

Environmental footprints and sustainability of contaminated land remediation

Master of Science Thesis in the Master's Programme Geo and Water Engineering

FARZAD FERDOS

Department of Civil and Environmental Engineering *Division of GeoEngineering*

Engineering Geology Research Group CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2011 Master's Thesis 2011:80

MASTER'S THESIS 2011:80

Master of Science Thesis in the Master's Programme Geo and Water Engineering FARZAD FERDOS

> Department of Civil and Environmental Engineering Division of GeoEngineering Engineering Geology Research Group CHALMERS UNIVERSITY OF TECHNOLOGY

> > Göteborg, Sweden 2011

Environmental footprints and sustainability of contaminated land remediation

Master of Science Thesis in the Master's Programme Geo and Water Engineering

© FARZAD FERDOS, 2011

Examensarbete / Institutionen för bygg- och miljöteknik, Chalmers tekniska högskola 2011:80

Department of Civil and Environmental Engineering Division of GeoEngineering Engineering Geology Research *Group* Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000

Cover Picture: Designed by Fariba Ferdos June, 2011.

Chalmers Reproservice Göteborg, Sweden 2011 Environmental footprints and sustainability of contaminated land remediation Master of Science Thesis in the Master's Programme Geo and Water Engineering FARZAD FERDOS Department of Civil and Environmental Engineering Division of GeoEngineering Engineering Geology Research Group Chalmers University of Technology

ABSTRACT

Since the United States Environmental Protection Agency (USEPA) launched its "Green remediation" program and EU member states began to reassess their national regulations for environmental remediation in order to reach a Europe-wide consensus on policy and standards, the need for the sustainable removal of contaminants from brownfields has grown considerably. Concomitantly, the ability to calculate and assess the suitability as well as the environmental footprints and associated risks of a growing number of remediation techniques has become a priority. This thesis aims to evaluate two of the most widely-used free commercial tools for this purpose, SiteWise^{TMv.1} and SRT, for their practicability, quality and range of results and suitability specific to Swedish conditions.

A number of ex-situ and in-situ methods are described in this thesis, a combination of which are then used to model twenty-six remediation scenarios for two documented contaminated sites in the Gothenburg region: the Bohus Varv site on the Götaälv bank and the Hexion site in Mölndal. A wide range of results for these models is presented, compared and analyzed, drawing further comparisons with a previous study and the zero-alternative, which can be used as an example to support sustainable decision making and to advocate the implementation of "gentle" remediation techniques to clear up contaminated sites. Based on the results from the both projects, it is concluded that: i. Remediation techniques requiring long distance residual handling have significant footprints except residual handling by train due to Swedish energy production conditions. ii. Residual handling with ship results in much higher SOx, NOx and particle release compared to the other alternatives. iii. Residual handling with truck results in high accidental risks. Finally, activities powered by electricity result in a reduced footprint compared to activities powered by fossil fuels, considering Swedish energy production conditions.

The thesis concludes with a cross-benefit analysis of SRT and SiteWise^{TMv.1}, which recognizes their potential as tools for presenting accurate and reliable Life Cycle Assessment analyses with appropriate system boundary definitions and easy inventory analyses process. Their results provide valuable support to decision makers aiming at more sustainable remediation. The restricted range of remedial technologies with which SRT can model and the crucial adjustments needed to make this tool applicable and effective in Sweden are also evaluated, as are the certain expert knowledge need for modeling and the extensive data need for the SiteWise^{TMv.1} program. The limited practicability of SiteWise^{TMv.1}'s final results on their own, with no comprehensive picture of the socio-economic impact of each scenario is also regarded as a shortfall in real-life decision-making processes.

Keywords: Sustainability, Brownfields (Contaminated sites), Remediation, Footprint analysis

Contents

A	BSTRA	ACT	Ι
С	ONTEN	NTS	1
1	INT	RODUCTION	7
	1.1	Background	7
	1.2	Aim	8
	1.3	Methodology and implementation	8
	1.4	Limitations	8
2	CAS	SE STUDY DESCRIPTION	9
	2.1	The Bohus Varv Site	9
	2.1.	General	9
	2.1.2	2 Site activity background Site contamination situation	10 10
	2.1	Having Site	10
	2.2	General	11
	2.2.2	2 Site activity background	12
	2.2.3	3 Site contamination situation	13
3	ENV	/IRONMENTAL REMEDIATION	14
	3.1	Introduction	14
	3.2	Excavation	14
	3.3	Soil washing	15
	3.3.	Ex-situ techniques	15
	3.3.2	2 In-situ soil washing and sedimentation (ISW)	16
	3.4	Immobilization techniques	17
	3.4.	Solidification and Stabilization(S&S)	18
	3.4. 3.4.1	2 In-situ Vitrification (ISV) 3 Surface capping and vertical barriers (cut-off walls)	18
	3.5	Thermal vanour extraction and air sparging	10
	3.6	Electrokinetic methods	19
	37	Biological remediation	10
	3.7	Bio-remediation	19
	3.7.2	2 Phyto-remediation	20
4	ENV	/IRONMENTAL FOOTPRINT ANALYSIS & USED TOOLS	21
	4.1	LCA and Footprint analysis	21
	4.2	SiteWise TM , Tool for Green & Sustainable Remediation	23
	4.2.	Introduction	23
	4.2.2	2 Tool package and application	25

	4.2.3 4.2.4 4.2.5	Data requirements Inventory Analysis Results	25 27 28
	4.3 Sus 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	tainable Remediation Tool (SRT) Introduction Tool package and application Data requirements Inventory Analysis Results	29 29 30 31 31 32
5	MODELLING		34
	5.1 Intr	oduction	34
	5.2 Boh 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.3 Hex 5.3.1 5.3.2	nusVarv Remediation Project Scenarios 1 and 2 Scenarios 3 and 4 Scenario 5 Scenario 6 Scenario 7 Kion Remediation Project Phase one Phase two	34 34 35 36 37 38 39 40 46
6	RESULT	ГЅ	48
	6.1 Boh	nusVarv remediation project	48
	6.2 The	e Hexion site remediation project	52
7	ANALY	SIS OF THE RESULTS	57
	7.1 The 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	Bohus Varv remediation project Scenario-1 and Scenario-2 Scenario-3 Scenario-4 Scenario group 5 Scenario-6 Scenario-7	57 57 57 58 58 59 59
	7.2 The 7.2.1 7.2.2	Phase one Phase two	59 59 65
8	DISCUS	SIONS AND RECOMMENDATIONS	67
	8.1 The	Bohus Varv remediation project;	67
	8.2 The	Hexion site remediation project;	67
	8.3 Too 8.3.1 8.3.2	ol evaluations: SRT SiteWise TM (Ver.1)	68 68 68

8.4	Limitations of this thesis and suggestions for future study	70
9 BII	BLIOGRAPHY	71
10 AP	PENDIX 1	75
10.1	Scenario-1, BohusVarv remediation project.	75
10.2	Scenario-2, BohusVarv remediation project.	76
10.3	Scenario-1&2, SRT input data, BohusVarv	77
11 AP	PENDIX 2	78
11.1	Scenario-3, BohusVarv remediation project.	78
11.2	Scenario-4, BohusVarv remediation project.	79
12 AP	PENDIX 3	80
12.1	Scenario-5a, BohusVarv remediation project.	80
12.2	Scenario-5b, Bohus Varv remediationproject.	81
12.3	Scenario-5c, BohusVarv remediation project.	82
12.4	Scenario-5d, BohusVarv remediation project.	83
13 AP	PENDIX 4,	84
13.1	Scenario-6, BohusVarv remediation project.	84
14 AP	PENDIX 5	85
14.1	Scenario-7, BohusVarv remediation project.	85
15 APPENDIX 6		86
15.1	Scenario-1, Hexion remediation project.	86
15.2	Scenario-2, Hexion remediation project.	87
16 AP	PENDIX 7	88
16.1	Scenario-3, Hexion remediation project.	88
16.2	Scenario-4, Hexion remediation project.	89
17 AP	PENDIX 8	90
17.1	Scenario-5, Hexion remediation project.	90
18 AP	PENDIX 9	91
18.1	Scenario-6a, Hexion remediation project.	91
18.2	Scenario-6b, Hexion remediation project.	92

18.3 Scenario-6c, Hexion remediation project.	93
19 APPENDIX 10	94
19.1 Scenario-7, Hexion remediation project.	94
20 APPENDIX 11,	95
20.1 Scenario-8, Hexion remediation project.	95
21 APPENDIX 12,	96
21.1 Scenario-9, Hexion remediation project.	96
22 APPENDIX 13	97
22.1 Scenario-1, 2 and 5, SRT input data, Hexion	97
23 APPENDIX 14	98
23.1 Scenario-1, BohusVarv: 23.1.1 Full excavation & landfilling at Sita	98 98
23.2 Scenario-2, BohusVarv:	100
23.2.1 Full excavation & landfilling at Ragnsell	100
23.3 Scenario-3, BohusVarv:23.3.1 Full excavation & landfilling at SAKAB	102 102
23.4 Scenario-4, BohusVarv:23.4.1 Full excavation & landfilling at Noah, SiteWise default ship	104 104
23.5 Scenario-4, BohusVarv:23.5.1 Full excavation & landfilling at Noah, SMED values for ship	106 106
Scenario-5a, BohusVarv: 23.5.2 Partial excavation & and landfilling at Sita	108 108
23.6 Scenario-5b, BohusVarv:23.6.1 Partial excavation & landfilling at Ragnsell	110 110
23.7 Scenario-5c, BohusVarv:23.7.1 Partial excavation & landfilling at SAKAB	112 112
23.8 Scenario-5d, BohusVarv:23.8.1 Partial excavation & landfilling at Noah, SiteWise default ship	114 114
23.9 Scenario-5dx, BohusVarv:23.9.1 Partial excavation & landfilling at Noah, SMED values for ship	116 116
Scenario-6, BohusVarv: 23.9.2 Soil-washing & landfilling remnants at SAKAB	118 118
23.10 Scenario-7, BohusVarv: 23.10.1 In-situ S&S remedy	120 120
24 APPENDIX 15	122

24.1 Scenario-1, Hexior	n:	122
24.1.1 Excavation &	Landfilling at Kikåstappen	122
24.2 Scenario-2, Hexior	n:	124
24.2.1 Excavation &	andfilling at Ragnsell	124
24.3 Scenario-3, Hexior	n:	126
24.3.1 Excavation &	alandfilling at SAKAB	126
24.4 Scenario-4, Hexior	n:	128
24.4.1 Excavation &	a landfilling at Noah, SiteWise default ship	128
24.5 Scenario-4, Hexior	n:	130
24.5.1 Excavation &	a landfilling at Noah, SMED vales for ship	130
Scenario-5, Hexion: 24.5.2 Vapour extrac	ction & landfilling at SAKAB	132 132
24.6 Scenario-6a, Hexio	on:	134
24.6.1 Onsite soil-wa	ashing & landfilling at Noah, SiteWise default ship	134
24.7 Scenario-6a, Hexio	on:	136
24.7.1 Onsite soil-wa	ashing & landfilling at Noah, SMED vales for ship	136
24.8 Scenario-6b, Hexio	on:	138
24.8.1 Onsite soil-wa	ashing & landfilling at Ragnsell	138
24.9 Scenario-6c, Hexic	on:	140
24.9.1 Onsite soil-wa	ashing & landfilling at SAKAB	140
24.10 Scenario-7, Hexior	n:	142
24.10.1 Complete exc	avation & optimized landfilling	142
24.11 Scenario-8, Hexior	n:	144
24.11.1 S&S remedy	& remnants landfilling at SAKAB	144
24.12 Scenario- 9, Hexio	n:	146
24.12.1 Full Soil-wash	h & remnants landfilling at SAKAB	146
25 APPENDIX 16		148

1 Introduction

1.1 Background

Over the last century, industrial development has resulted in huge substantial environmental disturbances and consequently many areas have been contaminated. Although the severity of contamination has decreased over the years due to stricter legislation and a greater general awareness of the consequences of negligent site management, this activity is not yet sustainable and will remain so until industry reconsiders its responsibilities with regard to contamination management and site rehabilitation.

The management and rehabilitation of contaminated sites has become a thorny environmental issue: according to the European Environmental Agency's (EEA) estimations, there are nearly a quarter of a million contaminated sites in EEA member countries and, concomitantly, the number of potentially polluting activities are growing to nearly three million sites (EEA, 2007). In Sweden alone, more than 80,000 contaminated sites, a large number of which are potentially dangerous to human health and the environment, have been mapped by the Swedish Environmental Protection Agency (SEPA) (SEPA, 2007). Considering the potential impact of contaminants on human health and ecological quality which are, or which may be, present at these sites has led to the implementation of protective legislation to help remediate, rehabilitate and control contaminated sites. The other important factor supporting remedial action is the fact that most of these contaminated sites are economically inactive until remediation has occurred (Lesage et al, 2007). Although such remedial action is a step in the right direction towards sustainable development, this activity, like all human activities, has its own environmental, social and economical impacts. These impacts must be considered within the decision-making process as the needs for remediation are assessed and actions are taken (Morais, Matos, 2010).

Fundamental principles should be followed when selecting remediation technologies. The selection of an appropriate action is a site-specific decision and there may be more than one appropriate technology for a given site. Within this process, it has been the case that the environmental impact of the remediation action itself has been secondary to a preference for familiar, traditional methods for remediation (e.g. Excavation and disposal to landfill). An increasingly more holistic view on remediation has led to significant growth in a branch of research which aims to develop more sustainable remedial technologies, referred to as "gentle" options (Bardos et al, 2008). Although significant progress has been made here, the actual implementation of such techniques is still in its relative infancy. Lack of stakeholder knowledge and confidence in the feasibility or reliability of these methods is a major obstacle and therefore some form of education in the form of decision support is needed to make it possible for site managers to adopt more "gentle" remediation techniques. A range of tools are now available for decision making support with different perspectives and processes (Cundy, 2009). Increasing general knowledge about available tools and developing new ones with sufficient detail will result in a more widespread use and would be followed by a number of new technologies and techniques for sustainable site remediation. It is important to note that the general term "gentle" options not only includes new innovations in remediation, but also the use of current methods in a more environmentally sensitive way.

1.2 Aim

Since the United States Environmental Protection Agency (USEPA) launched its "Green remediation" program, many tools have been developed to estimate the environmental footprint of remedial actions (USEPA, 2010). These tools will be of interest in many parts of the world, including Sweden, where evaluative tests are needed to judge their suitability to Swedish conditions.

Within this research project two of the most widely-used and free tools, SiteWise^{TMv.1} and SRT, are going to be used to evaluate different possible remediation alternatives in order to apply sustainability metrics to a decision making process. The aim of this research is to:

- Assess the availability of the data needed for each method and evaluate how feasible and practical the data collection is
- Review and compare the tools' results in terms of their suitability for finding a remediation technique and their sustainability, taking into account economical, ecological and socio-cultural dimensions
- Investigate the tools' capabilities for sensitivity and uncertainty analysis
- Evaluate and recommend revisions and adjustments for application to Swedish conditions.

1.3 Methodology and implementation

The aforementioned tools, which are specifically designed for sustainability evaluation of different remediation techniques, will be reviewed and evaluated using the available data from two case studies of contaminated sites in the Gothenburg region (Bohus Varv in Ale and the Hexion site in Mölndal). By modeling a number of appropriate remediation techniques and comparing their environmental footprints, metrics and effects to the 0-alternative and analysing the results together with other sustainability metrics, this thesis will offer reliable and comprehensive support for decision making.

1.4 Limitations

The project is limited to the system boundary defined by the researcher and the tools, as they are only appropriate for analysing certain aspects of remediation activity i.e. the environmental footprint.

The study does not include any qualitative assessment of performance or effectiveness of different remediation technologies. For each applied technology it is assumed that the technology already fulfils the remediation goals.

This report should not be seen as an overall assessment of remediation activity. The implemented environmental footprint calculations are based on site-specific conditions with available data and assumptions for the case studies. The site-specific results should therefore not be interpreted as generally applicable. However, the recommendations concerning methodological aspects and applications of SiteWise^{TMv.1} and SRT are appropriate for application in other remediation projects to estimate their overall environmental impacts.

2 Case study description

2.1 The Bohus Varv Site

2.1.1 General

The Bohus Varv site is located on the eastern shore of the Göta älv in Ale community, about 15 km upstream of Gothenburg city. As it is illustrated in the Figure 2.1, the site is situated to the north of the Jordfall Bridge and the Eka Chemicals business. To the east it is bordered by railway tracks and the road route 45.The area is about 600 meters long along the river bank with a width ranging between 60 to 110 meters, in total covering around 50,000 square meters.

Figure 2.1 The BohusVarv site. A physical map to the left, with land use indicated on the right (Mellin, 2009).

The property has river bank geological formations which were stabilized and widened by laying 0.4 to 4 meters of filling materials (average of 1.7m) on top of the thick layers of glacio-marine clay sediments. The filling materials in the area typically consist of a mixture of soil of differing grain sizes, mostly sand, gravel and boulders. Fillings also include anthropogenic materials, e.g. scrap and building waste. The underlying glacio-marine clays have a very low hydraulic conductivity and the main groundwater flow towards the river therefore occurs in the filling materials. According to the studies done by Swedish Geotechnical Institute (SGI) in 1995, deep clay formation on the Göta älv bank makes the area susceptible to landslides and has uncertain landslide stability condition (SGI, 1995).

Figure 2.2 Map showing geotechnical stability of the Göta älv bank, including the Bohus Varv site (SGI, 1995).

2.1.2 Site activity background

According to all available information (e.g. reports, municipality visiting notes, local resident interviews and air photos) gathered by SWECO (SWECOVIAK, 2006), the rural river bank was converted to an industrial site by transporting surplus infilling material from Gothenburg city in the early 1900s. The site was gradually developed. Until the late 1980s the site was mainly used for ship building and as a repairing facility. It has been noted that during the end of this period the southern part was used to dump steel and iron scraps. In 1992 Eka Chemicals acquired the property and cleared the area and its buildings (e.g. of seized boats, scrap vehicles, tracked vehicles, tanks, waste oil, paint and batteries) to use for the intermediate storage of nearly 10 000 cubic meters of treated soil. According to the reports, another smaller construction company owned a small portion of the property and used it as a warehouse.

2.1.3 Site contamination situation

Due to previous industrial activity at the Bohus Varv site, it was suspected to be contaminated and potentially dangerous to human health and to the environment. In order to evaluate the situation, a first-round sampling campaign was ordered by the municipality and carried out by Scandia consult (now Ramböll), whose conclusions led to a further and more detailed assessment of the site and an environmental risk analysis (Scandiaconsult, 2001). In 2005, the SWECO consulting company made a detailed investigation of the property, whereby many soil, groundwater and sediment samples were taken and tested. The environmental risk analysis was completed, based on the detailed investigations. According to the analysis, the Bohus Varv site was found to be highly contaminated, primarily by heavy metals (e.g. lead (Pb) and mercury (Hg)) and oil products. As a result, the risk assessment showed that the risks to humans and ecosystems were high and the current situation was not acceptable.

Figure 2.3 Map showing heavy metal contamination at the Bohus Varv site before remediation. Results are presented as mg/kg of dry soil (Holm, 2006).

2.2 Hexion Site

2.2.1 General

The Hexion property is an old industrial area covering approximately 35,000 square meters. It is located to the east of Mölndal Centrum. As it is illustrated in the Figure 2.4 below, the site is a triangular area bordered by Borås railway to the north and Måndalsån to the south.

Figure 2.4 The Hexion site. A physical map to the left (the green triangle indicates the exact location), with a plan for future development to the right (SWECO, 2009a).

The local geology consists of glacial deposits on the bedrock. Glacial till is characterized by containing an unsorted mixture of different particle sizes from clay to boulders. Glaciofluvial deposits are formed as a result of melting glaciers in the final stages of the last ice age. The deposits comprise boulders, stones, gravel, sand, silt and clay sediments graded by gravity, with the heaviest material at the bottom (Tarbuck & Lutgens, 2008).

A comprehensive soil survey has shown that the natural ground, which has a general soil thickness of between 10-15 meters, has been overlain by large quantities of filling material in order to even out the ground level to provide a site suitable for building industrial buildings. This filling thickness reaches up to 5 meters in some places (see the Figure 2.5 below). Filling material was concluded to be a random fill of mostly gravels, sand, clay, silt, stones and bricks. These filling materials, together with the natural deposits, are very permeable, which resulted in pollution spreading to some parts of the area and endangering the ground water table which is situated 10-20 m below surface level (SWECO, 2009b).

Figure 2.5 Cross section of the Hexion site and its geological condition (SWECO, 2009b).

2.2.2 Site activity background

The first known activity dates back to 1827, when an oil selling facility was founded by Mendel Elias Delbanco, who hoped to take advantage of the hydro power potential of the nearby water stream. This focus continued until the 1940s, when the site was then employed for more diverse industrial use and a wider variety of chemical goods were produced, more recently e.g. Binders for the paint industry. This industry was sustained until April 2007, when Hexion Specialty Chemicals Sweden AB sold the property to NCC Construction Sweden AB in September 2007. NCC purchased the land with the intention of remediating the contaminated site, preventing pollution propagation, reducing the associated health and environmental risks to levels acceptable by SEPA and, in the longer term, converting the land to a residential and commercial area, complete with apartments, houses, a nursery, offices, stores, parking spaces, green space and a town square in the style of modern urban planning. The demolition of the warehouses, laboratories, silos, tanks, pipelines etc, began in 2008 and was completed in late 2009. The development is planned to be completed before 2015 (NCCTeknik, 2007).

2.2.3 Site contamination situation

At the time of purchase in 2007, the site was considered potentially contaminated and was formally restricted to prevent further risk to human health and the environment. Indications of contamination were exposed during demolition works, which eventually called for a complete survey and analysis.

According to the sampling and environmental analysis conducted by NCC in 2007 and 2008, the area was concluded to be contaminated by lead, mercury, phthalates DEHP (plasticizer), aromatics and poly-aromatics (PAHs) and aliphatic hydrocarbons. These pollutants were concentrated in specific areas based on the operation history of the plant, leaving a large part of the area with low concentrations of contamination (SWECO, 2009c). The sampling results' map is presented in Figure 2.6 below.

Figure 2.6 Hexion sampling result map. Red stands for very high concentrations, yellow for medium and blue for lower contamination concentrations (SWECO, 2009a).

Based on this analysis and the planned regeneration of the site, it was decided that remediation was necessary, with the following priorities:

- A drastic improvement in the condition of the ecological system for vegetation and soil fauna in the shallow soil layers.
- For the deeper soil layers, a focus to protect and secure the recipient Mölndal water quality rather than the soil environment ecological system.

3 Environmental Remediation

3.1 Introduction

Environmental remediation is generally defined as providing remedy for environmental problems. It involves a number of strategies and techniques to restore contaminated sites and natural resources to an acceptable level which is tolerable to humans and the environmental system. The most common and acceptable way to determine the need for remediation and what measures are to be required is to conduct risk assessment analysis according to SEPA recommendations with identifying generic and/or site-specific guideline values and then defining remediation goals with the aim for reduction of the calculated risk measures.

The remedial action can be done in different ways, depending on the contaminated media (soil, ground water, surface water or air) and contamination type (chemical, radioactive, microbial or physical) (USEPA, 2011). Remedial actions can be categorized into three groups; containment techniques that restrict the contamination in the specific domain and prevent spreading; removal techniques whereby contamination is transferred from an open environment to a controlled environment and treatment techniques that transform the contamination to a non-hazardous form (Brusseau & Maier, 2004).

For ground and soil remediation, the techniques available can be categorized into two major groups: In-situ and ex-situ. Processes that involve excavation of the soil are considered ex-situ and in in-situ techniques attempt to treat the problem without removing the soil. Further remedial applications would be needed on-site or in another facility (off-site) if an ex-situ strategy is implemented. Containment techniques are mainly in-situ; removal techniques are mostly done in an ex-situ manner. Treatment techniques can be implemented in-situ or ex-situ, dependent on the technique used.

In this section, main soil remediation techniques are going to be briefly described.

3.2 Excavation

Excavation is a general term used for ex-situ removal remediation. Within this process the contaminated soil is replaced by a new clean soil and the excavated soil is transported to a disposal or a soil treatment facility. This technique, which is very common, has a very high rate of efficiency because of its relative simplicity and general familiarity in industry. Despite this, there are some clear drawbacks and weaknesses:

- During the activity, site workers can be exposed to any hazardous pollutants present.
- The technique is usually feasible for remediating relatively shallow and localized contaminated sites.
- From a sustainability point of view, the contamination is merely transferred to another location, not eliminated.
- This technique requires a great deal of transportation and earthwork that inevitably contributes to atmosphere pollution end accident exposure(Brusseau & Maier, 2004)

3.3 Soil washing

Soil washing is an umbrella term for a number of techniques, whereby the pollutants are washed away. These treatment techniques can be applied either In-situ or ex-situ and are reliant on the type of contamination, the ground condition and the available technology. Soil washing can be applied for a broad range of contamination types and even a combination of them and are considered "gentler" than excavation methods, as they are treatment-oriented. In-situ (if applicable) and ex-situ on-site techniques are considered "gentle" and sustainable techniques that have low footprints. Soil washing techniques become more difficult and expensive as the fine grain rate of the soil matrix increases (USEPA, 2011).

3.3.1 Ex-situ techniques

Ex-situ soil washing remediation is done by excavating and treating the contaminated soil. Within the treatment process, excavated soil is sieved, washed and floated in basins. During the washing process, fine grades are separated from the soil matrix based on their different settling times. Since the contamination tends to attach to finer grains, this portion is most contaminated and must be separated and be treated as hazardous waste, needed to be handled or treated. Whereas the gravel and sandy portion is separated, rinsed and reused. To increase the efficiency and time necessary for the whole process, water can be adjusted in temperature and pH or specific solvents can be dosed. Ex-situ soil washing can be done on-site at mobile plants or the soil can be transported to a soil washing facility.

Figure 3.1 Flowchart showing an ex-situ soil washing process, according to a Soil-washing interim guidance report (ORD & SWER, 1991).

Figure 3.2 An ex-situ, on-site soil washing process, by SoilTechTM and Ivey-sol companies (SoilTech, 2011; Ivey-sol, 2010).

3.3.2 In-situ soil washing and sedimentation (ISW)

In-situ soil washing can be done by enclosing smaller areas of contaminated mass, pumping in air and water to blend with the soil and eventually wash out the finer portions. The treatment process is the same as ex-situ techniques with the advantage that the soil does not need to be excavated. However, in order to apply this method, specific conditions are needed:

- The contaminated soil should be shallow
- The soil needs to be on top of a non-permeable surface (on the bed rock or on clay layers)
- The contaminated soil needs to be natural (free from anthropogenic materials, scrap and building wastes)

Figure 3.3 An in-situ soil washing technique (Budianta et al., 2010)

3.3.2.1 "Pump and treat"

The "pump and treat" method is a widely used groundwater remediation technique which has the potential to be used to flush out contamination by inducing desorption from the soil media (Brusseau & Maier, 2004). In this process, water (with appropriate adjustments) is infiltrated or pumped through the contaminated media, then treated by a suitable treatment operation. This process is repeated over a determined period of time to reach the acceptable goals. Recent studies show that this technique is very successful in containing contamination plums and even shrinking them; however, it is not possible to completely remove the subsurface contamination by this technique, as the pollution reduction ratio inevitably decreases over time. This technique, like the previous in-situ technique, is dependent on many in-situ and geological factors that can limit the application or make it not applicable.

Figure 3.4 In-situ "pump and treat" method (Brookhaven Group, 2000)

3.4 Immobilization techniques

A large number of techniques are available which attempt to immobilize the contamination by fixing them in the soil matrix. This immobilization can be done by solidification-stabilization technologies (S&S), vitrification, capping, cut-off walls and in-situ containment (FRTR, 2011).

3.4.1 Solidification and Stabilization(S&S)

S&S technologies work to chemically bind or encapsulate contaminants and therefore reduce dispersal and overall exposure. S&S techniques can be applied to remediate sites contaminated by metals, organics and radio-nuclides. It can be done by combining cement, pozzolanic, thermoplastic or organic polymerization materials with the contaminated soil (FRTR, 2011). S&S can be applied either by in-situ or exsitu techniques.

Figure 3.5 Solidification and Stabilization methodology. Ex-situ technique to the left and in-situ technique to the right (Quickfall, 2000).

3.4.2 In-situ Vitrification (ISV)

Vitrification is a process whereby graphite electrodes are planted into the ground and heat is produced by an electric current, which burns or volatilizes any organic compounds, melts and converts the contaminated soil into a stable crystalline solid medium which is contained within the solid matrix. This process has a high immobilization efficiency but is relatively expensive, energy-hungry and the cooling process takes a long time (FRTR, 2011).

3.4.3 Surface capping and vertical barriers (cut-off walls)

Surface capping is a technique used to cover the contaminated area by tight liners and a thin layer of clean soil for extra protection, preventing potentially dangerous exposure of contaminants to human and animals. Capping minimizes infiltration to the contaminated area, eliminates contamination of surface water by coming into contact with the pollutants and removes the risk of contaminated dust spreading to the local area, or indeed the volatilization of contaminants. This technique is a relatively straightforward and time-efficient method to reduce the environmental risk by limiting the exposure pathways; however it demands continued monitoring, is rarely successful without using other preventative methods in parallel and will restrict future land use. Capping techniques are most often used together with vertical impermeable barriers known as cut-off walls. Cut-off walls are mostly built by using slurry materials, steel sheet piling and grouting instead of the liners (FRTR, 2011).

Figure 3.6 Barrier implementation techniques for remediation (WISMUT, 2010).

3.5 Thermal vapour extraction and air sparging

Thermal vapor extraction and air sparging are in-situ treatment techniques. These methods are applied to remediate sites contaminated by volatile and semi-volatile materials and oil remnants. Air (hot air, steam or even gases) is injected into the contaminated zone to volatilize the contaminants which are then captured by a soil venting system at the ground surface which condenses the vapor for further treatment or incineration. The effectiveness of this technique is often limited by the channeling (whereby injected air moves in discrete channels instead of spreading evenly over the zone) and low soil hydraulic conductivity (Brusseau & Maier, 2004).

3.6 Electrokinetic methods

Electrokinetic remediation refers to the extraction of contaminants from the site by inducing an electrical field in the ground. The process works by applying a direct current through electrodes planted in the ground (which should be wet to near saturated). The precise technique and measures used depend on ground condition and the type of contamination (e.g. polar or organic) and are suitable for a considerable number of contaminants. Although electrokinetic methods are energy hungry and comparatively expensive, they are very successful in removing contamination from sites with low water permeability (clay and silty clay soils). These methods are considered "gentle" and sustainable where the electricity source is produced environmentally friendly (USEPA, 1997).

3.7 Biological remediation

Biological remediation can be defined as the use of bacteria, fungi and plants to break down, degrade or transform toxic chemical compounds that have accumulated in the environment. Although less widely used than the methods previously discussed, there has been a great deal of interest in the use of in-situ contaminated land remediation by biological activity recently as they are perhaps the most "gentle" methods of all and pilot tests are showing outstanding results (Cundy, 2009).

3.7.1 Bio-remediation

Bio-remediation is the exploitation of naturally occurring micro-organisms' activity to treat contamination within a specific site. Elements of this microbiological activity are

already intrinsically present in the soil, although working at a slower rate, and this can be further stimulated and concentrated by adding oxygen, nutrients and further fertilizing organisms to achieve results more quickly. Bio-remediation can be done onsite or can be applied on the concentrated, extracted contaminations (e.g. sludge, ash and sediment treatment). As more than 90% of hazardous chemical compounds are bio degradable and it is a relatively cheap method of remediation, this technique has plenty of promise and encouraging rates of treatment have been recorded (Zhu et al., 2004). Domestic waste and sewage water treatment is a good example of the efficiency of these systems. However, there is a big uncertainty about the results because these systems are live systems which are very sensitive and unpredictable. Biological activity, degradation and transformation status and outcome are highly dependent on the pollutants' characteristics, combinative effect and their bioavailability. There is a concern about adverse higher toxic compound formation in specific uncontrolled situations and there is a risk that these micro-organisms could spread to other environmental systems, with unknown effects. This makes the task of recommending and implementing bio-remediation techniques rather complicated without carrying out site-specific, pilot-scale laboratory work. The other drawback is that bio-remediation is less successful at treating metals than chemical compounds, organics and oil remnants (Brusseau & Maier, 2004).

3.7.2 Phyto-remediation

Phyto-remediation is an innovative brand in biological remediation whereby specific plants are sown on polluted sites to remediate contamination, both organic and inorganic hazardous compounds. There are many available plant species that naturally attract, accumulate and degrade toxic compounds in their tissues, or stabilize and fix them in their root region. Phyto-remediation is relatively cheap and environmentally friendly with no significant side effects. The advantages of using bio-accumulating plants as a remediation technique is that organic pollutants are degraded by plant cells and metal pollution can be removed from the site by harvesting the plants after the metals are accumulated in the plant tissues. Stabilization techniques with their specific plants are attractive in the sense that the contamination stays subsurface, which reduces the exposure levels to wildlife and does not require any regular harvesting. However, these stabilization techniques demand continuous monitoring and remediation can take several years and, of course, the remediation is limited to the relatively shallow zone of the plant roots (Environmental Management Support, 1999).

4 Environmental footprint analysis & used tools

4.1 LCA and Footprint analysis

Life-cycle analysis (LCA) is a systematic and step-wise method in which the energy and raw material consumption, different types of emissions and other factors related to a specific activity are measured, analyzed and categorized from an environmental perspective over the activity's life cycle. It attempts to measure the "cradle to grave" impact on the ecosystem (SAIC, 2006). LCA analysis dates back to the early 1970s, when it was used to investigate the energy requirements for different processes; later, emissions and raw materials inventories were added to the process to conduct environmental footprint analyses. Nowadays, LCAs are considered to be the most comprehensive approach to assessing environmental impact (Morais & Matos, 2010).

Figure 4.1 Life Cycle Assessment flowchart according to USEPA implementations.

As it is illustrated in the *Figure 4.1* above; The LCA starts with "goal definition and scoping" (description of the activity). It is crucial to establish what purpose the model is meant to serve, what is to be studied, what depth and degree of accuracy is required, and what the decision criteria will be before starting the analysis. System boundaries for space and time as well as the functional units are set in this first phase. After the first step, Inventory analysis (LCI) is carried out, whereby an inventory of the inputs and outputs of all life-cycle processes is determined in terms of material and energy. The process starts by making a process flow-chart covering the events in the activity's life-cycle which are to be considered in the LCA, together with their interrelations. It is followed by a collection of relevant data for each event in terms of emissions from each stage of the process and the resources and materials used. Finally, based on the gathered data, energy balances for each stage of the process are made.

The results from the LCI analysis are crude numbers of mass and energy balance which are then converted to human and ecological impact factors in the impact assessment stage (LCIA). Within the impact assessment, various foot-printing factors are defined by combining and weighting the impact assessment phase results (e.g. GHG from CO₂, CH₄ and N₂O, Eutrofication, Nitrification from NOx, SOx and PO₄ etc emissions). There are different ways to define and weight environmental impacts which have a significant effect on the results. It is important to retain the crude results from the LCI step for better comparison and future impact calculation adaptations and to simply use the LCIA results. The final step in the LCA is data interpretation and evaluation, with consideration of the boundaries of the activity. Decision-making support for a certain process, future improvements and system optimization are some of the major evaluations that can be made here (USEPA, 2011).

Beyond the obvious advantages of LCA, this analysis method is under development and there are still some drawbacks for application of this tool (Morais & Matos, 2010), including:

- System definition and adjusting proper system boundaries for time and space is a demanding, time-consuming and uncertain process.
- It is difficult (if not possible) to define a suitable, representative functional unit for a certain activity for each LCA.
- The inventory step usually takes a great deal of time and effort and mistakes are often in calculations.
- Although some published data on impacts of different materials are available, the data is often inconsistent and not directly applicable due to different goals and scope definition and there is a general lack of solid data about all aspects of a material's life cycle (M.A. Curran).
- There is an infinite amount of data to deal with and numerous decisions to make within each step of LCA analysis which is bound to have an effect on the final results.
- For the Impact assessment step, there are different views on what is environmentally acceptable and approved, and the lack of a consistent standard here is a palpable shortcoming (Morais & Matos, 2010).

In order to make the analysis more acceptable and applicable, tools have been developed that instruct users through the LCA process. Since LCA is case-specific and dependent on the system and defined goals, a number of tools have been developed that are completely different from each other and in most cases can only be used for the specific product/activity that they have been defined for. These tools ease the process of LCA by helping and guiding the user through the steps, proposing the major goal and system boundaries and relevant functional units, facilitating the inventory step by introducing input data menus and minimizing the calculation errors and finally generating presentable, comparable documental results which can be used to support decision making.

Figure 4.2 Flowchart for LCA analysis and environmental footprint evaluation tools

Below, two recently developed tools for LCA of remediation activities (SiteWise^{TMv.1} and SRT) are going to be described. Their entire analysis process will be evaluated and finally their capacity in footprint estimation, sustainability evaluation, decision making support and data uncertainty coverage will be discussed.

These tools are free and publicly available tools and it is possible to get the tool and the guidance manual from the Green and Sustainable Remediation official website (http://www.ert2.org/t2gsrportal/tools.aspx).

4.2 SiteWiseTM, Tool for Green & Sustainable Remediation

4.2.1 Introduction

SiteWise^{TMv.1} is a tool developed for evaluating a range of remediation techniques and comparing alternatives based on their environmental footprints, developed jointly by the United States (US) Navy, United States Army Corps of Engineers (USACE) and Battelle institute (SiteWise^{TMv.1} User Guide, 2010). The tool's first version (SiteWise^{TMv.1}) has been available for public use since May 2010 as a tool which can be used free of charge. SiteWise^{TMv.1} has an activity-based approach for footprint analysis, whereby the remediation technology/activity is separated into the individual activities for different phases and the footprint of each activity is calculated separately. The total footprint of the remediation options is finally evaluated by integrating the calculated impacts of each individual action. The data needed to model a certain activity are:

• Material required for the activity

- Transportation of the required materials/ equipment to the site
- All site activities to be performed
- Management of the waste produced by the activity

And calculated footprints are:

- Air emissions of certain pollutants including greenhouse gas (GHG), nitrogen oxides (NOx), sulfur oxides (SOx) emissions, particulate matter (PM) release
- Water consumption
- Energy use
- Work environment safety (exposed risks from transportations and other activities)

This activity-based method of modeling and calculation, where each phase is discrete, allows the user to define all the activities within the applied or planned alternative without limitations, as long as tool is therefore suitable for any phase in remediation technique selection as an aid to decision making. It can also be used to analyze the potential or chosen remedial alternative at any stage in the process (investigation, design, and the operation and/or Long Term Monitoring (LTM) phases), making it well suited to be used as part of environmental footprinting, ecological compensation and optimization studies (SiteWise^{TMv.1} User Guide, 2010).

4.2.2 Tool package and application

SiteWise^{TMv.1} is based on a Microsoft Excel platform in different excel files. The tool package consists of six folders and an overall summary file. Each of the folders includes six excel worksheets for modelling a remedial alternative; a worksheet for data inputting with separate tabs for different remedial activity phases (named SiteWise_Input_Sheet), four inventory analyses for different remedial activity phases (referred to as calculation sheets in the user manual) and a summary worksheet. With the tool package as the default set-up pattern, six different comprehensive alternatives can be modelled simultaneously. The summary results of these alternatives are then gathered in the overall summary file for further comparison. Summary files for each folder as well as the overall summary file include detailed tables of data for each remedial phase in different tabs and have an integrated sum value chart tab for easy comparison.

Figure 4.3 SiteWiseTM package flowchart, illustrated based on the tool's usermanual.

Modeling begins by copying the tool set into the computer and completing the input worksheet file with the available data for each alternative in its appropriate folder. It should be noted that all macros should be enabled before the input data are entered. All the worksheets are interconnected by the tool, so the input values entered for each phase of each option is used by the tool to conduct inventory analysis and the results are presented in the summary files.

4.2.3 Data requirements

The SiteWise^{TMv.1} input sheet has a very detailed data input registry for a number of possible activities. It is also possible to enter site-specific information by the user, such as the amount of water consumed, site specific emissions, and risk values, in order to cover all the on-site activities. Data input sheets are the same for all different remediation phases in the input sheet tabs. A list of the data requirements are shortly summarized in the Figure 4.2 below.

•Material Production, cons	>Well material use >Material and chen >Construction mate	d in the field, nicals used for treatment, erial (concrete, gravel, etc)	
•Transportation of: >Equ	sonnel transportation via ro ipment transportation via 1	oad, air or rail road, air, rail or water	
•Equipment use in terms o	 Earth work done by Doz Drilling work of: > Pumping operation, > Blower, compressor, mit > Generators > Agricultural equipment > Capping equipments 	zer, Excavator, Loader and /or Electric usage, Pumping head Name plate specifications xer and other equipments	Scarper Electric usage, Pumping head Name plate specifications
 Residual handling by: > 	Residue disposal Thermal/catalytic oxidizer Water consumption Landfill methane emissions	s s	
•Other known onside activities >Energy and water consumption >Emissions (CO2,N2O, CH4,NOx,etc) >Risk in terms of injury and/or fatality			

Figure 4.4 Input data list for SiteWiseTM tool.

The tool uses sets of default values and factors in the data input process to facilitate modeling. The defaults set in the tool are based on the credible sources and their recommended generic values. All default values in the tool can be changed by the user.

For GHG emission footprint calculation, the U.S. EPA Climate Leaders Program (Leaders, 2009) which is a modification of the GHG protocol developed by the World Resources Institute (WRI) and the World Business Council for Sustainable Development (WBCSD) is used together with the emission factors by Argonne National Laboratory's GREET model, U.S. EPA's Mobile 6 model, and EPA's Nonroad model.

Emission factors for consumables are life cycle based with consideration of all energy used and emissions released due to manufacturing of the consumable, production of the electricity and manufacturing, production and transportation of raw materials for manufacturing the consumable obtained from various sources providing life cycle inventories like, the inventory provided by National Renewable Energy Laboratory (SiteWise^{TMv.1} User Guide, 2010). Energy and water consumption are based of the available data from onsite meter readings. Traffic and transportation air emission Inventories are mostly based on the Mobile 6 and Non-road, two computer programs developed by the U.S. EPA's Office of Transportation and Air Quality. Accident risk calculation is based on the developed results of several organizations including Automobile Transport Statistics, Airplane Transport Statistics, Railroad Transport

Statistics, and Labor Statistics for both fatalities and injuries that occur during various activities.

For more detailed information about assumption made, conducted system boundaries for each activity and check of the default data sources it is possible to check the SiteWise^{TMv.1} user manual and the related data appendixes.

4.2.4 Inventory Analysis

The SiteWise^{TMv.1} inventory calculation process fallows the LCI process of LCA. Inventory calculations in SiteWise^{TMv.1} are based on the input values extracted from the input sheet multiplied and combined by the foot printing factors obtained from the mentioned sources. All the used factors within the inventory process are available in a specific tab in the inventory work sheets named as 'Look-up Tables'. All the foot printing factors and values are editable by the user based on the user's demand and specific available information. The inventory process explanation for each and every of the foot printing metrics is available in the user manual of the SiteWise^{TMv.1} tool. It can be looked up by the user to see the process methodology of multiplication and data combination process of the used sources and released emissions.

SiteWise^{TMv.1} has open Macro codes that enable needed changes and it does not luck the cells. Open cells enable the capability of launching probabilistic analysis tools to the tool (e.g. Crystalball, @Risk, etc). With the aid of theses add-in packages in to the Microsoft based SiteWise^{TMv.1} tool, it is possible to do all type of probabilistic, uncertainty and sensitivity analysis by the tool.

4.2.5 Results

Results of inventory analysis are transferred into the calculation sheets that make it possible to see the environmental footprint of each remedial phase. Every remedial alternative has a summary sheet that has the same function as well.

Figure 4.5 SiteWiseTM result flowchart, an example of tools result for each of the alternatives

The final summary file then combines all the modeled alternative inventory results. This file has the capability to update the information of all the six remedial alternatives in the case of any applied changes by the user through the connection of the worksheets by the tool.

SiteWise^{TM_V.1} present graphical excel charts that makes it possible to compare different remedial alternatives on a set of consistent metrics that are goaled and furthermore goes dawn to present the charts separately on the level of activity in every phase of every remedial alternative to determine the activities contribution to the total remediation.

AND

Corresponding 8 bar excel charts

Figure 4.6 SiteWiseTM result flowchart, an example of SiteWiseTM 's final results.

Result documents from SiteWise^{TMv.1} only contain foot printing metrics of the remedy. In order to make a proper comparison of alternatives in the decision making process, it is crucial to consider other sustainability dimensions also. Therefore additional economic and social analyses are needed to be conducted and then combined with the SiteWise^{TMv.1} results in order to find the most sustainable alternative.

4.3 Sustainable Remediation Tool (SRT)

4.3.1 Introduction

SRT is a tool developed for evaluating remediation techniques and comparing alternatives based on sustainability metrics and make a support on decision making process (US.AFCEE, 2010). It is developed by the United State Air Force Center for Engineering and Environment (AFCEE). The tool is available for public as a free commercial tool for anyone/party to consider sustainability in selection of remediation technology or optimization of an existing ongoing remedy. SRT has a technology based approach for evaluating alternatives. It estimates sustainability metrics for specifically defined remedial technologies needed by the Air Force to remediate contaminated sites. More remediation technologies are going to be added to the tool by AFCEE in time. Current available technologies that can be evaluated by the tool are listed below.

For Soil Remediation:

- Excavation
- Soil Vapor Extraction
- Thermal Treatment

For Groundwater Remediation:

- Pump and Treat
- Enhanced Bioremediation
- Permeable Reactive Barrier
- In Situ Chemical Oxidation
- Long-term Monitoring / Monitored Natural Attenuation

4.3.2 Tool package and application

SRT is based on Microsoft Excel platform. Excel was decided based on the widespread availability, familiarity and the transparency for the users. The tool package consists of a excel worksheet with a general input screen, screens for inputting data for different remediation techniques for doing inventory calculations (named as technology screens), result screens named as Output screen and one reference tab for the used default values (US.AFCEE, 2010). SRT is structured using analytical "tiers" similar to the tiered structure of the Risk-Based Corrective Action (RBCA) Tool Kit (GSI, 2010). Two tiers are available for modeling a remedy.

- Tier-1; The simpler tier; consider more default values adapted from finished projects. Although a more generic approach and rules of thumb consideration is adapted within tire1 analysis, makes it possible to do a fast and simple evaluation of a remedy at an early stage with no sufficient data available.
- Tier-2; Analysis has a more site specific approach compared to the simple tire. It is possible to put more site specific values instead of the default values considered. It is possible to shift from a simple tier analysis to a more site-specific situation by simply modifying and entering anywhere between 102 and 574 input variables, of the default values used by the tool, if more exclusive data is available.

The modeling process is well illustrated and guided through the analyzing process, from tab to tab. After defining the name of the project in the basic input screen process starts by filling in input data tabs for specific goaled remedy; it continues to the inventory analysis with transparent calculations and finally publishes the results on the results tab for each technology. SRT calculates design elements and materials and consumables needed for each major component based on the rules of thumb or algorithms, allowing the user to adjust the values, and then convey the totals into the output metrics calculations. There is adequate help and guidance available for the user in the tools screen to input correct values and see the concept behind the inventory processes. Tool has a detailed user manual also that makes it possible to the user to get more information about the process, assumptions made and values used in the case of interest.
4.3.3 Data requirements

Based on the contaminated media, the selected remedial technology and the required input data can be different. Since both cases within this thesis study have soil contamination by various volatile and non-volatile (heavy metals) pollutants, only the data requirements for excavation of soil remedy as well as soil vapor extraction technique are presented in this section. For modeling other remedial technologies available in the tool, it is possible to get the data requirement list from the user manual. For environmental footprint analysis of excavation techniques, the following data are needed:

- Personnel transport (distances and number of trips)
- Amount of the soil that needs to be excavated
- The site's surface area
- Dump landfill and clean soil source distances to the site
- Truck size for carrying the contaminated and clean soil
- Other known project metrics (cost, energy, CO₂ emissions, lost working hours and injury risk) to put directly in to consideration

For environmental footprint analysis of SVE, the following data are required:

- Personnel transport (distances and number of trips)
- Amount of the soil that needs to be treated
- Maximum and typical contamination concentration
- Filter type
- Applied technical type and temperature and
- Other known project metrics (cost, energy, CO₂ emissions and risk) to put directly in to consideration

To do a full sustainability analysis, considering the economical perspective and natural resource attenuation, the following information is also required:

- Fuel prices
- Land price
- Technology and Land-filling costs

4.3.4 Inventory Analysis

After entry of basic site data in the Input screen and filling out the Technology screens which contain design and materials and consumables sections, intermediate calculations with LCA approached algorithms are done. Used factors for generating mass and energy balances within the considered boundaries are based on the available trusted source information together with the expert judgment assumptions. Most of the assumed factors are editable by the user in the case of specific available information. Calculated sustainability metrics are carbon emissions, economic cost, energy consumption, safety / accident risk and change in resource service from the evaluated media. These metrics are presented in the output screen as crude metrics.

The SRT worksheet is locked by the developers. This prohibits the possibility of including probabilistic analysis using e.g. Crystalball, @Risk, or other add-in softwares. Therefore it is not possible to do probabilistic, uncertainty and sensitivity

analysis. Obtaining the required codes for enabling such analyses could possibly be negotiated by the developers.

4.3.5 Results

SRT has the capacity of combining calculated crude non normalized inventory results in their specific units into a single normalized monetary metric by using convention factors. This normalizing approach brings up the opportunity of summing multidimensional sustainability factors in to a singular number that can be used to represent the remedies environmental and economic burden by the tool. It is possible to do sensitivity analysis by SRT considering future hypothetical energy and fuel prices.

Figure 4.7 Flowchart showing the implementation and results of the Sustainable Remediation Tool (SRT).

SRT has two additional innovative features also. It is possible to make a scenario planning with changed energy and carbon emission offset prices. It can be used to evaluate the sensitivity of the analyzed technology to these metrics. SRT has a virtual meeting room (screen), where different decision-maker scan weigh the importance of different sustainability metrics. This virtual weighting of different aspect of sustainability metrics by the different involved stakeholders brings up the opportunity of making a limited Multi Criteria Decision Analysis (MCDA).based decision making is the preferred method for sustainability evaluation of an activity.

5 Modeling

5.1 Introduction

In this chapter, all the modeled remediation alternatives for both the contaminated sites are presented with descriptions of their LCA system boundaries, site-specific conditions and information and technology implementations.

5.2 BohusVarv Remediation Project

Twelve scenarios for the Bohus Varv remediation project are modeled based on three major remedial technologies. i. Excavation and landfilling, ii. ex-situ, onsite soil washing and iii. stabilization and solidification technologies were chosen as the most appropriate techniques for the site based on the site-specific characteristics, but, due to time restrictions and the relative depth of the contamination in the ground, neither phyto- nor bioremediation was considered effective. Electrokinetic methods were also rejected due to the features of the soil, which was made up of sand and gravel with relatively high permeability. In-situ soil washing by water pumping was also rejected, because of the site's proximity to the Götaälv and the associated risks of leakage and spread of the contamination. Finally, in-situ encasing soil washing was excluded due to anthropogenic materials present in the ground.

Ten scenarios are modeled using the SiteWise^{TMv.1} tool, but it was not possible to generate more than two scenarios with full excavation and truck transportation using the SRT tool, since it cannot model other chosen remedial technologies, e.g. Soil washing.

The investigation and soil-sampling stage for SiteWise^{TMv.1} analyses is modeled according to the available sampling data and risk analysis reports. It is presumed that a 10 short ton "equipment transport" was needed to establish the stage. All these results are reported as "investigation Stage" in the tables and charts.

To calculate the footprint made by personnel transportation for SiteWise^{TMv.1} models, COWI daily reports of ongoing remediation activity are used and assumed to be the same for all other remediation technologies implemented and reported as "personnel transportation" in the results. An additional 20 short ton road cargo transportation is assumed for all technologies for the site-establishment stage of SiteWise^{TMv.1} models. For all the modeled scenarios by SiteWise^{TMv.1}, an internal site work of leach-water treatment and pumping, together with the site shoreline stabilization by metal sheet piling is considered. Site establishment together with the aforementioned in-site activities are reported together as "remedial construction". Intermediate loading and transportation of mass at and around the excavation site before it is taken to landfill is included in the SiteWise^{TMv.1} models.

5.2.1 Scenarios 1 and 2

These two scenarios involve excavation and transfer of the contaminated mass by truck. The amount of soil mass needed to be excavated and landfilled is taken from site-specific reports. Scenario-1 is a full excavation remedy by landfilling the contaminated mass into the Sita centre at Mariestad, 185 kilometers from Bohus Varv. Scenario-2 is the same remedial activity but landfilling in Ragnsell facility which is situated at Värnerborg, 82.5 kilometers from the site.

Excavation and transportation of clean soil to make way for the contaminated mass are taken into consideration. A generic soil fluff factor equal to 1.3 was considered for the in-situ volumes in order to calculate transportable volumes for both SRT and SiteWise^{TMv.1} models. System boundaries are set to be restricted to the remedial activity footprints of the site itself, and the long term landfilling operations as well as long term activity in the clean soil sources are excluded because of the independent nature of the activities at those sites.

System boundaries for scenarios-1 and Scenario-2 as well as the remediation stage activities (excluding personnel transportation, the investigation stage and remedial construction) are illustrated in Figure 5.1 below.

Figure 5.1 Flowchart for Scenarios 1 & 2. The green/blue legend indicates the stages that can be analyzed by SiteWiseTM and SRT.

All the values used for modeling these scenarios with both tools can be found in Appendix 1.

5.2.2 Scenarios 3 and 4

Scenarios-3 and Scenario-4 are excavation scenarios and are modeled with the same characteristics as scenarios 1 and 2, except that in Scenario-3, the contaminated soil mass is transported by train to the SAKAB center and in Scenario-4, the mass is transported by boat to Langøya island to the Noah institute. For the train transportation scenario, it is understood that a 300 metric ton cargo capacity train can be used and foot printing metrics for train transportation are adjusted in the SiteWise^{TMv.1} tool for Swedish electricity. For ship transportation, two sets of analysis were performed. The first analysis was performed with SiteWise^{TMv.1} default ship-cargo-impact values. A 2000 metric ton ship cargo capacity was considered. A second round of ship transportation analysis was decided to be necessary due to a large

uncertainty of the SiteWise^{TMv.1} impact values' reference for NOx, SOx and PM10 on ship cargo transportation and because of the fact that results obtained from the first round were considered unrealistic with respect to SOx, NOx and PM10 emissions. For the second analysis, ship cargo impact values were calculated based on the factors recommended by the Svenska Miljö Emissions Data (SMED) report for ships in Scandinavia (SMED, 2004). For this purpose, a typical medium size ship at relevant speed was assumed to transport the soil and the cargo weight influence on the fuel consumption rate was neglected. All the ship cargo impact values for ship transportation with their assumptions and calculation steps are presented in Appendix 16.

System boundaries for Scenario-3 and Scenario-4 as well as the remediation stage activities (excluding personnel transportation, the investigation stage and remedial construction) are illustrated in Figure 5.2 below.

Figure 5.2 Flowchart for Scenario 4. The green/blue legend indicates the stages that can be analyzed by SiteWiseTM and SRT.

All the values used for modeling these scenarios with SiteWiseTM tool can be found in Appendix 2.

5.2.3 Scenario 5

Scenario-5 is defined as a partial removal and excavation remedy. For this remedial scenario, a 0.5-0.7 meter surface soil layer excavation and landfill is considered. The process is modeled in a similar manner to earlier scenarios with minor relevant adjustments to soil mass, the onsite additional activities and materials needed. The Investigation stages as well as the personnel transport stages are repeated for this scenario. For mass transportation, the reduced mass is transported to the Sita centre, Ragnsell, the SAKAB and Noah facilities accordingly.

All the values used for modeling these scenarios with SiteWise^{TMv.1} tool can be found in Appendix 3.

5.2.4 Scenario 6

Scenario-6 is an ex-situ, on-site soil washing remedy. For this scenario, the investigation stage, on-site additional activity as well as the excavation and internal loading and mass transfer are directly adopted as in previous activities. Instead of a total mass transportation, a 10 percent soil change, to be replaced after the washing process and landfilling the same amount, is assumed. An onsite generic soil washing system, adaptable to available soil washing systems in Sweden (e.g. SoilTechTM Company's presented data) is considered. In this process, any rubbish present in the mass is removed and the processed mass is then sieved and the gravel portion is separated and rinsed. The remaining finer portion is mixed with water in large mixers and the sand part is extracted and rinsed, leaving contaminated slurry, which is dewatered and sent to landfill.

System boundaries for Scenario-6 as well as the remediation stage activities (excluding personnel transportation, the investigation stage and remedial construction) are illustrated in Figures 5.3 and 5.4 below.

*Figure 5.3 Flowchart for Scenario-6. The green/blue legend indicates stages that can be analyzed by SiteWise*TM *and SRT. Brown legend indicates data source for soil washing.*

Figure 5.4 Magnification of the soil washing process from Figure 5.3.

All the values used for modeling these scenario groups with SiteWise^{TMv.1} tool are available in Appendix 4.

5.2.5 Scenario 7

For this scenario, the S&S containment method is modelled. Cement has been chosen as the binder and solidifier agent for the process with a soil/ cement ratio of 0.175 as recommended (Jesperse & Ryan, 1992).

The same Investigation stage is considered for the scenario as well as personnel transport. However, for on-site additional activity, relevant adaptations are made. To avoid triggering a landslide during the S&S activity, shore-stabilizing by sheet piling is still considered. Neither excavation nor leach water treatment was considered and cement was transported and then mixed with soil by huge augers in-situ.

System boundaries for Scenario-7 as well as the remediation stage activities (excluding personnel transportation, the investigation stage and remedial construction) are illustrated in Figure 5.5 below.

Figure 5.5 BohusVarv S&S techniques modeling flowchart.

All the values used for modeling these scenario groups with both tools are available in Appendix 5.

5.3 Hexion Remediation Project

Hexion's remediation project is modeled in two phases based on four major remedial technologies. Phase one includes eleven models of six different scenarios (8 SiteWise^{TMv.1} models and 3 SRT models); phase two includes three SiteWise^{TMv.1} models of three different scenarios. Similar to the BohusVarv project, excavation and landfilling, ex-situ, onsite soil washing and solidification were chosen as the most appropriate technologies to be used, but additionally a vapor extraction technology is included, appropriate to site-specific characteristics. (In total fourteen models) Modeling of the first phase is done with data taken from J. Hector's Master thesis work to facilitate a standard comparison and a clear evaluation of the results. For the second phase, all available data, regardless of the remedial process in question, is used for modeling.

Phyto- and bioremediation scenarios were not considered for the site because of the strict time limitations, imminent plans for development and relatively deep contamination presence in the ground. Electrokinetic methods were not considered proper for the site due to its geology (permeable sand and gravel). In-situ soil washing by water pumping was not adopted due to the deep granular deposits and the risks of contamination spread and leakage into deep layers and the adjacent stream. In-situ encasing washing was not considered as there was no impermeable bottom layer for the case to be positioned on.

As discussed earlier, SRT only models excavation and transportation by truck and vapor extraction among other techniques, so three SRT models have been generated (Two excavation & truck transport models and one vapor extraction model).

Data for the investigation and soil-sampling stages for SiteWise^{TMv.1} models are taken from available sampling results and risk analysis reports. A 10 short ton "equipment transport" is considered for this stage. Footprints of this stage are reported as "Investigation Stage" in the results.

To calculate the footprint made by personnel transportation for SiteWise^{TMv.1} models, generic values were adopted based on those available from the Bohus Varv site and presented as "Investigation Stage" in the results. The same values were used in SRT models as well. An additional 20 short ton road cargo transportation is assumed for all technologies for the site-establishment stage of SiteWise^{TMv.1} models. For all the modeled scenarios by SiteWise^{TMv.1}, an internal site work of leach-water treatment is considered. Site establishment together with the aforementioned in-site activities are reported together as "Remedial construction". Intermediate loading and transportation of mass at and around the excavation site before it is taken to landfill is included in the SiteWise^{TMv.1} models.

For water purification, the specific CFO at the site which was constructed for waste water purification was considered. It has the capacity of treating 39 l/s of water flow from the site. This CSO treats leach water using lamella plates and a sand bed filter to separate particles, an oil separator for volatile contaminants and an activated carbon filter for maximizing purification process. This CSO system is connected to the inner wastewater system that purifies the flow before letting it out to the municipality's storm-water system. The system functions by gravitational forces and no pumping is included in the assessments Magnusson & Norin, 2008).

5.3.1 Phase one

For this phase, 49 000 metric tons out of a total 90 000 metric tons of contaminated mass was estimated to have been excavated, which was considered necessary to allow for the new construction. 69% of this is the anthropologic mass generated after the demolition of existing buildings and categorized as non-sievable portion, 35% of which was thought to be reusable within the site and the rest needed to be landfilled.

Figure 5.6 below demonstrates the excavation plan.

Figure 5.6 Excavation and landfilling plan for Hexion site, used in Phase Imodeling.

5.3.1.1 Scenarios 1 and 2

These two scenarios involve excavation and transportation of contaminated mass by truck. The amount of soil mass needed to be excavated and filled is estimated based on Johanna Hector's Master thesis. Scenario-1 is a full excavation remedy, whereby the contaminated mass was landfilled at RagnsellHeljestorp, 100 kilometers from the site. Scenario-2 is the same remedial activity, but the mass was landfilled at the Kikåstippen facility, situated just two kilometers away from the site.

In opposition to previous scenarios, the excavation and transportation of clean soil to make way for contaminated mass are not taken into account here, as mass excavation was necessary with or without remedial activity. A generic soil fluff factor equal to 1.3 was considered for the in-situ volumes in order to calculate transportable volumes for both SRT and SiteWise^{TMv.1} models. System boundaries are set to be restricted to the remedial activity footprints of the site itself, and the long term landfilling operations are excluded because of the independent nature of the activities at these sites.

This scenario's boundaries as well as the remediation stage activities (excluding personnel transportation and the investigation stage) are illustrated in Figure 5.7. All the values used for modeling these scenario groups with both tools are available in Appendix6 and Appendix 15.

Figure 5.7 Flowchart for scenarios 1 and 2. The green/blue legend indicates the stages that can be analyzed by SiteWiseTM and SRT.

5.3.1.2 Scenarios 3 and 4

Scenarios-3 and Scenario-4 are excavation scenarios and have nearly the same characteristics as Scenario-1, except for the fact that in Scenario-4, the excavated contaminated mass is transported by boat to Langøya Island to the Noah institute 270 kilometers from the port, and in Scenario-3, the contaminated mass is transported by

train to the SAKAB center, 265 kilometers from the site. For the train transportation scenario, it is understood that a 300 metric ton cargo capacity train can be used and foot printing metrics for train transportation are adjusted in the SiteWise^{TMv.1} tool for Swedish electricity.

For ship transportation, two sets of analysis were performed. The first analysis was performed with SiteWise^{TMv.1} default ship-cargo-impact values. A 2000 metric ton ship cargo capacity was considered. A second round of ship transportation analysis was decided to be necessary due to a large uncertainty of the SiteWise^{TMv.1} impact values' reference for NOx, SOx and PM10 on ship cargo transportation and because of the fact that results obtained from the first round were considered unrealistic with respect to SOx, NOx and PM10 emissions. For the second analysis, ship cargo impact values were calculated based on the factors recommended by the Svenska Miljö Emissions Data (SMED) report for ships in Scandinavia (SMED, 2004). For this purpose, a typical medium size ship at relevant speed was assumed to transport the soil and the cargo weight influence on the fuel consumption rate was neglected. All the ship-cargo-impact values for ship transportation with their assumptions and calculation steps are presented in Appendix 16.

It should also be noted that, for the Langøya case, interconnecting truck transportation of 21 kilometers from the site to the shipping port is also included.

The scenario's system boundaries as well as the remediation stage activities (excluding personnel transportation and the investigation stage) are illustrated in Figures 5.8 and 5.9.

Figure 5.8 Flowchart for Scenario-3. The green/blue legend indicates the stages that can be analyzed by SiteWiseTM and SRT.

Figure 5.9 Flowchart for Scenario-4. The green/blue legend indicates the stages that can be analysed by SiteWiseTM and SRT.

All the values used for modeling these scenario groups with both tools are available in Appendix 7.

5.3.1.3 Scenario 5

Soil vapor extraction for the Hexion site is considered crucial to prevent health risks due to exposure to volatile contaminants after the construction period. Volatile contaminants can seep through the pores of concrete foundations and endanger people's health. In the case of extracting volatile contaminants from the site, the remaining contamination would be composed of heavy metal lead in some restricted portions of the site. This contamination can be isolated by future construction its spread can be prohibited by limiting water infiltration to the ground.

For soil vapor extraction, available data from RGS 90 Company's methodology is applied for footprint analysis.

Long term monitoring stage with wastewater treatment of 20 years and continuous sampling is considered.

The scenario's system boundaries as well as the remediation stage activities (excluding personnel transportation and the investigation stage) are illustrated in Figure 5.10.

Figure 5.10 Flowchart for vapour extraction implementation. The green/blue legend indicates the stages that can be analyzed by SiteWiseTM and SRT.

All the values used for modeling these scenario groups with both tools are available in Appendix 8 and Appendix 15.

5.3.1.4 Scenario 6

Scenario-5 is an ex-situ, on-site soil washing remedy. For this scenario, the excavation phase as well as short distance mass transportation are included as in previous scenarios. According to the available data, it is understood that 57% of sievable soil mass needed to be landfilled and decided to be transferred to SAKAB. The same onsite generic soil washing process, adaptable to available soil washing systems in Sweden, is included.

This scenario's boundaries as well as the remediation stage activities (excluding personnel transportation and the investigation stage) are illustrated in Figure 5.11. The soil washing process is illustrated separately in Figure 5.12.

Figure 5.11 Flowchart for Scenario-5. The green/blue legend indicates the stages that can be analyzed by SiteWiseTM and SRT. Doted legend indicates partial possibility. Brown legend indicates adapted soil washing metrics' source.

Figure 5.12 Magnification of the soil washing process from Figure 5.11.

All the values used for modeling these scenario groups with SiteWise^{TMv.1} tool are available in Appendix 9 and SRT models input data list are available in Appendix 13.

5.3.2 Phase two

For these scenarios, the total contaminated mass is taken into account, which amounts to an extra 51000 metric tons of contaminated soil from deeper ground layers (4-8 meters depth). For this phase, an optimized excavation and landfilling scenario, soil washing and an S&S technology-based remedy, is modeled.

5.3.2.1 Scenario 7

For this scenario, an excavation remedy with optimized landfilling is considered. Optimization is made based on the different landfilling companies' distances and their requirements for accepting contaminated mass. For the extra 51000 metric tons of soil mass, a filling necessity is assumed and it is understood that the clean soil mass is transported to the site from no further than 20 kilometers.

Similarly to previous excavation scenarios, the excavation and transportation of clean soil to make way for the contaminated mass are taken into consideration. All the values used for modeling these scenario groups with SiteWise^{TMv.1} tool are available in Appendix 10.

5.3.2.2 Scenario 8

This scenario involves an ex-situ, on-site soil washing remedy similar to Scenario-5. In addition to the mass considered in phase one, this scenario includes an extra 51000 metric tons of sievable contaminated soil mass, 20 % of which is substituted with clean soil. It was decided that the contaminated mass be transported to the SAKAB facility and a similar onsite generic soil washing system be included in the model.

All the values used for modeling these scenario groups with SiteWise^{TMv.1} tool are available in Appendix 11.

5.3.2.3 Scenario 9

For this scenario, the S/S containment method is modeled, with cement as the binder and solidifier agent (soil/ cement ratio of 0.175 (Jesperse & Ryan, 1992))

For this scenario, long-term monitoring and treatment of the leach water for twenty years after finishing the project were considered. This process is modeled as an insitu/ onsite technology, with no extra water treatment taken into account to the current available system. An extra pumping amount is considered for making cement slurry.

The scenario group's system boundaries as well as the remediation stage activities (excluding personnel transportation and the investigation stage) are illustrated in Figure 5.13.

Figure 5.13 Flowchart for S&S implementation at Hexion (Phase 2). The green/blue legend indicates the stages that can be analyzed by SiteWiseTM and SRT.

All the values used for modeling these scenario groups with both tools are available in Appendix 12.

6 Results

In this chapter, results from all the modeled scenarios for the Bohus Varv and Hexion sites are presented in the tables and charts below. More detailed results for each modeled scenario, with specifications for footprints of each remedial stage, for SiteWise^{TMv.1} tool, are presented in Appendix 14.

6.1 BohusVarv remediation project

The 12 scenarios for remediation activity at the Bohus Varv site are presented below. As previously stated, 10 are SiteWise^{TMv.1} models and 2 were made by the SRT. Footprints and metrics of this analysis are presented in table 6.1 below.

Table 6.1Results for the 12 remediation scenarios for the Bohus Varv site. The
columns in light grey colour show SiteWise
TMv.1 results and the dark
columns show SRT results.

Remedial Alternatives		GHG Emissions	Total energy Used	NO _x emissions	SO _x Emissions	PM ₁₀ Emissions	Accident Risk Fatality *	Accident Risk Injury**
		metric tons	ММВТU	metric tons	metric tons	metric tons	Num per Project	Num per Project
Full Excavation	Sc1-Sita	6.2E+03	8.2E+04	8.1E+00	1.8E+00	7.3E-01	8.4E-03	1.7E+00
	Sc1-Sita- SRT	2.6E+03	3.6E+04	2.1E+01	2.0E-02	1.0E+00	1.5E+00	7.3E+01
	Sc2- Ragnsell	4.7E+03	6.4E+04	6.4E+00	1.4E+00	4.8E-01	4.4E-03	8.8E-01
	Sc2- Ragnsell- SRT	1.5E+03	2.2E+04	1.3E+01	1.2E-02	5.9E-01	8.8E-01	4.2E+01
	Sc3-SAKAB	3.6E+03	5.6E+04	5.3E+00	1.3E+00	6.1E-01	1.1E-03	2.1E-01
	Sc4-Noah	4.5E+03	6.0E+04	1.9E+03	1.9E+03	2.1E+03	1.2E-03	2.1E-01
	Sc5a-Sita	4.2E+03	6.8E+04	4.8E+00	1.0E+00	3.1E-01	2.2E-03	4.2E-01
Partial	Sc5b- Ragnsell	3.8E+03	6.4E+04	4.4E+00	9.5E-01	2.5E-01	1.4E-03	2.4E-01
Excavation	Sc5c-Sakab	3.6E+03	6.2E+04	4.2E+00	9.1E-01	2.9E-01	6.7E-04	9.8E-02
	Sc5d-Noah	3.8E+03	6.3E+04	4.7E+02	4.7E+02	5.2E+02	6.7E-04	9.8E-02
Onsite	Sc6-Wash	3.3E+03	4.7E+04	5.0E+00	1.4E+00	2.6E-01	6.3E-04	9.5E-02
Technology	Sc7- S&S	1.0E+04	7.2E+04	4.0E+00	8.3E-01	2.0E-01	7.7E-04	1.7E-01

* For SRT models this represents an injury risk

** For SRT models, this is a number of lost working hours

As it is seen from the results, Scenario-4 and Scenario-5d show extremely high emissions for NOx, SOx and PM10. This is due to the fact that extremely high default ship cargo-impact values are used by SiteWise^{TMv.1} for NOx, SOx and PM10 impact assessments which have no reliable references. These values are so high that the

amount of NOx, SOx and PM10 release are predicted by the model to be higher than the CO_2 release which is normally the major portion of the fuel emissions.

For this reason, the ship cargo-impact values were replaced by the factors recommended by SMED report for ships in Scandinavia. The SMED factors represent fuel consumption factors for a medium size ship at relevant speed. The cargo's weight influence on the consumption rate was neglected here. Ship-cargo-impact values for the ship transportation with all the details and assumptions and calculation steps are presented in appendix 16.

Table 6.2 below shows the new emission values for Scenario-4 and Scenario-5d in comparison to the previous results.

Remedial	GHG Emissions	Total energy Used	NO _x emissions	SO _x Emissions	PM ₁₀ Emissions	Accident Risk Fatality *	Accident Risk Injury**
Alternatives	metric ton	MMBTU	metric ton	metric ton	metric ton	Number	Number
Scenario-4-Noah- SiteWise inventory values	2.3E+03	3.9E+04	1.9E+03	1.9E+03	2.1E+03	1.2E-03	2.1E-01
Scenario-4-Noah- SMED inventory values	1.2E+04	3.8E+04	2.9E+02	8.7E+01	1.3E+01	1.2E-03	2.1E-01
Scenario-5d- Noah-SiteWise inventory values	1.7E+03	4.2E+04	4.7E+02	4.7E+02	5.2E+02	6.7E-04	9.8E-02
Scenario-5d- Noah-SMED inventory values	3.9E+03	4.2E+04	7.5E+01	2.2E+01	3.3E+00	6.7E-04	9.8E-02

Table 6.2Results for scenarios involving ship transportation with two different
SiteWiseTM and SMED inventory values.

* For SRT models this represents an injury risk

** For SRT models, this is a number of lost working hours

As shown in table 6.2, the GHG emissions increase significantly when using the new inventory values but NOx, SOx and PM10 emission values decrease with the same significance. Footprints and metrics of analysis of scenarios with the adjusted ship cargo-impact values are presented in Figures 6.1-6.7.

Figure 6.1 GHG emission results for Bohus Varv remediation scenarios by $SiteWise^{TM}$ and SRT.

Figure 6.2 Energy use results for Bohus Varv remediation scenarios by SiteWiseTM and SRT.

As shown in Figures 6.1 and 6.2, Scenario-4 (full mass excavation and landfilling at the Noah center) followed by Scenario-7 (in-situ solidification and stabilization by cement technique) result in the greatest emissions of greenhouse gasses (GHG). Scenario-1 is associated with the third highest emissions. Other scenarios show relatively similar behavior in GHG release.

With 82 GBTU energy usage, Scenario-1 demands nearly three times the SRT model results for energy demand and twice the energy demanded to operate Scenario-6 (onsite, ex-situ soil washing). The remaining scenarios demand relatively similar amounts of energy to operate.

Figure 6.3 NOx emission results for Bohus Varv remediation scenarios by $SiteWise^{TM}$ and SRT.

Figure 6.4 SOx emission results for Bohus Varv remediation scenarios by $SiteWise^{TM}$ and SRT.

PM10 Emissions

Figure 6.5 Particle emission results for Bohus Varv remediation scenarios by $SiteWise^{TM}$ and SRT.

Figures 6.3 to 6.5 show that even with the milder SMED inventory values, Scenarios 4 and 5d, which both rely on transportation by ship, release considerably higher amounts of NOx, SOx and PM10 compared to the other scenarios.

Figure 6.6 Major accident risk results for Bohus Varv remediation scenarios by $SiteWise^{TM}$ models.

Figure 6.7 Minor accident risk results for Bohus Varv remediation scenarios by $SiteWise^{TM}$ models.

As shown in the above figures, Scenario-1 and Scenario-2, and their adapted Scenario-5a and Scenario-5b, all with substantial dependence on road transportation by truck, show the greatest exposure to accidental risk. It should be noted here that for correct and relevant comparison, the SRT-modeled scenarios are excluded from these tables due to differences in risk definition between the SiteWise^{TMv.1} and SRT models.

6.2 The Hexion site remediation project

The remedial activities at the Hexion site were modeled in 11 scenarios by SiteWise^{TMv.1} and in 3 scenarios by SRT. Footprints and metrics of this analysis are presented in Table 6.3 below. More detailed results for each alternative with specification of footprints of each remedial stage from SiteWise^{TMv.1} tool are presented in Appendix 15.

Ph	Remedial Alternatives		GHG Emissions	Total energy Used	NO _x emissions	SO _x Emissions	PM ₁₀ Emissions	Accident Risk Fatality*	Accident Risk Injury**
			metric tons	ммвти	metric tons	metric tons	metric tons	Num per Project	Num per Project
	Full Excavation	Sc1- Kik	6.8E+01	8.9E+02	2.8E-01	7.3E-02	1.9E-02	1.7E-04	2.4E-02
		Sc1-Kikå- SRT	1.7E+02	2.4E+03	1.4E+00	3.6E-03	6.3E-02	9.2E-02	4.4E+00
		Sc2- Ragnsell	4.6E+02	5.7E+03	7.1E-01	1.7E-01	8.3E-02	1.2E-03	2.4E-01
		Sc2- Ragnsell-	4.8E+02	6.6E+03	3.8E+00	3.7E-03	1.8E-01	2.7E-01	1.3E+01
		Sc3- SAKAB	9.3E+01	2.5E+03	3.2E-01	1.0E-01	9.6E-02	1.5E-04	2.0E-02
I		Sc4- Noah	4.0E+02	4.5E+03	4.5E+02	4.5E+02	5.1E+02	3.7E-04	6.6E-02
	Onsite techniques	Sc5- Vapour	8.5E+01	2.5E+03	2.3E-01	7.4E-02	4.8E-02	1.4E-04	1.6E-02
		Sc5- Vapour-	8.3E+03	4.0E+04	6.4E+00	3.3E+00	7.2E-01	1.4E-02	6.8E-01
		Sc6a- Noah	3.2E+02	3.6E+03	3.5E+02	3.4E+02	3.9E+02	3.2E-04	5.5E-02
		Sc6b- Ragn	3.6E+02	4.5E+03	6.0E-01	1.5E-01	6.7E-02	9.6E-04	1.9E-01
		Sc6c- Sakab	8.5E+01	2.1E+03	3.1E-01	9.5E-02	7.7E-02	1.5E-04	2.0E-02
11	Full Excavation	Sc7-Opti- Excavate	1.9E+02	2.9E+03	9.9E-01	2.6E-01	7.7E-02	2.5E-04	4.8E-02
	Onsite techniques	Sc8-S/S	4.2E+03	2.4E+04	9.5E-01	1.9E-01	1.0E-01	1.8E-04	3.0E-02
		Sc9- Wash-	1.6E+02	3.6E+03	6.7E-01	2.0E-01	1.3E-01	2.1E-04	3.7E-02

Table 6.3Hexion analysis results. Light columns show SiteWiseThe sults anddark columns show SRT results.

* For SRT models this represents an injury risk

** For SRT models, this is a number of lost working hours

As it was mentioned for the Bohus Varv case, the ship transportation inventory analysis factors were replaced with the new adapted factors for this case study also (see appendix 16 for the new inventory factors).

Table 6.4 below shows the new emission values for Scenario-4 and Scenario-6a in comparison with the previous results.

Table 6.4Results for scenarios involving ship transportation with two differentSiteWise and SMED inventory values.

Remedial	GHG Emissions	Total energy Used	NO _x emissions	SO _x Emissions	PM ₁₀ Emissions	Accident Risk Fatality *	Accident Risk Injury**
Alternatives	metric ton	MMBTU	metric ton	metric ton	metric ton	Number	Number
Scenario-4-Noah- SiteWise inventory values	4.0E+02	4.5E+03	4.5E+02	4.5E+02	5.1E+02	3.7E-04	6.6E-02
Scenario-4-Noah- SMED inventory values	2.6E+03	4.2E+03	6.9E+01	2.1E+01	3.0E+00	3.7E-04	6.6E-02
Scenario-6a- Noah-SiteWise inventory values	3.2E+02	3.6E+03	3.5E+02	3.4E+02	3.9E+02	3.2E-04	5.5E-02
Scenario-6a- Noah-SMED inventory values	2.0E+03	3.4E+03	5.3E+01	1.6E+01	2.3E+00	3.2E-04	5.5E-02

As presented in table 6.4, the GHG emissions increase significantly with SMED inventory values but NOx, SOx and PM10 emission values decrease on the same significance. Footprints and metrics of scenarios with the adjusted ship transportation inventory values are presented in Figures 6.8-6.14.

GHG Emissions

Figure 6.8 GHG emission results for Hexion site remediation scenarios by $SiteWise^{TM}$ and SRT.

Figure 6.9 Energy usage results for Hexion site remediation scenarios by $SiteWise^{TM}$ and SRT.

As illustrated in Figures 6.8 and 6.9 above, Scenario-5 (in-situ vapor extraction modeled by SRT) and Scenario-8 (in-situ S&S by cement modeled by SiteWise^{TMv.1}) with 8300 and 4200 metric tons of CO₂ released respectively have the greatest emissions of GHG, compared to all the other scenarios, where GHG emissions are relatively lower. The same pattern is evident when energy demands are considered.

Figure 6.10 NOx emission results for Hexion remediation scenarios by SiteWiseTM and SRT.

Figure 6.11 SOx emission results for Hexion remediation scenarios by SiteWiseTM and SRT.

Figure 6.12 Particle emission result for Hexion remediation scenarios by $SiteWise^{TM}$ and SRT.

Figures 6.10 to 6.12 confirm that even with the milder SMED inventory values, Scenario-4 and Scenario-6a, which both rely on ship transportation, release considerably higher amounts of NOx, SOx and PM10 compared to the other alternatives.

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2011:80

Figures 6.13 and 6.14 demonstrate the accidental risk exposure of the Hexion remediation alternatives. Once again, the scenarios dependent on road transportation by truck showed much higher risk values compared to the other scenarios (except Scenario-1 which was defined with very short distance truck transportation. As it was aforementioned, for proper and correct comparison, SRT-modeled scenarios are excluded from these tables due to differences in risk definition between the SiteWise^{TMv.1} and SRT models.

*Figure 6.13 Major accident exposure results for Hexion remediation scenarios by SiteWise*TM models.

Figure 6.14 Minor accident exposure results for Hexion remediation scenarios by SiteWiseTM models.

7 Analysis of the results

In this chapter, an analysis of the results from all the scenarios of the two contaminated sites is presented. It should be noted that this comparative analysis is done regardless of remedial action efficiency of each technique and it is assumed that each defined scenario would result in the adequate environmental and health risk reduction to make the site suitable for its future purpose.

7.1 The Bohus Varv remediation project

7.1.1 Scenario-1 and Scenario-2

These two scenarios are defined as complete excavation of the contaminated media and transportation to the Sita site in Scenario-1 and to the Ragnsell site in Scenario-2. Transports to both sites are made by truck.

According to analysis done by both the tools:

- The SiteWise^{TMv.1} models estimate higher CO₂ and even higher SOx emission releases than the SRT models. The difference in the results is due to the remedial construction stage with sheet-piling activities and steel and plastic usage, which are not included in the SRT models.
- SRT models estimate slightly higher NOx release compared to SiteWise^{TMv.1} models.
- Scenario-1 is calculated to have the highest amount of energy consumption, highest risk of accident and third highest CO₂ release among all the scenarios. Scenario-2 has similar shortcoming in terms of risk of accident and has high value of total energy consumption.
- According to the SRT results, the cost of environmental compensation for GHG release is estimated at 5800 dollars (nearly 37500 SEK) and 5400 dollars (nearly 34800 SEK) for Scenario-1 and Scenario-2 respectively by considering Chicago Climate Exchange Cost recommendations and increases to 116000 and 108000 dollars (0.75 and 0.69 MSEK) considering Bank of America's suggested values.
- According to Swedish traffic administration and Sweden's EPA recommendations, which are calculated based on the rates 1.5 SEK/kg CO₂ release (SIKA, 2009), 20 SEK/kg for SOx release (SIKA, 2005) and 40 SEK/kg for NOx release (SEPA, 2004), Scenario-1 and Scenario-2 emissions cost 9.7 and 7.3 MSEK (1.4 and 1.0 MUS\$), respectively. It should be noted that road traffic-related emissions are already compensated for by the tax increase on fuel prices.
- Applying the aforementioned Swedish compensation rates to SRT's results would result in a compensation amount of 4.8 and 2.8 MSEK (0.68 and 0.39 MUS\$) for these two scenarios.

7.1.2 Scenario-3

This scenario is defined as complete excavation of the contaminated and transfer of the contaminated mass by train to the SAKAB center.

According to the analysis done by SiteWise^{TMv.1}:

- Excluding the SRT model results, this scenario results in the second to lowest CO₂ release and energy usage among all the scenarios.
- NOx and SOx releases as well as the risk of accidents are considerably lower than for Scenario-1 and Scenario-2.
- According to the Swedish compensation values mentioned above, the emissions produced by Scenario-3 would result in a cost of 5.6 MSEK (0.8 MUS\$).
- Considering the distances covered by mass transportation in this scenario, the overall footprint is surprisingly low. This is due to the reduced risk of accidents and the smaller environmental footprint associated with Swedish trains.

7.1.3 Scenario-4

This scenario is defined as complete excavation of the contaminated mass and its transfer by ship to the Noah center with SMED based ship-cargo-impact values. According to the analysis done by SiteWise^{TMv.1}:

- GHG emission in this scenario is the highest among other scenarios.
- Change in the inventory factors for ship transportation from SiteWise default values to the SMED based factors, result in a significant reduction in NOx, SOx and PM10 but in a substantial increase in GHG emissions.
- This scenario has a significant amount of energy demand.
- Ship mass transportation shows very high NOx, SOx and PM10 release compared to other scenarios even with the milder SMED based factors.
- According to the Swedish compensation values mentioned above, the emissions produced in Scenario-4 would result in a cost of 31 MSEK (4. 5MUS\$), which is dramatically higher than all other modeled scenarios.

7.1.4 Scenario group 5

Scenarios 5a, 5b, 5c and 5d are defined as partial excavation and transportation of the contaminated mass to the same destinations adopted in scenarios 1 to 4, in which for the scenario with mass transfer to Noah center SMED based ship-cargo-impact values were used.

According to the analysis done by SiteWise^{TMv.1}:

- Having avoided full excavation, this group of scenarios result in a smaller overall environmental footprint.
- This group of scenarios have higher energy consumption rates and concomitant CO₂ emissions at the "remedial action construction" stage compared to earlier full-excavation scenarios due to their extra usage of plastic liners.
- This group of scenarios pose considerably lower risk of accidents compared to the full-excavation scenarios.

• Overall air pollution costs are lower compared to the full excavation scenarios. Scenario-5d show the biggest improvement compared to Scenario-4 followed by Scenario-5a to Scenario-1, Scenario-5b to Scenario-2 and finally the train transportation scenarios.

7.1.5 Scenario-6

Scenario-6 is an ex-situ, on-site soil-washing remedy with minimum soil mass transfer.

According to the analysis done by SiteWise^{TMv.1}:

- This scenario shows the smallest footprint of all the scenarios modeled by SiteWiseTM for the Bohus Varv site.
- A big portion of the CO₂ release and energy usage for this scenario comes as a result of the necessary river bank stabilization process and the remedial activity itself, as excavation and on-site washing has a very low impact.
- The SOx, NOx, PM10 and accident risks are mostly remedy oriented.
- According to the Swedish compensation values for air pollution, the CO₂, NOx and SOx emissions produced in this scenario would result in a cost of 5.2 MSEK (0.74 MUS\$).

7.1.6 Scenario-7

This is an in-situ stabilization and solidification technique. SiteWise^{TMv.1}'s results are as follows:

- This scenario has the second highest CO₂ release and the second highest consumption of energy of all other scenarios.
- The high energy consumption and GHG effect of the scenario are the result of its high cement consumption rate and the fact that cement's life cycle has a considerable environmental impact.
- Scenario-7 involves a higher risk of accidents compared to the scenarios 5c, 5d and 6 due to cement transportation to the site.
- According to the Swedish compensation values mentioned above, the CO2, NOx and SOx emissions produced in this scenario could result in a cost of 15 MSEK(2.2MUS\$).

7.2 The Hexion remediation project

Remediation scenarios for the Hexion site were modeled in two phases. The first phase was modeled by 11 scenarios and the second phase is modeled by 3 scenarios.

7.2.1 Phase one

Phase one is modeled in a similar way found in Hector (2009) for this phase, mass excavation and a landfilling stage is considered for all the scenarios. The scenarios are differentiated by the destination of transported contaminated mass and the amount of mass to be landfilled.

7.2.1.1 Scenario-1 and Scenario-2

These two scenarios involve an excavation of the contaminated mass and its transportation by truck to the Kikåstappen site at Scenario-1 and to the Ragnsell site in Scenario-2.

The results from both tools show:

- The SRT models for these two scenarios result in higher footprints for all categories compared to SiteWise^{TMv.1} models, with the exception of the SOx metric.
- Scenario-1 has significantly lower footprints compared to Scenario-2.
- Scenario-2 has the highest accidental risk of all scenarios modeled.
- A major part of these scenarios' impacts occurs in the remedial activity stage.
- According to the SRT results, the cost of environmental compensation for GHG release is estimated to 380 and 1000 dollars (2450 and 6450 SEK) for the Scenario-1 and the Scenario-2 respectively, considering Chicago Climate Exchange Costs, and to 7600 and 20000 dollars (49000 and 400000 SEK), according to the Bank of America suggestions.
- According to the Swedish traffic administration and the Swedish EPA recommendations, which are calculated based on the rates 1.5SEK/kg CO2 release (SIKA, 2009), 20 SEK/kg for SOx release (SIKA, 2005) and 40 SEK/kg for NOx release (SDEPA, 2004), Scenarios 1 and 2's emissions would be associated with a cost of 0.11 and 0.72 MSEK (16,000 and 100,000 US\$) respectively. It should be noted that road traffic-related emissions are already compensated by the tax increase on fuel prices.
- Applying the aforementioned Swedish compensation rates to SRT's results would result in a cost of 0.31 and 0.87 MSEK (45,000 and 120,000) for these two scenarios.
- Comparisons of the metrics for each tonne of contaminated soil, from both the tools with Hector (2009) are presented in figures 7.1 for scenario-1 and 7.2 for scenario-2. According to the results, SiteWise^{TMv.1} models reveal a lower footprint than SRT's results and Hector (2009).

Figure 7.1 Comparison of results for Scenario-1 from SiteWiseTM, SRT and Hector (2009).

Figure 7.2 Comparison of results for Scenario-2 from SiteWiseTM, SRT and Hector (2009).

7.2.1.2 Scenario-3

This scenario is an excavation of the contaminated mass and its transfer by train to the SAKAB center.

According to the analysis done by SiteWise $^{TMv.1}$:

- This scenario has a considerably lower footprint in all aspects.
- This scenario shows reduced risk of accidents compared to scenarios with long distance transportation by truck.

- According to the Swedish compensation values mentioned above, the CO₂, NOx and SOx emissions produced in this scenario would result in a cost of 0.15 MSEK (22,000 US\$).
- Considering the distances covered by mass transportation in this scenario, the overall footprint is surprisingly low. This is due to the comparatively low risk of accidents and the smaller environmental footprint attributed to Swedish trains.
- Comparisons of the metrics for each tone of contaminated soil, from SiteWise^{TMv.1} tool with Hector (2009) are presented in Figure 7.3 below. According to the results, SiteWise^{TMv.1} models reveal a smaller footprint compared to Hector (2009).

Figure 7.3 Comparison of results for Scenario-3 from SiteWiseTM, SRT and Hector (2009).

7.2.1.3 Scenario-4

In this scenario, the contaminated mass is excavated and transported by truck to a port and shipped to the Noah centre at Langøya.

- Ship mass transportation shows very high NOx, SOx and PM10 releases compared to other scenarios, even with the milder SMED based factors.
- Changing of the inventory factors for ship transportation from SiteWise default values to the SMED based factors, result in a significant reduction in NOx, SOx and PM10 but in a substantial increase in GHG emissions.
- According to the Swedish compensation values mentioned above, the CO₂, NOx and SOx emissions produced in this scenario could result in a cost of 7.1 MSEK (1.0MUS\$) which is the second highest value for the Hexion case.
- Comparisons of the metrics for each tone of contaminated soil, from the SiteWise^{TMv.1} tool with Hector (2009) are presented in Figure 7.4 below.

According to the results, the footprints for all the emission values are slightly higher in SiteWise^{TMv.1} than in Hector (2009) model. The difference is related to the extra remediation stages considered in the SiteWise^{TMv.1} models but not included in Hector (2009). See Appendix 16 for details.

Figure 7.4 Comparison of results for Scenario-4 from SiteWiseTM, SRT and Hector (2009).

7.2.1.4 Scenario-5

This scenario involves the vapour extraction of contaminated portions of the site with volatile contaminants combined with excavation of the site for future needs and transfer by train of a quantity of the mass to the SAKAB site.

According to the analysis done by both the tools:

- The SRT model shows the highest GHG emissions and energy use among all the scenarios, though significant differences can be observed in SiteWise^{TMv.1}'s estimations. A reason for this variation is that, in the SRT scenario modeling, vapor extraction technology is modeled by Activated Carbon Filtering (GAC) and the US electricity mix is adopted by the tool; on the other hand, in scenario modeling with SiteWise^{TMv.1}, the Swedish electricity mix is adapted and the scenario is modeled just as remediation preparation activity (e.g. Well drilling and equipment transport to the site, etc,) and a certain amount of electricity use for the remedy, based on available data.
- Both models show relatively low SOx, NOx and PM10 emissions.
- As a result of reduced transportation, the accident risks are less significant in this scenario.
- According to the SRT results, the cost of environmental compensation for GHG release is estimated at 18000 dollars (0.12 MSEK) for this scenario considering Chicago Climate Exchange Costs and 360000 dollars (2.32 MSEK) according to the Bank of America suggestions.

 The aforementioned recommended Swedish compensation prices for CO₂, NOx and SOx emissions would result in a cost of 0.14 MSEK (20,000US\$) for SiteWise^{TMv.1} model and 13 MSEK (1.8MUS\$) for the SRT model. Comparisons of the metrics from both the tools to Hector (2009) are presented in Figure 7.5. The SRT models estimate the scenario's emission values to be greater than what had been seen in Hector's work and in the SiteWise^{TMv.1} results, which can be explained by the mentioned simplicity in modelling and differences in electricity mix.

Figure 7.5 Comparison of results from SiteWiseTM, SRT and Hector (2009).

7.2.1.5 Scenario group 6

Scenario 6 is defined as an ex-situ, on-site soil-washing remedy, after which reusable portions of the sievable mass is extracted and transferred by boat to the Noah facility at Langøya (6a), to the Ragnsell center by truck (6b) and to the SAKAB by train (6c).

According to the analysis done by SiteWise^{TMv.1}:

- This group of scenarios results in lower overall environmental footprint compared to scenarios 4, 3 and 2. This reduction is due to a decrease of 6500 tons of mass needed to be landfilled.
- Scenario-6a with boat transport shows the highest improvement in footprint reduction and Scenario-6c shows the lowest reduction.
- Scenario-6a shows the highest SOx, NOx and PM10 emissions and Senario-6b has the highest risk of accidents of the scenario group.
- In the comparison between this scenario group with Hector (2009), since in both the studies, the SoilTechTM company's values are used for soil washing process, the difference in values follows the difference seen in Scenario-1,2 and 3 between both studies.

7.2.2 Phase two

Phase two was modelled by taking into account the entire contaminated soil mass to be dealt with. For this phase, the same partial mass excavation and landfilling stage, modelled in phase one, is also considered.

7.2.2.1 Scenario-7

This scenario is defined as an excavation of the entire contaminated soil mass and its transfer by truck to Kikåstappen and by train to the SAKAB site, depending on the level of contamination. According to the analysis done by SiteWise^{TMv.1}:

- This scenario shows a relatively small footprint.
- Compared to the scenarios modelled in phase one, with partial excavation, full excavation result differences are not very big.
- In this scenario, the entire contaminated soil mass is handled, which results in a larger reduction of risk but a greater demand for land to accommodate landfilling facilities.
- According to the Swedish compensation values mentioned above, the CO₂, NOx and SOx emissions produced in this scenario would result in a cost of 0.33MSEK (47,000 US\$).

7.2.2.2 Scenario-8

An in-situ stabilization and solidification technique is modeled by $SiteWise^{TMv.1}$ in this scenario.

According to the analysis:

- This scenario has very high CO₂ emissions and energy usage, second after Scenario-5 (modeled by SRT) and biggest among SiteWise^{TMv.1} models, and has the highest CO₂ emissions and energy usage among SiteWise^{TMv.1} models.
- The high energy consumption and GHG effect of the scenario is due to the high cement consumption rate involved. Cement as a material has a considerable footprint, when its full life cycle is taken into consideration.
- According to the Swedish compensation values mentioned above, the NOx and SOx and above all the CO₂ emissions produced in this scenario would result in a cost of 6.4MSEK(0.91 MUS\$).

7.2.2.3 Scenario-9

Scenario 9 is an ex-situ, on-site soil-washing remedy, after which the recyclable portion of the sievable mass is excavated, a smaller portion is transported to the SAKAB center by train.

According to the analysis done by SiteWise^{TMv.1}:

- This scenario has very low GHG emissions and a relatively low energy demand.
- The footprint of this scenario per ton of contaminated soil to be handled is the lowest among all modeled scenarios in both phases.

• According to the Swedish compensation values mentioned above, the NOx and SOx and above all the CO₂ emissions produced in this scenario would result in a cost of 0.27 MSEK(38,000 US\$).
8 Discussions and recommendations

8.1 The Bohus Varv remediation project;

- The footprint made by the studied remediations' investigation stage is negligible.
- Site stabilization activity contributes enormously to each remediation activity's GHG emissions. Sheet-piling, which is included in all the scenarios modeled in this thesis, is considered necessary for the prevention of landslides rather than the remediation itself and could therefore be excluded from the decision making process.
- Activities powered by electricity result in a reduced footprint compared to activities powered by fossil fuels. Within this concept, total energy usage is a crucial metric to be considered. As long as the electricity used at the site is produced with low foot printing (green way), electricity oriented-activities are strongly recommended. Special attention needs to be given to implement low energy-demanding technologies if the electricity mix relies on fossil fuels.
- More than any other form of transportation, road transportation results in high risks of accidents. This risk increases, of course, as the distances needed to be travelled and the number of required trucks increases. According to health risk levels estimated by the SADA software, the risks involved in transportation are comparable to the long-term exposure health risks of leaving the site untreated.
- At present, transportation by ship results in very high levels of NOx, SOx and PM10 emissions to the environment relative to other transport types. However, the potential of fuel usage optimization and the improvement of ship fuel quality and emission filtering technologies are currently under extensive investigation, the results of which should be considered if transportation by ship is required in future projects.

8.2 The Hexion site remediation project;

- The footprint made by the studied remediations' investigation stage is negligible.
- Long-term monitoring is included in two of the scenarios, which contributes in a not insignificant way to their overall risk factors and environmental footprint.
- In each scenario, it was considered mandatory to include the excavation of 49,000 metric tons of mass to allow for the necessary demolition and construction of the planned facilities. However, for some remedial scenarios, this extra activity may be excluded.
- For the vapor extraction scenario, only 30 units (each 100 square meters) of the whole sites were included and only well-drilling and electricity usage were considered in the process. With more detailed available data, especially about

the filtering technique used, the final SiteWise^{TMv.1} result could be very different from the calculated and presented values in this report.

- The Solidification and Stabilization activity can be combined with the future planning of the site and considered to be a part of foundation construction. A life cycle assessment with wider boundary conditions, including the future construction plan, could further emphasize the positive side of this scenario.
- More than any other form of transportation, road transportation results in high risks of accidents. This risk increases, of course, as the distances needed to be travelled and the number of required trucks rose. According to health risk data by SADA software, the risks involved in transportation by trucks are comparable to the long-term exposure health risks of leaving the site untreated.

8.3 Tool evaluations:

8.3.1 SRT

- SRT is developed to include the three classic dimensions (ecological, economic and social) of sustainability in remedial decision making (e.g. MCDA & CBA are possible), but all these three dimensions are adaptable in a very specific predefined manner by the developers.
- The defined structure of SRT models for remediation technologies makes it easier to analyze a contaminated site and to consider the sustainability of remediation at an early stage for future decision making. This structure can, on the other hand, limit the user when modeling other relevant technologies.
- To estimate and include specific additional metrics such as individual costs, total energy used, CO₂ emission released and lost hours due to accidents, an additional study is needed.
- In order to use SRT to support decision-making in Sweden, substantial adaptations are needed which are not implemented in this study; e.g. the footprint of the energy mix (which is a combination of different energy source footprints), using Swedish environmental compensation values as well as adaptation of natural resource attenuation definitions. Therefore presented values within this study are estimated based on the tool's original default American data sources.

8.3.2 SiteWiseTM (Ver.1)

• SiteWise^{TMv.1} offers a reasonably comprehensive perspective, covering environmental dimensions and some social factors (e.g. the concomitant risks of accidents to society). However, for a truly inclusive, wide-ranging perspective, economic dimensions should also be combined with the results the tool offers.

- SiteWise^{TMv.1} does not have a defined structure for its models and it is therefore adaptable for all kinds of construction activities. This makes it possible to model remedial activities with more precision and fewer deductions, but it requires much more data input in the initial stages and extensive technical understanding and skills.
- SiteWise^{TMv.1} models the activities and presents the results in different remediation stages from Investigation to Monitoring. It allows the user to differentiate between different stages and increases the potential for overall optimization.
- In order to use SiteWise^{TMv.1} to support the decision-making process in Sweden, some adaptations on the inventory values for electricity use, train transportation and ship-cargo transport values are needed, which are all implemented within this study.
- Although it is possible to import metrics directly into the tool, which was already adapted to model the soil-washing process in this study for example, it is much better to model the activity by the SiteWise^{TMv.1} tool instead.
- Default NOx, SOx and PM10 inventory factors used for ship cargo transportation in SiteWise^{TMv.1} tool are very conservative and therefore they result in prediction of extremely high emission release magnitudes, which seem unrealistic and require precise reviews. It is therefore recommended to use inventory factors based on other sources than SiteWise^{TMv.1}.

A structured and subjective tool evaluation is presented in the table below. Comparison is made considering the tools' coverage on different categories.

C	onsidered category	SRT	SiteWise™
	Help and Guide		
	Manual		
	Clear application		
User Friendliness	Default values		
	Adaptation need for Sweden		
	Easy adaptation application		
	References		
	Different remediation stages		
	Material Life Cycle consideration		
Concept Coverage	Social & Economical coverage		
	Remediation technology		
	Big amount of input data		
	Data need		
Modeling	Modeling time		
	User Familiarity with Remediation		
	Clearance		
	Easy to follow		
Desult	Cost Benefit Analysis		
Result	Multi Criteria Analysis		
	Probabilistic Analysis		
	Comparable diagrams, charts		
		NO	YES

Table 8.1 Qualitative comparison of SRT and SIteWise^{TMv.1}.

8.4 Limitations of this thesis and suggestions for future study

- The ability to combine the estimated environmental footprints with comprehensive social and economic data to make full sustainability evaluations of both the projects would be very informative and useful for constructive decision-making
- A discrete classification of fuel usage and electricity bills connected to the project, separate from other financial spending, would allow for more useful analysis.
- Ex-situ and in-situ soil-washing technology models should be generated, which would be more reliable than using generic data.
- A combination of the Remedial Action Cost Engineering and Requirements (RACERTM) software with the SiteWise^{TMv.1} tool is recommended.
- To fully exploit SRT's capacity, knowledge of the cost of local technology, environmental compensation values as well natural resource attenuation definition is crucial.
- It would be informative for future studies to work with probabilistic uncertainties, since SiteWise^{TMv.1} has this capacity.
- There is considerable disparity in data regarding the extent to which ships pollute the environment. Research into the reliability of such data, with the aim of establishing accurate metrics for ship transportation, would be valuable.
- Default NOx, SOx and PM10 for ship-cargo-impact values in SiteWise^{TMv.1} are very uncertain. Further communication with the tool's developers in order to get more specific motivation is required. It is recommended to replace the available default values with the project specific inventory factors.

9 Bibliography

- Bardos, P,. Andersson-Sköld, Y., Blom, S., Keuning, S., Pachon, C., Track, T., Wagelmans, M., Cundy, A., McDaniel, P., Mahoney, M., (2008): Brownfields, Bioenergy and Biofeedstocks and Green Remediation. Special Sessions at Consoil 2008, June 2008, Milan, Italy. http://www.cluin.org/live/archive.cfm
- Battelle, United States (US) Navy, United States Army Corps of Engineers (2010): *SiteWiseTM ver.1 User Guide*.
- Brusseau, M.L., Maier, R.M., (2004): Soil and Groundwater Remediation Environmental monitoring and characterization, *Elsevier*, page 335-356.
- Budianta, W., Salim, Ch., Hinode, H., Ohta, H. (2010): In-situ Washing by Sedimentation Method for Contaminated Sandy Soil. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Volume_15, Issue_1 Article_15, page 157-168ScholarWorks@UMass Amherst
- Cooper, D., Gustafsson, T. (2004): Methodology for calculating emissions from ships: *1. Update of emission factors. Swedish Methodology for Environmental Data.*SMHI Swedish Meteorological and Hydrological Institute, ISSN: 1652-4179, Norrköping, Sweden, 2004.
- COWI, (2009-2011): *Daily report of remediation activity in Bohus Varv project*. Ale kommun.
- Curran, M.A.(2000): Development of life cycle assessment methodology:a focus oncoproduct allocation. PhD. Thesis, Erasmus University Rotterdam, 2008.
- Environmental Management Support, Inc., Silver Spring, MD.;Environmental Protection Agency, Washington, DC. Office of Solid Waste and Emergency Response, (1999): *Phytoremediation ResourceGuide*. United States Environmental Protection Agency, EPA 542-B-99-003, Washington DC.
- European Environment Agency, (2007): Progress in management of contaminated sites. European Environment Agency ,Online Report CSI 015, Copenhagen, Denmark, 2007.
- Federal Remediation Technologies Roundtable (FRTR), (2011): FEDERAL REMEDIATION TECHNOLOGIES ROUNDTABLE MEETING. Arlington, Virginia May 13, 2010.
- GSI Environment (2011): RBCA Tool Kit for Chemical Releases (Version 2.5) [Software]. Available from: http://www.gsi-net.com/en/software/rbca-for-chemical-releases-v25.html
- Hector, J., (2009): *Miljöpåverkan vid marksanering emissioner vid sanering av fastigheten Trädgården 1:124 (Hexionområdet)*. Master of scince Thesis, Chalmers University of Technology, Göteborg, Sweden, 2009.
- Holm, T. from SWECO (2006): Bohus Varv Huvudstudie: Undersökningar, riskbedömning och åtgärdsutredning. [Power Point slides] Retrieved from http://www.renaremark.se/filarkiv/rmvest/2010/aledagen/4.Thomas_Holm.pdf
- Ivey-sol, (2010): Surfactant enhanced ex-situ soil washing of oil and gas contaminated solids, Patagonia Argentina case-study, 17TH INTERNATIONAL

PETROLEUM & BIOFUELS ENVIRONMENTAL CONFERENCE. SAN ANTONIO. [Power Point slides] Retrieved from: http://ipec.utulsa.edu/Conf2010/Powerpoint%20presentations%20and%20papers% 20received/Ivey_Argentina_SER_SoilWashing.pdf

- Jasperse, B., and Ryan, C.R.,(1992): In-Situ Stabilization and Fixation of Contaminated Soils by Soil Mixing , ASCE Geotechnical Division Specialty Conference Grouting, Soil Improvement, and Geosynthetics. New Orleans, LA, February 1992.
- Leaders, E. C. (2008): Commuting, Business Travel and Product Transport & Direct Emissions from Mobile Combustion Sources. US EPA, May, 2008.
- Lesage, P., Ekvall, T., Deschênes, L., Samson, R. (2007): Environmental assessment of brownfield rehabilitation using two different life cycle inventory models. *The International Journal of Life Cycle Assessment*, Volume 12, Number 6, 391-398, DOI: 10.1065/lca2006.10.279.1.
- Magnusson, J., Norin, M. (2008): *Program för hantering av dagvatten vid rivningsoch saneringsarbeten*. NCC Teknik, Uppdragsnummer: 7024603-0100, Göteborg, Sweden.
- Mellin, T. from COWI AB (2009): Bohus varv: Kompletterande markundersökningar Kompletterande markundersökningar Projektering av saneringen. [Power Point slides] Retrieved from http://www.renaremark.se/filarkiv/rmvest/2010/aledagen/5.Torgny_Mellin.pdf
- Morais, S, A., Matos, C, D. (2010): A perspective on LCA application in site remediation services: Critical review of challenges, *Journal of Hazardous Materials* 12–22.
- NCCTeknik, (2007): Översiktlig miljöteknisk markundersökning-Hexion. Mölndals kommun, , Sweden, 2007.
- Notteboom, T. and P. Carriou (2009): Fuel surcharge practices of container shipping lines: Is it about cost recovery or revenue making? Proceedings of the 2009 International Association of Maritime Economists (IAME) Conference, June, Copenhagen, Denmark.
- ORD & SWER (1991): *Guide for Conducting Treatability Studies Under CERCLA: Soil Washing.* Interim GuidanceWashington, D.C. 20460USEPA, (Risk Reduction Engineering Laboratory Office of Research and Development & Office of Emergency and Remedial Response Office of Solid Waste and Emergency Response), Washington, D.C, USA, September 1991.
- Onwubuya, K., Cundy, A.B., Puschenreiter, M., Kumpiene, J., Greaves, J., Teasdale, P., Mench, M., Tlustos, P., Mikhalovsky, S., Waite, S., Friesl, W., Marschner, B. and Muller, I. (2009): *Developing decision support tools for the selection of "gentle" remediation approaches* Science of the Total Environment, 388 (1-3). pp. 6132-6142
- Quickfall, G. (2000): Selection of Stabilisation Methods for Road Works. Available: http://www.hiwaystabilizers.co.nz/divisions/hiway-environmental/. Last accessed 2011.

- RAC. (2001): *North American Trade and Transportation Corridors*. available at http://www.cec.org/files/pdf/POLLUTANTS/Rac_EN.pdf. Commission for Environmental Cooperation.
- Risk Reduction Engineering Laboratory Office of Research and Development & Office of Emergency and Remedial Response Office of Solid Waste and Emergency Response, (1991): *Guide for Conducting Treatability Studies Under CERCLA: Soil Washing*, USEPA, Interim Guidance, 20460USEPA, Washington, D.C., September 1991.

Scandiaconsult (Ramböll), (2001): *Riskhantering och beslutsanalys för prioritering av åtgärder vid förorenade områden - beskrivning av preliminär metodik.* Alle Kommun, May 2001.

- Scientific Applications International Corporation (SAIC), (2006): *LIFE CYCLE ASSESSMENT: PRINCIPLES AND PRACTICE*. US EPA, EPA/600/R-06/060 Cincinnati, Ohio, May, 2006.
- SIKA, (2005): FÖRSLAG TILL REVIDERADE VÄRDERINGAR AV TRAFIKENS UTSLÄPP TILL LUFT, SIKA PM 2005:10.
- SIKA, (2009): Värden och metoder för transport-sektorns samhällsekonomiska analyser ASEK 4. Statens institut för kommunikationsanalys, ISSN 1402-6651, 2009-09-28.
- SoilTech. (2011): Soil Washing Technique. Available: www.soiltech.nu.
- Swedish EPA (Naturvårdsverket), (2004): Förslag för kostnadseffektiv minskning av kväveoxidutsläpp. NVV, ISBN:91-620-5356-6.
- Swedish Geotechnical Institut, (1995): *Redovisning av skredriskanalys utförd*. SGI 1995, från Varia 439SGI.
- Swedish EPA, (2007): *Efterbehandling av förorenade områden*. NVV, ISBN 91-620-1234-7.pdf, Manual efter behandling utgåva 4, 2008.
- SWECO, (2009): Fastigheten trädgården 1:124, Hexionområdet. Mölndal, Åtgärdsutredning inklusive, förslag till övergripande och mätbara åtgärdsmål. SWECO, 2009.
- SWECO, (2009): FASTIGHETEN TRÄDGÅRDEN 1:124, KVARNBYPARKEN, MÖLNDAL. NCC Boende AB, Uppdragsnummer 1311119.000, Göteborg 2009-04-15.
- SWECO, (2009): KVARNBYPARKEN, Åtgärdsutredning inklusive förslag till övergripande och mätbara åtgärdsmål. NCC Boende AB, Göteborg, 2009.
- SWECO VIAK, (2006): F D BOHUS VARV, HUVUDSTUDIE, Utförda undersökningar och förorenings-situation, Ale Kommun, Uppdragsnummer 1310845.000, Göteborg, Sweden.
- Swedish Methodology for Environmental Data (SMED), (2004): *Methodology for calculating emissions from ships: 1. Update of emission factors.* Report series SMED and SMED&SLU Nr 4 2004, ISSN: 1652-4179, Norrköping, Sweden.
- Tarbuck, E., Lutgens, F., (2008): Earth-an introduction to physical geology, Upper Saddle River, N.J.: Pearson Prentice Hall, ISBN 0-13-156684-9

- United States (US) Navy, US corps of engineers and Battelle, (2010): *SiteWiseTM User Guide*. United States (US) Navy, US corps of engineers and Battelle, 2010.
- US.AFCEE, (2010): Sustainable Remediation Tool (SRT) User Guide. Air Force Centre of Engineering and Environment.
- US. Department of Energy, Brook Haven National Laboratory, (2000): Web page, available at: http://www.bnl.gov/erd.
- US, Environmental Protection Agency, (1997): RESOURCE GUIDE FOR ELECTROKINETICS LABORATORY ANDFIELD PROCESSES. US Environmental Protection Agency, 1997.
- US, Environmental Protection Agency, (2010): Web address: http://www.epa.gov/
- US Environmental Protection Agency, (2011): *Life Cycle Assessment Research*. Available: http://www.epa.gov/nrmrl/lcaccess/resources.html. Last accessed 5th, April.
- WISMUT, (2010): Web page Available at: http://www.wismut.de/en/tailings_pond_remediation.php
- Zhu, X., Venosa, A .D., Suidan, M. T.(2004): Literature review on the use of commercial bio-remediation agents for clean-up of oil-contaminated estuarine environments. United States Environmental Protection Agency, EPA/600/R-04/075, Cincinnati, Ohio, July, 2004.

10.1 Scenario-1, BohusVarv remediation project.

Remedial Investigation		Note		Remedial	Construction		Note
Matarial Lisa					Material	Use	
					Well Mate	rials	
Well Materials			Number of wells			1050	Processed data
Number of wells	17	Available data	Input depth of w	ells (ft)		40	Processed data
Input depth of wells (ft)	13	Processed data	Well diameter (in	ו)		12	Processed data
Well diameter (in)	2	Assumption based	Material type			Steel	Available data
Material type	PVC	Assumption based	Specific material	schedule		Schedule 40	Assumption based
Specific material schedule	Schedule 40 PVC	Assumption based			GAC		
TRANSPORTATI	ON		Weight of GAC us	sed (lbs)		1,000	Processed data
Personnel transportation	on-Road		Type of GAC			Virgin GAC	Assumption based
Choose vehicle type from drop down menu	Car	Available data			Construction N	Material	-
Fuel used	Gasoline	Available data	Material type			HDPE Liner	Available data
Distance traveled per trip (miles)	12	Assumption based	Area of material	(ft ²)		320	Processed data
Number of trips taken	60	Available data	Depth of materia	il (ft)		12	Processed data
Number of travelers	3	Assumption based			EQUIPMEN	T USE	
Equipment transportati	on-Road				Drilling	:	
Fuel used	Diesel	Available data	Input number of	drilling location	5	1,050	Processed data
Distance traveled (miles)	12	Assumption based	Choose drilling m	nethod from dro	p down menu	Direct Push	Assumption based
Weight of equipment transported (tons)	10	Processed data	Input time spent	drilling at each	ocation (hr)	1	Assumption based
EQUIPMENT	SE		Input depth of w	ells (ft)		20	Available data
Farthwork			Choose fuel type	from drop dow	n menu	Diesel	Assumption based
	-	A stable date		Pum	p operetion-He	ead is known	
Earthwork equipment type	Excavator	Available data	Flow rate (gpm)			95	Processed data
Fuel type	Diesei	Available aata	Total head (ft)			12	Assumption based
Volume of material to be removed (yd [°])	155	Processed data	Number of pump	os operating	rc)	1 280	Available data
Drilling			Dump officionsul	timos motor offi	sioney	1,360	Assumption based
Input number of drilling locations	81	Available data	Specific gravity	lines motor em	liency	1	Known
Choose drilling method from drop down menu	Direct Push	Assumption based	Specific gravity			1	
Input time spent drilling at each location (hr)	1	Processed data					
Input depth of wells (ft)	13	Processed data					
Choose fuel type from drop down menu	Diesel	Available data					
Pump operation-Head i	s known						
Flow rate (gpm)	40	Processed data					
Total head (ft)	12	Assumption based					
Number of numps operating	1	Processed data					
Operating time for each nump (hrs)	1	Processed data					
	50	Processeu uutu					
Pump efficiency times motor efficiency	1/2	Assumption based					
Specific gravity	1	Known					
Remedial Operation		Note					
TRANSDORTATI	ON	Hote					
Personnel transportation	on-Road						
Choose vehicle type from drop down menu	Cars	Available data					
Fuel used	Gasoline	Available data					
Distance traveled per trip (miles)	10	Assumption based					
Number of trips taken	4960	Available data					
Number of travelers	1	Assumption based					
Personnel transportat	ion-Air						
Distance traveled (miles)	1,850	Available data					
Number of travelers	3	Available data					
Number of flights taken	1	Available data			-		
	QUIPMENT US	Ε					
	Earthwork						
Farthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Processed data			
Volume of material to be removed (vd ³)	70390+5/1/0	91513+70200	249078	Processed data			
volume of material to be removed (yd)	70330T34149	21212±10230	2470/0	r rocesseu uuta			
	RESID Disposal t	OAL HANDLING Transportation-Road					
Weight of the waste transported to landfill (tons)	7	0	14	0	14 /	Processed data	
Vehicle type		On-	road truck		- E	Available data	
Fuel used		(Gasoline			Available data	
Total number of trips	43000	8350	6500	6500	8350	Processed data	
Number of miles per trip	1/2	115	10	10	115 <i>I</i>	Processed data	

10.2 Scenario-2, BohusVarv remediation project.

Remedial Investigation		Note		Remedial	Constructio	n	Note
		NOLE			Material	Use	
Material U	se				Well Mate	erials	
Well Materia		A stable date	Number of we	ells		1050	Processed data
Number of wells	17	Available data Brocossod data	Input depth o	f wells (ft)		40	Processed data
Well diameter (in)	2	Assumption based	Well diameter	r (in)		12	Processed data
Material type	PVC	Assumption based	Material type			Steel	Available data
Specific material schedule	Schedule 40 PVC	Assumption based	Specific mater	rial schedule	C.A.C	Schedule 40	Assumption based
TRANSPORTA	TION		Weight of CA	Cused (lbs)	GAC	1.000	Processed data
Personnel transporta	tion-Road			c useu (ibs)		Virgin GAC	Assumption based
Choose vehicle type from drop down menu	Car	Available data			Construction	Material	
Fuel used	Gasoline	Available data	Material type			HDPE Liner	Available data
Distance traveled per trip (miles)	12	Assumption based	Area of mater	ial (ft ²)		320	Processed data
Number of trips taken	60	Available data	Depth of mate	erial (ft)		12	Processed data
Number of travelers	3	Assumption based			EQUIPMEN	IT USE	
Equipment transport	ation-Road				Drillin	g	_
Fuel used	Diesel	Available data	Input number	of drilling locati	ons	1,050	Processed data
Weight of equipment transported (tons)	10	Processed data	Choose drillin	g method from c	trop down me	nu Direct Push	Assumption based
FOUIPMENT	USE		Input time spo	f wells (ft)	ch location (hr	20	Assumption based Available data
Farthwork			Choose fuel ty	pe from drop do	own menu	Diesel	Assumption based
Earthwork equipment type	Excavator	Available data		Pum	p operetion-H	ead is known	
Fuel type	Diesel	Available data Available data	Flow rate (gpr	n)		95	Processed data
Volume of material to be removed (vd ³)	155	Processed data	Total head (ft)		12	Assumption based
Drilling		riotesseu uutu	Number of pu	mps operating		2	Available data
Input number of drilling locations	81	Available data	Operating tim	e for each pump	(hrs)	1,380	Processed data
Choose drilling method from drop down menu	Direct Push	Assumption based	Pump efficien	cy times motor e	efficiency	1/2	Assumption based
Input time spent drilling at each location (hr)	1	Processed data	Specific gravit	Ŷ		1	Known
Input depth of wells (ft)	13	Processed data					
Choose fuel type from drop down menu	Diesel	Available data					
Pump operetion-Hea	d is known						
Flow rate (gpm)	40	Processed data					
Total head (ft)	12	Assumption based					
Number of pumps operating	1	Processed data					
Operating time for each pump (hrs)	56	Processed data					
Pump efficiency times motor efficiency	1/2	Assumption based					
Specific gravity	1	Known					
Remedial Operation		Note					
TRANSPORTA	TION	Hote					
Personnel transnorta	tion-Road						
Choose vehicle type from drop down menu	Care	Available data					
Fuel used	Gasoline	Available data					
Distance traveled per trip (miles)	10	Assumption based	1				
Number of trips taken	4960	Available data					
Number of travelers	1	Assumption based					
Personnel transport	ation-Air						
Distance traveled (miles)	1,850	Available data					
Number of travelers	3	Available data					
Number of flights taken	1	Assumption based	l				
	EQUIPMENT	JSE					
	Earthwork						
Earthwork equipment type	Excavator-Ret	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Processed data	-		
Volume of material to be removed (yd ³)	70390+54149	91513+70390	249078	Processed data			
	RES Dispos	IDUAL HANDLIN al transportation-R	G oad				
Weight of the waste transported to landfill	7	0	14	0	14 P	rocessed data	
Vehicle type		On	-road truck		A	vailable data	
Fuel used			Gasoline		A	vailable data	
Total number of trips	43000	8350	6500	6500	8350 P	rocessed data	
Number of miles per trip	1/2	151	110	10	151 P	rocessed data	

10.3 Scenario-1&2, SRT input data, BohusVarv

SRT -Sita									
NSS									
Soil Source Input*									
450,000	Processed data								
0	Available data								
9	Available data								
2	Available data								
Natural attenuation									
Disabled	-								
J									
n-Air									
1,850	Available data								
10	Assumption based								
2,480	Processed data								
2	Assumption based								
39.25**	Processed data								
Hazardous	Available data								
	ASS 450,000 0 9 2 Disabled Disabled A A 2 1,850 10 2,480 2 39.25** Hazardous								

* The amount of soil is double calculated in order to cover whole the earthwork ** distance is calculated as weighted average of the distances

for source and landfill 39.25= (10/1.3+114.9*1.3)/2*2

SRT -Ragnsell									
CONTAMINATED MA	ASS								
Soil Source Input*									
Area of effected soil (ft ²)	450,000	Processed data							
Depth to Top of the Affected soil (ft)	0	Available data							
Depth to Bottom of the Affected soil (ft)	9	Available data							
Depth of Groundwater (ft)	2	Available data							
Natural attenuation									
Calculation of natural resource service	Disabled	-							
TRANSPORTATION									
Personnel transportation	n-Air								
Distance traveled (miles)	1,850	Available data							
Personnel transportation-Road									
Distance traveled by site workers one-way (miles)	10	Assumption based							
Number of trips during construction	2,480	Processed data							
Number of trips after construction	2	Assumption based							
Distance to disposal one-way (miles)	18.7**	Processed data							
Type of disposal	Hazardous	Available data							

* The amount of soil is double calculated in order to cover whole the earthwork ** distance is calculated as weighted average of the distances

for source and landfill 18.7= (10/1.3+51.24*1.3)/2*2

11.1 Scenario-3, BohusVarv remediation project.

Remedial Investigation		Note		Remedial	Construction		Note
Matorial Lis	•				Material Us	e	
	2				Well Materia	ls	
Well Material	s I		Number of well	S		1050	Processed data
Number of wells	17	Available data	Input depth of v	wells (ft)		40	Processed data
Input depth of wells (ft)	13	Processed data	Well diameter (in)		12	Processed data
Material type	2 PVC	Assumption based	Specific material	l cchodulo		Steel	Available data
Specific material schedule	Schedule 40 PVC	Assumption based	Specific materia	il schedule	GAC	Schedule 40	Assumption bused
		rissumption buscu	Weight of GAC	used (lbs)	GAC	1 000	Processed data
Deres and transported	ion Bood		Type of GAC	useu (153)		Virgin GAC	Assumption based
Personnel transportat	Ion-Road	Available data			Construction Ma	terial	
Choose vehicle type from drop down menu	Casalina	Available data	Material type			HDPE Liner	Available data
Distance traveled per trip (miles)	12	Available dutu Assumption based	Area of materia	l (ft ²)		320	Processed data
Number of trips taken	60	Available data	Depth of materi	ial (ft)		12	Processed data
Number of travelers	3	Assumption based			EQUIPMENT	USE	
Equipment transportat	tion-Road	ļ			Drilling		
Equipment transporta	Diesel	Available data	Input number o	of drilling location	ıs	1,050	Processed data
Distance traveled (miles)	12	Available dutu Assumption based	Choose drilling	method from dro	op down menu	Direct Push	Assumption based
Weight of equipment transported (tops)	10	Processed data	Input time spen	t drilling at each	location (hr)	1	Assumption based
FOLIPMENT I	ISE	riocessea aata	Input depth of V	wells (ft)	m monu	20 Diocol	Available data
Equilibrium Control Co			choose ruer typ	Dum	in operetion-Head	l is known	Avanable data
Earthwork	Ir	Annilable	Flow rate (gpm)	Pun	p-operetion-meat	95	Processed data
Earthwork equipment type	Excavator	Available data	Total head (ft)			12	Assumption based
	100		Number of pum	ps operating		2	Available data
Volume of material to be removed (yd ²)	155	Processea data	Operating time	for each pump (I	hrs)	1,380	Processed data
Drilling	-	T	Pump efficiency	times motor eff	iciency	1/2	Assumption based
Input number of drilling locations	81	Available data	Specific gravity			1	Known
Choose drilling method from drop down menu	Direct Push	Assumption based					
Input time spent drilling at each location (hr)	1	Processed data					
Input depth of wells (ft)	13 Discal	Processea aata					
Choose ruer type from drop down menu	Diesei	Available data					
Pump operation-Head	Is known	1					
Flow rate (gpm)	40	Processed data					
Total head (ft)	12	Assumption based					
Number of pumps operating	1	Processed data					
Operating time for each pump (hrs)	56	Processed data					
Pump efficiency times motor efficiency	1/2	Assumption based					
Specific gravity	1	Known	1				
Remedial Operation		Note	1				
TPANSDOPTAT		Note					
Personnel transportat	ion-Road	I					
Choose vehicle type from drop down menu	Cars	Available data					
Puer used	Gasoline	Available data	1				
Distance traveled per trip (miles)	10	Assumption based	1				
Number of travelers	1	Assumption based	1				
Dorsonnol transports	tion-Air						
Personner transporta	1 950	Augilable	1				
Distance traveled (miles)	1,850	Available data	•				
Number of flights taken	1	Available data	1				
Number of hights taken		Available data					
	Earthwork	1	1	7			
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Available data			
Volume of material to be removed (yd ³)	70390+54149	91513+70390	249078	Processed data	J		
RESIDUAL HANDLING Disposal tra	nsportation-Rail						
Distance traveled (miles)	60,000	60,000	Processed data	1			
Weight of load (tons)	330	1	Processed data	1			
	Disposal transpo	- ortation-Road					
Weight of the waste transported to landfill (tops)	14		14	0	Processed data		
Vehicle type	1- 7	On-road	l÷ ~ truck	1 2	Available data		
Fuel used		Gasoli	ne		Available data		
Total number of trins	21300	21300	6500	6500	Processed data		
Number of miles per trip	0.5	0.5	10	10	Processed data		

11.2 Scenario-4, BohusVarv remediation project.

Remedial Investigation		Note		Remedial	Construction		Note
Matarial Lla					Material Use	9	
Iviaterial Ose	:				Well Material	5	
Well Materials	5		Number of wells			1050	Processed data
Number of wells	17	Available data	Input depth of y	, vells (ft)		40	Processed data
Input depth of wells (ft)	13	Processed data	Well diameter (i	n)		12	Processed data
Well diameter (in)	2	Assumption based	Material type	,		Steel	Available data
Material type	PVC	Assumption based	Specific materia	l schedule		Schedule 40	Assumption based
Specific material schedule	Schedule 40 PVC	Assumption based	opeenie materia	Schedule	GAC	Seliculie 40	Assumption bused
TRANSPORTAT	ION		Weight of CAC.	and (line)	GAC	1.000	Over each of a factor
Demonstral transmertet	on Dood		Weight of GAC L	ised (ibs)			Processed data
Personner transportat	on-koau	I	Type of GAC		C	Virgin GAC	Assumption bused
Choose vehicle type from drop down menu	Car	Available data			Construction Mat	eriai	
Fuel used	Gasoline	Available data	Material type			HDPE Liner	Available data
Distance traveled per trip (miles)	12	Assumption based	Area of materia	(ft ²)		320	Available data
Number of trips taken	60	Available data	Depth of materi	al (ft)		12	Available data
Number of travelers	3	Assumption based			EQUIPMENT U	ISE	
Equipment transportat	ion-Road				Drilling		
Fuel used	Diesel	Available data	Input number o	f drilling location	s	1,050	Processed data
Distance traveled (miles)	12	Assumption based	Choose drilling	method from dro	p down menu	Direct Push	Assumption based
Weight of equipment transported (tons)	10	Processed data	Input time spen	t drilling at each	location (hr)	1	Assumption based
FOLIPMENT L	SE		Input depth of v	vells (ft)		20	Available data
Equilibrium de	JE		Choose fuel type	e from drop dow	n menu	Diesel	Available data
Earthwork	-	n		Pum	p operetion-Head	is known	
Earthwork equipment type	Excavator	Available data	Flow rate (gpm)			95	Processed data
Fuel type	Diesel	Available data	Total head (ft)			12	Assumption based
Volume of material to be removed (yd ³)	155	Processed data	Number of pum	ps operating		2	Available data
Drilling			Operating time	for each pump (h	nrs)	1.380	Processed data
Input number of drilling locations	81	Available data	Pump efficiency	times motor effi	ciency	1/2	Assumption based
Choose drilling method from dron down menu	Direct Ruch	Assumption based	Specific gravity			1	Known
Input time spont drilling at each location (hr)	1	Processed data					
Input donth of wells (ft)	12	Processed data					
Chaose fuel type from dren down monu	Discol	Available data					
Choose fuel type from drop down mend	Diesei	Available auta					
Ритр орегецол-неад	is known	1					
Flow rate (gpm)	40	Processed data					
Total head (ft)	12	Assumption based					
Number of pumps operating	1	Processed data					
Operating time for each pump (hrs)	56	Processed data					
Bump officiancy times mater officiancy	1/2	Assumption based					
Pump enciency times motor enciency	1/2	Assumption based					
Specific gravity	1	Known					
Remedial Operation		Note					
TRANSPORTAT	ION						
Borsonnol transportat	on Poad						
Personner transportat	on-koau						
Choose vehicle type from drop down menu	Cars	Available data					
Fuel used	Gasoline	Available aata					
Distance traveled per trip (miles)	10	Assumption based					
Number of trips taken	4960	Avallable data					
Number of travelers	1±	Assumption based					
Personnel transporta	tion-Air						
Distance traveled (miles)	1,850	Available data					
Number of travelers	3	Available data					
Number of flights taken	1	Available data			_		
	EQUIPMENT US	E					
	Farthwork						
Forthered a minute the s	Earthwork	Dener	Leader (Dealth an	Augularhia data			
Earthwork equipment type	Excavator-Ret	Dozer	Loader/Backhoe	Available data	4		
Fuel type	Diesel	Diesel	Diesel	Available data	4		
Volume of material to be removed (yd ³)	70390+54149	91513+70390	249078	Processed data	J		
RESIDUA	L HANDLING						
Disposal tran	sportation-Water						
Distance traveled (miles)	9.627	9.627	Processed data				
Weight of load (tons) *	2 200	1	Processed data				
weight of load (tons)	Disposal trapsp	ortation-Road					
Weight of the waste transported to leadfill (towa)			14	0	Processed data		
Weight of the waste transported to landill (tons)	14	<u>ا</u> م	144 taurali	v			
Venicle type		Un-road			Available data		
Fuel used	21200	Gasoli	ne	6500	Available data		
Total number of trips	21300	21300	0000	0000	Processea aata		
Numper of miles per trip	1/2	1 1/2	110	10	Processed data		

* For the analysis using SMED recommended values, effect of cargo weight on consumption rate is not considered and "weight of load" was set to be 1 ton.

12.1 Scenario-5a, BohusVarv remediation project.

			11					
Remedial Investigation		Note		Remedial	Constructi	on		Note
Material Use					Materia	al Use		
Well Materials					Well Ma	iterials		
Number of wells	17	Augilable data	Number of wells			1050		Processed data
Number of wells	17	Available data	Input depth of w	vells (ft)		40		Processed data
Woll diameter (in)	2	Accumption bacad	Well diameter (i	n)		12		Processed data
Material type		Assumption based	Material type			Steel		Available data
Specific material schedule	FVC Schodulo 40 DVC	Assumption based	Specific material	schedule		Sched	ule 40	Assumption based
	Schedule 40 PVC	Assumption based			GA	C		
TRANSPORTATIO	JN .		Weight of GAC u	sed (lbs)		250		Processed data
Personnel transportatio	n-Road		Type of GAC			Virgin	GAC	Assumption based
Choose vehicle type from drop down menu	Car	Available data			Constructio	n Material		
Fuel used	Gasoline	Available data	Material type			HDPE	Liner	Available data
Distance traveled per trip (miles)	12	Assumption based	Area of material	(ft ²)		800		Processed data
Number of trips taken	60	Available data	Depth of materia	al (ft)		12		Processed data
Number of travelers	3	Assumption based			EQUIPME	ENT USE		
Equipment transportation	on-Road				Drill	ing		
Fuel used	Diesel	Available data	Input number of	drilling location	S	1,050		Processed data
Distance traveled (miles)	12	Assumption based	Choose drilling n	nethod from dro	p down men	u Direct	Push	Assumption based
Weight of equipment transported (tons)	10	Processed data	Input time spent	drilling at each	location (hr)	1		Assumption based
EQUIPMENT US	Ε		Input depth of w	vells (ft)		20		Available data
Farthwork			Choose fuel type	from drop dow	n menu	Diesel		Available data
	Evenuet	Augilable		Pum	p operetion	Head is known	۱	
Earthwork equipment type	Excavator	Available data	Flow rate (gpm)			95		Processed data
Fuel type	Diesei	Available aata	Total head (ft)			12		Assumption based
Volume of material to be removed (yd ²)	155	Processed data	Number of pum	os operating		2		Available data
Drilling	_		Operating time f	or each pump (h	irs)	345		Processed data
Input number of drilling locations	81	Available data	Pump efficiency	times motor effi	ciency	1/2		Assumption based
Choose drilling method from drop down menu	Direct Push	Assumption based	Specific gravity			1		Known
Input time spent drilling at each location (hr)	1	Processed data						
Input depth of wells (ft)	13	Processed data						
Choose fuel type from drop down menu	Diesel	Available data						
Pump operetion-Head is	known							
Flow rate (gpm)	40	Processed data	1					
Total head (ft)	12	Assumption based	1					
Number of numero executing	1	Assumption bused	1					
Number of pumps operating	1	Processed data	4					
Operating time for each pump (hrs)	56	Processed data						
Pump efficiency times motor efficiency	1/2	Assumption based						
Specific gravity	1	Known						
Remedial Operation	•	Note	1					
		Note						
Personnel transportatio	n-Road							
Choose vehicle type from drop down menu	Cars	Available data						
Fuel used	Gasoline	Available data						
Distance traveled per trip (miles)	10	Assumption based						
Number of trips taken	4960	Available data	1					
Number of travelers	1	Assumption based	J					
Personnel transportati	on-Air							
Distance traveled (miles)	1.850	Available data	1					
Number of travelers	3	Available data						
Number of flights taken	1	Available data	1					
F	OUIPMENT US	F						
	E-uthorsule	-						
	EarthWork		/=					
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data	-			
Fuel type	Diesel	Diesel	Diesel	Available data	-			
Volume of material to be removed (yd ³)	17597+13537	22878+17597	62269	Processed data				
	RESID Disposal	UAL HANDLING	d					
Weight of the waste transported to landfill (tops)	7		14	0	14	Processed data	7	
Vehicle type	ť – – –	<u>~</u>	I+→ n-road truck	~		Available data	-	
Fuel used	}	0	Gasoline			Available data	-	
Total number of trins	11000	1785	1640	1640	1785	Processed date	,	
Number of miles per trip	1/2	115	10	10	115	Processed date	÷	
Number of filles per trip	-/-	LTT	110	110	LT.2	r rocesseu uata	•	

12.2 Scenario-5b, Bohus Varv remediationproject.

Remedial Investigation		Note		Remedial C	Construction	ı		Note
					Material	Use		
	se				Well Mate	rials		
Number of wells	17	Available data	Number of well	S		1050		Processed data
Input denth of wells (ft)	13	Available data	Input depth of v	wells (ft)		40		Processed data
Well diameter (in)	15 2	Assumption based	Well diameter (in)		12		Processed data
Material type	<u>PVC</u>	Assumption based	Material type	Lashada I		Steel		Available data
Specific material schedule	Schedule 40 PVC	Assumption based	Specific materia	schedule	- 646	Schedule 40	J	Assumption based
TRANSPORTA	TION		Weight of GAC	used (lbs)	GAC	250		Processed data
Personnel transporta	tion-Road		Type of GAC			Virgin GAC		Assumption based
Choose vehicle type from drop down menu	Car	Available data			Construction I	Material		
Fuel used	Gasoline	Available data	Material type			HDPE Liner		Available data
Distance traveled per trip (miles)	12	Assumption based	Area of materia	l (ft ²)		800		Processed data
Number of trips taken	60	Available data	Depth of materi	al (ft)		12		Processed data
Number of travelers	3	Assumption based			EQUIPMEN	T USE		
Equipment transport	ation-Road				Drilling	5		
Fuel used	Diesel	Available data	Input number o	f drilling locatio	ns	1,050		Processed data
Distance traveled (miles)	12	Assumption based	Choose drilling	method from dr	op down men	u Direct Push		Assumption based
Weight of equipment transported (tons)	10	Processed data	Input time spen	t drilling at each	1 location (hr)	1		Assumption based
EQUIPMENT	USE		Choose fuel tur	vells (π) o from dron dow	un mor:	Diosel		Available data Available data
Earthwork			choose ruer typ	e nom drop dov	oneration-H	piesei		
Earthwork equipment type	Excavator	Available data	Flow rate (arm)	Pump	-operetion-H			Processed data
Fuel type	Diesel	Available data	Total head (ft)			12		Assumption hased
Volume of material to be removed (yd ³)	155	Processed data	Number of pum	ps operating		2		Available data
Drilling			Operating time	for each pump (hrs)	345		Processed data
Input number of drilling locations	81	Available data	Pump efficiency	times motor ef	ficiency	1/2		Assumption based
Choose drilling method from drop down menu	Direct Push	Assumption based	Specific gravity			1		Known
Input time spent drilling at each location (hr)	1	Processed data						
Input depth of wells (ft)	13	Processed data						
Choose fuel type from drop down menu	Diesel	Available data						
Pump operetion-Hea	d is known							
Flow rate (gpm)	40	Processed data						
Total head (ft)	12	Assumption based						
Number of pumps operating	1	Processed data						
Operating time for each pump (hrs)	56	Processed data	1					
Pump efficiency times motor efficiency	1/2	Assumption based	1					
Specific gravity	1	Known	1					
		-	-					
Remedial Operation		Note	J					
TRANSPORTA	TION							
Personnel transporta	tion-Road							
Choose vehicle type from drop down menu	Cars	Available data	1					
Fuel used	Gasoline	Available data	4					
Distance traveled per trip (miles)	10	Assumption based	4					
Number of trips taken	4960	Available data	4					
Personnel transport	ation-Air	Assumption based						
Distance traveled (miles)	1 850	Available data	1					
Number of travelers	3	Available data	1					
Number of flights taken	1	Available data	1					
	EQUIPMENT US	SE	•					
Earthwork oquinment type	Earthwork	Dozor	Loador/Paskhes	Available date				
Fuel type	Diesel	Diesel	Diesel	Available data				
Volume of material to be removed (vd ³)	17597+13537	22878+17597	62269	Processed data				
	RESID Disposal	UAL HANDLING	H					
Weight of the waste transported to landfill (tons)	7	0	14	0	14 F	rocessed data	1	
Vehicle type		On	-road truck	1		vailable data	1	
Fuel used			Gasoline		A	vailable data	1	
Total number of trips	11000	1785	1640	1640	1785 F	rocessed data]	
Number of miles per trip	1/2	51	10	10	51 F	Processed data	1	

12.3 Scenario-5c, BohusVarv remediation project.

Remedial Investigation		Note		Remedial	Construction		Note
Matorial Lloo					Material Use	!	
Waterial Ose					Well Materials		
Well Materials		r	Number of wells	5		1050	Processed data
Number of wells	17	Available data	Input depth of v	vells (ft)		40	Processed data
Input depth of wells (ft)	13	Processed data	Well diameter (i	in)		12	Processed data
Well diameter (in)	2	Assumption based	Material type			Steel	Available data
Material type	PVC	Assumption based	Specific materia	l schedule		Schedule 40	Assumption based
Specific material schedule	Schedule 40 PVC	Assumption based			GAC		
TRANSPORTATI	ON		Weight of GAC u	used (lbs)		250	Processed data
Personnel transportation	on-Road		Type of GAC			Virgin GAC	Assumption based
Choose vehicle type from drop down menu	Car	Available data			Construction Mate	erial	
Fuel used	Gasoline	Available data	Material type			HDPE Liner	Available data
Distance traveled per trip (miles)	12	Assumption based	Area of material	l (ft ²)		800	Processed data
Number of trins taken	60	Available data	Depth of materi	al (ft)		12	Processed data
Number of travelers	3	Assumption based			EQUIPMENT U	SE	
Faultement transported	S Dood	Assumption bused			Drilling		
	юп-коай	1	Input number of	f drilling location		1 050	Processed data
Fuel used	Diesel	Available data	Choose drilling r	method from dro	n down menu	Direct Push	Assumption based
Distance traveled (miles)	12	Assumption based	Input time spen	t drilling at each	location (hr)	1	Assumption based
Weight of equipment transported (tons)	10	Processed data	Input depth of y	vells (ft)		- 20	Available data
EQUIPMENT U	SE		Choose fuel type	e from drop dow	n menu	Diesel	Available data
Earthwork				Pum	o operetion-Head i	s known	
Farthwork equipment type	Excavator	Available data	Elow rate (gpm)		o operetion neur	95	Processed data
Fuel type	Diesel	Available data	Total head (ft)			12	Assumption based
Volume of motorial to be removed (ud ³)	155	Processed data	Number of num	ns onerating		2	Available data
Volume of material to be removed (yd)	155	Processed data	Operating time t	for each numn (h	rs)	345	Processed data
Drilling	-	T	Pump efficiency	times motor effi	ciency	1/2	Assumption based
Input number of drilling locations	81	Available data	Specific gravity			1	Known
Choose drilling method from drop down menu	Direct Push	Assumption based				-	
Input time spent drilling at each location (hr)	1	Processed data					
Input depth of wells (ft)	13	Processed data					
Choose fuel type from drop down menu	Diesel	Available data					
Pump operetion-Head i	is known						
Flow rate (gpm)	40	Processed data					
Total head (ft)	12	Accumption bacad					
Total field (it)	12	Assumption based					
Number of pumps operating	1	Processed data					
Operating time for each pump (hrs)	56	Processed data					
Pump efficiency times motor efficiency	1/2	Assumption based					
Specific gravity	1	Known					
Remedial Operation		Note					
Kenledial Operation		Note					
TRANSPORTATI	ON						
Personnel transportation	on-Road						
Choose vehicle type from drop down menu	Cars	Available data					
Fuel used	Gasoline	Available data					
Distance traveled per trip (miles)	10	Assumption based					
Number of trips taken	4960	Available data					
Number of travelers	1	Assumption based					
Porconnol transportat	tion-Air						
Personner transportat	1011-AII						
Distance traveled (miles)	1,850	Available data					
Number of travelers	3	Available data					
Number of flights taken	1	Available data					
	EQUIPMENT US	ε					
	Earthwork						
Farthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Available data			
	17507-12527	22070 17507	62260	Available data			
Volume of material to be removed (yd)	1/59/+1353/	228/8+1/59/	62269	Processea aata	J		
RESIDUAI	HANDLING						
Disposal trar	nsportation-Rail						
Distance traveled (miles)	15,000	15,000	Processed data]			
Weight of load (tons)	330	1	Processed data]			
	Disposal trans	orttaion-Road		·			
Weight of the waste transported to landfill (tops)	14	0	14	0	Processed data		
Vehicle type		0	truck		Available data		
Fuel weed		Un-road			Available data		
Tetel used	5350	Gasol	1.025	4.635	Available aata		
Number of trips	535U	5350	1025	1025	Processea aata		
Number of miles per trip	U.5	0.5	10	10	Processed data		

12.4 Scenario-5d, BohusVarv remediation project.

Remedial Investigation		Note	1	Remedial C	onstruction		Note
Matorial III	-	Hote			Material Us	e	
					Well Material	s	
Weil Materia	15	Available data	Number of wells			1050	Processed data
Number of wells	17	Available aata Brocossod data	Input depth of w	ells (ft)		40	Processed data
Well diameter (in)	13 2	Assumption based	Material type	IJ		Steel	Available data
Material type	PVC	Assumption based	Specific material	schedule		Schedule 40	Assumption based
Specific material schedule	Schedule 40 PVC	Assumption based			GAC		_
TRANSPORTA	TION		Weight of GAC us	sed (lbs)		250	Processed data
Personnel transporta	tion-Road		Type of GAC		onstruction Mat	Virgin GAC	Assumption based
Choose vehicle type from drop down menu	Car	Available data	Material type			HDPE Liner	Available data
Fuel used	Gasoline	Available data	Area of material	(ft ²)		800	Processed data
Distance traveled per trip (miles)	12	Assumption based	Depth of materia	l (ft)		12	Processed data
Number of trips taken	60	Available data			EQUIPMENT U	JSE	
Number of travelers	3	Assumption based			Drilling	1 050	2
Equipment transporta	tion-Road	ī	Choose drilling m	drilling locations	lown menu	1,050 Direct Push	Processed data Assumption based
Fuel used	Diesel	Available data	Input time spent	drilling at each loo	ation (hr)	1	Assumption based
Distance traveled (miles)	12	Assumption based	Input depth of w	ells (ft)		20	Available data
Weight of equipment transported (tons)		Processed data	Choose fuel type	from drop down r	nenu	Diesel	Available data
EQUIPMENT	USE		Flow rate (apre)	Pump	operetion-Head	IS KNOWN	Processed data
Earthwork			Total head (ft)			12	Assumption based
Earthwork equipment type	Excavator	Available data Available data	Number of pump	s operating		2	Available data
Fuel type	Diesei	Available aata	Operating time for	or each pump (hrs)		345	Processed data
Volume of material to be removed (yd [*])	155	Processed data	Pump efficiency t	imes motor efficie	ncy	1/2	Assumption based
Drilling	le.		Specific gravity			1	KNOWN
Input number of drilling locations	81 Direct Duch	Available data	4				
Input time spont drilling at each location (br)	Direct Push	Assumption based	1				
Input denth of wells (ft)	13	Processed data					
Choose fuel type from drop down menu	Diesel	Available data	1				
Pump operation-Head	d is known						
Flow rate (gpm)	40	Processed data	1				
Total head (ft)	12	Assumption based					
Number of pumps operating	1	Processed data	1				
Operating time for each numn (hrs)	- 56	Processed data	1				
Pump efficiency times motor efficiency	1/2	Assumption based	1				
Specific gravity	1	Assumption based	1				
Specific gravity	T	Niete					
		Note					
Personnel transporta	tion-Road						
Choose vehicle type from drop down menu	Cars	Available data	4				
Fuel used	Gasoline	Available data	4				
Number of trins taken	4960	Assumption based Available data					
Number of travelers	1	Assumption based	1				
Personnel transport	ation-Air						
Distance traveled (miles)	1.850	Available data	1				
Number of travelers	3	Available data	1				
Number of flights taken	1	Available data	1				
	EQUIPMENT US	E			1		
	Earthwork						
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Available data			
Volume of material to be removed (yd ³)	17597+13537	22878+17597	62269	Processed data			
RESIDU	AL HANDLING			1	4		
Disposal tra	nsportation-Water						
Distance traveled (miles)	2,400	2,400	Processed data	1			
Weight of load (tons) *	2,200	1	Processed data	1			
	Disposal transp	ortation-Road					
Weight of the waste transported to landfill (tons)	14	0	14	0	Processed data	1	
Vehicle type	1	On-road t	ruck	,	Available data	1	
Fuel used		Gasolir	ne		Available data		
Total number of trips	5350	5350	1625	1625	Processed data	1	
Number of miles per trip	0.5	0.5	10	10	Processed data	,	

* For the analysis using SMED recommended values, effect of cargo weight on consumption rate is not considered and "weight of load" was set to be 1 ton.

13 Appendix 4,

13.1 Scenario-6, BohusVarv remediation project.

Remedial Investigation		Note		Remedial C	Construction		Note
Material Lis					Material Us	e	
Well Material					Well Material	s	
Number of wells	17	Available data	Number of wells	;		1050	Processed data
Input depth of wells (ft)	13	Processed data	Input depth of v	vells (ft)		40	Processed data
Well diameter (in)	2	Assumption based	Well diameter (i Material type	n)		12 Stool	Processed data
Material type	PVC	Assumption based	Specific materia	Ischedule		Schedule 40	Assumption based
Specific material schedule	schedule 40 PVC	Assumption based	opeenie materia	ouncuic	GAC	otheddie 10	,
TRANSPORTAT	ON		Weight of GAC u	ised (lbs)		1,000	Processed data
Personnel transportati	on-Road		Type of GAC			Virgin GAC	Assumption based
Choose vehicle type from drop down menu	Car	Available data			Construction Mat	erial	
Fuel used	Gasoline	Available data	Material type	-		HDPE Liner	Available data
Distance traveled per trip (miles)	12	Assumption based	Area of material	(ft ²)		320	Available data
Number of travelers	60 2	Available data	Depth of materi	al (ft)		12	Available data
Fouipment transportat	ion-Road	Assumption bused			Drilling	JSE .	
Fuel used	Diesel	Available data	Input number of	drilling locations	Drining	1 050	Processed data
Distance traveled (miles)	12	Assumption based	Choose drilling r	nethod from dron	down menu	Direct Push	Assumption based
Weight of equipment transported (tons)	10	Processed data	Input time spen	t drilling at each lo	ocation (hr)	1	Assumption based
EQUIPMENT U	SE		Input depth of v	vells (ft)		20	Available data
Earthwork	_		Choose fuel type	e from drop down	menu	Diesel	Assumption based
Earthwork equipment type	Excavator	Available data		Pum	o operetion-Head	is known	
Fuel type	Diesel	Available data	Flow rate (gpm)			95	Processed data
Volume of material to be removed (yd ³)	155	Processed data	Total head (ft)	ns operating		2	Assumption based
Drilling			Operating time	for each numn (hr	s)	1.380	Processed data
Input number of drilling locations	81	Available data	Pump efficiency	times motor effic	iency	1/2	Assumption based
Choose drilling method from drop down menu	Direct Push	Assumption based	Specific gravity			1	Known
Innet donth of wells (ft)	12	Processed data					
Choose fuel type from dron down menu	Diesel	Available data					
Pump operetion-Head	is known						
Flow rate (gpm)	40	Processed data					
Total head (ft)	12	Assumption based					
Number of pumps operating	1	Processed data					
Operating time for each pump (hrs)	-	Processed data					
Pump efficiency times motor efficiency	1/2	Assumption based					
Specific gravity	1	Known					
Bomodial Operation	-	Noto					
TRANSPORTAT		Note					
Derconnel transportati	on Poad						
Choose vehicle type from dron down menu	Cars	Available data					
Fuel used	Gasoline	Available data					
Distance traveled per trip (miles)	10	Assumption based					
Number of trips taken	4960	Available data					
Number of travelers	1	Assumption based					
Personnel transporta	tion-Air						
Distance traveled (miles)	1,850	Available data					
Number of travelers	3	Available data					
Number of flights taken	1	Available data					
Equipment transportat	ion-Road						
Fuel used	Diesel	Available data					
Weight of equipment transported (tops)	40 10	Assumption based					
weight of equipment transported (tons)	FOLIIPMENT U	SE	<u> </u>				
	Farthwork						
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Available data	1		
Volume of material to be removed (vd ³)	70390+5414	91513+9000	116000	Processed data			
RESIDUA		51010.0000			1		
	nsportation Pail						
Distance traveled (miles)	6 000	6.000	Processed data				
Weight of load (tons)	330	1	Processed data				
	Disposal trans	oortation-Road					
Weight of the waste transported to landfill (tops)	14	0	14	0	Processed date		
Vehicle type	17	On-road	truck	۲ ۲	Available data		
Fuel used		Gasoli	ine		Available data		
Total number of trips	40000	10000	650	650	Processed data		
Number of miles per trip	10000	10000					
	0.5	0.5	10	10	Processed data		
Other known onsite a	0.5 ctivities	0.5	10	10	Processed data		
Other known onsite a CO ₂ emission (metric ton)	0.5 ctivities 7.6E+01	0.5 Available data	10	10	Processed data		
Other known onsite a CO ₂ emission (metric ton) NOx emission (metric ton)	0.5 ctivities 7.6E+01 4.6E-04	0.5 Available data Available data	10	10	Processed data		

14.1 Scenario-7, BohusVarv remediation project.

Remedial Investigation		Note	Remedial Construction		Note
Material U	se		Material	Jse	
Well Materi	als		Well Mater	ials	
Number of wells	17	Available data	Number of wells	1050	Processed data
Input depth of wells (ft)	13	Processed data	Input depth of wells (ft)	40	Processed data
Well diameter (in)	2	Assumption based	Well diameter (in)	12	Processed data
Material type	PVC	Assumption based	Material type	Steel	Available data
Specific material schedule	schedule 40 PVC	Assumption based	Specific material schedule	Schedule 40	Assumption based
TRANSPORTA	TION		EQUIPMEN	USE	
Personnel transport	ation-Road		Drilling	1	
Choose vehicle type from drop down menu	Car	Available data	Input number of drilling locations	1,050	Processed data
Fuel used	Gasoline	Available data	Drilling method	Direct Push	Assumption based
Distance traveled per trip (miles)	12	Assumption based	Depth of wells (ft)	20	Assumption based Available data
Number of trips taken	60	Available data	Evel type	Diesel	Available data
Number of travelers	3	Assumption based	rueitype	Diesei	Available auta
Equipment transport	ation-Road				
Fuel used	Diesel	Available data			
Distance traveled (miles)	12	Assumption based			
Weight of equipment transported (tons)	10	Processed data			
EQUIPMENT	USE				
Earthwork	(
Earthwork equipment type	Excavator	Available data			
Fuel type	Diesel	Available data			
Volume of material to be removed (yd ³)	155	Processed data			
Drilling					
Input number of drilling locations	81	Available data			
Drilling method	Direct Push	Assumption based			
Time spent drilling at each location (hr)	1	Processed data			
Depth of wells (ft)	13	Processed data			
Fuel type	Diesel	Available data			
Pump operetion-Hea	id is known				
Flow rate (gpm)	40	Processed data			
Total head (ft)	12	Assumption based			
Number of pumps operating	1	Processed data			
Operating time for each pump (hrs)	56	Processed data			
Pump efficiency times motor efficiency	1/2	Assumption based			
Specific gravity	1	Known			
Remedial Operation		Note			
Material	50				
Construction	atarial				
Construction M		Due encould durb			
Material type	Typical Cement	Processed data			
Area of material (π)	10	Processed data			
Personnel transport	ation-Road	Ausilable			
Venicie type	Cars Gasolino	Available data Available data			
Distance traveled per trip (miles)	0asoline 10	Available data			
Number of trins taken	4960	Available data			
Number of travelers	1	Assumption based			
Personnel transpor	tation-Air				
Distance traveled (miles)	1 950	Available data			
Number of traveler	2,000	Available data			
Number of flights taken	э 1	Available data			
	±	ad			
Equipment	transportation-Roa		Available data		
Puer used Distance traveled (miles)	/ 275	4 275	Avuiluble data		
Weight of equipment transported (tens)	4,373 40	0	riocessed data		
Following and the second secon			riocesseu uutu		
EQUIPMENT	USE				
Drilling					
Input number of drilling locations	3,900	Processed data			
Drilling method	Direct Push	Assumption based			
Time spent drilling at each location (hr)	1	Assumption based			
Such type	13 Discol	Processea data			
ruei type	viesei	Avallable data			

15.1 Scenario-1, Hexion remediation project.

Remedial Investigation		Note		Remedial	Construction		Note
Reineului investigution		Note			Material Us	e	
Material Us	e				GAC		
Well Material	s		Weight of GAC u	sed (lbs)		65	Available data
Number of wells	11	Available data	Type of GAC			Virgin GAC	Assumption based
Input depth of wells (ft)	26	Processed data		Construct	ion Materials		
Well diameter (in)	2	Assumption based	Material type fro	m drop down m	enu	General Concrete	Available data
Material type	PVC	Assumption based	Area of material	(ft2)		500	Processed data
Specific material schedule	Schedule 40 PVC	Assumption based	Depth of materia	l (ft)		2+1	Processed data
TRANSPORTAT	ION		Material type fro	m drop down m	enu	Sand	Available data
Personnel transportat	ion-Road		Applied diamete	r (in)		16	Processed data
Vehicle type	Cars	Available data	Depth of materia	ıl (ft)		10	Processed data
Fuel used	Gasoline	Available data		Equi	pment transporta	tion-Road	
Distance traveled per trip (miles)	4	Assumption based	Fuel used			Diesel	Available data
Number of trins taken	4 60	Rissumption Suscu Processed data	Distance traveled	d (miles)		4	Assumption based
Number of travelers	3	Assumption based	Weight of equipr	nent transported	d (tons)	20	Assumption based
Furiement transport	J tion Dood	Assumption bused			EQUIPMENT (JSE	
Equipment transporta	tion-Road				Earthwork		
Fuel used	Diesel	Available data	Earthwork equip	ment type		Excavator	Available data
Distance traveled (miles)	12	Assumption based	Fuel type			Diesel	Available data
Weight of equipment transported (tons)	10	Processed data	Volume of mater	ial to be remove	d (yd³)	60	Processed data
EQUIPMENT (JSE						
Earthwork							
Earthwork equipment type	Excavator	Available data					
Fuel type	Diesel	Available data					
Volume of material to be removed (vd ³)	50	Processed data					
Drilling	-	<u>1</u>					
Input number of drilling locations	19	Available data					
Drilling method	Direct Push	Assumption based					
Time spent drilling at each location (hr)	1	Processed data					
Input depth of wells (ft)	13	Processed data					
Fuel type	Diesel	Available data					
Bemedial Operation		Noto					
		Note					
TRANSPORTAT	IUN						
Personnel transportat	ion-Road						
Vehicle type	Cars	Available data					
Fuel used	Gasoline	Available data					
Distance traveled per trip (miles)	4	Assumption based					
Number of trips taken	500	Processed data					
Number of travelers	6	Assumption based			-		
	EQUIPMENT US	Ε					
	Earthwork						
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Processed data			
Volume of motorial to be removed (ud ³)	22022	2/207	68421	Processed data			
volume of material to be removed (yd)	DECIDITAL			, rocesseu udtu	I		
	Disposal transp	ortation Road					
Weight of the waste transported to landfill (tere)	Disposal transp	onation-Koau	14	0	Dracassad data		
Vebile two	14	<u>۷</u>	14 14	v	riocessea aata		
Venicie type		Un-road t			Available data		
Total number of tring	(222	Gasolir	2250	2250	Avuilable aata		
Number of trips	0333	0333	2250	2250	Processea aata		
Number of miles per trip	0.40	0.40	1.20	1.20	riocessea aata		

15.2 Scenario-2, Hexion remediation project.

Remedial Investigation		Note		Remedial	Construction		Note
Matarialita			Material Use				
Material Use					GAC		
Well Materials		-	Weight of GAC u	used (lbs)		65	Available data
Number of wells	11	Available data	Type of GAC			Virgin GAC	Assumption based
Input depth of wells (ft)	26	Processed data		Construct	ion Materials	0	
Well diameter (in)	2	Assumption based	Material type fro	om drop down m	nenu	General Concrete	Available data
Material type	PVC	Assumption based	Area of material	(ft2)		500	Processed data
Specific material schedule	Schedule 40 PVC	Assumption based	Depth of materi	al (ft)		2+1	Processed data
TRANSPORTATI	ON		Material type from	om drop down m	nenu	Sand	Available data
Personnel transportation	on-Road		Applied diameter	er (in)		16	Processed data
Vehicle type	Cars	Available data	Depth of materi	al (ft)		10	Processed data
Fuel used	Gasoline	Available data		Equi	oment transportati	on-Road	
Distance traveled per trip (miles)	4	Assumption based	Fuel used			Diesel	Available data
Number of trips taken	60	Processed data	Distance travele	d (miles)		4	Assumption based
Number of travelers	3	Assumption based	Weight of equip	ment transporte	d (tons)	20	Assumption based
Equipment transportati	on-Road				EQUIPMENT US	SE	
Fuel used	Diesel	Available data			Earthwork		
Distance traveled (miles)	12	Assumption based	Earthwork equip	oment type		Excavator	Available data
Weight of equipment transported (tons)	10	Processed data	Fuel type			Diesel	Available data
FOLIIPMENT U	SE		Volume of mate	rial to be remove	ed (yd ³)	60	Processed data
Egon Welth o	JE						
Earthwork	-						
Earthwork equipment type	Excavator	Available data					
Fuel type	Diesel	Available data					
Volume of material to be removed (yd ³)	50	Processed data					
Drilling							
Input number of drilling locations	19	Available data					
Drilling method	Direct Push	Assumption based					
Time spent drilling at each location (hr)	1	Processed data					
Input depth of wells (ft)	13	Processed data					
Fuel type	Diesel	Available data					
Remedial Operation		Note					
TRANSPORTATI	ON						
Personnel transnortation	on-Road						
Vahiala tuma	Come Come	Augulahla data					
	Cars	Available data					
Pictor of traveled new trip (miles)	Gasoline	Available data					
Number of trins taken	→ 500	Processed data					
Number of travelare	500	Processea aata					
		Assumption based					
		2					
	Earthwork						
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Processed data			
Volume of material to be removed (yd ³)	33933	24307	68421	Processed data			
	RESIDUAL I	HANDLING					
	Disposal transp	ortation-Road					
Weight of the waste transported to landfill (tons)	14	0	14	0	Processed data		
Vehicle type		On-road	truck		Available data		
Fuel used		Gasol	ine		Available data		
Total number of trips	6333	6333	2250	2250	Processed data		
Number of miles per trip	0.40	0.40	63.00	63.00	Processed data		

16.1 Scenario-3, Hexion remediation project.

Remedial Investigation		Note		Remedial C	onstruction		Note
Matorial Llos					Material Use		
Material Use					GAC		
Well Materials			Weight of GAC u	ısed (lbs)		65	Available data
Number of wells	11	Available data	Type of GAC			Virgin GAC	Assumption based
Input depth of wells (ft)	26	Processed data		Constructio	on Materials		
Well diameter (in)	2	Assumption based	Material type from	om drop down me	nu	General Concrete	Available data
Material type		Assumption based	Area of material	l (ft2)		500	Processed data
Specific material schedule	Schedule 40 PVC	Assumption based	Depth of materi	al (ft)		2+1	Processed data
TRANSPORTATI	ON		Material type fr	om drop down me	nu	Sand	Available data
Personnel transportation	on-Road		Applied diamete	er (in)		16	Processed data
Vehicle type	Cars	Available data	Depth of materi	al (ft)		10	Processed data
Fuel used	Gasoline	Available data		Equipr	nent transportati	on-Road	_
Distance traveled per trip (miles)	4	Assumption based	Fuel used			Diesel	Available data
Number of trips taken	60	Processed data	Distance travele	d (miles)		4	Assumption based
Number of travelers	3	Assumption based	Weight of equip	ment transported	(tons)	20	Assumption based
Equipment transportati	ion-Road				EQUIPMENT US	SE	
Fuel used	Diesel	Available data			Earthwork		
Distance traveled (miles)	12	Assumption based	Earthwork equip	oment type		Excavator	Available data
Weight of equipment transported (tons)	10	Processed data	Fuel type			Diesel	Available data
EQUIPMENT U	SE		Volume of mate	rial to be removed	l (yd ³)	60	Processed data
Earthwork							
Earthwork equipment type	Excavator	Available data					
Fuel type	Diesel	Available data	1				
Volume of material to be removed (vd ³)	50	Processed data					
Drilling							
Input number of drilling locations	19	Available data					
Drilling method	15 Direct Push	Assumption based					
Time spent drilling at each location (hr)	1	Processed data	1				
Input depth of wells (ft)	- 13	Processed data					
Fuel type	Diesel	Available data					
Remedial Operation		Note					
		Note					
TRANSPORTATI							
Personnel transportation	on-Road	-					
Vehicle type	Cars	Available data					
Fuel used	Gasoline	Available data					
Distance traveled per trip (miles)	4	Assumption based					
Number of trips taken	500	Processed data					
Number of travelers	6	Assumption based					
	EQUIPMENT USE						
	Earthwork						
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Processed data			
Volume of material to be removed (yd ³)	33933	24307	68421	Processed data			
		·					
Disposal trar	sportation-Rail						
Distance traveled (miles)	14.800	14.800	Processed data				
Weight of load (tons)	330	1	Processed data				
Disposal tran	sportation-Road	<u> </u>					
Weight of the waste transported to landfill (tars)	14		Brocossod data				
Vehicle time	14	d truck	Augilable data				
Fuel used	Un-roa		Available data				
Total number of tring	Gase	2000 Cooo	Available data				
Number of miles per trip	0555	0.33	Processed data				
Number of filles per trip	0.40	0.40	riocessea aata				

16.2 Scenario-4, Hexion remediation project.

Remedial Investigation Note		Note	Remedial Construction				Note
Material Lis					Material Use	e	
	-				GAC		
Well Materials	; 		Weight of GAC u	used (lbs)		65	Available data
Number of wells	11	Available data	Type of GAC			Virgin GAC	Assumption based
Input depth of wells (ft)	26	Processed data		Construc	tion Materials		•
Well diameter (in)	2	Assumption based	Material type fr	om drop down n	nenu	General Concrete	Available data
Material type	PVC	Assumption based	Area of materia	l (ft2)		500	Processed data
Specific material schedule	Schedule 40 PVC	Assumption based	Depth of materi	ial (ft)		2+1	Processed data
TRANSPORTAT	ION		Material type fr	om drop down n	nenu	Sand	Available data
Personnel transportati	on-Road		Applied diameter	er (in)		16	Processed data
Vehicle type	Cars	Available data	Depth of materi	ial (ft)		10	Processed data
Fuel used	Gasoline	Available data		Equi	ipment transportat	ion-Road	
Distance traveled per trip (miles)	4	Assumption based	Fuel used			Diesel	Available data
Number of trips taken	60	Processed data	Distance travele	ed (miles)		4	Assumption based
Number of travelers	3	Assumption based	Weight of equip	ment transporte	ed (tons)	20	Assumption based
Equipment transportat	ion-Road				EQUIPMENT U	SE	
Fuel used	Diesel	Available data			Earthwork		
Distance traveled (miles)	12	Assumption based	Earthwork equi	pment type		Excavator	Available data
Weight of equipment transported (tons)	10	Processed data	Fuel type			Diesel	Available data
EQUIPMENT U	SE		Volume of mate	erial to be remov	ed (vd ³)	60	Processed data
Earthwork							A
Earthwork equipment type	Excavator	Available data					
Fuel type	Diesel	Available data					
Volume of material to be removed (vd ³)	50	Processed data					
Drilling	<u>.</u>						
Input number of drilling locations	19	Available data					
Drilling method	Direct Push	Assumption based					
Time spent drilling at each location (hr)	1	Processed data					
Input donth of wells (ft)	12	Processed data					
Fuel type	13 Diacal	Available data					
Proventiel Operation	Diesei	Available aata					
Remedial Operation		Note					
TRANSPORTAT	ION						
Personnel transportati	on-Road	-					
Vehicle type	Cars	Available data					
Fuel used	Gasoline	Available data					
Distance traveled per trip (miles)	4	Assumption based					
Number of trips taken	500	Processed data					
Number of travelers	6	Assumption based					
	EQUIPMENT US	Ε					
	Earthwork						
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data	1		
Fuel type	Diesel	Diesel	Diesel	Processed data			
Volume of material to be removed (ud^{3})	22022	24207	69421	Processed data			
		24307	08421	Frocessed data	1		
RESIDUA							
Disposal tran	sportation-Water		_				
Distance traveled (miles)	2,346	2,346	Processed data	4			
Weight of load (tons) *	2,200	1	Processed data	L			
	Disposal transp	ortation-Road					
Weight of the waste transported to landfill (tons)	14	0	14	0	Processed data		
Vehicle type		On-road	truck		Available data		
Fuel used		Gasoli	ne	1	Available data		
Total number of trips	6333	6333	2250	2250	Processed data		
Number of miles per trip	0.40	0.40	13	13	Processed data		

* For the analysis using SMED recommended values, effect of cargo weight on consumption rate is not considered and "weight of load" was set to be 1 ton.

17.1 Scenario-5, Hexion remediation project.

			-				
Remedial Investigation		Note		Remedial	Construction		Note
					Material Use		
Material Use					GAC		
Well Materials			Weight of GAC us	ed (lbs)		65	Available data
Number of wells	11	Available data	Type of GAC			Virgin GAC	Assumption based
Input depth of wells (ft)	26	Processed data	. JPC C. GAC	Construct	ion Materials		
Well diameter (in)	2	Assumption based	Material type fro	m drop down me	nu	General Concrete	Available data
Material type	PVC	Assumption based	Area of material	(ft2)		500	Processed data
Specific material schedule	Schedule 40 PVC	Assumption based	Depth of materia	l (ft)		2+1	Processed data
			Material type fro	m drop down me	nu	Sand	Available data
TRANSPORTATI			Annlied diameter	(in)		16	Processed data
Personnel transportation	on-Road		Depth of materia	(iii) (ft)		10	Processed data
Vehicle type	Cars	Available data	Depth of materia	Equi	oment transportation	n-Road	riotesseu uutu
Fuel used	Gasoline	Available data	Fueluced	Equi	sment transportation	Diocol	Available data
Distance traveled per trip (miles)	4	Assumption based	Puer useu	(miles)		A	Available data
Number of trips taken	60	Processed data	Weight of equipp	ent transported	(tons)	4 20	Assumption based
Number of travelers	3	Assumption based	weight of equiph	nent transported		5	Assumption bused
Equipment transportati	on-Road					Ë	
Fuel used	Diosol	Available data			Earthwork		
Distance traveled (miles)	12	Assumption based	Earthwork equip	nent type		Excavator	Available data
Weight of equipment transported (tens)	10	Assumption bused	Fuel type		-	Diesel	Available data
	10	Frocessed data	Volume of mater	ial to be removed	(yd³)	60	Processed data
EQUIPMENT							
Earthwork							
Earthwork equipment type	Excavator	Available data					
Fuel type	Diesel	Available data					
Volume of material to be removed (vd ³)	50	Processed data					
Drilling							
Drining	10	Austilahla					
Input number of drilling locations	19	Available data					
Drilling method	Direct Push	Assumption based					
Time spent drilling at each location (hr)	1	Processed data					
Input depth of wells (ft)	13	Processed data					
Fuel type	Diesel	Available data					
Remedial Operation		Note		Remedia	Monitoring		Note
Material Use							Hote
					TRANSPORTAT	ION	
weil Waterials				Per	sonnel transportat	ion-Road	
Number of wells	180	Processed data	Vehicle type			Cars	Available data
Input depth of wells (ft)	26	Processed data	Fuel used			Gasoline	Available data
Well diameter (in)	4	Processed data	Distance travele	d per trip (miles)		5	Assumption based
Material type	Stool	Available data	Number of trips	taken		240	Available data
Creatile material askedula	Steel	Available aata	Number of trave	lers		2	Assumption based
Specific material schedule	Schedule 40 Steel	Assumption based		Equ	ipment transportat	ion-Road	
TRANSPORTATI	ON		Fuel used			Diesel	Available data
Personnel transportation	on-Road		Distance travele	d (miles)		10	Assumption based
Vehicle type	Cars	Available data	Weight of equip	ment transported	d (tons)	5	Assumption based
Fuel used	Gasoline	Available data					
Distance traveled per trip (miles)	4	Assumption based					
Number of trips taken	500	Available data					
Number of travelers	6	Assumption based					
Equipment trapsportati	on-Road						
Equipment transportati	Diesel	Available data					
Distance traveled (miles)	20	Accumption brood					
Distance traveled (miles)	20	Assumption based					
weight of equipment transported (tons)	20	Assumption based					
Electricity usage							
Equipment electrical usage, if known (KWh)	100000	Available data					
Electricity region	Swedish elmix	Available data					
	QUIPMENT USE						
	Farthwork						
Forthmark anninement the	Everyter	Deser	Leader/Dlike	Augulable date			
Earthwork equipment type	Excavator	Dozer	Luader/Backhoe	Available data			
ruei type	Diesei	Diesei	Diesei	Available data			
Volume of material to be removed (yd ³)	23545	10000	34348	Processed data			
RESIDUA	HANDLING						
Disposal tran	sportation-Rail						
Distance traveled (miles)	6.583	6.583	Processed data				
Weight of load (tons)	330	0	Processed data				
Weight of load (tolis)		۲. 					
Disposal tran	sportation-Road						
Weight of the waste transported to landfill (tons)		-					
	14	0	Processed data				
Vehicle type	14 On-roa	0 ad truck	Processed data Available data				
Vehicle type Fuel used	14 On-roa Gas	0 ad truck oline	Processed data Available data Available data				
Vehicle type Fuel used Total number of trips	14 On-roa Gas 3833	0 ad truck oline 3833	Processed data Available data Available data Processed data				

18.1 Scenario-6a, Hexion remediation project.

Remedial Investigation		Note	1	Remedial	Construction		Note
		NOLE			Material Us	e	
Material Us	e				GAC		
Well Material	s	-	Weight of GAC u	used (lbs)		65	Available data
Number of wells	11	Available data	Type of GAC			Virgin GAC	Assumption based
Input depth of wells (ft)	26	Processed data	,,	Construct	ion Materials	0	,,
Well diameter (in)	2	Assumption based	Matorial type fr	om dron down r		Gonoral Concrete	Available data
Material type	PVC	Assumption based	Area of materia	(H2)	lenu		Available data
Specific material schedule	Schedule 40 PVC	Assumption based	Area of materia	i (ft2)		500 2±1	Processed data
TRANSPORTAT	ION		Matarial type fr	iai (it) iom dron down r		2TI Cand	Available data
Personnel transportat	ion-Road		Annlind diameter	om drop down i	lenu	3diiu 10	Available data
Vehicle type	Cars	Available data	Applied diameter	er (in)		10	Processed data
Fuel used	Gasoline	Available data	Depth of materi	al (n)	nmont transporta	10 tion Road	Processed data
Distance traveled per trip (miles)	4	Assumption based	Fuel used	Equi	pment transporta	Diosol	Available data
Number of trips taken	60	Processed data	Puer useu	nd (milos)		A Diesei	Available data
Number of travelers	3	Assumption based	Distance travele	eu (miles)		4	Assumption bused
Fauinment transporta	tion Road	Assumption bused	weight of equip	oment transporte	ed (tons)	20	Assumption based
Equipment transporta	tion-koau				EQUIPMENT U	JSE	
Fuel used	Diesel	Available data			Earthwork		
Distance traveled (miles)	12	Assumption based	Earthwork equip	pment type		Excavator	Available data
Weight of equipment transported (tons)	10	Processed data	Fuel type			Diesel	Available data
EQUIPMENT U	JSE		Volume of mate	rial to be remov	ed (yd ³)	60	Processed data
Earthwork							
Earthwork equipment type	Excavator	Available data					
Fuel type	Diesel	Available data	1				
Volume of material to be removed (vd ³)	50	Processed data					
Drilling	50	rovesseu uutu					
Drining	1						
Input number of drilling locations	19	Available data					
Drilling method	Direct Push	Assumption based					
Time spent drilling at each location (hr)	1	Processed data					
Input depth of wells (ft)	13	Processed data					
Fuel type	Diesel	Available data					
Remedial Operation		Noto					
Remedial Operation		Note					
TRANSPORTAT	ION						
Personnel transportat	ion-Road						
Vehicle type	Cars	Available data					
Fuel used	Gasoline	Available data					
Distance traveled per trip (miles)	4	Assumption based					
Number of trips taken	500	Processed data					
Number of travelers	6	Assumption based			_		
	EQUIPMENT US	iΕ					
	Earthwork						
Farthwork equipment type	Excavator	Dozer	Loader/Backhoo	Available data			
	Diacol	Diasal	Diacal	Processed data			
ruer type	Diesei	Diesei	Diesei		1		
Volume of material to be removed (yd ³)	33933	24307	68421	Processed data			
RESIDUA	L HANDLING						
Disposal tran	sportation-Water						
Distance traveled (miles)	1,780	1,780	Processed data				
Weight of load (tons) *	2.200	1	Processed data	1			
	RESIDUAL	HANDLING		4			
	Disposal transr	ortation-Road					
Weight of the waste transported to landfill (tens)	14	0	14	0	Processed data		
Vehicle type	14	On-road -	truck	v	Available data		
Fuel used		Gacoli	no.		Available data		
Total number of trins	6222	6222	1709	1709	Processed data		
Number of miles per trip	0.40	0.40	12.00	12.00	Processed data		
Number of miles per trip	0.40	0.40	12.00	13.00	riocessea aata		
Other known onsite a	activities						
CO ₂ emission (metric ton)	1.3E+01	Available data					
NOx emission (metric ton)	7.6E-05	Available data					
SOx emission (metric ton)	7.6E-05	Available data					

* For the analysis using SMED recommended values, effect of cargo weight on consumption rate is not considered and "weight of load" was set to be 1 ton.

18.2 Scenario-6b, Hexion remediation project.

Remedial Investigation		Note	1	Remedial	Construction		Note
Remedial investigation		note			Material Us	e	1
Material Us	e				GAC		
Well Material	S		Weight of GAC u	sed (lbs)		65	Available data
Number of wells	11	Available data	Type of GAC	. ,		Virgin GAC	Assumption based
Input depth of wells (ft)	26	Processed data	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Construct	ion Materials		,, <i>p</i>
Well diameter (in)	2	Assumption based	Material turns for	construct		Concerel Concereto	Available data
Material type	PVC	Assumption based	iviaterial type fro	om arop aown m	enu	General Concrete	Available aata Beereed dete
Specific material schedule	Schedule 40 PVC	Assumption based	Area or material	(ft2)		211	Processed data
TRANSPORTAT	ION		Depth of materia	ai (it) 		2+1 Cond	Available data
Personnel transportat	ion-Road		iviaterial type fro	om arop down m	enu	Sand	Available data
Vehicle type	Cars	Available data	Applied diamete	r (in)		16	Processed data
Fuel used	Gasoline	Available data	Depth of materia	al (IU) Equiv	mont transnorta	10 tion Road	Processed data
Distance traveled per trip (miles)	4	Assumption based	Fuelused	Equi	oment transporta	Diesel	Available data
Number of trips taken	60	Processed data	Fuel used	d (miles)		Diesei	Available aata
Number of travelers	3	Assumption based	Distance travele	a (miles)	1 (1	4	Assumption based
Fauinment transporter	tion Road	Assumption bused	weight of equip	ment transporte	d (tons)	20	Assumption based
Equipment transporta	Dissel				EQUIPMENT	JSE	
Pieten as travelad (miles)	Diesei	Available aata			Earthwork		ñ
Distance traveled (miles)	12	Assumption based	Earthwork equip	ment type		Excavator	Available data
Weight of equipment transported (tons)	10	Processea aata	Fuel type			Diesel	Available data
EQUIPMENT U	JSE		Volume of mater	rial to be remove	d (vd ³)	60	Processed data
Earthwork							
Earthwork equipment type	Excavator	Available data					
Fuel type	Diesel	Available data					
Volume of material to be removed (vd ³)	50	Processed data					
Drilling		<u> </u>					
Input number of drilling locations	19	Available data					
Drilling method	Direct Push	Assumption based					
Time spent drilling at each location (br)	1	Processed data					
Input depth of wells (ft)	13	Processed data					
Fuel type	Diesel	Available data					
	Diesei		1				
Remedial Operation		Note					
TRANSPORTAT	ION						
Personnel transportat	ion-Road						
Vehicle type	Cars	Available data					
Fuel used	Cars	Available data					
Distance traveled per trip (miles)		Available data					
Number of trins taken	500	Processed data	1				
Number of travelers	6	Assumption based					
Number of travelers		Assumption bused					
	EQUIPIVIENT US	3					
	Earthwork	I		1			
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Processed data			
Volume of material to be removed (yd ³)	33933	24307	68421	Processed data			
	RESIDUAL H	IANDLING					
	Disposal transpo	ortation-Road					
Weight of the waste transported to landfill (tons)	14	10	14	0	Processed data		
Vehicle type		On-road	truck		Available data		
Fuel used		Gasoli	ne		Available data		
Total number of trips	6333	6333	1708	1708	Processed data		
Number of miles per trip	0.40	0.40	63	63	Processed data		
Other known onsite a	activities						
CO ₂ emission (metric ton)	1.3E+01	Available data					
NOx emission (metric ton)	7.6E-05	Available data]				
SOx emission (metric ton)	7.6E-05	Available data					
			-				

18.3 Scenario-6c, Hexion remediation project.

Down dial Investigation		Nete	1	Remedial C	onstruction		Note
Remedial Investigation		Note			Material Us	e	Hote
Material Use	2				GAC		
weil Materials			Weight of GAC us	ed (lbs)		65	Available data
Number of wells	11	Available data	Type of GAC			Virgin GAC	Assumption based
Input depth of wells (ft)	26	Processea aata		Constructio	n Materials		
Wein diameter (in)	2	Assumption based	Material type fro	m drop down me	nu	General Concrete	Available data
waterial type	PVC	Assumption based	Area of material	(ft2)		500	Processed data
Specific material schedule	Schedule 40 PVC	Assumption based	Depth of materia	l (ft)		2+1	Processed data
TRANSPORTAT			Material type fro	m drop down me	nu	Sand	Available data
Personnel transportat	on-Road	T	Applied diameter	<u>(in)</u>		16	Processed data
Vehicle type	Cars	Available data	Depth of materia	l (ft)		10	Processed data
Fuel used	Gasoline	Available data		Equipi	nent transporta	tion-Road	
Distance traveled per trip (miles)	4	Assumption based	Fuel used	(miles)		Diesel	Available data
Number of trips taken	60	Processed data	Distance traveled	(miles)	<i>(</i> ,)	4	Assumption based
Number of travelers	3	Assumption based	Weight of equiph	nent transported	(tons)	20	Assumption based
Equipment transportat	ion-Road				EQUIPMENT	JSE	
Fuel used	Diesel	Available data			Earthwork		
Distance traveled (miles)	12	Assumption based	Earthwork equip	nent type		Excavator	Available data
Weight of equipment transported (tons)	10	Processed data	Fuel type			Diesel	Available data
EQUIPMENT U	ISE		Volume of materi	ial to be removed	l (yd ³)	60	Processed data
Earthwork							
Earthwork equipment type	Excavator	Available data					
Fuel type	Diesel	Available data					
Volume of material to be removed (vd^3)	50	Processed data					
Drilling		rocessed data					
	40	A					
Input number of drilling locations	19	Available aata					
Drilling method	Direct Push	Assumption based					
Time spent drilling at each location (hr)	1	Processed data					
Input depth of wells (ft)	13	Processea aata					
Fuel type	Diesei	Available aata					
Remedial Operation		Note					
TRANSPORTAT	ION						
Personnel transportati	ion-Road						
Vehicle type	Cars	Available data					
Fuel used	Gasoline	Available data					
Distance traveled per trip (miles)	4	Assumption based					
Number of trips taken	500	Processed data					
Number of travelers	6	Assumption based					
	EQUIPMENT US	E					
	Earthwork						
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Processed data			
Volume of material to be removed (vd ³)	33933	24307	68421	Processed data			
RESIDUA	L HANDLING		1				
Disposal tra	nsportation-Rail						
Distance traveled (miles)	11.247	11.247	Processed data				
Weight of load (tons)	330	1	Processed data				
Disposal tra	sportation Poad	I- 	stessed udtu				
Weight of the worte transported to leadfill (tage)	14		Drococcod data				
Vehicle type	14 On	lu od truck	riocessed data				
Fuel used	01-102	olino	Available data				
Total number of tring	Gas	6222	Available data				
Number of miles neg trip	0333	0333	Processed data				
Number of miles per trip	0.40	0.40	Processed data	l			
Other known onsite a	ctivities						
CO ₂ emission (metric ton)	1.3E+01	Available data					
NOx emission (metric ton)	7.6E-05	Available data					
SOx emission (metric ton)	7.6E-05	Available data	l				

19.1 Scenario-7, Hexion remediation project.

Remedial Investigation		Note		Remedial	Construction		Note
Material Use	,				Material Use	e	
Well Materials					GAC		
Number of wells	11	Available data	Weight of GAC u	used (lbs)		65	Available data
Input depth of wells (ft)	26	Processed data	Type of GAC			Virgin GAC	Assumption based
Well diameter (in)	2	Assumption based		Construct	tion Materials	Ţ.	
Material type	PVC	Assumption based	Material type fr	om drop down m	enu	General Concrete	Available data
Specific material schedule	Schedule 40 PVC	Assumption based	Area of materia	(ft2)		500	Processed data
TRANSPORTATI	ON		Depth of materi	ai (ft)		Z+1 Courd	Processea aata
Personnel transportati	on-Road		Applied diameter	om arop aown m	enu		Available data
Vehicle type	Cars	Available data	Depth of materi	al (ft)		10	Processed data
Fuel used	Gasoline	Available data	Deptil of materi	Equ	ipment transportat	tion-Road	r rocesseu uutu
Number of trips taken	4 60	Assumption bused	Fuel used			Diesel	Available data
Number of travelers	3	Assumption based	Distance travele	d (miles)		4	Assumption based
Equipment transportat	ion-Road		Weight of equip	ment transported	d (tons)	20	Assumption based
Fuel used	Diesel	Available data			EQUIPMENT U	ISE	
Distance traveled (miles)	12	Assumption based			Earthwork		
Weight of equipment transported (tons)	10	Processed data	Earthwork equip	oment type		Excavator	Available data
EQUIPMENT U	SE		Fuel type			Diesel	Available data
Earthwork	·		Volume of mate	rial to be remove	d (yd³)	60	Processed data
Earthwork equipment type	Excavator	Available data					
Fuel type	Diesei	Available data					
Drilling	50	riocesseu uutu					
Input number of drilling locations	19	Available data					
Drilling method	Direct Push	Assumption based					
Time spent drilling at each location (hr)	1	Processed data					
Input depth of wells (ft)	13	Processed data					
Fuel type	Diesel	Available data					
			1				
Remedial Operation		Note					
TRANSPORTATI	ON						
Personnel transportati	on-Road						
Choose vehicle type from drop down menu	Cars	Available data					
Fuel used Distance traveled per trip (miles)	Gasoline	Available data					
Number of trips taken	4 500	Assumption bused Processed data					
Number of travelers	6	Assumption based					
	EQUIPMENT US	E					
	Earthwork						
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Processed data			
Volume of material to be removed (yd ³)	33933	24307	68421	Processed data			
	RESIDUAL H	IANDLING					
	Disposal transp	ortation-Road					
Weight of the waste transported to landfill (tons)	14	0	14	0	Processed data		
Vehicle type		On-road	truck		Available data		
Fuel used		Gasoli	ne		Available data		
Total number of trips	6333	6333	1 20	1 20	Processed data		
	0.40 ON	0.40	1.20	1.20	Processeu auta		
Borsonnol transportati	on Poad						
Distance traveled per trip (miles)	10	Assumption based					
Number of trips taken	4960	Available data					
Number of travelers	1	Assumption based					
Equipment transportat	ion-Road						
Fuel used	Diesel	Available data					
Distance traveled (miles)	40	Assumption based					
Weight of equipment transported (tons)	10	Assumption based					
	EQUIPMENT US	E					
	Earthwork			_			
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data			
Fuel type	Diesel	Diesel	Diesel	Available data			
Volume of material to be removed (yd ²)	62327+47000	78000+60000	158500	Processed data	1		
RESIDUA	LHANDLING						
Disposal tra	sportation-Rail						
Distance traveled (miles)	2,613	2,613	Processed data				
Weight of load (tons)	330	1	Processed data				
	Disposal transp	ortation-Road					
Weight of the waste transported to landfill (tons)	14	0	14	0	Processed data		
Vehicle type		On-road	truck		Available data		
Fuel used	10100	Gasoli	ne	2000	Available data		
Total number of trips	19100	19100	2000	2000	Processed data		
Number of filles per trip	v.+v	v. 4 V	1.20	1.20	riocessea aata		

20 Appendix 11,

20.1 Scenario-8, Hexion remediation project.

Romodial Investigati	<u></u>	Nata		Remedia	al Construction
Remedial investigation		Note		nemeun	Material
Materi	al Use				GAC
Well Ma	aterials	Ameilable	Weight of G	AC used (lbs)	GAC
Number of wells	11	Available data Processed data	Type of GAC		
Well diameter (in)	20	Assumption based		Constru	ction Materials
Material type	PVC	Assumption based	Material typ	e from drop down	menu
Specific material schedule	Schedule 40 PVC	Assumption based	Area of mate	erial (ft2)	
TRANSPO	RTATION		Depth of ma	terial (ft)	
Personnel transp	portation-Road		Material typ	e from drop down	menu
/ehicle type	Cars	Available data	Denth of ma	terial (ft)	
Fuel used Distance traveled nor trin (miles)	Gasoline	Available data	Depth of hid	Eo	uipment transpo
Number of trips taken	60	Processed data	Fuel used		
Number of travelers	3	Assumption based	Distance trav	veled (miles)	
Equipment trans	portation-Road		Weight of eq	uipment transpor	ted (tons)
Fuel used	Diesel	Available data			EQUIPMEN
Distance traveled (miles)	12	Assumption based			Earthwo
EQUIPMENT transported (tons)		Processea data	Earthwork ed	quipment type	
EQUIFIVIT	uork		Fuel type		
Earthwork equipment type	Excavator	Available data	volume of m	laterial to be remo	ved (ya)
Fuel type	Diesel	Available data			
Volume of material to be removed (yd ³)	50	Processed data			
Drill	ing				
Input number of drilling locations	19	Available data			
Drilling method	Direct Push	Assumption based			
Time spent drilling at each location (hr)	1	Processed data			
Fuel type	Diesel	Available data			
Remedial Operation	on	Note			
Mater	rial Use				
Well N	Naterials				
Number of wells	500	Processed data			
Input depth of wells (ft)	26	Processed data			
Well diameter (in)	2	Assumption based			
Material type	Steel	Assumption based			
Specific material schedule	Schedule 40 PVC	Assumption based			
Construction Materia	Typical Comparts	Available data			
Area of material (ft2)	11.522	Available data Processed data	-		
Depth of material (ft)	10	Processed data			
TRANSPO	ORTATION				
Personnel tran	sportation-Road				
Choose vehicle type from drop down menu	Cars	Available data			
Fuel used	Gasoline	Available data			
Distance traveled per trip (miles)	4	Assumption based	_		
Number of trips taken	500	Processed data	_		
	Equipment transport	assumption based			
Fuel used	Gasolino	Gasoline	Gasoline	Available data	1
Distance traveled (miles)	20	2500	2500	Assumption based	1
Weight of equipment transported (tons)	10	40	0	Assumption based	1
	EQUIPMENT	USE			
	Earthwork	(
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data]
Fuel type	Diesel	Diesel	Diesel	Processed data	l
Volume of material to be removed (yd ³)	23545	10800	21606	Processed data	J
Dri	illing				
Input number of drilling locations	500	Processed data	_		
Drilling method	Air Rotary	Assumption based	_		
Ime spent drilling at each location (hr)	1	Processed data	-		
Fuel type	Diesel	Available data	-		
	RESIDU	AL HANDLING	<u>.</u>		
	Disposal tra	ansportation-Road			
Weight of the waste transported to landfill	(tons) 14	0	14	0	Processed data
Vehicle type		On-roa	ad truck		Available data
Fuel used		Gas	oline		Available data
Total number of trips	6333	6333	2250	2250	Processed data
Number of miles per trip		10.40	1.20	1.20	riocessea data
KE	osal transportation Pail				
Disp	6 583	6.583	Processed data	1	
Weight of load (tons)	330	0,505	Processed data	1	

Remedial Construction		Note							
Material U	se								
GAC									
Weight of GAC used (lbs)	65	Available data							
Type of GAC	Virgin GAC	Assumption based							
Construction Materials									
Material type from drop down menu	General Concrete	Available data							
Area of material (ft2)	500	Processed data							
Depth of material (ft)	2+1	Processed data							
Material type from drop down menu	Sand	Available data							
Applied diameter (in)	16	Processed data							
Depth of material (ft)	10	Processed data							
Equipment transport	ation-Road								
Fuel used	Diesel	Available data							
Distance traveled (miles)	4	Assumption based							
Weight of equipment transported (tons)	20	Assumption based							
EQUIPMENT	USE								
Earthwork									
Earthwork equipment type	Excavator	Available data							
Fuel type	Diesel	Available data							
Volume of material to be removed (vd ³)	60	Processed data							

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2011:80

21 Appendix 12,

21.1 Scenario-9, Hexion remediation project.

Remedial Investigation	Remedial Construction Note							
Material Use			Material Use					
Well Material	- -				GAC	lea.		
Number of wells	11	Available data	Weight of GAC use	ed (lbs)		65 Minsin CAC	Available data	
Input depth of wells (ft)	26	Processed data	Type of GAC	Construction	Materials	Virgin GAC	Assumption based	
Well diameter (in)	2	Assumption based	Material type from	n dron down men		General Concrete	Available data	
Material type	PVC	Assumption based	Area of material (ft2)		500	Processed data	
Specific material schedule	Schedule 40 PVC	Assumption based	Depth of material	(ft)		2+1	Processed data	
TRANSPORTAT	ION		Material type from	n drop down men	u	Sand	Available data	
Personnel transportation	ion-Road		Applied diameter	(in)		16	Processed data	
Vehicle type	Cars	Available data	Depth of material	(ft) Equipm	ent transnorta	10 tion-Road	Processed data	
Fuel used	Gasoline	Available data	Fuel used	Equipm	ent transporta	Diesel	Available data	
Distance traveled per trip (miles)	4	Assumption based	Distance traveled	(miles)		4	Assumption based	
Number of travelers	6U 2	Processed data	Weight of equipm	ent transported (tons)	20	Assumption based	
Fauinment transportet	5 ion Road	Assumption bused	EQUIPMENT USE					
	Diesel	Available data			Earthwork	1	r	
Fuel used Distance traveled (miles)	12	Available auta Assumption based	Earthwork equipn	nent type		Excavator	Available data	
Weight of equipment transported (tons)	10	Processed data	Fuel type		3.	Diesel	Available data	
FOUIPMENT	ISE		Volume of materia	al to be removed	(yd [°])	60	Processed data	
Farthwork								
Earthwork equinment type	Excavator	Available data						
Fuel type	Diesel	Available data						
Volume of material to be removed (vd ³)	50	Processed data	1					
Drilling								
Input number of drilling locations	19	Available data						
Drilling method	Direct Push	Assumption based						
Time spent drilling at each location (hr)	1	Processed data						
Input depth of wells (ft)	13	Processed data						
Fuel type	Diesel	Available data						
			1					
Remedial Operation	Note							
TRANSPORTAT								
Personnel transportation	ion-Road							
Vehicle type	Cars	Available data	-					
Fuel used	Gasoline	Available data	4					
Number of trins taken	4 500	Processed data						
Number of travelers	6	Assumption based						
Equipment transportat	ion-Road	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Fuel used	Diesel	Available data						
Distance traveled (miles)	20	Assumption based						
Weight of equipment transported (tons)	10	Assumption based						
	EQUIPMENT US Earthwork	E						
Earthwork equipment type	Excavator	Dozer	Loader/Backhoe	Available data				
Fuel type	Diesel	Diesel	Diesel	Processed data				
Volume of material to be removed (yd ³)	62327+16117	20900+27233	158500	Processed data				
RESIDUA Disposal tra	L HANDLING							
Distance traveled (miles)	16,843	16,843	Processed data					
Weight of load (tons)	330	1	Processed data	1				
Disposal tra	nsportation-Road		<u>.</u>					
Weight of the waste transported to landfill (tons)	14	0	Processed data	1				
Vehicle type	On-roa	d truck	Available data	1				
Fuel used	Gas	oline	Available data					
Total number of trips	19100	19100	Processed data					
Number of miles per trip	0.40	0.40	Processed data	l				
Other known onsite a	ctivities							
CO ₂ emission (metric ton)	1.3E+01	Available data]					
NOx emission (metric ton)	7.6E-05	Available data]					
		A STATE AND A STATE						

22.1 Scenario-1, 2 and 5, SRT input data, Hexion

SRT -Kikåstappen							
CONTAMINATED MASS							
Soil Source Input*							
Area of effected soil (ft ²)	110,250	Processed data					
Depth to Top of the Affected soil (ft)	0	Available data					
Depth to Bottom of the Affected soil (ft)	9	Available data					
Depth of Groundwater (ft)	5	Available data					
Natural attenuation							
Calculation of natural resource service	Disabled	-					
TRANSPORTATION							
Personnel transportation-Air							
Distance traveled (miles)	1,850	Available data					
Personnel transportation-Road							
Distance traveled by site workers one-way (miles)	5	Assumption based					
Number of trips during construction	1,550	Processed data					
Number of trips after construction	2	Assumption based					
Distance to disposal one-way (miles)	1.2**	Processed data					
Type of disposal	Hazardous	Available data					
· · · · · · · · · · · · · · ·							

* The amount of soil is directly calculated since no clean soil fill is considered

** Direct distance from landfill site is considered

SRT -Vapour extraction								
CONTAMINATED	CONTAMINATED MASS							
Soil Source Input*								
Area of effected soil (ft ²)	110,250	Processed data						
Depth to Top of the Affected soil (ft)	0	Available data						
Depth to Bottom of the Affected soil (ft)	9	Available data						
Depth of Groundwater (ft)	5 Available data							
Natural attenuation								
Calculation of natural resource service	Disabled	-						
TRANSPORTATION								
Personnel transporta	Personnel transportation-Air							
Distance traveled (miles)	1,850	Available data						
Personnel transportation-Road								
Distance traveled by site workers one-way (miles)	5	Assumption based						
Number of trips during construction	1,550	Processed data						
Number of trips after construction	2	Assumption based						
Treatment process								
Duration (years)	1	Processed data						
Vapor treatment method	Activated Carbon	Assumption based						
Efficiancy	1.0	Assumption based						
* The event of soil is divertily relevanted since we	مرمع معنا الألباني معمر	متعاميهما						

* The amount of soil is directly calculated since no clean soil fill is considered

SRT -Ragnsell							
CONTAMINATED MASS							
Soil Source Input*							
Area of effected soil (ft ²)	110,250	Processed data					
Depth to Top of the Affected soil (ft)	0	Available data					
Depth to Bottom of the Affected soil (ft)	9	Available data					
Depth of Groundwater (ft)	5	Available data					
Natural attenuation	1						
Calculation of natural resource service	Disabled	-					
TRANSPORTATION							
Personnel transportation-Air							
Distance traveled (miles)	1,850	Available data					
Personnel transportation-Road							
Distance traveled by site workers one-way (miles)	5	Assumption based					
Number of trips during construction	1,550	Processed data					
Number of trips after construction	2	Assumption based					
Distance to disposal one-way (miles)	28.23**	Processed data					
Type of disposal	Hazardous	Available data					

* The amount of soil is directly calculated since no clean soil fill is considered

** Direct distance from landfill site is considered

23.1 Scenario-1, BohusVarv:

23.1.1 Full excavation & landfilling at Sita

GHG Emissions

SOx Emissions

Accident Risk - Fatality

- Residual Handling
- Equpiment Use and Misc
- Transportation-Equipment
- Transportation-Personnel
- Consumables

Investigation

Action

Construction

Action

Operations

Monitoring

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fotolity	Accident Risk
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton	гатанту	mjury
tion	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
tiga	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
nves	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
nedi	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Rer	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
	Consumables	3,048.79	4.4E+04	NA	NA	NA	NA	NA	NA
ction on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ad ucti	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
nedi <i>î</i> înstr	Equipment Use and Misc	9.26	1.3E+02	5.9E+02	5.2E-02	9.1E-03	3.9E-03	6.4E-05	2.7E-02
Rem Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	3,058.05	4.37E+04	5.93E+02	5.23E-02	9.06E-03	3.86E-03	6.35E-05	2.73E-02
_	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ctior ns	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
ıl Ac	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ledi:	Equipment Use and Misc	161.14	2.5E+03	0.0E+00	1.1E+00	2.9E-01	6.9E-02	6.6E-05	2.8E-02
Rem O	Residual Handling	2,936.29	3.6E+04	NA	3.2E+00	7.6E-01	4.7E-01	7.8E-03	1.6E+00
	Sub-Total	3,122.60	3.87E+04	0.00E+00	8.02E+00	1.83E+00	7.25E-01	8.30E-03	1.69E+00
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
rm Monitori	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Loi	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	6.2E+03	8.2E+04	6.0E+02	8.1E+00	1.8E+00	7.3E-01	8.4E-03	1.7E+00

23.2 Scenario-2, BohusVarv:

23.2.1 Full excavation & landfilling at Ragnsell

NOx Emissions

PM₁₀ Emissions

SOx Emissions

Accident Risk - Injury

- Residual Handling
- Equpiment Use and Misc
- Transportation-Equipment
- Transportation-Personnel
- Consumables

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2011:80

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fotolity	Accident Risk
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton	Fatanty	Injury
tion	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
nves	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
al I	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
nedi	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Reı	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
-	Consumables	3,048.79	4.4E+04	NA	NA	NA	NA	NA	NA
ctior on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
al Ac	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Remedia Constr	Equipment Use and Misc	9.26	1.3E+02	5.9E+02	5.2E-02	9.1E-03	3.9E-03	6.4E-05	2.7E-02
	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	3,058.05	4.37E+04	5.93E+02	5.23E-02	9.06E-03	3.86E-03	6.35E-05	2.73E-02
_	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ction ns	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
al A(atio	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
nedia per	Equipment Use and Misc	161.14	2.5E+03	0.0E+00	1.1E+00	2.9E-01	6.9E-02	6.6E-05	2.8E-02
Ren C	Residual Handling	1,421.66	1.7E+04	NA	1.5E+00	3.7E-01	2.3E-01	3.8E-03	7.9E-01
	Sub-Total	1,607.97	2.02E+04	0.00E+00	6.39E+00	1.44E+00	4.80E-01	4.27E-03	8.47E-01
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm I	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	4.7E+03	6.4E+04	6.0E+02	6.4E+00	1.4E+00	4.8E-01	4.4E-03	8.8E-01

23.3 Scenario-3, BohusVarv:

23.3.1 Full excavation & landfilling at SAKAB

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2011:80
Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton		
tion	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
tiga	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
nves	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
medi	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Reı	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
_	Consumables	3,048.79	4.4E+04	NA	NA	NA	NA	NA	NA
ction on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ac 'ucti	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
iediz instr	Equipment Use and Misc	9.26	1.3E+02	5.9E+02	5.2E-02	9.1E-03	3.9E-03	6.4E-05	2.7E-02
Rem Co	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	3,058.05	4.37E+04	5.93E+02	5.23E-02	9.06E-03	3.86E-03	6.35E-05	2.73E-02
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ction ns	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
al Ac ation	Transportation-Equipment	133.92	6.8E+03	NA	1.7E-01	1.3E-01	3.2E-01	0.0E+00	0.0E+00
lediz per;	Equipment Use and Misc	161.14	2.5E+03	0.0E+00	1.1E+00	2.9E-01	6.9E-02	6.6E-05	2.8E-02
Rem O	Residual Handling	214.41	2.6E+03	NA	2.3E-01	5.5E-02	3.5E-02	5.7E-04	1.2E-01
	Sub-Total	534.63	1.22E+04	0.00E+00	5.26E+00	1.26E+00	6.03E-01	1.06E-03	1.78E-01
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itori	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Loi	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	3.6E+03	5.6E+04	6.0E+02	5.3E+00	1.3E+00	6.1E-01	1.1E-03	2.1E-01

23.4 Scenario-4, BohusVarv:

23.4.1 Full excavation & landfilling at Noah, SiteWise default ship

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2011:80

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fotolity	Accident Risk
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton	гатанту	injury
tion	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
tiga	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
nves	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
nedi	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Reı	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
	Consumables	3,048.79	4.4E+04	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
al Ac	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
nedia	Equipment Use and Misc	9.26	1.3E+02	5.9E+02	5.2E-02	9.1E-03	3.9E-03	6.4E-05	2.7E-02
Ren Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	3,058.05	4.37E+04	5.93E+02	5.23E-02	9.06E-03	3.86E-03	6.35E-05	2.73E-02
-	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ction ns	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
al Ac atio	Transportation-Equipment	1,064.69	1.1E+04	NA	1.9E+03	1.9E+03	2.1E+03	2.1E-05	4.4E-03
nedi; per	Equipment Use and Misc	161.14	2.5E+03	0.0E+00	1.1E+00	2.9E-01	6.9E-02	6.6E-05	2.8E-02
Ren C	Residual Handling	214.55	2.6E+03	NA	2.3E-01	5.5E-02	3.5E-02	5.7E-04	1.2E-01
	Sub-Total	1,465.55	1.65E+04	0.00E+00	1.87E+03	1.87E+03	2.10E+03	1.08E-03	1.82E-01
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	4.5E+03	6.0E+04	6.0E+02	1.9E+03	1.9E+03	2.1E+03	1.2E-03	2.1E-01

23.5 Scenario-4, BohusVarv:

23.5.1 Full excavation & landfilling at Noah, SMED values for ship

PM₁₀ Emissions

Accident Risk - Injury

SOx Emissions

Accident Risk - Fatality

- Residual Handling (Truck)
- Equpiment Use and Misc
- Transport Equip & R.H by Boat
- Transportation-Personnel
- Consumables

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton	•	5.0
tion	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
itiga	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
nves	Transportation-Equipment	002	24E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
nedi	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Rer	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
_	Consumables	865.58	2.2E+04	NA	NA	NA	NA	NA	NA
ction on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ac ucti	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ledia Instr	Equipment Use and Misc	9.26	1.3E+02	5.9E+02	5.2E-02	9.1E-03	3.9E-03	6.4E-05	2.7E-02
Rem Co	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	874.83	2.26E+04	5.93E+02	5.23E-02	9.06E-03	3.86E-03	6.35E-05	2.73E-02
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ction 1S	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
ıl Ac atioı	Transportation-Equipment	10 252.57	1.0E+04	NA	2.8E+02	8.6E+01	1.2E+01	2.1E-05	4.4E-03
lediz per:	Equipment Use and Misc	161.14	2.5E+03	0.0E+00	1.1E+00	2.9E-01	6.9E-02	6.6E-05	2.8E-02
Rem O	Residual Handling	214.55	2.6E+03	NA	2.3E-01	5.5E-02	3.5E-02	5.7E-04	1.2E-01
	Sub-Total	10 653.43	1.55E+04	0.00E+00	2.88E+02	8.67E+01	1.26E+01	1.08E-03	1.82E-01
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itori	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm N	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngtei	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lor	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	1.2E+04	3.8E+04	6.0E+02	2.9E+02	8.7E+01	1.3E+01	1.2E-03	2.1E-01

Scenario-5a, BohusVarv:

23.5.2 Partial excavation & and landfilling at Sita

Construction Operations

Total Energy Used

SOx Emissions

Accident Risk - Fatality Remedial Remedial Longterm Action Action Monitoring **Construction Operations**

- Residual Handling
- Equpiment Use and Misc
- Transportation-Equipment
- Transportation-Personnel

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton	Fatanty	injui y
tion	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
tiga	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
nves	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
nedi	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Rer	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
	Consumables	3,451.25	5.9E+04	NA	NA	NA	NA	NA	NA
ction on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ad ructi	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
nedi <i>z</i>	Equipment Use and Misc	8.77	1.2E+02	1.5E+02	5.1E-02	8.6E-03	3.9E-03	6.4E-05	2.7E-02
Rem Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	3,460.02	5.90E+04	1.48E+02	5.13E-02	8.58E-03	3.86E-03	6.35E-05	2.73E-02
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ction 1S	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
al Ac ation	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
nediz per;	Equipment Use and Misc	40.28	6.3E+02	0.0E+00	2.8E-01	7.2E-02	1.7E-02	1.7E-05	7.1E-03
Ren O	Residual Handling	636.08	7.8E+03	NA	6.8E-01	1.6E-01	1.0E-01	1.7E-03	3.5E-01
	Sub-Total	701.53	8.68E+03	0.00E+00	4.70E+00	1.02E+00	3.02E-01	2.13E-03	3.90E-01
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	4.2E+03	6.8E+04	1.5E+02	4.8E+00	1.0E+00	3.1E-01	2.2E-03	4.2E-01

23.6 Scenario-5b, BohusVarv:

23.6.1 Partial excavation & landfilling at Ragnsell

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton		
tion	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
tiga	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
nves	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
nedi	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Reı	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
_	Consumables	3,451.25	5.9E+04	NA	NA	NA	NA	NA	NA
tion	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ac 'ucti	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
iediz instr	Equipment Use and Misc	8.77	1.2E+02	1.5E+02	5.1E-02	8.6E-03	3.9E-03	6.4E-05	2.7E-02
Rem Co	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	3,460.02	5.90E+04	1.48E+02	5.13E-02	8.58E-03	3.86E-03	6.35E-05	2.73E-02
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ction 1S	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
ıl Ac ation	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
lediz per;	Equipment Use and Misc	40.28	6.3E+02	0.0E+00	2.8E-01	7.2E-02	1.7E-02	1.7E-05	7.1E-03
Rem O	Residual Handling	312.29	3.8E+03	NA	3.4E-01	8.1E-02	5.0E-02	8.3E-04	1.7E-01
	Sub-Total	377.74	4.72E+03	0.00E+00	4.35E+00	9.36E-01	2.49E-01	1.27E-03	2.10E-01
gu	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itori	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm l	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	3.8E+03	6.4E+04	1.5E+02	4.4E+00	9.5E-01	2.5E-01	1.4E-03	2.4E-01

Scenario-5c, BohusVarv: 23.7

23.7.1 Partial excavation & landfilling at SAKAB

SOx Emissions

- Residual Handling (Truck)
- Equpiment Use and Misc
- Transport Equip & R.H by Train
- Transportation-Personnel
- Consumables

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2011:80

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton		
tion	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
nves	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
medi	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Reı	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
	Consumables	3,451.25	5.9E+04	NA	NA	NA	NA	NA	NA
ction on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ac	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
nedia	Equipment Use and Misc	8.77	1.2E+02	1.5E+02	5.1E-02	8.6E-03	3.9E-03	6.4E-05	2.7E-02
Rem Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	3,460.02	5.90E+04	1.48E+02	5.13E-02	8.58E-03	3.86E-03	6.35E-05	2.73E-02
_	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ction 1S	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
al Ac ation	Transportation-Equipment	33.48	1.7E+03	NA	4.2E-02	3.3E-02	7.9E-02	0.0E+00	0.0E+00
iedia	Equipment Use and Misc	40.28	6.3E+02	0.0E+00	2.8E-01	7.2E-02	1.7E-02	1.7E-05	7.1E-03
Rem O	Residual Handling	53.64	6.6E+02	NA	5.8E-02	1.4E-02	8.7E-03	1.4E-04	3.0E-02
	Sub-Total	152.57	3.25E+03	0.00E+00	4.12E+00	9.02E-01	2.87E-01	5.81E-04	6.71E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itori	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
[m	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	3.6E+03	6.2E+04	1.5E+02	4.2E+00	9.1E-01	2.9E-01	6.7E-04	9.8E-02

23.8 Scenario-5d, BohusVarv:

23.8.1 Partial excavation & landfilling at Noah, SiteWise default ship

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk	Accident Risk
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton	Fatality	Injury
tion	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
tiga	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
nves	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
medi	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Reı	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
	Consumables	3,451.25	5.9E+04	NA	NA	NA	NA	NA	NA
ction on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ad ucti	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
nedia	Equipment Use and Misc	8.77	1.2E+02	1.5E+02	5.1E-02	8.6E-03	3.9E-03	6.4E-05	2.7E-02
Rem Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	3,460.02	5.90E+04	1.48E+02	5.13E-02	8.58E-03	3.86E-03	6.35E-05	2.73E-02
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ctior ns	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
al Ac atio	Transportation-Equipment	260.42	2.7E+03	NA	4.6E+02	4.6E+02	5.2E+02	0.0E+00	0.0E+00
nedi:	Equipment Use and Misc	40.28	6.3E+02	0.0E+00	2.8E-01	7.2E-02	1.7E-02	1.7E-05	7.1E-03
Ren C	Residual Handling	53.64	6.6E+02	NA	5.8E-02	1.4E-02	8.7E-03	1.4E-04	3.0E-02
	Sub-Total	379.51	4.27E+03	0.00E+00	4.69E+02	4.66E+02	5.23E+02	5.81E-04	6.71E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Loi	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	3.8E+03	6.3E+04	1.5E+02	4.7E+02	4.7E+02	5.2E+02	6.7E-04	9.8E-02

23.9 Scenario-5dx, BohusVarv:

23.9.1 Partial excavation & landfilling at Noah, SMED values for ship

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
c		metric ton	WIWIDIU	ganons	metric ton	metric ton			
ation	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
stig	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
nve	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
	Consumables	1 268.03	3.8E+04	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ad ucti	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ledis	Equipment Use and Misc	8.77	1.2E+02	1.5E+02	5.1E-02	8.6E-03	3.9E-03	6.4E-05	2.7E-02
Rem Co	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	1 276.80	3.79E+04	1.48E+02	5.13E-02	8.58E-03	3.86E-03	6.35E-05	2.73E-02
_	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
tion	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
ıl Ac ation	Transportation-Equipment	2 550.95	2.5E+03	NA	7.1E+01	2.1E+01	3.1E+00	0.0E+00	0.0E+00
edia	Equipment Use and Misc	40.28	6.3E+02	0.0E+00	2.8E-01	7.2E-02	1.7E-02	1.7E-05	7.1E-03
Rem O	Residual Handling	53.64	6.6E+02	NA	5.8E-02	1.4E-02	8.7E-03	1.4E-04	3.0E-02
	Sub-Total	2 670.04	4.02E+03	0.00E+00	7.46E+01	2.22E+01	3.27E+00	5.81E-04	6.71E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm I	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Loi	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	3.9E+03	4.2E+04	1.5E+02	7.5E+01	2.2E+01	3.3E+00	6.7E-04	9.8E-02

Scenario-6, BohusVarv:

23.9.2 Soil-washing & landfilling remnants at SAKAB

Phase	Activities	GHG Emissions metric ton	Total energy Used MMBTU	Water Consumption gallons	NOx emissions metric ton	SOx Emissions metric ton	PM10 Emissions metric ton	Accident Risk Fatality	Accident Risk Injury
ų									
atio	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
stig	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
Inve	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
lial]	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
ſ	Consumables	3,048.79	4.4E+04	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ad 'ucti	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
edia	Equipment Use and Misc	9.26	1.3E+02	5.9E+02	5.2E-02	9.1E-03	3.9E-03	6.4E-05	2.7E-02
Rem Co	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	3,058.05	4.37E+04	5.93E+02	5.23E-02	9.06E-03	3.86E-03	6.35E-05	2.73E-02
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
tion IS	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
l Ac	Transportation-Equipment	13.46	6.8E+02	NA	1.7E-02	1.3E-02	3.2E-02	9.6E-08	2.0E-05
edia	Equipment Use and Misc	171.08	1.5E+03	0.0E+00	6.6E-01	1.7E-01	4.0E-02	3.8E-05	1.6E-02
Rem	Residual Handling	32.59	4.0E+02	NA	3.5E-02	8.4E-03	5.3E-03	8.7E-05	1.8E-02
	Sub-Total	242.30	2.84E+03	0.00E+00	4.45E+00	9.76E-01	2.59E-01	5.47E-04	6.46E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm I	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
lgtei	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lon	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	3.3E+03	4.7E+04	6.0E+02	4.5E+00	9.9E-01	2.6E-01	6.3E-04	9.5E-02

23.10 Scenario-7,BohusVarv: 23.10.1 In-situ S&S remedy

GHG Emissions

NOx Emissions

PM₁₀ Emissions

Accident Risk - Fatality

Residual Handling

- Equpiment Use and Misc
- Transportation-Equipment
- Transportation-Personnel
- Consumables

Phase	Activities	GHG Emissions	Total energy Used MMBTU	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton		ganons	metric ton	metric ton			
_	Consumables	0.21	4.4E+00	NA	NA	NA	NA	NA	NA
al tion	Transportation-Personnel	0.34	3.7E+00	NA	2.7E-04	8.9E-05	6.0E-05	1.8E-05	1.3E-03
iga '	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
Ren vest	Equipment Use and Misc	0.73	1.0E+01	5.5E+00	4.3E-03	7.6E-04	3.2E-04	5.0E-06	2.1E-03
In	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	1.30	1.84E+01	5.49E+00	4.58E-03	8.48E-04	3.86E-04	2.33E-05	3.45E-03
_	Consumables	2,776.10	3.3E+04	NA	NA	NA	NA	NA	NA
on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
l Ac ucti	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
edia nstr	Equipment Use and Misc	8.60	1.2E+02	0.0E+00	5.1E-02	8.4E-03	3.9E-03	6.4E-05	2.7E-02
Col	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
R	Sub-Total	2,784.70	3.34E+04	0.00E+00	5.10E-02	8.42E-03	3.86E-03	6.35E-05	2.73E-02
_	Consumables	7,174.89	3.8E+04	NA	NA	NA	NA	NA	NA
tior IS	Transportation-Personnel	25.17	2.7E+02	NA	3.7E+00	7.8E-01	1.8E-01	4.2E-04	3.0E-02
l Ac tior	Transportation-Equipment	20.07	2.2E+02	NA	2.2E-02	5.2E-03	3.2E-03	2.1E-05	4.4E-03
edia	Equipment Use and Misc	31.96	4.3E+02	0.0E+00	1.9E-01	3.1E-02	1.4E-02	2.4E-04	1.0E-01
leme Ol	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	7.252.08	3.86E+04	0.00E+00	3.95E+00	8.20E-01	1.99E-01	6.79E-04	1.36E-01
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
m.	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
gter	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lon	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	1.0E+04	7.2E+04	5.5E+00	4.0E+00	8.3E-01	2.0E-01	7.7E-04	1.7E-01

24 Appendix 15

24.1 Scenario-1, Hexion:

24.1.1 Excavation & landfilling at Kikåstappen

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2011:80

Phase	Activities	GHG Emissions	Total energy Used MMBTU	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
g		meene ton		gunons		income ton			
atio	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stig	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
Inve	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial J	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
tion	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
l Ad ucti	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
edia nstr	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Rem Co	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
_	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
tion	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
ll Ac	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
edia	Equipment Use and Misc	38.07	6.0E+02	0.0E+00	2.6E-01	6.8E-02	1.6E-02	1.7E-05	7.2E-03
Rem O	Residual Handling	14.83	1.8E+02	NA	1.6E-02	3.8E-03	2.4E-03	3.9E-05	8.2E-03
	Sub-Total	53.85	7.88E+02	0.00E+00	2.81E-01	7.23E-02	1.89E-02	1.62E-04	2.30E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm N	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Igter	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lor	Sub-Total	0.00	0.00 <u>E+00</u>	0.00E+00	0.00E+00	0.00 <u>E</u> +00	0.00 <u>E</u> +00	0.00E+00	0.00E+00
	Tatal	6 9E 101	8 OF 102		2.9E 01	7 3E 03	1.0E.02	1 7E 04	2 4E 02
	Total	0.0E+01	0.9E+02	0.0E+00	2.0E-01	7.3E-02	1.9E-02	1./E-04	2.4E-V2

24.2 Scenario-2, Hexion:

24.2.1 Excavation & landfilling at Ragnsell

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
e		metric ton		ganons	metric ton	metric ton	metric ton		
atio	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nve	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
tion on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ac 'ucti	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
edia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Rem Co	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
_	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
tion IS	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
ıl Ac ation	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
edia per:	Equipment Use and Misc	38.07	6.0E+02	0.0E+00	2.6E-01	6.8E-02	1.6E-02	1.7E-05	7.2E-03
Rem O	Residual Handling	408.94	5.0E+03	NA	4.4E-01	1.1E-01	6.6E-02	1.1E-03	2.3E-01
	Sub-Total	447.96	5.61E+03	0.00E+00	7.05E-01	1.74E-01	8.25E-02	1.21E-03	2.42E-01
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itori	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm N	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Igtei	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lor	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	4.6E+02	5.7E+03	0.0E+00	7.1E-01	1.7E-01	8.3E-02	1.2E-03	2.4E-01

24.3 Scenario-3, Hexion:

24.3.1 Excavation & landfilling at SAKAB

SOx Emissions

- Residual Handling (Truck)
- Equpiment Use and Misc
- Transport Equip & R.H by Train
- Transportation-Personnel
- Consumables

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton		
tion	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nveg	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
ction on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ad ucti	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
nedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Rem Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ctior ns	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al Ac atio	Transportation-Equipment	33.03	1.7E+03	NA	4.1E-02	3.2E-02	7.8E-02	0.0E+00	0.0E+00
nedi:	Equipment Use and Misc	38.07	6.0E+02	0.0E+00	2.6E-01	6.8E-02	1.6E-02	1.7E-05	7.2E-03
Ren C	Residual Handling	7.18	8.8E+01	NA	7.7E-03	1.9E-03	1.2E-03	1.9E-05	4.0E-03
	Sub-Total	79.23	2.36E+03	0.00E+00	3.14E-01	1.03E-01	9.60E-02	1.41E-04	1.88E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
irm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	9.3E+01	2.5E+03	0.0E+00	3.2E-01	1.0E-01	9.6E-02	1.5E-04	2.0E-02

24.4 Scenario-4, Hexion:

24.4.1 Excavation & landfilling at Noah, SiteWise default ship

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton		
ition	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nveg	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
al Ac ructi	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
nedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Ren Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ctior ns	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al Ac atio	Transportation-Equipment	254.56	2.7E+03	NA	4.5E+02	4.5E+02	5.1E+02	0.0E+00	0.0E+00
nedi:	Equipment Use and Misc	38.07	6.0E+02	0.0E+00	2.6E-01	6.8E-02	1.6E-02	1.7E-05	7.2E-03
Ren C	Residual Handling	90.08	1.1E+03	NA	9.7E-02	2.3E-02	1.5E-02	2.4E-04	5.0E-02
	Sub-Total	383.67	4.36E+03	0.00E+00	4.55E+02	4.54E+02	5.11E+02	3.62E-04	6.48E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	4.0E+02	4.5E+03	0.0E+00	4.5E+02	4.5E+02	5.1E+02	3.7E-04	6.6E-02

24.5 Scenario-4, Hexion:

24.5.1 Excavation & landfilling at Noah, SMED vales for ship

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton		
ition	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nveg	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
al Ac ructi	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
nedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Ren Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ctior ns	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al Ac atio	Transportation-Equipment	2 493.55	2.4E+03	NA	6.9E+01	2.1E+01	3.0E+00	0.0E+00	0.0E+00
nedi:	Equipment Use and Misc	38.07	6.0E+02	0.0E+00	2.6E-01	6.8E-02	1.6E-02	1.7E-05	7.2E-03
Ren C	Residual Handling	90.08	1.1E+03	NA	9.7E-02	2.3E-02	1.5E-02	2.4E-04	5.0E-02
	Sub-Total	2 622.66	4.12E+03	0.00E+00	6.93E+01	2.09E+01	3.02E+00	3.62E-04	6.48E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	2.6E+03	4.2E+03	0.0E+00	6.9E+01	2.1E+01	3.0E+00	3.7E-04	6.6E-02

Scenario-5, Hexion:

24.5.2 Vapour extraction & landfilling at SAKAB

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton		
tion	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nveg	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
al Ac ructi	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
nedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Ren Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
	Consumables	11.60	1.4E+02	NA	NA	NA	NA	NA	NA
ctior ns	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al Ac atio	Transportation-Equipment	14.69	7.4E+02	NA	1.8E-02	1.4E-02	3.5E-02	4.8E-08	1.0E-05
nedi: Dper	Equipment Use and Misc	39.84	1.5E+03	5.1E+04	2.1E-01	5.8E-02	1.2E-02	1.1E-05	4.9E-03
Ren C	Residual Handling	4.35	5.3E+01	NA	4.7E-03	1.1E-03	7.0E-04	1.2E-05	2.4E-03
	Sub-Total	71.43	2.42E+03	5.10E+04	2.31E-01	7.40E-02	4.79E-02	1.28E-04	1.48E-02
ing	Consumables	0.57	1.0E+01	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.57	6.2E+00	NA	4.5E-04	1.5E-04	1.0E-04	2.0E-05	1.5E-03
Mon	Transportation-Equipment	0.02	1.7E-01	NA	1.6E-05	3.9E-06	2.5E-06	2.4E-08	5.0E-06
rm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	1.16	1.65E+01	0.00E+00	4.65E-04	1.52E-04	1.02E-04	2.04E-05	1.47E-03
	Total	8.6E+01	2.5E+03	5.1E+04	2.3E-01	7.4E-02	4.8E-02	1.6E-04	1.7E-02

24.6 Scenario-6a, Hexion:

24.6.1 Onsite soil-washing & landfilling at Noah, SiteWise default ship

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton		
ttion	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nve	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
tion	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ad ucti	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
iedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Rem Co	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ction ns	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al Ac ation	Transportation-Equipment	193.15	2.0E+03	NA	3.4E+02	3.4E+02	3.9E+02	0.0E+00	0.0E+00
ledis per:	Equipment Use and Misc	38.07	6.0E+02	0.0E+00	2.6E-01	6.8E-02	1.6E-02	1.7E-05	7.2E-03
Rem O	Residual Handling	70.11	8.6E+02	NA	7.5E-02	1.8E-02	1.1E-02	1.9E-04	3.9E-02
	Sub-Total	302.28	3.48E+03	0.00E+00	3.45E+02	3.45E+02	3.88E+02	3.09E-04	5.37E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	3.2E+02	3.6E+03	0.0E+00	3.5E+02	3.4E+02	3.9E+02	3.2E-04	5.5E-02

24.7 Scenario-6a, Hexion:

24.7.1 Onsite soil-washing & landfilling at Noah, SMED vales for ship

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton		
tion	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nveg	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
_	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
ction on	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ad ucti	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
iedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Rem C ₀	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
_	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ction ns	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al Ac ation	Transportation-Equipment	1 891.96	1.8E+03	NA	5.2E+01	1.6E+01	2.3E+00	0.0E+00	0.0E+00
ledis per:	Equipment Use and Misc	38.07	6.0E+02	0.0E+00	2.6E-01	6.8E-02	1.6E-02	1.7E-05	7.2E-03
Rem O	Residual Handling	70.11	8.6E+02	NA	7.5E-02	1.8E-02	1.1E-02	1.9E-04	3.9E-02
	Sub-Total	2 001.09	3.29E+03	0.00E+00	5.27E+01	1.59E+01	2.30E+00	3.09E-04	5.37E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	2.0E+03	3.4E+03	0.0E+00	5.3E+01	1.6E+01	2.3E+00	3.2E-04	5.5E-02

24.8 Scenario-6b, Hexion:

24.8.1 Onsite soil-washing & landfilling at Ragnsell

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton		
tion	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
tiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nves	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Reı	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
_	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
al Ac	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
nedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Ren C(Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ctior ns	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al Ac atio	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
nedi: Dper	Equipment Use and Misc	38.07	6.0E+02	0.0E+00	2.6E-01	6.8E-02	1.6E-02	1.7E-05	7.2E-03
Ren C	Residual Handling	312.16	3.8E+03	NA	3.4E-01	8.1E-02	5.0E-02	8.3E-04	1.7E-01
	Sub-Total	351.18	4.42E+03	0.00E+00	6.01E-01	1.49E-01	6.68E-02	9.53E-04	1.88E-01
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
litor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
irm [Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	3.6E+02	4.5E+03	0.0E+00	6.0E-01	1.5E-01	6.7E-02	9.6E-04	1.9E-01

24.9 Scenario-6c, Hexion:

24.9.1 Onsite soil-washing & landfilling at SAKAB

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
			MMBTU	gallons	metric ton	metric ton	metric ton		
ition	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nveg	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
al Ac ructi	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
nedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Ren Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ctior ns	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al Ac atio	Transportation-Equipment	25.10	1.3E+03	NA	3.1E-02	2.5E-02	6.0E-02	0.0E+00	0.0E+00
nedi:	Equipment Use and Misc	38.07	6.0E+02	0.0E+00	2.6E-01	6.8E-02	1.6E-02	1.7E-05	7.2E-03
Ren C	Residual Handling	7.18	8.8E+01	NA	7.7E-03	1.9E-03	1.2E-03	1.9E-05	4.0E-03
	Sub-Total	71.30	1.96E+03	0.00E+00	3.04E-01	9.50E-02	7.72E-02	1.41E-04	1.88E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
irm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	8.5E+01	2.1E+03	0.0E+00	3.1E-01	9.5E-02	7.7E-02	1.5E-04	2.0E-02

24.10 Scenario-7, Hexion:

24.10.1 Complete excavation & optimized landfilling

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2011:80

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
			MMBTU	gallons	metric ton	metric ton	metric ton		
ttion	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nve	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
tion	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ad ucti	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
iedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Rem Co	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ction ns	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al Ac ation	Transportation-Equipment	5.83	2.9E+02	NA	7.3E-03	5.7E-03	1.4E-02	0.0E+00	0.0E+00
hedi	Equipment Use and Misc	137.19	2.1E+03	0.0E+00	9.5E-01	2.5E-01	5.8E-02	5.2E-05	2.2E-02
Rem O	Residual Handling	30.16	3.7E+02	NA	3.2E-02	7.8E-03	4.9E-03	8.0E-05	1.7E-02
	Sub-Total	174.14	2.82E+03	0.00E+00	9.93E-01	2.60E-01	7.66E-02	2.38E-04	4.67E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
rm l	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	1.9E+02	2.9E+03	0.0E+00	9.9E-01	2.6E-01	7.7E-02	2.5E-04	4.8E-02

24.11 Scenario-8, Hexion: 24.11.1S&S remedy & remnants landfilling at SAKAB

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
		metric ton	MMBTU	gallons	metric ton	metric ton	metric ton	Fatanty	injui y
tion	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nves	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
_	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
al Ac ructi	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
nedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Ren C(Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
_	Consumables	4,043.54	2.1E+04	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al A	Transportation-Equipment	26.15	8.7E+02	NA	3.1E-02	1.7E-02	3.7E-02	1.2E-05	2.5E-03
nedi: Dper	Equipment Use and Misc	151.35	2.1E+03	0.0E+00	9.2E-01	1.7E-01	6.7E-02	3.9E-05	1.7E-02
Ren C	Residual Handling	4.35	5.3E+01	NA	4.7E-03	1.1E-03	7.0E-04	1.2E-05	2.4E-03
	Sub-Total	4,226.33	2.44E+04	0.00E+00	9.53E-01	1.86E-01	1.04E-01	1.68E-04	2.93E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
litor	Transportation-Personnel	0.00	1.5E+02	NA	0.0E+00	0.0E+00	0.0E+00	2.0E-05	1.5E-03
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
irm [Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	1.49E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.04E-05	1.46E-03
	Total	4.2E+03	2.5E+04	0.0E+00	9.5E-01	1.9E-01	1.0E-01	2.0E-04	3.2E-02

24.12 Scenario- 9, Hexion:

24.12.1 Full Soil-wash & remnants landfilling at SAKAB

CHALMERS, Civil and Environmental Engineering, Master's Thesis 2011:80

Phase	Activities	GHG Emissions	Total energy Used	Water Consumption	NOx emissions	SOx Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
			MMBTU	gallons	metric ton	metric ton	metric ton		
ition	Consumables	0.27	5.6E+00	NA	NA	NA	NA	NA	NA
stiga	Transportation-Personnel	0.11	1.2E+00	NA	9.0E-05	3.0E-05	2.0E-05	6.1E-06	4.4E-04
nveg	Transportation-Equipment	0.02	2.4E-01	NA	1.9E-05	3.6E-06	1.8E-06	2.9E-08	6.0E-06
ial I	Equipment Use and Misc	0.17	2.4E+00	0.0E+00	1.0E-03	1.8E-04	7.8E-05	1.2E-06	5.0E-04
med	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Re	Sub-Total	0.58	9.56E+00	0.00E+00	1.14E-03	2.18E-04	1.00E-04	7.32E-06	9.47E-04
	Consumables	13.14	9.3E+01	NA	NA	NA	NA	NA	NA
ction	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ıl Ad ucti	Transportation-Equipment	0.01	9.6E-02	NA	7.5E-06	1.4E-06	7.0E-07	9.6E-09	2.0E-06
nedia	Equipment Use and Misc	0.02	3.9E-01	0.0E+00	1.4E-04	3.9E-05	1.0E-05	2.1E-08	9.1E-06
Rem Cc	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Sub-Total	13.17	9.36E+01	0.00E+00	1.44E-04	4.04E-05	1.09E-05	3.09E-08	1.11E-05
	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
ctior ns	Transportation-Personnel	0.95	1.0E+01	NA	7.5E-04	2.5E-04	1.7E-04	1.1E-04	7.6E-03
al Ac atio	Transportation-Equipment	37.63	1.9E+03	NA	4.7E-02	3.7E-02	8.9E-02	4.8E-08	1.0E-05
nedi:	Equipment Use and Misc	85.63	1.3E+03	0.0E+00	6.0E-01	1.5E-01	3.7E-02	3.9E-05	1.7E-02
Ren C	Residual Handling	21.65	2.6E+02	NA	2.3E-02	5.6E-03	3.5E-03	5.8E-05	1.2E-02
	Sub-Total	145.86	3.52E+03	0.00E+00	6.66E-01	1.96E-01	1.30E-01	2.02E-04	3.61E-02
ing	Consumables	0.00	0.0E+00	NA	NA	NA	NA	NA	NA
itor	Transportation-Personnel	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Mon	Transportation-Equipment	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
irm]	Equipment Use and Misc	0.00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ngte	Residual Handling	0.00	0.0E+00	NA	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Lo	Sub-Total	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total	1.6E+02	3.6E+03	0.0E+00	6.7E-01	2.0E-01	1.3E-01	2.1E-04	3.7E-02

25 Appendix 16

Ship cargo transfer impact values. Swedish available data (Cooper & Gustafsson, 2004) used in Hector (2009) are presented in left and default values used in SiteWiseTM to the right (Leaders, 2008).

	Ship Car	rgo footprint *	Water transportation*			
C02	3179	kg/ton marin diesel	kg CO₂/ton mile	4.80E-02		
NOx	63.22	kg/ton marin diesel	g N ₂ O /ton mile	4.10E-03		
CH4	0.20	kg/ton marin diesel	g CH₄/ton mile	1.40E-03		
NMVOC	0.97	kg/ton marin diesel	g NOx /ton mile	8.80E+01		
SO2	8.00	kg/ton marin diesel	g SOx /ton mile	8.80E+01		
N2O	0.15	kg/ton marin diesel	g PM ₁₀ /ton mile	9.90E+01		
Partiklar	0.98	kg/ton marin diesel	BTU /ton mile	5.14E+02		

Swedish Methodology for Environmental Data, 2004

* Table 2g from SiteWise[™] for impact values

New ship cargo transport impact values which were used for the second round of analysis are presented below. Ship fuel consumption rates were picked from Notteboom and Carriou (2009). SMED (2004) values were used to calculate emission impact factors.

	Ship Fuel consumption										
S	peed	Cizo	Fuel consumption								
Knots	km/hr	5120	tons/day	tons/hr	tons/km	tons/mile					
18.00	33.34	Small	50.00	2.08	0.06	0.10					
20.00	37.05	Small	65.00	2.71	0.07	0.12					
22.00	40.75	Small	100.00	4.17	0.10	0.16					
24.00	44.46	Small	150.00	6.25	0.14	0.23					

Source :T, Notteboom and P, Carriou, 2009 Ship transportation impact values(g/ton

	Ship transportation inipact values(g/ton rule)											
Engine Type	Fueltune		Ma	in Pollutar	nts		Parl	ticulate Ma	itter	Greenhouse Effect		
	ruertype	NOx	CO	NMVOC	SOx	NH3	TSP	PM10	PM2,5	CO2	CH4	N2O
SSD*	Md ^a	91561	2703	1622	8000	16	1081	1081	1081	3.18E+06	3.24E+01	1.68E+02
	RO ^b	87136	2545	1525	46000	27	6667	6667	6667	3.18E+06	3.08E+01	1.59E+02
	Average	8.93E+04	2.62E+03	1.57E+03	2.70E+04	2.15E+01	3.87E+03	3.87E+03	3.87E+03	3.18E+06	3.16E+01	1.64E+02

Source: SMED, 2004

 * Slow Speed Engine
 ^a Marine Distillates
 ^b Residual Oils

 Ship transportation impact values (g/km) and (g/mile)

 For 22 knots- g/km:
 9.14E+03
 2.68E+02
 1.61E+02
 2.76E+03
 2.20E+00
 3.96E+02
 3.96E+02
 3.25E+05
 3.23E+00
 1.67E+01

 For 22 knots- g/mile:
 1.47E+04
 4.32E+02
 2.59E+02
 4.44E+03
 3.54E+00
 6.37E+02
 6.37E+02
 5.23E+05
 5.20E+00
 2.69E+01

Train cargo impact values. EPA Climate Leaders values and Railway association of Canada used by SiteWise^{TMv.1} adaptation and replacement to Swedish condition (Leaders, 2008) and (RAC, 2001).

Rail cargo transportation	on lifecycle impact*		Swedish El-mix*						
kg CO2/ton mile a	2.52E-02	C02	0.107748	kg/kwh	2.38E+02	lbs/MWh			
g N2O /ton mile a	6.00E-04	NOx	0.000137	kg/kwh	3.02E-01	lbs/MWh			
g CH4/ton mile a	2.00E-03	CH4	8.33E-05	kg/kwh	1.84E-01	lbs/MWh			
g NOx /ton mile b	6.44E-01	NMVOC	7.56E-06	kg/kwh	1.67E-02	lbs/MWh			
g SOx /ton mile b	3.22E-02	SO2	0.000108	kg/kwh	2.38E-01	lbs/MWh			
g PM10 /ton mile b	1.60E-02	N2O	1.68E-06	kg/kwh	3.70E-03	lbs/MWh			
BTU /ton mile c	3.41E+02	Partiklar	1.64E-05	kg/kwh	3.62E-02	lbs/MWh			
*		**							

* Table 2f from SiteWise[™] for impact values

Svensk elmix, 2002 The European Commission's Joint Research Centre

	Rail cargo transportation lifecycle impact*										
Energy use Train capacity El u			El use								
0.042	kwh/tonne.km	300	tonne/trip	12.6 kwh/km							
Inventory analysis											
C02	0.107748	kg/kwh	4.53E-03	kg/tonne.km	0.0066039	kg/ton.mile					
NOx	0.000137	kg/kwh	5.754E-06	kg/tonne.km	0.0083968	g/ton.mile					
CH4	8.33E-05	kg/kwh	3.50E-06	kg/tonne.km	0.0051055	g/ton.mile					
NMVOC	7.56E-06	kg/kwh	3.18E-07	kg/tonne.km	0.0004634	g/ton.mile					
SO2	0.000108	kg/kwh	4.536E-06	kg/tonne.km	0.0066194	g/ton.mile					
N2O	1.68E-06	kg/kwh	7.06E-08	kg/tonne.km	0.000103	g/ton.mile					
Partiklar	1.64E-05	kg/kwh	6.89E-07	kg/tonne.km	0.0010052	g/ton.mile					

*Adopted and replaced train transport impact values with Swedish electricity mix