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Abstract

Nuclear magnetic resonance spectroscopy (NMR) is a measurement method,
used in metabolomics, in which different chemicals in a sample give rise to peaks
in a frequency spectrum. In metabolomics, one wants to measure a large num-
ber of body fluid samples in order to link metabolite concentrations to medical
conditions. However, there is a trade-off between NMR measurement time, and
peak separation in the resulting frequency spectra. It is therefore desirable to find
mathematical methods to automatically quantify metabolites in NMR spectra with
overlapping peaks. One possible way to accomplish this is to model frequency spec-
tra parametrically using a sum of peak shape functions, and the purpose of this
thesis is to study peak modeling in two-dimensional NMR spectra.

We model experimental data from blood serum using a simple theoretical
model, and quantify four metabolites in the sample. Four ways of constraining
optimization parameters are explored, ranging from very restricted to very free.
The model shows good agreement with the data, and the estimated metabolite con-
centrations are fairly close to the expected values. While the most free constraining
methods gave considerably smaller residuals, they were prone to overfitting. Be-
cause of this, the estimated concentrations showed higher accuracy when using
more constrained parameters.
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1 INTRODUCTION

1 Introduction

Nuclear magnetic resonance spectroscopy (NMR) is an experimental method in
which radio frequency pulses are applied to a sample in a magnetic field, and the
response recorded. It can be used to determine molecular structure, to identify and
quantify substances in a mixture, as well as a large number of other uses. In the
field of metabolomics, one attempts to correlate variations in the concentrations
of metabolites in the body with medical conditions. The quantitative properties
of NMR are useful for this.

A common approach when doing this is to divide the NMR frequency spec-
trum into a number of bins, and use multivariate analysis methods such as Prin-
cipal Component Analysis (PCA) to extract information from the resulting inten-
sities [15]. However, what one would really like to do is to determine the absolute
concentrations of metabolites in a large number of samples, and use this as the
inputs of the multivariate analysis. In this work, we take a step in that direction
with a qualitative study of one quantification method.

1.1 Background

In an NMR experiment, various substances in a sample result in a set of peaks
at predictable locations in a frequency spectrum. The traditional one-dimensional
NMR experiment suffers from severe peak overlap when applied to a complex
sample such as blood plasma. This can be mitigated with two-dimensional ex-
periments. As experimental equipment improves, large-scale application of 2D
experiments becomes more and more viable. For this reason, automatic quantifi-
cation with 2D NMR spectra is currently an active research topic in the context
of metabolomics.

A large number of 2D NMR experiments are available and useful in different
contexts. For quantification, there is a tradeoff between experiment time and
peak separation in the spectrum. TOCSY (TOtal Correlated SpectroscopY) falls
somewhere in the middle of the scale [5].

Direct numerical integration has previously been shown to work well when
applied to spectra with well-separated peaks [8][10][11]. However, when peaks
overlap, parts of other, unrelated peaks are inevitably included in the integral.
Since this separation comes at the cost of increased experiment times, which can
span tens of hours, it is desirable to find a quantification method that works in
the presence of peak overlaps for large-scale metabolomic experiments. Using a
parametric surface modeling approach, a set of peaks with certain positions and
intensities can be found which fit the experimentally obtained spectrum.
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1.2 Previous Work

Due to the high amount of peak overlap in one-dimensional NMR spectra, it seems
necessary to include previously known information about metabolite peaks in the
fitting procedure. A metabolite in a sample will usually result in several peaks
at different positions in the spectrum, all of which have intensities proportional
to its concentration. Because of this, intensities estimated from well-separated
peaks can be used to resolve crowded parts of the spectrum. Curve fitting with
previously known information has been used to quantify metabolites in rat brain
extracts [4]. The approach is used in the BATMAN software [1][6], which is based
on a Bayesian model.

In two-dimensional experiments, parametric modeling is a less explored topic.
The Nmrglue Python package [7] can, among other things, perform surface fitting
in several dimensions. Fast Maximum Likelihood Reconstruction (FMLR) [3] is
an algorithm that finds potential peaks, and models them parametrically. On
a synthetic sample, the algorithm was shown to posses greater accuracy when
compared to numerical integration. McKenzie et al. use peak fitting to decide
whether local maxima in a spectrum are true peaks or random noise, but not
primarily for quantification [12].

1.3 Purpose

The purpose of this thesis is to qualitatively study the basic surface modeling
approach. While authors have applied parametric modeling for quantification in
NMR experiments, there is a lack of investigation into how optimization parameter
constrains affect the calculated concentrations, and how well the underlying model
fits experimental data.

2 Theory

2.1 One-Dimensional Experiment

In a one-dimensional NMR experiment, a sequence of RF pulses are applied to a
sample, which results in a recorded signal called the Free Induction Decay (FID).
Two coils at a 90 degree angle are used, and the FID takes the form of a sum of
damped complex oscillations,

S̃(t) =
N∑

n=1

Ŝn exp(iφ̃n) exp(iΩnt) exp(−Rnt).

2



2.1 One-Dimensional Experiment 2 THEORY

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1
x 10

6

Time [ s ]

In
te

n
s
it
y

(a) Free Induction Decay (FID)

012345

0

5

10

15

20
x 10

7

Chemical shift [ ppm ]

In
te

n
s
it
y

(b) Frequency spectrum

Figure 1: Illustration of a Free Induction Decay signal and the corresponding
absorption mode frequency spectrum. The sample is a synthetic mixture with some
of the metabolites found in blood.

The oscillation intensity Ŝn and frequency Ωn determine the amplitude and position
of a corresponding peak in the frequency spectrum. The decay rate Rn determines
the width of the peak: A large Rn means that the signal decays quickly, which
translates to a wide peak in the frequency spectrum. The oscillation phase φ̃n is
essentially arbitrary, but for the spectra considered in this thesis there is a phase
correction constant φ such that φ̃n ≈ φ for all relevant peaks.

We define S(t) as the recorded FID multiplied with a phase correction factor
exp(−iφ),

S(t) = exp(−iφ)S̃(t) =
N∑

n=1

Ŝn exp(iφ̃n − iφ) exp(iΩnt) exp(−Rnt).

Let φn = φ̃n − φ ≈ 0. After Fourier transformation, we obtain a spectrum of
Lorentzian functions,

S(ω) =
N∑

n=1

Ŝn exp(iφn)
1

Rn + i(ω − Ωn)
.

A Lorentzian can be divided into a real and imaginary part referred to as the
absorption and dispersion lineshapes,

1

Rn + i(ω − Ωn)
= An(ω) + iDn(ω)

3
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where

An(ω) =
Rn

R2
n + (ω − Ωn)2

, Dn(ω) =
−(ω − Ωn)

R2
n + (ω − Ωn)2

.

Expanding the phase factor exp(iφn) using Euler’s formula, we get

S(ω) =
N∑

n=1

Ŝn(cosφn + i sinφn)(An(ω) + iDn(ω)) (1)

=
N∑

n=1

Ŝn(cosφnAn(ω) − sinφnDn(ω) + i sinφnAn(ω) + i cosφnDn(ω)) (2)

It is desirable to obtain a spectrum with absorption lineshapes for all peaks,
since such peaks are more narrow and the shape is easier to interpret visually. We
can see that this is the case for the real part of (2) when φn = 0, and we therefore
have

Re [S(ω)] ≈
N∑

n=1

ŜnAn(ω).

If we do not disregard the phase errors φn, we get the more general equation,

Re [S(ω)] =
N∑

n=1

ŜnLn(ω),

where
Ln(ω) = cosφnAn(ω) − sinφnDn(ω)

is the real part of a Lorentzian function with phase error φn.

2.2 Two-Dimensional TOCSY Experiment

In two-dimensional experiments, several 1D FID’s are recorded while varying a
time t1 in the pulse sequence. For TOtal Correlated SpectroscopY (TOCSY)
using the States-TPPI method for phase discrimination, cosine and sine modulated
signals are recorded separately,

Scos(t1, t2) =
N∑

n=1

Ŝn cos(Ωn,1t1) exp(−Rn,1t1) exp(iΩn,2t2) exp(−Rn,2t2)

Ssin(t1, t2) =
N∑

n=1

Ŝn sin(Ωn,1t1) exp(−Rn,1t1) exp(iΩn,2t2) exp(−Rn,2t2).

4
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To simplify the notation, we ignore phase errors for now. These functions are used
to obtain an absorption mode lineshape in two dimensions, A(ω1)A(ω2). Applying
the Fourier transform in t2, we get

Scos(t1, ω2) =
N∑

n=1

Ŝn cos(Ωn,1t1) exp(−Rn,1t1) (An,2(ω2) + iDn,2(ω2))

Ssin(t1, ω2) =
N∑

n=1

Ŝn sin(Ωn,1t1) exp(−Rn,1t1) (An,2(ω2) + iDn,2(ω2)) .

A linear combination of the real part of both signal now yields

S(t1, ω2) = Re [Scos(t1, ω2)] + iRe [Ssin(t1, ω2)] =

=
N∑

n=1

Ŝn(cos(Ωn,1t1) + i sin(Ωn,1t1)) exp(−Rn,1t1)An,2(ω2) =

=
N∑

n=1

Ŝn exp(iΩn,1t1) exp(−Rn,1t1)An,2(ω2).

After a final Fourier transformation in t1, we get the desired 2D absorption
mode lineshape,

S(ω1, ω2) =
N∑

n=1

ŜnAn,1(ω1)An,2(ω2).

When phase errors φn,1, φn,2 are considered, the absorption mode lineshape is
replaced with the mixed absorption-dispersion lineshape as in the one-dimensional
case,

S(ω1, ω2) =
N∑

n=1

Ln,1(ω1, φn,1)Ln,2(ω2, φn,2) (3)

where
Ln,i(ωi, φn,i) = cosφn,iAn,i(ωi) − sinφn,iDn,i(ωi).

This is the equation that will be used to model the experimental data.

2.3 Apodization

Before Fourier transformation, it is common to multiply the FID with some func-
tion, a procedure known as apodization. The chosen function is usually decaying,
which is what we consider here. This serves two purposes. Firstly, it can increase
the signal-to-noise ratio by giving less weight to signal points toward the end of
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the FID, which are mostly noise. Secondly, it prevents truncation artifacts in the
transformed spectrum, when the acquisation time is too short to let the FID decay
to zero. The drawback is that the width of the peaks increases, leading to more
overlap between peaks.

For this thesis, exp(−RAt) was chosen as the apodization function in both
dimensions. This preserves the Lorentzian lineshapes in the spectrum. We can
regard Rn in the previous sections as the sum of the experimental decay rate and
the apodization decay rate.

2.4 Quantification

The concentration of a substance in the sample is proportional to the intensities
of its resonances, denoted Ŝn above. In one-dimensional NMR this relationship
is linear, and proportionality constants can be calculated using a single added
reference compound with known concentration [9].

Things are more complicated in two-dimensional experiments, and the rela-
tionship might not even be linear. To combat this, several methods have been
employed. For this thesis, a standard addition procedure was used, because it is
simple and has been shown to give good results previously [5]. A model mixture,
with known concentrations of the substances being studied, is prepared. The mix-
ture is added to the sample in several different concentrations, and a spectrum is
recorded for each increment. When the intensity of a peak has been estimated
in all spectra, linear regression was used to find a value for the absolute concen-
tration of a substance (illustrated in figure 2). This method works for non-linear
relationships as well, by assuming linearity in the concentration region where the
measurements are made.

In previous literature, a straight line has been used for the relationship between
substance amount added and peak intensity. However, rather than following a
straight line as expected, the peak intensities in the samples studied in this thesis
sloped downward as seen in figure 3. This can be explained by the fact that the
NMR samples were being diluted as the model mixture was added. To compensate,
a slightly less intuitive relationship was investigated and used.

The concentration of a substance in NMR sample k is given by

c(k) =
cpVp + caV

(k)
a

Vp + Vb + V
(k)
a

. (4)

Here, cp and ca are the concentrations of the substance in the plasma and model
mixture, Vp and Vb the volumes of plasma and buffer and Va the volume of model
mixture added. Our goal is to calculate cp.

6
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Figure 2: Example of how peak intensities in several spectra are used to calculate
the absolute concentration by fitting a straight line. The intensity at 0 nmol is the
peak intensity in the original sample. When the estimated line crosses the x-axis, the
quantity added is the negative of the concentration (approximately 50 nmol). It can
be interpreted as the molar quantity we need remove in order to reach 0 intensity.
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(a) Proportional to concentration
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(b) Proportional to amount of substance

Figure 3: Comparison of two relationships between intensity and added substance
quantity on data from the thesis. The peak studied is Alanine (1). (a) Line with
decreasing slope, corresponding to equation (5). The actual quantity calculated
with this line equation is not as simple to visualize as in figure 2. (b) Straight line,
corresponding to (6).
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2.5 Discretization 2 THEORY

We derive equations for two possible relationships between peak intensity and
substance amount added. In the first case (figure 3a), the intensity is directly
proportional to the concentration in the sample with an error term,

αc(k) = I(k) + ε(k).

We define the total volume V (k) = Vp + Vb + V
(k)
a and combine the above equation

with (4). This gives a linear equation in αcp and α,

αcp
Vp
V (k)

+ α
caV

(k)
a

V (k)
= I(k) + ε(k). (5)

which can be solved by least squares.
In the second case (figure 3b), the peak intensity is instead proportional to the

amount of substance n(k) in the NMR sample,

βn(k) = βc(k)V (k) = I(k) + ε(k).

Together with (4), we get a linear equation similar to (5) in βcp and β,

βcpVp + βcaV
(k)
a = I(k) + ε(k). (6)

Note that in an experimental procedure with no dilution, we have V (k) = const
and the two cases above both reduce to a relationship with a straight line.

While the standard addition process is simple and accurate, the required spec-
trometer time is increased significantly. This is a large drawback for experiments
in metabolomics. If fewer spectra are recorded for each sample, small errors in the
intensity estimation can result in large concentration errors. One way to deal with
this, if the lowered accuracy is acceptable, could be to record standard addition
spectra for one sample, and use the resulting proportionality constants for all other
samples.

2.5 Discretization

The FID is not recorded continuously, but as a sequence of equally spaced samples.
These data points are transformed using the discrete Fourier transform.

An explicit formula for the resulting spectrum can be calculated, but with the
frequencies and number of data points in our case, it is sufficient to consider the
ideal, continuous spectrum evaluated at discrete points.

8
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2.6 Zero-filling

In NMR, it is common practice to increase the vector of sampled FID points to
twice its size by appending zeros before applying the Fourier transform. This
doubles the number of mesh point and makes the peaks smoother, and increases
the amount of information in the absorption part of the spectrum by incorporating
information from the dispersive part [2]. Zero-filling to more than twice the amount
of data points is also common. In that case, the new mesh points are only a result
of an implicit interpolation process, and lack additional information. This can
be helpful when interpreting a spectrum visually, but results in an unnecessarily
increased computational cost when applied together with surface modeling.

2.7 Units

Above, we have derived equations in terms of rad s−1. This is convenient for
mathematical manipulation, however from a physical perspective it makes more
sense to write frequencies in Hz. The conversion formula is, by definition, ω = 2πf ,
where ω is in rad s−1 and f in Hz.

In NMR it is common to specify frequencies with the chemical shift δ. Chemical
shift is defined as

δ =
f − fr
fs

where fr is the resonance frequency of some reference compound, and fs is the
spectrometer base frequency, typically around 300 to 900MHz. This is a very
small value, so the chemical shift is generally given in parts per million, ppm. The
advantage of this scale is that it is independent of spectrometer base frequency, so
peak positions remain constant between different spectrometers.

The decay constant R is usually specified as the absorption mode peak width
at half height, given in Hz. A straight-forward calculation yields the width of a
peak, 2R [rad s−1], and hence R/π [Hz].

3 Method

A model mixture was prepared with four metabolites and caffeine, see table 2.
Five NMR samples were prepared with blood serum, buffer and different amounts
of model mixture, as shown in table 1. The five samples resulted in five spectra,
which were used to determine absolute concentrations from the peak intensities.

The raw FID’s were processed using a custom Matlab script. An exponential
apodization function was applied, the FID’s were zero-filled to twice the number
of points, and the first FID point was multiplied by 0.5 in the direct and indirect

9



3.1 Surface modeling 3 METHOD

Blood Serum Buffer Model Mixture

Spectrum 1 100 µl 100 µl 0 µl

Spectrum 2 100 µl 100 µl 10 µl

Spectrum 3 100 µl 100 µl 20 µl

Spectrum 4 100 µl 100 µl 30 µl

Spectrum 5 100 µl 100 µl 40 µl

Table 1: Volumes of blood serum, buffer and model mixture in the five measured
NMR samples.

Caffeine 898 µM

Alanine 2000 µM

Glycine 1200 µM

Choline 50 µM

Lysine 800 µM

Table 2: Concentrations of the studied substances in the model mixture

dimensions. Furthermore, the process described in the matNMR code was used to
handle Bruker’s digital filtering [14].

Peaks were assigned manually, using a spectrum of just the model mixture as
reference.

3.1 Surface modeling

The spectra were divided into regions around the peaks of interest, and other peaks
within the regions were identified. The sizes of the regions were chosen to minimize
spectrum contributions of peaks outside the regions. These regions comprised only
a tiny portion of the full frequency spectrum as shown in figure 4.

A sum of peak shapes of the form (3) was then fitted to each region in the
measured spectra. All optimization was done with Matlab’s fmincon function,
minimizing the square sum of each spectral point in the residual. With this choice
of objective function, the optimal intensities Ŝn for each peak could be calculated
by linear least-squares in each iteration, given values for the other parameters.

Four different ways of constraining the optimization variables were investigated

10
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Figure 4: Contour plots of a frequency spectrum with the studied regions shown as
rectangles, barely visible in (a). In general, one region can contain peaks from several
different metabolites of interest, but this was not the case here. The prominent
vertical patterns in the full spectrum are noise caused by large peaks (known as t1
noise).
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Decay (R1, R2) Phase (φ1, φ2) Peak position (Ω1,Ω2)

1. Constant Zero Same values in all spectra

2. Constant One value per spectrum Free

3. Constant Free Free

4. Free Free Free

Table 3: Four ways of constraining the optimization parameters, ranging from most
to least restrictive.

as seen in table 3, referred to as method 1, 2, 3 and 4.

3.2 Calculating Absolute Concentrations

A standard addition process with peak intensity proportional to substance con-
centration was used to determine the absolute concentrations of metabolites as
described in section 2.4.

To justify equation (5), four regions without any peaks from the model mixture
were selected. The total intensity of all the peaks in the regions was estimated by
numerical integration in each of the 5 spectra. Numerical integration was used to
make sure that the decrease in estimated intensity was not caused by the surface
fitting algorithm. In this case, with no added intensity from the model mixture,
equations (5) and (6) reduce to

αcp
Vp
V (k)

= I(k) + ε(k) and βcpVp = I(k) + ε(k)

respectively. In these equations, Vp is constant (100 µl), cp, α and β are unknown
but constant, while V (k) increases from 200 µl to 240 µl

Hence, if the intensity is proportional to concentration, we should see decreasing
intensity as more model mixture is added. On the other hand, if the intensity of a
resonance is proportional to the amount of substance in the sample, the intensity
should remain constant as the sample is diluted.

12



3.2 Calculating Absolute Concentrations 3 METHOD

Concentration [µM] (R2)

1. 2. 3. 4.

Alanine (1) 455 (0.998) 448 (0.999) 455 (0.997) 449 (0.998)

Alanine (2) 412 (0.999) 435 (0.999) 441 (0.998) 434 (0.997)

Alanine (3) 452 (0.996) 469 (0.996) 483 (0.968) 468 (0.943)

Alanine (4) 390 (0.998) 399 (0.997) 384 (0.983) 280 (0.972)

Alanine (5) 409 (0.999) 344 (0.995) 359 (0.995) 332 (0.995)

Alanine (6) 379 (0.998) 435 (0.998) 423 (0.999) 420 (0.990)

Mean 416 422 424 397

Std. 28.6 40.7 42 67.7

Reference 427.2 ± 84.4

Choline (1) 10.9 (0.927) 11.4 (0.960) 10.5 (0.977) 10.1 (0.640)

Choline (2) 13.6 (0.996) 12.1 (0.999) 11.2 (0.993) 12.1 (0.994)

Mean 12.2 11.8 10.9 11.1

Std. 1.34 0.332 0.33 1.01

Reference 14.5 ± 5.3

Glycine (1) 737 (0.983) 770 (0.967) 757 (0.857) 1130 (0.621)

Reference 325.4 ± 126.8

Lysine (1) 145 (0.997) 138 (0.998) 153 (0.988) 124 (0.994)

Lysine (2) 153 (1.000) 152 (1.000) 179 (0.981) 126 (0.968)

Lysine (3) 141 (0.999) 108 (0.976) 111 (0.981) 158 (0.890)

Lysine (4) 167 (0.998) 218 (0.957) 176 (0.967) 148 (0.953)

Mean 152 154 155 139

Std. 10.1 40.3 27 14.5

Reference 178.6 ± 58.2

Table 4: Calculated concentrations for each peak of the studied metabolites, using
the four methods described in section 3.1. R2 values are shown inside the parenthe-
ses. Reference values are from the Serum Metabolome Database [13].

13
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4 Results and Discussion

4.1 Calculated Concentrations

Table 4 summarizes the calculated concentrations for the identified peaks, using
the four methods described in section 3.1. The values are within the expected range
as found in previous studies, with the exception of glycine, which is overestimated.
However, the concentrations vary considerably between peaks originating from the
same substances for all methods, which indicates that the quantification is not very
accurate. This is not necessarily due to errors in the peak intensity estimation,
but could be a result of non-linearity in this particular NMR experiment.

4.2 Quality of Quantification

To estimate the quality of the quantification, R2 values were calculated when fitting
lines to the calculated intensities for the standard addition procedure. These are
presented in table 4 inside parentheses next to the concentrations. The values were
generally good, with many values above 0.99. The less restricted methods (3 and
4) show the worst linearity, likely due to overfitting. The worst R2 value (0.621)
is for the only glycine peak, using method 4. This region is the most complicated
one studied, with 6 partly overlapping peaks.

4.3 Quality of Fits

An estimate for how well a modeled surface fits the spectrum is the ratio of the
maximum value of the magnitude of the residual, and the peak height. Such
values were calculated for all methods and optimization regions and are visualized
in figure 6. In this section, we illustrate and explain some errors which caused
large residuals.

All methods gave uncharacteristically large residuals around Choline (1), be-
cause of large ridges originating from peaks outside the region which were not
modeled (figure 5). This explains the low R2 value of method 4 on this peak, the
many unconstrained parameters are distorted from their physical meaning in order
to model the ridges.

Method 1, which was the most constrained, had the largest residuals as ex-
pected. In figure 7, the difference between model and experimental data is visible,
and the residual is quite large. Figure 8 shows the same area optimized with
method 2. The phase error is modeled, and peaks are allowed to move slightly in
each spectrum of the standard addition process.

Another region with large residuals was around the Lysine (2), (3) and (4)
peaks (figure 9). In this case, the shape of the residual suggested that the decay
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Figure 5: The region around Choline
(1). The larger peak is choline, the
smaller peak is an unknown substance.
Ridges along the F2 axis from large
peaks outside the region are seen in the
background and foreground.
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Figure 6: Boxplot of the maximum ab-
solute value of the residual as a fraction
of peak height for the four methods, ex-
cluding the Choline (1) region.
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Figure 7: Surface fit using method 1 on the region around Alanine (3) and Ala-
nine (4). The peak shapes and phase effects are not modeled correctly.
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Figure 8: Surface fit using method 2 on the region around Alanine (3) and Ala-
nine (4). When small variations in phase and peak position are allowed, the residual
shrinks.
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Figure 9: Experimental data of the re-
gion around Lysine (2), (3) and (4), in
standard addition spectrum 5. All three
peaks originate from lysine.
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Figure 10: Region around the glycine
peak. The largest peak is glycine, the
five smaller peaks are unknown sub-
stances. This was the most complicated
region considered in this thesis.

rate constants were incorrect for these peaks. Alternative R1 and R2 constants
were tried, resulting in improved residuals for methods 1-3 (method 4 already
allows the decay rate parameters to vary freely). Figure 11 shows the difference
for method 2. In table 5 we see the different concentration estimates for original
and adjusted decay rates, and the change is quite large for each individual peak.
Method 1 was least sensitive to erronous decay rate constants, likely because its
constrained nature prevents overfitting. This result is interesting, because it shows
that the assumption of a constant decay rate for all peaks in the spectrum is not
accurate enough (in this NMR experiment) if very small residuals are desired.

The smallest residuals are given by method 4 around the glycine peak. This is
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Figure 11: Enlarged residuals when using method 2 on the region in figure 9,
comparing different decay rate constants. The shape of the residual in (a) suggests
that the three modeled peaks are too narrow in the F2 dimension. When a larger
decay rate is used in (b), the residual improves.

not unexpected, as the six peaks in this region offer many degrees of freedom in
the optimization parameters. Due to the low R2 value for this peak compared to
other methods, we can conclude that the estimated model parameters lack physical
significance, and are merely a result of overfitting.

4.4 Effects of Dilution

Figure 12 shows the intensity of peaks in four regions where the standard addition
mixture had no peaks. In all regions, the intensity decreases as the sample is
diluted. Two models relating quantity to peak intensity are compared, intensity
proportional to concentration (equation 5) and intensity proportional to amount
of substance (equation 6). It is obvious that the first model fits the data better.
It is possible that there is a better model, but such an investigation is out of scope
of this thesis.

Not accounting for this dilution effect results in large differences in the calcu-
lated concentrations, as shown in table 6. For future work, it might be better to
mix the samples in a way where this additional complication is avoided.

5 Conclusion

In this thesis, we have quantified four metabolites in blood serum using parametric
peak modeling in two-dimensional NMR spectra. The estimated concentrations are
within the expected ranges for three of the metabolites, but overestimated for one
(glycine).
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(c) Region 3

1 2 3 4 5
3.6

3.8

4

4.2

4.4

4.6
x 10

9

Spectrum

R
e
g
io

n
 I
n
te

n
s
it
y

(d) Region 4

Figure 12: Total intensity in four regions as the sample is diluted. Solid line:
Expected intensities according to equation (5). Dashed line: Intensities according
to equation (6).

18



5 CONCLUSION

Concentration [µM] (R2)

Original Decay Rate Adjusted Decay Rate

Method 1

Lysine (2) 153 (1.000) 155 (0.999)

Lysine (3) 141 (0.999) 135 (0.999)

Lysine (4) 167 (0.998) 175 (0.998)

Mean 154 155

Std. 13.2 20.1

Method 2

Lysine (2) 152 (1.000) 156 (1.000)

Lysine (3) 108 (0.976) 136 (0.952)

Lysine (4) 218 (0.957) 186 (0.983)

Mean 160 159

Std. 55.5 25.6

Method 3

Lysine (2) 179 (0.981) 151 (0.989)

Lysine (3) 111 (0.981) 132 (0.974)

Lysine (4) 176 (0.967) 181 (0.989)

Mean 155 155

Std. 38.2 24.7

Table 5: Comparison of estimated concentrations using different decay rates
(R1, R2). The original decay rate was suitable for most other peaks, while the
adjusted decay rate has been chosen to improve the residuals for Lysine (2), (3) and
(4).

In section 2.2, we derived a peak shape model starting from two simple equa-
tions. Generally, this model allowed peak shapes which were very close to the
experimental data, but artifacts in the residual were still visible even with the
least constrained parameters. This could be because of inhomogeneities in the
NMR instrument’s magnetic field (shimming errors).

When the four methods are compared, a clear trend emerges. With less con-
strained optimization parameters, the residuals will be smaller, but it also means
that the risk of overfitting is larger. For the spectrum regions studied in this the-
sis, with relatively well separated peaks of similar sizes, the constrained methods
(1 and 2) are a more reliable choice. However, if one is looking to measure the
intensity of a small peak overlapping a much larger one, the larger error between
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Concentration [µM] (R2)

Dilution compensation No compensation

Alanine (1) 455 (0.998) 637 (0.992)

Alanine (2) 412 (0.999) 570 (0.997)

Alanine (3) 452 (0.996) 632 (0.991)

Alanine (4) 390 (0.998) 540 (0.992)

Alanine (5) 409 (0.999) 567 (0.994)

Alanine (6) 379 (0.998) 521 (0.997)

Reference 427.2 ± 84.4

Choline (1) 10.9 (0.927) 15.5 (0.898)

Choline (2) 13.6 (0.996) 19.3 (0.994)

Reference 14.5 ± 5.3

Glycine (1) 737 (0.983) 1300 (0.966)

Reference 325.4 ± 126.8

Lysine (1) 152 (0.997) 209 (0.996)

Lysine (2) 153 (1.000) 211 (0.998)

Lysine (3) 141 (0.999) 193 (0.995)

Lysine (4) 167 (0.998) 232 (0.995)

Reference 178.6 ± 58.2

Table 6: Changes in estimated concentrations when compensating for sample dilu-
tion, using optimization method 1.
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model and experimental data could be a problem.

5.1 Further work

To deal with shimming errors, previous authors have suggested that peaks be
modeled with a partly Lorentzian, partly Gaussian lineshape [3][12]. This was not
attempted in this work, as the data was already very close to the ideal Lorentzian
shape.

Another challenge is to carry out the surface fitting in a way that allows varia-
tions in certain parameters, but avoids the overfitting problem. One solution could
be to penalize parameter values in the objective functions, but finding a way to
do this in a robust, automated and physically relevant fashion is not trivial.

In a larger context, the question of how to completely automate the quantifi-
cation process remains. Algorithms for locating peaks in two-dimensional NMR
spectra have been developed for the purpose of identifying substances, and com-
bining such an algorithm with surface modeling is a logical next step. It is not
clear if such a set up would be able to handle the crowded spectra resulting from
fast NMR experiments with complicated mixtures, like one is likely to encounter
in metabolomics.
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