
Input Verification for
Deep Neural Networks
Detection of data unfamiliar to deep neural networks

Master’s thesis in Electrical Engineering

Mattias Landgren & Ludwig Tranheden

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:EX040

Input Verification for Deep Neural Networks

Detection of data unfamiliar to deep neural networks

MATTIAS LANDGREN & LUDWIG TRANHEDEN

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2018

Input Verification for Deep Neural Networks
Detection of data unfamiliar to deep neural networks
MATTIAS LANDGREN & LUDWIG TRANHEDEN

© MATTIAS LANDGREN & LUDWIG TRANHEDEN, 2018.

Supervisor: Roman Sokolovskii, Department of Electrical Engineering
Supervisor: Jens Henriksson, Semcon Sweden AB
Examiner: Giuseppe Durisi, Department of Electrical Engineering

Master’s Thesis 2018:EX040
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visualisation of metacognition; thinking about thinking.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Input Verification for Deep Neural Networks
Detection of data unfamiliar to deep neural networks
MATTIAS LANDGREN
LUDWIG TRANHEDEN
Department of Electrical Engineering
Chalmers University of Technology

Abstract
As deep learning systems are more frequently being applied to safety-critical do-
mains, the protection against irrelevant and malicious data is of greater significance
than ever before. By applying an algorithm, or supervisor, which removes this irrel-
evant data from the deep learning system, the credibility of the system is increased.
The purpose of this project was to find and evaluate existing algorithms, and to
develop a new method which can protect a neural network from irrelevant inputs.
The thesis is centered on a hypothesis of capturing the learned domain of a CNN
by using adversarial examples.

A thorough literature review resulted in 18 analyzed methods of which five methods
were implemented. The methods were evaluated on three scenarios: MNIST ver-
sus Omniglot; CIFAR-10 versus CIFAR-100; Retinal OCT-images with a held out
class. Results of the study point out the difficulties in using adversarial examples
to represent the infinite set of novelties. Rather than using adversarial examples to
train algorithms, only utilizing the existing training data to define what is normal
is better suited for the protection against undesired inputs.

Methods that use the final layer activations of the neural network to detect abnor-
malities achieve the best results. A new supervisor, not only using the final layer
but all layer activations to detect abnormalities, was created. The analysis found
that valuable information can be found in the earlier layers of the network and that
this information can be used for more than just novelty detection. The developed
supervisor shows performance comparable to the better supervisors in the first two
scenarios but show difficulties with the Retinal OCT scenario.

Keywords: verification, neural networks, machine learning, adversarial examples,
novelty detection.

v

Acknowledgements
Firstly, we would like to thank our supervisors Roman Sokolovski of the department
of Electrical Engineering at Chalmers and Jens Henriksson at Semcon. We also wish
to send our thanks to our examiner Giuseppe Durisi who helped guide and calm us
in the beginning of the project when the project felt overwhelming.

A big thank you is sent to Laura Masaracchia and Jens Henriksson who aided us
when our simulation laptop’s fans broke. Without the use of the stationary com-
puter we would be in deep water.

Finally, we would like to thank our friends at Chalmers who have gilded the previous
five years of late nights and early mornings, times of joy and despair.

Mattias Landgren & Ludwig Tranheden, Gothenburg, June 2018

vii

Contents

List of Figures xiii

List of Tables xix

List of Abbreviations xix

1 Introduction 1
1.1 Background . 1

1.1.1 Primer on Machine Learning 2
1.1.2 SMILE II-Project . 4

1.2 Objective . 4
1.3 Aim . 5
1.4 Delimitations . 5
1.5 Specification of Issue Under Investigation 5
1.6 Some Clarifications . 5
1.7 Thesis Outline . 5

2 Theory 7
2.1 Deep Neural Networks . 7

2.1.1 The Optimization Problem . 8
2.1.2 Fully Connected Neural Networks 8
2.1.3 The Backpropagation Algorithm 10
2.1.4 Convolutional Neural Networks 11
2.1.5 Generative Adversarial Networks 12
2.1.6 Cross-Entropy Loss . 14
2.1.7 Dropout . 14
2.1.8 Batch Normalization . 14

2.2 Principal Component Analysis . 14
2.3 Logistic Regression . 15
2.4 Support Vector Machine/Classifier 15
2.5 Adversarial Examples . 15

3 Literature Review 17
3.1 Anomaly and Novelty Detection . 17

3.1.1 Reconstruction-Based Detection 17
3.1.2 Domain-Based Detection . 19
3.1.3 Probabilistic-based Detection 20

ix

Contents

3.2 Adversarial Example Detection . 20
3.2.1 Insights . 21
3.2.2 Binary Adversarial Classifiers 21
3.2.3 Layer Activation Statistics . 22
3.2.4 Confidence Estimation . 23

3.3 Datasets . 24
3.3.1 MNIST . 24
3.3.2 Omniglot . 25
3.3.3 CIFAR-10 & CIFAR-100 . 25
3.3.4 Retinal Optical Coherence Tomography 26

4 Methods 27
4.1 Literature Review . 27

4.1.1 Finding Papers . 27
4.2 Criteria for Methods to Implement 27
4.3 Motivation for Scenarios to Evaluate Upon 28
4.4 Experimental Setup . 28

4.4.1 Performance Metrics . 29
4.5 Neural Network Architectures . 31

4.5.1 MNIST Neural Network Architecture 31
4.5.2 CIFAR-10 Neural Network Architecture 31
4.5.3 Retinal OCT Neural Network Architecture 32

4.6 Creating a New Supervisor . 32

5 Results 33
5.1 Selecting Existing Supervisors . 33

5.1.1 Motivation of Selected Supervisors 33
5.1.2 Dismissed Approaches . 34

5.2 Implementation of Selected Supervisors 34
5.2.1 Baseline . 34
5.2.2 NoveltyGAN . 35
5.2.3 Cascade . 36
5.2.4 OpenMax . 37
5.2.5 Artifacts . 38
5.2.6 BinaryNet . 39

5.3 Experiments on MNIST vs Omniglot 39
5.3.1 MNIST Neural Network . 40
5.3.2 Baseline . 41
5.3.3 NoveltyGAN . 42
5.3.4 Cascade . 44
5.3.5 OpenMax . 46
5.3.6 Artifacts . 47
5.3.7 BinaryNet . 48
5.3.8 Comparison of Metrics . 50

5.4 Experiments on CIFAR . 51
5.4.1 CIFAR-10 Neural Network . 51
5.4.2 Baseline . 52

x

Contents

5.4.3 NoveltyGAN . 53
5.4.4 Cascade . 55
5.4.5 OpenMax . 56
5.4.6 Artifacts . 57
5.4.7 BinaryNet . 58
5.4.8 Comparison of Metrics . 60

5.5 Experiments on Retinal OCT . 61
5.5.1 Retinal OCT Neural Network 61
5.5.2 Baseline . 62
5.5.3 NoveltyGAN . 63
5.5.4 Cascade . 66
5.5.5 OpenMax . 67
5.5.6 Artifacts . 68
5.5.7 BinaryNet . 70
5.5.8 Comparison of Metrics . 71

5.6 Characteristics . 72
5.6.1 Baseline . 72
5.6.2 NoveltyGAN . 72
5.6.3 Cascade . 73
5.6.4 OpenMax . 73
5.6.5 Artifacts . 73
5.6.6 BinaryNet . 73

5.7 Thesis Supervisor . 74
5.7.1 Analysis of Neural Network Layers 74
5.7.2 Implementation . 78
5.7.3 Results for MNIST vs Omniglot 79
5.7.4 Results for CIFAR . 80
5.7.5 Results for Retinal OCT . 82
5.7.6 Characteristics . 83

6 Discussion 85
6.1 Background and Purpose . 85
6.2 Literature Review . 85
6.3 Experiments . 86
6.4 Development of A New Supervisor . 87

7 Conclusion 89

xi

Contents

xii

List of Figures

1.1 Illustration of a two-dimensional classification problem with two classes. 3
1.2 Illustration of the separation between the two classes in the two-

dimensional classification problem. 3
1.3 A schematic of the input verification process using a supervisor. . . . 4

2.1 A mathematical model of a neuron. 7
2.2 A fully connected neural network with one hidden layer. 9
2.3 The computation of one value in the feature map produced by a filter

through dot product. 12
2.4 An example of a CNN used for classification with three convolutional

layers and three fully connected layers. 12
2.5 Illustration of an generative adversarial network architecture. 13
2.6 Normal image and corresponding adversarial example. 16

3.1 Sample images from the MNIST dataset. 25
3.2 Sample images from the Omniglot dataset. 25
3.3 Sample images from the CIFAR-10 dataset. 26
3.4 Sample images from the Retinal OCT dataset. 26

4.1 Process model for evaluation of supervisors. 29
4.2 The ROC baseline representing using a random classifier. 30
4.3 CNN architecture for MNIST classification. 31
4.4 CNN architecture for CIFAR classification. 31
4.5 CNN architecture for Retinal OCT classification. 32

5.1 The GAN generator network architecture. 35
5.2 The GAN discriminator network architecture. 35
5.3 Illustration of the Cascade supervisor. 37
5.4 BinaryNet branch visualization. 39
5.5 Loss and accuracy during training for the MNIST neural network. . . 40
5.6 Histogram of scores assigned to MNIST and Omniglot and the ROC

curve for the Baseline supervisor on the test set in the MNIST vs
Omniglot experiments. 41

5.7 The false positives distributed over the 10 different classes relative
to the class counts for the Baseline supervisor on the test set in the
MNIST vs Omniglot experiments. 42

xiii

List of Figures

5.8 NoveltyGAN Discriminator and Generator loss during training in the
MNIST vs Omniglot experiments. 42

5.9 Reconstructed images during the testing of the NoveltyGAN super-
visor in the MNIST vs Omniglot experiment. 43

5.10 Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the NoveltyGAN supervisor on the test set in the MNIST
vs Omniglot experiments. 44

5.11 The false positives distributed over the 10 different classes relative to
the class counts for the NoveltyGAN supervisor on the test set in the
MNIST vs Omniglot experiments. 44

5.12 Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the Cascade supervisor on the test set in the MNIST vs
Omniglot experiments. 45

5.13 The false positives distributed over the 10 different classes relative
to the class counts for the Cascade supervisor on the test set in the
MNIST vs Omniglot experiments. 45

5.14 Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the OpenMax supervisor on the test set in the MNIST vs
Omniglot experiments. 46

5.15 The false positives distributed over the 10 different classes relative to
the class counts for the OpenMax supervisor on the test set in the
MNIST vs Omniglot experiments. 47

5.16 Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the Artifacts supervisor on the test set in the MNIST vs
Omniglot experiments. 48

5.17 The false positives distributed over the 10 different classes relative
to the class counts for the Artifacts supervisor on the test set in the
MNIST vs Omniglot experiments. 48

5.18 Accuracy and loss during training of the BinaryNet supervisor in the
MNIST vs Omniglot experiments. 49

5.19 Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the BinaryNet supervisor on the test set in the MNIST vs
Omniglot experiments. 49

5.20 The false positives distributed over the 10 different classes relative to
the class counts for the BinaryNet supervisor on the test set in the
MNIST vs Omniglot experiments. 50

5.21 Loss and accuracy during training for the CIFAR neural network. . . 51
5.22 Histogram of scores and the ROC curve for the Baseline supervisor

on the test set in the CIFAR experiments. 52
5.23 The false positives distributed over the 10 different classes relative

to the class counts for the Baseline supervisor on the test set in the
CIFAR experiments. 53

5.24 NoveltyGAN Discriminator and Generator loss during training in the
CIFAR experiments. 53

5.25 Reconstructed images during the testing of the NoveltyGAN super-
visor in the CIFAR experiment. 54

xiv

List of Figures

5.26 Histogram of scores and the ROC curve for the NoveltyGAN super-
visor on the test set in the CIFAR experiments. 54

5.27 The false positives distributed over the 10 different classes relative to
the class counts for the NoveltyGAN supervisor on the test set in the
CIFAR experiments. 55

5.28 Histogram of scores and the ROC curve for the Cascade supervisor
on the test set in the CIFAR experiments. 56

5.29 The false positives distributed over the 10 different classes relative
to the class counts for the Cascade supervisor on the test set in the
CIFAR experiments. 56

5.30 Histogram of scores and the ROC curve for the OpenMax supervisor
on the test set in the CIFAR experiments. 57

5.31 The false positives distributed over the 10 different classes relative to
the class counts for the OpenMax supervisor on the test set in the
CIFAR experiments. 57

5.32 Histogram of probabilities and the ROC curve for the Artifacts su-
pervisor on the test set in the CIFAR experiments. 58

5.33 The false positives distributed over the 10 different classes relative
to the class counts for the Artifacts supervisor on the test set in the
CIFAR experiments. 58

5.34 Accuracy and loss during training of the BinaryNet supervisor in the
CIFAR experiments. 59

5.35 Histogram of scores and the ROC curve for the BinaryNet supervisor
on the test set in the CIFAR experiments. 59

5.36 The false positives distributed over the 10 different classes relative to
the class counts for the BinaryNet supervisor on the test set in the
CIFAR experiments. 60

5.37 Loss and accuracy during training for the Retinal OCT neural neural
network. 62

5.38 Histogram of probabilities assigned to the known classes and Drusen
and the ROC curve for the Baseline supervisor on the test set in the
Retinal OCT experiments. 63

5.39 The false positives distributed over the 3 different classes relative to
the class counts for the Baseline supervisor on the test set in the
Retinal OCT experiments. 63

5.40 Discriminator and Generator loss during training in the Retinal OCT
experiments. 64

5.41 Reconstructed images during the testing of the NoveltyGAN super-
visor in the Retinal OCT experiments. 64

5.42 Histogram of scores assigned to known classes and Drusen and the
ROC curve for the NoveltyGAN supervisor on the test set in the
Retinal OCT experiments. 65

5.43 The false positives distributed over the 3 different classes relative to
the class counts for the NoveltyGAN supervisor on the test set in the
Retinal OCT experiments. 65

xv

List of Figures

5.44 Histogram of scores assigned to known classes and Drusen and the
ROC curve for the Cascade supervisor on the test set in the Retinal
OCT experiments. 66

5.45 The false positives distributed over the 3 different classes relative to
the class counts for the Cascade supervisor on the test set in the
Retinal OCT experiments. 67

5.46 Histogram of scores assigned to known classes and Drusen and the
ROC curve for the OpenMax supervisor on the test set in the Retinal
OCT experiments. 68

5.47 The false positives distributed over the 3 different classes relative to
the class counts for the OpenMax supervisor on the test set in the
Retinal OCT experiments. 68

5.48 Histogram of scores assigned to known classes and Drusen and the
ROC curve for the Artifacts supervisor on the test set in the Retinal
OCT experiments. 69

5.49 The false positives distributed over the 3 different classes relative to
the class counts for the Artifacts supervisor on the test set in the
Retinal OCT experiments. 69

5.50 Accuracy and loss during training of the BinaryNet supervisor in the
Retinal OCT experiments. 70

5.51 Histogram of scores assigned to known classes and Drusen and the
ROC curve for the BinaryNet supervisor on the test set in the Retinal
OCT experiments. 70

5.52 The false positives distributed over the 3 different classes relative to
the class counts for the BinaryNet supervisor on the test set in the
Retinal OCT experiments. 71

5.53 Histogram of scores assigned to correctly and incorrectly classified
MNIST examples in the training set for the Thesis supervisor. 76

5.54 Histogram of scores assigned to correctly and incorrectly classified
CIFAR examples in the training set for the Thesis supervisor. 77

5.55 Histogram of scores assigned to correctly and incorrectly classified
Retinal OCT examples in the training set for the Thesis supervisor. . 78

5.56 Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the Thesis supervisor on the test set in the MNIST vs Om-
niglot experiments. 79

5.57 The false positives distributed over the 10 different classes relative
to the class counts for the Thesis supervisor on the test set in the
MNIST vs Omniglot experiments. 80

5.58 Histogram of scores and the ROC curve for the Thesis supervisor on
the test set in the CIFAR experiments. 81

5.59 The false positives distributed over the 10 different classes relative
to the class counts for the Thesis supervisor on the test set in the
CIFAR experiments. 81

5.60 Histogram of scores assigned to known classes and Drusen and the
ROC curve for the Thesis supervisor on the test set in the Retinal
OCT experiments. 82

xvi

List of Figures

5.61 The false positives distributed over the 3 different classes relative to
the class counts for the Thesis supervisor on the test set in the Retinal
OCT experiments. 82

xvii

List of Figures

xviii

List of Tables

5.1 F1-score, Precision, Recall and Support (number of samples of class
in test set) on the MNIST part of the test set for the network used
in the MNIST vs Omniglot experiments. 41

5.2 Performance metrics for the six supervisors on the test set in the
MNIST vs Omniglot experiments. 50

5.3 F1-score, Precision, Recall and Support (number of samples of class
in test set) on the CIFAR-10 part of the test set for the network used
in the CIFAR experiments. 52

5.4 Performance metrics for the six supervisors on the test set in the
CIFAR experiments. 61

5.5 F1 score, Precision, Recall and Support (number of samples of class
in test set) on the known classes in the test set for the network used
in the Retinal OCT experiments. 62

5.6 Performance metrics for the six supervisors on the test set in the
Retinal OCT experiments. 72

5.7 Performance metrics for the Thesis supervisor on the test set in the
MNIST vs Omniglot experiments. 80

5.8 Performance metrics for the Thesis supervisor on the test set in the
CIFAR experiments. 81

5.9 Performance metrics for the Thesis supervisors on the test set in the
Retinal OCT experiments. 83

xix

List of Tables

xx

List of Abbreviations

AE Autoencoder.
AUC Area Under Curve.

CDF Cumulative Distribution Function.
CIFAR Canadian Institute For Advanced Research.
CNN Convolutional Neural Network.
CNV Choroidal Neovascularization.

DBF Deep Belief Network.
DCGAN Deep Convolutional Generative Adversarial Network.
DME Diabetic Macular Edema.
DNN Deep Neural Network.

EA Evolutionary Algorithm.

GAN Generative Adversarial Network.

IFCS Intelligent Flight Control System.
ILSVRC ImageNet Large Scale Visual Recognition Competition.

L-BFGS Limited-Memory Broyden–Fletcher–Goldfarb–Shanno.

ML Machine Learning.

NIST National Institute of Standards and Technology.
NN Neural Network.

OCT Optical Coherence Tomography.

PCA Principal Component Analysis.

RBF-SVM Radial Basis Function-Support Vector Machine.
ROC Receiver Operating Characteristics.

SMT Satisfiability Modulo Theory.
SVC Support Vector Classifiers.
SVDD Support Vector Data Description.
SVHN Street View House Number.
SVM Support Vector Machine.

VAE Variational Autoencoder.
VGG Visual Geometry Group.

xxi

List of Abbreviations

xxii

1
Introduction

1.1 Background

Deep Learning systems are increasingly being deployed in a large variety of safety-
critical domains such as Autonomous Driving (Bojarski et al. 2016) and Medical
Diagnosis (Ting et al. 2017). The systems cannot by themselves detect new data
and would infer it based on what they are trained on. An algorithm able to detect
irrelevant input data or data out of the ordinary, will enable autonomous systems to
prevent accidents, malware or other critical events from happening (Xu et al. 2017).
The system would be able to alert its driver, user, operator or take other fail-safe
actions when critical events occur. These events could consist of novelties, which
differs from the relevant data. Scheirer et al. (2013) argues that while it is possible
to train networks with an ”other” class, the number of unknown objects in this class
is infinite. It is therefore better to achieve a good representation of the finite learned
space rather than the infinite unknown.

Two fields where the importance of an input-verified inference system is critical are
autonomous driving and medicine. In both cases it is very important that systems
intended for a specific input domain are not given inputs outside this domain. The
result could be high-confident replies on questions the system knows nothing about.
An example is a Machine Learning (ML) classifier trained to identify diseases in
the skin being fed an image of an unseen skin disease. The new disease does not
belong to the trained domain of the classifier and the classifier might infer with
high confidence that no diseases are present in the image. The ambition is that a
novelty detection algorithm might recognize the novel input (of the new disease) as
something unseen and can alert an operating dermatologist for inspection.

Several advances towards the detection of novelties as well as the detection of adver-
sarial examples have been made, see the literature review in Chapter 3. Meanwhile,
work is done towards verifying the performance of neural networks and assuring that
the outputs from the networks can be trusted (Huang et al. 2016). If the advances
in these fields were combined, networks could be more trustworthy by removing ir-
relevant inputs from the equation.

Even when neural networks achieve impressive performances, they can be vulnerable
to small variations and rare corner cases (Amodei et al. 2016). Changing one pixel
or applying transformations which does not change the input image in a drastic way

1

1. Introduction

could make the system react in an unpredictable way which could lead to hazardous
and even fatal mistakes. Examples of these perturbations are fog, rain drops or snow
on the vehicle cameras. An example of a fatal event is when a Tesla autonomous car
was involved in a fatal crash since the system did not detect a white truck against
a cloudy bright sky (Boudette & Vlasic 2017).

This thesis focuses on utilizing methods found in the fields of anomaly detection and
the defense against adversarial examples to enable rejection of data not belonging
to the training data distribution of the neural network. To train an algorithm to
reject novel inputs would require training data from the infinite set of all possible
inputs, which is impossible. A relatively new approach towards the defense against
adversarial examples is the use of adversarial examples created from the existing
training data distribution to find the model’s decision boundaries (Feinman et al.
2017). The ambition is to use these decision boundaries to reject novelties.

Existing algorithms are re-implemented and evaluated on three scenarios: MNIST
vs Omniglot; CIFAR-10 vs CIFAR-100; Retinal OCT-images. The key contributions
of this study are

• a literature review of 20 articles containing insights and methods useful for
input verification,

• a thorough analysis of six methods using different approaches that can be used
for input verification,

• a new algorithm for the detection of novel inputs built upon the combination
of insights from, and characteristics in, evaluated algorithms.

1.1.1 Primer on Machine Learning

ML can be divided into three different areas: supervised, unsupervised and semi-
supervised. This thesis will only focus on supervised ML used in classification tasks.
Supervised ML can be formulated as follows. Given n inputs x1, ..., xn and n corre-
sponding labels/classes y1, ..., yn, the objective is to find a function f̂ that approxi-
mates the target function f(xi) = yi for i = 1, ..., n. A simple classification example
with two-dimensional inputs and two classes, x and o, is illustrated in Figure 1.1.

2

1. Introduction

Figure 1.1: Illustration of a two-dimensional classification problem with two
classes.

By defining the labels as being equal to 1 if the input belongs to the o class and
0 if the input belongs to the x class, the problem can be formulated as finding an
approximation, f̂ , to the target function f . The target function is characterized by

f(x) =

1 if x ∈ Class o,
0 if x ∈ Class x.

(1.1)

For the f̂ function to be formulated, the data points in Figure 1.1 need to be
separated. Usually, a ML algorithm would be used to find that separation, but
in this simple example the classes are visually separable by a line. The line with
equation w1α + w2β − b = 0 is illustrated in Figure 1.2.

Figure 1.2: Illustration of the separation between the two classes in the two-
dimensional classification problem.

Now the function, f̂ , can be formulated in terms of a score and a threshold. The
score is some number, optimally, being different for different classes. In this case the
score will be a measure of the likelihood that an input belongs to the class o. The
threshold is a number that decides the classification by comparing it to the previously
mentioned score. In this simple problem the score for an input x = (x1, x2)T will be

3

1. Introduction

w1x1 + w2x2 and the threshold b. The f̂ function is described below in Equation
1.2 .

f̂(x) =

1 if w1x1 + w2x2 ≥ b,

0 if w1x1 + w2x2 < b.
(1.2)

In this simple problem in two dimensions it was possible to simply draw a line
separating the two classes, but usually the dimension of the data is much higher.
For example, in a 128× 128× 3 image the number of input features is 49152. It is
no longer feasible to visually determine a line separating two classes in a space of
that dimension. Some other way is needed to mathematically formulate the score,
threshold and hence the classification. This is where ML takes over. A ML algorithm
is self-adjusting its parameters to minimize a loss function using the existing data.
In the example above it would translate to a loss function, for example assigning +1
for classifying an input to the wrong class and -1 for a correct classification. The
parameters to be adjusted would be w1, w2 and b. A very powerful and expressive ML
algorithm is deep learning. The algorithm consists of several layers with sometimes
millions of parameters being optimized and learned to perform impressive tasks with
high-dimensional data.

1.1.2 SMILE II-Project

Semcon is currently part of a project called SMILE II, which seeks to verify that
incoming data is representative within the training data. The model should only
act on data that is part of the same distribution as the data used during training.
A method that indicates whether an output is unreliable, given the input and Deep
Neural Network (DNN), will henceforth be referred to as a supervisor or supervising
method. A schematic over the input verification process, including the supervisor,
is shown in Figure 1.3.

Figure 1.3: A schematic of the input verification process using a supervisor.

1.2 Objective

The objective of the thesis is to analyze related work and create a summary of the
current state of development. Using the analysis, a new method for input verification
is proposed.

4

1. Introduction

1.3 Aim
The aim of the thesis is to create a method of supervising inputs to DNNs. This
supervisor should, given an input, be able to verify that it belongs to the training
data distribution of the DNN or reject it.

1.4 Delimitations
Since the SMILE II project mainly focuses on self-driving cars and their abilities to
analyze their surroundings, the project will limit itself to only focus on DNNs solving
classification tasks. The thesis will not focus on the development of well-performing
neural networks. The project limits itself to use the programming language Python.

1.5 Specification of Issue Under Investigation
To achieve the goals of this thesis project, certain problems need to be solved:

• Compile a summary of existing possible supervising methods
i What possible methods of verifying and detect novelties for DNNs exist
today?

ii What are their characteristics?
• Evaluate supervisors on a variety of datasets

i Which types of datasets are suitable and commonly used?
ii Which insights may input verification of such datasets provide?

• Develop a new supervising method
i What characteristics can be extracted from the tested supervisors?
ii How can a DNN’s behavior to novelties be understood?
iii How will the new method be implemented?

1.6 Some Clarifications
Anomalies go under several names e.g. outliers, discordant observations, exceptions,
aberrations, surprises, contaminants and could be compared to novelty detection
(Chandola et al. 2009). As anomaly detection is used to detect data that might
cohere to the normal data domain but do not lie in the regions of normal data,
novelty detection is used to detect previously unseen data. However, because the
algorithms used in novelty- and anomaly detection are often similar (Pimentel et al.
2014) in the subject of this thesis, the differences are small enough to be dismissed
and the terms will be used interchangeably.

1.7 Thesis Outline
In the second chapter, the theory of the thesis is presented. The chapter consists
of descriptions of necessary preliminaries for understanding the report. Following

5

1. Introduction

is the literature review chapter, shortly summarizing relevant papers. In chapter
four, the thesis method including the comparisons of existing algorithms for novelty
detection, evaluation of characteristics and the experimental setups are described.
The fifth chapter presents the results of the selection process, experimental process
and the creation of a new supervisor. The last chapters will present discussions
about the work and future work along with the conclusion of the thesis.

6

2
Theory

In this chapter, theory necessary to follow the thesis is presented. The theory
presented here will later be used in the implementations of supervisors.

2.1 Deep Neural Networks

Consider the task of learning how to map inputs xk ∈ Rn, k = 1, ..., N to predeter-
mined outputs yk ∈ Rm, k = 1, ...N . That is, to find a function f : Rn → Rm such
that f(xk) = yk, ∀k for every example. DNNs attempts to represent this mapping
by propagating the inputs through multiple layers of linear transformations and non-
linear activation functions. The many parameters (weights w and biases b) of the
network are optimized based on some error metric and optimization algorithm. A
well-used metaphor for the method is presented in Figure 2.1. It shows a simplified
image of a neuron with the cell body acting as a neuron in deep neural networks
and the dendrites and axons represents the connections between the neurons. In this
section two general types of deep neural networks are presented as well as certain
architectures of relevance.

Figure 2.1: A mathematical model of a neuron.

Softmax

The last layer of many classifying neural networks is generally the Softmax layer.
The Softmax output can be interpreted as a normalized probability, P , given by the

7

2. Theory

neural network that a certain input, x, belongs to a class, i. The probabilities are
calculated in

P (ŷ = i|x,W) = exTWi∑
j e

xTWj
(2.1)

where ŷ = i is the network prediction that input x belongs to class i. The operation
xTWi is the inner product of the network leading to the output node i. The equation
results in probabilities which sums to one.

2.1.1 The Optimization Problem
Training a DNN corresponds to solving an unconstrained optimization problem. A
loss is defined, which corresponds to the objective, and the problem is to minimize
it. Consider the general case:

• there exists n inputs of dimension m: xi ∈ Rm, i = 1, 2...n,
• there exists n labels of dimension k: yi ∈ Rk, i = 1, 2...n,
• the network contains a set of parameters W of some dimension defining its

function f(x|W): Rm → Rk,
• the loss function is denoted by L(ŷ) := E(ŷ, y): Rk → R where yj is one of

the labels and ŷj is a prediction of xj.
The optimization problem can then be formalized as

min
W

n∑
i=1

L
(
f(xi|W)

)
. (2.2)

The optimization schemes used in neural networks are almost exclusively gradient-
based and uses backpropagation. Usually the optimization is carried out over
batches, which consists of a sample from the n inputs and labels. One epoch corre-
sponds to have optimized the parameters over enough batches such that all of the
n inputs have been included.

2.1.2 Fully Connected Neural Networks
Consider the following scenario:

• inputs xk ∈ Rn, k = 1, ..., N
• labels yk ∈ Rm, k = 1, ..., N
• the objective is to find a function f : Rn → Rm such that f(xk) = yk, k =

1, ..., N .
The approximation of the function f will in this context be a fully connected network
consisting of an input layer, an output layer and in between, one or more hidden
layers. A fully connected network with one hidden layer is illustrated in Figure
2.2. The biases are omitted from this explanation for convenience and because they
can be handled in the same way as the weights. By simply padding every layer
(excluding the output layer) with a 1, the weight assigned to this node will be the
bias. Note that the superscripts are not used in the figure, nor will be used for the
remainder of the explanation for readability.

8

2. Theory

Figure 2.2: A fully connected neural network with one hidden layer.

To further define the mathematical context and explain the notation in Figure 2.2,
the following notation is used (note that the index of vectors and matrices is denoted
by subscript):

• the inputs xi ∈ R i = 1, ..., n,
• the hidden layer activation zj ∈ R j = 1, ..., q,
• the network output ŷl ∈ R l = 1, ...,m,
• the weight connecting xi and zj wij ∈ R i = 1, ..., n, j = 1, ..., q,
• the weight connecting zj and ŷk vjk ∈ R j = 1, ..., q, k = 1, ...,m.

The forward propagation from input to hidden layer can then be described by

zj = g

(
n∑
i=1

wijxi

)
, j = 1, ..., q (2.3)

where g is an activation function. Most commonly used in this thesis are the ReLU
activation function defined as g(α) = max(0, α) and the leaky ReLU defined with a
parameter β as g(α) = max(βα, α). The propagation from the hidden layer to the
output layer can be described by

ŷl = f

(q∑
i=1

vilzi

)
, l = 1, ...,m (2.4)

where f is an activation function. Since the problems presented in the thesis are
predominantly classification problems, the Softmax activation function in (2.1) is
most commonly used. It is however defined as taking the entire vector as input. In
(2.4) this would mean that f is removed and then applied to the entire vector ŷ to
get the network output. How to compute the gradients for the example with one
hidden layer is described below.

Gradients

With the labels defined as yi for i = 1, ...,m (without superscript). A loss function
comparing the output of the network and the label is denoted by

L(ŷ), L : Rm → R. (2.5)

9

2. Theory

The network learns how to approximate the target function f by minimizing the
predefined loss function with respect to the weights. The optimization methods most
commonly use the gradients. The gradients can in turn be effectively computed by
the backpropagation algorithm. First, consider the output weights vij. Through the
chain rule the gradients can be calculated as

∂L

∂vjk
= ∂L

∂ŷk

∂ŷk
∂vjk

j = 1, ..., q, k = 1, ...,m (2.6)

In the same way the gradient for input weights wij can be calculated as

∂L

∂wij
=

m∑
l=1

∂L

∂ŷl

∂ŷl
∂wij

i = 1, ..., I, j = 1, ..., J where (2.7)

∂ŷl
∂wij

= ∂ŷl
∂zj

∂zj
∂wij

. (2.8)

The calculation of gradients and optimization of a fully connected network with
arbitrary number of hidden layers is described below.

2.1.3 The Backpropagation Algorithm
Consider a fully connected network and the notation used above. The fully con-
nected network has arbitrary number of hidden layers (of arbitrary dimensions)
denoted by l = 1, .., L − 1, where l = 0 is the input layer and l = L is the output
layer. The weighted input of node j in layer l is denoted by αlj and is defined by

αlj =
∑
i

wlijz
l−1
i (2.9)

where zl−1
i = g(αl−1

i) is the activation of node i in layer l − 1 and wij the weight
connecting them. Now the error for neuron j in layer l (the affect the neuron has
on the loss function in (2.7)) can be defined as

δlj := ∂L

∂αlj
. (2.10)

Using the error notation, the output layer error can be expressed as

δLj = ∂L

∂αLj
= ∂L

∂zLj

∂zLj
∂αLj

= ∂L

∂ŷj
g′(αLj). (2.11)

For an arbitrary hidden layer, l, the error can be expressed as

δlj = ∂L

∂αlj
=
∑
i

∂L

∂αl+1
i

∂αl+1
i

∂αlj
=
∑
i

∂αl+1
i

∂αlj
δl+1
j . (2.12)

The second to last term on the right of (2.12) (without differentiation) can be
expanded as

αl+1
i =

∑
j

wl+1
ji z

l
j =

∑
j

wl+1
ji g(αlj). (2.13)

10

2. Theory

Differentiation yields
∂αl+1

i

∂αlj
= wl+1

ji g(αlj). (2.14)

Now, substituting (2.14) into the expression for the layer error in (2.12) the error
can be expressed as

δlj =
∑
i

wl+1
ji g(αlj)δl+1

j . (2.15)

Note that a recursive expression appears; the layer error for earlier layers can be
computed by using the error for later layers. The gradient for an arbitrary weight
in an arbitrary layer can be computed as

∂L

∂wlij
= ∂L

∂αlj

∂αlj
∂wlij

= δljz
l−1
i . (2.16)

Now the backpropagation algorithm can be formulated as:
1. Propagate the input forward through the network and compute and store the
zlj

2. Compute and store output layer errors δLj .
3. Backpropagate the output layer errors to compute the errors for all layers (δlj)

using (2.15).
4. Update the weights using the chosen optimization method, for example by

gradient descent: wlij ← wlij − ηδljzl−1
i

5. Go to 1 and use the next input.
For more details about fully connected networks and backpropagation see Goodfel-
low et al. (2016, pp.164-223).

2.1.4 Convolutional Neural Networks

Opposed to fully connected neural networks using matrix multiplications between
layers, Convolutional Neural Networks (CNN) consist of filters with height and
width. One filter can be seen as a small fully connected layer where the weights
being optimized are the filter values, see the red box in Figure 2.3 for a filter exam-
ple. The filters are convoluted over the input pixels and the dot product between
the filter values and the pixels is calculated as in Figure 2.3. The input map can
be seen as an image with the entries representing pixel values. The outputs create
an activation map, usually called feature map, that gives larger outputs on inputs
resembling the filter feature as in Figure 2.3. That means a filter trained to find
corners will return higher activations when fed an image patch containing a corner.
In deep learning, several filters are used on the same input map and each produce an
individual feature map. That way different filters learn to produce different features
from the same input. CNNs are like fully connected networks optimized using the
backpropagation algorithm (though not identical to the one used for fully connected
networks).

11

2. Theory

Figure 2.3: The computation of one value in the feature map produced by a filter
through dot product.

In Figure 2.4 an example of a CNN is shown. The first three layers of the network
are convolutional layers that each produce a number of feature maps. The number
of feature maps produced by each filter is reflected in the blocks (feature maps)
thicknesses. The final three layers are fully connected layers with the final one
consisting of as many nodes as there are possible classes. The final layer outputs
are called logits, and consist of values later received by the Softmax function.

Figure 2.4: An example of a CNN used for classification with three convolutional
layers and three fully connected layers.

For more details about CNNs see Goodfellow et al. (2016, pp. 326-366).

2.1.5 Generative Adversarial Networks
A Generative Adversarial Network (GAN) consists of two components, one discrim-
inator and one generator, both being neural networks. The discriminator functions
as a discriminative algorithm; given an input it classifies it. The generator functions
as a generative algorithm. It does the opposite to a discriminative algorithm; given

12

2. Theory

a label/class it generates the input.

Assume there exists a training data distribution. In a GAN, the generator’s task is
to generate new instances belonging to the data distribution from a random vector
sampled from a latent space (some predefined space). At the same time, the discrim-
inator’s task is to separate instances belonging to the data distribution (real) from
the artificially generated ones from the generator (fake). The GAN can be thought
of as of the combination of a counterfeiter (generator) and a cop (discriminator)
where the counterfeiter tries to create items that fools the cop, and the cop tries not
to be fooled by the items. The concept can be visualized as in Figure 2.5 with the
notation listed below.

• pdata - the data distribution,
• D - the discriminator parameters (weights),
• D(y) - the by discriminator estimated probability that y belongs to the data

distribution pdata,
• pz - the latent space distribution,
• G - the generator parameters (weights),
• G(z) - the generated example from z ∼ pz(z).

Figure 2.5: Illustration of an generative adversarial network architecture.

The training of a GAN can be described by (2.17).

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (2.17)

The maximization over the first term with respect to the discriminator parameters
states that high probabilities should be assigned to inputs sampled from the data
distribution. The maximization over the second term with respect to the discrimina-
tor parameters states that low probabilities should be assigned to input generated
by the generator. The minimization of the generator parameters only affect the
second term and translates into trying to make the discriminator assign high prob-
abilities to inputs generated by the generator. The discriminator and generator are
trained alternatively by maximizing and minimizing (2.17), respectively, using the
backpropagation algorithm. For more information about GANs see Goodfellow et al.
(2014).

13

2. Theory

2.1.6 Cross-Entropy Loss
For classification tasks, the loss used to train the neural network or other ML algo-
rithm is the cross-entropy loss. Assume that the task is a n-class classification task.
The label for class m ∈ 1, ..., n can be described by (2.18).

ym,i =

1 if i = m,

0 otherwise.
(2.18)

Let the probabilities of every class predicted by the network for an example with
class m be p1, ..., pn. The cross-entropy loss can then be formulated as

−
n∑
i=1

ym,i log(pi). (2.19)

2.1.7 Dropout
Dropout (Hinton et al. 2012a) is a regularization technique that is used to keep
neural network from overfitting. It is applied between layers in the neural network
and amounts to removing a fraction of the neurons from the layer before the dropout,
meaning they never reach the layer after the dropout. The dropout rate is the
probability of randomly dropping one neuron. When applying dropout, training is
performed on various subsets of the full network and makes the network learn more
robust features. It can also be used to approximate uncertainty (Gal & Ghahramani
2015).

2.1.8 Batch Normalization
Batch normalization is a technique applied to specific layers, where the layer of out-
puts are normalized before the activation function in order to give them a mean of
zero and variance of one, unless the algorithm learns that other values are better
suited. The algorithm was invented by Ioffe & Szegedy (2015) to solve the problem
of internal covariate shift; the phenomenon of changes in each layer’s input distribu-
tions such that learning rates need to be low and the initialization of weights need to
be delicate. A good metaphor is the whisper game, where the first sentence rarely is
the same after a couple of persons whispered what they heard. Batch normalization
solves this problem and the consequences are lower learning rates and a decrease in
training time. The algorithm also works as a regularizer which prevents the network
from overfitted.

2.2 Principal Component Analysis
Given a set of data points with n number of dimensions, Principal Component Anal-
ysis (PCA) finds a direction on which the data points has the maximum variance.
It then continues to find n − 1 more directions, orthogonal to the first direction
which in ranking order have the next largest variance. These directions are called
principal components. The analysis is regarded as an eigenproblem, which enables

14

2. Theory

the analysis of corresponding eigenvalues to each principal component. If a principal
component has a low eigenvalue, it is interpreted to have low impact on the dataset
and can henceforth be ignored. Therefore, PCA is today used in machine learning
algorithms as a dimensionality reduction method. For more information about PCA
see Abdi & Williams (2010).

2.3 Logistic Regression

Logistic regression is a regression analysis suitable for problems where one variable
is binary and another is not. The algorithm is used in machine learning problems
as a binary classifier, where the model makes predictions. An example problem
is the prediction whether an animal is a cat or a dog given the length of its ears.
The model fits a logistic function to a large set of samples of ear lengths and the
corresponding binary class of cat or dog. Given a new input length of an ear, the
model predicts whether it belongs to a cat or a dog. For more information about
logistic regression, see (Murphy 2014, pp. 245-281).

2.4 Support Vector Machine/Classifier

An Support Vector Machine (SVM) is a supervised machine learning algorithm that
given labeled examples creates a hyperplane separating the examples by class. A
Support Vector Classifiers (SVC) uses this hyperplane to classify new examples. For
more information regarding SVMs see Steinwart et al. (2008).

2.5 Adversarial Examples

Adversarial examples were first discovered by Szegedy et al. (2013) as small per-
turbations leading to misclassifications by neural networks. These perturbations
could be dead pixels, blurring or other distortions in images, small enough such that
humans are able to correctly interpret the image but large enough for the network
to incorrectly classify it. In Figure 2.6 an example of a normal image and a corre-
sponding adversarial image can be seen. While Szegedy et al. (2013) were uncertain
whether these cases occurred naturally in real-life situations, Zheng et al. (2016)
proved the occurrence in video frames.

15

2. Theory

Classified as 9

(a)

Classified as 4

(b)

Figure 2.6: Normal image and corresponding adversarial example.

16

3
Literature Review

The literature review revolves around existing methods of finding inputs the network
cannot handle confidently. Presented first are anomaly and novelty detection meth-
ods. While anomaly detection is used to detect irregular data such as outliers and
bad readings, novelty detection is used to detect unfamiliar data. Finally, articles
in the relatively new topic of adversarial detection are studied.

3.1 Anomaly and Novelty Detection
Algorithms, or existing methods, developed for novelty and anomaly detection are
presented in this section. The methods are divided into three topics depending on the
algorithm approach: Reconstruction-, Domain- and Probabilistic-based detection.

3.1.1 Reconstruction-Based Detection
Reconstruction-based methods autonomously model the underlying data without
making any explicit assumptions on the data. Autoencoders (AE), Variational Au-
toencoders (VAEs) and GANs belong to this class of methods since the purpose is to
construct or reconstruct samples belonging to the distribution of the training data.

Anomaly Detection Using Autoencoders with Nonlinear Dimensionality
Reduction

Sakurada & Yairi (2014) developed a dimensionality reduction algorithm for anomaly
detection, and tested it on high-dimensional data partly generated from the Lorenz
system and partly from real spacecraft telemetry data. The algorithm uses an AE
to reduce the number of dimensions in the input data. To use the algorithm, one
has to assume that the data has features correlated to each other and when mapped
to a lower dimension, normal and anomalous inputs will be notably different. The
AEs compress the input data into a latent subspace of lower dimension, and tries
to reconstruct it in the output and optimize by minimizing a reconstruction error.
This error is used as the anomaly score and shows large values for anomalous inputs.
Increased performance is also achieved by developing denoised AEs; autoencoders
with more hidden units and noise added to the input. Apart from developing an
anomaly detector, Sakurada & Yairi (2014) visualizes the activations of several neu-
rons in a hidden layer. The figures show that anomalous inputs activate differently
from normal ones. This visualization of learned features in the hidden layer has not
been done before (Sakurada & Yairi 2014).

17

3. Literature Review

Anomaly Detection Using Replicator Neural Networks Trained on Ex-
amples of One Class

Dau et al. (2014) develops an anomaly detection model by training a three-layered
AE network (with a single hidden layer). The number of nodes in the hidden layer
is dependent on the data dimensionality but the authors mean that the optimum is
to use the same number of hidden neurons as in the input and output layer.

Safe Visual Navigation via Deep Learning and Novelty Detection

Richter & Roy (2017) proposes a method to detect novel examples by training
an AE on non-novel examples in the training set using a reconstruction error as
loss function. When presented with a novel input, the authors hypothesize that
the reconstruction error will be large. By computing the empirical Cumulative
Distribution Function (CDF) of the distribution of errors in the training dataset the
99th percentile is chosen as threshold. The novelty detection method works well for
structured data but, as the authors explain, it might not work for less structured
datasets. Instead they propose, in future work, to use density estimation in the
feature space learned by a large CNN.

Safer Classification by Synthesis

Wang et al. (2017) lets VAEs or GANs build generative models for images from
each class. These models receive a random input vector and transform these into
images. When the model receives a test input, the algorithm searches across the
generated class images for an image that is sufficiently similar. The best similarity
score represents the classification label. While this method performs worse than a
standard CNN at classification, it is better at detecting out-of-distribution samples.
It can therefore be used as a novelty detection supervisor and improve the CNN
coverage.

Unsupervised Anomaly Detection with Generative Adversarial Networks
to Guide Marker Discovery

Schlegl et al. (2017) proposes a Deep Convolutional Generative Adversarial Net-
work (DCGAN) (Radford et al. 2015), AnoGAN, that learns a manifold of normal
anatomical variability. Given a novel input, the latent space is searched to find a
latent vector that makes the reconstruction as similar to the input as possible. Two
losses are proposed for the search:

• a Residual loss that enforces visual similarity between the image generated by
the latent vector and the input image,

• a Discrimination loss that enforces that the generated image from the latent
input lies in the vicinity of the learned manifold of the model. This is done
using feature matching.

The total loss is an affine combination of the two losses and the loss in the final
iteration defines the anomaly score. The residual image can then be used to identify
anomalous regions in the input. Schlegl et al. (2017) were able to detect different

18

3. Literature Review

anomalies in medical images and also show where they appear on examples not seen
during training.

Anomaly Detection With Generative Adversarial Networks

Lucas Deecke (2018) proposes, similar to Schlegl et al. (2017), a DCGAN to perform
anomaly detection. The main difference is that only the reconstruction part of the
loss is considered and that the generator is allowed to change during the anomaly
detection. After the algorithm is done, the generator weights are reset to their
previous value. To account for the non-convexity of the latent space, eight different
seeds are used for initial values for the latent vectors. Each of them is then optimized
separately and the average reconstruction loss makes the anomaly score.

3.1.2 Domain-Based Detection
Domain-based methods are focused on creating a boundary around the training set.
The methods hence describe the boundary, or the domain, and can infer on whether
a new example is anomalous based on its position relative to the boundary.

Validating Neural Network-based Online Adaptive Systems: A Case Study

Liu et al. (2007) uses a Support Vector Data Description (SVDD) technique for real-
time detection of novelty data fed to an adaptive Intelligent Flight Control System
(IFCS) simulator. The novelty detector is fed the input data before it reaches the
adaptive system and can therefore detect novelties before they reach the network.
The SVDD-method tries to find a sphere with a minimal volume which contains all
data items. Since IFCS contains high-dimensional data, the SVDD uses a kernel
which maps the data to a Hilbert space, making it separable and less complex. The
authors use the SVDD to create a posterior probability novelty measure which gives
a good visualization of the degree of novelty in an input. This measure enables the
tuning of sensitivity and specificity in an observable way. With good results, the
algorithm manages to detect novelties in the IFCS failure signals.

High-Dimensional and Large-Scale Anomaly Detection using a Linear
One-Class SVM with Deep Learning

Building a robust anomaly detector for use in high-dimensional datasets requires
the help of a feature extractor, according to Erfani et al. (2016). The difficulties in
high-dimensional data mentioned in the paper are:

• exponential search space as the input dimensions increase in size, the amount
of potential feature spaces grows exponentially

• data-snooping bias with a high amount of possible feature sub-spaces, each
input point has one or more sub-spaces where it appears as an anomaly

• irrelevant features not all feature sub-spaces are relevant for the model task
and can hence be seen as noise in the data. This noise can hide the true
anomalies from the relevant data.

19

3. Literature Review

By robust, the authors means ”an accurate model for data drawn from a wide range
of probability distributions, and is not unduly affected by small departures from the
trained model” (Erfani et al. 2016).

As feature extractor, Erfani et al. (2016) uses a Deep Belief Network (DBF) which
is an unsupervised network trained to find generic underlying features in the data
set. The DBF can be seen as a dimensionality reduction algorithm which generates
a non-linear manifold of relevant features. The features are used to train a one-class,
unsupervised SVM. Instead of using a complex kernel, the hybrid DBF-SVM model
makes it possible for the SVM to use a more basic, linear kernel to detect anomalies.

3.1.3 Probabilistic-based Detection
Probabilistic-based methods are usually based on the approximation of the prob-
ability density function of the data. This is not easy in high-dimensional spaces
(Pimentel et al. 2014). The method presented under this topic takes an alternative
approach in an attempt to model the possibility that an input does not belong to
the predefined classes in the training data.

Towards Open Set Deep Networks

Recognition DNNs today are trained on a closed set of examples which makes the
network unable to make qualified predictions on samples outside of it. Bendale &
Boult (2016) suggest recognition towards open sets; a recognition algorithm used
in the real world, available to reject unknown and unseen samples. Open is here
for the set covering all possible inputs outside of the training domain, defined by
(Scheirer et al. 2013), as opposed to the closed set within the training domain.
In contrast to constructing a supervisor in front of a neural network which rejects
novelties, Bendale & Boult (2016) suggest extending the SoftMax layer with an
OpenMax layer in the end of the neural network. The OpenMax layer includes
the open set by adding an open class to the SoftMax layer and helps the network
to estimate whether an input belongs to an unknown class or not. By suggesting
that activations in the penultimate layer are not per-class score estimates but rather
distributions of which classes are related, Bendale & Boult (2016) use a multi-class
meta-recognition algorithm to say whether the input image is unknown or not. For
example, cats and tigers are related visually and hence produce similar activations.
The algorithm succeeds in rejecting many unknown open set and fooling images as
well as some adversarial images. Aside from developing an algorithm, Bendale &
Boult (2016) provide several theories and ideas worth investigating.

3.2 Adversarial Example Detection
Algorithms, or existing methods, encountered in adversarial detection are presented
in this section. The methods are divided into four different classes: one focusing
on theoretical work and insights; three depending on the approach taken: binary
adversarial classifiers; layer activation statistics; confidence estimation.

20

3. Literature Review

3.2.1 Insights
The hypothesis that adversarial examples are detectable is a hard one since the
definition of adversarial examples is minimal changes to an example belonging to
the training set. Hence the resulting adversarial example should, in principle, also
belong to the training set. Below, theoretical and empirical insights on the topic are
presented.

On the (Statistical) Detection of Adversarial Examples

Grosse et al. (2017) takes an unusual approach to detect adversarial examples; they
hypothesize that adversarial examples are not drawn from the same distribution as
the original data. Hence, it should be sufficient to detect them with a statistical
test. Using maximum mean discrepancy and energy distance, the authors show
that they can distinguish adversarial examples from normal data. By applying the
statistical test, the authors are able to detect samples in 50 adversarial examples.
Based upon the statistical difference, the authors also try to augment the model with
an additional class for adversarials. The model now detects adversarial examples as
outliers or significantly increase the cost of crafting an adversarial example.

Classification Regions of Deep Neural Networks

Fawzi et al. (2017) seek to analyze the geometric properties of deep neural network
classifiers in the input space, especially the topology of classification regions, as well
as the decision boundary. The authors find that the decision boundary is flat in
most directions in natural images, but some are curved. These curved directions
are shared between different data points and show that networks are sensitive to
perturbations in these directions. Furthermore it is empirically shown that the
classification regions are connected.

3.2.2 Binary Adversarial Classifiers
In this section, work using binary classifiers, trained using both natural and adver-
sarial inputs, is presented. The methods have a great advantage having already seen
adversarial data.

ReabsNet: Detecting and Revising Adversarial Examples

To address the issue of misclassified adversarial examples even when they are very
similar to natural samples, Chen et al. (2017) propose the resorption network (Re-
absNet). It consists of two components:

• The guardian network - The guardian network is trained to detect adversarial
examples. It is trained on both natural and adversarial examples with a binary
output

• Modifier - The modifier leverages the high similarity between the adversarial
and a potentially natural image. By revising the adversarial image iteratively,
using the output from the guardian, the modifier is able to remove the small
adversarial perturbations.

21

3. Literature Review

ReabsNet is able to reject adversarial examples even when allowing larger pertur-
bations than initially trained with. As the authors mention, the model was never
tested for adversarial examples crafted to fool both the classification-network and
ReabsNet.

Feature Squeezing: Detecting Adversarial Examples in Deep Neural Net-
works

Xu et al. (2017) attempt to find adversarial examples by making predictions in
parallel to the classifier model. These parallel predictions are first transformed
(squeezed) in an algorithm which tries to capture certain features in the input before
they are sent to the network model. The method is based on the results of Hinton
et al. (2012b) which showed that sub-models in the network commonly disagree
on predictions when the inputs are adversarial examples. The idea is therefore to
squeeze a specific feature, for example by reducing bit depth or smoothing out of the
image, and then let the network predict the altered image. If the distance between
the unaltered input prediction and any of the squeezed ones is larger than a certain
threshold value, the input will be considered to be an adversarial.

3.2.3 Layer Activation Statistics
Below are three methods using the inner activations of layers in a network, as the
input image is forward-propagated through the network, to detect adversarial ex-
amples. These approaches utilize statistical methods to model the layer activations
and hence gather a representation of the learned space.

Adversarial Examples Detection in Deep Networks with Convolutional
Filter Statistics

Li & Li (2016) start by investigating whether adversarial examples come from the
same distribution as the normal examples. By using spectral analysis through PCA
on the 14th layer of a Visual Geometry Group (VGG) network, developed by Si-
monyan & Zisserman (2014), the authors notice that there are no significant dif-
ferences in the PCA projection on the first eigenvectors. However, the adversarial
examples seem to reside in the center of the projection while the normal examples
occupy a larger space. Moving to the tail of the PCA projection, many adversarial
examples have extremely large values relative to the normal examples. The au-
thors observe that adversarial examples actually have lower predictions but appear
more confident after the Softmax function. They conclude that extreme values and
standard deviations are evident features but require many samples. They propose
turning a single image into a distribution and extract statistics. The k-channel image
(can be an output from a convolutional layer) pixels are considered to be a random k-
dimensional vector drawn from some distribution. From each k-dimensional feature
the following statistics are collected:

• normalized PCA coefficients
• minimal and maximal values
• 25th, 50th and 75th percentile values.

22

3. Literature Review

Using a cascade classifier (several classifiers in line) such that the ith classifier takes
the statistics from the ith layer as input, normal examples are eliminated using
a threshold, while the examples which still might be perturbed or anomalous are
passed on to the (i+1)th classifier. The classifier is trained using a dataset and 2000
Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS), developed by Liu
& Nocedal (1989), adversarial examples. To test the out-of-sample generalization
capability of the network, Evolutionary Algorithm (EA)-adversarial was included
and detected with high accuracy using only the first layers. The hypothesis is that
because EA-adversarial looks quite different from natural examples they can be
detected at an early stage. Likewise, the 2000 L-BFGS adversarial examples were
detected with high accuracy.

On Detecting Adversarial Perturbations

Metzen et al. (2017) propose to train a binary detector network which uses inter-
mediate activations in the main classifier network to output the probability of the
current input being adversarial. The attachment of the detector is tried on different
positions of intermediate activations using ResNet, developed by He et al. (2015),
and VGG-16, developed by Simonyan & Zisserman (2014). For each image in the
training set, the detector is trained on the same set as well as one adversarial ex-
ample per training instance. The detector generalizes well to larger perturbations
when trained on small perturbations, but not the other way around. It is shown that
training on ’static adversarials’ (adversarial examples created in advance of training
the network), the detector can be fooled by attacking the entire system again with
new adversarial examples. In response to the observation, the authors introduce
dynamic adversarial training. The idea is to compute adversarial examples during
training rather than before. Then it achieves a minmax-game, where the adversarial
attacker repeatedly tries to fool the detector as the detector tries not to be fooled.

SafetyNet: Detecting and Rejecting Adversarial Examples Robustly

Lu et al. (2017) pose a hypothesis that adversarial examples work by creating dif-
ferent patterns of activations in the late stage of a network, relative to the patterns
of naturally occurring examples. The authors propose Safetynet: a detector that
looks at the internal states of the last layers in a neural network to detect anomalies
that represent adversarial examples. To make the detector robust, they use thresh-
olds for the activations which produce binary code. The detector, a Radial Basis
Function-Support Vector Machine (RBF-SVM) compares the code produced at test
time with a collection of examples. The detector is able to reject adversarial attacks
not previously trained on and, more specifically, outperforms the detector proposed
by Metzen et al. (2017) with respect to generalization.

3.2.4 Confidence Estimation
Confidence estimation concerns the fact that neural networks, very counter-intuitively,
confidently classify adversarial examples as a class different from what a human
would.

23

3. Literature Review

Confidence Estimation in Deep Neural Networks via Density Modelling

Subramanya et al. (2017) take an alternative approach to the problems of uncertainty
in deep neural networks. They hypothesize that high-confidence misclassifcations
do not expose a flaw with the networks but rather that we need a better way to
estimate confidence. The authors show that uncertainty estimates from SoftMax
predictions contain pathologies, meaning it is sensitive to the scale of the input.
The idea is to take a density modelling approach to the problem. By computing the
conditional probability of the activations in the final layer, they use Bayes’ Rule to
compute the probability of a given label. They do, however, assume that the final
layer activation distribution is approximately equal to the distribution of inputs.
The authors use a multivariate Gaussian with diagonal covariance for the density
modelling and achieve confidences superior to SoftMax. It is mentioned that more
sophisticated density models could be used and would likely perform better.

Detecting Adversarial Samples from Artifacts

Feinman et al. (2017) compute two features to detect adversarial examples: kernel
density estimates and bayesian uncertainty estimates. Density estimates are meant
to detect points in the input that lie far from the data manifold. They function by
looking at activations in the feature space of the last hidden layer when fed by the
training data set. Bayesian uncertainty estimates are meant to detect points lying in
low-confidence regions of the input space. The estimates are supposed to function
when the density estimates are uncertain but can only work for dropout neural
networks (networks with dropout enabled). The two methods are then combined in
a logistic regression classifier with the uncertainty and density estimates as inputs.

3.3 Datasets

During the search for plausible algorithms for input verification, a collection of used
datasets have been found in the literature review and used in the thesis.

3.3.1 MNIST

The first tutorial assigned to developers by the Tensorflow website is ”MNIST For
ML Beginners” (Getting Started | TensorFlow 2018). MNIST is for machine learning
what ’Smoke on the water’ is for guitar lessons. The dataset consists of 70000 (60000
for training and 10000 for testing) handwritten images of 28× 28 pixels, see Figure
3.1. It was created by LeCun et al. (1998), who modified the National Institute
of Standards and Technology (NIST) Special database 19, developed by Grother
(1995), hence MNIST. It is commonly used in machine learning as a first dataset
to implement techniques and pattern-recognition on and has been cited more than
11800 times according to Google Scholar search.

24

3. Literature Review

(a) (b) (c)

Figure 3.1: Sample images from the MNIST dataset.

3.3.2 Omniglot

Lake et al. (2015) created a dataset consisting of 1623 handwritten characters, see
in Figure 3.2, from 50 different alphabets. The dataset was developed for one-shot
learning which essentially is an attempt to train machine learning algorithms to find
patterns and information about categories by only feeding them a few training im-
ages. This is in contrast to regular algorithms that often demands several thousand
images for training.

(a) (b) (c)

Figure 3.2: Sample images from the Omniglot dataset.

3.3.3 CIFAR-10 & CIFAR-100

Krizhevsky & Hinton (2009) created the Canadian Institute For Advanced Research
(CIFAR)-10 dataset with the help of groups from Massachusetts Institute of Tech-
nology and New York University. The images originate from a collection of 80 million
colour images from the web. The dataset consists of ten classes with one thousand
hand-labeled images each. Images in this dataset are downsized to 32×32×3 pixels
in size which facilitates the use for developing. The included classes are: airplane,
car, bird, frog, cat, deer, horse, ship, truck and dog. In Figure 3.3, three exam-
ple images of a cat, dog, and car respectively are shown. CIFAR-10 is a popular
dataset for benchmarking machine learning techniques. Complementing CIFAR-10,
the team also created the CIFAR-100 dataset which is similar but with 100 classes
and 600 images for each class.

25

3. Literature Review

(a) (b) (c)

Figure 3.3: Sample images from the CIFAR-10 dataset.

3.3.4 Retinal Optical Coherence Tomography
Retinal Optical Coherence Tomography (OCT) is an imaging technique used to cap-
ture high-resolution cross-sections of the retinas. Around 30 million of these scans
are done every year which means that the interpretation of them takes up a signifi-
cant amount of time (Swanson & Fujimoto 2017). The dataset (Paultimothymooney
2018) contains 84484 images in total, divided into 4 classes: Normal, Choroidal Neo-
vascularization (CNV), Diabetic Macular Edema (DME) and Drusen. Of the images
are: 26565 normal; 37455 in the CNV class; 11598 in the DME class; 8866 in the
Drusen class. Below in Figure 3.4, samples of images from each class are displayed.

(a) Normal (b) CNV (c) DME (d) Drusen

(e) Normal (f) CNV (g) DME (h) Drusen

Figure 3.4: Sample images from the Retinal OCT dataset.

The dataset contains high variance and images of the same class vary in appearance.
It is not obvious for a non-professional how to classify by eye the different conditions
and a normal retina. Hence each image went through a grading system with multiple
steps of people of increasing expertise for verification and correction of the labels
(Kermany et al. 2018).

26

4
Methods

In this chapter, a description of how the literature review presented in Chapter 3
was carried out. Following are a description of how supervisors and datasets are
chosen for experiments. The experiments and the chosen metrics are then motivated.
Finally, the networks used for classification and the process for developing a new
supervisor is presented.

4.1 Literature Review

The first task is to gather previous attempts of supervising DNNs, via the different
notations of novelty detection and adversarial example defenses. The found super-
vising methods are then analyzed to enable a selection of interesting and promising
methods which are going to be evaluated and compared in the next step of the thesis
process.

4.1.1 Finding Papers

Starting from a batch of papers gathered in the SMILE II project, more articles are
found by using an associative search method. The method consists of finding papers
cited in the starting batch of papers, and then do another iteration in the second
batch of papers. To broaden the search, papers related to found papers are found
by using Google Scholar’s ’related articles’ function.

4.2 Criteria for Methods to Implement

The analysis of found supervising methods is done to enable the comparison be-
tween the different methods. Apart from being relevant to the task, several criteria
matter for the selection. As the project has certain limitations in computational
power and time, the accessibility of a specific supervising method will be important.
Accessibility in this sense, is code implementations on GitHub or other sources and
will greatly reduce the time necessary for a re-implementation. If inaccessible, the
method needs to be described good enough to be implemented within a reasonable
time frame.

27

4. Methods

4.3 Motivation for Scenarios to Evaluate Upon
For the supervisor characteristics to be properly evaluated, datasets representative
of different scenarios are needed. Apart from image contents, the datasets have
properties in form of pixel amounts and may be in colour or not.

MNIST vs Omniglot

The first datasets implemented upon are MNIST and Omniglot. Since both datasets
include small, gray-scale images, they are suitable for primary testing. A strong
reason to use these datasets against each other is that they are both fairly simi-
lar, handwritten characters but still distinguishable by humans. The CNN will be
trained to classify MNIST images and the supervisor’s task is to reject all Omniglot
images sent to the network.

CIFAR-10 vs CIFAR-100

The second experiment is the use of a CNN trained to classify CIFAR-10 images
while four, non-overlapping, classes from CIFAR-100 is presented as novelties. The
CIFAR-10 and CIFAR-100 datasets are a step towards real-life scenarios for the su-
pervisors, for example autonomous driving. The images are RGB with a reasonable
amount of pixels which makes it suitable for a project lacking superior computational
capacity.

Medical Retina Conditions vs Novelty Condition

The third dataset to implement upon is the medical OCT dataset containing images
of retinas under normal conditions as well as under the condition of three pathologies:
CNV, DME and Drusen. The images come in different sizes and are therefore re-
sized to 64×64×3 before being used. Since the images are quite low in features but
still show a real-life problem, they are suitable for an implementation of supervisors.
In the experiments on this dataset, three classes will be stated as known while the
fourth is labeled as a novelty. In this way, a case is presented; the fourth pathology is
used to act as a new, unknown pathology to the neural network. Here, normal, CNV
and DME are labeled as known pathologies while drusen is labeled as a novelty.

4.4 Experimental Setup
In order to properly and fairly evaluate the implemented supervising methods, a
clear process need to be stated. Below, in Figure 4.1, the evaluation process steps
are shown in a flow chart. For each supervisor, the same training, validation, test and
adversarial data are generated using, for reproducibility, a random seed number 42.
When the supervisor has been run on the given data, related predictions, scores (or
probabilities depending on the supervisor) and supervisor-specific hyper-parameters
are saved. From the predictions and scores the performance metrics, which are
motivated and explained below in Section 4.4.1, are computed.

28

4. Methods

Figure 4.1: Process model for evaluation of supervisors.

4.4.1 Performance Metrics
To be able to compare the several supervisors’ performances in the three scenarios,
suitable metrics need to be used. The metrics used in the experiments are explained
and motivated in this section.

AUC

The Area Under Curve (AUC), is as the name reveals the area under a curve. In the
context of this thesis the curve in question is always the Receiver Operating Char-
acteristics (ROC) curve. Consider a binary classification problem and classifier that
generates a score through the score-function f(·) for each example. The classifier
generates a classification for a new example, x as

Classification =

1, if f(x) > τ,

0, if f(x) ≤ τ .
(4.1)

Here τ is the classifier threshold. The ROC curve is then calculated by moving the
threshold. As seen in Figure 4.2 the false positive rate (fraction of negative examples
classified as positive) is on the abscissa and the true positive rate (fraction of positive
examples correctly classified) is on the ordinate. In this case the threshold in the
lower left at (0,0) is very high, meaning all examples are classified as negatives. As

29

4. Methods

the threshold is reduced new false positive rates and true positive rates (coordinates)
are acquired which forms the ROC curve. At the upper right at (1,1) the threshold
is very low, meaning that all examples are classified as positives. Note that all
ROC curves start at (0,0), ends at (1,1) and are monotonically increasing. The
ROC is hence an illustration of how well the scores are separated for the different
classes. The line in Figure 4.2 is called the ROC baseline curve, which corresponds
to a classifier randomly classifying examples with equal probabilities. To avoid
confusion with the Baseline supervisor the ROC baseline curve will be denoted as
the ROC ’straight line’. A curve consistently lying above the straight line would be a
better classifier than the random classifier whereas one lying below would be worse.
The ideal classifier would have a ROC curve that maximizes its distance from the
abscissa at all coordinates.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

Figure 4.2: The ROC baseline representing using a random classifier.

The area under the ROC curve (AUC) has several possible interpretations but is
simply a performance score of the classifier. The best AUC score a classifier can
achieve is one and the worst is zero. The ROC straight line in Figure 4.2 has an
AUC score of 0.5.

Precision

The precision of a classifier is defined as the number of true positives divided by the
number of true positives plus false positives. In words it is the classifiers ability to
not label negative examples as positives. In this thesis it is a measure of how many
of the images classified as novelties, really are novel.

Recall

Recall is the same as the true positive rate; the number of true positives divided by
the number of true positives plus the false negatives. In words it is the classifiers
ability to label all positive examples as positives. In this thesis it is the ratio of
correctly classified novelties over all possible novelties.

30

4. Methods

F1-Score

Since it is possible to have varying results on precision and recall, the metrics are
complementary to each other. For the classifier to perform well, both metrics need to
be satisfactory. The F1-score is the harmonic mean of precision and recall, ranging
from 0 (worst score) to 1 (best score). For a balanced classifier, there should exist
a balance between precision and recall.

4.5 Neural Network Architectures
In this section, the applied CNN classifiers’ architectures are presented.

4.5.1 MNIST Neural Network Architecture
In order to enable the evaluation of the supervising methods, a reasonably well-
performing CNN is needed. Simultaneously, a smaller network is preferable to reduce
run times. The resulting network being used is seen in Figure 4.3, consisting of four
layers: two convolutional layers and two fully connected layer (dense) with dropout.
The boxes represent the feature maps and the bold text beneath the boxes shows
the resulting feature map sizes.

Figure 4.3: CNN architecture for MNIST classification.

4.5.2 CIFAR-10 Neural Network Architecture
For the experiments on the CIFAR datasets, a larger CNN is needed due to the
larger varieties in the dataset. In Figure 4.4 the network can be seen. The boxes
in the figure represent the resulting feature maps and their size is shown in bold
text beneath. The CIFAR CNN is made of four convolutional layers and two fully
connected (dense).

Figure 4.4: CNN architecture for CIFAR classification.

31

4. Methods

4.5.3 Retinal OCT Neural Network Architecture
The CNN used in the classification task for Retinal OCT dataset can be seen below
in Figure 4.5. The architecture of the network is the same as for the MNIST ex-
periments but with different input and output shapes. The network consists of two
convolutional layers and two fully connected (dense) ones.

Figure 4.5: CNN architecture for Retinal OCT classification.

4.6 Creating a New Supervisor
Using the insights from the experiments, a new supervisor is implemented. The
new supervising method is tested on the scenarios to evaluate its performance and
compare it to the other supervisors. The supervisor developed will be referred to
as the ’Thesis supervisor’. The results from the Thesis supervisor and the previous
insights will be used to create recommendations for future work.

32

5
Results

In this chapter, all results related to the thesis are presented. The selection process of
algorithms and their implementation details are the first to be presented. Then, the
results and insights from the experiments is presented, followed by the development
of a new supervisor.

5.1 Selecting Existing Supervisors
In order to enable implementations of as many algorithms as possible, the algorithms
from the literature review were investigated in forms of accessibility (documenta-
tion), relevance, performance and contrast from others. In some cases there are
characteristics in several algorithms that may be merged because of their similar-
ities. Since the implementations of the chosen algorithms are modified and their
purpose have changed, they will henceforth be referred to as supervisors.

5.1.1 Motivation of Selected Supervisors
For convenience the supervisors will be named, and those names will be used to
refer to the supervisors throughout the report. The names are shown in bold letters
below.

NoveltyGAN

The overall impression from Schlegl et al. (2017) is that the algorithm presents an
interesting approach to reconstruction-based anomaly detection utilizing both the
discriminator and generator. The fact that the algorithm is evaluated on a medical
dataset poses some challenges to adopt to the classification problem and datasets in
this thesis. Lucas Deecke (2018) achieved impressive results and his algorithm is also
more suitable for the experiments carried out in this thesis. Hence a combination
of the two is considered.

Cascade

The algorithm proposed by Li & Li (2016) uses a relatively unique approach, lever-
aging information from several layers in the neural network. The information is
coupled with a cascade classifier enabling different abnormalities in the activations
to be detected at different stages. Hence, the algorithm offers the possibility to
investigate the entire network and also show good results on out-of-sample inputs.

33

5. Results

OpenMax

Bendale & Boult (2016) use statistics to investigate activations in the penultimate
layer. A plus with the method is that it can be used to detect not only novelties,
but also adversarials. The impression of the algorithm is that it is promising given
the motivations of mean activation vectors by arguing that classes are related. The
algorithm can be found, implemented by the authors, at the Github repository
(Bendale 2016) which facilitates an implementation for this thesis.

Artifacts

Feinman et al. (2017) present an interesting approach combining layer statistics and
network uncertainties with logistic regression. The promising results with good con-
trast between the training domain and adversarial images are confidently applicable
on novelty detection and make the method interesting for the thesis. An implemen-
tation of the article code is available at the Github repository (Feinman 2018), but
is modified to suit the thesis experiments.

BinaryNet

Chen et al. (2017) create a binary classifier in form of a guardian network, quite
similar to the idea of a supervisor. However, the guardian network sends rejected
samples to a modifier which perturbs the (adversarial) image and iterates the process
until the guardian network accepts the image. The concept of using a neural network
to detect novelties differs from the other algorithms implemented in the thesis and
is therefore of interest.

5.1.2 Dismissed Approaches
To ensure that implementations of interesting algorithms are made thoroughly and
as justifiably as possible, a robust documentation is demanded. Without it, the re-
implementation is under risk of becoming too insecure and time-consuming. Even
though several of the non-selected approaches would be interesting to implement,
they are left for future work because they lack well-explained algorithms or are hard
to re-implement.

5.2 Implementation of Selected Supervisors
In this section, the supervisors are explained in more detail. Note that they are not
identical to the supervisors that they are based upon.

5.2.1 Baseline
To evaluate the performance of the algorithms, and have a performance to compare
to, a simple baseline algorithm was implemented. The idea of this supervisor is to
rely on the uncertainty of the CNN. The novelty score of an input is defined as

Novelty Score = 1− The maximum probability of the classes. (5.1)

34

5. Results

The idea is that if a novelty is presented to the classifier, it should not be certain
that it belongs to any of the known classes. For example, if a network outputs
the probabilities [0.3, 0.4, 0.3] in a three-class problem, the CNN is unsure on which
class the input should belong to. Therefore the novelty score becomes 1− 0.4 = 0.6.
On the other hand, if the network is very certain, it may output the probabilities
[0.1, 0.1, 0.8]. The novelty score then becomes 1− 0.8 = 0.2.

5.2.2 NoveltyGAN
To identify novelties, a generative model in form of a DCGAN is constructed. This
generative model is trained using normal data, that is, the same training data as the
classifier is trained on. The DCGAN is trained according to the procedure explained
in Section 2.1.5. Hence the generator, see Figure 5.1, learns how to map, in this
example, samples from the standard normal distribution (latent space) z ∼ P (z) =
N(0, 1), z ∈ R100. The generator constructs an image G(z) with the objective to
fool the corresponding discriminator, see Figure 5.2. Note that the images in the
datasets are resized to 64×64×β, where β is the number of channels in the images.
Since the two networks are constantly trying to fool and not to be fooled by the
other, it is not uncommon that the respective losses oscillate during training.

Figure 5.1: The GAN generator network architecture.

Figure 5.2: THe GAN discriminator network architecture.

When the generator and discriminator are done training, the generator and dis-
criminator parameters are frozen and not allowed to change. Consider a new query
image, x, and a latent vector, w. To decide if the input is a novelty or not, the
latent vector is optimized to match the input according to a loss function consisting
of two components:

• the residual loss LR(zγ) = ∑ |x−G(zγ)| and
• the discrimination loss LD(zγ) = ∑ |f(x)− f(G(zγ))|.

35

5. Results

Here, f(·) refers to the activations of some layer in the discriminator. For this
algorithm the last layer logits are used. The total loss is then a convex combination
of the two:

L(w) = (1− λ)LR(w) + λLD(w). (5.2)

A novelty score given an input image x is defined as

A(x) = (1− λ)R(x) + λD(x) (5.3)

where the residual score R(x) and discrimination scoreD(x) are defined by the resid-
ual loss and discrimination loss, respectively. As Schlegl et al. (2017) recommend, λ
is set to 0.1 for the experiments. To address the non-convexity of the problem, nseed
seeds or starting points are used to initiate the latent vector w and each of them is
then optimized with respect to the loss function in (5.2) (Lucas Deecke 2018). The
novelty score is then given by the minimum loss/score corresponding to one of the
nseed seeds.

5.2.3 Cascade

The neural network layers are of two different kinds: fully connected (dense) and
convolutional. For each layer in the network, one PCA-transform is created using
the activations produced by the training data. Assume the activations produced
by a convolutional layer has the dimensions W × H × β, where β is the number
of feature maps. The activations is then treated as W × H different samples from
β-dimensional distributions, yielding β PCA components. A dense layer of dimen-
sion n is considered to be n samples from n one-dimensional distributions yielding
n PCA components. The statistics extracted from each input and layer is the L1-
norm of the normalized PCA coefficients, the maximal values and 25th, 50th and
75th percentiles. Hence, the statistics for a convolutional layer sconv ∈ R5β and for
fully connected layers sfc ∈ Rn+4.

The Cascade supervisor consists of n SVCs; one for each of the n layers. Each
classifier receives statistics from its designated layer and decides whether the corre-
sponding input is a novelty or a normal. Given a set of normal training examples
and adversarials, each classifier is trained on a balanced subset of the two classes.
Then, the SVC classification threshold is set to only accept a predefined false pos-
itive rate (with normal being the positive class). At each stage in the cascade, the
trained classifier predicts all normal images. The images classified as normal are
removed from the set and not used for training the remaining classifiers. In addition
to the predefined target false positive rate, a parameter that controls the fraction of
normal inputs classified as a novelty exists. If the fraction exceeds the parameter,
the training is restarted with a lower target false positive rate. An illustration of
the Cascade supervisor is shown below in Figure 5.3.

36

5. Results

Figure 5.3: Illustration of the Cascade supervisor.

5.2.4 OpenMax
The OpenMax algorithm utilizes the Weibull distribution to fit activation vectors. In
this implementation, as well as in the original by Bendale & Boult (2016), the libMR
package by Scheirer, Rocha, Michaels & Boult (2011) is used to fit the data. The
Weibull distribution is often used in failure rate analysis. For a further motivation of
the Weibull distribution, see the work by (Scheirer, Rocha, Micheals & Boult 2011).
The Weibull distribution is described as

f(x;λ, k) =

k
λ
(x
λ
)k−1e−(x/λ)k , x ≥ 0

0, x < 0
(5.4)

where x is the quantity (in this case a distance), λ the shape parameter and k the
scale parameter.

The OpenMax idea is to utilize that CNNs may give responses in the penultimate
layer for classes that have similar features. These classes are considered to be re-
lated. For example, the top circle of a nine might show activations when the network
is fed an eight.

Given a CNN predicting the class of 100 images, xi, i = 1, ..., 100, with labels j ∈
{1, ..., 10}, there are 100 penultimate activation vectors of size [10, 1]. All correctly
classified images’ activation vectors are then collected in 10 matrices separated by
class, Sj. For each class, j, a mean activation vector, µj, is computed from samples
in Sj. For each correctly classified image, the euclidean-cosine (eucos) distance from
the class j are calculated as

deucos(xi|xi ∈ Sj) = ||v(xi)− µj||+ 1− µj • v(xi)
||µj|| · ||v(xi)||

(5.5)

where v(θ) is the penultimate layer activation vector given by the input image θ. For
the eucos distances, the η largest distances are chosen to fit the Weibull distribution
and create 10 Weibull models ρj with parameters λj, kj. η is a hyper-parameter
called tail length. The next step is to feed the network a test image.

For a new input x with activation vector v(x), the values in v(x) are sorted from
largest to smallest. The mapping between the indices of the original activation

37

5. Results

vector and the sorted activation vector is denoted by g(j). A weighted Weibull
score (Weibull cumulative distribution function), ω is calculated with the distance
between the input activation vector and the classes’ mean activation vector, µj,
according to

ωj(x) = 1− α− g(j)
α

e
−
(
||x−µj ||
λj

)kj
. (5.6)

where α = 10 is the number of possible classes. A new, revised activation vector is
then calculated with

v̂(x) = v(x) ◦ ω(x) (5.7)

which leads to a new activation vector, weighted with the Weibull scores for all closed
set classes. To enable the novelty detection, one has to introduce the possibility of
open set classes or ’unknown unknowns’. The open set class activation is placed as
an extra index in the existing new activation vector

v̂α+1(x) =
∑
i

v̂i(x)(1− ωi(x)) (5.8)

which enables a probability to be calculated. A normal Softmax calculation divides
the exponent with the sum of all closed set class exponents. For OpenMax, the
denominator is extended with the open set class which leads to

P̂ (j|x) = ev̂j(x)∑
i ev̂i(x) , j = 1, ..., α + 1, (5.9)

where P̂ (α+1|x) is the open set class probability given input x. The predicted class
is calculated by taking, just as in the Softmax, the index with the highest value. An
input image is rejected if the open set class probability is over some threshold value.

5.2.5 Artifacts
Given the network with class labels cl where l = 1, ..., N , each class is said to have
corresponding sub-manifolds in the last hidden layer of the network. These sub-
manifolds can be estimated using Kernel Density Estimation on the feature space
activations of the network layer. The feature space activations are gathered by
running all training images through the network, and saving the activations of each
node in the last hidden layer. For each class cl, a kernel density model is fitted to the
training images of the corresponding class, using a Gaussian kernel with a pre-tuned
bandwidth. By sending a tuning set, x̂i of correctly classified images through the
network and gathering all hidden layer activations and the predicted class of each
image, a log probability is calculated for the kernel corresponding to the predicted
class. This log probability is also computed for an equal amount of novelty images.

To further robustify the supervising method, the previously computed log probabil-
ities are used in a logistic regression model together with uncertainty scores. These
scores are gathered by utilizing the dropout layer in the network, enabling the cho-
sen dropout nodes to change between test runs, a Monte Carlo search is done to find

38

5. Results

how much the logits change with different dropouts. The mean of the variance of
these computed values is then saved for each image. The logistic regression model
is then trained, using each sample’s, both normal and novelty, normalized kernel
density and uncertainty score.

When fed a new image, the method needs the normalized scores of the image’s
uncertainty and kernel density log probability to be able to use the logistic regression
classifier model. Therefore, a scaling function is saved during training to enable the
scaling of new inputs.

5.2.6 BinaryNet

While the concept of adjusting input images works for adversarial examples as ex-
plained in ReabsNet (Section 3.2.1), it is unnecessary to modify novelties. Hence,
the perturbation module is dismissed in this implementation. A guardian network
in form of a binary classifier is used, resembling the supervised CNN with the ex-
ception of a branched part of the network, as in Figure 5.4, inserted just before the
fully connected (dense) layers and that the last fully connected layer has two nodes.
The branch includes two fully connected layers with 200 nodes each, as in the men-
tioned guardian network. The network is trained on normal images and adversarial
examples. In other terms, the network will function like a regular CNN, in this case
predicting whether an input is novel or not.

Figure 5.4: BinaryNet branch visualization.

5.3 Experiments on MNIST vs Omniglot

In the following section, results concerning the experiments on the MNIST and
Omniglot dataset are presented. The normal images (MNIST) are denoted by the
negative class and novelties (Omniglot) are denoted by the positive class. The ROC
curves are very similar across all supervisors for this experiment (with the exception
of the NoveltyGAN supervisor). They are nevertheless displayed to illustrate how
and why different separations of novelties and normal examples yield similar curves.
A summary of all supervisor metrics is provided in Section 5.3.8.

39

5. Results

Data Partition

The MNIST data was divided into a training, validation and test set. The training
set contained 55000 examples, the validation set contained 5000 examples and the
test set contained 20000 examples of which 10000 were Omniglot images (novelties).
Since some of the supervisor algorithms require training with novelties, 15000 ad-
versarials were generated, 5000 from each of the three algorithms: FSMA (Kurakin
et al. 2016), JSMA (Papernot et al. 2015) and Deepfool (Moosavi-Dezfooli et al.
2015).

5.3.1 MNIST Neural Network

The network was trained for 10 epochs using a cross-entropy loss and a gradient
descent optimizer with a learning rate of 0.01, a dropout rate of 0.4 and batch size
of 64. As shown in Figure 5.5 both the loss and accuracy for the training and
validation set improved during training.

0 2 4 6 8
Epochs

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Lo
ss

Training Process Loss
Mini-batch Loss
Validation Loss

(a) Loss.

0 2 4 6 8
Epochs

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Training Process Accuracy

Mini-batch Accuracy
Validation Accuracy

(b) Accuracy.

Figure 5.5: Loss and accuracy during training for the MNIST neural network.

Evaluating the network on half the test set, only containing MNIST images and no
novelties, yielded a test accuracy of 98%. Class-specific metrics are presented below
in Table 5.1. It can be seen that the network performance is high across all different
classes, only with minor deviations in metric scores.

40

5. Results

Table 5.1: F1-score, Precision, Recall and Support (number of samples of class in
test set) on the MNIST part of the test set for the network used in the MNIST vs
Omniglot experiments.

Class F1-score Precision Recall Support
0 0.99 0.99 1.0 1001
1 0.98 0.98 0.98 1127
2 0.98 0.99 0.96 991
3 0.98 0.98 0.98 1032
4 0.99 0.98 0.99 980
5 0.98 0.98 0.99 863
6 0.99 0.99 0.99 1014
7 0.98 0.98 0.99 1070
8 0.97 0.97 0.98 944
9 0.98 0.99 0.97 978

5.3.2 Baseline

The threshold used to classify the test data was set to the 90th percentile of the
scores of the training set: 0.1. The separation between MNIST and Omniglot im-
ages in the test set in terms of novelty scores is illustrated in Figure 5.6a and the
corresponding ROC curve in Figure 5.6b. The histogram shows a clear separation
between Omniglot and MNIST, which is reflected in the sharply increasing ROC
curve.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Score

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Novelty and Normal examples
Threshold
Mnist
Omniglot

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.6: Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the Baseline supervisor on the test set in the MNIST vs Omniglot experi-
ments.

To illustrate which classes are more commonly misclassified as novelties, the false
positives relative to the class count of the 10 different classes are displayed below
in Figure 5.7. Images of the number 2 followed by 9 and 8 are most commonly
classified as novelties.

41

5. Results

0 1 2 3 4 5 6 7 8 9
Label

0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.7: The false positives distributed over the 10 different classes relative
to the class counts for the Baseline supervisor on the test set in the MNIST vs
Omniglot experiments.

5.3.3 NoveltyGAN
The DCGAN was trained for 30 epochs using the loss described in Section 2.1.5 and
the Adam optimizer (Kingma & Ba 2014) with a learning rate of 0.0002, beta1 of
0.5, and a batch size of 100. As seen in Figure 5.8 neither the discriminator nor
generator losses are diverging from the other during training but the discriminator
finishes with a lower loss.

0 5 10 15 20 25 30
Epochs

1

2

3

4

5

6

Lo
ss

Training Process
Discriminator Loss
Generator Loss

Figure 5.8: NoveltyGAN Discriminator and Generator loss during training in the
MNIST vs Omniglot experiments.

After the training, the DCGAN was frozen and the only variable allowed to change
was the random latent vector. Each query image from the test set was regenerated
by changing the latent vector using the loss described in section 5.2.2. The Adam
optimizer was used with a learning rate of 0.25 and beta1 of 0.5 for 7 iterations.

42

5. Results

For each query, 12 starting points for the latent vector were tried and optimized
separately. The final novelty score assigned to the query is the lowest score generated
by the 12 latent vectors. A sample of how the regenerated images turned out is
displayed below in Figure 5.9. The best match in terms of score is denoted with
a title above the corresponding image. The supervisor manages to reconstruct the
MNIST image accurately but not the Omniglot image as well.

Query Best match

(a) MNIST query
Query Best match

(b) Omniglot query

Figure 5.9: Reconstructed images during the testing of the NoveltyGAN supervisor
in the MNIST vs Omniglot experiments.

The threshold used to classify the test data was set to the 90th percentile of the
scores of the training set: 631. The separation between MNIST and Omniglot im-
ages in the test set in terms of novelty scores is illustrated by Figure 5.10a and
the corresponding ROC curve in Figure 5.10b. The histogram shows harder separa-
tion between Omniglot and MNIST, which is reflected in the less steep ROC curve
compared to curves achieved by the other supervisors.

43

5. Results

200 400 600 800 1000 1200 1400
Score

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f E
xa

m
pl

es
Scores of Novelty and Normal examples

Threshold
Mnist
Omniglot

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.10: Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the NoveltyGAN supervisor on the test set in the MNIST vs Omniglot
experiments.

The false positives relative to the class count of the 10 different classes are displayed
below in Figure 5.11. Images of the number 2 followed by 8 and 3 are most commonly
classified as novelties.

0 1 2 3 4 5 6 7 8 9
Label

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.11: The false positives distributed over the 10 different classes relative
to the class counts for the NoveltyGAN supervisor on the test set in the MNIST vs
Omniglot experiments.

5.3.4 Cascade
Each stage of the cascade was trained on a subsample of all adversarials (abnormal-
ities) and a corresponding amount of MNIST examples (normal). The algorithm
target was that a maximum of 0.5% of the normal examples were to be classified
as novelties. This resulted in a convergence at a false positive rate of 20% (with
normal examples as the positive class). In the first stage of the classifier 99.9% of

44

5. Results

the normal examples were detected. The threshold was set to the 10th percentile of
the scores on the training set: 1.24. Note that the classification rule with respect
to the threshold is reversed here relative to the other supervisors since the decision
function of the supervisor assigns high scores to normal examples and low to ab-
normal. The separation between Omniglot and MNIST images in the test set is
illustrated by Figure 5.12a and the corresponding ROC curve in Figure 5.12b.

4 3 2 1 0 1 2 3
Score

0

200

400

600

800

1000

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Novelty and Normal examples
Threshold
Mnist
Omniglot

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.12: Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the Cascade supervisor on the test set in the MNIST vs Omniglot experi-
ments.

The false positives relative to the class count of the 10 different classes are displayed
below in Figure 5.13. The distribution between the classes are relatively uniform
compared to other supervisors.

0 1 2 3 4 5 6 7 8 9
Label

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.13: The false positives distributed over the 10 different classes relative
to the class counts for the Cascade supervisor on the test set in the MNIST vs
Omniglot experiments.

45

5. Results

5.3.5 OpenMax

The OpenMax supervisor was fitted using the training data. The hyper-parameter
tail length was tuned using the set of adversarial images and the training set with the
AUC as a best-fit score, resulting in a tail length of 99. The classification threshold
for the probability of a novelty was set using the 90th percentile of the probabilities
of the training set: 0.01. The separation between Omniglot and MNIST in the test
set is illustrated by Figure 5.14a and the corresponding ROC curve in Figure 5.14b.
The histogram shows a clear separation between Omniglot and MNIST, which is
reflected in the sharply increasing ROC curve.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Probabilities

0

2000

4000

6000

8000

Nu
m

be
r o

f E
xa

m
pl

es

Probabilities of Novelties and Normal examples
Threshold
Mnist
Omniglot

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.14: Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the OpenMax supervisor on the test set in the MNIST vs Omniglot ex-
periments.

The false positives relative to the class count of the 10 different classes are displayed
below in Figure 5.15. Images of the number 6 followed by 2 and 9 are most commonly
classified as novelties, relative to the number examples of the class in the test set.

46

5. Results

0 1 2 3 4 5 6 7 8 9
Label

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.15: The false positives distributed over the 10 different classes relative
to the class counts for the OpenMax supervisor on the test set in the MNIST vs
Omniglot experiments.

5.3.6 Artifacts

The Artifacts supervisor was trained using a subset of the training set and ad-
versarial images. The remainder of the training set were used for kernel density
estimates. The hyper-parameter bandwidth was tuned using a subset of adversarial
images and training set with the AUC as a best-fit score, resulting in a bandwidth
of 1.1. The classification threshold for the probability of a novelty was set using the
90th percentile of the probabilities of the training set: 0.5. The separation between
Omniglot and MNIST images in the test set is illustrated by Figure 5.16a and the
corresponding ROC curve in Figure 5.16b. The histogram shows a clear separation
between Omniglot and MNIST, which is reflected in the sharply increasing ROC
curve. The probabilities assigned to Omniglot are centered around two peaks.

47

5. Results

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Probabilities

0

100

200

300

400

500

Nu
m

be
r o

f E
xa

m
pl

es
Probabilities of Novelty

Threshold
Mnist
Omniglot

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.16: Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the Artifacts supervisor on the test set in the MNIST vs Omniglot exper-
iments.

The false positives relative to the class count of the 10 different classes are displayed
below in Figure 5.17. Images of the number 8 followed by 9 are more often classified
as novelties.

0 1 2 3 4 5 6 7 8 9
Label

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.17: The false positives distributed over the 10 different classes relative
to the class counts for the Artifacts supervisor on the test set in the MNIST vs
Omniglot experiments.

5.3.7 BinaryNet
Using adversarial images and the training set the BinaryNet supervisor was trained
for 13 epochs using a cross-entropy loss and a gradient descent optimizer with a
learning rate of 0.01, a dropout rate of 0.5 and a batch size of 64. The validation set
consisted of 20% of the data. As shown in Figure 5.18 both the loss and accuracy for
the training and validation set improved during training, but with some volatility.

48

5. Results

0 2 4 6 8 10 12
Epochs

0.1

0.2

0.3

0.4

0.5

Lo
ss

Training Process Loss
Mini-batch Loss
Validation Loss

(a) Loss.

0 2 4 6 8 10 12
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Training Process Accuracy

Mini-batch Accuracy
Validation Accuracy

(b) Accuracy.

Figure 5.18: Accuracy and loss during training of the BinaryNet supervisor in the
MNIST vs Omniglot experiments.

The threshold on the novelty probability produced by the binary network was set
to the 90th percentile of the probabilities yielded by the training set: 0.15. The
separation between Omniglot and MNIST images in the test set is illustrated by
Figure 5.19a and the corresponding ROC curve in Figure 5.19b. The histogram
shows a separation between Omniglot and MNIST, which is reflected in the sharply
increasing ROC curve.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Probabilities

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r o

f E
xa

m
pl

es

Probabilities of Novelty
Threshold
Mnist
Omniglot

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.19: Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the BinaryNet supervisor on the test set in the MNIST vs Omniglot ex-
periments.

The false positives relative to the class count of the 10 different classes are displayed
below in Figure 5.20. Images of the number 8 followed by 3 and 9 are most commonly
classified as novelties.

49

5. Results

0 1 2 3 4 5 6 7 8 9
Label

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.20: The false positives distributed over the 10 different classes relative
to the class counts for the BinaryNet supervisor on the test set in the MNIST vs
Omniglot experiments.

5.3.8 Comparison of Metrics
The performance metrics for all supervisors are displayed below in Table 5.2. The
AUC is comparable for all different supervisors with the exception of NoveltyGAN,
meaning the supervisors are able to separate MNIST from Omniglot. How they do
it varies as can be seen in the corresponding separation histograms shown earlier in
the section. The Baseline supervisor, which achieved the highest precision, is able to
correctly classify Omniglot as novelties while also minimizing the number of MNIST
examples classified as novelties. This is in contrast to the Artifacts supervisor which
achieves the lowest score. The recall score is on the other hand highest for the
Artifacts supervisor which means it is able to classify a large portion of the Omniglot
examples as novelties. The NoveltyGAN supervisor has a significantly lower recall
score. The F1-score is the weighted average of the two aforementioned metrics,
taking both false positives and false negatives into account and is highest for the
Cascade supervisor. The highest accuracy in classifying novelties is also achieved
by the Cascade supervisor. The rest of the supervisors with the exception of the
NoveltyGAN supervisor, achieves around 90% accuracy.

Table 5.2: Performance metrics for the six supervisors on the test set in the MNIST
vs Omniglot experiments.

Supervisor AUC Precision Recall F1 Accuracy
Baseline 0.97 0.94 0.81 0.87 0.88
NoveltyGAN 0.8 0.81 0.41 0.54 0.65
Cascade 0.97 0.91 0.95 0.93 0.93
OpenMax 0.94 0.89 0.87 0.88 0.88
Artifacts 0.96 0.79 0.97 0.87 0.85
BinaryNet 0.97 0.9 0.94 0.92 0.92

50

5. Results

5.4 Experiments on CIFAR

In the following section, results concerning the experiments on the CIFAR-10 and
CIFAR-100 dataset are displayed. The normal images (CIFAR-10) are denoted by
the negative class and novelties (four CIFAR-100 super classes) are denoted by the
positive class. A summary of supervisor metrics for the CIFAR experiments are
presented in Section 5.4.8.

Data partition

The data is divided into 45000 training images, 5000 validation images and 10000
test images from the CIFAR-10 dataset. From the CIFAR-100 dataset, 10000 test
images are used containing the super classes: large carnivores, large man-made
outdoor things, non-insect invertebrates, small mammals. For the training of super-
visors, 15000 adversarial images were created using the FSMA, JSMA and Deepfool
algorithms.

5.4.1 CIFAR-10 Neural Network

The network was trained for 40 epochs using a cross-entropy loss and a gradient
descent optimizer with a learning rate of 0.001 and batch size of 64. The two first
dropout layers use a rate of 0.4 and the third a rate of 0.5. As shown in Figure
5.21, both the loss and accuracy for the training and validation set improved during
training.

0 5 10 15 20 25 30 35 40
Epochs

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Training Process Loss
Mini-batch Loss
Validation Loss

(a) Loss.

0 20 40 60 80 100
Epochs

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Training Process Accuracy
Mini-batch Accuracy
Validation Accuracy

(b) Accuracy.

Figure 5.21: Loss and accuracy during training for the CIFAR neural network.

Evaluating the network on the CIFAR-10 test set yielded a test accuracy of 79%.
Class-specific metrics are presented below in Table 5.3. The network achieves an
F1 score of about 0.80 and above for most classes but have trouble with birds, cats,
deer and dogs.

51

5. Results

Table 5.3: F1-score, Precision, Recall and Support (number of samples of class in
test set) on the CIFAR-10 part of the test set for the network used in the CIFAR
experiments.

Class F1 score Precision Recall Support
plane 0.82 0.84 0.81 1000
car 0.9 0.94 0.87 1000
bird 0.7 0.85 0.59 1000
cat 0.59 0.72 0.5 1000
deer 0.76 0.69 0.84 1000
dog 0.7 0.63 0.78 1000
frog 0.84 0.82 0.85 1000
horse 0.84 0.79 0.9 1000
ship 0.89 0.86 0.92 1000
truck 0.88 0.85 0.9 1000

5.4.2 Baseline

The ROC curve for the Baseline supervisor in the CIFAR experiments is shown
in Figure 5.22b. The curve is reflected in the histogram in Figure 5.22a. The
histogram illustrates how the supervisor probabilities can be somewhat, visually,
separated. The threshold used to classify the test data was set to the 90th percentile
of the scores from the training set: 0.41.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Score

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Novelty and Normal examples
Threshold
Cifar-10
Cifar-100

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.22: Histogram of scores and the ROC curve for the Baseline supervisor
on the test set in the CIFAR experiments.

To illustrate which classes are more commonly misclassified as novelties, the false
positives relative to the class count of the 10 different classes are displayed below
in Figure 5.23. Similar to the network performance seen in Table 5.3, the Baseline
supervisor has more trouble with birds, cats and dogs.

52

5. Results

plane car bird cat deer dog frog horse ship truck
Label

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.23: The false positives distributed over the 10 different classes relative to
the class counts for the Baseline supervisor on the test set in the CIFAR experiments.

5.4.3 NoveltyGAN
The DCGAN was trained for 100 epochs using the loss described in Section 2.1.5
and the Adam optimizer with a learning rate of 0.0002, beta1 of 0.5, and a batch
size of 100. How the discriminator and generator loss changed during the epochs
are shown below in Figure 5.8.

0 20 40 60 80 100
Epochs

1

2

3

4

5

6

Lo
ss

Training Process
Discriminator Loss
Generator Loss

Figure 5.24: NoveltyGAN Discriminator and Generator loss during training in the
CIFAR experiments.

The Adam optimizer was used with a learning rate of 0.25 and beta1 of 0.5 for 7
iterations. For each query, 12 starting points for the latent vector were tried and
optimized separately. The final novelty score assigned to the query is the lowest
score generated by the 12 latent vectors. A sample of how the regenerated images
turned out is displayed below in Figure 5.25. The best match in terms of score is

53

5. Results

denoted with a title above the corresponding image. The GAN manages to recreate
the car somewhat but has more problems with the castle from CIFAR-100.

Query Best match

(a) CIFAR-10 query
Query Best match

(b) CIFAR-100 query

Figure 5.25: Reconstructed images during the testing of the NoveltyGAN super-
visor in the CIFAR experiments.

The threshold used to classify the test data was set to the 90th percentile of the
scores of the training set: 4755.87. The separation between CIFAR-10 and CIFAR-
100 images in the test set in terms of novelty scores is illustrated by Figure 5.26a and
the corresponding ROC curve in Figure 5.26b. The histogram shows the difficulties
the supervisor has with separating novelties from normal inputs. The difficulties
can also be seen in the gradually increasing ROC curve, close to a straight line.

1000 2000 3000 4000 5000 6000 7000
Score

0

100

200

300

400

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Novelty and Normal examples
Threshold
Cifar-10
Cifar-100

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.26: Histogram of scores and the ROC curve for the NoveltyGAN super-
visor on the test set in the CIFAR experiments.

The false positives relative to the class count of the 10 different classes are displayed
below in Figure 5.11. Weaknesses can be seen in the classes car, cat, dog and truck.

54

5. Results

plane car bird cat deer dog frog horse ship truck
Label

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.27: The false positives distributed over the 10 different classes relative
to the class counts for the NoveltyGAN supervisor on the test set in the CIFAR
experiments.

5.4.4 Cascade

Each stage of the cascade was trained on a subsample of all adversarials (abnormal-
ities) and a corresponding amount of CIFAR-10 examples (normal). The supervisor
target was that a maximum of 0.5% of the normal examples was to be classified
as novelties. This resulted in a convergence at a false positive rate of 81% (with
normal examples as the positive class). At the third stage of the classifier 100%
of the normal examples had been detected. The threshold was set to the 10th per-
centile of the scores on the training set: 0.96. Note that the classification rule with
respect to the threshold is reversed here relative to the other supervisors since the
decision function of the supervisor assigns high scores to normal examples and low
to abnormal. The separation between CIFAR-10 and CIFAR-100 images in the test
set is illustrated by Figure 5.28a and the corresponding ROC curve in Figure 5.28b.
As can be seen by the histogram, the CIFAR-100 and CIFAR-10 examples are about
the same scores, but with marginally higher scores for CIFAR-100. In reality the
opposite should hold, this is reflected in the ROC curve which lies below the straight
line indicating a poor separation.

55

5. Results

0.0 0.5 1.0 1.5 2.0 2.5
Score

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Novelty and Normal examples
Threshold
Cifar-10
Cifar-100

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.28: Histogram of scores and the ROC curve for the Cascade supervisor
on the test set in the CIFAR experiments.

The false positives relative to the class count of the 10 different classes are dis-
played below in Figure 5.29. The car, plane and bird classes are most commonly
misclassified as novelties.

plane car bird cat deer dog frog horse ship truck
Label

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.29: The false positives distributed over the 10 different classes relative to
the class counts for the Cascade supervisor on the test set in the CIFAR experiments.

5.4.5 OpenMax
The OpenMax supervisor was fitted using the training set. The hyper-parameter tail
length was tuned using the set of adversarial images and the training set with the
AUC as a best-fit score, resulting in a tail length of 49. The classification threshold
for the probability of a novelty was set using the 90th percentile of the probabilities
of the training set and resulted in 0.005. The separation between CIFAR-10 and
CIFAR-100 in the test set is illustrated by Figure 5.30a and the corresponding ROC
curve in Figure 5.14b. In the histogram it is visually hard to separate normal from
novelty, but the ROC curve has a better form than most supervisors have on CIFAR.

56

5. Results

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Probabilities

0

2000

4000

6000

8000

Nu
m

be
r o

f E
xa

m
pl

es

Probabilities of Novelties and Normal examples
Threshold
Cifar-10
Cifar-100

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.30: Histogram of scores and the ROC curve for the OpenMax supervisor
on the test set in the CIFAR experiments.

The false positives relative to the class count of the 10 different classes are displayed
below in Figure 5.31. As seen in the histogram, the plane, bird and cat classes are
difficult for the supervisor.

plane car bird cat deer dog frog horse ship truck
Label

0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.31: The false positives distributed over the 10 different classes relative to
the class counts for the OpenMax supervisor on the test set in the CIFAR experi-
ments.

5.4.6 Artifacts
The Artifacts supervisor was trained using a subset of the training set and adversar-
ial images. The remainder of the training set was used for kernel density estimates.
The hyper-parameter bandwidth was tuned using a subset of adversarial images
and training set with the AUC as a best-fit score, resulting in a bandwidth of 0.5.
The classification threshold for the probability of a novelty was set using the 90th
percentile of the probabilities of the training set: 0.76. The separation between

57

5. Results

CIFAR-10 and CIFAR-100 images in the test set is illustrated by Figure 5.32a and
the corresponding ROC curve in Figure 5.32b. The histogram shows two peaks but
no separation between normal and novel images.

0.5 0.6 0.7 0.8 0.9 1.0
Probabilities

0

1000

2000

3000

4000

Nu
m

be
r o

f E
xa

m
pl

es

Probabilities of Novelties and Normal examples
Threshold
Cifar-10
Cifar-100

(a) Probabilities.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.32: Histogram of probabilities assigned to MNIST and Omniglot and the
ROC curve for the Artifacts supervisor on the test set in the CIFAR experiments.

The false positives relative to the class count of the 10 different classes are displayed
below in Figure 5.33. In the histogram it is clear that the supervisor has problems
with the car class.

plane car bird cat deer dog frog horse ship truck
Label

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.33: The false positives distributed over the 10 different classes relative
to the class counts for the Artifacts supervisor on the test set in the CIFAR experi-
ments.

5.4.7 BinaryNet
Using adversarial images and the training set, the BinaryNet supervisor was trained
for 100 epochs using a cross-entropy loss and a gradient descent optimizer with a

58

5. Results

learning rate of 0.01, a dropout rate of 0.5 and a batch size of 64. The validation set
consisted of 20% of the data. As shown in Figure 5.34, both the loss and accuracy for
the training and validation set improved during training, but with some volatility.

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Training Process Loss
Mini-batch Loss
Validation Loss

(a) Loss.

0 20 40 60 80 100
Epochs

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Training Process Accuracy
Mini-batch Accuracy
Validation Accuracy

(b) Accuracy.

Figure 5.34: Accuracy and loss during training of the BinaryNet supervisor in the
CIFAR experiments.

The threshold on the novelty probability produced by the binary network was set
to the 90th percentile of the probabilities yielded by the training set: 0.55. The
separation between CIFAR-10 and CIFAR-100 images in the test set is illustrated by
Figure 5.35a and the corresponding ROC curve in Figure 5.35b. No clear separation
is visually seen in the histogram, and is also reflected in the ROC curve, which is
close to a straight line.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Probabilities

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f E
xa

m
pl

es

Probabilities of Novelties and Normal examples
Threshold
Cifar-10
Cifar-100

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.35: Histogram of scores and the ROC curve for the BinaryNet supervisor
on the test set in the CIFAR experiments.

The false positives relative to the class count of the 10 different classes are displayed
below in Figure 5.36. Largest difficulties are seen in the classes deer, frog, ship and
truck.

59

5. Results

plane car bird cat deer dog frog horse ship truck
Label

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.36: The false positives distributed over the 10 different classes relative to
the class counts for the BinaryNet supervisor on the test set in the CIFAR experi-
ments.

5.4.8 Comparison of Metrics

A summary of performance metrics for all supervisors are displayed below in Table
5.4. The supervisors show AUC scores of varying abilities. In contrast to the MNIST
vs Omniglot experiments, only two supervisors show any ambition for separation:
OpenMax and Baseline. Further details on supervisor-specific abilities for separation
can be seen in the aforementioned sections. Three supervisors manage to achieve
precision scores higher than 0.5. Hence, they correctly classify more CIFAR-100 im-
ages as novelties than falsely classify CIFAR-10 images as novelties. Worth noting is
that the Artifacts supervisor manages to achieve a precision score far worse, which
means it separates the normal from novel well but the probabilities are inverted.
That means the probabilities are likely mixed up; normal images achieve high prob-
abilities of being novelty and novel images the opposite. The recall score shows how
well the supervisors classify novelties in relation to the number of available novelties
there are. The best scores are achieved by the Baseline and OpenMax supervisors,
which still achieve a low score. That means they are able to correctly classify some
but not many of the CIFAR-100 images. The F1-score is the weighted average of
the two aforementioned metrics, taking both false positives and false negatives into
account. Since the Baseline and OpenMax supervisors achieve highest scores on
precision and recall, they also do it for F1. Lowest F1 scores are achieved by the
Cascade, Artifacts and NoveltyGAN supervisors since they all achieved low precision
and, in specific, recall scores. The highest accuracies are achieved by the Baseline
and OpenMax supervisors at about 60% while the other supervisors are about as
good as random guessing.

60

5. Results

Table 5.4: Performance metrics for the six supervisors on the test set in the CIFAR
experiments.

Supervisor AUC Precision Recall F1-score Accuracy
Baseline 0.76 0.72 0.38 0.49 0.61
NoveltyGAN 0.44 0.42 0.07 0.12 0.49
Cascade 0.42 0.49 0.08 0.14 0.50
OpenMax 0.74 0.72 0.34 0.46 0.60
Artifacts 0.48 0.38 0.07 0.12 0.48
BinaryNet 0.54 0.62 0.17 0.27 0.53

5.5 Experiments on Retinal OCT

In the following section, results concerning the experiments on the Medical Retinal
OCT dataset are presented. How the dataset is split and which classes are denoted
as the positive class (novelty) and negative class (normal) are described below. A
summary of supervisor metrics are presented in Section 5.5.8.

Data Partition

The class with the fewest number of occurrences, Drusen, was chosen to be the
novelty class of the experiments. A balanced dataset of the remaining three classes
was created. The size was hence dictated by the class with fewest number of occur-
rences: DME. The dataset contains 33000 images, 11000 of each of the three classes
Normal, CNV and DME. The dataset was then divided into a training and valida-
tion set with a split of 10% for the latter. The test set of total size 16000 contains
8000 novelties in the form of the condition Drusen, 8000 known classes of which 598
DME, 3701 Normal and 3701 CNV. As in the MNIST vs Omniglot experiments,
5000 adversarials from each of the aforementioned algorithms were created.

5.5.1 Retinal OCT Neural Network

The network was trained for 200 epochs using a cross-entropy loss and a gradient
descent optimizer with a learning rate of 0.003, a dropout rate of 0.5 and batch
size of 64. Both the loss and accuracy for the training and validation set improved
during training, as shown in Figure 5.37.

61

5. Results

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training Process Loss
Mini-batch Loss
Validation Loss

(a) Loss.

0 25 50 75 100 125 150 175 200
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Training Process Accuracy

Mini-batch Accuracy
Validation Accuracy

(b) Accuracy.

Figure 5.37: Loss and accuracy during training for the Retinal OCT neural net-
work.

Evaluating the network on half the test set, only containing known classes, yielded
a test accuracy of 96%. Note that the test set is not balanced in the case of known
classes in this experiment, which effects the test accuracy. Class specific metrics are
presented below in Table 5.5. The network achieves good scores with regard to the
two classes Normal and CNV, but significantly lower scores for the DME class.

Table 5.5: F1 score, Precision, Recall and Support (number of samples of class in
test set) on the known classes in the test set for the network used in the Retinal
OCT experiments.

Class F1 score Precision Recall Support
Normal 0.97 0.97 0.97 3701
CNV 0.97 0.99 0.96 3701
DME 0.8 0.73 0.89 598

5.5.2 Baseline

The threshold used to classify the new data was set to the 90th percentile of the
scores of the training set: 0.14. The separation between the known classes and
Drusen in the test set in terms of novelty scores is illustrated by Figure 5.38a and
the corresponding ROC curve in Figure 5.38b. The histogram shows a separation
between known classes and Drusen. The known classes are rarely being appointed
higher scores. The separation is reflected in the increasing ROC curve.

62

5. Results

0.2 0.0 0.2 0.4 0.6 0.8
Score

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Novelty and Normal examples
Threshold
Known Classes
Drusen

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.38: Histogram of probabilities assigned to the known classes and Drusen
and the ROC curve for the Baseline supervisor on the test set in the Retinal OCT
experiments.

To illustrate which of the classes most frequently are confused with the Drusen
pathology, the false positives of the different classes relative their class counts are
displayed below in Figure 5.39. Images of the class DME are most commonly mis-
classified as novelties followed by almost equal amount of normal and CNV.

normal cnv dme
Label

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.39: The false positives distributed over the 3 different classes relative
to the class counts for the Baseline supervisor on the test set in the Retinal OCT
experiments.

5.5.3 NoveltyGAN
The DCGAN was trained for 30 epochs using the loss described in Section 2.1.5 and
the Adam optimizer (Kingma & Ba 2014) with a learning rate of 0.0002, beta1 of
0.5, and a batch size of 100. As seen in Figure 5.40, neither of the discriminator and
generator losses diverges from the other during training.

63

5. Results

0 5 10 15 20 25 30
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Training Process
Discriminator Loss
Generator Loss

Figure 5.40: Discriminator and Generator loss during training in the Retinal OCT
experiments.

After training, each query image from the test set was regenerated by changing the
latent vector using the loss described in Section 5.2.2. The Adam optimizer was
used with a learning rate of 0.25 and beta1 of 0.5 for 7 iterations. For each query, 12
starting points for the latent vector were tried and optimized separately. The final
novelty score assigned to the query is the lowest score generated by the 12 latent
vectors. A sample of how the regenerated images turned out is displayed below in
Figure 5.41. By visual inspection, the supervisor manages to reconstruct the Retinal
OCT images but not necessarily in the favor of the CNV class.

Query Best match

(a) CNV query
Query Best match

(b) Drusen query

Figure 5.41: Reconstructed images during the testing of the NoveltyGAN super-
visor in the Retinal OCT experiments.

The scores on the entire test set were evaluated and a classification reached by setting
the threshold to the 90th percentile of the scores of the training set: 2069.27. The

64

5. Results

separation between known classes and Drusen in the test set in terms of novelty
scores is illustrated by Figure 5.42a and the corresponding ROC curve in Figure
5.42b. The histogram shows no separation between the known classes and Drusen.
This is reflected in the ROC curve which approaches the straight line.

1000 2000 3000 4000 5000
Score

0

100

200

300

400

500

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Novelty and Normal examples
Threshold
Known Classes
Drusen

(a) Probabilities.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.42: Histogram of scores assigned to known classes and Drusen and the
ROC curve for the NoveltyGAN supervisor on the test set in the Retinal OCT
experiments.

The false positives of the different classes relative their occurrence are displayed
below in Figure 5.43. Images of the classes DME and CNV are most commonly
classified as novelties.

normal cnv dme
Label

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.43: The false positives distributed over the 3 different classes relative to
the class counts for the NoveltyGAN supervisor on the test set in the Retinal OCT
experiments.

65

5. Results

5.5.4 Cascade

Each stage of the cascade was trained on a subsample of all adversarials (abnormal-
ities) and a corresponding amount of the known classes (normal). Note that normal
is here meant to denote the non-adversarial examples belonging to one of the known
classes. The algorithm target was that a maximum of 1% of the normal examples
was to be classified as novelties. This resulted in a convergence at a false positive
rate of 17% (with normal examples as the positive class). For this data set all stages
of the cascade were required to detect all normal examples. The threshold was set to
the 10th percentile of the scores on the training set: 0.07. Note that the classification
rule with respect to the threshold is reversed here relative to the other supervisors
since the decision function of the supervisor assigns high scores to normal examples
and low to abnormal. The separation between the known classes and Drusen in the
test set is illustrated by Figure 5.44a and the corresponding ROC curve in Figure
5.44b. The histogram shows a small separation where a small proportion of the
known classes is given a higher score than Drusen. The small separation is reflected
in the ROC curve which approaches, but lies above, the straight line.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Score

0

100

200

300

400

500

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Novelty and Normal examples
Threshold
Known Classes
Drusen

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.44: Histogram of scores assigned to known classes and Drusen and the
ROC curve for the Cascade supervisor on the test set in the Retinal OCT experi-
ments.

The false positives of the different classes relative their occurrence are displayed
below in Figure 5.43. The known classes are classified as Drusen about as frequently,
relative to the other supervisors.

66

5. Results

normal cnv dme
Label

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.45: The false positives distributed over the 3 different classes relative
to the class counts for the Cascade supervisor on the test set in the Retinal OCT
experiments.

5.5.5 OpenMax

The OpenMax supervisor was fitted using the training data. The hyper-parameter
tail length was tuned using the set of adversarial images and the training set with the
AUC as a best-fit score, resulting in a tail length of 24. The classification threshold
for the probability of a novelty was set using the 90th percentile of the probabilities
of the training set: 0.03. The separation between known classes and Drusen in the
test set is illustrated by Figure 5.46a and the corresponding ROC curve in Figure
5.46b. The histogram shows a separation between known classes and Drusen. The
known classes are rarely being appointed higher scores, which also is reflected in the
small threshold. The separation is reflected in the increasing ROC curve which is
similar as the one for the Baseline supervisor (Figure 5.38b).

67

5. Results

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Probabilities

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f E
xa

m
pl

es

Probabilities of Novelties and Normal examples
Threshold
Known Classes
Drusen

(a) Probabilities.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.46: Histogram of scores assigned to known classes and Drusen and the
ROC curve for the OpenMax supervisor on the test set in the Retinal OCT experi-
ments.

The false positives of the different classes relative to their occurrence are displayed
below in Figure 5.47. Images of the class Normal are most commonly classified as
novelties followed almost equal fractions of DME and CNV.

normal cnv dme
Label

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.47: The false positives distributed over the 3 different classes relative to
the class counts for the OpenMax supervisor on the test set in the Retinal OCT
experiments.

5.5.6 Artifacts
The artifacts algorithm was trained using a subset of the training set and adversarial
images, the remainder of the training set was used for kernel density estimates. The
hyper-parameter bandwidth was tuned using a subset of adversarial images and
training set with the AUC as a best-fit score, resulting in a bandwidth of 1.9. The
classification threshold for the probability of a new class was set using the 90th

68

5. Results

percentile of the probabilities of the training set: 0.5. The separation between
known classes and the Drusen class in the test set is illustrated by Figure 5.48a
and the corresponding ROC curve in Figure 5.48b. The histogram shows a poor
separation between the known classes and Drusen, where some known classes are
assigned higher probabilities for being a novelty than Drusen. This is reflected by
the ROC curve being under the straight line.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probabilities

0

500

1000

1500

2000

Nu
m

be
r o

f E
xa

m
pl

es

Probabilities of Novelty
Threshold
Known Classes
Drusen

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.48: Histogram of scores assigned to known classes and Drusen and the
ROC curve for the Artifacts supervisor on the test set in the Retinal OCT experi-
ments.

The false positives of the different classes relative their occurrence are displayed
below in Figure 5.49. Images of the classes CNV DME and most commonly classified
as novelties followed by a small fraction of the Normal class.

normal cnv dme
Label

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.49: The false positives distributed over the 3 different classes relative
to the class counts for the Artifacts supervisor on the test set in the Retinal OCT
experiments.

69

5. Results

5.5.7 BinaryNet
Using adversarial images and the training set the binary classifier was trained for 50
epochs using a cross-entropy loss and a gradient descent optimizer with a learning
rate of 0.001, a dropout rate of 0.5 and batch size of 128. 20% of the data was used
as the validation set. As shown in Figure 5.50, both the loss and accuracy for the
training and validation set improved during training,

0 10 20 30 40 50
Epochs

0.3

0.4

0.5

0.6

0.7

Lo
ss

Training Process Loss
Mini-batch Loss
Validation Loss

(a) Loss.

0 10 20 30 40 50
Epochs

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Training Process Accuracy

Mini-batch Accuracy
Validation Accuracy

(b) Accuracy.

Figure 5.50: Accuracy and loss during training of the BinaryNet supervisor in the
Retinal OCT experiments.

The threshold on the output probability of novelty produced by the binary net-
work was set to the 90th percentile of the probabilities yielded by the training set:
0.37. The separation between known classes and the Drusen class in the test set
is illustrated by Figure 5.51a and the corresponding ROC curve in Figure 5.51b.
The histogram shows a poor separation between the known classes and Drusen,
where some known classes are assigned higher probabilities for being a novelty than
Drusen. This is reflected by the ROC curve being under the straight line.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Probabilities

0

200

400

600

800

Nu
m

be
r o

f E
xa

m
pl

es

Probabilities of Novelty
Threshold
Known Classes
Drusen

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.51: Histogram of scores assigned to known classes and Drusen and the
ROC curve for the BinaryNet supervisor on the test set in the Retinal OCT exper-
iments.

70

5. Results

The false positives of the different classes relative their occurrence are displayed
below in Figure 5.52. Images of the classes CNV DME and most commonly classified
as novelties followed by a small fraction of the Normal class as for the Artifacts
supervisor.

normal cnv dme
Label

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s
False Positives Distributed Over The Different Classes

Figure 5.52: The false positives distributed over the 3 different classes relative to
the class counts for the BinaryNet supervisor on the test set in the Retinal OCT
experiments.

5.5.8 Comparison of Metrics

The performance metrics for all supervisors are displayed below in Table 5.6. Using
the AUC the supervisors can be divided into two groups. Both the Baseline and
OpenMax supervisor achieves, in the context, good scores over 0.5 which reflects that
they can separate novelties from normal examples. The other supervisors however
end up around 0.5, meaning that a poor separation is achieved. The same pattern
is emerging for the other metrics as well. The Baseline and OpenMax supervisor
achieve the highest precision and are able to correctly classify Drusen as novelties
while also minimizing the number of known classes classified as novelties. This is
in contrast to the other supervisors which are all achieving low precision scores. In
the recall score there is a difference between the Baseline and OpenMax. OpenMax
achieves the highest score which means it is to a higher degree able to classify a
large portion of the Drusen examples as novelties. The Baseline supervisor is not
far behind in comparison to the other supervisors achieving near-zero scores. The
F1 score is highest for the OpenMax and the Baseline supervisor, outperforming the
other supervisors. The pattern is present in the accuracy as well. The OpenMax
supervisor achieves the highest accuracy at 69% followed by the Baseline at 62%.
The rest of the supervisors all have an accuracy below 50%, meaning randomly
classifying incoming examples with equal probabilities would perform better (at
50% accuracy).

71

5. Results

Table 5.6: Performance metrics for the six supervisors on the test set in the Retinal
OCT experiments.

Supervisor AUC Precision Recall F1 Accuracy
Baseline 0.71 0.78 0.35 0.48 0.62
Cascade 0.51 0.46 0.09 0.15 0.49
OpenMax 0.75 0.79 0.52 0.62 0.69
Artifacts 0.45 0.3 0.04 0.07 0.47
BinaryNet 0.42 0.21 0.02 0.04 0.47
NoveltyGAN 0.47 0.4 0.06 0.11 0.49

5.6 Characteristics
In this section, observed characteristics in the supervisors are described. Valuable
characteristics will, if possible, be utilized in the creation of a new supervisor in
Section 5.7.

5.6.1 Baseline
The Baseline was among the best performing supervisors across all scenarios. The
results confirm the hypothesis that a well-performing network’s probabilities do
contain information regarding the uncertainty of the network when presented with
novel inputs. The separation is characterized by a histogram where the normal
examples have a distinct peak at near zero probability of novelty, and are overlapped
by a uniform-like distribution of the novelties. This means there is not a clear
distributional separation like many of the other supervisors achieved in the MNIST
vs Omniglot experiments. This is reflected in a lower recall score for the Baseline
supervisor. The number of false positives for known classes of the Baseline supervisor
has a clear connection to the recall score in the classifier network. A low recall
score for a class in the classifier correspond to high fraction of false positives in the
supervisor.

5.6.2 NoveltyGAN
The DCGAN component of the NoveltyGAN supervisor is able to generate realistic
looking images but have a harder time separating between novelties and normal
images. An apparent reason is that the more varied the dataset is, the harder it
is to reconstruct images and hence separate between the normal and novel images.
Another aspect is the number of iterations while optimizing over the latent vectors; a
higher number of iterations would likely cause the reconstruction to converge closer
to the normal query image. The supervisor is highly dependent on the performance
of the DCGAN. Given a perfect DCGAN, able to only reconstruct images from the
training set distribution, the novelty detection performance would be asymptotic.
This is an undesirable trait since there is no guarantee that such a GAN exists for
all datasets. The NoveltyGAN is however the only supervisor not dependent on the
performance and activations of the CNN classifier.

72

5. Results

5.6.3 Cascade
The Cascade supervisor performed well in the MNIST vs Omniglot experiments
but, as many other supervisors trained using adversarials, did not succeed in the
other scenarios. The layer statistics extracted from the PCA-transforms are fed
into a cascade classifier using normal examples against adversarials. The cascade
classifier’s ability to separate adversarials from normal examples does not generalize
good enough to be able to detect novelties. It is hard to determine if the failure
is dependent of the information in the statistics or because of the adversarials. It
is possible that replacing the support vector classifiers by another algorithm, that
is commonly used for anomaly detection to find abnormalities in the activations,
would yield more interpretable results.

5.6.4 OpenMax
Since the OpenMax supervisor creates its Weibull distributions from the mean acti-
vation vectors in the CNN, it is highly aligned with the invariability in the outputs.
Bendale & Boult (2016) argue that classes are connected to each other and that such
behaviours can be seen in the Softmax outputs. It is therefore feasible that since
the CNN recall scores are low for birds and cats, then sometimes, similar images of
planes are affected in the mean activation vectors. This behaviour is also observable
in the MNIST vs Omniglot experiments with classes 2, 6 and 9. All three numbers
have similarities in form. The differences in the false positive rates of the Retinal
OCT experiments are too small to make such conclusions.

The supervisor achieves good results in all experiments in relation to the other
supervisors. It is therefore reasonable to argue that mean activation vectors contain
information utilizable for the detection of novelties.

5.6.5 Artifacts
The Artifacts supervisor utilizes dropout to find uncertainties in the network when
fed both normal and adversarial images. The uncertainties are associated to the
robustness of the CNN and are a part of the logistic regression predicting if an image
is novel or not. To conclude the results in the CIFAR and Retinal OCT experiments,
the Artifacts algorithm cannot be used for the detection of novelties when trained
on normal and adversarial images even if it in the less complex MNIST vs Omniglot
experiments manages to achieve a high AUC score of 0.96. In the CIFAR experiment
the supervisor has particular problems with the car class, which cannot be connected
to any of the CNN metrics.

5.6.6 BinaryNet
The BinaryNet supervisor is trained on normal and adversarial images. For the
MNIST vs Omniglot experiments the supervisor achieves a high AUC score of 0.97
which means a good separation. In the CIFAR experiments though, it only achieves
an AUC score of 0.54 and goes down to 0.42 for the Retinal OCT experiments.

73

5. Results

The impression is that BinaryNet has more difficulties in separating novelties from
normal, when facing more complex scenarios. Therefore it seems possible but hard
to train a CNN on normal and adversarial images, for the use in supervising tasks.

5.7 Thesis Supervisor

Motivation
The best performing supervisors (OpenMax and Baseline) utilized the uncertainties
in the logits layer (the baseline does it implicitly). Hence, they are bound to miss
novelties that the network thinks it knows. Some novel inputs simply yield a pre-
diction with a high confidence. In the MNIST experiments where both supervisors
reach near perfect metrics (together with the other supervisors). The cause of this is
likely the well-defined dataset. With more varied datasets the problem gets harder.
There may very well be ways to create even better supervisors based upon the late
layer activations. However, the information regarding the novelties in the last layer
is limited. As mentioned, there will be novelties in the open set that cannot be
detected. To be able to rise over the problem, more information explicitly related to
the image itself, such as earlier layer activations rather than late layer activations,
need to be utilized. As shown in the supervisors Artifacts, Cascade and BinaryNet,
using adversarials is not successful for representing novelties. Hence, it is more suit-
able to use the existing training data to, instead of training a supervisor, find scores
or statistics that are characteristic for normal images.

5.7.1 Analysis of Neural Network Layers

Earlier Layers

To address the concern about information explicitly related to the image itself,
earlier layers of the networks were investigated. Since the dimension of the layers
prior to the logits is high, some kind of dimensionality reduction need to take place.
Szegedy et al. (2013) highlight the importance of an activation of a feature (or
neuron, meaning a high value) and its connection to similar inputs. Hence, the
maximum values in the convolutional layers (feature maps) were inspected. Images
in the training set should give rise to these high activations while unfamiliar should
not. A meaningful score could then be L2 norm of all maximum activations in all
feature maps of a convolutional layer. Consider the second layer of a neural network;
a WxBxβ layer with activations, x, the maximum value, m2, of each filter would be

m2
k = max

i∈{1,2...,W},
j∈{1,2,...B}

xijk, k = 1, 2, ..., β. (5.10)

The score for the second layer, n2, is then calculated as

n2 = ||m2||2. (5.11)

For the fully connected layers prior to the logits the 85th percentile was used as the
score.

74

5. Results

Logits

The OpenMax supervisor is based upon the distance from the logits to the mean
activation vectors, and the Baseline on the uniformity of these values after the
Softmax activation function; both proved to be effective. A similar approach would
be to leverage the dropout-layer placed before the logits in all classification networks
used in this thesis. First by recording the value of the without dropout. Then to run
numiter iterations with dropout enabled recording the new logits. Novelties which
were characterized by uniformity should have retained that uniformity throughout
the iterations. This means that the difference between the logits during the iterations
should not deviate from the original one. On the other hand, if the classification
changes for known classes, the values in the logits should deviate. Consider an input,
x, which yields logits, lo without dropout enabled. Running numiter = 10 iterations
would yield 10 other logits li, i = 1, 2, .., 10. The score can then be expressed as the
mean-square difference between the originally observed logits and the ones observed
during the iterations. The score, nlog, is expressed mathematically in (5.12).

nlog = 1
numiter

10∑
i=1

(lo − li)2 (5.12)

To see if the scores are suitable for separating unfamiliar from normal examples,
adversarials were previously used. However, due to the ineffectiveness in using them
for the CIFAR and Retinal OCT experiments, misclassified examples were used to
represent unfamiliar examples instead.

MNIST Neural Network

Only 650 misclassifications occurred in the training set. Hence, the data used for
the experiments with MNIST contained 650 random samples that were correctly
classified and the 650 misclassified. The separation between misclassifications and
correctly classified examples in terms of layer-scores for each layer in the MNIST
neural network is presented below in Figure 5.53 together with the AUCs. As
seen in the figure, none of the two first layer-scores manage to separate the two
categories. The first layer even assigns higher scores to incorrect classifications. The
fully connected layer’s and logits’ layer-scores, does a better job and achieves higher
AUC values. Note that the AUC scores are gradually increasing with the layers,
and then decrease slightly in the logits layer.

75

5. Results

5 6 7 8 9 10
Score

0

5

10

15

20

25

30
Nu

m
be

r o
f E

xa
m

pl
es

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(a) 1st layer (score n1) with an AUC
of 0.45.

15 20 25 30 35
Score

0

5

10

15

20

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(b) 2nd layer (score n2) with an
AUC of 0.51.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Score

0

5

10

15

20

25

30

35

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(c) 3rd layer (score n2) with an AUC
of 0.66.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Score

0

5

10

15

20

25

30

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(d) Logits layer (score nlog) with an
AUC of 0.63.

Figure 5.53: Histogram of scores assigned to correctly and incorrectly classified
MNIST examples in the training set for the Thesis supervisor.

CIFAR neural network

In the training set, 4283 misclassifications occurred. Hence the data used for the
experiments with CIFAR contain 4283 random samples that were correctly classified,
and 4283 misclassified. The separation between misclassified and correctly classified
examples in terms of layer-scores for each layer in the CIFAR neural network is
presented below in Figure 5.54 together with the AUC. As seen in the figure, the
first layer-score does not manage to separate the two categories well. The AUC
scores and separation for the next layers are gradually increasing with a peak in the
fifth layer, second to last, and then decreasing in the logits layer.

76

5. Results

2 4 6 8 10
Score

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f E
xa

m
pl

es
Scores of Correctly and Incorrectly Classified examples

Correct Classifications
Incorrect Classifications

(a) 1st layer (score n1)
achieved an AUC of 0.56.

40 60 80 100 120 140 160 180 200
Score

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(b) 2nd layer (score n2)
with an AUC of 0.60.

60 80 100 120 140 160 180 200 220
Score

0

25

50

75

100

125

150

175

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(c) 3rd layer (score n3)
with an AUC of 0.63.

40 60 80 100 120 140 160
Score

0

50

100

150

200

250

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(d) 4th layer (score n4)
with an AUC of 0.73.

10 20 30 40 50
Score

0

50

100

150

200

250

300

Nu
m

be
r o

f E
xa

m
pl

es
Scores of Correctly and Incorrectly Classified examples

Correct Classifications
Incorrect Classifications

(e) 5th layer (score n5)
with an AUC of 0.82.

0 20 40 60 80 100 120
Score

0

100

200

300

400

500
Scores of Correctly and Incorrectly Classified examples

(f) Logits layer (score
nlog) with an AUC of 0.74.

Figure 5.54: Histogram of scores assigned to correctly and incorrectly classified
CIFAR examples in the training set for the Thesis supervisor.

Retinal OCT Neural Network

In the training set, 796 misclassifications occurred. Hence, the data used for the
experiments with Retinal OCT contains 796 random samples, that were correctly
classified, and 796 misclassified. The separation between misclassified and correctly
classified examples in terms of layer-scores for each layer in the Retinal OCT neural
network is presented below in Figure 5.55 together with the AUC. The same pattern
as in the previous datasets occur here. The AUC scores and separation for the layers
are gradually increasing and peaking in the second to last layer, and then decreasing
in the logits layer.

77

5. Results

2 4 6 8 10 12 14
Feature

0

10

20

30

40

50

60
Nu

m
be

r o
f E

xa
m

pl
es

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(a) 1st layer (score n1) with an AUC
of 0.59.

2 4 6 8 10 12
Feature

0

10

20

30

40

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(b) 2nd layer (score n2) with an
AUC of 0.62.

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Feature

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(c) 3rd layer (score n2) with an AUC
of 0.72.

0 2 4 6 8 10
Feature

0

20

40

60

80

100

120

Scores of Correctly and Incorrectly Classified examples
Correct Classifications
Incorrect Classifications

(d) Logits layer (score nlog) with an
AUC of 0.66.

Figure 5.55: Histogram of scores assigned to correctly and incorrectly classified
Retinal OCT examples in the training set for the Thesis supervisor.

5.7.2 Implementation
Given a dataset and a neural network with l layers, the correctly and incorrectly
classified examples are calculated. Assume the number of correctly classified exam-
ples is nc and incorrectly nw, where nc > nw (otherwise the classifier would not fulfill
any purpose). A random subsample of size nw is drawn from the nc correctly clas-
sified examples and the layer-scores, explained earlier, are extracted for every layer
using the subsample and the nw incorrectly classified examples. The AUCs calcu-
lated from these scores are denoted AUC1, AUC2, ...AUC l. Using all the correctly
classified examples, scaling values (maximum value) for each score are calculated
and denoted by s1, s2, ...sl, respectively.

Given a new query image, the total supervisor score, qs, is calculated as the weighted
sum of the layer scores as

qs =
l−1∑
i=1

AUCi

si
ni + AUC l

sl
nlog. (5.13)

The idea is that layer scores that creates better separation for correctly and incor-

78

5. Results

rectly classified examples should also separate novelties and normal examples better
and are given a higher weight. Note that the classification rule with regard to a
threshold will be reversed relative to the other supervisors (excluding the Cascade
supervisor which also have a reversed classification rule).

5.7.3 Results for MNIST vs Omniglot

The 650 incorrectly classified MNIST examples and a subsample of the same size of
the correctly classified examples were used to extract the AUC values. The threshold
was set to the 10th percentile of the scores (5.13) of the correctly classified examples
from the training set: 1.07. The separation between Omniglot and MNIST images
in the test set is illustrated by Figure 5.56a and the corresponding ROC curve in
Figure 5.56b. The result is similar to the results for the other supervisors (excluding
NoveltyGAN) with a histogram that shows a clear separation between Omniglot and
MNIST and a sharply increasing ROC curve. Note that novelties are consistently
given lower scores than misclassified examples creating a greater separation than
the previous histograms indicated.

0.0 0.5 1.0 1.5 2.0
Score

0

200

400

600

800

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Novelty and Normal examples
Threshold
Mnist
Omniglot

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.56: Histogram of scores assigned to MNIST and Omniglot and the ROC
curve for the Thesis supervisor on the test set in the MNIST vs Omniglot experi-
ments.

To illustrate which classes are more commonly misclassified as novelties, the false
positives relative to the class count of the 10 different classes are displayed below
in Figure 5.57. Images of the number 1 followed by 8 and 9 are most commonly
classified as novelties.

79

5. Results

0 1 2 3 4 5 6 7 8 9
Label

0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.57: The false positives distributed over the 10 different classes relative to
the class counts for the Thesis supervisor on the test set in the MNIST vs Omniglot
experiments.

The performance metrics for the Thesis supervisor are displayed below in Table 5.7.
The metrics are all comparable to the best performing supervisors (Table 5.2) and
shows a clear balance in precision and recall, which is reflected in the F1-score.

Table 5.7: Performance metrics for the Thesis supervisor on the test set in the
MNIST vs Omniglot experiments.

AUC Precision Recall F1 Accuracy
Thesis supervisor 0.96 0.9 0.9 0.9 0.9

5.7.4 Results for CIFAR

The 4283 incorrectly classified CIFAR examples and a subsample of the same size of
the correctly classified examples was used to extract the AUC values. The threshold
was set to the 10th percentile of the scores of the correctly classified examples from
the training set: 1.30. The separation between CIFAR-100 and CIFAR-10 images
in the test set is illustrated by Figure 5.58a and the corresponding ROC curve in
Figure 5.58b. The result is a visible separation but with a significant overlap.

80

5. Results

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Score

0

100

200

300

400

500

600

700

Nu
m

be
r o

f E
xa

m
pl

es
Scores of Novelty and Normal examples

Threshold
Cifar-10
Cifar-100

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.58: Histogram of scores and the ROC curve for the Thesis supervisor on
the test set in the CIFAR experiments.

To illustrate which classes are more commonly misclassified as novelties, the false
positives relative to the class count of the 10 different classes are displayed below in
Figure 5.59. The Thesis supervisor has more trouble with deers, birds and cats.

plane car bird cat deer dog frog horse ship truck
Label

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.59: The false positives distributed over the 10 different classes relative to
the class counts for the Thesis supervisor on the test set in the CIFAR experiments.

The performance metrics for the Thesis supervisor are displayed below in Table 5.8.
The AUC is the same as the OpenMax supervisor and only 0.02 units worse than
the Baseline. The same goes for the other metrics as well. They are all very similar
to the OpenMax supervisor.

Table 5.8: Performance metrics for the Thesis supervisor on the test set in the
CIFAR experiments.

AUC Precision Recall F1 Accuracy
Thesis supervisor 0.74 0.71 0.32 0.44 0.60

81

5. Results

5.7.5 Results for Retinal OCT
The 796 incorrectly classified Retinal OCT examples and a subsample of the same
size of the correctly classified examples was used to extract the AUC values. The
threshold was set to the 10th percentile of the scores of the correctly classified exam-
ples from the training set: 0.78. The separation between Drusen and known classes
in the test set is illustrated by Figure 5.60a and the corresponding ROC curve in
Figure 5.60b. The histogram shows almost no separation, which is reflected in the
ROC curve resembling the straight line.

0.5 1.0 1.5 2.0 2.5
Score

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f E
xa

m
pl

es

Scores of Novelty and Normal examples
Threshold
Known Classes
Drusen

(a) Scores.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

(b) ROC curve.

Figure 5.60: Histogram of scores assigned to known classes and Drusen and the
ROC curve for the Thesis supervisor on the test set in the Retinal OCT experiments.

The false positives of the different classes relative to their occurrence are displayed
below in Figure 5.61. Images of the class DME is most commonly classified as a
novelty.

normal cnv dme
Label

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
la

tiv
e

Fr
ac

tio
n

of
 F

al
se

 P
os

iti
ve

s

False Positives Distributed Over The Different Classes

Figure 5.61: The false positives distributed over the 3 different classes relative
to the class counts for the Thesis supervisor on the test set in the Retinal OCT
experiments.

82

5. Results

The performance metrics for the Thesis supervisor are displayed below in Table 5.9.
As with many other supervisors the performance is poor and reduces to approxi-
mately randomly guessing whether a new input is a novelty or not. In comparison
to the other supervisors the Thesis supervisor do however perform better than all
of them in terms of all metrics, with the exception of the Baseline and OpenMax
supervisors.

Table 5.9: Performance metrics for the Thesis supervisors on the test set in the
Retinal OCT experiments.

AUC Precision Recall F1 Accuracy
Thesis supervisor 0.56 0.53 0.11 0.18 0.51

5.7.6 Characteristics
As shown in the analysis of misclassifications, earlier layers prior to the logits do
contain information about such occurrences. In specific, the score of the second
to last layer achieved an AUC of 0.66, 0.82 and 0.72 separating correctly and in-
correctly classified examples for the MNIST vs Omniglot, CIFAR and Retinal OCT
scenarios, respectively. The results on the MNIST vs Omniglot experiments were, as
for the other supervisors, very good. The Thesis supervisor did however show most
difficulty in separating the number 1 from the novelties. The other supervisors did
not experience the same issue. This means that the Thesis supervisor scores exam-
ples differently and that might be a complementary trait to other supervisors. For
CIFAR, the Thesis supervisor performs almost identically to the OpenMax super-
visor although the score distributions look differently. Again, the relative fraction
of false positives differ. For the Retinal OCT experiment, the Thesis supervisor
performs poorly relative to the OpenMax and Baseline supervisors, showing almost
no separation at all. That is surprising due to the fact that the results for the other
supervisors are similar over the Retinal OCT and CIFAR experiments. The reason
for the under-performance may be that the accuracy for the Retinal OCT neural
network is significantly higher than the CIFAR neural network. The supervisor
might need a network that shows more uncertainty, even for the known classes, to
be able to perform.

83

5. Results

84

6
Discussion

In this chapter, the methods and results of the thesis will be evaluated. Beyond
major subjects, questions that have occurred during the project will be discussed in
less details.

6.1 Background and Purpose
The thesis project was initiated as a part of the SMILE II project at Semcon. Part of
the objective was to verify inputs sent to neural networks. Regardless of the SMILE
II focus on autonomous driving, the thesis has found and evaluated supervisors on a
mix of eligible scenarios consisting of different datasets. The findings are connected
to the SMILE II project in terms of developing a supervisor able to detect novelties
in CNNs and what key characteristics a supervisor should hold.

A thorough literature review has been made and presented in Chapter 3 of the
thesis. Included are nine articles on novelty detection, nine on the defense against
adversarial examples and five datasets. Therefore, a proper investigation of the
current state of development has been made in accordance to the stated thesis
objective. The review will be discussed in the following section.

6.2 Literature Review
In the search for related works to input verification, an associative search method
was used. The method showed to be fruitful as 73 relevant articles were found in
only two iterations. With that amount of articles, the most interesting ones were
selected through two iterations of a screening process. The first iteration consisted
of an evaluation of relevance through the reading of abstracts and the second iter-
ation consisted of more thorough evaluation of algorithms and results. During the
thesis process, discoveries of missed articles and articles published during the work
have been found such as the publications by Ge et al. (2017), Hassen & Chan (2018)
and Shu et al. (2018).

Since the thesis has, among other things, focused on using adversarial examples to
gain knowledge about, or find boundaries to, the learned domain of a CNN, several
papers in the literature review focus on the defense against such adversarials. While
this thesis is not the first approach towards using adversarials to detect novelties,

85

6. Discussion

see the work by Bendale & Boult (2016), the approach is still in the cradle.

6.3 Experiments
A collection of characteristics in the evaluated supervisors, found during the exper-
iments, can be found in Section 5.6.

The results show that the adversarial hypothesis was true for the easier MNIST vs
Omniglot experiments. However, for the CIFAR and Retinal OCT experiments, no
such conclusion could be made, since only the Baseline and OpenMax supervisors
achieved satisfying results. That means that the best performing supervisors were
not the ones utilizing adversarials. The supervisors being trained on adversarials
achieved almost no separation at all on the more complex datasets and often reduced
to performance equal to randomly guessing if an input is a novelty or not.

Since the MNIST vs Omniglot scenario resulted in good results for every supervisor
except NoveltyGAN, the impression is that the datasets are too simple in complex-
ity to be used for evaluating supervisors. In future implementations towards input
verification, the other scenarios, that are more complex, are more suitable. The
supervisors implemented were modified and applied to different problems than orig-
inally designed for. Hence, it is hard to compare the results against the original
papers. The supervisors using the adversarial examples all performed poorly on the
two more complex datasets, addressing the issue or difficulty using adversarials as
training data for novelty detection. To draw conclusions about the approaches, the
supervisors use and the information they extract, it would be suitable to apply them
without using adversarials. Instead, one should modify the underlying mechanisms
to work only with the normal data provided to act as a traditional novelty detection
algorithm. The best performing supervisors, OpenMax and Baseline, both used the
final layer of the neural network, the logits, to classify novelties. The Baseline, which
is a simple rule to produce a novelty score, works surprisingly well for all datasets.
However, the baseline consistently classifies normal classes that have a low recall
score in the network classifier as novelties across all experiments. The same pattern
is not experienced for the OpenMax supervisor. Both supervisors are dependent
on the network to display a certain pattern in the last layer which is different for
novelties compared to normal examples. This trait cannot be guaranteed at this
time but might be a problem to solve in future work. If the network can be trained
to display these traits, a simple or more sophisticated supervisor can be used to
accurately remove novelties from the deep learning system.

The thesis process has been limited to one laptop with a good graphics card until the
fans broke and, luckily, the project was saved by the access to a high-end computer.
As a consequence of the limitations in computational capacity, time has been of
the essence as the implementations and experiments of the chosen supervisors took
longer time than expected. The limitations have eventually led to delimitations in
network depth and complexity, hence the smaller networks used in the experiments.

86

6. Discussion

It is possible that deeper CNNs with more layers could open up to other supervisors,
utilizing the increased complexity. Better computational capacity and time could
also enable evaluations on datasets with larger images with more realistic scenarios.
Additional resources would decrease the uncertainties in the results since there were
not time enough to run the experiments multiple times and then average over the
results. As of now, the results are achieved in a single run.

6.4 Development of A New Supervisor
A thorough motivation for the characteristics used in the development of the thesis
supervisor is presented in the beginning of Section 5.7.

The analysis of the different networks show that attributes extracted from the dif-
ferent layers show different patterns depending on if the input was correctly or in-
correctly classified. Using this fact, an attempt was made to utilize all layers of the
network in the supervisor to perform novelty detection. The results were satisfying
for the MNIST vs Omniglot and CIFAR experiments but not for the Retinal OCT
experiment. As mentioned, the MNIST vs Omniglot results are hard to interpret as
nearly all supervisors performed well. The difference in classification performance
between the networks used for the other two datasets were significantly different.
The CIFAR neural network achieved a test accuracy of 79% while the Retinal OCT
neural network achieved 96%. This points towards the possibility that the supervi-
sor might only be functional when the neural network itself is not completely certain
of normal examples.

Depending on the problem, a simple supervisor that achieves decent results such
as the Baseline supervisor is enough, but if higher performance is needed, a more
thorough analysis of the neural network that is supposed to be supervised might be
needed. As the results for the new supervisor shows, there might not be one best fit
for all types of networks. It is important to investigate the network performance and
in which layers patterns of uncertainties exist, then use them to extract meaningful
attributes that separate novelties from normal examples.

87

6. Discussion

88

7
Conclusion

Connecting the literature review to the research questions, it can be concluded that
the search for articles has resulted in a variety of algorithms with different ap-
proaches, making a good starting point for a possible future project on the same
subject. As several different approaches were analyzed, a few promising and avail-
able algorithms were implemented, not only from the field of novelty detection but
also from adversarial detection. Since the novelty space is infinite, adversarials were
used as they are close to the decision boundary of the classes defined by the trained
classifier. The results show, however, that adversarials do not provide the represen-
tation of novelties as hoped, but resulted in algorithms failing when presented with
more complex and varied problems. As such, it is hard to judge the algorithms in
the sense of the information they extract; the results might just be a consequence
of the adversarials. A more thorough analysis where the algorithms can be trained
either on the available normal data or something else, might provide valuable infor-
mation.

The algorithms that achieved the best results across the scenarios are based on the
final layer of the neural network being supervised. One of them being the Baseline
supervisor which is a simple rule reflecting the networks uncertainty in predictions.
The other being the OpenMax supervisor, also based upon the patterns in the last
layer, but with a more sophisticated probabilistic approach. Both algorithms are
very dependent on the network ability to show abnormalities in the final layer when
receiving novelties. An undesirable trait since this ability cannot be guaranteed
at this time. The simple Baseline is however very effective in comparison with its
complexity and do provide a quick way to benchmark new algorithms and even use
in a real system.

When developing the new supervisor, the characteristics were taken into account
and not only the final layer was considered, but all of them. By extracting at-
tributes from the layers, a separation was seen between incorrectly and correctly
classified examples revealing that information can be found in earlier layers as well.
While evaluating the supervisor, varying results were observed. The new supervi-
sor performed similar to the two aforementioned supervisors in two scenarios while
significantly worse in the other. Meaning that the information contained in layers,
and how its represented, may vary with both network and problem, hence neural
network-specific supervisors may prove to be needed.

89

7. Conclusion

90

Bibliography

Abdi, H. & Williams, L. J. (2010), ‘Principal component analysis’, Wiley Interdis-
ciplinary Reviews: Computational Statistics 2(4), 433–459.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schulman, J. & Mané, D.
(2016), ‘Concrete problems in AI safety’, CoRR abs/1606.06565.
URL: http://arxiv.org/abs/1606.06565

Bendale, A. (2016), ‘Osdn’. Accessed: 2018-04-24.
URL: https://github.com/abhijitbendale/OSDN

Bendale, A. & Boult, T. (2016), Towards open set deep networks, in ‘Computer
Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on’, IEEE.

Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J. & Zieba, K. (2016),
‘End to end learning for self-driving cars’, CoRR abs/1604.07316.
URL: http://arxiv.org/abs/1604.07316

Boudette, N. E. & Vlasic, B. (2017), ‘Tesla self-driving system faulted by safety
agency in crash - the new york times’, https://www.nytimes.com/2017/09/12/
business/self-driving-cars.html. (Accessed on 02/02/2018).

Chandola, V., Banerjee, A. & Kumar, V. (2009), ‘Anomaly detection: A survey’,
ACM computing surveys (CSUR) 41(3), 15.

Chen, J., Meng, Z., Sun, C., Tang, W. & Zhu, Y. (2017), ‘Reabsnet: Detecting and
revising adversarial examples’, arXiv preprint arXiv:1712.08250 .

Dau, H. A., Ciesielski, V. & Song, A. (2014), Anomaly detection using replicator
neural networks trained on examples of one class, in ‘Asia-Pacific Conference on
Simulated Evolution and Learning’, Springer, pp. 311–322.

Erfani, S. M., Rajasegarar, S., Karunasekera, S. & Leckie, C. (2016), ‘High-
dimensional and large-scale anomaly detection using a linear one-class svm with
deep learning’, Pattern Recognition 58, 121–134.

Fawzi, A., Moosavi-Dezfooli, S., Frossard, P. & Soatto, S. (2017), ‘Classification
regions of deep neural networks’, CoRR abs/1705.09552.
URL: http://arxiv.org/abs/1705.09552

https://www.nytimes.com/2017/09/12/business/self-driving-cars.html
https://www.nytimes.com/2017/09/12/business/self-driving-cars.html

Bibliography

Feinman, R. (2018), ‘detecting-adversarial-samples’. Accessed: 2018-04-26.
URL: https://github.com/rfeinman/detecting-adversarial-samples

Feinman, R., Curtin, R. R., Shintre, S. & Gardner, A. B. (2017), ‘Detecting adver-
sarial samples from artifacts’, arXiv preprint arXiv:1703.00410 .

Gal, Y. & Ghahramani, Z. (2015), ‘Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning’, ArXiv e-prints .

Ge, Z., Demyanov, S., Chen, Z. & Garnavi, R. (2017), ‘Generative openmax for
multi-class open set classification’, CoRR abs/1707.07418.
URL: http://arxiv.org/abs/1707.07418

Getting Started | TensorFlow (2018). Accessed: 2018-04-20.
URL: https://www.tensorflow.org/get_started/

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, MIT Press. http:
//www.deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. & Bengio, Y. (2014), Generative adversarial nets, in ‘Advances in
neural information processing systems’, pp. 2672–2680.

Grosse, K., Manoharan, P., Papernot, N., Backes, M. & McDaniel, P. D. (2017),
‘On the (statistical) detection of adversarial examples’, CoRR abs/1702.06280.
URL: http://arxiv.org/abs/1702.06280

Grother, P. J. (1995), ‘Nist special database 19’, Handprinted forms and characters
database, National Institute of Standards and Technology .

Hassen, M. & Chan, P. K. (2018), ‘Learning a neural-network-based representation
for open set recognition’, CoRR abs/1802.04365.
URL: http://arxiv.org/abs/1802.04365

He, K., Zhang, X., Ren, S. & Sun, J. (2015), ‘Deep residual learning for image
recognition’, CoRR abs/1512.03385.
URL: http://arxiv.org/abs/1512.03385

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.
(2012a), ‘Improving neural networks by preventing co-adaptation of feature de-
tectors’, CoRR abs/1207.0580.
URL: http://arxiv.org/abs/1207.0580

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R.
(2012b), ‘Improving neural networks by preventing co-adaptation of feature de-
tectors’, arXiv preprint arXiv:1207.0580 .

Huang, X., Kwiatkowska, M., Wang, S. & Wu, M. (2016), ‘Safety verification of
deep neural networks’, CoRR abs/1610.06940.
URL: http://arxiv.org/abs/1610.06940

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

Ioffe, S. & Szegedy, C. (2015), ‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift’, CoRR abs/1502.03167.
URL: http://arxiv.org/abs/1502.03167

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L.,
McKeown, A., Yang, G., Wu, X., Yan, F. et al. (2018), ‘Identifying medical
diagnoses and treatable diseases by image-based deep learning’, Cell 172(5), 1122–
1131.
URL: http://dx.doi.org/10.17632/rscbjbr9sj.2

Kingma, D. P. & Ba, J. (2014), ‘Adam: A method for stochastic optimization’,
CoRR abs/1412.6980.
URL: http://arxiv.org/abs/1412.6980

Krizhevsky, A. & Hinton, G. (2009), ‘Learning multiple layers of features from tiny
images’.

Kurakin, A., Goodfellow, I. J. & Bengio, S. (2016), ‘Adversarial examples in the
physical world’, CoRR abs/1607.02533.
URL: http://arxiv.org/abs/1607.02533

Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. (2015), ‘Human-level concept
learning through probabilistic program induction’, Science 350(6266), 1332–1338.

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998), ‘Gradient-based learning
applied to document recognition’, Proceedings of the IEEE 86(11), 2278–2324.

Li, X. & Li, F. (2016), ‘Adversarial examples detection in deep networks with con-
volutional filter statistics’, CoRR abs/1612.07767.
URL: http://arxiv.org/abs/1612.07767

Liu, D. C. & Nocedal, J. (1989), ‘On the limited memory bfgs method for large scale
optimization’, Mathematical programming 45(1-3), 503–528.

Liu, Y., Cukic, B. & Gururajan, S. (2007), ‘Validating neural network-based online
adaptive systems: A case study’, Software Quality Journal 15(3), 309–326.

Lu, J., Issaranon, T. & Forsyth, D. A. (2017), ‘Safetynet: Detecting and rejecting
adversarial examples robustly’, CoRR abs/1704.00103.
URL: http://arxiv.org/abs/1704.00103

Lucas Deecke, Robert Vandermeulen, L. R. S. M. M. K. (2018), ‘Anomaly detection
with generative adversarial networks’.
URL: https://openreview.net/forum?id=S1EfylZ0Z

Metzen, J. H., Genewein, T., Fischer, V. & Bischoff, B. (2017), ‘On detecting ad-
versarial perturbations’, arXiv preprint arXiv:1702.04267 .

Moosavi-Dezfooli, S., Fawzi, A. & Frossard, P. (2015), ‘Deepfool: a simple and
accurate method to fool deep neural networks’, CoRR abs/1511.04599.
URL: http://arxiv.org/abs/1511.04599

Bibliography

Murphy, K. P. (2014), Machine learning: a probabilistic perspective, MIT Press,
Cambridge, MA.

Papernot, N., McDaniel, P. D., Jha, S., Fredrikson, M., Celik, Z. B. & Swami,
A. (2015), ‘The limitations of deep learning in adversarial settings’, CoRR
abs/1511.07528.
URL: http://arxiv.org/abs/1511.07528

Paultimothymooney (2018), ‘Retinal oct images (optical coherence tomography)’.
Accessed: 2018-05-09.
URL: https://www.kaggle.com/paultimothymooney/kermany2018

Pimentel, M. A., Clifton, D. A., Clifton, L. & Tarassenko, L. (2014), ‘A review of
novelty detection’, Signal Processing 99, 215–249.

Radford, A., Metz, L. & Chintala, S. (2015), ‘Unsupervised representation
learning with deep convolutional generative adversarial networks’, CoRR
abs/1511.06434.
URL: http://arxiv.org/abs/1511.06434

Richter, C. & Roy, N. (2017), Safe visual navigation via deep learning and novelty
detection, in ‘Robotics: Science and Systems XIII, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA, July 12-16, 2017’.
URL: http://www.roboticsproceedings.org/rss13/p64.html

Sakurada, M. & Yairi, T. (2014), Anomaly detection using autoencoders with nonlin-
ear dimensionality reduction, in ‘Proceedings of the MLSDA 2014 2nd Workshop
on Machine Learning for Sensory Data Analysis’, ACM, p. 4.

Scheirer, W. J., de Rezende Rocha, A., Sapkota, A. & Boult, T. E. (2013), ‘To-
ward open set recognition’, IEEE Transactions on Pattern Analysis and Machine
Intelligence 35(7), 1757–1772.

Scheirer, W. J., Rocha, A., Michaels, R. & Boult, T. E. (2011), ‘Meta-recognition:
The theory and practice of recognition score analysis’, IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 33, 1689–1695.

Scheirer, W. J., Rocha, A., Micheals, R. J. & Boult, T. E. (2011), ‘Meta-recognition:
The theory and practice of recognition score analysis’, IEEE transactions on pat-
tern analysis and machine intelligence 33(8), 1689–1695.

Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U. & Langs, G. (2017),
‘Unsupervised anomaly detection with generative adversarial networks to guide
marker discovery’, CoRR abs/1703.05921.
URL: http://arxiv.org/abs/1703.05921

Shu, L., Xu, H. & Liu, B. (2018), ‘Unseen class discovery in open-world classifica-
tion’, CoRR abs/1801.05609.
URL: http://arxiv.org/abs/1801.05609

Bibliography

Simonyan, K. & Zisserman, A. (2014), ‘Very deep convolutional networks for large-
scale image recognition’, CoRR abs/1409.1556.
URL: http://arxiv.org/abs/1409.1556

Steinwart, I., Christmann, A. & (e-book collection), S. (2008), Support vector ma-
chines, 1st;1. aufl.; edn, Springer, New York.

Subramanya, A., Srinivas, S. & Babu, R. V. (2017), ‘Confidence estimation in deep
neural networks via density modelling’, CoRR abs/1707.07013.
URL: http://arxiv.org/abs/1707.07013

Swanson, E. A. & Fujimoto, J. G. (2017), ‘The ecosystem that powered the transla-
tion of oct from fundamental research to clinical and commercial impact (invited)’,
Biomed. Opt. Express 8(3), 1638–1664.
URL: http://www.osapublishing.org/boe/abstract.cfm?URI=boe-8-3-1638

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow,
I. J. & Fergus, R. (2013), ‘Intriguing properties of neural networks’, CoRR
abs/1312.6199.
URL: http://arxiv.org/abs/1312.6199

Ting, D. S. W., Cheung, C. Y., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A.,
Hamzah, H., Garcia-Franco, R., San Yeo, I. Y., Lee, S. Y., Wong, E. Y. M.,
Sabanayagam, C., Baskaran, M., Ibrahim, F., Tan, N. C., Finkelstein, E. A.,
Lamoureux, E. L., Wong, I. Y., Bressler, N. M., Sivaprasad, S., Varma, R., Jonas,
J. B., He, M. G., Cheng, C.-Y., Cheung, G. C. M., Aung, T., Hsu, W., Lee,
M. L. & Wong, T. Y. (2017), ‘Development and validation of a deep learning
system for diabetic retinopathy and related eye diseases using retinal images from
multiethnic populations with diabetes’, JAMA 318(22), 2211–2223.

Wang, W., Wang, A., Tamar, A., Chen, X. & Abbeel, P. (2017), ‘Safer classification
by synthesis’, CoRR abs/1711.08534.
URL: http://arxiv.org/abs/1711.08534

Xu, W., Evans, D. & Qi, Y. (2017), ‘Feature squeezing: Detecting adversarial ex-
amples in deep neural networks’, CoRR abs/1704.01155.
URL: http://arxiv.org/abs/1704.01155

Zheng, S., Song, Y., Leung, T. & Goodfellow, I. (2016), Improving the robustness
of deep neural networks via stability training, in ‘Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition’, pp. 4480–4488.

Bibliography

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Primer on Machine Learning
	SMILE II-Project

	Objective
	Aim
	Delimitations
	Specification of Issue Under Investigation
	Some Clarifications
	Thesis Outline

	Theory
	Deep Neural Networks
	The Optimization Problem
	Fully Connected Neural Networks
	The Backpropagation Algorithm
	Convolutional Neural Networks
	Generative Adversarial Networks
	Cross-Entropy Loss
	Dropout
	Batch Normalization

	Principal Component Analysis
	Logistic Regression
	Support Vector Machine/Classifier
	Adversarial Examples

	Literature Review
	Anomaly and Novelty Detection
	Reconstruction-Based Detection
	Domain-Based Detection
	Probabilistic-based Detection

	Adversarial Example Detection
	Insights
	Binary Adversarial Classifiers
	Layer Activation Statistics
	Confidence Estimation

	Datasets
	MNIST
	Omniglot
	CIFAR-10 & CIFAR-100
	Retinal Optical Coherence Tomography

	Methods
	Literature Review
	Finding Papers

	Criteria for Methods to Implement
	Motivation for Scenarios to Evaluate Upon
	Experimental Setup
	Performance Metrics

	Neural Network Architectures
	MNIST Neural Network Architecture
	CIFAR-10 Neural Network Architecture
	Retinal OCT Neural Network Architecture

	Creating a New Supervisor

	Results
	Selecting Existing Supervisors
	Motivation of Selected Supervisors
	Dismissed Approaches

	Implementation of Selected Supervisors
	Baseline
	NoveltyGAN
	Cascade
	OpenMax
	Artifacts
	BinaryNet

	Experiments on MNIST vs Omniglot
	MNIST Neural Network
	Baseline
	NoveltyGAN
	Cascade
	OpenMax
	Artifacts
	BinaryNet
	Comparison of Metrics

	Experiments on CIFAR
	CIFAR-10 Neural Network
	Baseline
	NoveltyGAN
	Cascade
	OpenMax
	Artifacts
	BinaryNet
	Comparison of Metrics

	Experiments on Retinal OCT
	Retinal OCT Neural Network
	Baseline
	NoveltyGAN
	Cascade
	OpenMax
	Artifacts
	BinaryNet
	Comparison of Metrics

	Characteristics
	Baseline
	NoveltyGAN
	Cascade
	OpenMax
	Artifacts
	BinaryNet

	Thesis Supervisor
	Analysis of Neural Network Layers
	Implementation
	Results for MNIST vs Omniglot
	Results for CIFAR
	Results for Retinal OCT
	Characteristics

	Discussion
	Background and Purpose
	Literature Review
	Experiments
	Development of A New Supervisor

	Conclusion

