolute minimum.

1.3 Limitations

The project is limited in time to 20 weeks for two MSc students. Computer resources are limited to those
available at VCC; both hardware and software. Furthermore, only steady-state solutions of one load case
for one model are considered. Only the heat transfer occurring in the cooling pack will be considered, while
radiation and air humidity will be discarded.

1

2 Theory

This chapter will briefly introduce the theoretic aspects of this thesis. A description of the equations governing
fluid flow will be followed by a short introduction to turbulence modeling and discretization methods. However,
the main focus will be on presenting the structure of the cooling system, and the theory on how to model it in
an underhood flow analysis. Furthermore, a discussion on geometric surface representation is followed by an
introduction to different mesh types and how they can be generated.

2.1 Governing equations

The governing equations describing a compressible, Newtonian fluid are three in number: the continuity
equation (2.1), the momentum equation (2.2) and the energy equation (2.5). The continuity equation stems
from a mass balance over a fluid element and can be written as [1]

∂ρ

∂t
+

∂

∂xi
(ρui) = 0. (2.1)

The momentum equation, which relates the forces acting on a fluid element to the motion of the fluid according
to Newton’s second law, reads [1]

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

+ ρfi, (2.2)

where ρfi are body forces. The viscous stresses, τij , are defined according to the constitutive law of a Newtonian
fluid:

τij =

(
2µsij −

2

3
µ
∂uk
∂xk

δij

)
, (2.3)

with the strain rate tensor

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.4)

The energy equation, formulated in terms of the specific total energy, e = einternal + 1
2uiui, reads [2, 3]

∂

∂t
(ρe) +

∂

∂xi
(ρeui) = − ∂

∂xi
(pui) +

∂

∂xi
(τijuj) +

∂qi
∂xi

+ ρuifi + Se, (2.5)

where Se is an energy source term and qi denotes the heat flux, often modeled using Fourier’s law. Additional
equations of state are used to couple some of the unknown thermodynamic quantities according to

p = p (ρ, T) , (2.6)

e = e (ρ, T) . (2.7)

In the case of an ideal gas, the state equations read [1]

p = ρRT, (2.8)

e = CvT, (2.9)

where ρ, R and Cv are the density of the gas, the ideal gas constant, and the specific heat capacity at constant
volume, respectively.

2.2 Turbulent flow

For most engineering applications, it is often too computationally demanding to resolve all turbulent scales.
One way to reduce the computational resources needed is averaging. Averaging the flow variables in time,
decomposing the instantaneous velocity and pressure into one steady and one fluctuating part according to

ui = 〈ui〉+ u′i, (2.10)

p = 〈p〉+ p′, (2.11)

2

and inserting the result into the governing equations yields the time averaged Navier-Stokes equations, also
known as Reynolds Averaged Navier-Stokes (RANS). Here, 〈, 〉 and ′ denote the time averaged and fluctuating
parts, respectively. In other modeling methods different averaging approaches are used. A volume averaging is
for example used in the Large Eddy Simulation (LES) approach, resulting in a method modeling the smallest
turbulent scales, but resolving eddies larger than the grid size [4]. A more accurate transient solution is achieved,
but at a greater cost.

There exists a range of different methods described in the literature, with varying accuracy and expense.
RANS is the important one in the current context and will be covered in more detail in this section.

2.2.1 RANS

The time averaged part of a quantity φ(xi, t) is calculated as

〈φ (xi, t)〉 =
1

T

t+T/2∫
t−T/2

φ(xi, τ)dτ, (2.12)

where the period T is chosen to fulfill statistical requirements. This is the approach usually applied when the
flow can be considered to be incompressible. However, to reduce the number of separate terms in need of
modeling when the flow is compressible a different averaging methodology, known as Favre averaging, is often
used. In this method the mean is defined as [1]

φ̃ (xi, t) =
1

〈ρ〉T

t+T/2∫
t−T/2

ρ (xi, τ)φ (xi, τ) dτ =
〈ρφ〉
〈ρ〉

. (2.13)

It can be seen from the definition above that the instantaneous velocity can be written similarly to (2.10) as

ui = ũi + u′′, (2.14)

where u′′ now includes both turbulent velocity and density fluctuations.
Using this density-weighted averaging procedure to decompose the velocity and the specific total energy e

before time averaging reduces the governing equations to the Favre Averaged Navier-Stokes (FANS) equations
[1, 3]

∂ 〈ρ〉
∂t

+
∂

∂xi
(〈ρ〉 ũi) = 0, (2.15)

∂

∂t
(〈ρ〉 ũi) +

∂

∂xj
(〈ρ〉 ũiũj) = − ∂p

∂xi
+

∂

∂xj

〈τij〉 − 〈ρu′′i u′′j 〉︸ ︷︷ ︸
i

 , (2.16)

∂

∂t

(
〈ρ〉 Ẽ

)
+

∂

∂xj
(〈ρ〉 ũj ẽ) = − ∂

∂xj
(〈p〉 ũj) (2.17)

+
∂

∂xj

(
(〈τji〉 −

〈
ρu′′j u

′′
i

〉︸ ︷︷ ︸
i

)ũi

)

− ∂

∂xj

〈qj〉+

〈
ρu′′j

(
einternal +

p

ρ

)′′〉
︸ ︷︷ ︸

ii

+
∂

∂xj

−1

2

〈
ρu′′j u

′′
i u
′′
i

〉
+ 〈τjiu′′i 〉︸ ︷︷ ︸

iii

 .

Here the energy source term has been left out for simplicity. The term τij is defined according to (2.3) while
the specific total energy e consist of contributions from both internal and kinetic energy, e = einternal + 1

2uiui.

3

It can be noted that additional, unknown terms representing correlations between the fluctuating quantities
have been introduced, which need to be modeled. In the above equation system the terms i− iii are unknowns
corresponding to the following physical phenomena:

i Turbulent (Reynolds) stresses.

ii Reynolds heat flux.

iii Turbulent transport and work.

Turbulence modeling provides a solution to the closure problem of the open system of equations presented
above by modeling unknowns in terms of mean flow quantities. The focus in the remainder of this section will
be on describing how the stresses are modeled. The reader is referred to the documentation written by Todd A.
Oliver [3] for more information about the remaining terms, that are deemed to be out of the scope of this thesis.

2.2.2 Realizable k-ε

The basic concept of the realizable k-ε model will be introduced using an incompressible approach. Exact
transport equations for the Reynolds stresses can be derived from the Navier-Stokes equation. However,
eddy-viscosity models are often used, introducing an eddy (turbulent) viscosity according to the Boussinesq
assumption 〈

v′iv
′
j

〉
= −νt

(
∂ 〈vi〉
∂xj

+
∂ 〈vj〉
∂xi

)
+

2

3
δijk, (2.18)

where k is the turbulent kinetic energy and νt is the turbulent viscosity. In two-equation approaches, νt is
modeled using two quantities, e.g. for the k-ε turbulence model:

νt = cµ
k2

ε
, (2.19)

where ε is the turbulent dissipation. In the standard k−ε model, cµ is a constant determined from experimental
results. However, the value of the constant can differ significantly with varying flow conditions, introducing
errors for models using a constant value of the coefficient in some flow cases.

The realizable k − ε model tries to remedy the poor prediction of the turbulent length scale and viscosity in
some type of flows by proposing new formulations of (2.19) and the modeled transport equation of the turbulent
dissipation [5]. The proposed expressions are developed to ensure realizability of the normal Reynolds stresses
and that Schwartz’s inequality is not violated.

As opposed to the standard model, which derives a modeled equation for the dissipation using the k-equation
as a starting point, the realizable model’s equation originates from the exact transport equation of 〈ω′iω′i〉,
where ω′i is the fluctuating vorticity. After appropriate modeling one readily obtains the standard k-equation
and a modeled equation for ε. This new equation for ε is more suitable for some of the flow conditions for
which the standard model gives erroneous results, and reads [5]

∂ε

∂t
+ 〈uj〉

∂ε

∂xj
=

∂

∂xj

(
νt
σε

∂ε

∂xj

)
+ c1Sε− c2

ε2

k +
√
νε
. (2.20)

Here S denotes the mean strain rate (
√

2SijSij) and ν is the kinematic viscosity while c1, c2 and σε are
coefficients determined through experiments, defined as [5]

c1 = max
(

0.43 , η
5+η

)
, η =

√
2SijSijk

ε ,

c2 = 1.9,
σε = 1.0.

The only difference between the realizable and standard k − ε model in the modeled dissipation equation can
be seen to be the source (production) term [5]. The expression for the constant cµ also differs between the
models. The standard model uses a constant value, while the realizable calculates it as [5]

cµ =

(
A0 +ASU

(∗) k

ε

)−1
, (2.21)

where A0, AS and U (∗) are coefficients dependent on Sij , Ωij and ωi. For an exact definition the reader is
referred to the work done by Shih et al. [5].

4

WWW P E EE

w eeeww

F
www e ee

FF F

x

Figure 2.1: One dimensional discretized domain with indicated fluxes.

2.3 Discretization methods

Applying the finite volume method to the modeled equations and using the Gaussian theorem to rewrite the
volume integrals to surface integrals as ∫

CV

∂φi
∂xi

dV =

∫
CS

φinidS, (2.22)

gives rise to the need of evaluating the quantity φi at the boundary of the control volume. For instance, the
convection term in (2.2) reduces to∫

CV

∂

∂xj
(ρujφi) dV =

∑
k

∫
Ak

ρnjujφidAk, (2.23)

where the index k runs over the faces of the control volume.
There exist a number of different differencing schemes to evaluate the values of the needed quantities at

the face centers of the computational grid. Which scheme is most suitable is very case and term dependent
and influence the accuracy and computational demand of the simulation. For convection-diffusion problems,
Upwind Differencing Schemes (UDS) are often applied. It is at least conditionally bounded and possesses the
transportiveness property, i.e. accounts for the direction of the flow [1]. This section includes a brief explanation
of the first and second order UDS.

2.3.1 First order UDS

The first order UDS determines the value at the face depending on the flux across the interface. The value of
φi at the face w, between node P and W , is evaluated as [1]

φw =

{
φW Fw ≥ 0,

φP Fw < 0.
(2.24)

Hence, considering the flow conditions depicted in figure 2.1 the following relation can be seen to hold for the
adjacent faces to the node P

φe = φP , φw = φW .

The main drawback of the first order UDS is that it is only first order accurate on the basis of the Taylor Series
Truncation Error (TSTE). It introduces a “false diffusion” when the flow and the grid lines are not aligned,
increasing the robustness of the simulation, but producing erroneous results [1].

2.3.2 Second order UDS

To derive an expression for the approximated face value of the flow variable φ at the face w for the flow
conditions in figure 2.1 using the second order UDS, it is assumed that the spatial derivative of the flow variable

5

φ is constant between nodes w and WW . After a minor derivation, it is found that

φw =
3

2
φW −

1

2
φWW .

A major drawback of the second order UDS is that it is only conditionally bounded. Coefficients of the
discretized equation can become negative under certain flow conditions, which can give rise to stability concerns
and unbounded solutions. The accuracy with respect to TSTE of the second order UDS is second order, a
significant improvement from its lower order equivalent [6].

2.4 Cooling system

The operating pressure and temperature of internal combustion engines are high, placing high demands not
only on the material of many of the components, but also on the cooling system. Moreover, even though
today’s car engines are considered to be energy efficient, the efficiency is just around 30− 40 %. Hence, the
cooling system has to be able to handle the waste heat from many areas of the engine to prevent overheating of
sensitive components.

Furthermore, as the comfort of cars continues to increase, there is a need to keep the passenger compartment
at a suitable temperature. These requirements has to be fulfilled even when the car is at standstill in hot
conditions, which further complicates the task of dimensioning heat exchangers.

A simplified block scheme of a cooling system circuit can be seen in figure 2.2.

Figure 2.2: Simplified cooling circuit, excluding the AC part.

2.4.1 Radiator

To avoid irreparable damage on the engine, the engine block and cylinder head are cooled continuously. The
system is water based, using a mixture of water and glycol to transport the waste heat. A common design of
the system is a combined circuit through the engine components, transmission, and the radiator, but it differs
between manufacturers and models. An additional radiator circuit is for example sometimes used, parallel to
the main circuit, to cool the transmission oil.

The principle is straightforward; the coolant travels through the circuit from the engine where it is heated,
to the radiator where it dissipates heat to the ambient air. The radiator core is designed in such a way that the
surface to volume relation is high, transporting the coolant in narrow passages over which the air can flow.

6

2.4.2 Charge air cooler

Most modern engines are fitted with a turbocharger that compress the intake air in order to increase the
amount of air in the cylinder. This is desirable, since it allows a higher power output while keeping the fuel
consumption at a minimum.

When the air is compressed, its temperature increases. Too high charge air temperatures is unwanted, since
it may lead to premature ignition of the fuel as well as increased engine temperatures. A remedy is to install a
Charge Air Cooler (CAC), which cools the air before it is fed into the cylinder. The most common approach is
to lead the compressed charge air through a heat exchanger in the front of the car, but a water based system in
a fashion similar to the radiator circuit can also be used.

If the CAC is well designed, meaning that the pressure drop is low compared to the temperature decrease,
the charge air density will increase. This allows for an even higher air mass flow into the engine, which will
increase the performance of the turbocharger.

2.4.3 Condenser

One major challenge when dimensioning the heat exchangers is, as mentioned above, to keep the temperature
in the interior of the car at a comfortable level. The condenser is responsible for this heat exchange between
the refrigerant in the AC system and the ambient air. Since the condenser operates at lower temperatures than
the radiator, it is always mounted in front of the radiator.

2.4.4 Axial fan

To increase the air mass flow through the heat exchangers a fan, in some cases more than one, is often mounted
behind the cooling package of the car. Even at medium vehicle speeds, the impact of the fan is of great
importance to the overall cooling performance, while it is of uttermost importance in order to handle the
cooling demand at lower speeds.

2.5 Fan modeling

Turbomachinery is present in the underhood compartment in a variety of different applications, the cooling
fan being the most important in the current context. It can influence the performance of the cooling system
considerably, especially at low vehicle speeds.

It is of uttermost importance to model the fan in an appropriate way to be able to predict its effect on
the flow, both through the heat exchangers and the rest of the underhood compartment. Several modeling
approaches are implemented in commercial softwares at present, with varying levels of accuracy and demand of
computational resources. The most important of those include the momentum source method, the Multiple
Reference Frames (MRF) approach and simulations using a sliding mesh interface. The momentum source
method does not use any geometrical representation of the fan, but modifies the source term in the Navier-Stokes
equations to account for the influence of the fan. This requires substantial amount of experimental data to be
able to predict flow quantities in an appropriate manner, limiting the design possibilities in the vicinity of the
fan. The sliding mesh methodology is a transient model, which severely increases the computational demand.
Hence, in the current context, the MRF model seems to be the method of choice since it offers a good balance
between accuracy and computational expense.

2.5.1 Single and multiple reference frames

By using a rotating frame of reference, the rotation of a geometry can be taken into account by a transformation
of the Navier-Stokes equations. This enables a steady state simulation of the moving part using a stationary
mesh. Figure 2.3 illustrates the change of coordinate system, where the dotted line can be either the domain
boundary or an interface, resulting in single and multiple reference frames respectively.

The Navier-Stokes equations used in the MRF approach is readily derived by considering the time derivative
of the position vector in the rotating frame of reference(

dri
dt

)
I

=

(
dri
dt

)
R

+ εijkΩjrk. (2.25)

7

(a) Stationary reference frame. (b) Moving reference frame.

Figure 2.3: Comparison of the same physical domain using two different reference frames.

The indices I and R denote the inertial and rotating frame of reference respectively while Ωj is the rotational
vector. The time derivative can be seen to consist of two parts, one representing the change of the position
vector itself and one representing the rotation of the frame. Using the same procedure with ri exchanged for
the inertial velocity uI,i = uR,i + εijkΩjrk yields an expression for the acceleration according to(

duI,i
dt

)
I

=

(
duR,i

dt

)
R

+ εijk
dΩj
dt

rk + 2εijkΩjuR,k + εijkΩjεklmΩlrm. (2.26)

The terms 2εijkΩjuR,k and εijkΩjεklmΩlrm represent the Coriolis effect and centrifugal acceleration, respectively.
Combining (2.26) with the Navier-Stokes equations, excluding the time dependent terms, gives the steady
system of equations

∂uR,i
∂xi

= 0, (2.27)

∂

∂xj
(uR,iuR,j) + 2εijkΩjuR,k + εijkΩjεklmΩlrm = − ∂

∂xi

(
p

ρ

)
+ ν

∂2uR,i
∂xj∂xj

. (2.28)

As an example the open source solver simpleSRFFoam, part of the OpenFOAM distribution, solves the equation
system presented above. In applications where more than one reference frame is needed, i.e. for which the
MRF method is more suitable, it is convenient to further develop the left hand side of (2.28) to solve for the
velocity in the inertial frame of reference. This can be achieved by exchanging one of the relative velocities in
the term ∂

∂xj
(uR,iuR,j) by uI,i − εijkΩjrk, resulting in

∂uI,i
∂xi

= 0, (2.29)

∂

∂xj
(uR,iuI,j) + εijkΩjuI,k = − ∂

∂xi

(
p

ρ

)
+ ν

∂2uI,i
∂xj∂xj

. (2.30)

(2.31)

The final expressions give a system of equations which can be solved in the entire domain given a region where
Ω 6= 0, outside which the system of equations reduce to the usual Navier-Stokes equations.

Hence, a solver has to implement several things, e.g. adding εijkΩjuI,k as a source term and transform the
given absolute velocity to a relative in the specified MRF zones, in order to be able to handle a MRF model of
rotating machinery. Special attention should be paid to the included zone boundaries, defining which should
rotate with the reference frame and which should act as stationary walls.

Limitations

Many studies concerning the limitations and consistency of the MRF model can be found in the literature. It is
found that the choice of rotating region and frozen fan position have a large impact on the accuracy of the
model, as described by Wang et al. [7] and Gullberg [8].

8

The authors state that in order for the MRF method to be valid, the inlet and outlet interfaces must be
placed in regions where the steady state velocity and pressure profiles are axisymmetric across the interface. In
most cases, e.g. in the cramped space in the engine bay, the choice of MRF region is highly limited by the
surrounding, nonsymmetrical geometry, complicating the task of defining the rotating region.

The general trend in [8] indicates that the influence of the frozen fan position becomes significant when
the number of blades of the fan reduces, resulting in outflow profiles dependent on the angle, and when the
blockage is asymmetrical.

The CFD engineer should be aware that applying the MRF method causes more or less erroneous results
and effort has to be taken to obtain valid results.

2.6 Heat exchanger modeling

Three different types of heat exchangers are often present in the underhood compartment, namely a radiator, a
charge air cooler and a condenser. As described in section 2.4, their design with narrow passages to increase
the surface to volume ratio complicates the task of resolving the flow around the real geometry. In a RANS
simulation, one can rarely afford to resolve geometrical detail of such small scales.

A common approach when modeling a heat exchanger is to replace the input geometry with an empty
cuboid and model this as a porous region. This takes into account the pressure drop and flow resistance across
the heat exchanger core, while an additional model has to be applied to account for the heat transfer. This
section will briefly introduce methods available in STAR-CCM+ to model heat exchangers.

2.6.1 Porous media model

Since it is not the details of the flow inside the heat exchanger that is of interest in many CFD simulations
focused on an underhood thermal analysis, modeling the heat exchangers as a porous medium is a suitable
method. The macroscopic effects of the heat exchanger geometry on the flow can be taken into account by
introducing a source term in the momentum equation, according to [9]

sp,i = −PVij uj + P Iij |u|uj , (2.32)

where PVij and P Iij is the viscous and inertial porous resistance tensors. The effects of the porous region is
hence taken into account similarly to Darcy’s law, but with an additional non-linear term. Care has to be taken
when defining the coordinate system of the porous region. In many applications the geometry of the porous
material favors flow in a specific direction, for example the heat exchangers considered in the current thesis
which have pores mainly oriented in the front-to-back-direction of the car. The usual approach is then to define
the resistance in the favored direction to satisfy experimental results and then increase the resistance in the
other directions by two to three orders of magnitude.

2.6.2 Single stream heat exchanger model

Instead of solving the heat transfer from one continuum to another, this model introduces an enthalpy source
to account for a prescribed heat flow in a specified region. Only one of the streams are modeled explicitly, while
the other is assumed to have a uniform temperature.

The main difference between using this option and just prescribing a total volumetric heat source is that the
single stream approach takes the local mass flow into account, whereas the total volumetric heat source does
not. This ensures that more heat is exchanged in areas where the mass flow is high, thus avoiding problems that
can arise in regions where the mass flow is close to zero when using the total heat source model. It also includes
a number of different parameters to better control the model, e.g. a minimum temperature difference parameter
able to limit the temperature of the fluid stream in order for it not to increase (or decrease) nonphysically close
to the uniform temperature of the heat exchanger.

In STAR-CCM+ the local heat transfer of a cell i is computed as [9]

Qi = Qtot
Viui (Tref − Ti)∑
i

Viui (Tref − Ti)
, (2.33)

where Qtot and Tref are the prescribed total heat source and temperature of the heat exchanger, while Vi, ui
and Ti are the volume, velocity and temperature of cell i, respectively.

9

Figure 2.4: Different regions and interfaces needed in the dual stream heat exchanger model.

2.6.3 Dual stream heat exchanger model

As opposed to the single stream heat exchanger approach, the dual stream model couples the heat transfer
between the hot and cold continua. In order for this model to achieve valid results, the cores of the different
continua should consist of identical meshes. One should also strive to create conformal interfaces between the
different regions of the same continuum, i.e. between the core regions and their respective in- and outlet region,
as depicted in figure 2.4.

The dual stream heat exchanger approach of STAR-CCM+ calculates the local heat exchange using a
specified or computed cell heat transfer coefficient [9]

Qi = ± (UAl)i (Thot,i − Tcold,i) , (2.34)

where the sign of the term depends on whether it is the warm or cold continuum that is considered. A number
of different methods are available to map experimental results to the simulation to obtain a correct heat transfer
coefficient, UAl. The “Q map” option is one example of available methods, important in the current context.
It calculates the local UAl number according to [9]

UAl =
Γ

∆Tnet
, (2.35)

where ∆Tnet is the net temperature difference defined as the summation of the temperature difference between
the hot and cold stream times the volume of each cell in the heat exchanger core, divided by the average volume
of a cell. Γ is calculated from the supplied Q map as

Γ =
Q
(
T
hot

in − T
cold

in

)
Thotuser − T colduser

. (2.36)

The temperatures in the denominator are the inlet temperatures of the both streams for which the Q map-
defining tests are performed, while the temperatures in the numerator are mean temperatures on the inlet
interface of the two regions in the simulation. The Q map is a table consisting of heat rejection values for
different coolant and ram air mass flows, obtained from supplier CAE or testing, from which the value of Q is
calculated by interpolation from the mass flows in the simulation.

10

2.7 Geometry representation

When information of a product is conveyed through an organization it is convenient to have a file format able
to handle more than one representation of the geometry. This serves the purpose of minimizing the translations
needed between different softwares used in the Product Lifecycle Management (PLM) system. A consequence
which is not only practical, but also means that problems which can occur in the translation process resulting
in dirty geometry can be avoided.

jt is a file extension used in the industry to communicate design information through an organization
for design and visualization purposes. It is commonly referred to as a lightweight visualization format and
has the capability to handle all major 3D Computer Aided Design (CAD) formats occurring in the different
softwares used in the PLM system. Computer Aided Engineering (CAE) softwares, such as ANSA, are then
able to convert the data contained in the jt-file to a desired representation of the 3D geometries. Two different
representations will be briefly described below.

Triangulation representation of a surface

A triangulation of a surface is an approximate, facet-based description of the input geometry. It ignores many
of the entities of a complete CAD model, e.g. curves, lines and points, and only stores a list of facet data. This
data consists of three vertices, which together forms a triangle.

stl is a format using this representation of the geometry. Apart from the vertices it also contains the
orientation of the facets which are grouped together to form different patches of the geometry. An ASCII
definition of a patch and its associated two facets in a stl file can be seen in listing 2.1.

s o l i d patch1
f a c e t normal 0 0 −1

outer loop
ver tex 0.003234 0.00317894 −0.01375
ver tex 0.00232785 0.00310005 −0.01375
ver tex 0.002302 0.00389537 −0.01375

endloop
end face t
f a c e t normal 0 0 −1

outer loop
ver tex 0.002302 −0.00389537 −0.01375
ver tex 0.00232785 −0.00310005 −0.01375
ver tex 0.003234 −0.00317894 −0.01375

endloop
end face t

endso l i d patch1

Listing 2.1: Definition of a facet in a stl file.

NURBS representation of a surface

Non-Uniform Rational B-splines (NURBS) is a tool in geometric representation for design and data exchange
purposes, recognized and used by many standards such as IGES and STEP. This is largely due to the fact that
NURBS provide fast and stable algorithms for representing both analytical and arbitrary shapes [10]. NURBS
display a few favorable characteristics. They:

• Are storage efficient (points, weights, start/end points and knot vector are stored)

• Are invariant under affine transformations, operations are done on the points only

• Have local support (a control point only affects the region where it is active)

• Introduce weights to allow for more exact representations without increasing the number of points.

• Define a surface as the tensor product between two curves.

11

A NURBS curve of degree p is commonly defined as [10]

C(u) =

n∑
i=0

Ri,pPi,

where (Pi)i=0...n are the control points (n to the number) and Ri,p is given by

Ri,p(u) =
Ni,p(u)wi
n∑
j=0

Nj,p(u)wj

.

wi are the weights and the term Ni,p(u) refers to the p-th degree B-spline basis function, non-zero in a specific
knot interval and defined as

Ni,0(x) =

{
1, if tk ≤ x < tk+1

0, else

Ni,p(x) = x−ti
ti+k−1

Bi,k−1(x) + ti+k−x
ti+k−ti+1

,

where ti are the knots defining where the basis functions are active.

2.7.1 Geometry clean-up

Non-manifold and intersecting surfaces, disconnected edges, gaps and excessive details are abundant in the
typical input geometry in an underhood CFD analysis. Such a geometry representation is unsuitable for mesh
generation and preparing it has been, and remains to be, one of the most time consuming tasks for the CFD
engineer. Geometry clean-up methods, such as surface wrapping algorithms, have therefore become important
to reduce this both costly and repetitive task.

The general wrapping procedure can be summarized in three steps, visualized in figure 2.5.

Surface wrap algorithm

The surface wrap algorithm will be briefly explained in this section; its general procedures should be similar to
the algorithms applied by commercial softwares used in the thesis work. However, the exact solution order,
optimization and search algorithms are trade secrets that differ between the softwares and companies.

In order for the shrink-wrap algorithm to be used, an initial surface needs to be generated. A convenient
way to do this is to generate an octree template mesh and identify which cells are intersected by the original
geometry, as shown in figure 2.6 to 2.7b on pages 13–14. The triangulated surface can then be created using
suitable surfaces of those cells. Depending on the prescribed settings of the surface wrap operation, e.g. contact
prevention, and minimum and target surface size, the cells are refined to achieve the desired resolution of the
input geometry, as seen close to the corners in figure 2.7b.

The next step of the algorithm is to snap it to the geometry. Finding the closest point on the geometry and
projecting it to the corresponding face is one easy way to do this, however more refined methods are often
applied in commercial softwares, taking feature lines and quality of the resulting mesh into account. The time
needed to find the closest point on the surface geometry is reduced due to the fact that the set of faces to be
considered is limited by which of the surfaces are contained by the octree cell element in question.

The resulting surface mesh, figure 2.7e to 2.7f on page 14, is then optimized, to e.g. smooth it, retain some
of the feature lines of the original geometry, and improve the quality of the mesh.

12

Pre-wrapping
Generate a bounding box, octree

mesh and initialize the gap
closure and contact prevention.

Obtain an initial, triangulated surface.

Wrapping
Shrink-wrap, constrain ver-

tices to input geometry.
Refine edges according to

prescribed min- and target sizes.

Post-wrapping improvement
Optimize surface representation

with respect to vol-
ume change, skewness

and input geometry preservation.

Figure 2.5: General procedure used in surface wrapping algorithms.

Figure 2.6: Initial octree mesh and incomplete, 2-dimensional CAD geometry.

13

(a) Intersecting cells of the octree mesh and corre-
sponding outer and inner initial surface.

(b) Intersecting cells of the octree mesh and corre-
sponding outer and inner initial surface, refined case.

(c) Corner vertices being snapped to the initial surface,
in this case the inner, to the input geometry.

(d) Corner vertices of the refined initial surface being
snapped to the initial surface, in this case the inner,
to the input geometry.

(e) Surface representation after projection, without
any refinement.

(f) Surface representation after projection, with refine-
ment.

Figure 2.7: The pre-wrapping and wrapping steps of the surface wrapper; without refinement to the left, with
refinement to the right.

14

2.8 Volume meshing

This section will include a brief introduction of the utilities available to generate a volume mesh with the
softwares used in the thesis work. The general methods for generation of hexahedral octree meshes and fully
polyhedral meshes will be discussed in more detail.

A volume mesh used for CFD simulations can consist of several different cell types, of which the relevant
ones are presented in figure 2.8. The tetra-, hexa-, and polyhedral types are named after the number of faces
they consist of, with four faces for a tetrahedral, six faces for a hexahedral, and an arbitrary number of faces
for a polyhedral cell. Prisms are a subclass of polyhedral cells, that are used to control the wall normal mesh
resolution near walls.

Figure 2.8: Different cell types. From left to right: Tetrahedral, hexahedral, polyhedral, and prism.

2.8.1 Hexahedral mesher

Similarly to the surface wrap algorithm the starting point of a hexahedral mesh generating algorithm is often a
template mesh of user defined alignment and size, see figure 2.9a and 2.9b on the next page. The template
mesh is then refined to take local surface- and volume sizes as well as growth rates into account, as seen in
figure 2.9c.

The process of cell removal is based on how many percent of each individual cell’s volume lies within the
geometry. In this step it is crucial to have a region enclosed by a bounding surface. Even when using the
surface wrapper there is no guarantee that a closed representation will be achieved. To remedy this problem
many existing commercial softwares have different options to ensure a closed surface representation. Given an
enclosed surface, the resulting mesh is a coarse representation of the surface as illustrated in figure 2.9d.

The next step of the mesh generating algorithm is to snap the mesh onto the stl-surface to get a better
representation of the underlying geometry. This step involves displacing vertices onto the stl-surface, e.g. by
using a projection based algorithm, and displacing the internal mesh to take account for the displaced boundary
and achieve a good quality mesh.

An additional step which is not illustrated in figure 2.9 is the ability to introduce prism layers. The general
procedure of this utility is to displace the surface mesh, figure 2.9e, into the domain in the direction of the
normal to the surface a distance corresponding to the prescribed thickness of the local prism layer. In complex
geometries validation criteria of the perturbed mesh often require the thickness to be reduced in problematic
regions. Mesh layers are then inserted and the two meshes are connected.

15

(a) Initial domain with 2-dimensional STL-surface.

(b) Initial base size octree mesh. (c) Refined base size mesh around STL edges and
volume controls.

(d) Mesh after removing cells within the STL-
geometry.

(e) Mesh after snapping it to the input geometry.

Figure 2.9: Visualization of an octree meshing tool. The steps may vary between different softwares, this
procedure is inspired by the OpenFOAM utility snappyHexMesh.

16

(a) Delaunay triangulation of a set of 11 points in two
dimensions, together with corresponding circumspheres.

(b) The Voron̈ı diagram corresponding to the Delaunay
triangulation in (a).

Figure 2.10: Delaunay triangulation and its dual Voron̈ı diagram.

2.8.2 Polyhedral mesher

A polyhedral mesh in STAR-CCM+ is generated from an underlying tetrahedral mesh. The tetrahedral mesh
is created using Delaunay triangulation, which is an algorithm that can be used to guide vertex creation. The
procedure will be explained briefly below. The reader is referred to the literature for more information, for
example the work by Frey and George [11]. Plenty of articles on the topic can be found, due to it being one of
the major concerns in computational geometry.

Delaunay triangulation and the Voron̈ı diagram

Given a set S ∈ Rd of points (pi)i=1...n, the Delaunay triangulation is a triangulation such that each simplex
has the empty circle (sphere in three dimensions) property as depicted in figure 2.10a. This means that the
circumsphere Ci of every simplex entity of the Delaunay triangulation does not contain any point p ∈ S.

Lemme général de Delaunay: Let T be a given arbitrary triangulation of the convex hull of a set of points
S. If for each and every pair of adjacent simplexes in T, the empty sphere criterion holds, then this criterion
holds globally and T is a Delaunay triangulation [11].

The Delaunay triangulation has several properties making it suitable for mesh generating and mesh refinement
algorithms.

The Voron̈ı diagram consists of a set of regions, Ri, defined as [11]

Ri = {p : d(p, pi) ≤ d(p, pj), ∀j 6= i} , (2.37)

where d(p, pi) is the distance between an arbitrary point p ∈ Rd and pi ∈ S. Hence Ri is the region containing
points p that is closer to pi than any other point pj in S. The Voron̈ı diagram is the dual of the Delaunay
triangulation and can be readily achieved by connecting the centers of the circumspheres of the Delaunay
simplexes as shown in figure 2.10b.

Polyhedral meshing

Given a tetrahedral mesh, which can be generated in several ways using Delaunay based methods, e.g. the
incremental method described in [11], the polyhedral mesh can be constructed using a dualization scheme. In
principle this could mean that the Voron̈ı diagram, computed from the triangulation, and its resulting closed,
convex and non-overlapping polygons can be used as cells in the polyhedral mesh.

17

3 Method

In this chapter, the methodology for the entire simulation process will be described. Two different methods
were compared, one where the volume meshing was done using the software STAR-CCM+, and one where
the meshing was done in Harpoon. For both methods, the simulations were performed in STAR-CCM+. The
methods will be called Method A and Method B for the remainder of this report, where Method A refers to the
method using STAR-CCM+ for meshing. A block scheme of the workflow of the two methods is presented in
figure 3.1. When not explicitly stated otherwise, the described actions applies to both methods.

Geometry preparation
Create geometry sub-
files in Teamcenter.

Translate .jt files using a
ANSA-CAD conversion utility.

CAD cleanup
Prepare geometry and surface

wrap the cooling system in ANSA.

CAD cleanup and
volume meshing

Surface wrap, surface remesh
and generate a polyhedral vol-
ume mesh in STAR-CCM+.

Simulation setup
Set boundary conditions, ini-

tial conditions and solver
parameters in STAR-CCM+.

Volume meshing
Generate a hexahedral domi-

nated volume mesh in Harpoon.

.jt files

.ansa files

Triangulated surface

representation

Method A Method B

.ccm file

Figure 3.1: Schematic overview of the workflow for the two methods.

18

3.1 CFD software

A CFD simulation can roughly be divided into three parts; geometry preparation, meshing and simulation,
each for which special software has been developed. This section will briefly describe the different softwares
used in this thesis.

Teamcenter

When developing a complex product such as a car, a need arises to centralize all project data in a way that
is easily accessible for the people involved in the process. To meet this need, Volvo uses the PLM (Product
Lifecycle Management) system Teamcenter 9.1 from Siemens AG. This allows all engineers to access the latest
design of a specific part, or even of a whole car project. The jt-file format described in section 2.7 is used to
communicate up-to-date data of a model from Teamcenter to other softwares used in the PLM.

ANSA

As mentioned in section 3.3 it might happen that the geometries obtained from the PLM system are not
suitable for meshing. In this project, ANSA 15.0 from BETA CAE Systems S.A. was used to clean up “dirty”
input geometries, which involved both manual work through explicit geometry operations, as well as automated
treatment through surface wrapping. The surface wrap algorithm in ANSA offers the user a great variety of
settings to customize it to his needs. For example: the variable length wrapper offers the capability to capture
most small scale details of the geometry, while the constant length wrapper offers a cheap and fast way of
achieving an approximate representation of the geometry.

Harpoon

Harpoon is advertised by its creator Sharc Ltd as “a fully automatic body-fitted hex-dominant mesher” that uses
the octree method to quickly generate high quality volume meshes. One of the software’s core strengths is its
capability to generate volume meshes in a fast and effortless manner using batch scripts. The mesh generating
utility is, however, in many areas more limited than its equivalent in other softwares.

STAR-CCM+

The maker of STAR-CCM+, CD-adapco, claims that their software is “the world’s most comprehensive
engineering simulation inside a single integrated package”. It integrates basic CAD functionality and advanced
meshing capabilities into the same package as the CFD solver, which is capable of handling various physics
such as multiphase flows, porous media, conjugate heat transfer and solid stress. A major advantage available
in many of the mesh generating utilities in STAR-CCM+ is the part-based meshing procedure. It enables the
use of pipelined operations, significantly decreasing the work needed when for example changes are done in the
input geometry or the parameters in a preceding operation are changed. The pipelined operations automatically
identifies the operations effected by the change and updates them to take the change into account.

3.2 Geometry preparation

The goal of this thesis was to develop a method for obtaining a complete CFD model of the underhood
compartment of a car. In order to do this, the geometry of the car had to be transformed into a suitable finite
volume representation of the fluid volume. The first step in this process was to obtain a geometry representation
in form of CAD data. Due to availability of test data from wind tunnel experiments, an XC60 D4 model year
2014 with 8 speed automatic gearbox was used for implementation and verification of the model.

For both methods, a CAD model of the complete car was extracted from Teamcenter. The extraction was
done in smaller parts in order to get more manageable files; parts were grouped together according to their
function, which meant that for example the cooling system formed one group while suspension and steering
formed another. Hence, a separate jt-file was obtained for each group.

The jt-files were then converted to ansa format using the CAD Translator Utility in ANSA. For method A,
the faceted representation was extracted since none of the file formats available in STAR-CCM+ was able to
handle NURBS geometries, while the NURBS geometry was used for method B since all surfaces were to be
meshed in ANSA.

19

3.3 CAD cleanup

The obtained ansa-files were then imported into ANSA for cleanup, with the cooling package as the main
focus area. The cleanup served two purposes; obtaining a valid surface representation for meshing, as well as
simplifying the later stages of the process. To achieve the latter, small surfaces and part were grouped together
to form larger entities, as can be seen in figure 3.2. Note that each color corresponds to one part.

(a) Original geometry (b) Preprocessed geometry

Figure 3.2: Complete cooling package, before and after cleanup.

Since the heat exchangers were to be modeled as porous media rather than resolving the complete flow field,
the radiator geometries had to be replaced by cuboids. This involved a substantial amount of manual work,
since they have to be of the correct dimensions, while still fitted to the surrounding geometries without any
leaks. The result can be seen in figure 3.3 on the facing page, where the modeled inlet and outlet tanks on the
radiator and CAC are visible. Instead of constructing small model tanks, the actual tanks could have been
meshed and used, which is physically more correct, but would have resulted in a slightly higher computational
cost.

The heat exchangers and model tanks were surface meshed using a basic STL algorithm1, while the exterior
of the actual tanks, tubes, pipes and attachments were surface wrapped using ANSA:s variable length wrapping
function.

In order to use the MRF model, MRF zones had to be created in accordance with the outlines stated in
section 2.5.1. However, due to the limited space around the fans, these zones could not be extended as far as
desirable.

Like the creation of cuboids for the heat exchangers, the process of defining MRF zones required a considerable
amount of manual time to be spent. This is due to the surfaces that has to be created, which can be seen as
slightly transparent in figure 3.4b on the next page.

While the manually created limiting surfaces of the MRF zones were STL-meshed, the two impellers and
the fan shroud were surface wrapped using the variable length wrapper. The resulting geometry including
shroud, impellers and MRF zones can be seen in figure 3.4 on the facing page, while a more detailed view of
the larger of the two impellers can be seen in figure 3.5. Note that the surface wrapping procedure removes
several small gaps and bumps, as well as merging the roughly 100 surfaces to one; two consequences that are
beneficial for the later stages of the process.

3.3.1 Method A

Since the whole car would have to be surface wrapped at a later stage for method A, the rest of the faceted
geometry of the car was merely converted into a STAR-CCM+ compatible format and exported. The exception

1The STL algorithm should not be confused with the stl-file format. The algorithm creates a surface triangulation without any
restraints on the surface mesh quality, while the file format is a standard on how to store surface triangulations in files.

20

(a) Original geometry (b) Preprocessed geometry with inlet and outlet tanks

Figure 3.3: Heat exchanger cores, before and after cleanup.

(a) Original geometry (b) Preprocessed geometry with MRF zones

Figure 3.4: Fan with shroud, before and after cleanup.

(a) Original geometry (b) Wrapped geometry

Figure 3.5: Impeller, before and after surface wrapping.

21

was the car body, where some large holes due to missing parts were patched manually in ANSA before the
triangulated surface was exported.

3.3.2 Method B

For method B, all parts except the cooling package were surface wrapped in ANSA. In order to cut down on the
time required for preprocessing, the constant length wrapper was used whenever deemed possible. The “smooth”
variant of the constant length method was used for all parts except the body, which meant that much of the
geometry description was lost. Figure 3.6 displays the engine with gearbox, electric system and air induction
system, where this loss of detail can be seen. Note that most small ribbons, gaps and other insignificant details
have been discarded, which is desirable. However, the wrapping has produced a slightly larger volume, meaning
that the fluid volume in the engine bay will be smaller than it should. This is not desirable since it might have
a significant impact on the flow field.

(a) Original geometry (b) Wrapped geometry

Figure 3.6: Engine with gearbox and air induction system. Battery included.

In order to simplify the meshing in Harpoon, the different surfaces were named in accordance with table 3.1.
The first part of the names indicates whether the surface is a wall or is to be treated like an interface later in
the process, while the trailing digit specifies the refinement level to be used on the surface. The middle part of
the name identifies the location and name of the surface. For the sake of simplicity, the same names were used
in method A.

All surfaces were finally exported to a single msh-file to be read into Harpoon. Since the msh file format is
binary, it requires significantly less storage space compared to its alternative; an ASCII stl-file.

Table 3.1: Excerpt of surface names used in the model.

Surface Description

wall-front-grill-6 Front grill
intercoolant-coolpack-cactank-in-6 Interface between CAC and its inlet tank
inter-mrf-large-out-7 Interface between backside of large MRF zone and surrounding air
rotating-wheel-front-right-5 Rotating front wheel

3.4 Volume meshing

The first step in creating the volume mesh was to decide the dimensions of the computational domain. For
this project, a domain of size 23.0× 10.0× 5.42 m, which can be seen in figure 3.7 on the next page, was used.
Three refinement boxes were used; one semi-fine around the car, a fine under it and an even finer spanning the
engine bay. Their effect on the final meshes can be seen in figures 3.8 to 3.9 on pages 25–26.

22

Figure 3.7: The computational domain.

23

Table 3.2: Regions in the model.

Region Continuum Description

air air Ambient air
rad-core air Cold side of radiator
cac-core air Cold side of CAC
cond air Condenser
large-fan air MRF zone for the large fan
small-fan air MRF zone for the small fan
rad-core-coolant coolant Hot side of radiator
radtank-in coolant Radiator inlet tank
radtank-out coolant Radiator outlet tank
cac-core-coolant air-coolant Hot side of CAC
cactank-in air-coolant CAC inlet tank
cactank-out air-coolant CAC outlet tank

In order to treat the different physics in the model, the mesh had to be split into several regions. Their
names and a short description are found in table 3.2. Note that cac-core and cac-core-coolant occupy the
same physical space, which also holds for rad-core and rad-core-coolant. This meant that cac-core-coolant and
rad-core-coolant were constructed by copying the meshes in cac-core and rad-core during the case setup.

3.4.1 Method A

The process of obtaining a volume mesh in STAR-CCM+ from an imperfect geometry representation is divided
into three major parts; surface wrapping, surface remeshing and volume meshing. Due to the so called Parts
based meshing methodology in STAR-CCM+, these operations can be pipelined, which simplifies the meshing
procedure, as mentioned in section 3.1.

Surface wrapping

One surface wrapping operation was created for each region in order to obtain a manifold surface representation.
The wrap was refined in areas deemed important; mainly the engine bay, and especially around the cooling
package. Parameters were chosen such that the cell count was minimized while still retaining important features.

Imprinting regions

In order to achieve conformal interfaces between regions, the interface surfaces in the adjoining regions had
to be imprinted. An imprint operation between two regions will merge coincident faces so that the resulting
surface is shared by the two regions, which is required if conformal interfaces are to be obtained. Imprint
operations also create contact information between the regions, which will automatically create interfaces when
the mesh is constructed, thus eliminating the need for manual creation of interfaces. Considering this, it would
be beneficial to imprint all regions with each other in order to get conformal interfaces between all regions.
Unfortunately, this was not possible in this simulation due to a possible bug in STAR-CCM+. Thus, only
imprints between the heat exchanger cores and their tanks were made.

Surface remeshing and volume meshing

Surface remeshing and volume meshing are grouped together into an “Automated mesh operation” in STAR-
CCM+, even though they are performed as separate operations when the meshing is executed. Furthermore,
this kind of operation can also accommodate an “Automatic surface repair” operation, that is running between
the surface remesher and the volume mesher. This feature was used in this project, since the surface remesher
is prone to creating intersecting faces of dubious quality when the geometry is complex, which often is the case
when analyzing underhood flow.

The polyhedral mesher, with the embedded prism layer mesher activated for all walls, was used to build the
volume mesh. It generates a polyhedral mesh using an algorithm briefly described in section 2.8.

24

Parts created by the surface wrapper operations, i.e. closed manifold volumes, were then assigned to
automated mesh operations. Since conformal interfaces between regions can be created only when the regions
are meshed in the same automated mesh operation, it would be desirable to mesh all regions in one operation.
However, due to the aforementioned imprint failure, each region was meshed separately except for the cac-
core, cactank-in and cactank-out as well as rad-core, radtank-in and radtank-out, which made two separate
operations respectively. Hence, conformal interfaces were only created between the heat exchanger cores and
their respective tanks and not between the overall domain and the heat exchanger and MRF regions in the air
continuum. In such situations, the solver will force the mesh to be conformal at the interfaces by splitting the
cells closest to the surface; an operation that might create bad or invalid cells.

The final mesh, consisting of roughly 31 million cells, can be seen side by side with its Harpoon counterpart
in figures 3.8 to 3.10 on pages 25–27.

3.4.2 Method B

In order to streamline the meshing process, the volume meshing in Harpoon was done in batch mode, meaning
that all setup was done by the script found in appendix A. The setup was simplified by the aforementioned
naming conventions, which allowed refinement levels to be set using wildcards.

Contrary to STAR-CCM+, where one explicitly defines regions to mesh, Harpoon meshes all volumes inside
the domain and deletes the ones it is not told to keep using the vnamekeep command. This has the advantage
of always resulting in conformal interfaces between regions. However, small gaps in the surface might lead
to meshing of volumes that are supposed not to be meshed. An example of this can be seen in figures 3.10a
to 3.10d on page 27, where a comparison of the meshes generated by STAR-CCM+ in the left column and the
Harpoon mesh in the right ditto shows that Harpoon are more prone to such leaks. This is especially clear for
the beam in front of the radiators, and for the region just behind the engine bay. Such behavior is undesired
since it not only increases the computational burden, but also might cause convergence issues.

Since Harpoon does not utilize the methods of expanding subsurfaces for creation of prism layers, but rather
tries to build prism on the existing mesh, it ends up in dire straits when trying to build prisms on complex
geometries. Thus, no prism layers were created, and the mesh had to be refined in all directions near walls in
order to achieve a reasonable wall-normal resolution. This reflects in the fact that the finalized Harpoon mesh
consists of about 73 million cells, more than twice as many as the polyhedral mesh created in STAR-CCM+.
Considering figures 3.10e to 3.10h on page 27, depicting the meshed exterior of the car, this is clearly seen in
that the Harpoon mesh is much denser, especially at the front of the car.

(a) Polyhedral mesh created in STAR-CCM+

(b) Hexahedral mesh created in Harpoon

Figure 3.8: Side view at y = 0 m.

25

(a) Polyhedral mesh created in STAR-CCM+

(b) Hexahedral mesh created in Harpoon

Figure 3.9: Top view at z = 0.6 m.

26

(a) Method A: Engine bay at y = 0 m (b) Method B: Engine bay at y = 0 m

(c) Method A: Cooling package at z = 0.6 m (d) Method B: Cooling package at z = 0.6 m

(e) Method A: Front of car (f) Method B: Front of car

(g) Method A: Exterior surface mesh (h) Method B: Exterior surface mesh

Figure 3.10: Details of the meshes created with the two different methods.

27

3.5 Case setup

As mentioned in section 3.4, the polyhedral mesh generating utility in STAR-CCM+ is capable of creating
conformal mesh interfaces between different regions. When this utility is used successfully, no additional effort
is needed in this stage of the setup. Importing the mesh in method B requires additional work however, to
topologically connect the two regions and create the interfaces needed. This can be automated using a script, of
which an example is presented in appendix C, or done manually in the GUI. There are relatively few differences
between the methods and hence the following section will include a description of both methods simultaneously
when possible. In case of a major difference, it will be highlighted in the beginning of each subsection.

3.5.1 Model selection

The major difference between the two methods when it comes to the case setup is that method A uses a coupled
solver while method B applies a segregated approach. The coupled solver was chosen in the beginning of the
project, due to several apparent advantages. One being the fact that it scales linearly with cell count, and
another its capability to handle large source terms, e.g. rotating machinery, in a robust manner [9]. After
extensive convergence issues, the segregated approach was recommended by the CD-adapco support to improve
both convergence and accuracy of the simulation. Due to the late stage of the project, the segregated solver
was not investigated thoroughly, but proved to help with some of the convergence issues of the simulation in
method B.

The models selected for the different continua in method A and B can be seen in table 3.3 and 3.4 on
the next page. The ”Cell quality remediation“ model identifies elements of poor quality in the mesh and
modifies the way the gradients are computed in the vicinity of those cells, improving the robustness of the
simulation while trying to minimize the effect on the accuracy [9]. It has proved an important feature to remedy
convergence issues originating in bad quality cells.

3.5.2 Boundary conditions

Assigning boundary conditions to the different patches was done in the GUI. The conditions used in the
validation case, presented in table 3.5 on the facing page, were set to consist with experimental data from wind
tunnel tests of the HCTR1800 hill climb case. Note that the sides of the MRF-zones were explicitly set to be
non-rotating in the original frame of reference. The walls of the porous regions have the condition of a slip
wall, since they do not correspond to any real walls and no pressure loss should be introduced beyond that
introduced by the porosity model. To ensure a well behaved flow in the internal regions of the dual stream heat
exchangers, the outflow boundary conditions were set to be the negative of the corresponding inlet mass flow.

In a real car, the surface of the engine will transfer heat into the surrounding air through convection and
radiation. These phenomena were not included here, since they were assumed to have a negligible impact on
the flow through the heat exchangers.

3.5.3 Initial conditions

For method A, using the coupled solver approach, a grid-sequencing initialization is available. It generates an
approximate inviscid solution for the flow variables of the problem. However, it was found that the solution it
introduced was not always optimal and quantities were at times nonphysical in a high number of cells. Due
to this unpredictable behavior, the common approach of defining starting values of the turbulent and flow
variables was chosen, arriving at an equal approach for both the methods, summarized in table 3.6 on page 30.

28

Table 3.3: Selected models for method A.

Air CAC-air Coolant

Cell quality remediation Cell quality remediation Cell quality remediation
Coupled energy Coupled energy Polynomial density
Coupled flow Coupled flow Coupled energy
Gas Gas Coupled flow
Gradients Gradients Gradients
Ideal gas Ideal gas k-epsilon turbulence
k-epsilon turbulence k-epsilon turbulence Liquid
Realizable k-epsilon two-layer Realizable k-epsilon two-layer Realizable k-epsilon two-layer
Reynolds-Averaged Navier Stokes Reynolds-Averaged Navier Stokes Reynolds-Averaged Navier Stokes
Steady Steady Steady
Three dimensional Three dimensional Three dimensional
Turbulent Turbulent Turbulent
Two-layer all y+ wall treatment Two-layer all y+ wall treatment Two-layer all y+ wall treatment

Table 3.4: Selected models for method B.

Air CAC-air Coolant

Cell quality remediation Cell quality remediation Cell quality remediation
Gas Gas Polynomial density
Gradients Gradients Gradients
Ideal gas Ideal gas k-epsilon turbulence
k-epsilon turbulence k-epsilon turbulence Liquid
Realizable k-epsilon two-layer Realizable k-epsilon two-layer Realizable k-epsilon two-layer
Reynolds-Averaged Navier Stokes Reynolds-Averaged Navier Stokes Segregated flow
Segregated flow Segregated flow Segregated temperature
Segregated temperature Segregated temperature Reynolds-Averaged Navier Stokes
Steady Steady Steady
Three dimensional Three dimensional Three dimensional
Turbulent Turbulent Turbulent
Two-layer all y+ wall treatment Two-layer all y+ wall treatment Two-layer all y+ wall treatment

Table 3.5: Boundary conditions used in the simulations of the validation case.

Boundary Boundary condition

Cac in ṁ = 0.099 kg s−1, T = 132.133 ◦C
Cac internal walls Slip wall
Cac out ṁcac,out = −ṁcac,in

Inlet u1 = 70 km h−1, T = 27 ◦C
Outlet Pressure outlet
Domain sides and roof Symmetry
Domain floor Prescribed velocity, u1 = 70 km h−1

Front Wheels Prescribed rotational velocity, 8.4 rps
MRF small and large sides No-slip in the inertial frame of reference
Radiator in ṁ = 2.098 kg s−1, T = 105.256 ◦C
Radiator internal walls Slip wall
Radiator out ṁrad,out = −ṁrad,in

29

Table 3.6: Initial conditions for the different continua. Reference pressure given inside parentheses.

Air continuum Coolant continuum CAC-air continuum

Quantity Value Quantity Value Quantity Value

ui [km h−1] [65 0 0] ui [m s−1] [0 -0.15 0] ui [m s−1] [0 -6.5 0]
T [◦C] 27 T [◦C] 105.256 T [◦C] 132.133
p [Pa] 0 (0) p [Pa] 0 (0) p [Pa] 0 (268500)
ε [m2 s−3] 1000 ε [m2 s−3] 1000 ε [m2 s−3] 1000
k [J kg−1] 0.001 k [J kg−1] 0.001 k [J kg−1] 0.001

Table 3.7: Values of the porous coefficients used in the simulations.

Region P i [kg m−4] P v [kg m−3 s−1]

Radiator external [166.33, 1e4 , 1e4] [1e4, 870.01 , 1e4]
Radiator internal [100, 0, 100] [100, 0, 100]
CAC external [174.69, 2e4, 2e4] [608.52, 5e4, 5e4]
CAC internal [1e4, 93.83, 1e4] [1e4, 310.98, 1e4]
Condenser [200.59, 2e4, 2e4] [923.59, 1e5, 1e5]

3.5.4 Physics

Heat exchanger modeling

The porous coefficients in (2.32) are determined using experimental results. Explicitly neglecting convection
and viscous fluxes reduces the momentum equation to

∂p

∂x
= −(P Iu2 + PV u). (3.1)

Applying the ideal gas law to take the changes in the mass flow due to pressure and temperature variations
into account and approximating a linear variation of the quantities across the heat exchanger core gives an
equation that can be used to obtain the porous coefficients. Given experimental results of pressure drop and
temperature variation at different mass flows, the coefficients can be determined by using a least squares fitting
approach on

∆p

∆x
= −

(
P I
(
ṁ

Aρ

)2

+ PV
(
ṁ

Aρ

))
, (3.2)

where A is the cross-sectional area of the heat exchanger and ρ is the mean of the density, calculated using the
ideal gas law and linear approximation of the temperature and pressure

ρ =
pmeanM

RTmean
, (3.3)

where M is the molar mass of the gas.
The Matlab file used to determine P I and PV can be found in appendix B.1. Coefficients can also be found

for the internal regions, using a constant density approach for the coolant in the radiator and approximating
the gas in the CAC region as an ideal gas, despite high pressures. The values used in the simulations can be
found in table 3.7.

When the porous coefficients were set, the dual stream heat exchanger model was prescribed to the CAC
and radiator region. Since the physics inside the condenser is very complex with phase changes, and thereby
difficult to model, the single stream approach was used to take the energy transfer from the condenser into
account.

The dual stream model requires the user to supply data needed to calculate the local UAl number, as
described in section 2.6.3. In this thesis work the “Actual flow, Q map” option was chosen, since it required
quantities supplied by experimental results without any transformation. For more information about the model
and which quantities need to be supplied the reader is referred to the aforementioned section.

The single stream model, described in section 2.6.2, needs a prescribed power output and a few other
parameters, summarized in table 3.8. For more information about the values the reader is referred to the theory
chapter.

30

Table 3.8: User specified parameters in the single stream heat exchanger model.

Q [W] ∆Tmin [◦C] Thex [◦C]

7500 5 135

Table 3.9: Specified parameters for the MRF zones.

MRF zone Origin [mm] Rotational vector rpm

Small fan [1094.4 197.14 572.94] [1 0 0] 3386.822
Large fan [1097.75 -138.13 674.42] [1 0 0] 2761.312

Modeling of the cooling fans

The MRF approach, introduced in section 2.5.1, was used to model the cooling fans. As described, it offers a
good trade off between computational demand and accuracy, while at the same time not requiring any mapping
to experimental results. The parameters needed to define an MRF zone are summarized in table 3.9, with
values taken from the validation case.

Material properties

Specific heat and density of the coolant were set to be temperature dependent. A second order polynomial was
used to describe the dependence, with coefficients determined by fitting the polynomial to experimental data.
The Matlab code for deciding the coefficients for the density can be found in appendix B.1. The coefficients for
the heat capacity polynomial were computed in the same manner.

3.5.5 Solver settings

Supplying sane settings to the solver is crucial in order to achieve converged results in a reasonable time. These
settings are very case dependent and are therefore determined ad hoc.

For the present thesis, first order UDS was used for the first 1500 iterations before switching to its second
order counterpart. However, switching was not possible for method B, probably due to mesh issues, why first
order UDS was used throughout that simulation. Furthermore, the heat exchangers were not activated until
iteration 500, in order to improve convergence.

To allow the simulation to develop smoothly, the local Courant number was ramped linearly for the first
300 iterations in the coupled approach; the under-relaxation factors in the segregated solver was treated in the
same way.

It was also found that the parameters for the multigrid solver had a significant impact on the convergence
behavior. The W-cycle approach was used with two pre- and two post-sweeps with Gauss-Seidel as smoothing
method. The meaning of these settings will not be discussed here; the interested reader is referred to an
introductory book on the subject (e.g. [1]).

31

4 Results

In this chapter, results from the validation case will be presented. Focus will be on a comparison between
the two methods, with emphasis on the components in the cooling system. When numbers are presented,
temperature and pressure are surface averaged, unless stated otherwise.

Note that the second order upwind differencing scheme was used for method A, while convergence issues
restricted method B to first order upwinding. This fact alone will explain some of the difference seen between
the methods.

4.1 Heat exchangers

The results of the heat exchangers are presented in this section, starting with the two components modeled
by the dual stream heat exchanger model, the radiator and the CAC, followed by the single stream modeled
condenser.

4.1.1 Radiator

Engineering quantities for the ram air flow through the radiator can be seen in table 4.1. It is noted that the
mass flow is slightly lower for method B, which together with a higher inlet temperature explains the lower
power output, that in turn explains the lower temperature difference. However, these differences are almost
negligible, which also holds for the difference in pressure drop.

Table 4.1: Results for the ram air flow through the radiator.

Method ṁ [kg s−1] Tin [◦C] Tout [◦C] ∆T [◦C] ∆p [Pa] Q [kW]

A 0.939 43.65 96.15 52.54 120.6 49.60
B 0.926 43.95 96.45 52.48 119.9 49.10

Table 4.2 contains the corresponding numbers for the coolant flow in the radiator. All numbers are essentially
the same between the methods, much due to that both mass flow and temperature are prescribed at the inlet
of the radiator. The tiny discrepancy in outlet temperature, and thus temperature difference, is explained by
the small gap in transferred heat.

Table 4.2: Results for the coolant flow in the radiator.

Method ṁ [kg s−1] Tin [◦C] Tout [◦C] ∆T [◦C] ∆p [Pa] Q [kW]

A 2.098 105.25 98.75 -6.46 ∼ 0 49.60
B 2.098 105.25 97.85 -6.40 ∼ 0 49.10

The temperature profile for the ram air at the outlet interface of the radiator can be seen in figure 4.1 on
the facing page, while the corresponding pressure profile is found in figure 4.2. The temperature profile shows
the same trend for both methods, with a higher temperature at the lower part caused by the CAC. The higher
temperature at the higher left corner is caused by that the fan shroud is blocking the flow in this region, which
also causes the corresponding high pressure zone in figure 4.2. Furthermore, the frozen rotor position is visible
in the pressure profile, which is a clear indication on that the requirements on the MRF zone, as presented in
section 2.5.1, are not fully satisfied.

Turning to figure 4.5 on page 35, it can be seen that the temperature of the air leaving the condenser, and
thus entering the radiator, is higher than the inlet coolant temperature in parts the region heated by the charge
air cooler. This implies that the coolant will be heated, instead of cooled, in these regions.

32

(a) Method A (b) Method B

Figure 4.1: Ram air temperature profiles at the outlet interface of the radiator.

(a) Method A (b) Method B

Figure 4.2: Ram air pressure profile at the outlet interface of the radiator.

33

4.1.2 Charge air cooler

Ram air quantities for the charge air cooler is found in table 4.3. It is noted that the inlet temperature is
the same between the methods, which is due to the fact that the CAC is mounted in front of the other heat
exchangers and thus exposed directly to the non-heated ram air. Since the mass flow is slightly higher for
method A, it is expected that the heat output is larger than for method B, which also is the case.

Table 4.3: Results for the ram air flow in the charge air cooler.

Method ṁ [kg s−1] Tin [◦C] Tout [◦C] ∆T [◦C] ∆p [Pa] Q [kW]

A 0.166 27.27 75.53 48.30 115.65 8.102
B 0.160 27.27 75.86 48.60 109.54 7.992

Table 4.4 displays quantities for the charge air flow in the CAC. Just as for the radiator, the mass flow
and inlet temperature are essentially the same for the two methods since these quantities are prescribed very
close to the heat exchanger core. However, the higher heat transfer rate in method A results in a lower outlet
temperature and thus a larger temperature difference, as expected. The small difference in pressure drop is
very likely due to a small difference in charge air density caused by the gap in heat output.

Table 4.4: Results for the charge air flow in the charge air cooler.

Method ṁ [kg s−1] Tin [◦C] Tout [◦C] ∆T [◦C] ∆p [Pa] Q [kW]

A 0.099 132.13 50.45 -81.68 1.258e+03 8.102
B 0.099 132.13 51.70 -81.43 1.269e+03 7.992

Ram air pressure and temperature profiles at the outlet interface of the charge air cooler can be found in
figures 4.3 and 4.4, respectively. Again, the temperature profiles are similar between the two methods, which
also holds for the pressure profiles. However, the low pressure zone is slightly larger for method B, likely caused
by the lower pressures seen from the small fan at the outlet interface of the radiator.

(a) Method A (b) Method B

Figure 4.3: Ram air temperature profiles at the outlet interface of the CAC.

(a) Method A (b) Method B

Figure 4.4: Ram air pressure profiles at the outlet interface of the CAC.

34

4.1.3 Condenser

Since the condenser was modeled with a single stream approach, there are only results for the ram air flow, as
presented in table 4.5. The differences between the methods are minor, with a slightly higher inlet temperature
for method B caused by its higher outlet temperature from the charge air cooler, which in turn leads to the
higher outlet temperature.

Table 4.5: Results for the ram air flow through the condenser.

Method ṁ [kg s−1] Tin [◦C] Tout [◦C] ∆T [◦C] ∆p [Pa]

A 0.789 39.65 48.55 8.89 54.14
B 0.787 40.35 49.05 8.75 54.74

Turning to figures 4.5 and 4.6, depicting temperature and pressure profiles at the outlet interface of the
condenser, the same trends as for the charge air cooler can be seen. Especially note the aforementioned
high temperature zones that give rise to inlet temperatures to the radiator that is higher than the coolant
temperature inside it.

(a) Method A (b) Method B

Figure 4.5: Ram air temperature profile at the outlet interface of the condenser.

(a) Method A (b) Method B

Figure 4.6: Ram air pressure at the outlet interface of the condenser.

35

4.2 MRF interfaces

Figures 4.7 and 4.8 shows the velocity magnitude at the interfaces of the large and small MRF zones, respectively.
Note the white patch in figure 4.7d, which occurs when Harpoon tries to mesh the volume between two close
surfaces. If the surfaces are separated by less than two cell sizes, the volume between the surfaces are not
meshed. This is not the case when meshing in STAR-CCM+, if the surface wrapper is set to preserve such
regions through the contact prevention setting.

Furthermore, the frozen rotor position is clearly visible on the inlet surfaces, indicating that the zone would
benefit from being extended here. However, this is not possible due to the surrounding geometry. It can also
be seen that the wakes downstream of the blades seems to have mixed properly, which indicates that the MRF
zone is sufficiently large here.

(a) Method A, inlet interface (b) Method B, inlet interface

(c) Method A, outlet interface (d) Method B, outlet interface

Figure 4.7: Velocity profile at the interfaces of the large MRF zone.

36

(a) Method A, inlet interface (b) Method B, inlet interface

(c) Method A, outlet interface (d) Method B, outlet interface

Figure 4.8: Velocity profile at the interfaces of the small MRF zone.

37

4.2.1 Flow behavior

The velocity magnitude on a plane through the car center can be seen in figure 4.9. Comparing the velocity
field in the wake of the car in figures 4.9a and 4.9b, a significant difference due to the dissimilar differencing
schemes can be seen. Considering the flow in the underhood compartment, the two methods shows the same
trends.

Turning to figure 4.9d, it can be seen that the aforementioned regions where the mesh “leaked” has zero
velocity. This indicates that they have no substantial contact with the surrounding fluid, which might cause
instability or divergence when used with the present uniform initial conditions.

(a) Method A (b) Method B

(c) Method A (d) Method B

Figure 4.9: Velocity profile at y = 0 m. Note that the maximum velocity has been limited for visualization
purposes.

38

5 Discussion

The goal with this chapter is to discuss and compare the two methods and their capabilities and attributes
that are important in the current context. Those include:

• Amount of time required to prepare the case.

• Ability to automate the process and manual labor required.

• Validity of the results.

• Numerical stability.

• Computational demand.

• Sensitivity to geometry and parameter changes and ability to handle such in an effortless way.

Since a sensitivity analysis and a comparison between different cases, using the same method, are out of scope
of this thesis, the discussion of the last item will be centered around the actions needed to account for changes
to an existing case. This is an important feature if the methods are to be used in the concept phase to evaluate
different designs of the cooling system and its components.

5.1 Method comparison

Studying table 4.1 to 4.4 on pages 32–34, the heat exchanger results from the two methods can be seen to be
similar. The general trend is that method A has a slightly higher ram air flow which will result in a higher heat
exchange. This is probably due to a combination of a number of different facts, the most important being that
a less accurate differencing scheme was applied and that the constant length surface wrap used to wrap the
engine in ANSA gave a slightly larger geometry than the input description. The actual differences in the mass
flow and temperature differences only gives rise to about 1.0 % and 1.4 % higher power output for method A of
the radiator and CAC, respectively. The difference in temperature and mass flow through the condenser follow
the same trend, with 0.2 % and 1.6 % higher mass flow and temperature difference, respectively.

Studying the flow behavior in the underhood region by comparing pressure and temperature profiles on the
outlet interfaces of the heat exchangers depicted in figure 4.1 to 4.6 on pages 33–35, the indication that the two
methods result in similar results seems to be correct. The profiles have almost identical appearances, with
slightly varying gradients in some of the figures, e.g. when comparing the pressure profile in figure 4.4a on
page 34 with the corresponding one in figure 4.4b.

As can be seen in figure 3.4b on page 21, the MRF zones are extended above the shroud surface, meaning
that the flow should be able to pass through part of the sides of the zones. Applying method A, an interface
is readily obtained here by defining the interface between the coincident boundaries in the two regions. For
method B on the other hand, the interface creation introduced negative volume cells, preventing interfaces
to be created between the regions. This lack of interfaces forces the flow through only the inlet interface in
method B, which explains the steep gradients shown close to the edges in figures 4.7a to 4.7b on page 36 and
4.8a to 4.8b on page 37. Some additional effort put into geometry preparation might remedy this problem.

It is hence concluded that based on the results, the two methods show similar capabilities and accuracy. A
comparison of the performance of the precursory items will be covered in the remainder this section.

Efficiency

The interesting difference between the two methods in the current context is first and foremost the manual
effort needed to prepare the model. Method A has proven to have an advantage because of the fact that all the
steps in the preprocessing procedure except for the geometry preparation are carried out in a single software.
Even though the surface wrapper in ANSA has great possibilities to customize it to one’s own specific needs and
reduce the computational time needed to surface wrap the geometry, the time needed to save and communicate
the different surface representations between softwares generally increases the time and effort required.

The volume meshing of the two methods both have the advantage of being easily automated. For method
B, the automation requires a systematic naming convention and a template batch script that can be modified
to the current case, while it for method A is possible both to script the setup in JAVA or use an old simulation

39

file as a template. Generating the volume mesh (excluding the surface wrap operation) takes approximately
2.5 h (including a surface remesh operation) and 1.5 h for method A and B, respectively. More information
about the meshes can be found in section 3.4. For method A, an additional surface remeshing step has to be
performed, which takes around 40 minutes.

The computational demand of the two meshes is approximately the same. The polyhedral mesh with prism
layers generated in method A consist of fewer cells, but the amount of faces per cell increases the amount of
interpolation calculations per cell needed to be carried out. The time required for 3000 iterations using 160
CPUs was approximately 7-8 hours (about 9 seconds per iteration).

Numerical stability

Even though the results are similar between the two simulations, the stability of the solutions are not. Method B
requires limiting values of the temperature to avoid unphysical behavior in some regions of the flow. Furthermore,
a dissipative first order UDS was applied to increase the numerical stability of the method. Some of the
differences in the flow behavior should be caused by the different differencing schemes, as described in section
4.2.1. These stability issues are likely mesh related, since the mesh created in Harpoon had a larger number of
low quality cells.

5.2 Validation

Comparing simulation results with wind tunnel data indicates that the power output of the radiator is
underestimated by approximately 13 % with the current methods. One possible reason for this poor prediction
could be that the temperature of the ram air flow on the inlet interface of the radiator region is higher than
the coolant flow in some areas, due to high ram air temperatures out of the CAC. This is seen by studying
figures 4.5a to 4.5b on page 35 which depict the outlet temperature profile of the condenser for method A and
B, noting that the temperature does not change significantly in the few cells separating the condenser and
radiator cores. This fact might cause some of Qtot, calculated from the supplied Q map depending on the mass
flow and temperatures of exterior and interior flow through the heat exchanger regions as described in section
2.6.3, to actually be spent to heat the coolant rather than cool it. One way to further investigate this possible
cause is to apply the method on a geometry which has the CAC mounted beneath the condenser and radiator
rather than in front of them, thus avoiding high air temperatures into the radiator.

Comparing the power dissipation in the CAC, the results seem to show a better prediction when comparing
to experimental results. The power dissipation is underestimated by 4.5 % and 6.0 % by method A and B,
respectively.

It shall be noted that there is a rather large uncertainty in the temperature measurements in the wind
tunnel tests, why the experimental results for the rejected heat can not be assumed to be exact. This means
that no firm conclusions can be drawn for the error in the simulations. Furthermore, independent simulations
performed at the thermodynamic CFD group at Volvo show similar errors in the heat rejection compared to
tests, indicating that there might be issues with the test results for this very case.

5.2.1 Evaluation of the MRF model

The MRF zones are designed according to the theory in 2.5.1. However, despite trying to place the interfaces
in regions where the steady state assumption is not violated the velocity profiles can be seen not to be
axi-symmetrical. It is hard to improve the design of the zones however, because of the limitations caused by
surrounding geometry. The only improvement would be to try to remedy the previously discussed “false baffles”
created at the sides of the zones for method B. The errors introduced by the MRF model should be the same
between the models and hence not influence the comparison between the models, but rather the comparison
between the models and experimental results.

As can be seen in figures 4.7 to 4.8 on pages 36–37, the frozen rotor position is clearly visible in the velocity
field on the inlet interface of the MRF zones. This will likely affect the mass flow through the radiator. The
larger velocity in some regions will increase the porous resistance more than it will be decreased in the low
velocity regions, due to the nonlinearity of the source term in (2.32), which means that the porous resistance
will be erroneous, even if the velocity differences cancels.

40

6 Conclusions

The main conclusions from this thesis can be summarized as:

• CAD cleanup is still time consuming, despite heavy use of surface wrapping.

• The polyhedral mesh created in STAR-CCM+ showed better convergence behavior than its hexahedral
counterpart from Harpoon.

• Method A shows significant time savings in terms of manual work compared to method B, due to
integration of the meshing into the CFD solver application.

• Harpoon is very insensitive to surface mesh quality. However, the algorithm used has severe problems
creating high quality prism layers on complex geometries.

• Heat rejection seems to be underestimated compared to wind tunnel tests. More investigation is needed
to determine if the errors lie in the simulation or in the measurements.

Finally, method A was deemed to show the most potential to be incorporated into the workflow at Volvo.
The reason is not only better convergence, but also reduced manual time needed to setup an underhood
CFD case, compared to method B. The total time to perform a full setup and analysis using method A was
estimated to be roughly 30 % shorter than current methods. However, more work is needed before it is ready
for production use; for example, conformal interfaces between all regions would likely increase the convergence
rate even further.

41

References

[1] H. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume
Method. Pearson Education Limited, 2007.

[2] J. Reddy. An Introduction to Continuum Mechanics. Cambridge University Press, 2008.
[3] T. A. Oliver. Favre-averaged Navier–Stokes and turbulence model equation documentation. Tech. rep.

Predictive Engineering and Computational Sciences, University of Texas at Austin, 2011.
[4] L. Davidson. Fluid mechanics, turbulent flow and turbulence modeling. 2014. url: http://www.tfd.

chalmers . se / ~lada / postscript _ files / solids - and - fluids _ turbulent - flow _ turbulence -

modelling.pdf.
[5] T.-H. Shih et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows. Computers &

Fluids 24.3 (1995), 227–238.
[6] L. Davidson. Numerical Methods for Turbulent Flow. Chapter 5. url: http://www.tfd.chalmers.se/

~lada/comp_fluid_dynamics/postscript_files/chapter_5.pdf.
[7] A. Wang, Z. Xiao, and H. Ghazialam. Evaluation of the Multiple Reference Frame (MRF) Model in a

Truck Fan Simulation. Tech. rep. SAE Technical Paper, 2005.
[8] P. Gullberg. “Optimisation of the Flow Process in Engine Bays: 3D Modelling of Cooling Airflow”.

PhD thesis. Chalmers Tekniska Högskola, 2011.
[9] CD-adapco. User guide STAR-CCM+. Version 9.02. 2014.

[10] L. A. Piegl and W. Tiller. The NURBS Book (Monographs in Visual Communication). Springer, 1996.
[11] P. Frey and P.-L. George. Mesh generation. John Wiley & Sons, 2010.

42

http://www.tfd.chalmers.se/~lada/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling.pdf
http://www.tfd.chalmers.se/~lada/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling.pdf
http://www.tfd.chalmers.se/~lada/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling.pdf
http://www.tfd.chalmers.se/~lada/comp_fluid_dynamics/postscript_files/chapter_5.pdf
http://www.tfd.chalmers.se/~lada/comp_fluid_dynamics/postscript_files/chapter_5.pdf

A Harpoon batch script

1 import t g r i d 313B VED4 .msh
2 ∗∗VERSION v5 . 2 a7∗∗
3 ∗∗MACHINE AMD64 linux 2 . 6 64 ∗∗
4 ∗∗PREFERENCES USED∗∗
5 ∗∗Max Skew 0.999500∗∗
6 ∗∗Target Skew 0.980000∗∗
7 ∗∗Max Face Warpage 40.000000∗∗
8 ∗∗ nore s e t ∗∗
9 ∗∗ i n t e r s e c t ∗∗

10 ∗∗ Separat ion Angle 40.0∗∗
11 ∗∗ Se t t ing No . o f Ce l l s Between wa l l s to 3∗∗
12 ∗∗ Se t t ing BDF Exports to Short Format∗∗
13 ∗∗ Se t t ing BDF Pyramid Treatment to use degenerate PENTA elements ∗∗
14 ∗∗ Se t t ing Max No . Separate Volumes to 10∗∗
15 ∗∗ Se t t ing No . Ce l l s f o r Auto Volume Delete to 5∗∗
16 ∗∗ Se t t ing Part Desc r ip t i on to use STL name∗∗
17 ∗∗ Se t t ing Fluent Thin Wall Treatment to S ing l e Sided ∗∗
18 base l ev 64.000000
19 f a r f i e l d g l oba l
20 f a r f i e l d xmin −5000
21 f a r f i e l d ymin −5000
22 f a r f i e l d zmin 80
23 f a r f i e l d xmax 18000
24 f a r f i e l d ymax 5000
25 f a r f i e l d zmax 5500
26 wleve l zmin 1
27 ∗∗REFINEMENT∗∗
28 ∗∗ Ref ine around the car ∗∗
29 r e f i n e
30 0 1
31 0 −1500 0
32 8000 1500 2250
33 refexpand 3
34 ∗∗ Ref ine under the car ∗∗
35 r e f i n e
36 0 2
37 700 −1000 0
38 5500 1000 600
39 refexpand 4
40 ∗∗ Ref ine in the engine bay ∗∗
41 r e f i n e
42 0 4
43 750 −950 260
44 2250 950 1150
45 refexpand 4
46 ∗∗MESH METHODS∗∗
47 type hex
48 expand slow
49 mesh both
50 remove
51 volume −4
52 ∗∗SINGLE LEVEL
53 l e v e l 2
54 gminlev 1
55 gmaxlev 5
56 p l e v e l ∗−4 4 4 0
57 p l e v e l ∗−5 5 5 0
58 p l e v e l ∗−6 6 6 0
59 p l e v e l ∗−7 7 7 0
60 pexp ∗ blades ∗ 4
61 pexp ∗wheel∗ 4
62 pexp ∗ coo lpack ∗ 4
63 ∗∗ISOLATE VOLUMES∗∗
64 v f ind s t a r t
65 wall−∗
66 v f ind end
67 ∗∗ PLUG HOLES ∗∗
68 vptplug 3320 0 1050
69 vptplug 3320 0 1900
70 ∗∗SORT OUT VOLUMES TO KEEP∗∗
71 ∗∗BIG FAN∗∗
72 vnamekeep begin big−fan
73 in t e r−mrf−l a rge−in−6
74 in t e r−mrf−l a rge−out−7
75 wall−mrf−l a rge−s ide s−6
76 blades−l a rge−7
77 vnamekeep end
78 ∗∗SMALL FAN∗∗
79 vnamekeep begin small−fan
80 in t e r−mrf−small−in−6

I

81 in t e r−mrf−small−out−6
82 wall−mrf−small−s ide s−6
83 blades−small−7
84 vnamekeep end
85 ∗∗CAC∗∗
86 vnamekeep begin cac
87 in t e r−coolpack−cac−in−6
88 in t e r−coolpack−cac−out−6
89 wall−coolpack−cac−s ide s−6
90 in t e r c oo l an t−coolpack−cactank−in−6
91 in t e r c oo l an t−coolpack−cactank−out−6
92 vnamekeep end
93 ∗∗CAC−IN∗∗
94 vnamekeep begin cac−in
95 wall−coolpack−cactankin−s ide s−6
96 wall−coolpack−cactankin−in−6
97 in t e r c oo l an t−coolpack−cactank−in−6
98 vnamekeep end
99 ∗∗CAC−OUT∗∗

100 vnamekeep begin cac−out
101 wall−coolpack−cactankout−s ide s−6
102 wall−coolpack−cactankout−out−6
103 in t e r coo l an t−coolpack−cactank−out−6
104 vnamekeep end
105 ∗∗COND∗∗
106 vnamekeep begin cond
107 in t e r−coolpack−cond−in−6
108 in t e r−coolpack−cond−out−6
109 wall−coolpack−cond−s ide s−6
110 wall−coolpack−condtank−in−6
111 wall−coolpack−condtank−out−6
112 vnamekeep end
113 ∗∗RAD∗∗
114 vnamekeep begin rad
115 in t e r−coolpack−rad−in−6
116 in t e r−coolpack−rad−out−6
117 wall−coolpack−rad−s ide s−6
118 in t e r coo l an t−coolpack−radtank−in−6
119 in t e r coo l an t−coolpack−radtank−out−6
120 vnamekeep end
121 ∗∗RAD−IN∗∗
122 vnamekeep begin rad−in
123 wall−coolpack−radtankin−s ide s−6
124 wall−coolpack−radtankin−in−6
125 in t e r coo l an t−coolpack−radtank−in−6
126 vnamekeep end
127 ∗∗RAD−OUT∗∗
128 vnamekeep begin rad−out
129 wall−coolpack−radtankout−s ide s−6
130 wall−coolpack−radtankout−out−6
131 in t e r coo l an t−coolpack−radtank−out−6
132 vnamekeep end
133 ∗∗SMOOTHING MESH∗∗
134 smooth 2 0 .98
135 smooth 2 a l l
136 smooth 2 0 .98
137 v i s check
138 ∗∗ save harpoon 313B VED4 . hrp
139 export ccm+ vol 313B VED4 . ccm

II

B Matlab scripts

B.1 Porous media coefficients

1 % Sc r i p t f o r f i t t i n g o f porous r e s i s t a n c e parameters f o r r ad i a t o r s and
2 % charge a i r c o o l e r s .
3 %
4 % According to the STAR−CCM+ User Guide , the p r e s su r e drop i s g iven by
5 %
6 % dP/dx = \alpha v n ˆ2 + \beta v n
7 %
8 % This s c r i p t f i t s \alpha and \beta to user supp l i ed measurement data from
9 % data sheet . The f i t t i n g i s done in a l e a s t square sense .

10 %
11 % Input :
12 % deltaP Vector o f p r e s su r e l o s s e s [Pa]
13 % deltaT Vector o f temperature d i f f e r e n c e s . [K]
14 % m Vector o f mass f low ra t e s [kg/ s]
15 % P in Test cond i t i on pre s su r e [Pa]
16 % T in Test cond i t i on temperature [K]
17 % M Molar mass o f the gas [kg/mol]
18 % width Radiator core width [mm]
19 % he ight Radiator core he ight [mm]
20 % depth Radiator core depth [mm]
21 % i n t e r n a l Boolean . t rue i f i n t e r n a l media , f a l s e i f
22 % ex t e rna l .
23 %
24 % Output :
25 % I n t e r t i a l r e s i s t a n c e
26 % Viscous r e s i s t a n c e
27
28 clear a l l
29 close a l l
30
31 %−−
32 %
33 % User de f ined data
34 %
35 %−−
36
37 % Radiator @ 1kg/ s i n t e r n a l mass f low
38 deltaP = [] ;
39 deltaT = [] ;
40
41 m = [] ;
42 P in = ;
43 T in = ;
44 M = ;
45 i n t e r n a l = f a l s e ;
46
47 width = ;
48 he ight = ;
49 depth = ;
50
51 % % CAC @ 0.22 kg/ s ex t e rna l . I n t e r na l !
52 % deltaP = [] ∗ 1 e3 ;
53 % deltaT = [] ;
54 %
55 % m = [] ;
56 % P in = ;
57 % T in = ;
58 % M = ;
59 % i n t e r n a l = true ;
60 %
61 % width = ;
62 % he ight = ;
63 % depth = ;
64
65 % % CAC @ 0.2 kg/ s i n t e r n a l . External !
66 % deltaP = [] ;
67 % deltaT = [] ;
68 %
69 % m = [] ;
70 % P in = ;
71 % T in = ;
72 % M = ;
73 % i n t e r n a l = f a l s e ;
74 %
75 % width = ;
76 % he ight = ;

III

77 % depth = ;
78
79 %−−
80 %
81 % Computations
82 %
83 %−−
84
85 % Def ine the un i v e r s a l gas constant [J /(K∗mol)]
86 R = 8 . 3 14 ;
87
88 % Compute upstream dens i ty
89 rho in = P in∗M/(R∗T in) ;
90
91 % Compute su r f a c e area and downstream temperatures and s e t th i ckne s s
92 % accord ing to i f the media i s i n t e r n a l or ex t e rna l . Convert l eng th s to [m]
93 i f i n t e r n a l
94 A = he ight ∗depth∗1e−6;
95 th i ckne s s = width∗1e−3;
96 T out = T in − deltaT ;
97 else
98 A = he ight ∗width∗1e−6;
99 th i ckne s s = depth∗1e−3;

100 T out = T in + deltaT ;
101 end
102
103 % Compute downstream d e n s i t i e s (vector , s i n c e i t depends on pre s su r e and
104 % temperature)
105 P out = P in − deltaP ;
106 rho out = (M/R)∗P out . / T out ;
107
108 % Compute the mean temperature and pre s su r e
109 T mean = 0 .5∗ (T in + T out) ;
110 P mean = 0 .5∗ (P in + P out) ;
111
112 % Compute dens i ty at mean cond i t i on s
113 rho = P mean∗M./ (R∗T mean) ;
114
115 % Compute v e l o c i t y . Convert measurements to [m] .
116 v = 1/A∗m’ . / rho ’ ;
117
118 % Pack the c o e f f i c i e n t matrix
119 c o e f f s = [v . ˆ2 , v] ;
120
121 % Solve the l e a s t squares problem
122 s o l = c o e f f s \(deltaP/ th i ckne s s) ’ ;
123
124
125 % Print r e s u l t s
126 fpr int f (’ Inertial porous resistance :\ t\t %.2 f\n ’ , s o l (1)) ;
127 fpr int f (’ Viscous porous resistance :\ t\t %.2 f\n ’ , s o l (2)) ;
128
129
130 %−−
131 %
132 % Plot
133 %
134 %−−
135
136 % Mass f l ux f o r p l o t
137 m plot = l inspace (min(m) , max(m)) ;
138
139 % Convert mass f l u x e s to v e l o c i t i e s
140 v p l o t = 1/A.∗m./ rho ;
141
142 % Compute p r e s su r e l o s s
143 dP = (s o l (1)∗ v p l o t . ˆ2 + s o l (2)∗ v p l o t)∗ th i ckne s s ;
144
145 % Plot
146 f igure ()
147 plot (m, dP)
148 hold on
149 plot (m, deltaP , ’r* ’)
150 grid on
151 legend (’ Fitted curve ’ , ’ Measurement data ’ , ’ Location ’ , ’ NorthWest ’)
152 t i t l e (’ Pressure loss ’)
153 xlabel (’$\ dot {m}$ [kg /s] ’ , ’ Interpreter ’ , ’ LaTeX ’)
154 ylabel (’$\ Delta P$ [Pa] ’ , ’ Interpreter ’ , ’ LaTeX ’)
155 axis ([0 1 .1∗max(m) 0 1 .1∗max(dP)])

IV

B.2 Coolant density

1 % Sc r i p t f o r f i t t i n g dens i ty data to a polynomial o f the temperature
2 %
3 % Input :
4 % T: Vector o f temperatures .
5 % rho : Vector o f d e n s i t i e s o f the mixture at g iven
6 % temperatures .
7 % Output :
8 %
9 % Co e f f i c i e n t s f o r 2nd degree polynomial d e s c r i b i ng the dens i ty

10 % of 50% H2O 50% g l y c o l mixture as a func t i on o f the temperature .
11
12 clear a l l
13 close a l l
14
15
16 %−−
17 %
18 % User de f ined data
19 %
20 %−−
21
22 % 50% volume mixture
23 T = [] ;
24 rho = [] ∗ 1 0 0 0 ;
25
26
27 %−−
28 %
29 % Fit data
30 %
31 %−−
32 format shortE
33
34 p = polyf it (T, rho , 2) ;
35
36 % Print the output
37 fpr int f (’x ^2 - coefficient : \t%e\n ’ , p (1)) ;
38 fpr int f (’x ^1 - coefficient : \t%e\n ’ , p (2)) ;
39 fpr int f (’x ^0 - coefficient : \t%e\n ’ , p (3)) ;
40
41 % Plot
42 Tplot = l inspace (min(T) , max(T)) ;
43 Cplot = polyval (p , Tplot) ;
44
45 f igure ()
46 plot (Tplot , Cplot)
47 hold on
48 plot (T, rho , ’r* ’)
49 grid on
50 legend (’ Fitted curve ’ , ’ Measurement data ’ , ’ Location ’ , ’ SouthEast ’)
51 t i t l e (’ Density ’)
52 xlabel (’T [$ ^\ circ C$] ’ , ’ Interpreter ’ , ’ LaTeX ’)
53 ylabel (’$\ rho$ [$\ frac {J }{ kg K}$] ’ , ’ Interpreter ’ , ’ LaTeX ’)
54 axis ([−40 120 1000 1120])

V

C STAR-CCM+ script for interface creation

1 //−−
2 //
3 // I n t e r f a c e c r e a t i on macro
4 // Starccm+ Ver 8 . 06 . 005 or l a t e r
5 //
6 // Boundaries intended f o r i n t e r f a c e c r e a t i on
7 // should be named e i t h e r ”ˆ in t e r −.∗” or
8 // ”ˆ in t e r coo l an t −.∗” in order f o r the macro to
9 // i d e n t i f y the two corresponding i n t e r f a c e s . I f

10 // the boundar ies f o r the i n t e r f a c e c r e a t i on does not
11 // have the same names in the two sepe ra t e reg ions ,
12 // rename them .
13 //
14 // In order f o r the heat exchanger i n t e r f a c e to be
15 // created proper ly the r e g i on s should be named
16 // ”.∗− core$ ” and ”.− core−coo lant$ ” .
17 //
18 // −−−
19
20 package macro ;
21
22 import java . u t i l . ∗ ;
23 import s t a r . common . ∗ ;
24 import s t a r . meshing . ∗ ;
25 import s t a r . base . neo . ∗ ;
26 import s t a r . energy . ∗ ;
27
28 // Class to s t o r e a pa i r o f r e g i on s toge the r with a boundary name .
29 // Ba s i c a l l y j u s t a very s imple conta ine r c l a s s .
30 class RegionsWithBoundary{
31
32 private St r ing boundaryName ;
33 private Region reg ion1 ;
34 private Region reg ion2 ;
35
36 public RegionsWithBoundary (St r ing boundaryName , Region region1 , Region reg ion2){
37 this . boundaryName = boundaryName ;
38 this . r eg ion1 = reg ion1 ;
39 this . r eg ion2 = reg ion2 ;
40 }
41
42 public St r ing getBoundaryName () {
43 return boundaryName ;
44 }
45
46 public Region getR1 () {
47 return r eg ion1 ;
48 }
49
50 public Region getR2 () {
51 return r eg ion2 ;
52 }
53 }
54
55 public c lass c r e a t e I n t e r f a c e s extends StarMacro {
56
57 public void execute () {
58 execute0 () ;
59 }
60
61 private void execute0 () {
62
63 // Get the a c t i v e s imu la t i on
64 Simulat ion s imu la t i on 0 = getAct iveS imulat ion () ;
65
66 // Create c o l l e c t i o n o f r e g i on s .
67 Vector<Region> r e g i onCo l l =
68 (Vector) s imu la t i on 0 . getRegionManager () . getRegions () ;
69
70 // I n i t i a l i z e a l i s t o f l i s t s to s t o r e a l l boundary names f o r each
71 // reg ion .
72 ArrayList<ArrayList<Str ing>> interBoundNamesArray =
73 new ArrayList<ArrayList<Str ing >>();
74
75 // Loop through the r e g i on s to f i nd boundar ies with s p e c i f i c names .
76 for (Region reg ion : r e g i onCo l l) {
77
78 // Create a l i s t to s t o r e the the boundary names f o r the
79 // cur rent r eg i on .
80 ArrayList<Str ing> boundNamesInterList =

VI

81 new ArrayList<Str ing >() ;
82
83 // Create c o l l e c t i o n o f boundar ies f o r the cur rent r eg i on .
84 Co l l e c t i on<Boundary> boundColl =
85 reg i on . getBoundaryManager () . getBoundar ies () ;
86
87 // Loop over the boundar ies and s t o r e the names o f the ones
88 // that matches our c r i t e r i a .
89 for (Boundary boundary : boundColl) {
90
91 // Get the boundary name .
92 St r ing boundName = boundary . getPresentationName () ;
93
94 // Rename the boundary .
95 boundName = boundName . r e p l a c eA l l (" ^.*\\. " , "") ;
96 boundary . setPresentationName (boundName) ;
97
98 // Check i f the boundary name beg ins with ” i n t e r ” us ing
99 // r egu l a r exp r e s s i on s .

100 boolean nameCheckInter = boundName . matches ("^ inter .* ") ;
101
102 // I f so , s t o r e the name .
103 i f (nameCheckInter) {
104 boundNamesInterList . add (boundName) ;
105 }
106
107 }
108
109 // Add the l i s t o f matching boundary names f o r t h i s r eg i on
110 // to the l i s t o f l i s t s conta in ing the matched names
111 // f o r a l l r e g i on s .
112 interBoundNamesArray . add (boundNamesInterList) ;
113
114 // Clear the in te rmed ia te l i s t to avoid f a l s e p o s i t i v e s in the
115 // next r eg i on .
116 boundColl . c l e a r () ;
117
118 // Create heat exchanger i n t e r f a c e s .
119 // Get the p r e s en ta t i on name o f the cur rent r eg i on .
120 St r ing regionName = reg ion . getPresentationName () ;
121
122 i f (regionName . matches (" ^.* core$ ")) {
123
124 // Get the corresponding coo lant r eg i on .
125 Region reg ionCoolant = s imu la t i on 0 . getRegionManager () .
126 getRegion (regionName + " - coolant ") ;
127
128 // Create and rename the h . ex . i n t e r f a c e .
129 D i r e c tReg i on In t e r f a c e hex In t e r f a c e = s imu la t i on 0 . get Inter faceManager () .
130 c r e a t eD i r e c tReg i on In t e r f a c e (reg ion , reg ionCoolant , " Heat - Exchanger ") ;
131 hex In t e r f a c e . setPresentationName (regionName + " - regionInterface ") ;
132
133 // Set the dual stream model to be ”Actual f low
134 // dual stream” and use the ”q map” method .
135 hex In t e r f a c e . getCondi t ions () . get (HeatExchangerMethod . class) .
136 s e t S e l e c t e d (HeatExchangerMethod .ACTUAL FLOWDUAL STREAM) ;
137 hex In t e r f a c e . getCondi t ions () . get (HxActualFlowDataOption . class) .
138 s e t S e l e c t e d (HxActualFlowDataOption .ACTUAL FLOWQMAP) ;
139
140 }
141
142 }
143
144
145 // Create a l i s t o f RegionsWithBoundary ob j e c t s to s t o r e the i n t e r f a c e
146 // cand idates in a s i n g l e conta ine r .
147 ArrayList<RegionsWithBoundary> boundaryMap =
148 new ArrayList<RegionsWithBoundary >() ;
149
150 // Loop over a l l r eg ions , exept the l a s t .
151 for (int i = 0 ; i < (r e g i onCo l l . s i z e ()−1) ; i++) {
152
153 // Loop over a l l r e g i on s ” in f r on t o f ” the cur rent (base)
154 // reg i on in the l i s t .
155 for (int j = i+1 ; j < r e g i onCo l l . s i z e () ; j++) {
156
157 // Loop over a l l boundary names in the base r eg i on .
158 for (S t r ing in te rmed ia te : interBoundNamesArray . get (i)) {
159
160 // Check i f the boundary name e x i s t s
161 // in another r eg i on .
162 i f (interBoundNamesArray . get (j) . conta in s (in te rmed ia te)) {
163
164 // Create a RegionsWithboundary to s t o r e

VII

165 // the two r eg i on s and the boundary name .
166 RegionsWithBoundary rwb = new RegionsWithBoundary (
167 intermediate , r e g i onCo l l . get (i) , r e g i onCo l l . get (j)) ;
168
169 // I n s e r t the RegionsWithBoundary in to
170 // the boundaryMap
171 boundaryMap . add (rwb) ;
172
173 }
174
175 }
176
177 }
178
179 }
180
181 // Loop over a l l i n t e r f a c e cand idates in order to c r ea t e i n t e r f a c e s .
182 for (RegionsWithBoundary rwb : boundaryMap) {
183
184 // Find the bundar ies needed to c r ea t e the i n t e r f a c e s .
185 // Use the get methods in RegoinsWithBoundary .
186 Boundary boundary 0 = rwb . getR1 () . getBoundaryManager () .
187 getBoundary (rwb . getBoundaryName ()) ;
188 Boundary boundary 1 = rwb . getR2 () . getBoundaryManager () .
189 getBoundary (rwb . getBoundaryName ()) ;
190
191 // Create the i n t e r f a c e . Give i t the same name as the boundary .
192 DirectBoundaryInter face d i r e c tBoundary In t e r f a c e 0 = s imu la t i on 0 .
193 get Inter faceManager () . c r e a t eD i r e c t I n t e r f a c e (boundary 0 , boundary 1 ,
194 rwb . getBoundaryName ()) ;
195
196 // Set the i n t e r f a c e type .
197 d i r e c tBoundary In t e r f a c e 0 . getTopology () .
198 s e t S e l e c t e d (In t e r f a ceCon f i gu ra t i onOpt i on . IN PLACE) ;
199
200 // Set p r e s en ta t i on name .
201 d i r e c tBoundary In t e r f a c e 0 . setPresentationName (rwb . getBoundaryName () + " - interface ") ;
202
203 }
204
205 }
206 }

VIII

	Abstract
	Preface
	Acknowledgements
	Nomenclature
	Contents
	Introduction
	Background
	Purpose
	Limitations

	Theory
	Governing equations
	Turbulent flow
	RANS
	Realizable k-

	Discretization methods
	First order UDS
	Second order UDS

	Cooling system
	Radiator
	Charge air cooler
	Condenser
	Axial fan

	Fan modeling
	Single and multiple reference frames

	Heat exchanger modeling
	Porous media model
	Single stream heat exchanger model
	Dual stream heat exchanger model

	Geometry representation
	Geometry clean-up

	Volume meshing
	Hexahedral mesher
	Polyhedral mesher

	Method
	CFD software
	Geometry preparation
	CAD cleanup
	Method A
	Method B

	Volume meshing
	Method A
	Method B

	Case setup
	Model selection
	Boundary conditions
	Initial conditions
	Physics
	Solver settings

	Results
	Heat exchangers
	Radiator
	Charge air cooler
	Condenser

	MRF interfaces
	Flow behavior

	Discussion
	Method comparison
	Validation
	Evaluation of the MRF model

	Conclusions
	References
	Harpoon batch script
	Matlab scripts
	Porous media coefficients
	Coolant density

	STAR-CCM+ script for interface creation

