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Abstract

The stability of copper oxide clusters was investigated using density functional the-
ory (DFT) where the exchange-correlation was described by the Perdew-Burke-
Ernzerhof generalized gradient approximation. In particular, the Cu1–3O1–6 and
[Cu6O3–9]+/− clusters were investigated. To estimate the stability, the free energy
of the oxidized cluster was compared to the free energies of the corresponding bare
cluster and gas phase molecular oxygen. A genetic algorithm was used to find the
lowest energy shapes of the clusters.

For the neutral clusters, the structures found by the genetic algorithm were com-
pared to structures found in previous theoretical studies. In many cases the results
agreed. In those cases they did not, the cause of the difference was ascribed to the
different exchange-correlation functionals that were used in the DFT calculations.
Regarding the stability, many of the oxygen-rich clusters had a low free energy at
room temperature.

The results for the charged clusters were compared to experiments measuring the
relative abundance of copper oxide clusters of different compositions. The trends
found in this thesis are similar to those found experimentally. For example, at room
temperature, experiments found [Cu6O7]+ to be the most abundant composition
for the cations. This is in good agreement with the results found in this thesis.
Similarly for the anions, theoretical and experimental results agree on [Cu6O5]−
being the most stable composition.

Keywords: copper oxide clusters, DFT, density functional theory, PBE, genetic
algorithm, free energy
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1
Introduction

In this thesis the stability of copper oxide clusters was studied. Copper oxide clusters
play an important role in many catalytic reactions, such as, NOx reduction [1] and
methane-to-methanol conversion [2]. In the bulk case, two stable compositions of
copper oxide exists: cuprous oxide (Cu2O) and cupric oxide (CuO). However, the
stable compositions for clusters might be different.

1.1 Summary

Two different types of clusters were investigated. The first was neutral clusters
composed of one to three copper atoms and one to six oxygen atoms. The second
was singly charged clusters composed of six copper atoms and three to nine oxy-
gen atoms. In order to estimate the stability of a cluster, density functional theory
(DFT) was used. From DFT it was possible to calculate the ground state electronic
energy of an atomic system. Chapter 2 explains the theory behind this. The chap-
ter also covers how DFT results can be extended to compute free energies. The
stability of a copper oxide cluster was estimated by comparing its free energy to
the free energies of the corresponding bare copper cluster and gas phase molecular
oxygen. Hence, the more a system can lower its free energy by forming an oxidized
cluster from a pure copper cluster and oxygen molecules, the more stable it will be
considered to be.

From DFT it is also possible to calculate forces acting on the nuclei of a system.
Section 3.1 shows how these forces can be used to perform a local structure opti-
mization of the system. However, to make a fair comparison between the different
compositions the most stable structures, i.e. the global minima, should be used. Due
to the large amount of possible structures for a cluster, a genetic algorithm (GA)
was used to find these. What a GA is and how it was implemented in this thesis is
covered in Section 3.2.

In Chapter 4 the results of the calculations are presented and compared to earlier
theoretical and experimental work. In most cases the results are in good agreement
with previous studies. The GA is also found to perform well for the clusters used
in this thesis. Conclusions drawn from the results are presented in greater detail in
Chapter 5.
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1. Introduction

The purpose of the thesis is to:
• Investigate the performance of a GA for the task of finding the most stable

structures of copper oxide clusters.
• Find the most stable structures for Cu1–3O1–6 and [Cu6O3–9]+/−.
• In the case of [Cu6O3–9]+/−, investigate how the theoretical relative stabilities

of the different compositions compares to experiments.

1.2 Preceding Experimental Results

The relative abundance of copper oxide clusters has been investigated experimentally
at the University of Tokyo, by Morita et al. in 2013 [3] and by Mafuné et al. in 2015 [4].
It was found that the number ratios of thermally stable copper oxide clusters lie
in between the ratios of the two stable bulk copper oxides CuO and Cu2O, see
Figure 1.1. In the experiment copper clusters were prepared through laser ablation

Figure 1.1: Experimental results for the relative abundances of CunOm
+ and CunOm

–,
normalized in each column of n. In this thesis clusters with n = 6 (surrounded by red
boxes) are further investigated. Adapted with permission from Morita et al. [3]. Copyright
2013 American Chemical Society.

of a copper rod which was exposed to oxygen diluted in helium. Mass spectrometry
was used in order to determine the relative abundances of different compositions.
The experiment was also performed at 623 K; the result was the same as for 573 K.

In the article by Mafuné et al. [4] it is stated that the distribution of clusters, only
considering the number of copper atoms they contain (n), did not change signif-
icantly during the experiment. Therefore, by normalizing the data in Figure 1.1
per column the results does not depend on the initial distribution created through
the laser ablation. This also simplifies the analysis of the thermal stability as the
different n-values can be investigated independently. In the article it is also stated
that the distribution of the clusters at a certain temperature is independent of which
temperature the clusters had before, i.e. if they were cooled or heated to the desired
temperature. This suggest that it is largely thermodynamical properties rather than
kinetic effects that determine the distribution of clusters.
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2
Density Functional Theory

Many properties of an atomic system can be determined from its electronic structure.
Using DFT, we can calculate the ground state electronic structure. This chapter
starts off by briefly explaining how DFT works and why we want to use it. Section 2.6
will go through how we can combine our DFT results with thermodynamics to
calculate the free energy of our systems. In the end of the chapter the computational
method for the DFT calculations is covered.

2.1 Schrödinger Equation

The mass of the nuclei is much larger than the electron mass. However, the forces
acting upon the particles are of the same magnitude. We use this to motivate a sep-
aration of the electronic and nuclear time dependence. [5] This is known as the Born-
Oppenheimer approximation [6]. Freezing the nuclei in space removes the nuclear
kinetic energy from the description of our system. It also makes the electronic struc-
ture independent of the internuclear potential. We write down the time-independent
Schrödinger equation for our system under the Born-Oppenheimer approximation.
For a system of N electrons we have:

ĤΨ(x1, . . . ,xN) = EΨ(x1, . . . ,xN)
with Ĥ = T̂ + V̂ee + V̂en.

(2.1)

Here, both the spatial coordinates and the spin coordinate for electron i are repre-
sented by xi. The kinetic energy operator for the electrons is T̂ . The V̂ terms are
the potential energy operators; V̂ee describes the interaction between electrons and
V̂en describes the interaction between electrons and nuclei. In atomic units these
operators are:

T̂e = −1
2
∑

i

∇2
i , V̂ee = 1

2
∑
i̸=j

1
|ri − rj|

, V̂en = −
∑

I

∑
i

ZI

|ri − RI |

where ri is the position of electron i, RI is the position of nucleus I, ∇2
i is the

Laplacian for electron i and ZI is the atomic number of nucleus I. Worth noting is
that even though the internuclear repulsion does not affect the electronic structure,
its contribution to the energy is still important when comparing different systems.
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2. Density Functional Theory

Even after applying the Born-Oppenheimer approximation, solving our problem
numerically quickly becomes unmanageable as the number of electrons increases.
To calculate a matrix representation of the Hamiltonian we only have to account
for one constant configuration of the nuclei. However, we still need to account for
every possible electronic configuration. If we represent space using x grid points,
this becomes xN configurations for N electrons.

2.2 Electron Density

The electron density, n(r), is a probability density for the spatial distribution of
electrons. Integrating it over all of space gives the total number of electrons in our
system. For a system of N electrons described by the many-body wave function Ψ
it is defined as:

n(r) = N
∑
s1

. . .
∑
sN

∫
dr2 . . .

∫
drN |Ψ(r1, s1, r2, s2, . . . , rN , sN)|2 (2.2)

where ri are the spatial coordinates of the electrons and si are their spin coordinates.
In 1964 Hohenberg and Kohn formulated two theorems regarding the electron density
of electrons moving in an external potential. [7] Their first theorem tells us that it
is possible to construct a unique energy functional for our system, depending only
on the electron density. From the second theorem we know that by minimizing this
functional, with regard to the density, we will find the ground state density and
energy of our system.

If we use the electron density instead of the many-body wave function to compute
the electronic energy, our electronic structure problem might be possible to solve.
This is of course highly dependent on the form of the unique functional mentioned
in Hohenberg and Kohn’s theorems. In the next section we will see how such a
functional can be constructed and used to calculate ground state electron densities
as well as the corresponding energies.

2.3 Kohn-Sham Equations

To determine the electronic structure of a system we will map the many-body prob-
lem described by Equation 2.1 to a single-body problem. This process was first
described in 1965 by Kohn and Sham. [8] We start by replacing the interacting elec-
trons with non-interacting particles, Kohn-Sham electrons, moving in a potential
which compensates for the loss of all many-body effects. For such a system it is
possible to find the ground state density and energy.

First spin paired systems will be treated. In Section 2.4 we will adapt the theory
to work without this restriction. According to the first Hohenberg-Kohn theorem it
should be possible to describe any external potential using only the electron density.

4



2. Density Functional Theory

In the theory of Kohn and Sham this density is constructed from the lowest lying
single particle orbitals, ψi, of their independent particles:

n(r) =
N∑

i=1
|ψi(r)|2. (2.3)

As our system is spin paired, two identical versions of each calculated orbital will
exist.
Using single particle orbitals instead of the many-body wave function makes our
problem possible to solve numerically. For example, if space is represented using x
grid points we only need N · x values to store all the single particle orbitals of N
particles compared to the xN values needed for the many-body wave function.
According to the second Hohenberg-Kohn theorem the ground state density will
minimize the energy functional. We write our energy functional as follows:

E[n] = T0[n] + EH[n] + Eext[n] + Exc[n]. (2.4)

The first three terms we know how to calculate. These are the kinetic energy for
independent particles, the Hartree energy i.e. the Coulomb interaction between elec-
trons, and the energy from the external potential, i.e. Coulomb interaction between
the nuclei and the electrons. The two latter are expressed in the following way:

EH[n] = 1
2

∫
dr dr′ n(r)n(r′)

|r − r′|
and Eext[n] =

∫
dr Vext(r)n(r)

where Vext(r) is the potential from the nuclei.
Looking at the expression for EH, we notice a problem. The electrons are treated
as if they interact with themselves. For instance, there is a contribution even for
a single electron system. This is referred to as “self-interaction error” and it is
unavoidable as we need all our independent particles to feel the same potential. The
self-interaction error is counteracted in the exchange term. If exchange is treated
exactly, as in Hartree-Fock theory, the error will be canceled out completely. In
DFT where exchange is treated approximately, the quality of the cancellation will
depend on how good the approximation is.
In contrast to the Hartree and exchange energy, the kinetic energy is not as straight
forward to calculate from an electron density. This is the reason we need the single-
particle orbitals. By applying the variational method to the energy functional we
will find states that have a possibility of minimizing our energy functional for a
given density. As our particles are independent, the minimization can be performed
independently for each orbital. Adding the constraint that each orbital should have
a total probability of one, the variational method becomes:

δE

δψ∗
i

= ϵi
δ

δψ∗
i

(∫
ψ∗

i (r)ψi(r) dr −1
)
. (2.5)

Here ϵi are the Lagrange multipliers from including the constraint. By calculating
the functional derivatives, we get the single orbital Kohn-Sham equation:[

−1
2

∇2 +
∫

dr′ n(r′)
|r − r′|

+ Vext(r) + δ

δn(r)
Exc[n]

]
ψi(r) = ϵiψi(r). [9] (2.6)
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2. Density Functional Theory

This is an eigenvalue problem; its eigenvectors are called Kohn-Sham orbitals. They
are the allowed states for a Kohn-Sham electron moving in a potential determined
by the given electron density. The eigenvalues can be used to calculate the energy
of the system composed of N Kohn-Sham electrons. By multiplying Equation 2.6
with ψ∗

i (r) from the left and summing over the N lowest orbitals we get:

N∑
i=1

ϵi = T0[n] + 2EH[n] + Eext[n] +
∫

dr n(r) δ

δn(r)
Exc[n]. (2.7)

If we compare this expression with the energy functional we started of with, Equa-
tion 2.4, we see that the energy can expressed as:

E[n] =
N∑

i=1
ϵi − EH[n] −

∫
dr n(r) δ

δn(r)
Exc[n] + Exc[n]. (2.8)

2.4 Implementation

The lowest lying orbitals of a solution to Equation 2.6 have to reproduce the density
used to construct the Hamiltonian. To find such a solution we can start by guessing
a density. Using this density we can construct a Hamiltonian and solve the resulting
eigenvalue problem. We then use the lowest lying orbitals of this solution to con-
struct a new density which might not match the initial one. Using this new density
we can now construct a new Hamiltonian and solve a new eigenvalue problem which
will result in yet another density. If these steps are repeated enough times the den-
sity will hopefully converge towards its ground state. An overview of the process
looks as follows:

1. Guess initial n(r).
2. Use n(r) to construct Hamiltonian and solve resulting eigenvalue problem.
3. Construct new n(r) from solution.
4. Does the new density match the old?

• Yes → solution found!
• No → go to step 2.

5. Calculate energy.
If the highest occupied and lowest unoccupied orbitals are close in energy, there is a
risk that the orbital occupation will have significant variations between iterations.
This might cause convergence problems. One way of damping these variations is
to use smearing, i.e. allowing fractional occupation of the orbitals. The fractional
occupation can be determined in different ways. In this thesis a finite-temperature
Fermi function is used, ensuring that the correct energy gradients are computed. [10]

Unrestricted Spin. In reality many systems are not spin paired, e.g. all systems
with an odd number of electrons. DFT can be adapted to deal with this problem.
To split spin states, electrons with different spin has to be treated differently some-
where in our calculations. We do this by calculating two separate densities, one for

6



2. Density Functional Theory

each spin state. In the energy functional (Equation 2.4), it is only the exchange-
correlation term which can have a spin dependence. To get our different spin den-
sities we will simply solve two eigenvalue problems, both very similar to the case of
restricted (paired) spin. The only difference is that when calculating the spin up
density, the exchange-correlation functional will also depend on the spin-up density
and vice versa. The other terms will still only depend on the total density. The
exchange-correlation functional for a density only containing one of the spin states
could of course differ from the one we use in the spin restricted case. For example,
below we see how the exchange functional for a spin paired system can be adapted
to the spin unrestricted case.

If the exchange functional for the spin paired system Epaired
x [n] is known, it can

be used to express the exchange functional for pure spin densities n↑(r) or n↓(r)
following way:

Epure
x [n↑(↓)] = 1

2
Epaired

x [2n↑(↓)]. [11] (2.9)

This is possible as a spin paired density is composed of two identical halves, one for
each spin state. We can create such a density from a pure spin density by multiplying
it by two. To only include the contributions from the original spin state we simply
divide the calculated energy by two.

After solving the two eigenvalue problems we can construct our new densities in two
different ways. The first is to occupy the orbitals by always choosing the lowest
available one without any restriction for the total spin state. This is referred to as
converging the spin. If we instead are interested in a specific total spin state, we
specify the number of unpaired electrons we want and occupy our orbitals with this
restriction in mind. The latter method generally converges faster for a well chosen
spin state.

2.5 Approximations

One problem in DFT is that we do not know the exact form of the exchange-
correlation energy functional; it has to be approximated in some way. A common
assumption in these approximations is that the effects of exchange and correlation
are local, i.e. the exchange-correlation contribution at r, only depends on the elec-
tron density at r. This is called the local density approximation (LDA). For this case
we can use expressions for the exchange and correlation energies of a homogeneous
electron gas (HEG) to calculate the local contributions.

Exchange should compensate for the fact that electrons in the same spin state can
not occupy the same spatial state. The effect of this is that electrons will avoid
other electrons with equal spin states. In the case of a HEG with density n0 the
exchange energy per electron is:

ϵx(n0) = −3
4

( 3
π
n0

) 1
3
. [9] (2.10)

7



2. Density Functional Theory

In LDA this leads to the following expression for the exchange energy functional in
the spin restricted case:

E(LDA)
x [n] =

∫
dr nϵx(n). (2.11)

The correlation contributions includes many-body effects originating from the elec-
tron Coulomb interaction. An exact analytic form is not known even for the HEG
but several parametrized versions exist. [9]

An improvement of the LDA is the generalized gradient approximation (GGA):

E(GGA)
xc [n↑, n↓] =

∫
dr f(n↑, n↓,∇n↑,∇n↓). [12] (2.12)

Here f is a function which approximates the exchange-correlation energy contribu-
tion from a point r in a semi-local way, using the electron densities for the different
spin populations at this point as well as the gradients of the densities at this point.
As more information about the system is used more accurate results can be achieved
compared to the LDA. The exchange-correlation functional used in this thesis is of
this type (see Section 2.7).

2.6 Free Energy

We now know how to determine the electronic structure for a system where the
nuclei are fixed in space. However, our goal is to compare theoretical calculations
to experimental data. To do this we will calculate the Gibbs free energy (G), i.e.
the maximum reversible work that may be performed by our system:

G(T, p) = H(T, p) − T · S(T, p). (2.13)

Here H is the enthalpy (energy + p×volume), S is the entropy, T is the temperature
and p is the pressure. Under the ideal gas approximation the enthalpy and entropy
can be divided in the following way:

H(T ) = Etrans(T ) + Erot(T ) + Evib(T ) + Eelec + kB · T
S(T, p) = Strans(T, p) + Srot(T ) + Svib(T ) + Selec,

(2.14)

where kB is the Boltzmann constant. [13] The last term in the enthalpy expression is
the pressure-volume term rewritten using the ideal gas law and Eelec is the ground
state electronic energy described in the previous section. Detailed derivations of
the other terms are described in Chapter 10 of Cramer 2004 [13]. A quick summary
follows.

Etrans, Erot. The translational and rotational energies are calculated as E(T ) =
d
2kBT where d is the number of degrees of freedom. A cluster has three translational
degrees of freedom. If it is linear, it has two rotational degrees of freedom and if it
is non-linear it has three.

8



2. Density Functional Theory

Strans, Srot. To calculate the translational entropy we need to know the mass (M)
of the cluster. Under the ideal gas approximation this is also the only free energy
term which has a pressure dependence. The expression looks like:

Strans(T, p) = kB

ln


√

8π3M3k5
BT

5

ph3

+ 5
2


where h is Planck’s constant. [13]

To calculate the rotational entropy the clusters are treated as rigid rotors. The
resulting expressions in the linear and non-linear case are:

Slinear
rot (T ) = kB

(
ln
[

8π2IkBT

σh2

]
+ 1

)

Snon-linear
rot (T ) = kB

ln


√
πIAIBIC(8π2kBT )3

σh3

+ 3
2


where σ is a symmetry number, I is the moment of inertia for a linear cluster and
IA-C are the principal moments of inertia for a non-linear cluster. [13]

A cluster’s symmetry number σ, corresponds to how many different, but indistin-
guishable, arrangements it has. The symmetry group, and thereby also σ is auto-
matically determined by DMol3 in the free energy calculations. In some cases an
incorrect σ might be determined by the program but the effect on the free energy is
quite small. If DMol3 determines the symmetry number to be σDMol, but the actual
symmetry number is σDMol the error becomes:

GDMol −Greal = −kBT ln
(
σreal

σDMol

)
. (2.15)

If σreal is twice as large of what DMol3 determined the calculated free energy would
be 18 meV to low at room temperature.

Evib, Svib. To determine the vibrational contributions to the enthalpy and entropy
we approximate the vibrational modes of our clusters as quantum mechanical har-
monic oscillators. Under this approximation the vibrational terms can be calculated
as:

Evib =
d∑

i=1
hωi

(1
2

+ 1
ehωi/kBT − 1

)

Svib = 1
T

d∑
i=1

(
hωi

ehωi/kBT − 1
− kBT ln

(
1 − e−hωi/kBT

))

where ωi are the vibrational frequencies and d is the number of vibrational degrees
of freedom. [13] For a N -atom cluster we have d = 3N−5 if it is linear and d = 3N−6
if it is not. The first term in the energy expression is the vibrational energy of the
lowest lying modes, often referred to as the zero-point energy.
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2. Density Functional Theory

To calculate the vibrational frequencies we need to determine how the forces acting
on one atom depends on the positions of the other atoms. We can do this by
constructing the following matrix:

Mij = 1
√
mimj

∂Fi(r1, . . . , r3N)
∂rj

(2.16)

where ri is a Cartesian coordinate of an atom, Fi is the corresponding force com-
ponent and mi is the mass of that atom. The vibrational frequencies are then
the square roots of the eigenvalues of this matrix. [14] The forces can be calculated
through DFT but the derivatives have to be approximated. We do this by moving
each atom independently, calculating new electronic forces each time. Each atom
will be moved a distance d twice for each dimension, once in the negative direc-
tion and once in the positive direction. This makes it possible to approximate the
derivatives through finite differences:

∂Fi(r1, . . . , r3N)
∂rj

≈ Fi(. . . , rj + d, . . .) − Fi(. . . , rj − d, . . .)
2d

.

In this thesis d = 5 mÅ is used. For the single-point calculations needed for the
vibrational frequencies the spin is fixed to the lowest lying spin state.

Selec. If the total spin state of the system is known the electronic entropy term can
be calculated as: kB ln(spin degeneracy). [13] For singlet states the spin degeneracy
is one, for doublet states it is two and so on.

The many approximations made for the free energy calculations might give low
precision when used to predict properties of our system at specific temperatures.
However, conclusions about qualitative characteristics can still be valid.

2.7 Computational Method

DMol3 version 7.0 was used to perform electronic structure calculations from first
principles. All calculations were performed using the PBE [12] exchange-correlation
functional. The basis used was dnp [15], a local double numerical basis set with
polarization functions. A cutoff value of 5 Å was used for all basis functions. To
reduce computational cost, the 10 lowest orbitals for copper were described using
density functional semi-core pseudopotentials (DSPP) [16]. The resulting basis set
is shown in Table 2.1. The minimal basis set contains one orbital for each pair of
principal and azimuthal quantum number present in the atom. The primed orbitals
(double) adds an additional radial part to that orbital while the extra polarization
orbitals adds more variation to the angular part of the wave functions. In Table 2.2
the difference between spin-polarized and non spin-polarized calculations for low
energy copper oxide clusters is shown. It seems there is a risk that running restricted
calculations for the GA simulations will change the internal ordering of the clusters

10



2. Density Functional Theory

Table 2.1: The table shows the basis sets describing the electronic wave functions in
the DFT calculations for oxygen and copper. All orbitals shown for each element were
used.

Minimal Double Polarization Active electrons

O 1s 2s 2p 2s′ 2p′ 3d 8
Cu 3s 3p 3d 4s 3d′ 4s′ 4p 19

Table 2.2: Low energy CunO2 clusters [17] were relaxed using spin-restricted calculations.
After this a single-point unrestricted calculation was performed. The resulting total energy
value, relative to the restricted value, is reported in the table (Single-point). Finally the
clusters were relaxed using unrestricted calculations and the resulting total energy value,
also relative to the restricted value, is reported in the table (Relaxed). All calculations
used a smearing value of ≈0.25 eV (9 mHa). The Cu3O2 clusters were in a doublet state
and the other clusters were triplets.

(meV)

Single-point −132 −10 −3 −38 −6
Relaxed −136 −12 −3 −40 −7

and thereby make the simulation converge towards a different minimum. Therefore,
as the computational time was not a problem, all DFT calculations were run using
unrestricted spin. However, if larger clusters were to be investigated, using spin
restricted calculations during the structure optimization in the GA simulation would
be worth considering. To obtain a more accurate ground state energy the structure
optimization could be followed by a spin unrestricted single point calculation.

For the GA simulation a smearing value of 0.25 eV was used (9 mHa) to aid conver-
gence. The majority of the other calculations were run without smearing. In the
cases were it was necessary to use smearing for convergence it is noted in the text.
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3
Optimization

In the previous chapter we calculated the ground state electronic energy for fixed
nuclei. However, we had no way of knowing if the nuclear positions we chose corre-
sponded to a physically relevant structure of the system. Even if we use experimental
values for our atomic structures there is no guarantee that these will correspond to
the ground state structures in our simulations. This chapter will explain how the
energy minima with respect to nuclear positions can be found for our system. First
the case of local minima is treated. After this, it is shown how a GA can be used
to find the global minimum structure.

3.1 Local Structure Optimization

According to the Hellmann-Feynman theorem, the forces acting on the nuclei of our
system can be determined from the electron density using classical electrostatics. [18]

If we minimize these forces we will get closer to a stable structure. Changing the
positions of the nuclei will, however, affect the electronic structure. By alternating
DFT calculations and force calculations/minimizations we will hopefully converge
towards a local minimum of the structure. Some common quantities to consider
when determining if a system is converged are: change in energy between iterations,
change in positions of the nuclei between iterations and remaining forces acting on
the nuclei.

Computational Method. The structures were optimized using DMol3’s built
in optimizer. For the GA simulations DMol3’s default settings were used, see GA
column in Table 3.1. The structure optimizations were run for 200 iterations or until
the energy convergence criteria and either the displacement or gradient criteria was
satisfied. Structures which had not converged after 200 iterations were still used
by the GA. A maximum of 50 SCF-iterations were allowed. If the SCF had not
converge by then the structure optimization continued regardless.

For structure optimizations outside of the GA more accurate settings were used,
see non-GA column in Table 3.1. The structures were considered relaxed when all
convergence criteria were satisfied simultaneously.

13
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Table 3.1: The table shows the settings used for local structure optimizations, both
for GA simulations and outside them (non-GA). The integration grid setting controls the
number of grid points used. Below this the three convergence settings are shown. The
first two concerns the maximum allowed change in properties in between DFT calculations.
The two properties are change in energy, and change in position of the nuclei, respectively.
The last convergence setting defines the maximum allowed force component after a force
calculation.

GA non-GA

Integration_Grid medium fine
Opt_Energy_Convergence (meV) 0.27 (10−5 Ha) 0.20
Opt_Displacement_Convergence (mÅ) 0.53 (10−3 a0) 0.53
Opt_Gradient_Convergence (meV/Å) 50 2

3.2 Global Structure Optimization

Atomic clusters can have many different stable configurations, i.e. structures which
are local minima with respect to energy. These can be found using the local op-
timization described in the previous section. Which minimum the local optimizer
finds depends on the initial coordinates of the cluster. Finding the local minimum
with the lowest energy, i.e. the global minimum, can be challenging. In this thesis
a global optimizer based on a genetic algorithm (GA) was used to accomplish this.
The algorithm generates educated guesses for the initial positions of our cluster.
These positions will then be passed to the local optimization algorithm. This sec-
tion will start with a general description of GAs followed by an explanation of the
implementation used in this thesis.

3.2.1 Genetic Algorithms

GAs are a type of global optimization method inspired by how organisms evolve
through natural selection. In Wahde 2008 [19] a detailed description of GAs and their
implementation is given. A short summery of some important concepts follows.

Fitness: A property which can be evaluated for all candidates and assumes its
maximum value for the global optimum.

Initialization: Creating a random starting population. The initial population
should be diverse in order to avoid premature convergence.

Mutation: Alters a candidate in some way. This operation often contains stochas-
tic elements. Mutations adds diversity to a population.

Pairing: Characteristics of two previous candidates is used to create a new one.
Pairing allows the algorithm to make large “jumps” in configuration space.

Selection: Selecting candidates from a population which are used to construct a
new candidate. Candidates with high fitness have a larger probability of being
chosen. This focuses the search towards parts of configuration space corre-
sponding to high fitness.

14
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A GA is stochastic; simulations which are started with identical input, can give
different results. However, it is not a completely random search. Information from
previous candidates is used to create new ones. Previous candidates with high
fitness are chosen with higher probability than those with low. If implemented well
this results in a much more efficient search through the configuration space than a
random search would.

Compared to many traditional algorithms the definition of a GA is quite wide. The
implementation can differ a lot depending on the investigated system. For example,
constraints can be considered in different ways. One way is to punish systems which
do not satisfy the constraints when calculating the fitness, another is to modify the
GA operators to only generate candidates which do satisfy the constraints.

3.2.2 Local Implementation

In this section the GA implementation used for this thesis is presented. A non-
generational GA available in ASE [20] was used. An overview of the algorithm looks
as follows:

1. Generate and relax the initial population.
2. Generate a new candidate.
3. Relax the new candidate.
4. Has the simulation converged?

• Yes → Finished! Go to step five.
• No → Generate new population and return to step two.

5. Relax the unique top candidates using more accurate settings.

A more detailed explanation of the steps is given below.

Step 1. In the first step candidates with random structures are generated and
relaxed using the structure optimization described in Section 3.1. These candidates
make up the initial population.

Step 2. When an initial population exists it is possible to generate new candi-
dates from it. A new candidate is generated through either pairing of two previous
candidates (70% chance), or mutation of one previous candidate (30% chance). The
optimal pairing-mutation ratio was suggested to be 66%–80% by Lysgaard [21].

The probability that candidate i is chosen for pairing or mutation depends on its
energy (Ei), the number of times it has been selected for pairing before (ni), and the
number of similar candidates (mi). It is calculated as Fi · Ui where the two factors
are defined as:

Fi = 1
2

[1 − tanh(2ρi − 1)] , ρi = Ei − Emin

Emax − Emin

Ui = 1√
1 + ni

· 1√
1 +mi

. [22]
(3.1)
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Here, Emin and Emax are the lowest and highest energies in the population, respec-
tively.
The pairing operator was developed by Deaven and Ho [23]. It works as follows. First
a randomly oriented plane containing the center of mass of each cluster is generated.
Then a new cluster is constructed using atoms from different sides of the plane for
each parent cluster. The plane is moved along a line perpendicular to it in order to
get the correct number of atoms. If the atomic composition is wrong after this it is
restored by randomly choosing an atom of a abundant type and changing it to an
atom type of which there are to few. If any atoms from the different clusters has
ended up too close to each other the halves are separated.
For the pure copper clusters two different mutation operators are used: mirror and
rattle. For the copper oxide clusters a permutation mutation is used as well. All
of them are available in ASE. Each mutation operator has an equal probability of
being used. They work as follows. The mirror mutation generates a randomly
oriented plane, splitting the cluster in half. One of the halves is replaced by the
mirror image of the other. If the rattle mutation is chosen each atom has a 40%
chance of being rattled. Being rattled means the atom is moved a random dis-
tance of up to 0.8 Å along each axis. If it ends up too close to another atom a new
rattle operation, starting from the original position, is performed. The permuta-
tion mutation switches the positions of two atoms of different type. This is done
⌈number of atoms/6⌉ times.

Step 3. Here the new candidate is relaxed using the local structure optimization.
In successive steps this candidate is included in the population if it has low enough
energy and no similar candidates already exist. To determine if two clusters are
similar the InteratomicDistanceComparator class provided in the ase.ga module
is used. A maximum relative accumulated distance of 0.015, a maximum value
difference of 0.7 Å and a maximum energy difference of 0.02 eV are used for the
comparator. An explanation of these parameters is provided by Vilhelmsen et al. [24].

Step 4. In the forth step of the algorithm a convergence check is made. Typically,
one checks if any of the top candidates have changed for the last iterations. [21] If the
simulation had not converged a new population is constructed. This consists of the
non-similar individuals with the lowest energy.

Step 5. To reduce computational time the local optimizations in the GA are run
using the less accurate “GA” settings in Table 3.1. After the GA has finished the
global minimum then has to be relaxed using the more accurate “non-GA” settings.
As the top candidates can be close in energy several of them are relaxed using
these settings. The candidate having the lowest energy computed with the accurate
settings is considered the global minimum.
There are some additional GA features which potentially could work well for copper
oxide structures, but which have not been implemented in this thesies. Two examples
are screening and a spin mutation operator, both discussed below.
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Screening. Screening could be used to decrease the runtime of the GA. Before
a new candidate is relaxed the algorithm checks if a similar candidate has been
relaxed before. If this is the case the previous relaxation result could be used for
this candidate as well. It would of course take some tuning to get this to work
properly.

Spin mutation. The spin mutation would remove the need for converging the
spin state of the system. For DFT calculations, the spin state can be chosen by
fixing the number of unpaired electrons. By having a mutation operator which
randomly assigns the number of unpaired electrons, the SCF loops in the relaxation
might converge faster. However, some fixed spin states could also hinder converges.
Before implementing such an operator, a more thorough investigation should be
made of how fast a system with a randomly chosen spin state converges compared
to the unrestricted case.
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4
Results

In the first part of this chapter the results from local structure optimizations on
copper oxide clusters are presented and compared to previous theoretical work. It
is found that the results of this thesis are largely consistent with previous findings.
The second part contains the results from global structure optimizations. These are
compared to both experimental and theoretical work. When comparing to experi-
mental results several experimentally found trends are reproduced theoretically. In
the comparison to previous theoretical findings a functional dependence is found for
the global minimum structures.
All visualizations of clusters for the figures and tables were made using OVITO [25].

4.1 Local Structure Optimization

In order to produce accurate and efficient results using the global optimization algo-
rithm the local optimization has to preform well. To ensure this, some calculations
were compared to the results of two articles which also investigate small oxidized
copper clusters using DFT. In the article by Trinchero et al. [26] the same exchange
correlation functional, basis set, real space cutoff and pseudopotential as in this
thesis were used. The same convergence criteria for the structure optimization were
used as well. Yuan et al. [17] also used the PBE functional. However, they did use a
different basis set, namely an all electron basis set of 20 primitive Gaussians.

4.1.1 Molecular Adsorption

Adsorption of one oxygen molecule on copper clusters was investigated and compared
to previous theoretical work, see Table 4.1. The adsorption energy is defined as

Ead = E(O2) + E(Cun) − E(CunO2), (4.1)
where E() gives the ground state energy of the systems. The calculated adsorption
energies are similar to previous results. In all but one case the energy difference
is below 0.1 eV. The bond lengths of the adsorbed oxygen molecules are presented
as well. The results agree well with earlier findings, in all cases the difference is
less than 0.01 Å. The bond length can give hints of the charge state of the oxygen
atoms. For gas phase O2, O –

2 and O 2–
2 the bond lengths were calculated to be

1.225 Å, 1.379 Å and 1.686 Å, respectively.
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4. Results

Table 4.1: The table shows results for molecular adsorption of oxygen on the lowest en-
ergy structures of Cu2–4 and Cu6. The resulting clusters are shown and the corresponding
adsorption energies (Ead) are reported in eV and compared to earlier results (ETrinchero,
EYuan). For Cu2 and Cu3 a second low energy structure is included as well. Bond lengths
for the adsorbed oxygen molecules (Obl) are also shown. The values in parenthesis are
differences from the values calculated by Yuan et al. [17]. In all cases, the calculations
resulted in the same spin multiplicities (Spin) as in previous work.

Ead ETrinchero
[26] EYuan

[17] Obl (Å) Spin

0.81 −0.16 −0.08 1.276 (+0.005) triplet

0.29 N/A +0.00 1.366 triplet

2.00 N/A −0.06 1.367 (+0.008) doublet

1.63 N/A −0.03 1.344 doublet

1.22 +0.04 −0.01 1.366 (+0.006) triplet

1.32 (1.63α) +0.05 +0.03α 1.500 (+0.003) singlet
α These values are calculated with a reference energy from the to the 3-D C2v Cu6 isomer
instead of the lowest lying 2-D C3v one. Both are shown in Table A.1.

4.1.2 Bulk Stoichiometry

Here clusters with the same stoichiometry as cuprous oxide (Cu2O) are investigated.
In Table 4.2 formation enthalpies of (Cu2O)n clusters with n-values from one to six
are compared to previous work by Trinchero et al. [26]. The formation enthalpy is
defined as

Hf = E(Cu2mOm)
m

− E(O2)
2

− E(Cu2m)
m

, (4.2)

where E() gives the ground state energy of the systems. Except for Cu4O2 the
calculated values in this thesis were 0.10–0.15 eV higher. The most stable electronic
structure of Cu4O2 was determined to be a singlet state by Trinchero et al. as opposed
to the triplet state found in this thesis. The spin states of the other clusters were
not reported.

The effect of changing the charge of a cluster was also briefly explored. In Table 4.3
results for Cu2 clusters are shown, both in the bare copper case and with one oxygen
atom adsorbed. In both cases the energy was affected more by removing one electron
than by adding one. For the oxide the angle between the Cu-O bonds increased
significantly by removing one electron while it was barely affected when one electron
was added.
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Table 4.2: The table shows enthalpy of formation for (Cu2O)n clusters with n-values
from one to six. A comparison to previous work is made as well. For the Cu6O3 cluster a
smearing value of ≈10 meV (0.5 mHa) was used. No smearing was used when calculating
the other energies.

(eV)

Hα
f −1.14 −1.79 −1.90 −2.05 −2.27 −2.31

Hβ
Trinchero −0.12 −0.03 −0.10 −0.11 −0.15 −0.15

Spin singlet triplet triplet singlet singlet singlet
α Enthalpy of formation in eV. The values are calculated with respect to the lowest lying
bare clusters in Table A.1 and gas phase O2.
β Shows how previous results [26] differs from the results of this thesis (in eV).

Table 4.3: In the table properties for Cu2 and Cu2O clusters with charge of −1, 0 or
+1 (q) are compared. The bond length (B.L.) is the distance between the copper atoms
and the angle is between the Cu-O bonds. All neutral systems were found to be singlets
and the charged systems were doublets.

Cu2 Cu2O

q B.L. (Å) ∆α
H−L Eβ

rel B.L. (Å) Angle ∆α
H−L Eβ

rel

1 2.38 0.33 8.23 3.19 128.6° 0.38 7.90
0 2.26 1.57 0.00 2.53 90.7° 1.16 0.00

−1 2.43 0.79 −0.53 2.57 90.1° 0.58 −0.89
α HOMO-LUMO gap (eV).
β Energy relative neutral cluster (eV).

4.2 Global Structure Optimization

This section contains results related to global structure optimization. First some
statistics for the genetic algorithm (GA) is presented. After this, free energies are
compared to investigate the stability of copper oxide clusters at different tempera-
tures. Some of the results are also compared to experiments. In the end of the sec-
tion a comparison to previous theoretical results for the global minima of Cu1–3O1–6
clusters is made.

4.2.1 Statistics [Cu6O3,6]−

In order to get a better understanding of the GA’s performance, two systems of
different size, [Cu6O3]− and [Cu6O6]−, were more thoroughly investigated. Each
system was evaluated 50 times by the GA. The simulations ran for 100 steps or
until the global minimum was found. An overview of the result can be seen in
Figure 4.1. The solid lines show how the algorithm performs on average. The
dotted lines show the performance of worst run, i.e. the one with the highest final
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Figure 4.1: In the figure statistics for [Cu6O3]− (top) and [Cu6O6]− (bottom) are
shown. Each cluster was optimized 50 times by the GA using a population size of 15. The
histograms show for which step the successful GA runs first found the global minimum.
They are associated with the values on the left axis. The narrow box at step zero contains
all runs where the global minimum existed already in the initial population. The dotted
line shows the energy of the best candidate at each step, in the run resulting in the highest
final energy. The solid line shows the average energy of the best candidates from all runs.
Both lines are associated with the values on the right axis. The energies are relative the
global minima.

energy. In both cases the energy of the best candidate is considered at a specific
step.

The histograms in Figure 4.1 shows for which steps the minimum was found. In the
[Cu6O3]− case the algorithm often finds the minimum early. The fact that about 30%
of the initial populations contained the minimum also indicates that this minimum
is found quite easily. In order to find the [Cu6O6]− minimum the algorithm has to
do more work. It is not as likely that the final candidate can be generated directly
from the initial population. Therefore, intermediate candidates are needed more
often. These are on average closer in energy to the final candidate than a randomly
generated population is.

Additional information for these simulations is shown in Table 4.4. The extra atoms
in [Cu6O6]− compared to [Cu6O3]− make the local optimization, which is the major
contribution to the execution time, considerably slower. As the larger system also
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has a lower success rate and on average needs a significantly larger amount of steps
to find the minimum, the run time of the algorithm quickly increases with increased
system size.

Table 4.4: Further information about the GA runs in Figure 4.1. The success rate is the
ratio of runs which have found the global minimum within 100 steps. Steps to minimum is
the average amount of steps needed for a successful run to encounter the global minimum.
How long time it takes on average to construct, relax, and add a new candidate in the
GA is referred to as time/step. The corresponding time for the randomly generated
initial candidates is referred to as time/initial candidate. The initial mean energy is the
mean energy of all initial randomly generated candidates. Minimum from random is the
proportion of randomly generated candidates resulting in the global minimum. All time
measurements are expressed as wall clock time × number of CPUs used.

[Cu6O3]− [Cu6O6]−

Success rate 98% 88%
Steps to minimum 18 49
Time/step (h) 1.5 6.9
Time/initial candidate (h) 1.9 7.4
Initial mean energy (eV) 2.9 5.0
Minimum from random 2.40% 0.13%

4.2.2 Stability of Copper Oxide Clusters

The stability of copper oxide clusters was investigated. This was done by comparing
the free energy of bare copper clusters and gas phase oxygen molecules to the free
energy of oxidized clusters. Neutral as well as singly charged clusters were studied.
The neutral ones were composed of one to three copper atoms and one to six oxygen
atoms; the charged ones were composed of six copper atoms and three to nine oxygen
atoms. The ground state structures of the oxidized clusters are shown in this section
as well.
The stability was investigated at three different temperatures. The two lower, 298 K
and 573 K, are the temperatures for which the experiments by Morita et al. [3] were
performed. The top temperature, 1517 K, corresponds to the melting temperature
of bulk cuprous oxide. [27]

Cu1–3O1–6. In Figure 4.2 the change in free energy for forming Cu1–3O1–6 clusters
from the corresponding bare copper cluster, see Table A.1, and gas phase oxygen
molecules is shown. The structures of the oxides are shown in the figure as well.
Many of the oxygen-rich clusters have a low free energy for the two lower tempera-
tures. At 1517 K all clusters with n = 1 or n = 2 are predicted to decompose except
Cu2O. Clusters containing three copper atoms are only predicted to decompose in
the cases of five or six oxygen atoms. Those with fewer oxygen atoms are all pre-
dicted to be stable. Specifically, the clusters with one, two or four oxygen atoms
lower their free energy with about 0.7 eV and Cu3O3 lowers it by 1.85 eV.
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Figure 4.2: The black lines show the change in free energy at three different temper-
atures for the reaction at the top figure. Formation enthalpies are included as well (gray
lines). The case of one, two and three copper atoms are considered in the top, middle and
bottom part of the figure respectively. The number of oxygen atoms in the clusters varies
from one two six. The respective global minimum structures for the different compositions
are also shown.

[Cu6O3–9]+/−. As seen in Table 4.3, changing the charge of a cluster can alter its
structure. Therefore, separate global optimizations were performed for the differ-
ently charged clusters. The resulting structures for the Cu +/–

6 clusters are shown in
Table A.3 and the structures for [Cu6O3–9]+/− are shown in Figure 4.3.

The [Cu6O3–9]+/− clusters have previously been investigated experimentally, see Fig-
ure 1.1. In Figure 4.3 the relevant experimental results are included on the right
hand side of the figure. The figure also shows the change in free energy for forming
the clusters at different temperatures. In general the free energy gain is larger for
the anions than for the cations. At the two lower temperatures many clusters are
quite close in energy. For example, the [Cu6O4–6,8]+ clusters all lie in an interval of
100 meV at 298 K and the [Cu6O4,5,7]+ clusters lie within 125 meV of each other at
573 K.
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Figure 4.3: The black lines show the change in free energy at three different temper-
atures for the reaction at the top figure. Formation enthalpies are included as well (gray
lines). The clusters are composed of six copper atoms and three to nine oxygen atoms.
Cations are shown in the top part of the figure and anions are shown in the bottom part.
The respective global minimum structures for the different compositions are also shown.
Experimental results for the relative abundances of the different clusters are included as
heat maps on the right hand side of the figure. Two different temperatures are considered,
room temperature and 573 K. The heat maps were extracted from Figure 1.1 (adapted
with permission from Morita et al. [3]. Copyright 2013 American Chemical Society).

It is possible to identify some trends regarding the stability. Several of them are
similar to the experimental ones. For the cations the following similarities are ob-
served:

• [Cu6O7]+ is most stable composition at 298 K.
• [Cu6O4]+ becomes the most stable composition at high temperatures.
• [Cu6O6]+ and [Cu6O8]+ are unlikely to exist.
• [Cu6O9]+ is unlikely to exist at high temperatures.

Similarities exist for the anions as well:
• [Cu6O5]− is most stable from 298 K and up.
• [Cu6O6]− is more stable than [Cu6O4]− at 298 K.
• [Cu6O4]− becomes more stable than [Cu6O6]− at higher temperatures.

25



4. Results

There are also some characteristics of the theoretical data which do not agree with
experiments:

• [Cu6O3]+ is unlikely to exist at 573 K.
• [Cu6O4]− is unlikely to exist except for very high temperatures.
• [Cu6O9]− could exist at 298 K.

4.2.3 Previous Results Cu1–3O1–6

There have been previous attempts of finding the ground state structures of Cu1–3O1–6
clusters [28–34]. These structures were compared to the structures found in this thesis.
Several of the previous studies did not optimize the spin state of the clusters. There-
fore the spin state was not considered when determining if the results of different
studies agreed or not. Exact bond lengths and angles were not considered either,
only the general shape of the clusters was compared. In some cases the result was
the same or similar to that of this thesis, in other cases different structures were
found. A summary is shown in Table 4.5.

Table 4.5: Comparing global minimum structures with previous theoretical work.
In some cases the same ground state structure was found (Agree), in others a different
structure was found (Disagree). Bae [34] used multiple Monte Carlo simulations starting
from different initial structures to determine the optimal structure. In the other articles
different structures were compared manually. Different exchange-correlation functionals
were used in the articles; these are show in the table (Exc).

Authors Year Agree Disagree Exc

Wang et al. [28] 1996 Cu2O1,2 Cu2O4 BLYP
Chertihin et al. [29] 1997 CuO2–4, Cu2O1,3 Cu2O2 B3LYP
Baruah et al. [30] 2004 CuO2,3,6 N/A PBE
Pouillon et al. [31] 2004 CuO3–5 CuO2,6 PW91
Dai et al. [32] 2004 Cu2O1,3,4 Cu2O2 BLYP, B3LYP
Gong et al. [33] 2009 CuO4,5 N/A B3LYP
Bae. [34] 2016 Cu3O3–5 Cu3O1,2,6 B3LYP

If different structures had been found they were investigated further. The structures
were relaxed using same implementation of DFT that the clusters in this thesis used.
In all cases this resulted in energies close to those for the global minima found in
this thesis, see Table 4.6.
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4. Results

Table 4.6: The table shows the energy of ground state structures found in other articles
relative the energy of the most stable structures found in this thesis (Ediff). The energies
are obtained after relaxing the systems described in the articles using settings covered in
sections 2.7 and 3.1. The obtained spin multiplicity (Spin) is shown as well. It can take
the value singlet (s), doublet (d) or triplet (t).

Ediff (eV) Spin Ediff (eV) Spin

CuO2
[31] 0.41 eV d Cu2O4

[28] 0.09 eV s

CuO6
[31] 0.75 eV d Cu3O [34] 0.19 eV d

Cu2O2
[29] 0.16 eV t Cu3O2

[34] 0.16 eV d

Cu2O2
[32] 0.26 eV t Cu3O6

[34] 1.03 eV d
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5
Conclusion

The most stable structures of copper oxide clusters were determined using a genetic
algorithm (GA). Implementing and testing the GA was part of this thesis and the
results regarding its performance could be useful in other global structure optimiza-
tions. Below, conclusions both regarding the GA performance and for the copper
oxide clusters are presented.

5.1 Genetic Algorithm

For the smaller clusters, around nine atoms or less, the search space is too small
for the GA operations to do any major contributions the optimization. For exam-
ple, a randomly generated [Cu6O3]− cluster had a 2.4% chance of being the global
minimum. On average, 42 random candidates would thereby contain one global min-
imum. Using the GA, 15 initial candidates plus 18 steps (33 local optimizations)
were needed on average to find one global minima.

For the larger cluster ([Cu6O6]−) the GA operations were of greater importance. Of
the 750 random candidates, only one was relaxed to the global minimum. However,
on average the GA only needed 15 + 49 local optimizations to find the minimum.
As a local optimization performed in a GA step on average was faster then a local
optimization performed on a randomly generated candidate, the improved compu-
tational time is even better than that indicated by the number of steps saved.

Overall the implementation of the DFT and GA used in this thesis seems to be a
good compromise between accuracy and computational cost. It is accurate enough
to reproduce experimental results while keeping execution time at a manageable
level.

Outlook. Comparing the GA to a random search can show if the algorithm was
implemented in a sane way. However, a more fair comparison of its performance
would be to compare it to other global structure optimization algorithms used today,
such as basin hopping. This is a possible focus for future work on the subject.
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5. Conclusion

5.2 Copper Oxide Clusters

The results for the copper oxide clusters can be divided in to two cases: local and
global structure optimization. In the pure local optimization case, several earlier
results for formation enthalpies and adsorption energies were reproduced. This
created a good starting point for the global optimization as the local optimization
is an important part of the GA. The results from the global optimization are
considered below.

Cu1–3O1–6. Many of the oxygen-rich clusters had a low free energy at room tem-
perature and at 573 K. Only considering formation enthalpies, the clusters contain-
ing six oxygen atoms were the most stable ones. From the comparison with previous
studies it is concluded that the global minima depends on the exchange-correlation
functional used. However, in the cases where the minima of different functionals did
not match, they were still close in energy when compared using the PBE functional.

[Cu6O3–9]+/−. For the charged clusters several trends found experimentally by
Morita et al. [3] were reproduced theoretically. For example, the most stable com-
positions, both at room temperature and at high temperatures, agreed with exper-
iments.

In the free energy comparisons only the most stable structures of the clusters were
considered. However, as seen in Figure A.1, several structures with only slightly
higher energies (within 1 eV) can exist. For a more complete picture of the system,
these structures could be considered as well.

Outlook. The functional dependence of the global minima was only briefly ex-
plored. A more systematic investigation, combined with a comparison to experi-
mentally determined structures, would help to get a better understanding of the
clusters.

To get a better understanding of the connection between the calculated free energy
values and the experimentally measured spectrum, it would be helpful to compare
clusters containing a different number of copper atoms. A natural continuation
would be to investigate other parts of the experimental results in Figure 1.1.
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A
Appendix

In Section A.1 are properties for locally optimized clusters presented. Section A.2
contains properties for the global minima found by the GA. In both of these cases
binding energies are calculated. The binding energy is defined as:

Eb = nE(Cu) +mE(O) − E
(
[CunOm]+/0/−

)
, (A.1)

where E() gives the ground state energy of the systems. Note that the energy of the
free atoms is not affected by an eventual charge on the cluster. The effect of this is
that positively charged clusters get a lower binding energy than the corresponding
neutral ones as they have “lost” electrons. In the same way a negatively charged
clusters get a higher binding energy compared to neutral clusters.

In Section A.3 are typical distributions of the top candidates generated by the GA
shown. The investigated clusters are [Cu6O3]− and [Cu6O6]−.

A.1 Local Minima

Binding energies for copper clusters acquired through local optimization are shown
in Table A.1. The binding energy per atom increases with system size in all cases.
All clusters obtain their lowest energy for the lowest spin state, i.e. doublet for Cu3
and singlet for all other.

Table A.1: The table shows calculated binding energies (Eb) and HOMO-LUMO gaps
(∆H−L) for copper clusters used in previous work [17,26]. The Eb/Cu values are binding
energies per atom. The Cu3 cluster is in a doublet state, all other clusters are singlets.

Eb Eb/Cu ∆H−L (eV) Eb Eb/Cu ∆H−L (eV)

Cu2 2.10 1.05 1.57 Cu6 10.50 1.75 0.47

Cu3 3.35 1.12 0.32 Cu8 16.12 2.02 1.54

Cu4 5.94 1.48 1.00 Cu10 20.87 2.09 1.06

Cu6 10.82 1.80 1.87 Cu12 26.03 2.17 0.82
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A. Appendix

The clusters were used for calculations of adsorption energies and formation en-
thalpies in Section 4.1. The Cu2 and Cu3 clusters were also used to calculate the
free energy differences shown in Figure 4.2. With the exception of the 3D Cu6
cluster, these are reported to be the most stable structures. [17,26]

A.2 Global Minima

Here are properties for the global minima found by the GA presented. For every
cluster the binding energy, free energy contribution at room temperature (Grt), spin
state and symmetry group is shown. The binding energy is defined in Equation A.1
and Grt corresponds to the difference between the calculated total free energy at
room temperature and the electronic energy. The symmetry group was determined
by DMol3.

Table A.2 shows the results for the Cu1–3O1–6 clusters. In the table the binding
energy increases with system size while the free energy contribution is 0.40–0.90 eV
for all clusters. The estimated stability of these clusters is shown in Figure 4.2.

Table A.2: The table shows properties for the most stable structures of Cu1–3O1–6
found by the GA. The structures with three or less atoms were determined manually;
all larger structures were found using the GA. Spin refers to the spin multiplicity which
takes the values singlet (s), doublet (d), triplet (t) or quadruplet (q). The corresponding
structures are shown in Figure 4.2.

(eV) Cu Cu2 Cu3

Eb Grt Spin SG Eb Grt Spin SG Eb Grt Spin SG

O 2.18 −0.58 d C∞v 6.62 −0.68 s C2v 8.48 −0.81 d C1
O2 7.67 −0.62 d Cs 10.81 −0.60 s D2h 13.44 −0.75 d C2h
O3 11.65 −0.63 q C2v 14.68 −0.56 s D∞h 18.75 −0.74 q C1
O4 15.83 −0.50 d D2h 18.38 −0.65 t C1 22.61 −0.60 d C2v
O5 19.13 −0.55 q C2v 22.34 −0.72 t C1 25.72 −0.61 d C1
O6 23.04 −0.51 d C2v 26.32 −0.47 t D2h 29.75 −0.53 d Cs

In Table A.3 the results for the bare Cu +/–
6 clusters are shown. Different structures

are obtained for the different charge states. The positively charged structure got the
same shape as a neutral cluster while the negatively charged structure is close to that
of an oxidized cluster composed of six copper atoms and three or four oxygen atoms.
The clusters are used to calculate the free energy differences shown in Figure 4.3.

The results for the [Cu6O3–9]+/− clusters are shown in Table A.4. The majority of
the clusters are in the lowest spin state (doublet). The exceptions are [Cu6O3]+
and [Cu6O4]+ which are in a quadruplet state. For [Cu6O9]− no spin state was
determined. The estimated stability of these clusters is shown in Figure 4.3.
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Table A.3: Binding energy (Eb) and free energy contribution at room temperature
(Grt), both in eV, are shown for the most stable structures of Cu +

6 and Cu –
6 found by the

GA. The symmetry group (SG) is shown as well. Both clusters presented in the table
were in a doublet spin state.

Cu +
6 Eb Grt SG Cu –

6 Eb Grt SG

3.80 −1.08 C2v 11.97 −0.96 D4h

Table A.4: The table shows properties for the most stable structures of [Cu6O3–9]+/−

found by the GA. Spin refers to the spin multiplicity which takes the values doublet (d)
or quadruplet (q). The corresponding structures are shown in Figure 4.3.

(eV) +1 −1

Eb Grt Spin SG Eb Grt Spin SG

Cu6O3 19.52 −0.85 q C3v 29.55 −0.81 d Cs
Cu6O4 25.16 −0.74 q C2v 36.02 −0.71 d C1
Cu6O5 28.88 −0.78 d C2v 40.70 −0.68 d C2v
Cu6O6 32.33 −0.77 d Cs 44.78 −0.65 d D2h
Cu6O7 36.24 −0.82 d Cs 48.06 −0.76 d C1
Cu6O8 39.57 −0.78 d C1 51.44 −0.78 d C1
Cu6O9 43.37 −0.77 d Cs 55.21 −0.70 N/Aα C2v

α For this cluster’s structure optimization to converge a smearing value of ≈27 meV
(1 mHa) was used. When doing this the last electron was split in half between the two
spin channels.
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A.3 Comparing Top Candidates

Many different structures are generated by the GA. The energy distribution of the
top candidates for [Cu6O3]− and [Cu6O6]− is shown in Figure A.1. The [Cu6O6]−
clusters are closer in energy. This could be explained by that an increased number of
atoms gives a higher number of possible configurations, making the energy difference
between adjacent configurations less.
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y 
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)

[Cu6O3]
-

[Cu6O6]-

Figure A.1: Comparing top candidates after 50 GA iterations for [Cu6O3]− (top) and
100 GA iterations for [Cu6O6]− (bottom). The clusters furthest to the left are the global
minima and all energies are relative to these.
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