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Radar Only Highway Target Lane Following
In collaboration with Delphi Automotive
Johannes Gunnarsson
Oscar Pantzare
Department of Electrical Engineering
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Abstract
The thesis investigates in how a radar only target lane following trajectory can
be designed in order to achieve both longitudinal and lateral control on highway
driving. The algorithm presented in this report estimates the road in order to
identify and validate possible target vehicle. Based on the target vehicle motion is a
trail generated which the trajectory is based on. Experimental results demonstrate
that it is possible to achieve a radar only trajectory for both longitudinal and lateral
control.

Keywords: Radar-only, Lane following, Highway trajectory, Advanced driver assis-
tance system
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1
Introduction

The first advanced driver assistance systems (ADAS) released was adaptive cruise
control (ACC) in 1995 in Japan and 1998 in Europe [1]. Since then the research and
development of ADAS has been exponentially increasing. Today ADAS does not
only support longitudinal control but also lateral control. Luxury car manufacturers
offer lane keeping assistance (LKA), lane following (LF) and even autopilot systems
with the help of sensor fusion systems. In most cases these sensor fusion systems
are based on radar, vision and in some cases ultrasonic sensors [2]. These sensor
fusion systems provide often information in 360 degrees around the vehicle that is
used for feature function development of the ADAS.

Delphi Automotive Systems [3] (Delphi) is one of the worlds leading suppliers of
hardware and software for ADAS. In collaboration with Volvo Cars and Mobileye,
Delphi has pushed the limit of what is possible with ADAS. The sensor fusion sys-
tem used by Delphi and equivalent companies are often expensive and not accessible
for every car manufacturer. By limiting the use of sensors to a radar-only design,
ADAS can become cheaper and more accessible.

Today radar-only systems are able to provide information for adaptive cruise con-
trol, forward collision warning and automatic emergency braking systems (AEB)
[4]. But yet no system for lateral control has been implemented by only using radar
sensors. If a radar-only system was able to assist the driver with both longitudinal
and lateral control, highway assistant pilot system would become more affordable
and available to more people and potentially save lives.

1.1 Purpose and goals
The purpose of this project was to investigate how a radar-only setup can be used in
order to create a highway lane following trajectory for both longitudinal and lateral
control. The goal of the project was to design a target lane following trajectory based
on a radar-only platform. The aim was to generate a trajectory based on a snail trail
of a selected target vehicle that will be used as a reference for the host vehicle. The
target vehicle then provide information for both longitudinal and lateral control.

1



1. Introduction

1.2 Use case
The trajectory algorithm have a limited operating range including both road type
and velocity range. The road type is restricted to highway roads with no directly
oncoming vehicles. The velocity range is from 70km/h to the recommended speed
limits in the actual country. The target vehicle is also limited to be in the same
lane as the host vehicle in order to be considered a reference vehicle. If the target
vehicle is changing lane, leaving the highway or driving in a non reliable and illegal
way the trajectory algorithm should inform the driver and give back control of the
host vehicle. The intended use of the system is to assist the driver during highway
driving. The system should not be considered an autonomous system and the driver
should always superintend the vehicle and the traffic.

1.2.1 Specification
• The trajectory should stop following a target vehicle if it:

– Changes lane
– Exits highway
– Drives in an unreliable and illegal way

• If another vehicle unexpectedly cuts in between the target vehicle and the
host vehicle, the system should warn the driver and stop following the target
vehicle. Depending on the situation the vehicle cutting in could be considered
as a new target vehicle.

• The trajectory algorithm is limited to following traffic situations:
– Highway driving
– At least two lanes are present
– No direct oncoming traffic
– Host vehicle velocity above 70 km/h

1.3 Delimitations
• Only front sensing radar and host vehicle data are given as input to the tra-

jectory algorithm.
• The project focuses only on the trajectory design, no lateral and longitudinal

controller was designed or implemented. Some control theory was discussed
in theory in order to understand how a controller could be designed.

• The performance was evaluated both by analysis in Matlab and by testing the
system on specific routes in specific traffic situations.

• No interface or communication to the driver was designed or implemented
implemented.

2



1. Introduction

1.4 Thesis outline
This report includes six chapters besides the introduction chapter.

In chapter two the result from a background study is presented. The background
includes initial decisions regarding hardware setup, software tools and verification
method. The background also includes information about traffic regulations, prop-
erties of highway design and ethical and sustainable aspects of the project.

In chapter three the theory and methods that the project is based on is presented.
The theory and methods chapter includes both general theory that is useful for
understanding the report as well as specific mathematical algorithms that are im-
plemented in the project.

In chapter four the design of the trajectory algorithm is presented. The design
of the trajectory algorithm describes the method of the project and how the theory
presented in chapter three is implemented in the trajectory algorithm.

In chapter five the result is presented. The result includes both result from sim-
ulations and real time testing in vehicle. The result section discusses the individual
parts of the algorithm and the output of the algorithm.

In chapter six the discussion of the result is presented and in the final chapter
seven is the conclusion presented.

3
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2
Background

In this chapter the outcome from the background study, including initial decisions
and progress of the project, is presented. This includes description of hardware
setup, software tools, traffic regulations and verification method.

2.1 Hardware setup
The platform for the project is Delphis and Volvo Cars cads4 project, where Delphi
in collaboration with Mobileye assisted Volvo with a RaCam unit including both
hardware and software. The RaCam is a single unit integrated sensor fusion sys-
tem of radar and vision. With the RaCam, ADAS like ACC, LKA, AEB, Automatic
Head Beam Control (AHBC), traffic sign recognition (TSR) and vehicle, pedestrian,
animals and general object identification are possible. In this project only the radar
data is considered and not the fused radar and vision data. The fused data can be
used as a tool for verification and finding situations of interest, for example lane
change of target vehicle.

The radar unit in the RaCam is an electronically scanning radar (ESR). The ESR
includes one long range radar scan and one mid-range radar scan. The long range
radar has a range of 200m, a field of view of ±10◦ and accuracy of ±0.5m. The mid
range radar has a range of 60m, a field of view of ±45◦ and accuracy of ±0.25m.
The field of view for both long and mid range scans are visualized in figure: 2.1.
Both long and mid-range radar have a update rate of 50ms.

Figure 2.1: Field of view of the ESR radar unit.

5



2. Background

2.2 Software tools
In order to analyze the data and develop algorithms, several software tools are
needed.

Matlab was used for doing numerical analysis, data visualization and algorithm
development. In order to implement the developed algorithms in the embedded
software, Matlab Coder was used to convert the algorithms into C++ code. To
make this possible the code developed in Matlab need to take the characteristics of
the C++ language taken into account

DVtool (DataView) was used in order to verify functions developed in Matlab. DV-
tool visualizes selected data in different ways, e.g in the view of the driver (3D) or
in a helicopter perspective (2D). DVtool can both be utilized to analyze logged data
or live in the vehicle. An additional view in DVtool was implemented where the
suggested trajectory is shown as a line on the road in order to easily overview the
outcome of the trajectory algorithm.

TrackerPC will be used for the testing of the algorithms in reality without doing the
implementation in the host vehicle. This is done by running the algorithms in real
time on the computer while driving with the inputs taken from the host vehicle.

2.3 Road properties and traffic regulations
Information about properties and design of roads and traffic regulations should be
considered in the trajectory design. Specifications like maximum road curvature and
recommendation of distance to vehicle ahead is of special interest for the estimation
of the road and design of the trajectory.

2.3.1 Road curvature
The government agency Swedish Transport Administration (In swedish: Trafikver-
ket) has certain rules and requirements for new roads. Two of these are about road
curvature and road curvature change. There is an inverse relation between curve
radius and curvature,

C = 1
R

(2.1)

where C is the curvature of the road and R is the radius of the curve.

The maximum allowed road curvature and road curvature change are speed limit
dependent. In table: 2.1 a list of maximal allowed road curvature and curvature
change for different speed limits is presented [5].

6



2. Background

Speed limit [km/h] Maximal Curvature [1/m] Maximal Curvature change [1/m]
60 7.1 · 10−3 3.3 · 10−3

80 2.5 · 10−3 2 ·10−3

100 1.4 · 10−3 1.3 · 10−3

110 1.1 · 10−3 1.1 · 10−3

120 0.8 · 10−3 1 · 10−3

Table 2.1: Maximal curvature and curvature change for different speed limits.

From the road curvature maximum lateral acceleration be calculated using the re-
lation ay = Cv2

x, where vx is the longitudinal velocity. This gives:

Speed limit [km/h] Maximal lateral acc [m/s2] Maximal lateral jerk [m/s3]
60 1.98 1.188 · 10−4

80 1.23 1.28 · 10−4

100 1.10 1.3 · 10−4

110 1.04 1.331 · 10−4

120 0.93 1.440 · 10−4

Table 2.2: Maximal acceleration and acceleration change for different speed limits.

In order to have the maximal curvature as specified as in table: 2.1 the road is
required to have banked turns with a slope of at least 4%, which is further described
in section: 2.3.2.

2.3.2 Road banking
All roads are not perfectly flat, this is made by purpose in order to drain water
from the road surface, reduce wear of tires and improve safety. Exactly how roads
should be built is regulated by Trafikverket [5]. At a road section which is consid-
ered straight, the cross slope of the road should be 2.5% with the lowest point at
the right side of the road. In a turn with high curvature, the cross slope of the road
should be > 4% with the lowest point at the side which the road is turning towards.

If the turn is not banked with 4% or more, the maximally allowed curvature is
reduced as shown in table: 2.3.

Speed limit [km/h] Maximal Curvature [1/m]
60 0.67 · 10−3

80 0.4 · 10−3

100 0.26 · 10−3

110 0.22 · 10−3

120 0.18 · 10−3

Table 2.3: Maximal curvature in curves without sufficent banking.

7



2. Background

2.3.3 Distance to vehicles ahead
The distance to a vehicle ahead should according to the law of Sweden, Trafikförord-
ningen (1998:1276) 3:2 [6], always be adapted so that there is no risk of collision if
the car ahead slows down or stops. The recommendation from Trafikverket is the
"three second rule" which means that one needs to keep a distance of three seconds
to the vehicle ahead [7]. However this is only a recommendation and driving with a
headway below three seconds will not be considered as violation of Trafikförordnin-
gen (1998:1276) 3:2.

The three second rule is most likely not applicable in a lane vehicle following system.
For example, if driving in 120 km/h this gives a longitudinal distance of 100m. This
is a distance that in high density traffic situations will lead to cut-ins between the
host and target vehicle. Headway between 1− 2s is more likely applicable for a lane
following system which corresponds to a distance of 33 − 66m at 120km/h. The
distance to the vehicle ahead should however never be shorter than that the vehicle
in a safe way can inform the driver to take back steering if so needed.

2.4 Trajectory design
Given that a target vehicle satisfies the requirements, a trajectory should be gener-
ated based on the target vehicle motion. The longitudinal reference should be given
by a selected longitudinal distance between the host vehicle and target vehicle, se-
lected by the driver of the host vehicle. The lateral reference should be based on a
snail trail of the target generated and represented as coefficients of a third degree
polynomial. Based on the radar trail and eventual information about obstacles in
the path a path plan algorithm optimizes the future path. This path will be gener-
ated as a lateral trajectory for the host vehicle. The reference should include:

• Selected longitudinal distance between the host and the target vehicle.
• Longitudinal distance, velocity and acceleration of the target vehicle.
• Coefficients for a third degree polynomial representing the lateral future path.

If a target vehicle no longer satisfies the requirements, the trajectory should be reset.

2.5 Verification method
The verification method includes both offline and online (real time overview) hard-
ware in the loop test. Offline verification can be achieved by comparing the tra-
jectory algorithm output with radar and vision fusion output. For online hardware
in the loop test the trajectory algorithm is implemented in a trackerPC. Together
with implementation of a new view in DVtool the output of the trajectory could be
monitored in real time.

8



2. Background

2.5.1 Test route
In order to check if the trajectory algorithm meets the requirement a test route
is defined. The defined test route is between Delsjömotet and Flygplatsmotet on
E4/40 in both directions. In figure: 2.2 the test route is illustrated. The test route
includes sections with different speed limits, variation in curvature and number of
lanes.

Figure 2.2: Illustration of test route, Delsjömotet marked as A and Flygplatsmotet
marked as B.
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3
Theory and methods

In this chapter the theory and methods that the project is based on is presented.
The theory and methods chapter includes both general theories that are useful
for understanding the report and also specific mathematical algorithms that are
implemented in the report. For simplified notation in this chapter, the time variable
t is removed from all time dependent variables.

3.1 Basic principle of the Radar
In general a radar unit consists of two major parts, a transmitter and a receiver.
By comparing the received effect to the transmitted effect the distance to an object
creating a reflection can be computed [8]. One registration of the receiver will be
denoted as detection. By utilizing the Doppler effect, it is possible to determine
whether a detection comes from a stationary or a moving object and the relative
speed of the object can be obtained [9].

In a sensor fusion software the detections are processed into tracklets and objects. A
tracklet is a single detection or multiple detections which are followed from the pre-
vious time step by using an extended kalman filter (EKF) with a constant velocity
(CV) motion model. An object is a single tracklet or group of tracklets close to each
other with a similar behavior. The properties of an object can be determined from
the tracklets (length, width, speed, heading etc). All moving objects are considered
rectangular shaped vehicles.

The ESR radar used in the RaCam does not have elevation measurement of the
radar detections. This means that an overhead sign, a small steel plate on the
ground or a parked car could be represented in the same way by the radar de-
tection. This leads to obstacle avoidance being hard to achieve without visually
identifying the object.

3.2 Vehicle motion
The coordinate system used is the Society of Automotive Engineers (SAE) coordi-
nate system which is defined in figure: 3.1, where the origin is the position of the
radar unit.

11



3. Theory and methods

Figure 3.1: Illustration of the SAE coordinate system.

Depending on usage four different vehicle motion models are mentioned in the report:

• Constant velocity model
• Constant acceleration model
• Coordinated turn model
• One track model (two wheel vehicle motion model, bicycle model)

3.2.1 Constant velocity model
The most basic model of motion is the constant velocity model where the position
and velocity represent the states of the model (x = [p v]T ). The model assumes
constant velocity and changes in velocity are modeled as disturbances [10]. In the
one dimensional case the motion of an object can be described by:

ẋ =
[
0 1
0 0

]
x+

[
0
q̃

]
. (3.1)

3.2.2 Constant acceleration model
An extension of the constant velocity model is the constant acceleration model which
adds another state for acceleration (x = [p v a]T ). The assumption now is that
the acceleration is constant instead of the velocity. Similar to the constant velocity
model changes in acceleration are modeled as a disturbance. In the one dimensional
case the motion of an object can be described by:

ẋ =

0 1 0
0 0 1
0 0 0

x+

0
0
q̃

 . (3.2)
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3.2.3 Coordinated turn model
In order to accurately model a curve of a highway the non-linear coordinated turn
model is a good option since it describes the motion along the edge of a circle. Noise
is added to the velocity state v and turning rate state ω, in order to model changes
in the curvature and speed.
The other states are:

• px - representing the position of the tracked object along the x-axis
• py - representing the position of the tracked object along the y-axis
• φ - representing heading of the tracked object

These states are defined as shown in figure 3.2.

Figure 3.2: Illustation of coordinated turn model.

The state vector and transition equation are:

x =


px
py
v
φ
ω

 ẋ =


v · cos(φ)
v · sin(φ)

a
ω
α

 (3.3)

where a and α are the noise components added, this corresponds to q̃ in the constant
acceleration and velocity models.

3.2.4 Transient one track model
The transient one track model is commonly used to describe lateral dynamics of
a vehicle. Assuming one axle captures the most important phenomena of lateral
dynamics this simplifies the calculation compared to using a two track model [11].
In figure: 3.3 a one track model is illustrated assuming no wind drag.
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Figure 3.3: Free body diagram of the one track model including forces, steering
and slip angles and fundamental dimensions.

Equilibrium equations given by the free body diagram:

m · ax = Ffx · cos(δf )− Ffy · sin(δf ) + Frx

m · ay = Ffx · sin(δf ) + Ffy · cos(δf ) + Fry

J · ω̇z = (Ffx · sin(δf ) + Ffy · cos(δf )) · lf − Fry · lr
(3.4)

where ax and ay can be described by:

ax = v̇x − ωz · vy ay = v̇y + ωz · vx. (3.5)

Following small angle assumptions are reasonable [11]:
• Small steering angle, sin(δf ) ≈ δf and cos(δf ) ≈ 1
• Small tire slip angle, sfy ≈ αf and sry ≈ αr

• Small body slip angles (βf and βr), αf = βf − δf and αr = βr where βf and
βr are approximated according:

βf = vy + ωz · lf
vx

βr = vy − ω · lr
vx

(3.6)

The slip angles αf and αr are then given by:

αf = δf −
vy + ωz · lf

vx
αr = vy − ω · lr

vx
. (3.7)

Assuming linear tire model for cornering, where Cf and Cr is the cornering stiffness
of front and rear wheels, the lateral forces is described by:

Ffy = −Cf · sfy Fry = −Cr · sry. (3.8)
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The equilibrium equations can now be rewritten as:

m · v̇x = m · ωz · vy + Cf
ωz · lf + vy

vx
δf

m · v̇y = Cr(
ωz · lr − vy

vx
)− Cf (

ωz · lf + vy
vx

)−m · ω · vx + Cf · δf

J · ω̇z = −lf · Cf (
ωz · lr + vy

vx
)− lr · Cr(

ωz · lr − vy
vx

) + lf · Cf · δf .

(3.9)

For lateral dynamics the longitudinal equilibrium equation can be neglected and a
state vector can be defined as: x = [y ẏ ω ω̇]T where ẏ = vy which gives the
state space equation:

ẋ =


0 1 0 0
0 −Cf +Cr

m·vx
0 − cf ·lf−cr·lr

m·vx
− vx

0 0 1 0
0 − cf ·lf−cr·lr

J ·vx
0 − cf ·l2f +cr·l2r

J ·vx

x +


0
cf

m

0
lf ·cf

J

 δf . (3.10)

3.3 Polynomial fitting
Polynomial fitting is a method used to find a function describing a data set in
the best possible way. The degree of the polynomial can vary depending on the
application, but the maximum degree has to be at least one less than the size of the
data set in order to find a unique polynomial for the data set. In order to find a
third degree polynomial the data set must contain four or more points. To find the
coefficients p, the following system of linear equations has to be solved [12]:

V p = y (3.11)

where V is a matrix (the Vandermonde matrix), and y and p are vectors formed as:

V =


xn1 xn−1

1 . . . 1
xn2 xn−1

2 . . . 1
... ... . . . ...
xnm xn−1

m . . . 1

 y =


y1
y2
...
ym

 p =


p1
p2
...
pn

 (3.12)

wherem is the size of the data set and n is the the degree of the requested polynomial
and xi and yi is the data of interest.

3.4 Bayesian statistics and filtering
In this section Bayesian statistics and filtering is introduced. Two filtering and
smoothing methods that utilize the concept of Bayesian statistics are also presented.
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3.4.1 Basic Bayesian statistics
Bayesian statistics is a statistical inference framework that can be used for estima-
tion, classification, detection and model selection [13]. In Bayesian statistics the
unknown quantities are described as random. In order to estimate the state x given
a measurement y the Bayesian method includes three key steps:

• Modeling
Modeling what is known about x and the measurement y by utilizing the
prior p(x) and the density p(y|x). The prior is defined as the probability
distribution of the unknown parameter x before observation. The conditional
density p(y|x) is defined by:

p(x, y) = p(y|x)p(x). (3.13)

• Measurement update
Combining the prior with the measurement is done in order to summarize what
was known about x. This is known as the likelihood and denoted as p(x|y).

• Decision making
Decision making is done by minimizing the expected loss when calculating a
posterior given the likelihood of x and a loss function C(x, x̂), where x̂ is the
estimation of x. The posterior can be calculated using Bayes’ rule:

p(x|y) = p(y|x)p(x)
p(y) (3.14)

and the optimal Bayesian decision is defined by:

x̂ = argmin
a
E{C(x, a)|y}. (3.15)

3.4.2 Basic Bayesian filtering
When the unknown parameter x is time dependent the Bayesian statistics estimation
approach can be modified in order to recursively, at every time step k, estimate the
unknown parameter. By redefining x and y as xk and yk it is possible to recursively
compute the posterior p(xk|y1:k) from p(xk−1|y1:k−1) where y1:k = [y1 y2 ... yk]
contains all data up to time k.

Figure 3.4: State space model described as a Bayesian network.
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Introducing time-discrete state space model with the motion model p(xk|xk−1), the
measurement model p(yk|xk), assuming that x0 ∝ p(x0) and that:

p(xk|x0:k−1, y1:k−1) = p(xk|xk−1) (3.16)
and

p(yk|x0:k, y1:k−1) = p(yk|xk). (3.17)
Both xk and yk are stochastic processes and the assumption in equation: 3.16 that
the future state only depends on the present state and not the past is recognized as
the Markov property which implies xk is a Markov process.

Figure 3.5: Block diagram illustrating the recursive estimation of the parameter
x given the measurement y.

• Prediction step
The prediction p(xk|y1:k−1) from p(xk−1|y1:k−1) is given by:

p(xk|y1:k−1) =
∫
p(xk, xk−1|y1:k−1)dxk−1

=
∫
p(xk|xk−1, y1:k−1)p(xk−1, |y1:k−1)dxk−1

=
∫
p(xk|xk−1)p(xk−1, |y1:k−1)dxk−1

(3.18)

this is recognized as the Chapman-Kolmogorov equation.
• Measurement update

The measurement update computation of p(xk|y1:k) from p(xk|y1:k−1) is given
by:

p(xk|y1:k) = p(xk|yk, y1:k−1)

= p(yk|xk, y1:k−1)p(xk|y1:k−1)
p(yk|y1:k−1)

= p(yk|xk)p(xk|y1:k−1)
p(yk|y1:k−1) .

(3.19)

This can be summarized as the filtering equation:

p(xk|y1:k−1) =
∫
p(xk|xk−1)p(xk−1, |y1:k−1)dxk−1

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1).
(3.20)
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3.4.3 Kalman filtering
The filtering equation (equation: 3.20) is applicable for all types of filtering problems.
However, the posterior distributions often have no analytical expression. The most
important exception are linear and Gaussian models:

xk = Ak−1xk−1 + qk−1

yk = Hkxk + rk
(3.21)

where Ak−1 is the transition matrix and Hk the measurement model matrix.

For linear and Gaussian models p(xm|y1:n), where m < n is Gaussian for all m
and n, letting x̂m|n be the mean and Pm|n be the covariances of p(xm|y1:n) such that
p(xm|y1:n) = N (xm; x̂m|n, Pm|n). The Kalman filer, recursively computes x̂k|k−1,
Pk|k−1, x̂k|k and Pk|k for k = 1, 2... [14].

The algorithm has two major steps, the prediction and update step. The prediction
step uses the model of the system to estimate how the states of the system have
changed since the last measurement. In the update step, the new measurement is
compared to the predicted state and an optimal estimation is found based on the
certainty of the model and the measured value (accuracy of the sensor).

• Prediction step

x̂k|k−1 = Ak−1x̂k−1|k−1

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1

(3.22)

• Update step

x̂k|k = x̂k|k−1 +Kkvk

Pk|k = Pk|k−1 +KkSkK
T
k

(3.23)

Where the Kalman gain Kk, the innovation vk and the innovation covariance
Sk are defined by:

Kk = Pk|k−1H
T
k S
−1
k

vk = yk −Hkx̂k|k−1

Sk = HkPk|k−1H
T
k +Rk.

(3.24)

3.4.4 Extended Kalman filtering
The Kalman filter presented in chapter: 3.4.3 gives the optimal solution for linear
models but is not applicable for non-linear models. Instead the Extended Kalman
filter is used for non-linear models [15].
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The extended Kalman filter linearizes the non-linear models around the previous
state estimation. A non-linear model:

xk = fk−1(xk−1) + qk−1

yk = h(xk) + rk
(3.25)

where fk−1(xk−1) is the motion model, hk(xk) is the measurement model and qk−1
and rk are Gaussian random variables with covariance Qk−1 and Rk. Using Taylor
series expansions fk−1(xk−1) is linearized around xk−1|k−1 and hk(xk) around x̂k|k−1.
The linear approximation of the system (equation: 3.25) is given by:

xk ≈ f(x̂k−1|k−1) + f ′(x̂k−1|k−1)(xk−1 − x̂k−1|k−1) + qk−1

yk ≈ h(x̂k|k−1) + h′(x̂k|k−1)(xk−1 − x̂k−1|k−1)rk
(3.26)

where f ′k−1(xk−1) and h′k(xk) are the Jacobian matrices of the motion and measure-
ment model and x̂ is the estimated state. The Kalman filtering equations can then
be applied on the linearized system.

• The prediction step for the extended Kalman filter is then given by:
x̂k|k−1 = f(x̂k−1|k−1)
Pk|k−1 = f ′(x̂k−1|k−1)Pk−1|k−1f

′(x̂k−1|k−1)T +Qk−1.
(3.27)

• The update step for the extended Kalman filter is then given by:
x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1))
Pk|k = Pk|k−1 −KkSkK

T
k

Sk = h′(x̂k|k−1)Pk|k−1h
′(x̂k|k−1)T +Rk

Kk = Pk|k−1h
′(x̂k|k−1)TS−1

k .

(3.28)

3.4.5 Rauch-Tung-Striebel smoothing
Fixed interval smoothing methods such as the forward-backward smoothing algo-
rithm Rauch-Tung-Striebel can be applied in order to smooth the filtering result
of a linear system [16]. The forward step of the algorithm is the Kalman filtering
defined in chapter: 3.4.3 and summarized below:

Kk = Pk|k−1H
T
k S
−1
k

x̂k|k = x̂k|k−1 +Kk

(
yk − x̂k|k−1

)
Pk|k = Pk|k−1 +KkSkK

T
k .

(3.29)

When the forward step is run over k = 1, .., K and the x̂k|k, Pk|k, x̂k+1|k and Pk+1|k
are stored in each time instance. The backward smoothing step starting at k = K−1
defined as:

Gk = Pk|kA
T
kP
−1
k+1|k (3.30)

x̂k|K = x̂k|k +Gk

(
x̂k+1|K − x̂k+1|k

)
(3.31)

Pk|K = Pk|K +Gk

[
Pk+1|K − Pk+1|k

]
GT
k . (3.32)
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3.4.6 Extended Rauch-Tung-Striebel smoothing
The Rauch-Tung-Striebel smoothing algorithm presented in section: 3.4.5 is only
applicable for the linear case. In a non-linear system (equation: 3.25), where an
extended Kalman filter is utilized instead for filtering, the extended Rauch-Tung-
Striebel smoothing algorithm is utilized for smoothing. The extended Rauch-Tung-
Striebel algorithm is defined as [13]:

x̂−k+1|k = f(x̂k|k)
P−k+1|k = F (x̂k|k)Pk|kF T (x̂k|k) +Qk

Gk = Pk|kF
T (x̂k|k)(P−k+1|k)

−1

x̂sk|K = x̂k|k +Gk(x̂sk+1|K − x̂−k+1|k)
P s
k|K = Pk|k +Gk(P s

k+1|K − P−k+1|k)G
T
k .

(3.33)

3.5 Road model estimation
In a previous master thesis at Delphi a road model was designed [17]. The model
utilizes fused radar and vision data. It is possible to modify this in order to only
use radar data. The inputs to the road model are:

• Lane marker estimation
Lane marker estimation is made from vision data and the estimation includes
four lane markers, the two closest to the host vehicle and the two next to them,
if they are present. The lane markers are reported as a third-order polynomial
yik = ai0,k + ai0,kx

1
k + ai0,kx

2
k + ai0,kx

3
k where i = [1, ..., 4]. The parameters a0,k,

a1,k, a2,k and a3,k are the coefficients of the polynomial. Each polynomial has
a maximal valid range defined as xil,max,k.

• Barrier estimation
Barrier estimation is made from stationary radar data and one barrier at each
side can be reported. When a barrier is present and reported it is repre-
sented as a third-order polynomial yik = bi0,k + bi0,kx

1
k + bi0,kx

2
k + bi0,kx

3
k where

i = [1 2] for different barriers. yk is the lateral position and xk is the cor-
responding longitudinal position in the coordinate system in figure: 3.6. The
barrier/guard-rail estimation has also a valid range xib,max,k.

• Host vehicle motion,
Host vehicle motion including host speed vhost,k and current yaw rate φ̇k is
assumed to have no uncertainties. The host vehicles side slip angle αslip,k is
also reported.

• Moving vehicle observations
Moving vehicle observation are used under the assumption that other vehicles
also drive along the road. Heading φk is the utilized measurement of receding
vehicles. The measurement is only valid at the position of the observed vehicle,
the longitudinal distance xk is also reported in order to do the update in the
correct state(s).
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The basic idea of the road model is to Kalman filter the sampled curvature in n
number of sampled points of the road. The Kalman state vector is defined as xk =
[φk C0,k ... Cn,k] where C0,k is the curvature in the sampled points i = 1, 2, ..., n
at time k. The distance between the samples is defined as δ = PredictionHorizon

n
. In

the implementation the prediction horizon was defined as 200m and n = 40. In
figure: 3.6 the concept of the sampled road curvature is illustrated.

Figure 3.6: Illustration of the state representation in the local coordinate system.

Since the representation of lane markers and barriers estimation are both poly-
nomials, three different measurement models are used for the four sources. The
measurement models used are:

• Host vehicle motion model
Since lateral control is provided by the driver it is assumed that the host vehicle
heading is parallel to the road, any deviation is modelled as measurement noise.
The measured αslip equal to the heading state φk. And similarly the calculated
Chost = dψk/vhost,k is used as initial curvature C0,k.

• Lane and barrier polynomials
In order to utilize the information given, the polynomials are transformed to
linear combinations of the state vector, e.g the polynomial shape is described
by angles and curvatures.

• Moving vehicle observations
The update of the angular measurement is done in a similar way as the angles
calculated from the polynomials.

3.6 Path planning
In order to design a feasible trajectory, path planning can handle the decision mak-
ing between following the radar trail of the target vehicle and avoiding obstacles
in the path. Since only radar data is provided stationary objects are hard to give
confidence. Therefore obstacles in the path will mainly be based on moving detec-
tions. Two popular path planning methods are based on Elastic Band Theory and
Potential Fields.
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3.6.1 Elastic Band Theory
The method of Elastic Bands minimizes the total energy of the elastic band spanning
between the start and end point [18]. The band is modeled as a series of particles
connected with springs. By definition the springs are in a relaxed state (energy
equals to zero) when the band is connecting the two points in a straight line, and if
the length of the band is increased an Internal Contraction Force is created by the
springs. Obstacles is modeled as a potential repelling the particles, i.e. the force is
higher if the band is closer to the obstacle than if it is far away.

3.6.2 Potential Fields Theory
The method of Potential Fields represents the space as a potential function, which
have large values where there is an obstacle, and the free space has values corre-
sponding to the distance to the nearest obstacle [19]. The value of the potential
function corresponds to the cost of visiting that node. In order to find the best path
the algorithm minimizes the sum of the cost of the visited nodes and the distance
between them.

3.7 Basic stability and control theory
Vehicle control design is outside the scope of the project. However, in order to de-
sign a good trajectory some control theory understanding is important. Some basic
stability and control theory, the definition of a linear quadratic regulator and how
it can be implemented in a one track model as a lane centering controller is presented.

A linear system can be described by:

ẋ = Ax+Bu

y = Cx+Du
(3.34)

where x is the state vector and u is the input vector, and A, B, C, D are matrices and
finally y is the output vector. The system is input-output stable if all eigenvalues of A
are in the left half plane, not including the imaginary axis [20]. If some eigenvalues
exists outside the left half plane the control signal u can be selected to be state
feedback:

u = −Lx. (3.35)
If equation: 3.35 is included in equation: 3.34, then the resulting equation is:

ẋ = (A−BL)x (3.36)
L shall be chosen so that all eigenvalues of (A−BL) are within the left half plane in
order to make the system stable. If such a matrix L exists the system is stabilizable
[20].
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Systems that cannot be expressed in the same form as in equation: 3.34 is con-
sidered to be a nonlinear system. A nonlinear system can be expressed as a linear
system in a restricted range, and is considered to be stable around an equilibrium
if all eigenvalues of the linear transition matrix A have strictly negative real parts.

Typically a control system is constructed like in figure: 3.7, where the output is
compared to the reference in order to find the error which is used to find the new
control signal to the plant.

Figure 3.7: Basic control system.

3.7.1 Continuous time Linear Quadratic Regulator
In this section a Linear Quadratic Regulator for a continuous-time linear system is
defined [21]. A continuous-time linear system, where t ∈ [t0, t1] can be defined by:

ẋ = Ax+Bu x(0) = x0. (3.37)

With the cost function defined as:

J = 1
2

∫ ∞
0

(xTQxx+ uTQuu)dt = 1
2

∫ ∞
0

V (x, u)dt (3.38)

where Qx ∈ Rn×n, QT
x = Qx, Qu ∈ Rp×p, QT

u = Qu > 0 represent the constant
weights. By minimizing J over an infinite window poles can be optimally allocated.
The optimization problem:

J∗ = min
u
J. (3.39)

Subjected to the system dynamics and boundary conditions with the input variable
u is then solved by following Langrangian:

L(x, u, λ) = V + λT (Ax+Bu− ẋ) = xTQxx+ utQuu+ λT (Ax+Bu− ẋ) (3.40)

where λ is an auxiliary variable. To derive the optimum value, the Euler-Lagrange
equation is applied which in state space gives:[

ẋ

λ̇

]
=
[
A −BQ−1

u BT

−Qx −AT
] [

x
λ.

]
(3.41)

The optimal input u∗ expressed as a function of the co-state λ and is desired to be
a function of the state x. Therefore the optimal λ is assumed to be:

λ∗ = Px∗. (3.42)
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Then the Euler-Langrange equation can be rewritten as:

ẋ = Ax = −BQ−1
u BTPxλ̇ = Ṗ x∗ + P [Ax−BQ−1

u BPx]. (3.43)

Rearranging the terms gives:

(Ṗ + PA+ ATP +Qx − PBQ−1
u BTP )x = 0. (3.44)

To guarantee that the equation holds for any arbitrary states x, the time varying
transformation matrix P has to satisfy the following nonlinear matrix differential
equation (differential Riccati equation (DRE)):

Ṗ + PA+ ATP +Qx = PBQ−1
u BTP. (3.45)

Considering the stationary solution of the DRE we obtain an algebraic matrix equa-
tion:

P̄ a+ AT P̄ +Qx = P̄BQ−1
u BT P̄ (3.46)

where P̄ = limt→∞P denotes the steady-state value.
The optimal control is then given by:

u∗ = −Q−1
u BT P̄ x∗ = −K̄x∗ (3.47)

where K̄ is the LQ gain. The optimal feedback equation is then given by:

ẋ∗ = (A−BK̄)x∗, x(0) = x0. (3.48)

3.7.2 Linear quadratic regulator for lane centering
Linear quadratic regulator is commonly used for lane centering [22]. Furthermore
a one track model (chapter: 3.2.4) or bicycle model with neglected roll motion is
acknowledged to be sufficiently accurate for the purpose of control design.

The LQR problem utilize desired yaw rate and a magnetic road reference system
for lane following control [22]. The magnetic road reference system represents the
future path of the road which can be replaced with a lane center polynomial given
by host sensors and tracking.

The state vector x = [ey ėy eψ ėψ] for state feedback control for lane centering,
where ey is lateral offset, ėy is lateral rate, eψ is yaw rate and ėψ is yaw error rate [23].

By letting δ be the steering angle input and utilizing the three degree lane cen-
ter polynomial defined as:

y = a0 + a1x+ a2x
2 + a3x

3 (3.49)

the desired yaw rate ψ̇des can be determined by road curvature given by:
1
R
≈ 1

2 · a2
(3.50)
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and vehicle speed vx which gives:

ψ̇des = vx
R
≈ vx

2 · a2
. (3.51)

Given the three degree lane polynomial, measured yaw rate ψ̇, velocity vx and inte-
grating the desired yaw rate all states of the state vector become observable.

• Lateral offset, ey = a0

• Lateral rate, ėy = vx · (tan−1a1)
• Yaw error, eψ = tan−1 a1

• Yaw rate error, ėψ = ψ̇ − vx

2a2

Utilizing the one track model defined in chapter: 3.2.4 the vehicle dynamics for lane
centering becomes [23]:
ėy
ëy
ėψ
ëψ

 =


0 1 0 0
0 −Cf +Cr

mvx

Cf +Cr

m

lfCf +lrCr

mvx

0 0 0 1
0 − lfCf +lrCr

J ·vx

lfCf−lrCr

J

l2fCf +l2rCr

J ·vx


︸ ︷︷ ︸

A


ey
ėy
eψ
ėψ

+


0
Cf

m

0
lf ·cf

J


︸ ︷︷ ︸

B1

δ +


0

−Cf ·lf−CR·l2r
m·vx

0
−Cf ·l2f−CR·l2r

J ·vx


︸ ︷︷ ︸

B2

ψ̇des

(3.52)
Defining the state feedback law:

δ = −Kx. (3.53)

The eigenvalues of the closed loop matrix A−B1K can then be optimally placed by
the state feedback (LQ gain K̄) calculated according to chapter: 3.7.1. The closed
loop system using this state feedback controller becomes:

ẋ = (A−B1K̄)x+B2 ψ̇des. (3.54)

3.7.3 Sliding mode control for longitudinal control
For longitudinal control it is convenient to have the requested acceleration as control
output u [24]. Measurement of the range x1 and range rate x2 between the host and
the target vehicle is required in order to use the proposed controller, and also the
acceleration of the target ẍtarget. The task of the controller is to control the desired
distance d0 to the target vehicle. This is achieved by choosing the control parameters
based on the range in relation to d0 and range rate in relation to the speed thresholds
(vfallback and vcatchup). This gives four zones, each one corresponding to one set of
control parameters. The control law is given by:

σ(x) = α1x1 + α2x2

ẍ = u = − 1
α2

(−α1x1 − α2ẍtarget + µ · sign(σ(x)))
(3.55)

where α1, α2 and µ are the control parameters, chosen depending on range and
range rate.
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3.7.4 Constant time gap controller for longitudinal control
The constant time gap control is a method developed for autonomous control of road
vehicles which ensures stability [23]. The controller has two modes, speed control
and spacing control (or headway control). The control law of the spacing controller
is defined by:

ẍ = u = −1
h

(ẋ+ λδ) (3.56)

where h is the time gap to the preceding vehicle and

δ = x+ hẋ. (3.57)

As long as λ > 0, δ is expected to converge to zero.

The switches between the two control modes is defined in figure: 3.8. When the host
vehicle is driving faster than the preceding vehicle the range rate is negative and
the gap between the vehicles is decreasing. When the gap is small enough headway
control is activated. Similarly, if the preceding vehicle is speeding up the speed
control is activated when the red diagonal line is passed.

Figure 3.8: Range (R) - Range rate (dR/dt), diagram for constant time gap control
policy.
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In this chapter the method of the trajectory algorithm is described. The main idea
of the algorithm is described in the pseudocode below and in the following sub-
chapters each part of the method is described in detail. The algorithm is developed
in Matlab then autocoded to C++ and implemented in an offline resim and an em-
bedded software in the host vehicle.

Input: sensor data (4.1), host data, trajectory
If on highway

run Road model (4.2) estimation
run Target selection (4.3)
If target selected

If target not initialized
If first instance of target

Add current target information
else

Motion update (4.4.1) previous collected target information
Add current target information

If target initialized
Motion update previous collected target information
Add current target information
Filter collected radar trail(4.4.2)
Path planning(4.5)
return Trajectory

else
Reset Trajectory

else
Reset Trajectory

return: Trajectory

4.1 Sensor information
The sensor information utilized are from the front radar unit and from the host
vehicle sensors. The radar data is fused and given as objects, tracklets and barrier
estimations. No further object or tracklet tracking are considered.
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4.1.1 Host vehicle sensors
The availible sensors of the host vehicle are:

• Current host speed, vhost, is measured with high accuracy.
• Current host yaw rate, ψ̇host, is measured with high accuracy.
• Current roll rate, φ̇host, is measured with low accuracy.

Both speed and yaw rate are considered as control inputs in the road estimation
process. The measurement of roll rate has a constant offset, this measurement is
used to find the roll angle of the host vehicle which is used to validate the state
update in the road estimation process. The average offset is deducted in order to
make the roll rate measurement more reliable.

4.1.2 Barrier/guardrail observations
The reported observation of the barrier/guardrail is an estimation of the barri-
er/guardrail. This estimation is made from stationary detections along the road
reported by the radar. If a barrier/guardrail is detected this is reported as a third
degree polynomial. The lateral position y depends on four coefficients (ak, where k
= [0, 1, 2, 3]) and the longitudinal distance x from the car, it is calculated as:

y = a0 + a1x+ a2x
2 + a3x

3. (4.1)

One barrier/guardrail on each side can be detected. The measurement comes with
a confidence estimation, which is either 0 or 1, and a valid range. In figure: 4.1 the
guardrails are presented as an overlay in the video.

Figure 4.1: Detected guardrails, marked as green lines.

4.1.3 Receding vehicle observations
The observed receding vehicles are included in the outcome of the radar-only fusion
tracking. The fusion tracker filters the moving detections and tracklets from the
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radar and tracklet tracker. Each vehicle reported has the following properties:

• Position
• Velocity
• Acceleration
• Speed Over Ground
• Heading φ
• Heading Rate φ̇
• Standard deviation of

– Position measurement
– Speed Over Ground measurement
– Heading measurement

All measurements are expressed in the SAE coordinate frame, presented in figure:
3.1.

4.2 Road model
The road model was developed for longitudinal control and therefore based on host
lateral motion [17]. The modifications from the road model is that it only utilizes
radar input. When removing the vision input some adjustments in the implementa-
tion needs to be done, especially regarding lane estimation when lane markers are
lost. The lane width is assumed to be a function of speed in order to cover for the
missing data. The state vector of the road model is:

x =
[
φk C0,k C1,k ... C10,k

]T
. (4.2)

Beside the modification of the lane estimation there are some other changes imple-
mented in the road model, these include:

• When the guardrail outlier tracker or complementary guardrail tracker clas-
sifies guardrail as an outlier, a simplified tracker based on the previous road
prediction is used.

• Roll angle measurements are used to limit maximum curvature in the road
model.

• Functions for classifying receding vehicles as outliers when they are:
– Identified to entering or exiting highway.
– Identified as ghost vehicles outside the road barriers.

• Increase noise if in radar shadow by vehicle in front.
• Reduce host motion dependency.

29



4. Design of trajectory algorithm

• If target vehicle is present it is removed from the update step of receding
vehicles.

The output of the road model is a third degree polynomial:

y(x) = a1 · x+ a2 · x2 + a3 · x3 (4.3)

that estimates the lateral position (y) of the road for a given longitudinal distance
(x). The polynomial is limited by a maximum range depending on the quality of
the measurements. By taking the derivative of the output polynomial:

ẏ(x) = a1 + 2 · a2 · x+ 3 · a3 · x2 (4.4)

the heading of the road for a given longitudinal distance can be estimated. Assuming
that the derivative of the road is small, the heading of the road can be approximated
as:

φ(x) = tan−1(ẏ(x)) ≈ ẏ(x). (4.5)

4.2.1 Guardrail outlier
Guardrails are considered an outlier if any threshold value is violated by the reported
polynomial. The reported polynomial needs to have an offset (a0) large enough, so
intersection with the host is avoided. Since highway driving entails low curvatures
the coefficients a1, a2 and a3 are restricted to be small, and the range of the reported
guardrail shall be large to make sure that the reported guardrail follows the road.

4.2.2 Complementary guardrail tracker
If a guardrail is considered as outlier or not reported at all, a complementary
guardrail tracker tries to find a new guardrail. The complementary guardrail tracker
utilizes the mid-range scan, which gives more accurate radar measurement up to
50m. The complementary guardrail tracker also utilizes the previously calculated
road estimation. The guardrail is then calculated in the following way:

• A set of potential guardrail tracklets are first found by identifying tracklet
IDs for all tracklets classified as stationary and to the left side of host if the
left guardrail is calculated and to the right of host if the right guardrail is
calculated.

• In order to find potential starting points for the guardrail, the new set of
tracklet IDs are looped over and the closest longitudinal tracklet that have at
least a lateral offset of 1.5m is saved. Since highways often have two guardrails
separating the two directions of the road the closest longitudinal point could
belong to the guardrail of the other side. This is prevented by the possibility
to save the two closest longitudinal points if they have a lateral offset of 2m
between each other.
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• Based on the found potential starting point the previous road estimation is
then utilized in order to find tracklets that could potentially belong to the
guardrail. If two potential starting points are identified the algorithm starts
with the tracklet that has the lowest lateral offset to the host vehicle. Looping
over the set of potential guardrail tracklets defined as all tracklets that have a
lateral offset less than 1m from the previous road estimation (lateral shift to
start in the found potential starting point) at the longitudinal distance from
host of each tracklet saved.

• If more than 5 tracklets are classified as belonging to the guardrail a Kalman
filtration is done using a constant velocity model as motion model. This gen-
erates a smooth set of tracklets that are used in a third degree polynomial
fitting for calculating the new set of coefficients describing the guardrail. The
Kalman filtering of stationary tracklets is described in detail in chapter: 4.2.3.

4.2.3 Kalman filtering of stationary tracklets
The Kalman filter utilizes a motion update step in the prediction and since track-
lets from guardrails are stationary some adjustments to the data is required. The
first step is to sort the tracklets to have the closest longitudinal tracklet first and
the longitudinal tracklet farthest away last. The motion model used is a constant
velocity model presented in chapter: 3.2.1 with the state vector X = [x y ẋ ẏ].
The state transition matrix Ak−1 is defined as:

Ak−1 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (4.6)

and model noise matrix Qk−1 is defined as:

Qk−1 =


∆t3

3 0 ∆t2
2 0

0 ∆t3
3 0 ∆t2

2
∆t2

2 0 ∆t 0
0 ∆t2

2 0 ∆t

Qc (4.7)

where Qc is the noise covariance found by tuning.

The initial state is X0 = [x0 y0 ẋ0 ẏ0], x0 and y0 is given by longitudinal and
lateral position of the longitudinal closest tracklet. ẋ is set to the host velocity and
ẏ is set to be zero, these assumptions are done since guardrails usually are relatively
straight. Since the filtration is done over stationary detections a simulated sampling
time ∆t is calculated during each iteration. The simulated sampling time is calcu-
lated by taking the longitudinal difference between the previous and current tracklet
divided by the host velocity:

∆t = xk+1 − xk
vhost

. (4.8)
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Measurement model matrix Hk is a constant matrix defined as:

Hk =
[
1 0 0 0
0 1 0 0

]
. (4.9)

Measurement noise matrix Rk is defined as:

Rk =
[
Rx 0
0 Ry

]
(4.10)

where Ri (i = x, y) is then measurement uncertainties reported by the tracklet
fusion.
The Kalman algorithm is derived according to chapter: 3.4.3 where the final algo-
rithm is:

x̂k|k−1 = Ak−1x̂k−1|k−1 + qk−1

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1

(4.11)

Sk = HkPk|k−1H
T
k +Rk

vk = yk −Hkx̂k|k−1

Kk = Pk|k−1H
T
k S
−1
k

(4.12)

x̂k|k = x̂k|k−1 +Kkvk

Pk|k = Pk|k−1 +KkSkK
T
k

(4.13)

4.2.4 Roll angle utilization
In the prestudy it was concluded that roads are banked (see section: 2.3.2), and
the angle of road banking combined with the speed limit of the road determine the
maximum allowed curvature of the road. In order to be able to measure the banking
angle of the road, it is assumed that the roll angle of the car is equal to the banking
angle of the road.

The roll angle of the host vehicle combined with the host vehicle speed are used
to find the maximum allowed curvature. If a state update results in a curvature
state that is larger than the maximum allowed curvature, the measurement noise is
increased by 20% and the calculations are repeated.

4.2.5 Identification of vehicles entering and exiting highway
If a receding vehicle is driving on the ramp of the highway a measurement update
based on its position and heading of the vehicle will decrease the precision of the
road estimation due to the fact that the vehicle is not driving on the highway as
expected. This is illustrated in figure: 4.2 where a white van is entering the highway
from the right side.
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Figure 4.2: Receding vehicle entering the highway in front of the host vehicle.

In order to detect if a vehicle is entering or exiting the highway the vehicles lateral
acceleration and lateral velocity are checked. A vehicle entering the highway has a
high lateral velocity while a vehicle exiting the highway has a high lateral acceler-
ation. If the acceleration and velocity are not considered reasonable, the vehicle is
not used to update the road estimation.

4.2.6 Identification of ghost vehicles
Ghost targets appear when a detection of a vehicle is reflected in an other surface
on the way back to the host vehicle. This can for example be the flat surface in
the guardrail, which induces an error in both angle and range which changes the
properties of the perceived vehicle. This results in a perceived vehicle driving on
the side of the road with similar speed as the true vehicle, but in another position
and with a different heading. An example of a ghost vehicle is shown in figure: 4.3,
where the perceived vehicle is outside the guardrail.
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Figure 4.3: Vehicle outside of guardrail identified as a ghost target.

If a vehicle is completely inside the road barriers it is most likely a true vehicle,
if not the vehicle is considered to be a ghost vehicle and is therefore not used to
update the road estimation.

4.2.7 Identification of vehicles in radar shadow
If the detection is reflected in the road surface instead of the guardrail, a vehicle can
be perceived even when it is out of sight. This is exemplified in figure: 4.4, where
a vehicle is hidden behind the vehicle just in front of the host vehicle. When an
object is not visible the number of detections is generally low and the reliability of
the measurement is therefore also low.
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Figure 4.4: Receding vehicle identified to be in radar shadow from another receding
vehicle.

If a vehicle is not visible to the host the reported noise of the measurement is
increased.

4.3 Target selection
The target selection includes two phases, when target is active and when no target
is active.

When no target is active the target selection method can utilize more information
about the host vehicle since no trajectory is generated and the driver has control of
the vehicle. Since the driver is in control of the vehicle the condition that the host
vehicle is driving along the lane is assumed to be true.

When the target is active the host vehicle is driving according to the reference
generated from the target, and for that reason it is not possible to assume that the
host is driving along the true lane. The target heading is now compared to the
prediction of the road in order to detect undesirable driving actions taken by the
target vehicle, such as lane changes or highway exits.
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In the pseudo code below the main idea of the target selection is summarized:

If no target is active
Loop over all receding vehicles

If vehicle is within longitudinal interest
Calculate estimated road lateral position at vehicle

If target is within predicted lane
Vehicle is considered as target

if target is active
Compare heading of road estimation at target with heading of target
If heading difference is within threshold

If target lat and long acceleration is within threshold
Keep vehicle as target
Calculate target confidence
Increase target tracking age

else
Reset target

else
Reset target

4.3.1 Identification of potential target in host lane
In order to find a potential target vehicle it is assumed that the host vehicle is driv-
ing in the middle of its own lane. To check if the host vehicle is driving in its lane
along the road and not changing lane or leaving the highway, the target selection
algorithm is also limited by a maximum allowed host yaw rate. This will not remove
all situations when host vehicle is not driving in the middle of its own lane, but it
removes some of the times when the host could be changing lane. Since the target
identification is based on that the host vehicle is driving in the middle of the lane
this assumption has to be done.

At each time instance if no target is identified the algorithm is looping over all
receding vehicles and if a vehicle is within maximum allowed longitudinal target
range and not been considered as a target vehicle during the last 3s, the vehicle is
considered as a potential target. The predicted lateral position and heading of the
road at the vehicle (xvehicle) is then estimated. The lateral position is calculated by
equation: 4.3 and the heading by equation: 4.4. The vehicle is then considered a
possible target if the following requirements are satisfied:

• Difference between the predicted lateral position of the road at the vehicle
(yroad) and the measured lateral position of the vehicle (yvehicle) is within the
limit.

• Difference between predicted heading of the road at the vehicle (φroad) and the
measured heading of the vehicle (φvehicle) is within the limit.

• No other vehicle closer that satisfies the requirements.
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Figure 4.5: Definition of the lateral positions yroad and yvehicle and the headings
φroad and φvehcile used in the target selection.

If the requirements are satisfied and the vehicle is considered as a potential target
the object ID, lateral position, longitudinal position, heading and speed of the target
are saved and the track age of the target is set to one.

4.3.2 Verification of target driving in lane
When a target is identified the lateral position of the host vehicle can no longer
be utilized in order to verify that the target vehicle drives according to the defined
requirements. Instead the heading of the target is compared with heading of the
road prediction and heading of other receding vehicles in order to verify that the
target keeps driving in the host lane.

If one or more of the following requirements are fulfilled the target is still con-
sidered a target.

• The lowest heading difference between target and any other receding vehicle
within longitudinal distance of 100m is within the limit.

• The heading difference between the target and the road prediction at the
distance of the target, at the current time instance or in the five previous time
instances are within limit.

The target vehicle still needs to be inside the maximum allowed longitudinal distance
in order to still be considered a target. If none of the requirements are fulfilled for
three consecutive time instances, the target is no longer considered as driving in the
lane or in a suitable way and is released as target.
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4.3.3 Target confidence
Target confidence is calculated based on the heading difference between the mea-
surement of targets heading and the heading of road estimation at the longitudinal
distance of the target. The heading of the road estimation is given by the derivative
of the road estimation polynomial (equation: 4.4).

The highest confidence is defined as one and the lowest confidence is zero. The
confidence is calculated based on the six last heading differences between the target
vehicle and road estimation. The confidence is calculated as the percentage of how
many of the six last heading differences that meet the requirement. If all six head-
ing differences meets the requirements the confidence is one, if none of the heading
difference meets the requirements the confidence is set to zero. Zero confidence is
allowed for three consecutive time instances according to the target selection algo-
rithm (chapter: 4.3.2) before the target is released.

4.4 Target trail
The basic idea of the target trail includes:

• Saving the last 150 detections of the target or as many as possible if tar-
get is newly detected, saved detections include: lateral position, longitudinal
position, heading, heading rate

• Motion update the saved target information based on host motion.
• When host vehicle reaches the first saved detection of target the initializing

phase is over and target trail is possible to generate
– Kalman filter the detections of the target trail.
– Rauch-Tung-Striebel smoothing the filtered data.
– Calculate third degree polynomial of target vehicle trail.

4.4.1 Motion update of target information
In order to save the detections of the target trail, the detections are considered fixed
points on the road that the host vehicle drives over. In every time instance the
detections need to be moved according to the host vehicle motion. This update is
done according to:

xk+1 = xk − vk · cos
(
ψ̇k∆t

2

)

yk+1 = yk − vk · sin
(
ψ̇k∆t

2

)
∆t− xk · sin

(
ψ̇k∆t

2

) (4.14)

where vk is the host speed, ψ̇k is the host yaw rate and ∆t is the time from last
sample.
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4.4.2 Kalman filtering of target trail
The stored trail is filtered by an extended Kalman filter with coordinated turn
motion model. The state vector x and coordinated turn motion model are defined
as:

x =


px
py
v
φ
ω

 ẋ =


v · cos(φ)
v · sin(φ)

a
ω
α

 . (4.15)

The coordinated turn motion model discretization (fk−1) is [25]:

fk−1 =


px + 2v

ω
sin(ω∆t

2 )cos(φ+ ω∆t
2 )

py + 2v
ω
cos(ω∆t

2 )sin(φ+ ω∆t
2 )

v
φ+ ω∆t

ω

 (4.16)

since φ and ω are small during highway driving and the sampling time ∆t also is
small, assuming small angles (sin(θ) = θ and cos(θ) = 1) is reasonable and the
updated discretization (f ∗k−1) is then:

f ∗k−1 =


px + v∆t

py + v∆tφ+ vω∆t2
v

φ+ ω∆t
ω

 . (4.17)

The updated discretization function f ∗k−1 depends on the state vector and is non-
linear. According to the extended Kalman filter the non-linearities is eliminated by
linearization in each time instance around the previous estimated state x̂k−1. The
Jacobian (f ′k−1) of f ∗p (x) is then: presented in:

f ′k−1 =


1 0 ∆t 0 0
0 1 ∆tφk−1 + ωk−1∆t2 vk−1∆t vk−1∆t2
0 0 1 0 0
0 0 0 1 ∆t
0 0 0 0 1

 . (4.18)

Transition covariance matrix Qk−1 is defined as:

Qk−1 = GσGT (4.19)

and is calculated in each iteration and since the component:

G =



∆t2cos(φk−1)
2 0

∆t2sin(φk−1)
2 1

∆t 0
0 ∆t2

2
0 ∆t

 (4.20)
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depends on the state vector and is nonlinear [25]. σ is defined as:

σ =
[
σ2
v 0

0 σ2
ω

]
(4.21)

where σω and σv are parameters for tuning of the filter.

Measurement model is linear and matrix Hk is a constant matrix defined as:

Hk =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 . (4.22)

The measurement noise matrix Rk is constant and defined as:

Rk =


Rx 0 0 0
0 Ry 0 0
0 0 Rv 0
0 0 0 Rω

 (4.23)

where Ri (i = x, y, v, ω) is the measurement uncertainties reported by the fusion
output.

Finally the prediction step can be formulated as:
x̂k|k−1 = f ∗(x̂k−1|k−1)
Pk|k−1 = f ′(x̂k−1|k−1)Pk−1|k−1f

′(x̂k−1|k−1)T +Qk−1
(4.24)

and the update step as:
x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1))
Pk|k = Pk|k−1 −KkSkK

T
k

Sk = H(x̂k|k−1)Pk|k−1H(x̂k|k−1)T +Rk

Kk = Pk|k−1H(x̂k|k−1)TS−1
k .

(4.25)

4.4.3 Extended Rauch-Tung-Stribel smoother of target trail
In order to smooth the extended Kalman filtered data the non-linear backward
smoothing method extended Rauch-Tung-Stribel is used. The radar trail data of
length k = K and x̂k|k, Pk|k, x̂k+1|k and Pk+1|k are stored in each iteration. The
extended Rauch-Tung-Stribel algorithm is presented in section 3.4.6. The backward
smoothing step starting at k = K − 1 is then given by:

x̂−k+1|k = f(x̂k|k)
P−k+1|k = F (x̂k|k)Pk|kF T (x̂k|k) +Qk

Gk = Pk|kF
T (x̂k|k)(P−k+1|k)

−1

x̂sk|K = x̂k|k +Gk(x̂sk+1|K − x̂−k+1|k)
P s
k|K = Pk|k +Gk(P s

k+1|K − P−k+1)GT
k .

(4.26)
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4.5 Path planning and Trajectory design
For lateral control no further path planning is done besides the filtering and smooth-
ing of the radar trail of the target vehicle. The filtered and smoothed radar trail
is generated with the help of polynomial fitting as a third degree polynomial. The
polynomial works as the lateral reference for the host vehicle and would be able to
be applied to a regular lane centering controller that utilizes a lane centering poly-
nomial. Since no elevation estimation of stationary detections is given they cannot
be used in a path planning algorithm. When no elevation estimation is available an
overhead sign above the road and a stationary vehicle on the road could be reported
in the same way, therefore stationary detections cannot be used for path planning.

For longitudinal control only the selected distance between the host vehicle and
target vehicle is needed for the design of the trajectory. This utilizes the informa-
tion about the longitudinal position, velocity and acceleration of the target vehicle.

The output of the trajectory algorithm then includes:

• Coefficients for a third degree polynomial describing the lateral future path
• Selected longitudinal distance between the host and the target vehicle
• Distance to target vehicle
• Longitudinal velocity of target
• Longitudinal acceleration of target

Where the polynomial is used for lateral control and the desired distance and the
information of the target is used for longitudinal control.
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5
Result

In this chapter the result of the algorithm is presented. In figure: 5.1 and 5.2 the
output of the trajectory algorithm is illustrated. The data used for the result is
collected from a public highway.

Figure 5.1: Main video view in DVtool, illustrates the road prediction in blue,
target trail in red and guardrails in green.

Figure 5.2: Plan view in DVtool, illustrates the road prediction in blue, target
trail in red and guardrails in green.
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5.1 Evaluation method
The trajectory algorithm consist of different parts which are all independent of each
other and important for the final output of the trajectory algorithm. Therefore the
result of the trajectory algorithm is analyzed both part by part and the trajectory
output. All results are from the pre-defined test route in chapter: 2.5.1.

Two important measurements of the result are:

• Availability, measured in percentage of time.
• Performance, measured as the root-mean-square error (RMSE) of the esti-

mation compared to the ground truth data.

The RMSE is defined by:

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)2 (5.1)

where N is the number of samples, ŷ is the estimation and y is the ground truth
data. The ground truth data used to evaluate the performance are radar-vision
fusion output and a road geometry reference.

• The radar-vision fusion output in the cads4 project by Delphi was devel-
oped in collaboration with Mobileye. This fusion output is utilized by Volvo
Cars in the SPA-platform for both lateral and longitudinal control.

• The road geometry reference represents the true path of the road. An
accurate method to do this is to utilize GPS and measure the position at each
time step. Similar to the previous master thesis at Delphi [17] no GPS data
was available in the hardware setup. Instead a road geometry reference is
calculated based on the measured speed and yaw rate of the host vehicle. The
road geometry estimates the movement in a global coordinate system. This
method is know as dead-reckoning and calculated in the same way as in the in
the previous master thesis at Delphi [17]. The calculation of the road geometry
reference is derived in chapter: 5.1.1.

5.1.1 Generation of ground truth
The movement of the host vehicle in the vehicle local coordinate system is defined
by:

∆xhost,k = vk cos
(
ψ̇kdt

2

)
dt

∆yhost,k = vk sin
(
ψ̇kdt

2

)
dt

(5.2)

where vk is the velocity of the host vehicle and ψ̇k is the yaw rate and dt is the
sampling time.
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The movement in the global coordinate system is defined by:[
∆xk
∆yk

]
=
[
cos(ψk + αslip,k) − sin(ψk + αslip,k)
sin(ψk + αslip,k) sin(ψk + αslip,k)

] [
∆xhost,k
∆yhost,k

]
(5.3)

and the heading ψ is defined by
ψk = ψk−1 + ψ̇kdt. (5.4)

5.2 Road model
The performance of the road model is determined by evaluating the estimated road
prediction, the performance of the guardrail estimation and the outlier functions of
receding vehicles.

The data used in the analysis of the road model is from two laps on the pre-defined
test route. Since host lane change impact the road prediction and ground truth
road geometry reference no lane change was made by the host vehicle during the
collection of the data. On the first lap the host vehicle drove in the right lane and
on the second lap the host vehicle drove in the left lane. The total length of the
dataset is 44min long and covers 70km of driving.

5.2.1 Reported guardrails and complementary guardrail tracker
The outcome of the complementary guardrail tracker is shown in figure: 5.3. The
guardrail in black is the reported guardrail by the Delphi fusion tracker, the guardrail
has been considered an outlier and does not meets the requirement for guardrail filter
in the road model. The guardrail in blue is the complementary calculated guardrail
and the set of tracklets estimated to belong to the guardrail are marked with circles.
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Figure 5.3: Outlier guardrail (in black) and complementary calculated guardrail
(in blue) based on the previous road prediction (in pink).
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In figure: 5.4 the performance of stationary tracklet filter is shown. The filtered
tracklets are shown in blue and unfiltered tracklets in orange.
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Figure 5.4: Kalman filtration of stationary tracklets estimated to belong to the
guardrail.

Both availability and performance are important measurements of the guardrail. In
most cases it can be assumed that the guardrail is following the direction of the
road. Therefore the road geometry reference defined in chapter: 5.1.1 is used as
ground truth data.

The result is evaluated as individual guardrails and as a merged guardrail, which is
the actual guardrail used in the road model. The availability and the performance
are given at different ranges from the host vehicle. In figure: 5.5 the RMS error for
merged guardrail with and without complementary guardrail tracker are shown as
a function of range. In the same figure the availability of the merged guardrail with
and without complementary guardrail tracker is shown as function of range.
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Figure 5.5: Comparison of the RMS error (in red) and availability (in blue) with
and without complementary guardrail tracker.

In table: 5.1 the availability of the individual guardrails and merged guardrails with
and without complementary guardrail tracker is presented. The availability is given
for four different longitudinal ranges from the host vehicle.

> 0m > 20m > 40 m > 80m
Left GR without complementary GT 0.9940 0.9914 0.9718 0.5562
Left GR with complementary GT 0.9940 0.9921 0.9716 0.5550

Right GR without complementary GT 0.7501 0.7177 0.5970 0.2649
Right GR with complementary GT 0.7501 0.7222 0.6008 0.2641

Merged GR without complementary GT 0.9897 0.9897 0.9604 0.5166
Merged GR with complementary GT 0.9925 0.9925 0.9609 0.5122

Table 5.1: Availability of guardrail with and without complementary guardrail
tracker for given longitudinal range.

In table: 5.2 the RMS error of the individual guardrails and merged guardrails with
and without complementary guardrail tracker is presented. The RMS error is given
at three different longitudinal ranges from the host vehicle.
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20m 40 m 80m
Left guardrail without complementary GT 0.2450 0.3432 0.5959
Left guardrail with complementary GT 0.2013 0.2882 0.5781

Right guardrail without complementary GT 1.6899 0.6916 0.7678
Right guardrail with complementary GT 1.6757 0.6588 0.7565

Merged guardrail without complementary GT 0.1173 0.1983 0.3669
Merged guardrail with complementary GT 0.1179 0.2007 0.3695

Table 5.2: RMSE of guardrail with and without complementary guardrail tracker
for given longitudinal range.

5.2.2 Filtering of receding vehicle
The RMS error for heading of the receding vehicles are compared to the heading of
the road at the distance of the receding vehicle in order to determine the performance
of the filters. The heading of the road is given from the derivative of the road geom-
etry reference calculated in section: 5.1.1. The filtering of receding vehicles includes:

• Vehicle entering highway
• Ghost vehicles
• Shadowed vehicle

In table: 5.3 the RMS error of the heading of receding vehicles with and without
filtering are presented. In the table the result of only using vehicle entering highway
filtering and ghost vehicles filtering is also presented.

RMSE for heading
Without filter 0.0356

With ghost filter 0.0282
With entering highway filter 0.0247

With both ghost and entering highway filter 0.0238

Table 5.3: RMSE for heading, comparing vehicle heading to road heading, using
both ghost and entering highway filter.

The filter of shadow vehicles does not remove the measurement, instead it increases
the noise of the measurement since the measurement is not as reliable as non shadow
vehicles. In table: 5.4 the RMS error of the heading of receding vehicle with and
without shadow filtering are presented.

Without filter With shadowed vehicles filter
RMSE for heading 0.0356 0.0317

Table 5.4: RMSE for heading, comparing vehicle heading to road heading.
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5.2.3 Road estimation
The road estimation represents the predicted future path of the host vehicle therefore
the road geometry reference is suitable to use as ground truth data. The RMS error
of the road estimation is shown as a function of range in figure: 5.6. In table: 5.5
the RMS error is given for three different longitudinal ranges.
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Figure 5.6: RMSE of road estimation as function of range.

20m 40 m 80m
Road prediction 0.1138 0.1595 0.5323

Table 5.5: RMSE of road prediction for given longitudinal ranges.

5.3 Target selection and analysis
By utilizing lane identification of receding vehicles from vision output the availabil-
ity of active targets can be analyzed. Finding all instances a receding vehicle is in
the same lane as the host vehicle according to the ground truth data and within the
longitudinal maximum range for target requirements. The availability of the targets
can then be analyzed by comparing the ground truth with reported targets by the
target selection algorithm.

The dataset used for target selection includes the dataset used for validation of
the road model and selected lane change logs. The total length of the data set is 60
min.
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Availability
Radar only active target 0.9027
Radar only valid target 0.8211

Fusion active target 0.9603
Fusion valid target 0.9192

Table 5.6: Availability of active target.

5.3.1 Target lane change identification
Target lane change identification is verified by utilizing lane classification from vision
data as ground truth. The dataset used for the lane change analysis includes selected
lane change logs. The total number of lane changes in this dataset is 58. In figure:
5.7 the time instance error between when the target selection algorithm releases the
target is compared to the ground truth. Negative time instance error means that
the target selection algorithm releases the target before ground truth identifies the
lane change.
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Figure 5.7: Time instance error for all 58 lane changes in the dataset.

Time instance error < 0 < 10 < 20 < 30
Result [%] 59.32 84.75 99.61 100

Table 5.7: Performance of the target selection for lane change.

Sampling time is in average 0.03s which gives following translation to time in sec-
onds:
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Time instance 10 20 30
Time [s] 0.3 0.6 0.9

Table 5.8: Time instance to seconds.

5.4 Target trail filtering
Filtering of radar trail is essential and easy to overview graphically in each iteration,
as shown in figure: 5.8.
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Figure 5.8: Illustration of extended Kalman filtering of target trail.

The result is measured as the RMS error between all points in the trail with and
without filtering compared to the road geometry reference. The road geometry
reference is not always representing how the target vehicle in front is driving. But
in most cases the target in front is likely to drive in the path of the road geometry
reference as long as it drives in the lane. The RMS error at different ranges are
presented in table: 5.9.

15m 30 m 50m
Trail without filtering [m] 0.2633 0.3180 0.4797
Trail with filtering [m] 0.0929 0.1697 0.268

Table 5.9: RMSE of target trail with and without filtering.

And in figure 5.9 the RMS error for both filtered and unfiltered trail is described as
a function of the range.
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Figure 5.9: RMS error of filtered and unfiltered target trail.

5.5 Trajectory output
The final output of the trajectory algorithm is verified using the road geometry ref-
erence. The trajectory output is also compared to how a lane vision system and the
trajectory algorithm on radar-vision fusion object would perform. Comparison of
the performance between the trajectory algorithm on radar only and radar-vision fu-
sion shows if the results are affected by the algorithm or unstable radar only tracking.

The outcome of the trajectory algorithm is also analyzed between development en-
vironment and embedded environment in order to validate that the performance is
the same in simulations and embedded testing.

5.5.1 Verification of result in development environment and
embedded code

In figure: 5.10 a comparison of the output from Matlab and the embedded C++
resim is shown. The coefficient compared is the a0 parameter in the radar trail
which represents the lateral offset of the trail to origin.
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Figure 5.10: Comparison of coefficient a0 of the trajectory polynomial from C++
and Matlab.

5.5.2 Trajectory output
The trajectory output is given as a third degree polynomial calculated by using a
polynomial fitting of the filtered trail points. The availability of the output is the
same as given from target selection in chapter: 5.3.

In figure: 5.11 the RMSE of the Trajectory output (radar only trail) is shown
as a function of range. In the figure the RMSE of the vision lane centering and
Trajectory output of fusion data (fusion trail) is also shown. In table: 5.10 the RMS
error is presented at given ranges for the trajectory output with both radar only
and fusion and the lane center polynomial given by the vision system.
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Figure 5.11: RMS error of radar only target trail, fusion target trail and vision
lane ceneter.

15m 30 m 50m
Radar only trail compared to road geometry reference 0.0957 0.1696 0.2998
Vision lane center compared road geometry reference 0.0648 0.1293 0.2308

Fusion trail compared road geometry reference 0.0702 0.1316 0.1944

Table 5.10: RMSE of lateral trajectory output for given longitudinal range.
Ground truth data given by road geometry reference.
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Discussion

In this chapter the discussion of the result is presented. The discussion includes
reflection over the result, the utilization of the trajectory algorithm and future work.

6.1 Reliability of ground truth data
The chosen method for generating ground truth data has some disadvantages since
the yaw rate is used to estimate the true path of the car. The yaw rate measurement
does not always represent the movement of the vehicle accurately. In a banked curve
the yaw rate will not be large enough to represent the true movement of the vehicle,
instead the roll will angle increase. The result of this is that in a curve with a
high banking angle, the estimated path of the curve is smaller than the true path of
curve. The advantage of this method is that both ground truth and the measured
data is in the same coordinate frame and hence are possible to compare. The error
is however considered to be small and the advantage outweighs the disadvantage.

6.2 Result
The discussion of the result includes both a discussion of the final output of the tra-
jectory algorithm but also step by step of the algorithm. The trajectory algorithm
is based on three major steps, road estimation, target selection and trajectory design.

The road estimation is utilized in order to find and validate the target in the target
selection. Based on a valid target a trail is generated that the trajectory design is
based on. Every step of the algorithm is important for the final outcome, therefore
all three steps are included in the discussion.

6.2.1 Road model
The road model estimation method was based on a previous proven working road
model [17]. Some modification was however implemented in order to adjust the road
model for longitudinal control, lateral control and radar only mode. The changes
implemented in the road model include:

• Guardrail outlier
The guardrail outlier was implemented in order to recognize and remove false
reported guardrails from the update step in the road model. Guardrails are the
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most reliable measurement in radar only systems and it is therefore important
to secure that the used measurement is correct.

• Implementation of complementary guardrail tracker
In order to increase the availability of guardrails a complementary guardrail
tracker was implemented. The complementary guardrail is used when a guardrail
is reported as an outlier or not reported at all. The complementary guardrail
tracker utilizes the previously calculated road in order to identify stationary
tracklets belonging to the guardrail. This could be considered as a self-feeding
error if the previous road estimation was inaccurate leading to the selection of
false stationary tracklet for guardrail that will then be used in the update of the
road model. This is however a behavior that has not been identified and the
complementary guardrail is sparingly used. The complementary guardrail was
first implemented in a stage when the regular guardrail tracker was performing
worse and the complementary guardrail was more indispensable. When the
regular guardrail tracker was replaced with a guardrail tracker from another
Delphi project the complementary guardrail tracker to some extent became
superfluous.

• Utilization of roll angle measurements
The roll angle is utilized together with knowledge about how roads are de-
signed. With the knowledge about the roll angle and banking properties of
the road the maximum curvature is limited in the update step. If the roll
angle exceeds the threshold the noise of the measurement in the update step is
increased. But due to the low accuracy of the measurement the full potential
of this step cannot be reached.

• Filtering of receding vehicle
In order to increase reliability of receding vehicle measurements filtering of
receding vehicle was implemented. The heading measurement of the reced-
ing vehicle used in the update step is an important measurement and it is
therefore important to use vehicles that are driving on the highway and not
entering, leaving or are falsely reported. In the same time the receding vehicles
measurements are not as reliable in radar only fusion compared to radar and
vision fusion. This creates the problem of identifying the bad measurements
and removing them but it is also the reason for why this is essential.

• Increase noise of host motion
The road model was developed for longitudinal control and therefore based
on host lateral motion [17]. Since the goal of the project is to achieve both
longitudinal and lateral control the host motion dependency was reduced by
increasing the noise in the update step of host motion. The increase is consid-
ered large enough to remove a non-desired closed loop behavior.

• Remove target vehicle from receding vehicles
Since the trajectory is based on a trail generated from the target vehicle, the
target is removed from the set of receding vehicles used in the update step.
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This leads to that the trajectory that the host will follow is independent of
the road model that is only used in order to verify the target.

In figure: 5.5 the performance of the merged guardrail is presented. Looking in more
detail at the result in table: 5.2 it is clear that the results for the left and merged
guardrail are noticeable better than the right guardrail. It can be concluded that
the high errors found while comparing the right guardrail to the road is due to that
the guardrail does not represent the road in all highway situations. On the right
side there are both ramps and exits which the guardrail follows. At these sections
of the road the assumption that the guardrail follows the road is not correct, this is
reflected in the measured performance.

The performance of the merged guardrail is better than both the left and right
guardrail. The performance of the guardrail is overall impressively accurate. It
can be concluded that the used guardrail in the update step, that have passed the
guardrail outlier and complementary guardrail tracker is highly reliable. The high
availability of the merged guardrail is also noticeable, at least one guardrail is almost
always reported.

In figure: 5.6 the result of the final output of the road model is shown. The road
estimation performs impressively well for a radar only system. The road estimation
on average is always within half a lane width from the true road up to maximum
estimation range. Stable and reliable road estimation is crucial for the design of the
trajectory and the results show that the road estimation meets these requirements
more than enough.

6.2.2 Target selection
Depending on if a target exists or not the target selection method is based on two
different approaches.

When no target is available the lateral position of both the host and target ve-
hicle can be utilized. Since no target is active no trajectory is generated and the
driver is in control of the host vehicle. The target selection utilizes the longitudinal
and lateral position and heading of the receding vehicles compared to the road es-
timation in order to identify a receding vehicle as a target vehicle.

When a target exist the host vehicle motion is dependent on the target vehicle.
The trajectory is designed as a trail from the host vehicle and therefore lateral po-
sition cannot be used in order to validate that a target vehicle is driving according
to the requirements or not.

The most important requirement of the target selection algorithm is to identify
when a target changes lane and release it as a target when it does. In figure: 5.7
the time instance error is compared to the vision identification of lane change il-
lustrated. The reason for why the target selection algorithm tends to release the
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target before the vision identification is due to two reasons. The algorithm is tuned
to release a target too early rather than too late. Another reason is that when a
target is starting a lane change the heading compared to the road is changed before
the target vehicle has left the lane. Since the target selection is based on heading
and not lateral position this is a reasonable behavior to identify.

The trade-off in the target selection algorithm is between high availability and sen-
sitive tuning for identifying lane change. In table: 5.6 the availability of a target
given that vision has reported a vehicle in a host lane within region of interest of
being a target. Besides the sensitive tuning for identifying lane change the noise in
the heading measurement is the reason for why the availability isn’t higher. By com-
parison a radar-vision fusion system has a more stable heading measurement and
therefore remarkably higher availability. This proves that the availability would be
increased with development of radar hardware and more advanced tracklet tracking.
However, the availability in the radar only system is still above 80% which can be
considered as reasonable.

6.2.3 Trajectory
The final output of the trajectory includes:

• Coefficients for three degree polynomial describing the lateral future path
• Selected longitudinal distance between the host and the target vehicle
• Distance to target vehicle
• Longitudinal velocity of target
• Longitudinal acceleration of target

According to the theory chapter regarding control theory (3.7) the output from the
trajectory is sufficient enough for both longitudinal and lateral control. The refer-
ence for longitudinal is not presented in the result since the reference is only given
by the properties of the target vehicle directly reported by the fusion.

In figure: 5.11 the result of the reference for lateral control is presented. The
performance of the radar only trajectory is compared with the performance of a
fusion trail and the performance of a vision lane center polynomial. Since the vision
lane center polynomial is the same output Volvo Cars uses for lateral control it is
relevant and interesting to compare the trajectory to the vision output.

The performance of the lateral reference is considered to be good. The reason
for why the fusion trail is performing better than the radar only is because of more
accurate heading estimation of the target vehicle. The heading estimation is used to
translate the target motion into the trail and with more accurate heading estimation
the translation to the trail becomes more accurate. The most interesting result is
the error around 15−30m in front of the host vehicle. In a lateral lane center control
the lateral offset is given at a pre-defined distance in front of the host vehicle, often
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around 15 − 30m. The exponential error increase after 45m is not that relevant.
Below 30m the difference between the radar only trajectory and vision lane center
is less than 5cm which must be considered more than good enough. The difference
between the performance of the fusion trail and vision lane center are negligible.
This indicates that with a more accurate heading estimation a radar only can meet
the performance of a lane center polynomial.

In figure: 5.10 the output in Matlab and C++ is verified to be exactly the same.
This secures that the analysis in the development environment corresponds to the
performance in the embedded software.

6.3 Utilization of radar only trajectory for high-
way driving

The reason for why a radar only solution for both longitudinal and lateral control
can be hard to understand. The research regarding autopilot likely systems are in
most cases based on advanced fusion systems with radars and cameras in 360 de-
grees around the vehicle. However, every car companies name are not Tesla or Volvo
and can’t afford expensive fusion sensor systems. This is why radar only systems
are important, both hardware and software are developing rapidly and are cheaper
than a radar-vision fusion system.

Being able to offer an affordable autopilot like system on a radar only platform
would be a game changer for the automotive industry and highway driving. The
result in this report proves that a radar only highway target lane following system
is possible. Maybe the availability and reliability with today’s radar solutions is not
good enough but with the next generation of radar hardware and more advanced
tracking algorithms of objects radar only highway target lane following could be
achieved.

6.4 Utilization of target trail polynomial
Another important finding in the project is the possibility and utilization of a target
trail and not only in a radar only set up. Highway pilot systems in fusion based
system are mainly based on the output vision lane center polynomial. However, vi-
sion output is not always reliable. For example when there is snow, dirt on the road
or heavy rain the vision system can have a hard time to report the lane markers.
In these situations a target trail polynomial could serve an important purpose and
replace the vision marker for the lateral control algorithm. The target trail polyno-
mial could also serve a purpose as a second opinion to the lane center polynomial. If
the target trail can verify that the lane center polynomial is correct the confidence
of the highway pilot systems can be increased.
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6.5 Future work
As mentioned previously in the discussion there are many interesting aspects of a
radar only highway target lane following trajectory to further investigate. Both
development of radar hardware, object tracking and development of the trajectory
algorithm would increase the performance.

• Radar hardware development
Implementation of the trajectory algorithm in the next generation radar hard-
ware with higher accuracy and resolution of detection would increase the per-
formance of the trajectory algorithm. With reliable elevation estimation of
objects, stationary object could also be considered in the path planning.

• Object tracking
With better radar only object tracking the performance of the trajectory al-
gorithm would increase. This is shown by comparing how the performance of
the algorithm is with radar-vision fusion compared to radar only. The heading
estimation is an particularly important measurement which several key steps
of the algorithm are based on.

• Decrease dependency of host motion in road model
In this project the host vehicle motion was reduced in the road model, however
reducing the host vehicle dependency more or even removing it would increase
the independency between the road estimation and lateral control reference.

• Closed Loop stability evaluation
In this project there were no possibilities to try the trajectory algorithm in
closed loop system. The next natural step is to test the algorithm in a car
with a steering unit in order to evaluate the closed loop behavior.

• Integration in fusion based highway pilot system
Further investigation on how a target trail based trajectory could be utilized
as a second opinion in a radar-vision fusion system with lane markers.

• Driver communication and interface
In this thesis no focus has been on how the trajectory algorithm could be
implemented as a product in a production vehicle. This would require an
investigation on how the communication and interface to the driver would be
designed. The interface between the driver and vehicle is extremely important
in order to utilize the trajectory algorithm in a safe way.
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This project concludes that a radar only system can be utilized in order to design
a highway target lane following trajectory. If not with today’s generation of radar
hardware, at least with the next generation of radar hardware and object tracking.
Longitudinal control is already possible with today’s radar only systems. In this
project it is shown that also lateral control is possible to achieve based on target
lane following.

The algorithm presented in this report estimates the road in order to find and
validate a suitable target vehicle. Based on the target vehicle a snail trail is gener-
ated which becomes the lateral reference for the host vehicle. It is shown that it is
possible to identify if the target vehicle is driving in the same lane as the host vehi-
cle and identify when the target vehicle is changing lane without seeing the lanes.
The trajectory output is then based on the properties of the target vehicle and the
generated target trail.

The algorithm developed in this project is not comprehensive enough to be con-
sidered an autopilot system. But the algorithm is enough to assist the driver with
both longitudinal and lateral control on the highway. The longitudinal reference is
given by the properties of the target vehicle and the desired distance to the target
vehicle by the driver. The lateral reference is given by the target trail polynomial
which is possible to replace with a vision lane center polynomial in a regular lane
centering controller. The utilization of the trajectory algorithm can either be an ac-
tive or passive system. It could be utilized as a passive system that assists the driver
if it predicts that the driver is not following the road. It could also be utilized as
an active system that controls the vehicle while the driver is monitoring the driving
and is ready to assist the system if needed. This would also require a good interface
to the driver to communicate when target lane following is possible and when it is
not possible and the driver should take back control of the vehicle.
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