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Abstract

This thesis investigates the possibility of building maps of partially filled parking
areas, accurate enough to find empty spaces, using Radio Detection and Ranging
(radar) sensors. Existing techniques for solving feature-based Simultaneous Local-
ization and Mapping (SLAM) will be used as basis for map building, but refinements
are needed in order to handle noise from radar sensors.
A new landmark extraction algorithm is developed for finding lines and corners
within radar data. The algorithm first cluster detections that belong to the same
car using a single-linkage clustering, then lines and corners are found within each
cluster by a line segmentation algorithm.
The landmarks are used in two different SLAM approaches. The first is a standard
SLAM approach using an Extended Kalman Filter (EKF) in combination with single
lines as landmarks. The second includes an additional step using an Extended Infor-
mation Filter (EIF) to maintain correlations between features within more complex
landmarks, such as lines and corners of the same car.
Precision and correctness of the algorithms are evaluated in real world scenarios
using Light Detection and Ranging (lidar) data in a line by line comparison. Results
show that EKF-SLAMmaps are noisy, but have most lines located close by cars. It is
possible to detect free spaces within the maps, even though noise is present and some
lines are too short. Including the EIF correlation step shows promising results for
creating less noisy maps, however the landmark extraction limits its performance in
dense parking areas. Both approaches can create maps where it is possible to locate
available parking spaces.

Keywords: SLAM, Radar, Parking, EKF, Landmark Extraction.
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1
Introduction

In modern society travelling by car is one of the most commonly used transport
methods. In Gothenburg there are on average 445600 vehicle movements every
weekday and the car is an important part of many people’s everyday life [16]. Modern
vehicles are equipped with advanced systems such as adaptive cruise control and
automatic parallel parking. These systems aim to minimize accidents and make
driving easier. The next step is to make cars more autonomous.
One useful autonomous feature is automated valet parking. This would allow drivers
to get out of their cars at a destination and their cars would find parking spaces
by themselves. Drivers can save time, and parking spaces can be utilized more
efficiently since autonomous cars can park closer to each other. Additionally the
number of parking lot accidents caused by human driving errors would be minimized.
To achieve automated valet parking cars have to be able to navigate in unknown
parking areas and find available places.

1.1 Background

Self-driving cars are under development in many companies and there are already
test vehicles on public roads. One of the leading companies is Waymo (previously
Google self-driving car project) with four generations of self-driving cars that have
driven more than three million miles on public roads [1]. To achieve this their cars
are equipped with an advanced sensor system consisting of cameras, Light Detection
and Ranging (lidar) and Radio Detection and Ranging (radar) sensors. Radar is a
technique that uses radio waves to measure range and range rate to objects. Lidar
is a similar technique that instead of radio waves uses laser light, which gives higher
accuracy in distance and angular measures. With all this technology there would
probably be no match for their cars to navigate in unknown parking areas and find
available places. On the other hand all these sensors are expensive and it will take
time before they are standard equipment in ordinary cars. However most modern
cars are equipped with radar sensors to enable functions such as Blind Spot Warning.
Therefore a solution to automated valet parking using radar sensors is desired.
In order to navigate in an unknown parking area a car has to incrementally build
a map of its surroundings from sensor observations. This is part of a well known
problem within robotics called Simultaneous Localization and Mapping (SLAM).
The general SLAM problem is to simultaneously map an environment and compute
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1. Introduction

an estimate of the location of a vehicle at discrete time steps. One of the properties
that makes the problem hard is the uncertainties in both vehicle movements and
sensor observations. These uncertainties make it hard to build an accurate map,
since the true positions of both the vehicle and the sensor observations are never
known. SLAM is considered solved at a theoretical level [2] using a probabilistic
approach that can be further read about in section 2.2. Practical realizations of
SLAM is however an ongoing research area.

1.2 Related Work

A key question in current research of SLAM is how to represent the map. Dube et
al. [3] have successfully made use of a grid map representation of parking areas in
combination with radar sensors. A map is represented by a grid consisting of fixed
size cells with a probability of being occupied. Each probability is updated based on
received radar observations. Their work also presents a classifier that can be used
to detect both cross-parked and parallel-parked vehicles within the map.
Schuster et al. [4] describe a different map representation based on several small
clusters stored in a tree structure. Each new radar observation is either absorbed
into the closest cluster or into a new cluster, if no existing cluster is close enough. To
handle false clusters, that occur due to sensor noise, each cluster decays over time.
The decay ensures that clusters that seldom absorb radar detections will eventu-
ally disappear. This property makes it possible to handle dynamic environments.
Schuster et al. [4] demonstrate this property by visiting a parking area several times
during a day and showing how a map is maintained even if the configuration of cars
has changed.
Both these map representations require a lot of memory, which does not scale well
with the size of a map. A more memory efficient approach is a feature-based map,
where a map consists of environmental features like lines and corners. This approach
has successfully been used by Garulli et al. [5] and Lv et al. [6] in indoor environ-
ments with a lidar sensor. Both Garulli and Lv choose to use lines as features,
much due to the existence of long straight walls that can easily be observed by lidar
sensors. Their SLAM implementations can be described in three steps:

1. Line extraction, which is the process of finding lines from a set of sensor
observations. The most common line extraction methods are presented and
compared by Nguyen et al. [7].

2. Data association, which is a method for pairing a newly extracted feature to
an already existing feature within the map [8].

3. Extended Kalman filtering, which is a method that can be used to update
a map and a vehicle position, given an estimated vehicle movement and data
association pairs. More details about Extended Kalman Filtering can be found
in section 2.2.4.1.

A block of parked cars similarly to an indoor environment contains line-like features,
which indicates that it would be possible to use a feature-based SLAM approach to

2



1. Introduction

build a map of a parking block.

1.3 Problem Definition

The aim of this project is to develop an algorithm for incrementally building maps
of parking areas using radar sensors. The map should be accurate enough to be
able to use for detecting available parking spaces. Existing techniques for solving
feature-based SLAM will be used as basis for the map building, but refinements are
needed in order to handle noise from radar sensors. The problem can be divided
into three sub problems

• Landmark Extraction, which is the problem of finding lines and corners within
noisy radar data.

• Data Association, which is the task of pairing a newly extracted landmark
with one in the map.

• State Model Update, which is the problem of updating the vehicle state and
the map, given new landmarks and their data association.

The algorithm will be designed, implemented and tested on data gathered from real
world parking area scenarios. The accuracy of the landmark extraction on radar
data will be assessed by comparison to the landmark extraction on more accurate
lidar data. Likewise the resulting maps from radar data will be compared to maps
from lidar data.

1.4 Delimitations

The project makes the following assumptions and delimitations
• Only scenarios containing parked cars will be considered. Therefore, objects

such as trees, poles, rails and other common objects found in parking areas
will not be handled.

• Objects in the environment are assumed stationary.
• The ground is assumed to be flat and non-slippery.

1.5 Outline

The thesis is structured in the following way:

Chapter 1 introduces the problem considered in this thesis along with background
information and a problem definition.

Chapter 2 provides theory required to understand the rest of the material in this
thesis. It is divided into two main topics, landmark extraction and SLAM. The Land-

3



1. Introduction

mark Extraction section contains clustering and line fitting methods that are used
to find landmarks within radar data. The Simultaneous Localization and Mapping
section explains the probabilistic formulation of SLAM and how different solution
methods like the Extended Kalman Filter (EKF) and Extended Information Filter
(EIF) works.

Chapter 3 presents the algorithm used to extract landmarks from radar data. That
includes descriptions of how different clustering and line fitting methods are used.

Chapter 4 describes two different map building algorithms. Each algorithm’s state
model and state model update is explained, along with the process of associating a
new landmark to a landmark within the current map.

Chapter 5 describes how the developed algorithms are tested and evaluated using
lidar data.

Chapter 6 presents test results. First landmark extraction results are presented,
where precision of individual landmarks are evaluated, followed by map results where
radar maps are compared to lidar maps.

Chapter 7 provides reflections regarding results and suggestions for future work.

Chapter 8 highlights the most important findings of this thesis project and concludes
this report.

4



2
Theory

This chapter presents theory required for understanding methods used for solving
SLAM in parking area scenarios. First, graph theory clustering and line fitting tech-
niques used for landmark extraction are presented. Secondly, the theoretical SLAM
problem is formulated, followed by an introduction of the distance measure used for
data association. Finally, EKF and EIF are introduced as estimation techniques.

2.1 Landmark Extraction

Landmarks are distinguishable features in data that can be recognized at different
time steps, such as lines and corners. Clustering algorithms and line fitting methods
can be used for extracting landmarks from radar and lidar observations.

2.1.1 Single-linkage Clustering

A single-linkage clustering creates clusters such that all distances between clusters
are larger than a threshold d and each point within a cluster has a neighbour closer
than d. The distance between clusters is defined by the distance between the two
closest points. This clustering can be achieved by creating an Minimum Spanning
Tree (MST) and cutting edges longer than threshold d.

A MST is a set of edges that connects all nodes, while minimizing the total edge
weight without forming any cycles. A MST can be found by for example Prim’s or
Kruskal’s algorithm inO(m log n) time [9], wherem is the number of edges and n the
number of nodes. Figure 2.1 shows a MST obtained from a complete graph, where
points are nodes and weights are the euclidean distances between the points. The
time complexity is therefore O(n2 log n), since the number of edges is m = n(n−1)

2
in a complete graph. The number of edges, hence the time complexity, can be
reduced by performing a Delaunay triangulation on the set of points. A Delaunay
triangulation, visualized in figure 2.1, is a triangulation so that no point is inside
the circumference of any triangle. The triangulation can be computed in O(n log n)
and results in a planar graph, which contains O(n) edges [10]. By running the MST
algorithm on the new graph the complexity is reduced to O(n log n).

5



2. Theory

Figure 2.1: The graph on the left is a MST calculated from the complete graph
of the point vertices. The graph on the right is the Delaunay triangulation of the
points. The bold subgraph is the MST calculated from the triangulation, hence with
a smaller time complexity.

2.1.2 Graph Diameter

The graph diameter of a MST is in section 3.4.1 used to decrease the number of
outliers in clusters. It is defined as the number of nodes on the shortest path between
the two most distant nodes [12]. It therefore describes the longest of all shortest
paths in a graph. The diameter can be found by first computing heights of all nodes
and then finding the node with largest sum of two subtree heights.

2.1.3 Orthogonal Least Square Line Fitting

Lines are fitted to data sets obtained from clustering. A line can be fitted to data
points by minimizing the sum of squares of the orthogonal distances from the points
to the line [13]. A line in the plane can be represented by

c+ n1x+ n2y = 0
n2

1 + n2
2 = 1

(2.1)

where the unit vector (n1, n2) is normal to the line. The orthogonal distance from
a point to a line is

r = |c+ n1xp + n2yp| (2.2)

therefore, the line that minimizes

n∑
i=1

r2
i (2.3)
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for all points is the desired line. Hence, the problem is to minimize equation (2.3)
subject to


1 xp1 yp1
... ... ...
1 xpn ypn


 c
n1
n2

 =


r1
...
rn

 ,

n2
1 + n2

2 = 1

(2.4)

When fitting two orthogonal lines the number of unknowns is only increased by one.
This is possible by realizing that the normal vectors of two orthogonal lines are
orthogonal. If one line has normal vector (n1, n2) then the second line has normal
vector (−n2, n1). Therefore the unknown parameters to estimate are (c1, c2, n1, n2).
If the set of points p1, ..., pn are associated to the first line and another set q1, ..., qm
to the second line, then the problem in (2.4) is extended for two orthogonal lines as



1 0 xp1 yp1
... ... ... ...
1 0 xpn ypn

0 1 xq1 yq1
... ... ... ...
0 1 xqm yqm




c1
c2
n1
n2

 =


r1
...

rn+m

 ,

n2
1 + n2

2 = 1

(2.5)

This scenario is common in parking areas where the type of landmarks are dominated
by 90 degree corners of parked cars.

2.2 Simultaneous Localization and Mapping

Estimating a vehicle position while mapping an environment during movement is
known as SLAM. The probabilistic problem can be formulated using Bayes’ theorem
and a solution method is an EKF.

2.2.1 Probabilistic Problem Definition

The probabilistic SLAM problem is to compute the probability distribution of vehicle
position and landmark positions at all discrete time steps. Below follows mathemat-
ical formulations of the problem, according to Durrant-Whyte et al. [2]. First, the
following quantities are defined at time t

7
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• Vt vehicle location.
• Li location of the ith landmark.
• Mt = {L1 . . .Ln} the set of all n landmarks in the state model.
• ut control input applied at time t− 1 to make the vehicle

drive to Vt.
• zm = zm,t measurement m of a landmark. Note that subscript t is

dropped to simplify notation.
• U0:t the set of all control inputs up to time t.
• Z0:t the set of all landmark observations up to time t.

The map is a state vector containing positions of vehicle and landmarks at time t

xt =
[
Vt
Mt

]
=


Vt
L1
...
Ln

 (2.6)

The size of n increases with time since landmarks are added to the state vector as
new landmarks are detected.
The probability distribution to be computed in each time step is

P (Vt,Mt | Z0:t,U0:t,V0) (2.7)

which is the joint posterior density of the vehicle position and landmark locations
given radar data, odometry data and the initial vehicle state. The general SLAM
solution is to recursively calculate this probability distribution using Bayes theorem.
This requires a vehicle motion model

P (Vt+1 | Vt,ut+1) (2.8)

that computes expected position of the vehicle, given the old position and control
input, to be used as an initial guess. It also requires a measurement model

P (zm | Vt+1,Mt) (2.9)

that computes expected range and bearing of a landmark provided estimates of
vehicle and landmark positions after the vehicle motion model has been applied at
time t.
Bayes theorem states that

Posterior ∝ Likelihood× Prior (2.10)
(2.11)
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The likelihood is in this case the observation model (the likelihood of making a
measurement zt+1) and the prior is the joint probability density before the new
measurement.
The prior is called a time update since it is the probability distribution after the
vehicle motion model has been applied to the previous state

P (Vt+1 | Z0:t,U0:t+1,V0) =

=
∫
P (Vt+1 | Vt,ut+1)× P (Vt,Mt | Z0:t,U0:t,V0)dVt

(2.12)

Equation (2.7) is called a measurement update and can be formulated

P (Vt+1,Mt+1 | Z0:t+1,U0:t+1,V0) =

= P (zm | Vt+1,Mt)P (Vt+1 | Z0:k,U0:t+1,V0)
P (zm | Z0:t,U0:t+1)

(2.13)

This implies that the recursion is carried out in two steps: first the time-update in
(2.12) and then the measurement update in (2.13). In order to make a practically
usable SLAM solution computation of these equations have to be efficient. Achieving
this usually involves selecting a motion model (2.8) and an observation model (2.9)
that simplify computation of equation (2.12) and (2.13).

2.2.2 Uncertain Geometric Information

The first step when using a feature-based approach for representing geometric objects
is to choose an appropriate model for specifying feature locations and uncertainties.
Different geometric features, e.g. lines, endpoints and corners, are represented using
different types of parameters. For example, lines can be represented using a point
and an angle while endpoints and corners can be represented using a single point.

2.2.2.1 Gaussian Distributions of Feature Parameters

When choosing a model for representing geometric information it is important to
consider how characteristics of parameters affect the representation of uncertainty
[14]. Gaussian distributions, consisting of means and covariance matrices, are com-
mon when representing uncertain information. However, one drawback is that the
covariance tends to infinity near singularities and is therefore not suitable for certain
location representations. For example, using Gaussian distributions for uncertain-
ties in slope-intersection parameters, {(k,m) : y = kx+m}, for line representation is
not appropriate since k tends to infinity for vertical lines. This does not occur when
using Hesse normal form {(ρ, θ) : ρ = x cos θ + y sin θ}, since ρ and θ have finite
ranges in a finite world. However, using this form has a different type of drawback.
A small uncertainty in orientation θ will result in a large uncertainty in distance ρ.

9
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When choosing model, a problem arises because different features require different
parameters. This becomes a problem during parameter estimations since different
parameters require different equations.

2.2.2.2 Symmetries and Perturbations Model

The Symmetries and Perturbations Model (SPmodel) by Castellanos et al. [14]
is a model for representing geometric features and their uncertainty, avoiding the
drawbacks introduced in the previous section. It allows the same parametric rep-
resentation for lines, edges and corners, and utilizes symmetries between features
during pairing and estimation. The idea of the SPmodel is to attach local reference
frames to each feature, and to use (x, y, θ) as parameters for each feature. The
(x, y)-parameters specify the origin of the reference frame and θ is the angle from
the global x-axis to the features x-axis. Reference frames attached to a landmark
consisting of two endpoint, two segment and a corner is visualized in figure 2.2.

E

C 

S

S

E

E: Endpoint 
S: Segment   
C: Corner     

Figure 2.2: The SPmodel of a landmark consisting of five consecutive features.
Each feature has a local reference frame. Segments are aligned with their x-axis,
endpoints have their x-axis aligned with the adjacent segments x-axis and corners
reference frame has its x-axis along the bisector of the two adjacent segments.

The reference frame F of a feature can be expressed in the global reference frame G
by a location vector xGF which is both a translation and a rotation

xGF = (x, y, θ)> = Trans(x, y),Rot(Z, θ) (2.14)
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Using local reference frames for all features make it possible to represent uncertainty
by means of a reference frame transformation. If the estimated location has a
reference frame specified by location vector x̂GF , then the true feature location xGF
has a reference frame located a small translation and rotation away. This error
transformation is represented by a differential location vector dF , forming relation

xGF = x̂GF ⊕ dF (2.15)

which is called a composition, visualized in figure 2.3 and explained further in Ap-
pendix A.3.1.

G

F

F
̂ 

dF

x̂ 

GF

Figure 2.3: Visualization of the uncertain location of feature F . The true location
is a transformation of the reference frames of the estimated location x̂GF and an
error transformation dF . The error transformation is Gaussian distributed in the
parameters (x, y, θ)

Representing uncertainty in this way makes it possible to remove components of
d that lie along the symmetries of a feature. For example, uncertainty of a line
segment can be reduced to (y, θ) since the x-axis is aligned with the segment. This
is done using a matrix BF

pF = BFdF (2.16)

called the binding matrix of the feature, which forms a new vector called a pertur-
bation vector pF for a feature with reference frame F . The perturbation vector is
normally distributed with mean p̂F and covariance CF . A perturbation vector is
centered if the mean is zero, p̂F = 0. Each type of feature has a specific binding
matrix, summarized in table 2.1
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Table 2.1: Binding matrices used in this project

Feature Binding Matrix
Vehicle BV = I3
Endpoint BE = I3

Segment BS =
(

0 1 0
0 0 1

)
Corner BC = I3

The uncertain location of a feature can therefore be represented by

LGF = (x̂GF , p̂F ,CF ,BF ) (2.17)

where

xGF = x̂GF ⊕B>FpF
p̂F = E[pF ]
CF = E[(pF − p̂F )(pF − p̂F )>]

(2.18)

This representation avoids the drawbacks introduced in 2.2.2.1, and utilizes feature
symmetries when representing uncertainty. This model also makes it possible to
include correlations between features within a landmark, further addressed in section
2.2.4.2.

2.2.3 Data association

In order to update estimated positions of landmarks while moving within a parking
area it is necessary to recognize them at different time frames. To achieve this,
features at different time frames are paired by measuring the difference in location
using a Mahalanobis distance.

2.2.3.1 Pairing Features

Before applying estimation techniques for updating the state vector in equation (2.6),
observed features need to be paired with features in the state model. According
to Castellanos et al. [14], two features in the SPmodel can be related through a
measurement equation

fm(x,ym) = 0 (2.19)

where x represents the location of a feature in the state model and

ŷm = ym + um ; um ∼ N (0,Um) (2.20)
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is an observation. These measurement equations are non-linear due to orientation
terms and need to be linearized. This is done using a first order Taylor expansion

fm(x,y) = hm + Hm(x− x̂) + Gm(ym − ŷm)
= 0

(2.21)

where

hm = fm(x̂, ŷ)

Hm = ∂fm
∂x

∣∣∣∣
x̂,ŷm

Gm = ∂fm
∂ym

∣∣∣∣
x̂,ŷm

(2.22)

Therefore, the linearized measurement equation can be formulated

zm = Hmx + vm ; vm ∼ N (0,Rm) (2.23)

where

zm = −hm + Hmx̂
vm = −Gmum
Rm = −GmUmG>m

(2.24)

Table 2.2: Binding matrices for paired features used in this project

Local Feature Global Feature Binding Matrix
Endpoint Endpoint BFE = I3

Segment Segment BFE =
(

0 1 0
0 0 1

)

Corner Endpoint BFE =
(

1 0 0
0 1 0

)

The SLAM state vector consist of perturbations vectors when using the SPmodel.
Therefore perturbation vectors are estimated during the estimation processes de-
scribed in sections 2.2.4.1 and 2.2.4.2. Measurement equations are therefore formu-
lated to relate perturbation vectors with observations. Let F be a reference frame
specifying the location of feature F in the state model. Similarly, let E be the
reference specifying the location of an observed feature E . A measurement equation
relating perturbation vectors pF and pE can be formulated by viewing E from F ,
visualized in figure 2.4. If feature F and E represent the same feature, their relative
location vector xFE should equal zero, forming measurement equation
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G

E

E
̂ 

dE

x̂ 

GE

F

F
̂ 

dF

x̂ 

GF

xFE

x̂ 

FE

Figure 2.4: Pairing two features is done using the relative location vector xFE.

fm(pF ,pE) = BFExFE = 0 (2.25)

where binding matrix BFE removes components that lie along symmetries of the
pairing. Binding matrices for pairings used in this project are listed in table 2.2.
This equation can be expressed using compositions and inversions of transformations
according to

fm(pF ,pE) = BFExFE
= BFE(	xGF ⊕ xGE)
= BFE(	(x̂GF ⊕B>FpF )⊕ (x̂GE ⊕B>EpE))
= BFE(	B>FpF 	 x̂GF ⊕ x̂GE ⊕B>EpE)
= BFE(	B>FpF ⊕ x̂FE ⊕B>EpE)
= 0

(2.26)

Linearization of equation (2.30) gives

fm ≈ hm + Hm(pF − p̂F ) + Gm(pS − p̂S) = 0 (2.27)

where the coefficients are derived by Castellanos et al. [14] as
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hm = f(p̂F , p̂E)
= BFE(	B>F p̂F ⊕ x̂FE ⊕B>Ep̂E)

Hm = ∂f
∂pF

∣∣∣∣
p̂F ,p̂E

= BFE

[
	B>FpF ⊕ x̂FE ⊕B>EpE

	B>FpF
· 	B

>
FpF

B>FpF
· B
>
FpF
pF

]
p̂F ,p̂E

= BFEJ1⊕{	B>F p̂F , x̂FE ⊕B>Ep̂E}J	{	B>F p̂F}B>F

Gm = ∂f
∂pE

∣∣∣∣
p̂F ,p̂E

= BFE

[
	B>FpF ⊕ x̂FE ⊕B>EpE

	B>EpE
· B
>
EpE
pE

]
p̂F ,p̂E

= BFEJ2⊕{	B>F p̂F ⊕ x̂FE,B>Ep̂E}B>E

(2.28)

Jacobians J	, J1⊕ and J2⊕ of compositions and inversions are found in Appendix
A.3.2. Assuming centered estimations we have p̂F = 0 and p̂F = 0, which simplifies
the expressions to

hm = f(p̂F , p̂E) = BFEx̂FE

Hm = ∂f
∂pF

∣∣∣∣
p̂F ,p̂E

= −BFEJ1⊕{0, x̂FE}B>F

Gm = ∂f
∂pE

∣∣∣∣
p̂F ,p̂E

= BFEJ2⊕{x̂FE,0}B>E

(2.29)

2.2.3.2 Pairing Features and Observations

During the pairing process in the previous section both features were assumed to be
in the global coordinate system. During SLAM, however, new features are observed
from the vehicle reference frame V which itself is included in the state vector and is
uncertain. This situation is visualized in figure 2.5.
For this case, the measurement equation relating two features F and E is

fm(p,pE) = BFExFE
= BFE(	xGF ⊕ xGV ⊕ xV E)
= BFE(	B>FpF ⊕ x̂FE ⊕ JEV dV ⊕B>EpE)
= 0

(2.30)
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G

E

E
̂ 

dE

x̂ 

VE

F

F
̂ 

dF

x̂ 

GF

xFE

x̂ 

FE

V
̂ 

x̂ 

GV

dV

V

xVE

Figure 2.5: Pairing a state model feature with a feature observed from the vehicle
reference frame is done using the relative location vector xFE.

where p include perturbation vectors of the entire SLAM state vector

p =


pV
pF1...
pFn

 (2.31)

and JER is the Jacobian of the transformation xEV for propagating vehice uncer-
tainty to feature E , explained further in Appendix A.3.3. Coefficients derived with
respect to the state vector result in nonzero values for vehicle position and feature
F which is included in the pairing

hm = BFEx̂FE
Hm =

(
HV 0 . . . 0 HF 0 . . . 0

)
HV = BFEJ2⊕{x̂FE,0}JEV
HF = −BFEJ1⊕{0, x̂FE}B>F
GE = BFEJ2⊕{x̂FE,0}B>E

(2.32)

2.2.3.3 Mahalanobis Distance

The Mahalanobis distance is a distance between an observations x = [x1, x2, . . . , xn]>
and a distribution [8]. If the distribution has mean µ = [µ1, µ2, . . . , µn]> and co-
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variance S then the Mahalanobis distance is defined as

D =
√

(x− µ)>S−1(x− µ) (2.33)

Two landmarks can be considered equal if the squared Mahalanobis distance is below
a threshold obtained from the chi-square distribution

D2 ≤ χ2
r,α (2.34)

for a certain significance level α and r = rank(x) degrees of freedom.

2.2.4 Estimating Uncertain Locations

Estimating state model (2.6) through time update (2.12) and measurement update
(2.13) requires estimation techniques. This section introduces two types of estima-
tion techniques: EKF and EIF. An EKF integrates one measurement at the time
and updates the state model after each integration. The EIF, however, integrates
a batch of measurements simultaneously and updates the state model after each
batch.

2.2.4.1 Extended Kalman Filter

When using a Kalman Filter (KF) the map defined in (2.6) is modelled by Gaussian
variables, presented in section 2.2.2.1, using the mean x̂t and covariance Ct of the
state vector at time t

x̂t =
[
V̂
M̂

]
t

Ct =
[
CV|V CV|M
CT
M|V CM|M

]
t

(2.35)

The goal of a KF is to keep x̂ and C updated at all time steps. According to
Durrant-Whyte et al. [2] a KF can be applied by making the following definitions.
First, the conditional mean is defined as

x̂t|l = E[xt | Z0:l,U0:t+1,V0](t ≥ l) (2.36)

For future reference this notation is simplified to x̂t when l = t. The mean at time
t+ 1 is therefore

x̂t+1 =
[
V̂t+1

M̂t+1

]
= E

[
Vt+1
Mt+1

| Z0:t+1,U0:t+1,V0

]
(2.37)

and the covariance matrix
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Ct+1 =
[
CV|V CV|M
CT
V|M CM|M

]
t+1

= E

( Vt+1 − V̂t+1

Mt+1 − M̂t+1

)(
Vt+1 − V̂t+1

Mt+1 − M̂t+1

)T
| Z0:t+1,U0:t+1,V0

 (2.38)

Vehicle motion model (2.8) can be expressed as

P (Vt+1 | Vt,ut+1)⇔ Vt+1 = f(Vt,ut+1) + w (2.39)

where f is a non-linear function of vehicle kinematics and w additional Gaussian
noise with zero mean and covariance Q.
Measurement model (2.9) for the mth measurement can be expressed as

P (zm | Vt+1,Mt)⇔ zm = hm(Vt+1,Mt) + vm (2.40)

where hm is a non-linear function that returns position of a landmark in the vehicle’s
reference frame and vm additional Gaussian noise with zero mean and covariance
Rm.
Since f and hm are non-linear an EKF is used, which means that function (2.39)
and (2.40) are linearized around the current estimate in each time step.
The first step of the recursive process introduced in section 2.2.1 is the time update.
To apply f on covariance matrix (2.38) the Jacobian is computed at the estimate V̂t.
The time update is therefore

x̂t+1|t =
[
f(V̂t,ut+1)
M̂t

]
=
[
V̂t+1

M̂t

]
Ct+1|t = F Ct|tFT + Q

(2.41)

where F = ∇f. Time updates are not applied for landmarks since they are assumed
stationary.
Assuming correct landmark extraction and association, the second step is the mea-
surement update. First a prediction of a landmark location at time t + 1 is made
with measurement model (2.40) from the estimated vehicle position V̂t+1

ẑm = hm(V̂t+1,M̂t) (2.42)

Then a real observation zm of a landmark at time t+ 1 is made according measure-
ment model (2.40) from the true vehicle position Vt+1

zm = hm(Vt+1,Mt) + vm (2.43)

Now the following matrices can be formed
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vm = zm − ẑm
Sm = HmCt+1|tHT

m + Rm

Km = Ct+1|tHT
mS−1

m

(2.44)

where Hm = ∇hm is the Jacobian of hm at the estimate V̂t+1 and M̂t, vm the
innovation (difference between the observed value at time t + 1 and the prediction
based on prior information), Sm the innovation covariance matrix and K the opti-
mal Kalman gain. Kalman gain is a measure of how much to trust the observed
landmarks.
Equations (2.41) and (2.44) are used to form mean and covariance for state vector
xt+1

x̂t+1 = x̂t+1|t + Kmvm (2.45)
Ct+1 = (I−KmHm)Ct+1|t (2.46)

and the recursive step is complete.

2.2.4.2 Extended Information Filter

The EKF introduced in section 2.2.4.1 has an equivalent form: the information form
[15]. An EIF is also called an inverse covariance filter since the information form of
covariance matrix C and state vector x̂ is replaced with an information matrix and
information vector

ŷt = C−1
t x̂t

Yt = C−1
t

(2.47)

which consist of the inverse covariance matrix. The information form of predicted
covariance and state vector is in the same manner expressed as

ŷt+1|t = C−1x̂t+1|t

Yt+1|t = C−1
t+1|t

(2.48)

The measurement vector and covariance in information form are defined as

Im = H>mR−1
m Hm

im = H>mR−1
m zm

(2.49)

and the measurement update of N measurements
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ŷt+1 = ŷt+1|t +
N∑
m=1

im

Yt+1 = Yt+1|t +
N∑
m=1

Im

(2.50)

Equation (2.50) implies that EIFs support integration of multiple measurements in
one time step. Castellanos et al. [14] connect features within a landmark through
measurement equations and reestablish correlations using an EIF. An endpoint E
with reference frame E and the segment S with reference frame S from which the
endpoint was being derived from, are related by considering S as a measurement m.
The state vector to be updated includes both the endpoint and segments perturba-
tion vectors

x =
[
pE
pS

]
(2.51)

and the measurement equation relating them is

fm(x,pS) = BSExSE
= BSE(	B>SpS ⊕ x̂SE ⊕B>EpE)
= 0

(2.52)

where

BSE =
(

0 1 0
0 0 1

)
(2.53)

Linearizing equation (2.52) gives

fm(x,pS) ≈ hm + Hm(x− x̂) + Gm(pS − p̂S) = 0 (2.54)

where the coefficients are calculated according to equation (2.29) to

hm = fm(x̂, p̂S) = BSEx̂SE
Hm =

(
HE
m HS

m

)
HE
m = BSEJ2⊕{x̂SE,0}B>E

HS
m = −BSEJ1⊕{0, x̂SE}B>S

Gm = −BSEJ1⊕{0, x̂SE}B>S

(2.55)

Note that location vector x̂SE specify the endpoint location from the segments refer-
ence frame while the segment is considered a measurement. In the general derivation

20



2. Theory

of coefficients in equation (2.28) this vector is inverted, explaining the difference in
sign and Jacobian order from the coefficients in (2.55). Also note that HS

m and Gm

are identical since the perturbation vector pS is considered as a measurement and
is also included in the state vector.
Corners are related to segments in the same fashion, using the state vector containing
perturbation vectors of the segment and corner to be related

x =
[
pC
pS

]
(2.56)

However, since the reference frame of a corner lies along the bisector of two consecu-
tive segments, the difference in orientation should not equal zero. The measurement
equation relating corners and segments is therefore

gm(x,pS) = BSCxSC
= BSC(	B>SpS ⊕ x̂SC ⊕B>CpC)
= λ

(2.57)

where λ is the desired angle between segment S and corner C and

BSC =
(

0 1 0
0 0 1

)
(2.58)

This can be written

fm(x,pS) = gm(x,pS)− λ = 0 (2.59)

and linearization gives

fm(x,pS) ≈ hm + Hm(x− x̂) + Gm(pS − p̂S) = 0 (2.60)

where the coefficients are calculated using equation (2.29) to

hm = fm(x̂, p̂S) = BSCx̂SC − λ
Hm =

(
HC
m HS

m

)
HC
m = BSCJ2⊕{x̂SC ,0}B>C

HS
m = −BSEJ1⊕{0, x̂SC}B>S

Gm = −BSCJ1⊕{0, x̂SC}B>S

(2.61)

Coefficients relating features within a landmark are used in an EIF to update the en-
tire landmark to reestablish correlations. Consider an L-shaped landmark consisting
of five features

L =
(
E1 S1 C S2 E2

)
. (2.62)
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Features within L can be related using measurement equations (2.55) and (2.61).
Segment S1 is related to endpoint E1 and corner C, and segment S2 is related to
corner C and endpoint E2. This forms two matrices, H1 and H2, containing relation
coefficients

H1 =
(
HE1

1 HS1
1 0 0 0

0 HS1
2 HC

2 0 0

)

H2 =
(

0 0 HC
3 HS2

3 0
0 0 0 HS2

4 HE2
4

) (2.63)

where HF
m is the coefficient for feature F in measurement equation m. The coeffi-

cients H1 and H2 include measurement equations for relating the state vector

xL =
[
pE1 pS1 pC pS2 pE2

]
(2.64)

The correlation update is performed after each reobservation of a feature to reestab-
lish correlations. The reobserved feature should not be modified during the corre-
lation update, therefore a measurement equation relating the observed feature with
itself needs to be added. Relating two identical features using equation

fm(pS,pS) = BSxSS
= BS(	B>SpS ⊕ x̂SS ⊕B>SpS)
= 0

(2.65)

result in coefficients that equal the identity

hm = 0
HSS
m = −I2

Gm = I2
(2.66)

Adding HSS
m concludes the measurement equations

H1 =

H
E1
1 HS1

1 0 0 0
0 HS1

2 HC
2 0 0

0 HS1S1
3 0 0 0



H2 =

 0 0 HC
4 HS2

4 0
0 0 0 HS2

5 HE2
5

0 0 0 0 0


(2.67)

needed for performing an EIF measurement update according to equation (2.50)
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ŷt+1 = ŷt+1|t +
2∑

m=1
H>mR−1

m zm

Yt+1 = Yt+1|t +
2∑

m=1
H>mR−1

m Hm

(2.68)

where zm contains all linearized measurement equations as defined in equation (2.23)
and Rm is the measurement covariance as defined in equation (2.24). Since the state
variables are considered as measurements, the state vector and covariance can be
written [14]

x̂Lt+1 = CLt+1

2∑
m=1

H>mR−1
m zm

CLt+1 =
( 2∑
m=1

H>mR−1
m Hm

)−1 (2.69)

which reestablishes correlations between features in landmark L.
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3
Landmark Extraction

Landmarks are features within sensor data that are used as building blocks for maps.
A good landmark should be both easy to find and easy to reobserve [11]. Different
landmarks are suited for different mapping environments, and the main objects in
parking area scenarios are vehicles. Based on the assumption that the contour of
a vehicle is rectangular, lines and corners can be used as landmarks. This chapter
presents a method for extracting lines and corners from radar data. The method is
inspired by the incremental line fitting algorithm, which achieved good results on
lidar data in a comparison study by Nguyen et al. [7]. However, the incremental
algorithm makes use of the ordering of lidar detections which radar detections do not
have. Therefore, this thesis proposes an alternative algorithm that consists of two
clustering methods and orthogonal least square line fitting. The clustering stages
are visualized in figure 3.1.

3.1 Single-linkage Clustering

The goals of the first clustering method are to group detections that belong to the
same landmark and create an ordering of them. A single-linkage clustering based
on Euclidean distances between detections is chosen to achieve those goals. The
single-linkage clustering is known to produce long and skinny clusters [12], which is
desired when the purpose is finding lines.
As described in 2.1.1, a single-linkage clustering can be obtained by creating a MST
and cutting edges longer than a threshold. Two methods for choosing a threshold
are tried. The first is to pick a constant threshold based on heuristic knowledge
of how closely cars are usually parked. The second method tries to find a more
dynamic threshold based on properties of the MST and formulates the threshold as

dedge < µ+ σ (3.1)

where dedge is the edge length, µ and σ are the mean and standard deviation of the
edge lengths in the MST.
The first three pictures in figure 3.1 illustrate how radar detections are processed
into a MST, which is turned into clusters by cutting long edges according to the
general threshold.

25



3. Landmark Extraction

1

43

2

Figure 3.1: Stages of the landmark extraction process. First, a MST is created
based on Euclidean distances between observations. Secondly, long edges are cut
by a threshold that depends on mean and standard deviation of all edge lengths,
forming clusters. Finally, each cluster is segmented into line clusters using the line
segmentation algorithm visualized in figure 3.2.

3.2 Line Segmentation

Each cluster produced by the MST is segmented into lines. The line segmentation
algorithm greedily decides if a point belongs to the current line and recursively starts
a new line if it does not. This process is visualized in figure 3.2 and explained in
algorithm 1.
The result of the clustering depends on the order in which points are traversed. The
graph diameter is used to decide starting point, then a Breadth First Search (BFS)
from the starting point decides graph traversal order. In each iteration a point is
either added to the current line cluster or not. To be added it must satisfy two
conditions: the distance to the closest point and longest eigenvector of the cluster
must be below certain thresholds. If conditions are not satisfied a new segmentation
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Figure 3.2: Line clustering algorithm that greedily decides if the next point belongs
to the current line or not, and recursively starts a new line if it does not

is started from the current point in the subtree rooted at this point. Similarly to
the single-linkage clustering both constant and dynamic thresholds are tried.
The dynamic threshold for distance to the closest point is based on the normal
distribution of the shortest edges in the MST. Long edges are first filtered out from
the edge set by partitioning the weights into bins and removing bins for large weights.
The threshold is therefore

dcluster < µ+ qσ (3.2)

where dcluster is the closest point distance, µ and σ are mean and standard deviation
of bins containing the shortest edges in the MST and q specifies which quantile to
use.
The dynamic threshold for the distance to the longest eigenvector is

dline <
c

N
+ λ (3.3)

where dline is the orthogonal distance to the longest eigenvector, N the size of the
line cluster, λ the smallest eigenvalue of the point distribution, and c is a constant.
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Algorithm 1: Line Segmentation

Function lineSegments = lineSegmentation(startPoint, MST)
lineSegment = [startPoint];
foreach point in BFS(startPoint, MST) do

d1 = distanceToSegment(point, lineSegment);
d2 = distanceToLongestEigenvector(point, lineSegment);
if satisfyCondition(d1, d2) then

lineSegment.add(point);
else

newMST = subtree(point, MST);
MST = removeSubtree(MST, newMST);
newSegments = lineSegmentation(point, newMST);
lineSegments.add(newSegments);

end
end
lineSegments.add(lineSegment);

end

When a new line is initialized, the decision of the next point is dominated by (3.2)
since (3.3) is large if λ and N are small. However, the more points added to the line
cluster the more (3.3) will influence the decision. When the cluster is large enough,
(3.3) will mainly depend on λ.
In each iterative step the following must be calculated

• The next point according to a BFS.
• The distance to the closest point in the cluster.
• An update of covariance, eigenvectors and eigenvalues of the cluster after a

new point is added.
The BFS is performed in O(n + m) time where n is the number of points and m
the number of edges. Since the graphs are MST’s we have that m = n − 1. Since
some edges are cut during the iterative process, it is most time efficient to calculate
one layer of the BFS at the time. The distance to the closest point in the cluster is
directly provided from the MST, as it is the length of the edge from the previously
visited point. The covariance, eigenvectors and eigenvalues are updated in constant
time as explained in appendix A.1. Therefore, the total time complexity of the line
segmentation algorithm is O(n).

3.3 Orthogonal Least Square Line Fitting

The resulting clusters are assumed to represent lines without outliers. Therefore,
lines are fitted using the method described in section 2.1.3. If the angle θ between
the longest eigenvectors of two adjacent line clusters fulfills the relation |90− θ| < δ
they are considered orthogonal. In this case two orthogonal lines are fitted to the
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clusters and a corner and two lines are extracted as landmarks.

3.4 Preprocess Detections

The line segmentation method described in section 3.2 works best on clusters that
are line or L-shaped. However radar detections do not only exist on surfaces of
parked cars, but also within parked cars due to noise. Detections within cars cause
clusters to have other shapes than lines and L:s, which can cause the algorithm
to extract wrong lines. To improve performance of the algorithm two methods are
suggested for making clusters more line or L-shaped.

3.4.1 Graph Diameter Filtering

The first idea for removing outliers is to make use of the diameter path of a cluster’s
MST. In the left picture of figure 3.3 it can be observed that detections are more
dense along the surface of the car and only a few outlier detections exist within the
car. In this case the diameter path of the MST will only contain detections from the
surface and can be used to create an L-shaped cluster as can be seen in the right
picture of figure 3.3.

Figure 3.3: An illustration of how the graph diameter can be used to remove de-
tections within a car. The left pictures shows the MST of a car cluster with some
outlier detections within the car. The right picture shows the same cluster with the
diameter path highlighted in red.
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3.4.2 Free Space Filtering

The second idea for removing outliers is to remove detections that from the cars
perspective are blocked by other detections. By removing blocked detections, the
detections on the surface of a car will be kept and those within a car will be re-
moved. In contrast to the previous idea using the diameter this approach filters the
detections before the MST is created. The algorithm is described in algorithm 2
and in figure 3.4 can three stages of the filtering be seen. The left picture shows
unfiltered detections, the middle picture illustrates how detections are associated to
a line, and the last picture shows filtered detections.

Algorithm 2: Free Space Filtering

1. Create lines originating from the car with dθ angular difference between each
consecutive line
2. Associate each point to its closest line
3. Project each point to its closest line
4. Sort the projected points along each line
5. For each line keep the projected point closest to the car and all points within
distance d from that point

Figure 3.4: An illustration of the free space algorithm. The left picture shows
position of the vehicle (green dot) and unfiltered detections (black dots). The mid-
dle picture visualizes lines from the free space algorithm and which detections are
associated to which line. Finally the right picture shows filtered detections.
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4
Simultaneous Localization and

Mapping

Solving SLAM is a recursive process, shown in figure 4.1, executed at each discrete
time step. The process is divided into several steps: time update, landmark extrac-
tion, data association and measurement update. The process starts with the time
update, which means making an estimation of the next vehicle position based on
odometry data according to the vehicle motion model. Then a prediction is made of
where landmark locations should be according to the observation model. The pre-
diction is based on the estimation of the new vehicle position from the time update.
After reobserving the environment, landmarks are extracted and associated with
landmarks from the previous time step. From the predicted and observed landmark
locations, estimated vehicle position and landmark locations are updated, which is
called the measurement update. This chapter explains the SLAM process for both
non-correlated and correlated feature representations.

Figure 4.1: Recursive process for solving SLAM.
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4.1 Non-correlated Feature Representation

This section describes how the general EKF method described in section 2.2.4.1 is
applied when using non-correlated features. Non-correlated means that each line is
treated as a separate line and it is not taken into account that lines from different
sides of a vehicle are dependent.

4.1.1 State Model

Parameters specifying vehicle and landmark positions are stored in a state model.
The positions are uncertain and are therefore represented by probability distribu-
tions, e.g. Gaussian distributions with means and covariance matrices. The position
of each object is represented by an x, y and θ value. The vehicle parameters rep-
resent middle position and heading, while the parameters for lines represent middle
point of the line and angle between the global x-axis and the line. This is visualized
in figure 4.2.

G G(x, y) (x, y)

θ

θ

Figure 4.2: Vehicle (left) and line (right) parameters represented in the global
coordinate system.

Best estimates of state vector x are stored in x̂, starting with estimated vehicle po-
sition V̂ followed by estimated landmark positions L̂1, . . . , L̂n in a global coordinate
system G,

x̂ =


V̂
L̂1
...
L̂n


G

(4.1)

where

V̂ =

xGVyGV
θGV

 , L̂i =

xGLi

yGLi

θGLi

 (4.2)
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and n is the number of landmarks. The covariance matrix of state vector x includes
covariance of vehicle and landmark positions in the diagonal entries, and their cross-
covariance in the off-diagonal entries

C =


ΣVV ΣVL1 . . . ΣVLn

ΣL1V ΣL1L1 . . . ΣL1Ln

... ... . . . ...
ΣLnV ΣLnL1 . . . ΣLnLn

 (4.3)

where

Σij =

σxi
σxj

σxi
σyj

σxi
σθj

σyi
σxj

σyi
σyj

σyi
σθj

σθi
σxj

σθi
σyj

σθi
σθj

 (4.4)

Since all landmarks are lines in this representation an additional vector ` is needed
for line lengths, as suggested by Garulli et al. [5],

` =


l1
...
ln

 (4.5)

where li is the length of landmark Li.
The state model is used during implementation of the map building process described
in the following sections.

4.1.2 Time Update

Uncertain locations of vehicle and landmarks are stored in the state model described
in section 4.1.1. The state model is updated in every time step. First, only the
vehicle position is updated and therefore entries in the state model that include
landmark positions remain the same. The updated vehicle position is calculated
from the previous state using vehicle motion model

f(xt, yt, θt) =


xt+1 = xt + vt cos(θt + θs) dt
yt+1 = yt + vt sin(θt + θs) dt
θt+1 = θt + θ̇t dt

(4.6)

where vt is velocity of the vehicle at time t, θs is slip angle (angle between heading
and velocity vector) and θ̇t = dθt

dt yaw rate. The updated x̂ is therefore

x̂t+1|t =


f(xt, yt, θt)
L̂1
...
L̂n

 (4.7)
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The covariance matrix is updated by propagating errors from the previous state and
adding odometry errors. The Jacobian matrix is used to propagate uncertainties
for non-linear functions (for further reading regarding uncertainty propagation see
appendix A.2).
The Jacobian matrix FV = ∇f of the vehicle motion model is

FV =

1 0 −vtsin(θt + θs)dt
0 1 vtcos(θt + θs)dt
0 0 1 + θ̈ dt

 (4.8)

where the angular acceleration θ̈ is assumed to be zero. The state vector update in
equation (4.7) only updates estimated vehicle position. When updating the covari-
ance matrix, however, cross-covariances of vehicle and landmarks are also updated.
Therefore Jacobian F with respect to the entire state vector is

F =
[
FV 03×n
0n×3 In×n

]
(4.9)

The covariance matrix is therefore updated using propagation of uncertainty for the
non-linear case (see appendix A.2), and adding uncertainties from using odometry
data for velocity, slip angle and yaw rate

Ct+1|t = FCt|tF> + GCodometryG> (4.10)

where

G =
[
I3×3
0n×3

]
, (4.11)

This finalizes the time update. The next step is the measurement update in which
landmarks are reobserved and used to update the entire state model.

4.1.3 Measurement Update

The entire state model is updated during the measurement update. This step iter-
ates through all newly extracted features and associates them to landmarks within
the current state model according to the method described in section 4.1.5. Since
landmarks in the state model are in the global coordinate system they are trans-
formed into the vehicle reference frame using measurement model

LV = hm(VG,LG) =

cos(θGV) −sin(θGV) 0
sin(θGV) cos(θGV) 0

0 0 1


>

xGLyGL
θGL

−
xGVyGV
θGV


 (4.12)

To propagate errors during this transformation, the Jacobian matrix Hm = ∇hm
is calculated with respect to the state vector x̂. Since the only objects involved
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during one iteration is the vehicle position and the current landmark, the partial
derivatives with respect to all other landmarks are zero. Therefore Hm is divided
into two Jacobian matrices HV and HL with respect to the vehicle and landmark
parameters, respectively. The Jacobians are

HV =

−cos(θGV) −sin(θGV) −(xGL − xGV)sin(θGV) + (yGL − yGV)cos(θGV)
sin(θGV) −cos(θGV) −(xGL − xGV)cos(θGV)− (yGL − yGV)sin(θGV)

0 0 −1


(4.13)

HL =

 cos(θGV) sin(θGV) 0
−sin(θGV) cos(θGV) 0

0 0 1

 (4.14)

The matrix Hm is formed by inserting HV and HL at their proper indices

Hm =
[
HV 0 . . . 0 HL 0 . . . 0

]
(4.15)

Assuming correct landmark extraction and association, the state model is updated
based on the difference between the previous and reobserved landmark position.
This difference is called the innovation

vm = zm − ẑm (4.16)

where zm is the observation and ẑm = h(x̂). The covariance of the innovation is

Sm = HmCt+1|tH>m + Rm (4.17)

which is propagated uncertainty of zm through the measurement model and Rm is
uncertainty of the new observation based on uncertainty in the radar. The measure-
ment update is performed by calculating the Kalman gain

Km = Ct+1|tH>mS−1
m (4.18)

and updating the state model according to the EKF equations

x̂t+1 = x̂t+1|t + Kmvm (4.19)
Ct+1 = (I−KmHm)Ct+1|t (4.20)

The length of the updated line is calculated in three steps. First endpoints of
the observed line ẑm and endpoint of the previous line Lt are projected onto the
updated line Lt+1. Then the longest segment between the projected endpoints is
found. Finally the new length is chosen to be as long as possible while still being
contained within the segment.
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4.1.4 Adding New Features to State Model

New features that were not associated to any of the current landmarks within the
state model are considered new landmarks. New landmarks are added to the state
model by the process described in this section. Given a feature and the current
vehicle state

L̂V =

xVLyVL
θVL

 , V̂ =

xGVyGV
θGV

 (4.21)

the first step is to transform the feature from the vehicle reference frame to the
world reference frame. That is accomplished by applying h−1

m , which is the inverse
of the measurement model defined in equation 4.12.

L̂G = h−1
m (L̂V , V̂G) =

xGLyGL
θGL

 =

cos(θGV) −sin(θGV) 0
sin(θGV) cos(θGV) 0

0 0 1


xVLyVL
θVL

+

xGVyGV
θGV

 (4.22)

The next step is to append the transformed feature to the current state model x̂t+1
and its length l to the length vector `.

x̂t+1 =
[
x̂t+1

L̂G

]
, ` =

[
`
l

]
(4.23)

Finally the covariance Ct+1 is augment to C′t+1 as proposed by Collier [11] using
Jacobians JV and JL of h−1

m with respect to V̂ and L̂V , respectively .

JV =

1 0 −xVLsin(θGV)− yVLcos(θGV)
0 1 xVLcos(θGV)− yVLsin(θGV)
0 0 1

 (4.24)

JL =

cos(θGV) −sin(θGV) 0
sin(θGV) cos(θGV) 0

0 0 1

 (4.25)

Ct+1 =
(
CV CVM
C>VM CM

)
(4.26)

C′t+1 =

 CV CVM C>VJ>V
C>VM CM C>VMJ>V
JVCV JVCVM JVCVJ>V + JLRmJ>L

 (4.27)

After the addition of new landmarks is complete landmarks that have been observed
too few times during a given time period are removed. Thereby the number of
spurious landmarks within the state model is reduced.
This completes the state model update, and the process continues recursively to the
next time frame.
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4.1.5 Data Association

When new landmarks have been extracted they need to be associated with land-
marks viewed from previous observations, in order to update the state model during
the measurement update phase. This association process has to deal with several
difficulties

• All previous landmarks are not reobserved at every time step
• Spurious landmarks can exist among both previous and new landmarks
• Wrongly associating a new landmark to a previous one increases errors within

the map
A data association algorithm consists of two components [8], a compatibility test
that determines if two landmarks can be associated, and a criterion for deciding
which of the compatible matchings is the best matching. A common approach
within SLAM is to use a gated nearest neighbor algorithm which is adopted for
this SLAM scenario. The gated nearest neighbor approach passes each possible
association-pair through a number of validation gates that decide if the matchings
are compatible. Among the compatible matchings the one with closest landmarks
is chosen. If no compatible matchings exist the landmark is considered new and is
added to the state model.
For the case when landmarks are lines, three validation gates similar to the ones
used by Garulli et al. [5] are used.

• Angle gate: An association-pair passes the angle gate if the angle between the
direction vectors of two lines is less than a threshold.

• Midpoint gate: An association-pair passes the midpoint gate if the orthogonal
distance from the midpoint of the new line to the previous line is below a
threshold

• Overlap gate: An association-pair passes the overlap gate if the portion of
the new line that overlaps the previous line is greater than a threshold. Or it
passes if the shortest distance between any of the lines endpoints is below a
threshold.

The best matching is chosen to be the one with smallest Mahalanobis distance, as
suggested by Neira et al. [8]. The Mahalanobis distance is computed as follows

D2 = viS−1
i v

>
i (4.28)

where vi is the innovation and Si the innovation covariance, which are defined in
equation 4.16 respectively 4.17.

4.2 Correlated Feature Representation

Using the SPmodel introduced in section 2.2.2.2 makes it possible to include corre-
lations between features. This is desirable in the parking area scenario since sides of
vehicles depend on each other. Reobserving one side of a vehicle should propagate
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to the other sides, updating the estimated location of them as well. Including cor-
relations makes it possible to utilize information obtained from different angles for
updating the vehicle position. Therefore, the estimated positions of the cars should
be more certain than using a model that neglects correlations as presented in section
4.1.

4.2.1 State Model

The state model in the previous section contains positions and angles of lines in a
global coordinate system. The state model used in this section, however, contains
perturbation vectors of different types of features: endpoints, segments and corners.
This representation by Castellanos et al. [14] is called a SPmodel and is introduced
in section 2.2.2.2.

p̂ =


d̂V
p̂F1...
p̂Fn

 (4.29)

where F1, . . . ,Fn are features such as endpoints, segments and corners. The state
covariance is

C =


ΣVV ΣVF1 . . . ΣVFn

ΣF1V ΣF1F1 . . . ΣF1Fn

... ... . . . ...
ΣFnV ΣFnF1 . . . ΣFnFn

 (4.30)

Σij = E[(pi − p̂i)(pj − p̂j)>] (4.31)

This state model is used during the implementation of the map building process
described in the following sections

4.2.2 Time Update

As mentioned in previous sections, only the vehicle position is updated during the
time update. Therefore, the time update for this representation is similar to the
process described in section 4.1.2. The vehicle position in the next time step is
estimated using the vehicle motion model, which can be seen as a relative location
vector [14]

x̂GVt+1|t = x̂GVt|t ⊕ xVtVt+1 (4.32)

where G is the global coordinate system and V is the reference frame attached to
vehicle V .
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During that process, the vehicle position in the next time step is predicted using
odometry data, and the covariance is propagated to the next state by calculating the
Jacobian of the vehicle motion model (equation (4.8)). Propagation of uncertainty
can be further read about in Appendix A.2.
When using this model, however, the covariance of the vehicle is not represented in
its location variables. Recall from section 2.2.2.2 that uncertain locations of geomet-
ric objects are represented by estimated location vectors and normally distributed
error vectors, called differential location vectors. Therefore, the vehicle position,
which is defined with its local reference frame V , in a global reference G frame is

xGV = x̂GV ⊕ dV (4.33)

The covariance is therefore the uncertainty of the differential location vector dV of
the vehicle

CV = E[(dV − d̂V )(dV − d̂V )>] (4.34)

Using this model, the covariance of dV is propagated to the next state using the
Jacobian JVt+1,Vt of the transformation xVt,Vt+1 , see Appendix A.3.3

dVt+1|t = JVt+1,VtdVt|t (4.35)

Odometry errors dVk,Vk+1 also need to be added to conclude the error vector for the
next state

dVt+1|t = JVt+1,VtdVt|t + dVt,Vt+1 (4.36)

From this its possible to form matrices for the perturbation vector of the entire state
model

pt+1 = Fpt + GdVt,Vt+1 (4.37)

where

F =
(
JVt+1,Vt O3×n
On×3 In×n

)

G =
(
I3×1
0n×1

) (4.38)

Using the matrices in (4.38) Kalman equations can be formed

p̂t+1|t = Fp̂t
Ct+1|t = FCtF + GCVt,Vt+1G

(4.39)

concluding the time update
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4.2.3 Measurement Update

The first step of the measurement update step is similar to the measurement update
prodecure explained in section 4.1.3, however it requires additional steps. After
the Kalman measurement update, correlations are reestablished using an EIF as
explained in section 2.2.4.2. The estimated positions x̂ are also centered, i.e. moved
to the mean of the perturbation vector, creating zero mean perturbations of all
features.

4.2.3.1 Measurement Integration

EKF equations and the linearized measurement equation (2.23) gives the measure-
ment update [14]

p̂t+1 = p̂t+1|t + Km(zm −Hmp̂t+1|t)
= p̂t+1|t −Kmhm

Ct+1 = (I−KmHm)Ct+1|t

(4.40)

where

Km = Ct+1|tH>mS−1
m

Sm = HmCt+1|tH>m + Rm

(4.41)

are Kalman gain and innovation covariance. Note that the innovation vm as de-
fined in equation (2.44) here equals the negative measurement equation of paired
features hm, which can be understood from studying the coefficients of the linearized
measurement equation (2.24).

4.2.3.2 Correlations Update

After each measurement integration, all other features within the same landmark
are updated to reestablish correlations. This is done using an EIF as explained in
section 2.2.4.2. Consider a state vector p̂L including the perturbation vectors of
features for a L-shaped landmark

L =
{
E1 S1 C S2 E2

}
(4.42)

Also consider that a measurement of segment S1 was integrated using the Kalman
measurement update explained in the previous section. The entire state vector is
updated to maintain correlations using equation (2.67) and (2.69)
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p̂Lt+1 = CLt+1

M∑
m=1

HmR−1
m zm

CLt+1 =
(

M∑
m=1

HmR−1
m H>m

)−1 (4.43)

where zm, m ∈ {1, ...,M} are linearized measurement equations used to relate
features as explained in section 2.2.4.2. Recall that landmark features are considered
measurements in this estimation process, hence no new observations are used.

4.2.3.3 Center Estimated Positions

Since the state vector in the SPmodel does not contain the estimated positions of
features, but rather error vectors of the estimated positions, the estimated posi-
tions need to be centered after each measurement update [14]. Centering the state
vector means transforming each estimated location vector x̂ with the mean of its
perturbation vector p̂

x̂′t+1 =
[

x̂GV ⊕ d̂V
x̂GF ⊕B>F d̂F

]
(4.44)

and propagating the uncertainty to the new reference frames

C′t+1 = QCt+1Q> (4.45)

where

Q =
(
BV J−1

2⊕{dV ,0}B>V 0
0 BFJ−1

2⊕{B>F ,pF ,0}B>F

)
(4.46)

The mean of the perturbation vectors also need to be set to zero

p̂′t+1 = 0 (4.47)

4.2.4 Adding New Features to State Model

Features that was not used as measurements are considered new features and need to
be added to the state vector. Since features are observed from the vehicles reference
frame the initial estimated position of a new feature is [14]

x̂GF = x̂GV ⊕ x̂V F (4.48)
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and the uncertainty of the feature depend on the uncertainty of the vehicle, hence
the covariance matrix is appended as

C′t+1 =

 CV CVM CVJ>FVB>F
C>VM CM CVMJ>FVB>F

BFJFVCV BFJFVCVM BFJFVCVJ>FVB>F + CF

 (4.49)

4.2.5 Data Association

Similar to section 4.1.5, new landmarks need to be associated with landmarks in
the state model to be able to perform the measurement update phase. In this
model landmarks consist of multiple feature, and therefore compatibility of all fea-
tures improves the association [14]. Compatibility of individual features is done by
the pairing process described in section 2.2.3.2. A joint compatibility check of all
features is performed by stacking coefficients, obtained from equation 2.32, of all
features within a landmark. The measurement equations at the linearization point
are therefore

hm =


h1
...

hNf

 (4.50)

where N is the number of features within the landmark. Similarly, the coefficients
for the state vector form

Hm =


HV1 HF1 . . . 0 . . . 0
... ... ... ... . . .

...
HVNf

0 . . . HFNf
. . . 0

 (4.51)

and coefficients for the measurements

Gm =


GE1 . . . 0
... . . . ...
0 . . . GENf

 (4.52)

Landmarks are considered compatible if the χ2
r,α test described in section 2.2.3.3 is

passed.
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5
Test and Verification

This chapter describes how performance of the landmark extraction and map build-
ing algorithms, introduced in chapter 3 and 4, is evaluated against lidar data. First
the test vehicle and sensor setup are described, followed by a presentation of test
scenarios. Finally the evaluation of landmark extraction and map building is ex-
plained.

5.1 Test Setup

To test the developed algorithms on real world data, a car like the one in figure 5.1 is
used. The car is equipped with one radar sensor in front and two on each side, as well
as a lidar sensor on the roof. Each radar sensor provides detections dpolar =

[
θ r

]
of

surrounding objects, where θ is angle and r range to an object in polar coordinates
from the sensor. Due to sensor characteristics a detection contains noise in both
angle and range, which is assumed to be Gaussian with covariance matrix Cpolar. To
facilitate the processing of detections they are transformed to a Cartesian coordinate
system centered in the front bumper of the car. The transformation is described in
A.4, which produces detections represented by dcart =

[
x y

]
and covariance Ccart.

Figure 5.1: An illustration of the car used to gather data and its sensor setup.
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The lidar sensor, unlike radar sensors, rotates and provides detections of the envi-
ronment in three dimensions. To make lidar data comparable to radar data from a
given time frame it needs to be filtered and transformed. First the most recent full
lidar scan is filtered by height to only contain detections from sides of cars. Then
the remaining detections are projected on the two dimensional plane. An example
of transformed detections can be seen in figure 5.2, which also demonstrates the
difference in the level of details between radar and lidar. In the figure it can also
be seen that there exist some lidar detections on the hood of cars, therefore the free
space algorithm described in algorithm 2 is necessary for lidar data.

Figure 5.2: Radar (left) and lidar (right) observations gathered during a time
interval of 250 milliseconds. The green dots indicate the vehicle trajectory.

5.2 Test Scenarios

Data for testing was gathered from three partially filled parking blocks that matched
the delimitations stated in section 1.4. All blocks had nearly flat ground, contained
only stationary cars and were free from other objects e.g. rails. The layout of the
blocks can be seen in figure 5.3, 5.4 and 5.5, where the first is larger and more sparse
than the other two. Data was gathered during one lap around each block.

Figure 5.3: Parking block at Liseberg’s parking area and its configuration of cars
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5. Test and Verification

Figure 5.4: Parking block at the office parking area and its configuration of cars

Figure 5.5: Additional parking block at the office parking area and its configuration
of cars

5.3 Landmark Extraction Evaluation

To evaluate performance of the landmark extraction algorithm, lines extracted from
radar data are compared to lines extracted from lidar data. The comparison is
made for lines extracted at each time frame in all three previously mentioned parking
blocks. The same algorithm is used to extract lidar lines, but parameters are tweaked
to increase performance.
For each time frame radar and lidar lines are associated using the method described
in 4.1.5. This produces four quantities

• NLR : the number of lidar lines that have a matching radar line
• NRL : the number of radar lines that have a matching lidar line
• NL : total number of lidar lines
• NR : total number of radar lines

which in turn are used to compute three statistical performance measures similar to
the ones used by Nguyen et al. [7] in their line extraction comparison.

True positive rate = NLR

NL

(5.1)

Precision = NRL

NR

(5.2)

False discovery rate = 1− Precision (5.3)

In addition to these measures it is also interesting to investigate how similar radar
lines are lidar lines. The following similarity measures are used
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5. Test and Verification

• Angle: angle between direction vectors of two lines
• Midpoint: orthogonal distance from the midpoint of the radar line to the lidar

line
• Overlap: portion of the radar line that overlaps the lidar line (if the radar line

is a segment of the lidar line it is 100% overlap).
• Length: difference in length

Figure 5.6 shows an example of line extraction performed using radar and lidar data.
The evaluation method associates the horizontal and vertical lines with each other.
The quantities NLR, NRL, NL and NR are increased by two, once for each line that
has a match. Furthermore, the similarity measures listed above are computed for
both pairs.

Figure 5.6: A comparison of line extraction performed using radar and lidar data
of the same car

5.4 Map Evaluation

The map building algorithms described in 4.1 and 4.2 are evaluated similarly to the
line extraction, except that only lines in the final maps are considered. First radar
and lidar maps are built using the same algorithm. They are then compared line
by line with the method described in 5.3. In addition to statistics, a picture with
maps on top of each other is provided. A picture makes it possible to observe which
lines are good, bad or missing. It is also easier to evaluate which available parking
spaces that can be detected.
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6
Results

This chapter presents results of developed algorithms using the methods described
in section 5. It is divided into landmark extraction and map results. Both sections
contain results from different variations of the algorithms to deduce how parameters
affect the result.

6.1 Landmark Extraction Accuracy

Landmark extraction using radar data is compared in each time frame against lidar
data. One time frame is shown in figure 6.1, where lines have been extracted within
the radius (red circle) of the current vehicle position (rightmost green dot). All time
frame comparisons from three test scenarios in section 5.2 are combined into a final
result presented in one table and four graphs. Results from four different variations
of the algorithm are presented.

Figure 6.1: An example of the line extraction algorithm. The left shows radar
observations gathered during a time interval of 250 milliseconds. The right shows
result of the line extraction algorithm applied on radar observations.

The first test is to compare constant against dynamic parameters for the single-
linkage clustering and line segmentation methods described in 3.1 and 3.2. The
comparison is presented in table 6.1 and figure 6.2. In the table it can be seen that
both versions extract a similar amount of lines, while the dynamic version achieves
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higher true positive rate and slightly lower precision. The figure shows that the
dynamic version produces more lines with low angular error, which is also reflected
in the table by a lower mean angular error. However, the constant version achieves
better overlap and length precision as can be seen in the figure where it has more
lines with high overlap and small length error. The midpoint precision is similar for
both versions with a small edge for the constant version.

Table 6.1: A comparison of the line extraction result with constant respectively
dynamic parameters.

Constant parameters Dynamic parameters
Nbr. radar lines 27323 27203
True positive rate (%) 54.3 57.9
Precision (%) 72.6 71.6
False discovery rate (%) 27.4 28.4
Mean angular error (deg) 11.0 10.1
Mean midpoint error (m) 0.20 0.21
Mean overlap rate (%) 78.8 73.4
Mean length error (m) 1.31 1.46
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Figure 6.2: A comparison of the line extraction result with constant respectively
dynamic parameters.

The second test is to compare the algorithm with and without the extraction of
orthogonal lines (corners) described in section 3.3. Results are shown in table 6.2
and figure 6.3. In the table it can be seen that the version with corners extracts
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fewer lines, but achieves higher true positive rate and precision. In addition it also
has a better angular precision, as can be seen in the figure where it has more lines
with angular errors below 5 degrees. However, the overlap and midpoint precision
is similar according to mean values in the table, though the figure shows that the
corner version has more lines with midpoint error below 0.1 meters. In contrast to
the angular precision the version without corners achieves better length precision,
as can clearly be observed in the figure where the blue graph is above the red for
small length errors.

Table 6.2: A comparison of line extraction results with and without the orthogonal
line (corners) assumption.

Only lines With corners
Nbr. radar lines 30390 27203
True positive rate (%) 52.8 57.9
Precision (%) 66.3 71.6
False discovery rate (%) 33.7 28.4
Mean angular error (deg) 12.0 10.1
Mean midpoint error (m) 0.22 0.21
Mean overlap rate (%) 74.0 73.4
Mean length error (m) 1.03 1.46
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Figure 6.3: A comparison of line extraction results with and without the orthogonal
line (corners) assumption.

The third test is to compare the two preprocessing methods (graph diameter and
free space filtering) described in section 3.4.1 and 3.4.2. Results are shown in table
6.3 and figure 6.4. In the table it can be seen that the diameter version extracts
almost twice as many lines, has a higher true positive rate, but worse precision. The
figure shows two similarly shaped angular precision curves, while the tables indicates
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a lower mean error for the free space version. A similar observation can be made
for overlap precision, where the graphs are similar but mean overlap rate is higher
for the free space version. The free space version also achieves better midpoint
precision. The table indicates a lower mean error and the figure shows that the two
graphs show similar trends, but the peak of the blue graph has an offset towards
smaller error. However, the diameter version has much better length precision as
indicated in the figure where the red curve is clearly above the blue curve for errors
below 0.5 meters.

Table 6.3: A comparison of line extraction result with the free space filter versus
the graph diameter as preprocessing method.

With diameter With free space
Nbr. radar lines 45641 27203
True positive rate (%) 69.5 57.9
Precision (%) 53.8 71.6
False discovery rate (%) 46.2 28.4
Mean angular error (deg) 11.0 10.1
Mean midpoint error (m) 0.25 0.21
Mean overlap rate (%) 69.2 73.4
Mean length error (m) 1.40 1.46
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Figure 6.4: A comparison of line extraction result with the free space filter versus
the graph diameter as preprocessing method.

The final landmark extraction test is to compare how different time intervals for
gathering observations affects the result. The time intervals are measured in frames,
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where one frame is approximately 50 milliseconds. Results for 6, 8 and 10 frames
are shown in table 6.4 and figure 6.5. In the table it can be seen that the number of
extracted lines and the true positive rate increases with the number of frames, while
the precision decreases. The increase and decrease seems to be larger between 6 and
8 frames compared to between 8 and 10 frames. In the figure it can be observed
that the angular precision curves are very similar with almost no deviation from
each other. Similarly the midpoint curves are almost identical, except for a higher
peak at 0.15 meters for 8 and 10 frames which gives them slightly better midpoint
precision. The overlap and length precision increases with the number of frames, as
can be seen in the graphs where data points for overlap greater than 0.8 and length
error below 0.5 are higher for more frames.

Table 6.4: A comparison of line extraction result when detections are gathered from
different number of frames.

6 frames 8 frames 10 frames
Nbr. radar lines 27203 28761 29418
True positive rate (%) 57.9 58.7 59.0
Precision (%) 71.6 70.5 70.3
False discovery rate (%) 28.4 29.5 29.7
Mean angular error (deg) 10.1 10.4 10.4
Mean midpoint error (m) 0.21 0.20 0.20
Mean overlap rate (%) 73.4 75.4 76.7
Mean length error (m) 1.46 1.39 1.36

6.2 Map Accuracy

Map accuracy is evaluated by comparing a map built from radar detections with
the same map built from lidar detections line by line. Comparisons from all three
test scenarios are combined into one table and four graphs. This section is divided
into non-correlated and correlated feature representation with map results from the
algorithm described in 4.1 and 4.2.

6.2.1 Non-correlated Feature Representation

The algorithm using a non-correlated feature representation in section 4.1 is tested
with different preprocessing methods and different time intervals for collecting ob-
servations.
Results from the comparison of preprocessing methods (section 3.4.1 graph diameter
and section 3.4.2 free space filtering) are shown in table 6.5 and figure 6.6. In the
table it can be seen that the map from the free space version contains 26 lines
more than the lidar map, while the diameter version contains 156 more. However,
the diameter version achieves better true positive rate but worse precision. The
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Figure 6.5: A comparison of line extraction result when detections are gathered
from different number of frames.

table also shows that the free space version achieves better mean values on all four
precision metrics. This agrees with the figure where it can be seen for angle error 20-
30 degrees, midpoint error 0.4-0.8 and overlap below 0.5 that there are significantly
more lines from the diameter version. Although, the free space version extracts
less lines it can be seen in the table that it has equally many high overlap and low
midpoint error lines as the diameter version.
To see how the map results differentiates from the line extraction results, a com-
parison between table 6.5 and table 6.3 can be made. Both versions has better true
positive rate in the map evaluation, while only the diameter version increases its
precision. Only the free space version increases its angular, midpoint and overlap
precision in the map evaluation, while the diameter version has similar values on
both. However, both versions has worse length precision.
Results from the comparison with different time intervals for collecting observations
are shown in table 6.6 and figure 6.7. In the table it can be observed that the 8
frame version has fewest lines and highest true positive rate, while the precision is
similar for all. It can also be seen that 8 and 10 frames achieves slightly better mean
angle. In addition the angular precision graph shows that 8 frames has most lines
with smallest error, and 6 frames has more lines between 15 and 20 degrees error.
In contrast to the angle precision the mean midpoint error is slightly better for 6
and 8 frames, while 10 frames has more lines with minimum error. In the table it
can be observed that the overlap precision seems to decrease when the number of
frames increase, and the overlap precision graph shows more lines with high overlap
for the version with 6 frames. However, the mean length error is similar for 6 and
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Table 6.5: A comparison of lines in the final maps built using the graph diameter
versus the free space filter as preprocessing method

With diameter With free space
Nbr. radar lines 350 220
Nbr. lidar lines 194 194
True positive rate (%) 86.1 78.4
Precision (%) 61.7 70.9
False discovery rate (%) 38.3 29.1
Mean angular error (deg) 11.0 9.6
Mean midpoint error (m) 0.25 0.19
Mean overlap rate (%) 68.1 79.6
Mean length error (m) 1.79 1.64

10 frames but slightly worse for 8 frames, while the length precision graph shows
similar trends for all versions.
The difference between map results and landmark extraction results can be observed
by comparing table 6.6 with table 6.4. The map results show better true positive
rate and similar precision. The mean values indicate slightly better angle for 8 and
10 frames in the map, as well as better overlap. However, the midpoint precision
was similar but the length precision was worse in the map results.

Table 6.6: A comparison of lines in the final maps built using line extraction with
different number of radar frames.

6 frames 8 frames 10 frames
Nbr. radar lines 227 220 229
Nbr. lidar lines 194 194 194
True positive rate (%) 76.3 78.4 76.3
Precision (%) 70.9 70.9 71.1
False discovery rate (%) 29.1 29.1 28.9
Mean angular error (deg) 10.4 9.6 9.6
Mean midpoint error (m) 0.19 0.19 0.20
Mean overlap rate (%) 81.3 79.6 78.0
Mean length error (m) 1.59 1.64 1.60

In addition to the statistical results previously presented, a plot of maps built of one
parking area is visualized in figure 6.8. Plots of two other parking areas are provided
in Appendix A.2 and A.3. The radar maps were built using orthogonal line fitting,
free space filtering and time intervals of 8 frames. In figure 6.8 it can be seen that
almost all radar lines were near a car and did not occlude any free space. Another
observation is that there were few radar lines in between closely parked cars, while
the lidar map often had lines there. Another difference between radar and lidar
can be seen in the right most part of figure 6.8 where there were long radar lines
over several closely parked car, while the lidar maps had one line per car front. In
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Figure 6.6: A comparison of lines in the final maps built using the graph diameter
versus the free space filter as preprocessing method

contrast to the too long lines, lines representing car sides on each side of one empty
parking space are often too short, as can be seen in the middle of figure 6.8.

6.2.2 Correlated Feature Representation

Applying the SPmodel introduced in section 2.2.2.2 make it possible to form land-
marks of multiple features such as lines, corners and endpoints. Whenever one
feature in a landmark is reobserved, all other features is updated to maintain cor-
relations. The left and right figures in 6.9 show maps built using the SPmodel with
radar and lidar sensors, respectively. The Kalman measurement update, explained
in section 4.2.3.1, is not included in this result. The measurement integration in-
stead places the estimated position between the old position and the reobservation
at every measurement update and an extra constraint is added to the data associ-
ation for angle difference. With a strict angular data association it is possible to
observe which landmarks that are observed most often since uncertain landmarks
with large angular differences does not get associated.
The radar map built from using the SPmodel can be compared to the map built from
using the standard model in section 4.1 in figure 6.10. Regarding lines as individual
landmarks makes it harder to filter out noisy lines, since the difference in number of
reobservations is smaller. Therefore, there are multiple lines representing the same
vehicle side in the map.
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Figure 6.7: A comparison of lines in the final maps built using line extraction with
different number of radar frames.
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Figure 6.8: A lidar map (blue) and a radar map (red) of the parking block at
Liseberg. The vehicle trajectory is represented by the green line.
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Figure 6.9: Maps built using the SPmodel and different sensor types; radar (left)
and lidar (right). The green lines show how the vehicle moved during map building.
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Figure 6.10: Maps visualizing the difference in result when taking correlations into
consideration (right) and not (left).
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7
Discussion

The aim of this project is to build maps of parking areas using radar sensor data and
a feature-based SLAM approach. A map is considered accurate enough if it is pos-
sible to find empty parking spaces within it. To evaluate the developed algorithms
lidar data is used as reference.
Our approach consists of a landmark extraction algorithm and two different map
building algorithms. The landmark extraction algorithm finds lines and corners
within radar data using two clustering methods together with orthogonal least square
line fitting. In addition two different preprocessings of detections using graph di-
ameter and free space filtering are proposed to extract better lines. The first map
building method treats each line individually and updates the map using a standard
EKF approach. The second approach makes use of the fact that lines of the same
car are correlated and uses more advanced landmarks.
In the following sections key results of the algorithms are presented and discussed
together with suggestions for future work.

7.1 Landmark Extraction

Using a landmark-based approach for SLAM in the parking are scenario turned out
to be a challenge when using radar data. Noisy detections made it difficult to extract
lines using classic line fitting techniques. For example, a popular technique for
detecting lines when using a lidar sensor is the Incremental Line Fitting Algorithm.
It works well with a lidar in indoor environments, where clear lines and corners of
walls are present. Cars, however, do not have clear corners since the fronts are often
round and rarely rectangular. Trying to fit lines to a point cluster forming half a
circle results in high uncertainty in line angles and lengths.
The assumption that cars are rectangular works well when viewing a car slightly
from the side. Having detections from the side and front of the car helps stabilize
the corner position, which can explain the result in table 6.2 where the corner version
performs better than the only lines version. In the parking area scenario, however,
sides of cars are mainly detectable when there are in fact available parking spaces.
Since the objective for this parking area mapping is to build a map suitable for
detecting available parking spaces, this assumption was plausible.
The issue of having multiple noisy line clusters in one dataset made it clear that
clustering techniques were necessary. Otherwise the best line fit could span across
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two cars, resulting in false landmarks. The first clustering method, a Single-linkage
clustering, is intended to cluster between cars. This works well when the distance
between cars is large, i.e. when there are available parking spaces between them.
The clustering does not work well for cars that are parked too closely to each other.
This will result in one point cluster for multiple cars. This can be an explanation
to the existence of lines with large errors in the graphs in section 6.1.
The second clustering method is necessary to fit orthogonal lines and form corners.
The idea of this algorithm is to build line clusters and start a new cluster whenever
the next point is considered to deviate from the line. Dealing with circular car fronts,
this algorithm sometimes cuts the cluster in the middle of the front, resulting in a
corner that is pointing straight ahead. In this situation the extracted lines have an
angular error of 45 degrees. These corners will not be associated to any lidar line
due to the large difference in angle, which can be a contribution to the high false
discovery rates seen in section 6.1.
To reduce landmark extraction noise, graph diameter and free space filtering were
introduced as preprocessing methods. As can be seen in table 6.3 free space filtering
mostly gives better result. A reason might be that the diameter path not always
follows the sides of a car, depending on the amount of noisy detections within the
car. However the graph diameter filtering gave better true positive rate, which
indicates that the free space filtering sometimes removes too much information.

7.2 Simultaneous Localization and Mapping

The map building process becomes difficult when landmarks have a high uncertainty.
A strict data association adds many false landmarks to the state model, which
quickly grows large. This increases the time complexity for data association, which
is quadratic in the number of landmarks. On the other hand, a generous data
association will associate good lines with bad lines, resulting in false locations for
landmarks in the map.
The idea of using the SPmodel was to maintain correlations between lines and also
more easily filter out false landmarks. By connecting lines and building large land-
marks, the number of reobservations becomes the sum of reobservations of all lines
that are included. The measurement integration during building of the maps in fig-
ure 6.9 places the estimated position between the old position and the reobservation
at every measurement update. Using this measurement integration, along with a
strict data association, shows which landmarks are seen most often. Therefore, the
result in 6.9 shows potential in using the SPmodel for mapping parking areas since it
is possible to form vehicle-shaped landmarks from landmarks extracted using both
radar and lidar data. Integrating the EKF measurement integration as suggested
in section 4.2.3.1 could produce better estimates in feature locations. Because of
the large uncertainty when using the line-based representation, presented in section
4.1, vehicle localization becomes difficult. Using other features such as corners could
however allow a better correction in vehicle position.
One drawback in using the SPmodel arises due to occlusions. Occlusions often
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arise in parking area scenarios since vehicles shadow other vehicles. Consider the
situation when a vehicle is observed, then shadowed from view by other cars, and
then observed again at later time steps. This will result in two formed landmarks for
the same vehicle, resulting in fewer reobservations per landmark. Therefore small
parts of vehicles risk being filtered away as noise if the number of reobservations are
low. One example of this is visible in figure 6.9. The back end of the middle car of
the top row has been filtered away in both maps. The back is visible through the
available parking spaces, but was not associated to the landmark representing the
front of the same vehicle. This drawback is not present when using the line-base
representation in section 4.1. This is clear when studying the maps in figure 6.10
which show the same parking area when using line-based representation and the
SPmodel. The line-based map cannot form rectangular shapes of vehicles, but all
vehicle sides are visible.
Due to the rectangular car assumption, false landmarks are reobserved as often as
true lines. Therefore, the line-based representation fails to filter out false landmarks.
The SPmodel, however, succeeds in building rectangular-shaped landmarks which
increases the number of reobservations of true landmarks. False landmarks can
therefore be filtered out. It is however a risk that it also filters out true vehicle sides
if occlusions are not handled.

7.3 Future Work

The results in chapter 6 show the potential in using a landmark-based approach to
SLAM when finding available parking spaces using radar data. There are several
possibilities to improve results by increasing stability, time efficiency and reduce
uncertainty.

7.3.1 Landmark Extraction

Landmark extraction is a fundamental part in landmark-based approaches to SLAM.
Therefore, improvements of landmark extraction algorithms have a direct affect on
map quality. Similarly, data used as input to landmark extraction is fundamental
for landmark quality, hence an important stage in the map building process is data
preprocessing to reduce noise. Two methods are introduced in this thesis: graph
diameter filtering for removing outliers, and freespace filtering for removing false
detections inside vehicles. Other methods that could be applied to reduce false
detections are to utilize the characteristics of radar sensors. For example, radar
sensors additionally return range rate of detections, making it possible to detect
and filter dynamic objects such as detections of pedestrians and moving vehicles.
The algorithms for extracting landmarks that are presented in chapter 3 could also be
improved to increase map quality. For example, the assumption that each resulting
cluster from the single-linkage clustering in section 3.1 forms parts of one vehicle is
not true when vehicles are parked too closely. This problem is visible in figure 3.1 in
the bottom-left image where two vehicles are connected and forms one cluster. This
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problem could be resolved by adding an extra clustering algorithm that utilizes the
graph diameter visualized in figure 3.3 to detect and cut at the intersection in the
MST graph. Another suggestion for improving landmark extraction is to consider
different types of landmarks than rectangles for vehicle shapes. Since it is common
with oval car fronts, a spline-based landmark model could obtain more accurate
vehicle shapes.
Improvements could also be added after landmark extraction. For example, a mea-
sure of what are good and bad lines could be beneficial for filtering bad lines, which
could increase efficiency of data association.

7.3.2 Simultaneous Localization and Mapping

Pursuing the suggestions in the previous section could increase map quality. Im-
provements could however also be added to the map building processes in chapter
4. The positions of landmarks are currently estimated based on uncertainty in sen-
sor and odometry. The estimation could also consider uncertainty due to landmark
extraction. Flaws in landmark extraction could be detected and result in a high
uncertainty for bad landmarks. Landmarks far away should also have a higher un-
certainty than landmarks close to the vehicle.
Another problem discussed in section 7.2 is the effect of occlusions when applying
the SPmodel. Taking occlusions into consideration to successfully associate vehicle
parts to form full rectangles could make the maps visualized in figure 6.9 complete.
Furthermore, the implementing the EKF measurement integration in section 4.2.3.1
would provide estimates of feature locations in the SPmodel. This would simplify
data association and allow vehicle localization based on corner extraction.

7.4 Ethical and Social Aspects

Allowing cars to park by themselves has many advantages. For example, people can
save time and energy to pursue other matters, and the size of parking areas can be
reduced to create space. However, there are ethical aspects to consider when leaping
into the idea of self-driving cars.
For example, when including robots in every day tasks it is important to reflect
on how the human factor is removed from the situation. Consider a scenario when
there is one available space in a parking area and multiple vehicles wanting to park.
One of the vehicles contains a person who needs the parking space more than the
others, for example a pregnant woman or a disabled person. Removing the human
factor from the decision would rob that person of getting the last parking space.
The choice of the robot would cause damage to a situation typically solved through
communication between drivers.
Another aspect to consider is the fact that allowing robots to perform tasks, normally
performed by humans, will result in fewer job opportunities. In some countries it
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is common to provide valet parking at hotels. Automating valet parking would
therefore reduce the number of job possibilities in those counties.
Furthermore, accidents in parking areas can occur. If there is a crash between a self-
driving car and a car operated by a human, the conflict could be hard to resolve.
Therefore there are additional juridical aspects that need to be considered.
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8
Conclusion

The objective of this master thesis was to investigate the possibility of locating
available parking spaces using radar data and a landmark-based approach to SLAM.
Because of the noisiness of radar data, the main challenge was to extract landmarks
accurate enough to build a map.
Despite high uncertainty in landmarks due to noise, the resulting maps were accu-
rate enough to detect available spaces. However, the estimated positions of parked
vehicles should not be used for precise navigation, such as parking a vehicle. Further-
more, due to noisy data there were many false landmarks in the state model. Since
the time complexity of data association is quadratic in the number of landmarks, a
landmark-based solution using radar data is unfit for real-time application.
Although, the results from applying the SPmodel showed potential in building maps
with a higher precision and less noise. Pursuing the suggestions listed in section 7.3
could result in estimations fit for navigation. It could also allow for a better vehicle
correction since the position of a corner is more deterministic than a line segment.
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A
Appendix 1

A.1 Incremental Update of Covariance, Eigenvec-
tors and Eigenvalues

The covariance, eigenvectors and eigenvalues of point clusters are computed dur-
ing line segmentation. Incrementally updating these values can reduce the time
complexity and is therefore presented in this section.

The covariance of two variablex x and y is defined as

S(n)
xy = 1

n− 1

n∑
i=1

(xi − x̄(n))(yi − ȳ(n))

= 1
n− 1

(
n∑
i=1

xiyi − ȳ(n)
n∑
i=1

xi − x̄(n)
n∑
i=1

yi + nx̄(n)ȳ(n)
)

= 1
n− 1

(
n∑
i=1

xiyi − ȳ(n)nx̄(n) − x̄(n)nȳ(n) + nx̄(n)ȳ(n)
)

= 1
n− 1

(
n∑
i=1

xiyi − nȳ(n)x̄(n)
)

(A.1)

where

x̄(n) = 1
n

n∑
i=1

xi

ȳ(n) = 1
n

n∑
i=1

yi

(A.2)

is the sample mean.

The sample mean can be updated from the sample mean for n points as

I



A. Appendix 1

x̄(n+1) = 1
n+ 1

n+1∑
i=1

xi

= 1
n+ 1(x1 + . . .+ xn+1)

= 1
n+ 1(n

n
(x1 + . . .+ xn) + xn+1)

= n

n+ 1 x̄
(n) + 1

n+ 1xn+1

(A.3)

From equations (A.1) and (A.3), the covariance when adding a point n+ 1 is calcu-
lated as

S(n+1)
xy = 1

n

(
n∑
i=1

xiyi + xn+1yn+1 − (n+ 1)ȳ(n+1)x̄(n+1)
)

(A.4)

The covariance matrix of a set of points (x, y) is

A =
[
Sxx Syx
Sxy Syy

]
(A.5)

The eigenvalues can be calculated from the covariance matrix by performing an
eigendecomposition. The vector v is an eigenvector of matrix A if it satisfies

Av = λv (A.6)

where λ are the eigenvalues. The eigenvalues are obtained by solving the equation

det(A− λI) = 0

⇔
∣∣∣∣∣Sxx − λ Syx

Sxy Syy − λ

∣∣∣∣∣ = 0

⇔ (Sxx − λ)(Syy − λ)− SyxSxy = 0

(A.7)

which has the solution

λ = 1
2

(
Sxx + Syy ±

√
(Sxx + Syy)2 − 4(SxxSxx − SxySyx)

)
(A.8)

The eigenvectors are obtained from solving equation (A.6) which can be written

[
Sxx Syx
Sxy Syy

] [
v1
v2

]
=
[
λ1
λ2

] [
v1
v2

]
⇔
[
Sxx − λ1 Syx

Sxy Syy − λ2

] [
v1
v2

]
=
[
0
0

]
(A.9)
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A.2 Propagation of Uncertainty

Propagation of uncertainty is how the uncertainties of variables propagate to func-
tion values during a mapping f(x).
When the functions f = f1, . . . , fm are linear combinations of the variables x =
x1, . . . , xn, they can be expressed in matrix form as

f = Ax (A.10)

If the covariance matrix of x is Σx, then the covariance of f is

Σf = AΣxA> (A.11)

When the functions f are non-linear combinations of the variables x the functions
must be linearized to a first order Taylor expansion

fk ≈ f 0
k +

n∑
i

∂fk
∂xi

xi (A.12)

Therefore, the mapping can be approximated to a matrix form using the Jacobian
matrix J = ∇f

f ≈ f 0 + Jx (A.13)

Since f 0 is a constant it does not contribute to the error propagation, which is
therefore

Σf = JΣxJ> (A.14)

for the non-linear case.

A.3 Transformations of Reference Frames

The transformation of a reference frame can be represented in two ways [14]: loca-
tion vectors and homogenous matrices. A location vector consist of two Cartesian
coordinates and one angle.

A.3.1 Compositions and Inversions

Two transformations, with locaton vectors x1 and x2 is called a composition and is
denoted

x3 = x1 ⊕ x2. (A.15)
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while the inverse of one transformation x1 is denoted

x(−1) = 	x1. (A.16)

A composition and inversion is visualized in figure A.1.

x1
x3

x2

x(−1)

Composition Inversion

Figure A.1: Visualization of composition and inversion of reference frame trans-
formations.

A homogenous matrix is defined as

H =
(
R p
0 1

)
=

nx ox px
ny oy py
0 0 1

 (A.17)

whereR is a rotation matrix, p is a translation vector and n, o are the columns of R.
Compositions and inversions, in equations (A.15) and (A.16), can be expressed using
Homogenous matrices. The product of two homogenous matrices is the equivalent
to a composition

H3 = H1H2 =
(
R1R2 p1 + R1p2
0 1

)
(A.18)

and the inversion of a homogenous matrix is equivalent to the inversion of a location
vector

H−1 =
(
R> −R>p
0 1

)
(A.19)
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The location vector of the transformation expressed by a homogenous matrix is
obtained through

x = Loc(H) =

xy
θ

 =

 px
py

atan2(ny, nx)

 (A.20)

and the homogenous matrix from a location vector through

H = Hom(x) =

cos θ −sin θ x
sin θ cos θ y

0 0 1

 (A.21)

A.3.2 Jacobians of Reference Frame Transformations

Jacobians of transformations are needed when propagating uncertainty between ref-
erence frames, see Appendix A.2. Therefore, Jacobians over different types of trans-
formations are listed in this section.

A.3.3 Jacobian of a Transformation

The relative location of two reference frames A and B is specified by the location
vector xAB. A differential change in location vector A, taking it to A′ , is specified
with the composition

xA′ = xA ⊕ dA. (A.22)

The differential change of A can be propagated to B according to [?]

dA = J{xAB}dB
dB = J{xBA}dA = J{xAB}−1dA

(A.23)

where

JAB = J{xAB} =

cos θ −sin θ yAB
sin θ cos θ −xAB

0 0 1



JBA = J{xBA} = J−1{xAB} =

 cos θ sin θ xAB sin θ − yAB cos θ
−sin θ cos θ xAB cos θ + yAB sin θ

0 0 1


(A.24)
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A.3.4 Jacobians of Compositions

The Jacobians of compositions and inversions, introduced in appendix A.3.1, are
provided by [14]. The Jacobian of a composition with respect to the first and
second operand, respectively, is

J1⊕{x1,x2} =

1 0 −x2sin θ1 − y2cos θ1
0 1 x2cos θ1 − y2sin θ1
0 0 1



J2⊕{x1,x2} =

cos θ1 −sin θ1 0
sin θ1 cos θ1 0

0 0 1


(A.25)

where x1 = (x1, y1, θ1) and x2 = (x2, y2, θ2). These Jacobians are simplified when
the operand, to which it is being derived, equals zero

J1⊕{0,x} =

1 0 −y
0 1 x
0 0 1



J2⊕{0,x} =

cos θ −sin θ 0
sin θ cos θ 0

0 0 1


(A.26)

A.3.5 Jacobian of Inversion

The Jacobian of an inversion is

J	{x} =

−cos θ −sin θ x sin θ − y cos θ
sin θ −cos θ x cos θ + y sin θ

0 0 1

 (A.27)

A.4 Sensor Observation Transformation

Given a detection [θ, d]> with covariance Cpolar from a sensor with mounting po-
sition xm, ym and orientation αm. The detection can be transformed to Cartesian
coordinates in a coordinate system centered in the front bumper of the car by the
following steps:

Transform to Cartesian coordinates

[
xsensor

ysensor

]
=
[
dsin(θ)
dcos(θ)

]
(A.28)
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Compute the Jacobian of the transformation and update the covariance according
to A.2

J =
[
dcos(θ), sin(θ)
−dsin(θ), cos(θ)

]
(A.29)

Ccartesian = JCpolarJ> (A.30)

Change coordinate system using the sensor mounting position.

R =
[
cos(−αm), −sin(−αm)
sin(−αm), cos(−αm)

]
(A.31)

t =
[
xm
ym

]
(A.32)

[
x
y

]
= R

[
xsensor

ysensor

]
+ t (A.33)

C = RCcartesianR> (A.34)

The transformed detection is represented by [x, y]> with covariance C.

A.5 Additional Map Results

The two additional radar, lidar overlay maps of the two office parking blocks are
presented in figure A.2 and A.3.
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Figure A.2: A lidar map (blue) and a radar map (red) of the first parking block at
the office. The vehicle trajectory is represented by the green line.
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Figure A.3: A lidar map (blue) and a radar map (red) of the second parking block
at the office. The vehicle trajectory is represented by the green line.
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