

Image segmentation and pre-processing for

electronic waste identification
Using OpenCV to compare different techniques for object

extraction and rotation

Master of Science Thesis

ROGER LJUNGBERG

MATHIAS ANDERSSON

Department of Applied Information Technology

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 2012

Report No. 2012:85

ISSN: 1651-4769

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Image segmentation and pre-processing for electronic waste identification.

Using OpenCV to compare different techniques for object extraction and rotation.

ROGER LJUNGBERG

MATHIAS ANDERSSON

© ROGER LJUNGBERG, May 2012.

© MATHIAS ANDERSSON, May 2012.

Examiner: CLAES STRANNEGÅRD

Chalmers University of Technology

University of Gothenburg

Department of Applied Information Technology

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover: A circuit card being photographed and used as input to the pre-processing

algorithms.

Department of Computer Science and Engineering

Göteborg, Sweden May 2012

1

Abstract

This is a master thesis which compares several methods for foreground segmentation and object

rotation. By object rotation, it is meant in this thesis that for a given object, having images with

different angles as input should ideally always output images with the object in the same angle.

Finally, it is tested how this combined can make the task of object recognition easier by running

the algorithms for the two tasks successively as an image pre-processing stage. It is shown that

making pixel-wise background segmentation by comparing the input image to an averaged

background image works well for the segmentation task, and that encapsulating the object in a

minimum bounding rectangle and rotating it with the angle of the bounding box can work well

for the rotation task. It is also shown that using these algorithms combined as a pre-processing

stage to an object classifier may be a way of making the classification easier.

2

Contents

1. Introduction ... 3

1.1 Background ... 3

1.2 Purpose .. 3

1.3 Limitations .. 4

1.4 Questions... 4

2. Method .. 4

3. Theoretical background .. 5

3.1 Image representation and color spaces ... 5

3.2 Image enhancement methods .. 7

3.3 Image transformation methods ... 15

3.4 Feature detection methods .. 16

3.5 Background subtraction .. 22

3.6 Image Classification .. 24

3.7 Earlier research work of interest ... 24

4. Experiments .. 25

4.1 Test set .. 25

4.2 Experiment 1: Image segmentation comparison ... 27

4.3 Experiment 2: Image rotation ... 31

4.4 Experiment 3: Testing how the segmentation and rotation algorithms can enhance the

performance of an object classifier ... 39

5 Discussion .. 39

5.1 Segmentation... 40

5.2 Rotation ... 40

5.3 Image classification .. 41

6. Further work.. 43

7. Conclusions ... 44

3

1. Introduction

1.1 Background

Electronic waste is usually fed into recycling plants in unsorted batches. It is then shredded

without further pre-processing. Many products have rare earth materials which may be very

valuable or perhaps may contaminate the batches. It would be beneficial to sort the content of the

batches and process them in different groups according to material content. Hence, there is a

need of finding and localizing each individual product at a conveyor belt.

The company Optisort is specialized in technology for identifying and sorting waste products.

Their most recent accomplishment is a method for sorting batteries which is used on recycling

plants. The method is based on visual recognition, and takes advantage of the limited variations

in shape of batteries. The battery is fed mechanically to the front of the camera. However, when

this method is extended to other sorts of waste than just batteries, the same controlled flow

cannot be maintained that easily due to the large variance in shapes. Optisort has now finished

their battery sorter and wants to develop more solutions for the recycle industry. Thus, in order to

be able to adapt the current recognition system to electronic waste products, pre-processing of its

input images has to be done in order to avoid excessive amounts of background being part of

them, to avoid that several objects are taken for being a single object, and other similar issues.

1.2 Purpose

The main aim of the project is to find an algorithm that solves the two following tasks:

1) Given an image, the positions and bounding areas of each object in it are to be found.

2) Given an image of a single object, the image is to be rotated in such a way that if another

image of the same object would be given, but with a different rotation, both of the resulting

images would have the same rotation after being processed.

These tasks should be done in sequence, such that each output of task 1 is processed by task 2.

Task 1 and 2 combined can be seen as a module, which takes one image as an input and gives a

sequence of rotated sub-images as output. These output images could then be fed into a separate

image recognition algorithm.

Different candidate solutions for the tasks above should be found and then tested through

experiments so that their performance can be compared.

4

1.3 Limitations

We did not investigate different camera placements and hardware configurations; the methods

we investigated just assumed that we had some picture taken and that we were going to process

it.

The sample data in the experiments is limited to the kind of objects that the available prototype

could produce. The prototype could only handle small objects (smaller than a mobile phone), so

testing against larger objects than so has not been done. The objects used in the set of test images

are chosen based on what has been of interest to Optisort. The results are thus less general and

more specific to their needs.

The algorithms have been implemented using OpenCV in order to limit the implementation time,

and thus solutions that have optimized support in OpenCV will be favored in the selection. The

programming language used was C++, which is a language that Optisort uses in their

implementations, and it is also frequently used with OpenCV. Furthermore, the fields of

computer vision and image processing are broad, so we focused our study on some algorithms

that are among the more well-known and that have had related use.

1.4 Questions

These are the questions that we aimed to answer in this thesis:

What are some useful algorithms that can be used to find objects in an image, and how do they

perform?

What are some useful algorithms that can be used to determine the rotation of an object and how

do they perform?

Can some standard pre-processing algorithms enhance the performance of the segmentation- and

rotation algorithms?

Can segmentation- and rotation pre-processing enhance the performance of object classification

algorithms?

2. Method

The project was carried out roughly as beginning with one month of research studies followed by

two months of implementation and testing, and finally one month of report writing.

The literature studies during the first month were used to get a good understanding of which

algorithms needed to be implemented and tested. A first step was to get an overview of possible

candidates, and then a second step followed which was about searching for more information

about the candidates.

5

After the literature studies, we acquired the data to be used with the experiments. The data was

retrieved from Optisort, who produced it with a prototype product.

Next followed the implementation and testing phase. First some algorithms (some for object

recognition and some for object rotation) were implemented in a way that they could be

compared. Exactly which algorithms that were chosen was a decision based on the knowledge

from the literature study. Some were more strictly based on the descriptions found, and some

were based more on our own ideas.

After the implementation step was done, experiments were carried out. The purpose of these

experiments was to test the algorithms in order to compare their performance and to discover

how some different factors affected them. The test results were then reviewed.

The last test was done by choosing the best segmentation algorithm and the two best rotation

algorithms and applying them in a pre-processing stage before they were used as input to an

object classification algorithm. The purpose of this was to investigate to what degree these image

processing algorithms could make the task of object classification easier.

3. Theoretical background

Here the background theory is covered which our experiments and chosen methods were based

upon. This work is mainly based on theory from the related areas of Image Processing, Image

Segmentation and Computer Vision. Different algorithms from these fields can work

cooperatively in the sense that, for example, one might need to process an image by some

enhancement method such as smoothing before segmentation can be carried out successfully.

Although we have two separate algorithms for segmentation and rotation, many of the techniques

presented here are relevant for both fields. First, how an image is represented and what a

computer image is will be covered in chapter 3.1. Then, image enhancement methods are

presented in chapter 3.2. Next, transformation methods are described in chapter 3.3. These are

primarily of interest for the task of image rotation in this report. Finally, feature detection

methods are covered in chapter 3.4, and they can be helpful both when it comes to image

segmentation and rotation.

3.1 Image representation and color spaces

General computer raster images are represented as matrices, where each element is a pixel (dot

of an image) (Young et al., 1998, p.2).

This is a matrix of sets, where each set is the intensity value of a specific image channel. A

normal grayscale image might be represented with just one color channel, while a color image

might have more channels. A standard set of channels for color images is the RGB (Red, Green,

Blue) set where each channel roughly corresponds to the base colors that the human eye

registers.

6

There are several more ways a color image can be represented in (these ways go under the term

color spaces), especially the HSV (Hue, Saturation, Value) / HSL (Hue Saturation, Lightness) is

of interest within this field. The HSL color space is related to the RGB color space in the sense

that it is a linear transformation of it (Tkalcic et al., 2005). Thus, a color represented as a red

intensity, a green intensity and a blue intensity combined can be seen as a point in a three

dimensional space where red, green and blue correspond to one axis each. Thus, the set of all

possible colors has a form of a cube in the linear space. If this cube is uniform and has a side of

length 1, then each point on the line, x = y = z, (an equal amount of each color) represents a

grayscale value from black (at point x = y = z = 0), to white (at point x = y = z = 1). This is the L

value of HSL. The S value is then the distance between the color point and the closest point on

the x = y = z line. The H value is the angle of rotation of the color point along the x = y = z line

(against some predefined reference). Note that this is just a rough explanation of how the RGB

color space correlates to the HSL color space and not an exact description of how to implement

conversions between the two color spaces.

Figure 1: A visual representation of the RGB color space and a rough approximation of how it

can be converted to a HSL color space. The idea is that by simply doing a three dimensional

rotation of the RGB cube and flattening the color edges so that their distances to the white and

the black edges are equal, a HSL style representation is acquired.

7

Figure 2: The HSL and HSV color spaces (Wikimedia Commons, 2010)

3.2 Image enhancement methods

A major part of image processing is the field of image enhancement. In this section image

enhancement will be defined as methods to alter an image in order to enhance certain aspects of

it (Wu et al., 2008, chapter 6).

There are a couple of different ways to approach image enhancement. For example, the most

basic operations on a gray scale image would be multiplication and addition of the intensity

values. Addition of a positive value would make the image lighter as each intensity value would

increase, and addition of a negative value would make the image darker. Multiplication affects

the contrast of the image, such that multiplication with a value greater than 1 increases the range

of intensity values (higher contrast), while multiplication with a non-negative value less than 1

decreases the range of intensity values (lower contrast). This is a kind of operation that could be

done pixel by pixel, with each pixel´s change being independent of the other pixels. On the other

hand, there are also approaches that make changes to the pixels based on statistics from the

collected data of neighboring pixels, which are described in sections 3.2.3 and 3.2.5 below. In

section 3.2.1 and 3.2.2 histogram methods, which consider collected statistics from all the pixels

and make changes more to the image on the whole rather than strictly pixel by pixel, are

considered.

8

3.2.1 Histogram

A histogram can be seen as a graph derived from an image. For each channel of the image, the

frequency of every possible intensity value is calculated. A histogram is thus a representation of

the original image where the position of each pixel is lost, but instead the amount of each

possible color in the color space that exists in the image is made available for analysis (Bovik et

al., (2005), chapter 3). Histograms are usually visualized graphically; however a histogram is

basically a table consisting of number of pixels for each intensity value in the image.

Histograms have several areas of use in the fields of Image Processing and Image Segmentation.

Two of these will be presented below; namely threshold selection and histogram equalization.

Figure 3: A histogram can be represented as a diagram. One can imagine having “number of

pixels” being labeled on the y-axis, and “pixel brightness” on the x-axis. This would then group

pixels with the same brightness for the respective images.

3.2.1.1 Histogram threshold selection

Histogram threshold selection is used for separating the image into different parts, where each

part represents a certain brightness level. Thresholding makes the picture undertake a binary

choice for each pixel; it stays or does not stay. For instance, pixels could turn white or black

depending on this. The light pixels could represent foreground and the dark pixels the

background, or vice versa. Thresholding is not always completely trivial, as there are often cases

9

where the brightness levels are evenly distributed and the image contains pixels of a large variety

of nuances and colors (Shapiro et al., 2001, p. 99).

Several threshold selection methods exist for problems such as the one covered in this thesis,

which use statistical information gained from the histogram in order to select suitable thresholds.

The different approaches are based on shape information, space clustering, entropy information,

image attributes, spatial information and local characteristics (Sezgin et al., 2004). This means

that one can look at either the peaks in the histogram, clustered gray level samples, the entropy

of the different parts, similarity measures, spatial probability distributions or local pixel

characteristics in order to make the thresholding.

Figure 4: Before (left image) and after (right image) thresholding. The dark pixels are set to

being pitch black, leaving only light pixels left in their original colors.

3.2.1.2 Histogram equalization

In a histogram the distribution can be analyzed. Histogram equalization is a method that takes an

image, calculates its histogram and, given its distribution, extracts parameters and runs a function

which, given the image, outputs an adjusted image. The goal is that this output image has a more

evenly distributed histogram than the original image so as to heighten the contrast (Gonzalez et

al., 2002). The process that ensures this is built upon the usage of a cumulative histogram with a

wider range of intensity levels and lower sum of total intensity for the lower intensity scale, and

a higher sum the higher up in the intensity scale (Song Ho 2006).

10

Figure 5: Before (top image) and after (bottom image) equalization. The intensity in the image is

evened out, and it now appears as being clearer.

3.2.2 Filtering techniques

In practical problems, it might be needed to apply one or more filters in order to reach a certain

goal, or filters might be a prerequisite for other algorithms to work well. For instance, in edge

detection algorithms it might be preferable to blur the image somewhat as a pre-processing

operation for more preciseness.

A common way of implementing filtering is by using convolution. This is done by using a kernel

matrix, usually 3x3 in dimension, and sweeping it over the image with each pixel being the

center of this matrix once. For each centered pixel, a change is made to it which depends on the

computation made with the neighboring pixels being in the array. In other words, the kernel is a

summation function where the output is the new pixel value and the inputs are the neighbors

values individually weighted. Different kinds of filters make different changes to an image, for

instance edge sharpening, noise reduction, blurring and morphology are some of the possibilities.

A drawback of using convolution can sometimes be that many calculations have to be carried

out, so that it might take some time (Smith, 1997, chapter 24).

Convolution filtering is not the only way of filtering, though. Median filtering, which basically is

a way of ranking pixels locally, is another way of filtering. Even Fourier Transform can be seen

as a kind of filtering, as it converts the image data to the frequency domain (Spring et al., 2007).

11

Figure 6: An original image

Figure 7: The same image being processed with a blurring filter.

3.2.3 Noise reduction

There are many possible sources for noise in digital images. It can for example appear at the very

acquisition of the image from the sensor, from various hardware malfunctioning problems or

from bad transmission (Gonzalez et al., 2002). Noise can be seen as a local deviation from the

12

ideal value at a pixel. Noise can be further classified by its characteristics, such as whether the

pixels deviate to a certain degree or to gets an extreme value, if only a certain channel gets

affected, as well as the distribution of the noise. Noise reduction is thus the process of trying to

remove these deviations and getting as close as possible to the ideal noise free version of the

image without too much distortion by the process. There are many ways of trying to reduce noise

and the following is only a brief overview.

First, there are algorithms based on evaluating the pixels one by one, with each evaluation being

based on the neighboring pixels. Using kernelization to take the median of the neighboring pixels

would for example be able to reduce so called salt and pepper noise (pixels having either full

intensity or no intensity) without introducing too much blur in the image (Chan et al., 2005). On

the other hand, using a kernel with the average of a neighborhood would result in some form of

blurring filter, and as every pixel depends on their neighbor, local pixel deviations will be evened

out. Other approaches could be using a point detection algorithm that evaluates if a certain pixel

differs with more than a certain threshold value from its neighbor (in fact, it is a little more

advanced than this) (Gonzalez et al., 2002). On binary images a morphological operation such as

erosion followed by a dilation operation could remove too small details that might be the result

of noise.

Figure 8: A black image which contains small fragments of white noise.

13

Figure 9: Noise filtering removes most of the noise.

3.2.4 Morphological operations

Morphological operations is a kind of filtering originally for black and white images, but it can

be expanded to a range of different other types, such as gray scale images. It is a filtering

technique with the two fundamental operations (or really weighted combinations of) dilation and

erosion. These operations could then be combined in various ways to form more advanced

functions (Gonzalez et al., 2002).

Dilation works in the sense that it expands the borders of foreground objects. Using a kernel

(here the usual 3x3 kernel), the idea is that when making the convolution for the image, as

described in section 3.2.2, each pixel is the center of this kernel once. Then if there is some

foreground pixel among the surrounding ones, the centered pixel is set to being foreground

(regardless whether it was background or foreground before). Erosion is the reverse; the pixel is

set to being a background pixel if there are some surrounding ones being background pixels

themselves, otherwise do nothing (Fish et al., 2003).

14

Figure 10: The image from figure 5 being dilated.

Figure 11: Here the image is eroded instead.

15

3.3 Image transformation methods

An image transformation returns a new picture from some given picture. The new picture will

then enhance or highlight certain features of the old image (Natural Resources Canada, 2008).

First and foremost alignment and spatial color distribution are such features that are of particular

interest in this report, and methods will be described below which makes it possible to analyze

them among others.

3.3.1 Fourier transformations

Fourier transformation is a way of representing a signal as a set of sinus waves (Sundararajan,

2001, p 18). The theory behind the Fourier transform is too complicated to be explained in

greater detail here, but the transformation itself is based on decomposing the pixel intensities to a

set of orthogonal functions (Owens 1997). An important property is then that one can transform

the diagram back to the standard array image form after making the desired manipulations of it.

There are several variants of the Fourier transform. A common variant for digital images is the

Discrete Fourier Transform (DFT) which has an advantage of being relatively fast to compute

(Sundararajan, 2001, p 54). As the name indicates, DFT represents sinusoidal waves. The result

of this is that given one input image, two output images (real and imaginary) can be obtained.

Many filters can be defined which are based on processing these output images (which represent

the frequency domain of the original image), such as noise reduction. For some pixel with

coordinates (x, y) in the original image and (u, v) in the Fourier image, the equation of the

transform for the DFT is (Marshall, 2001):

The following formula is used to reverse the transform back again:

Analysis of the real output image is of special interest, as this image represents the structural

information of the original image. More specifically, a normal image tends to have the frequency

domain look of a body of water, in which a stone has been dropped in the middle, resulting in

circular waves that are very intense at the middle and that even out the further away they reach.

Thus, in the center of the frequency domain image there is usually more intensity than at the

edges. Furthermore, the intensities closest to the center of this image represent the

16

comprehensive structure of the original image, while the further out from the center, the more the

intensities represent the details in the image. A filter for removing details in an image can thus be

constructed by keeping the part of the frequency domain image that is closest to the center and

removing everything else, and then transforming back the image (Gonzalez et al., 2002).

Another analytical aspect of interest is finding the alignment of the image. The dominating

alignment angles will be represented by the clearest straight lines in the Fourier diagram (Fish et

al., 2003). Thus, one could for example use the Bresenham line algorithm (Bresenham, 1965)

which approximates the drawing of a straight line between two points in a matrix (if the line is

drawn on the screen image, it is essentially drawn in a matrix because of the screen resolution

aspect) to search for the line with most white pixels in it.

Figure 12: An image (to the left) and its Fourier diagram (to the right). One can see in the

diagram that horizontal and vertical lines dominate the image, since these directions are

dominating in the diagram.

3.4 Feature detection methods

This section is devoted to feature detection methods (or more concretely edge-, line-, and Points

Of Interest (POI) detection methods as we have limited the content to). To make it possible to

see what an image really contains, it might be necessary to make a residual image that is a

simplified version of the original, for instance black and white with white as foreground and

black as background, or in some other way clearly distinguish different objects and contours in

an image. This is what the first section is about. Next follows line- and POI detection, which

search for more specific features that stand out in some way, and mark them in the image.

As will be seen, several of the methods presented here will more or less work as algorithms for

deciding the orientation angle for a given image. This is intuitive, since many of the algorithms

which were eventually used for finding the rotation would be based on averaging some set of

features (angle of the average line of the line detection, for instance), so this chapter basically

covers algorithms for rotating the images consistently, as well as different processing algorithms.

The only rotation algorithm which was tested that is not presented in this chapter is the algorithm

17

based on Fourier analysis (a concept described in section 3.3.1). Several of the segmentation

algorithms from the experiments are also introduced here in relevant sections.

3.4.1 Edge detection

Edge detection is a class of methods to be used when one wants to find the borders of the objects

in an image, or just some of the contours. The more precise definition of an edge is a sudden

shift in intensity at some border (Qurechi, 2005). There are many algorithms for edge detection,

and we list some of the more well-known below. The choice of algorithm can be rather

subjective sometimes as most edge detectors have individual circumstances where they work

either good or bad (Nadernejad et al., 2008).

3.4.1.1 Edge detection with Sobel derivates

The Sobel operator works in the sense that it approximates the gradient of an image intensity

function with Gaussian smoothing (opencv dev team, 2011). Thus, the edges are assumed to be

located where the jumps occur in this approximated differentiation (Qiu, 2001). More concretely,

a sobel mask is used as a convolution kernel, and for a 3x3 mask it looks like the following:

For x axis: For y axis:

-1 0 1 -1 -2 -1

-2 0 2 0 0 0

-1 0 1 1 2 1

(Bebis, 2003). Then as stated, convolution is used with this kernel and how that works was

described in section 3.2.2.

One requirement for the Sobel edge detection to work well is that there is a regular spatial

distribution of the design points (Qiu, 2001). Furthermore, there are both advantages and

disadvantages with it; an advantage being that it is easy to implement and runs relatively quickly,

and a disadvantage being that the edges might be thicker than necessary (compared with Canny´s

edge detector for example, which is described later on) (Vincent et al., 2009).

18

Figure 13: Sobel edge detection is used on the top image, showing the skeletonized result on the

bottom image.

3.4.1.2 Laplacian edge detection

Laplacian edge detection uses calculations of the second spatial derivative to detect the regions

where the intensity changes most rapidly (Fisher et al., 2003). As with Sobel edge detection,

Laplacian edge detection could practically be implemented by convolution. However, the

difference from Sobel edge detection is that now the second derivative is used, and not the first

(the change of the slope is calculated instead of just the slope). This makes it somewhat different

from the Sobel edge detection, even though much of the core concept is the same as both are

based on working with gradients. An advantage of Laplacian edge detection is that it might be

better at finding the localization for the edges, while a disadvantage can be that curves and

corners might pose slightly more problems than for Sobel edge detection (Bhadauria et al.,

2010).

19

Figure 14: Laplacian edge detection is used on the image to the left, showing the skeletonized

result in the image to the right (the red blue line marks the rotation angle calculated)

3.4.2 Line detection

A well-known line detection algorithm (which is of interest here since it has support in OpenCV)

is the Hough transform (Duda, Hart, 1972). The method is based upon a voting system for the

pixels in an image (voting in terms of number of curve intersections at certain points), which

decides the parameters of line segments, and running the algorithm will eventually result in an

outlining of these. While it can be an effective way of detecting the lines in an image, a

drawback is the relatively high complexity of the algorithm (Fisher et al., 2003). An advantage

that compensates this is the property of being robust to noise (Turkel, 2011). The interesting

aspect in this report is to see whether Hough transform gives a consistent output of lines for

certain objects.

Figure 15: The Hough Lines algorithm is used to mark noticeable lines on a circuit card.

20

3.4.3 Thinning

In order to make the task of detecting contours and rotation for an object easier, thinning can be

used in order to get lines that represent the skeletonized shape, while also preserving the

topology (Palágyi). This could possibly make the process of detecting the alignment for some

object easier, as lines can be easier to handle than the object itself. For instance, one way can be

to view the lines as vectors, and making calculations with these (for instance, summing them

could be a possibility) could be a way of finding the alignment.

Basically, thinning is a morphological operation (Fisher et al., 2003) which uses a kernel to

acquire the result. There are a couple of different ways of thinning as well; one could get the

whole “skeleton” of an object (the shape drawn with lines) or one could just get the corners of it.

In fact, the last approach could have possible aspects of interest for finding the alignment, for

instance by marking vectors between the center point and the corners, and then computing some

kind of average or median angle. There are many different algorithms for thinning (or

skeletonization), however using the kernel is a base approach which deletes or keeps black

colored pixels depending on the amount of neighboring black pixels and their connectivity

(Saeed et. al, 2010).

3.4.4 Points of interest detection

There are algorithms for finding points of interest in an image; points that make the image stand

out or points that describe it in some way. It is desired that such an algorithm is robust to noise,

orientation and other features when being in use. One such algorithm is the SURF descriptor

which uses integral images and Hessian matrix based detection measures, among others. It has

been shown to be an effective detector of interesting points and also to be relatively fast (Bay et

al., 2008). Basically this is a high level function in OpenCV, and the specific usage of it was

interesting in this thesis for the rotation problem.

POI detection has several applications. One such application could relate to the task in this

project of finding the rotation; a mean point could be created from the interest point and a vector

could be defined as going from the middle point of the image to the mean interest point. This

could then stand for the orientation angle of the image.

21

Figure 16: A number of points of interest are detected for a circuit card using OpenCV´s library.

3.4.5 Histogram of Oriented Gradients (HOG)

This section demonstrates an example of how histograms can be used to implement an algorithm

for handling the rotation task in this thesis. First, some method is used to get the first order

intensity derivative for each pixel (for example Sobel edge detection) (Dalal et al., 2005). This

derivative basically represents the slope of the intensity change between pixels. This is done for

both the x and y axis, whose results are stored separately. Next, these Cartesian coordinates are

converted into polar coordinates, and these are stored in a histogram. Finally, the averaged angle

is calculated for all the angles of the polar coordinates. This is basically the final angle that the

algorithm outputs.

22

Figure 17: The image to the left is the input image to the HOG algorithm, and to the right it is

gradually going through different stages. Gradients are first calculated for the X- and Y axis

separately, and then the result is transformed into a representation of these with polar

coordinates. The result of this is visualized in the two rightmost images, and the vectors are

summed in order to calculate the final angle.

3.5 Background subtraction

In this project, what is to be regarded as the most crucial part of the image segmentation

algorithm is the background subtraction. This is since once the background is gone from the

picture, the rest is easy; let us suppose we know that everything but foreground objects has a

single color; then we can use a simple color detection to retrieve the objects, for example. There

are several approaches for background subtraction. However, in some way or another, the

methods below are all based on comparing some form of statistics between the background

picture with and without objects on it.

3.5.1 Pixel/histogram statistics

Statistics can be acquired to divide the image into pixels probable to be background and

foreground, given a sample image as basis (opencv dev team, (2011)). This approach is popular

in the computer vision area thanks to the relative simplicity in the computational aspect (Noriega

et al., 2006).

A simplified description of an algorithm for background subtraction using histograms could be

as follows:

Take a number of pictures on the background alone. This number depends on how dynamic and

large the background is. Then, compute an image that makes a good representation of the

average background by averaging over the pictures taken. Then, for each input image, find a

suitable threshold value that subtracts the pixels probable to be background pixels using both the

histogram for the averaged background image as well as the histogram for the input image, and

do this by comparing the difference between these two histograms.

23

Alternatively, one can run the algorithm without using histograms, and instead comparing the

images pixel by pixel. Then in the input image, one simply keeps the pixels that differ to a

greater extent (because an object will probably be located there) and each pixel that is of about

the same intensity in both images will be discarded.

3.5.2 Mixture Of Gaussians / Gaussian functions

A background subtraction algorithm by Kaewtrakulpong and Bowden was based on the Grimson

and Stauffer background mixture modeling approach using Gaussians (Kaewtrakulpong et al.,

2001). A brief, simplified overview of the theory is the following. Each color in the image is

modeled as a Gaussian. The final background subtraction is made after collecting the information

from each pixel and constructing these Gaussians, and this is done by keeping the pixels that

differ more than some constant number of standard deviations in intensity from the rest of the

distributions.

Another way is to model each pixel as a Gaussian distribution depending on what color it has

had over time (in the different images in the image series). If it is seems stable, it is probably a

background pixel. More uneven distributions for the pixel indicate that foreground has taken

place there for some image.

Figure 18: An example of a mixture of three Gaussian variables (Wikimedia Commons, 2009).

3.5.3 Central image moment

The centroid of an image is calculated as a mean of the image intensity in the image. So the

result is a point, which has the property that the intensity is equally distributed around it

throughout the image (Intelligent Perception, 2010). In other words, all pixel values can be

summed up to find this point which becomes the gravitational center. The real advantage of this

24

method is that it is robust to minor shifts in the image - small rotations or small amounts of noise

do not alter the result very much (Utkarsh, 2011).

It might be required to have the light settings exactly the same for all pictures when running this

algorithm for the task in this thesis of finding the rotation of a certain object. If the light

conditions are not fixed, i.e. there are reflections in some pictures, the result could alter

drastically since the intensity distribution might get shifted.

3.6 Image Classification

This section is devoted to describing the method for object classification that was used in the

final experiment, when testing how the pre-processing algorithms in this thesis can enhance the

results when classifying objects. Because of certain time constraints for this project (about one or

two weeks were devoted to the implementation of the classifier) we chose a relatively simple

classifying algorithm, namely Template Matching by comparing pixel intensities.

This has been tried before with successful results (Pinto et al., 2010). There are many other

choices that could have been made, but we limited the thesis to cover only this one as the field of

Object Detection is broad and many algorithms are too complex to be implemented in the time

frame given. Optisort recommended us to implement this algorithm because of this.

The underlying idea of the algorithm is to go through the image retrieved by the algorithm (or

taken by the camera, if no pre-processing is done) pixel by pixel and compare it to the same

corresponding pixel in the images stored that represent each object (the templates). In order to

see which of these objects the image resembles most when all the pixels are iterated through (i.e.

the least total intensity difference is for that object among the different ones).

3.7 Earlier research work of interest

It is of interest what research methods have been tried already in similar tasks to those in this

report. One interesting point is that different kinds of height sensing or similar techniques

resulting in a three dimensional image for analysis have often been applied in automated waste

sorting and research (Mattone et al., 2000), (Dop, 1999). It is also a frequent approach to the

more general object recognition task, and video processing is sometimes chosen instead of using

images (Mamoru et al., 2000), (Gould et al., 2007).

Numerous methods have been used for separating foreground from background (segmentation in

other words), for example the background subtraction part color modeling has been tried

(Horprasert et al., 1999), and also Bayesian Rules (Li et al., 2004) which is a bit more novel than

regular image processing methods. This is not to mention the approaches already written about in

the section about background subtraction in this report. For example, histograms have been used

as an important tool (Arifin et al., 2006). Also color-set back projection is a method that has been

used, and it has worked (Doringa et al., 2010).

25

Fourier transformations have been used for registering images in the sense that they become

rotation invariant; in other words similar problems to the image rotation problem

(Makadia et al., 2003). Interestingly enough, also histograms (Villamizar et al. (2006) and

wavelet transforms (Lee et al., 2002) have been used to solve problems of similar character

(Villamizar et al. used gradient orientation histograms to compute image feature orientation for

object detection). Thinning methods have been used as a part of rotation invariant algorithms

(Ahmed et al., 2002).

It should also be mentioned that the problem of detecting skewness for printed characters has

also been approached in several ways (a problem relatively similar to the rotation problem here).

For example, Hough transform has been used successfully for detecting this kind of skewness

(Nandini et al., 2008).

In summation, there are many approaches that have been tried to problems similar to the

problems in this thesis. In this project, however, we have chosen the methods that seemed most

suitable for the conditions in our specific problem. Some of these related works still worked as

inspirations even though there was no direct application.

4. Experiments

The following experiments were done in order to gain understanding about what performance

could be expected from the algorithms. The experiments are, as stated earlier, image

segmentation, image rotation and object classification in consecutive sections 4.2-4.4. The

experiments were made on a Compaq 6720s laptop with an Intel Celeron Processor with a 1.73

GHz processor and 2 GB RAM (and with other processes in the background while running

them). While the choice of computer certainly may affect the performance, the idea was mainly

to get a comparison of the different algorithms knowing that the final performance can probably

be improved, while still getting results indicating the best algorithm choices. Even if the

performance differs between different computers, it was believed that one could get results with

the computer chosen here indicating whether the algorithms were probable to be effective in a

real production setting. Optisort had a benchmark of 0.1 seconds; the total time that was desired

to be kept as an upper limit. Then if some algorithm would take 2 seconds to complete, for

example, the 0.1 second limit could probably not be managed even by a stronger computer. So

getting results for the sake of comparison and realistic evaluations was the main goal.

4.1 Test set

The test sets for all the experiments below have been obtained from a prototype made by

Optisort. The point with this is to make sure that the results should reflect the actual performance

if used with a final product in a real environment. However, the prototype might differ from the

final product, which also might be the case for the photographed test objects, so it is possible that

the results might still vary. However, the main idea is to show, since the camera is to be stationed

at one fixed area, that with some program settings the program can work for that environment.

Because of the fixed camera position, specific light settings and a specific background (in form

of a specific moving conveyor belt), one may need to adjust the program settings to fit some

other conditions. In this experiment we had a specific prototype with some specific conditions to

26

work with. However, as explained, these conditions might be different in a release version, and

thus it is possible that one needs to adjust the program settings accordingly (by changing the

threshold values, for instance).

Figure 19: The left image displays the conveyor belt with no items on it. The right image shows

a lamp that has appeared on the conveyor belt. This is how images in the test set would typically

look.

Due to the fact that Optisort already uses high quality cameras and light settings in order to

reduce errors based on image quality, comparing image quality was not considered to be a

relevant aspect in the testing. A more likely source of error is dirt on equipment and objects.

However, the test set was collected with a representative amount of dirt already. Thus, it is

expected that the test set already represents the variation in dirt that would occur in a final

product. After all, the test objects were collected at Renova, a waste sorting company, so the test

objects represent data from a real live setting. A varied series of objects were used; light bulbs,

clocks, circuit cards, LED lamps, screws, pencils and batteries among others. 199 images of the

foreground objects were taken, and 21 background images were taken (to be used with the

segmentation methods for background subtraction). As explained, the camera is fixed but the

background is still partly dynamic because of the moving conveyor belt.

The images that were taken by the prototype to be used for the test set had each object's frame

defined by hand in order to enable automated testing. This means that a data file with optimal

results was done by hand, and the output of each test was saved in a file of the same format. A

small test program made the comparison between the output file and the file with optimal results.

When testing the rotation, a test set was used that basically consisted of the segmented images

from the first experiment. A similar way of outputting the performance of the algorithm was

used, as described for the segmentation above. This enabled automated testing, so that when

acquiring the algorithms’ performance, the program was run for all the test pictures and the

results were written correspondingly to the output file. Then, the test software was used to iterate

automatically through the results for all the pictures in the output text file, and the performance

was calculated in terms of correctness (measured in number of pictures) and average time spent

on each picture for the output image (that is for the segmentation task, for the rotation task the

27

first is instead exchanged for rotation degree variance measured for each object, not for each

image).

Both accuracy and time are important aspects; accuracy alone is not enough. This is since

Optisort has a requirement that the algorithm takes about a tenth of a second to complete. At the

same time, this requirement is not all too strict since improvement can be made later with faster

processors, images of more suitable resolution and so on. However, time is still an important

aspect and it is therefore fully possible that we regard some faster algorithm as better than a

slower one, even though the later might have better accuracy.

4.2 Experiment 1: Image segmentation comparison

This experiment is meant to give a general overview of how different ways of segmenting an

image (finding the objects contained in it) perform on the test set. The output of each experiment

run was classified by hand.

Figure 20: An image of the conveyor belt with an object on it to the left, and to the right is an

image of the object being segmented in a correct way.

4.2.1 Algorithm descriptions

The main task for these algorithms is deciding whether a pixel belongs to the background or the

foreground. This is done either directly or indirectly.

In general, the algorithms chosen can be divided into two categories. The first is algorithms

where no knowledge based on previous images is used and thus focus on feature extraction only,

such as finding contours in the original image. These algorithms generally try to extract features

28

based on just pixel value or by pixel neighborhoods. The second category is algorithms that use

data of previous images in to perform segmentation. The simplest example is a pixel-by-pixel

comparison between two objects. The background could be used as one of these images and the

deviation of the given picture from this background could thus be used for background

segmentation, separating the image into foreground and background sections.

The algorithms presented here generally have one step of the second category of the two ones

described previously, followed by one step of the first category. It would show that it was more

or less necessary to have background images sampled beforehand in order to get optimal results.

This is since on the conveyor belt of the prototype, there was noise in the form of dirt, oil and

iron bars that would be taken for being objects though not being desired, when having algorithms

of the first category. In a realistic scenario, dealing with these problems should be quite

necessary.

Once the background and foreground has been separated, usually in the form of a binary image, a

segmentation of the first category can easily be used to go from separated foreground and

background to a set of objects. To get a set with different objects and deciding their frame, mask

and position, a most direct way has been chosen; the built in function for finding contours

(Suzuki et al., 1985) and minimal bounding rectangles in OpenCV. It might be possible to

optimize further for a small speed benefit.

The algorithms implemented here strongly depend on background subtraction. After the

background subtraction, they all use the built in OpenCV function for finding the contours. As

mentioned earlier in this report, background subtraction was required for the segmentation to

work and was very much the sole challenge and the work behind the algorithms, since when a

perfect background subtraction is carried out the rest is easy; the foreground is more or less

segmented already. Therefore, the below descriptions are mostly about this part.

The first two algorithms below were low-level implementations while the remaining two

algorithms used high level functions in OpenCV. The interesting aspect of including both kinds

is that a comparison can also be made between low level implementation versus high level

implementation.

4.2.1.1 4d histogram (Histogram)

One algorithm that was tested was the one described in section 3.5.1 based on background

subtraction using histograms. In this implementation a four dimensional histogram was used.

Three dimensions corresponded to the three color channels and the fourth dimension

corresponded to the amount of pixels of some specific color found in the picture. By scaling

down the intensity values, similar color values were grouped together so that the histogram did

not have to store a separate value for each possible color intensity. The exact scaling might

depend on the light conditions and other image qualities, and might thus need some adjustment

for each specific case. Problems can arise if the histogram is scaled down too much, because then

the grouping into different colors will be too coarse. Also, if the histogram is scaled down too

little it will require more resources instead and be too sensitive to noise and color variation

between different photos.

29

For the algorithm, a histogram is first created for the average background. Then, for each image,

another histogram is created. The image histograms are compared to the background histogram,

and each color group is either set to being part of the background or part of the foreground

depending on the similarity in density. Each pixel in the given image can then be marked to

foreground or background just by checking its color. The algorithm is thus sensitive to the fact

that the input image should preferably have a wide spread of different color values, and ideally

the background should not have colors all too similar to the objects. This might need some pre-

processing based on the image qualities of the given situation. On the binary resulting image, the

OpenCV algorithms for finding contours and minimum bounding rectangles are used.

4.2.1.2 Averaged background segmentation algorithm (BgDiff)

The pixel based approach was also used which is described in section 3.5.1. While the histogram

approach is based on dividing the colors into foreground and background and then marking the

pixels accordingly, this approach is a direct pixel-to-pixel comparison. To recap, for a set of

background images, the average image is calculated. This results in an image where much noise

has been removed. This can be seen as an approximation for the ideal image that would be

captured if there was no noise. This image is compared to the set pixel by pixel in order to

calculate the average- and maximum differences. This results in two images, the average noise

level and the peak noise level. Note that these values are available on a per pixel basis. For each

pixel, an approximation of the ideal value of the background, the average difference and peak

difference are available. This concludes the necessary setup. For each new image, a pixel-wise

comparison between the given pixel value and the approximated ideal background value with a

tolerance based on the average noise level and a parameter times the peak level is performed.

This is done to decide whether a pixel belongs to the foreground or the background. This

algorithm is more sensitive to having the photographs taken from a fixed and stable position. On

the binary resulting image, the OpenCV algorithms for finding contours and minimum bounding

rectangles are used.

4.2.1.3 Gaussian segmentation algorithm (Gaussian)

The algorithm representing each pixel's intensity distribution as a Gaussian was used (described

in section 3.5.2). Unlike the two algorithms described in the preceding sections, this is more of a

high level algorithm. This means that a pre-implemented function is used from OpenCV´s

library, so what we get is essentially a “black box” that makes the segmentation. The advantage

with this is that it is easier to implement, of course, however the drawback is less control since

nothing about the function can be changed except for some input parameters, however the

implementation remains static.

4.2.1.4 MOG segmentation algorithm (MOG)

Another algorithm that was used was Mixture Of Gaussians (MOG) for background subtraction,

described in section 3.5.2 (colors represented as a mixture of Gaussians). Basically the same

30

holds here as for the Gaussian segmentation; it is a high level algorithm which has its advantages

and disadvantages.

4.2.2 Results

The below diagram shows the results when running the different segmentation algorithms on the

test set. It is clear that the algorithms have different properties; for example, MOG made

relatively many false detections (i.e. stated falsely that a part of the background was a foreground

object), while still having a large amount of the objects being detected correctly. The histogram

segmenter, on the other hand, missed relatively many objects compared to other algorithms.

The best performing algorithm was the pixel-wise background segmenter, with almost 90% of

the objects being detected in a correct way. The Gaussian segmenter which did not miss a single

object completely, but where on the other hand the majority of the detected objects were only

captured partially in the segmentation, cannot be regarded as the best choice.

Overall there were not many merged detections, meaning that two objects close to each other are

classified as a single object. This indicates that the algorithms are not very sensitive for close

distances between objects. Also, MOG was the only algorithm to make false detections; the other

algorithms did not falsely label the background as foreground.

The greatest difficulty seems to be connected with detecting the objects completely with a fine,

exact bounding box that does not cut out any parts of the objects; failing with this was the most

common source of errors. The main problem with only making a partial detection of some object

is that when having the resulting image as input to the rotation algorithms, the fact that the object

is only partially detected may alter the results considerably. As many of the rotation algorithms

tend to output a result based on shapes and angles of the object, it may be a completely different

result if just a little part of the object is cut off, being substituted for a sharp edge instead, whose

angle will then contribute to some other resulting angle as output than what should have been if

the whole object was segmented from the beginning.

31

Figure 21: An object being detected partially. The leftmost shows the input image, the second

left image a processed version of it, and then the two rightmost images are the partial detections

of the USB-stick.

Finally, time is an important aspect, and it comes clear that Gaussian and MOG segmentation

takes too long time to complete. With better hardware a speed-up may be achieved, but still

reaching the benchmark of less than 0.1 seconds seems unthinkable. It is important to mention

that while the average time for BgDiff was 246,52 ms, a more optimized version outside the test

environment managed to run at about 150 ms. Also, as a faster computer could have been used, it

is believed that the algorithm has potential to run faster than 100 ms in a final version.

Algorithm Average

speed
Correct

detection
False

detection
Missed

detection
Partial

detection
Merged

detection

BgDiff 246,52 ms 249 0 8 26 2

Gaussian 1106,60 ms 94 0 0 191 0

Histogram 382,17 ms 201 0 30 48 2

MOG 1626,33 ms 224 123 5 59 0

4.3 Experiment 2: Image rotation

The purpose of this experiment was to test how different algorithms perform on the following

task: given a set of images of well segmented objects from the test set, rotate them in the sense

that for each object, the rotation will be the same and there is no difference in the orientation

regardless of which it had in the input. For instance, suppose a specific battery was photographed

several times in a multitude of angles. The ideal is that after inputting the images one by one, all

outputs are practically indistinguishable.

Figure 22: The upper part displays a series of input images to the rotation algorithm displaying a

circuit card. The lower part shows the output images (using the Image Moments rotation

algorithm) for the above respective input images. Here the algorithm succeeded very well since

they look almost the same.

32

Each individual algorithm was tested one by one with a test set that was acquired when making

the segmentation experiment; 10 different objects were tested, and images were used which

represented correct segmentations of each object (average was 7 images for each object).

The main properties for testing in this experiment were speed and accuracy. The accuracy was

simply measured as the variance of the rotation degree. To explain this further, we had several

images of the same object in the test set. The goal is, as explained above, that each object will be

rotated in the same way for all the pictures of it. Thus, accuracy is measured in terms of variance

for each object and not for each individual image. The speed is measured as the average time of

calculating the rotation for a certain object.

Something that should also be noted is that if nothing else is labeled, the test was done with

pictures of the respective object taken on the conveyor belt of Optisort´s prototype. However, we

have also included something called the Ideal Test Case. This means that for the given object, the

background was black, and using Photoshop, replicated images of the exact same object were

created with different rotation angles. The purpose of this was to investigate the theoretical ideal

case, where the object is perfectly segmented and the light conditions do not change for the

different images taken. This is probably hard to achieve with one hundred percent perfection in

reality, but is something that was interesting to test anyway. This is since if an algorithm would

work very well in this setting and not in the real setting, it would rather be hardware and

environment posing problems than the algorithm itself. An alternative way of viewing it, of

course, is that the algorithm might be too sensitive for changes, but in whichever case more

conclusions could be drawn when including this test case.

4.3.1 Algorithm descriptions

The following algorithms mainly work in two different ways; working with the contour of an

object or working with the surface (which is color or structure) of an object. A solution could

also possibly be a combination of an algorithm based on contour analysis and an algorithm based

on surface analysis. While the contour of an object is relatively easy to work with, symmetric

shapes tend to cause ambiguity, such as with finding the point furthest from the center in a

perfect circle; no unique solution exists here. Working with surfaces might give more

opportunities to find a reference angle, but in the case of an object with a uniform surface, this

could also fail. In the special case of an object that registers the image as a perfect circle with

uniform surface, any angle as output by the algorithm will actually work. The hardest situations

for these algorithms would then be the ones featuring objects that are very close to symmetric

and have a minimal amount of surface features with direction. Several of the following

algorithms passed through a pre-processing algorithm to handle the above ambiguity issue,

namely an algorithm that rotated the image so that if a cross would divide the image into four

equally large rectangular parts, the brightest part would be the upper left one, so that is a rotation

of 0, 90, 180 or 270 degrees. This is not included in the algorithm descriptions but is instead

mentioned here. Also, this pre-processing is obviously regarded as a part of the algorithm itself

and the time it takes is included in the experiment results.

33

Something that is important as a notice is that the images were preprocessed before they were

used as input to the algorithms. More specifically, Canny’s - and Laplacian edge detection were

used to skeletonize the image before it was used as input to the algorithms. This means that the

algorithms work with the structure and the contour of the objects, and not the light nuances or

colors. The reason for this is that the light conditions varied between the images depending on

how close the object was to the lamp, and there was also the fact that different reflections could

be depending on how the object was turned, and this was undesired since consistent results could

not be acquired then. So because of this, the pre-processing was done.

Six algorithms were tested for the rotation task, and they are presented below. Both high level

approaches based on pre-implemented functions (POI and Hough Lines) and low level

approaches (HOG) were used. We used optimized algorithms in OpenCV in many cases where it

was possible (for example, in order to perform the Fourier transform) but mostly they were

combined and complemented with more thorough low level implementing in order to finalize the

algorithm.

Algorithm 1:

One algorithm was based on Hough Lines. The Hough Lines algorithm was executed for the

image, and then a resultant vector was created from the lines in the output. The rotation was

simply the negated degree of this angle.

Algorithm 2:

Next, an algorithm was used based on Points Of Interest (POI) detection. This algorithm would

use the POI detection algorithm in OpenCV (a high level algorithm based on SURF detection) to

find a number of points of interest. A midpoint was then created from these points, and a vector

was made by having the mid image point and the mid POI point as endpoints. So this is basically

what was also described in section 3.4.

Algorithm 3:

Another algorithm which was also based on a high level function in OpenCV was the algorithm

based on Central Image Moment. This is the concept described in section 3.5.6; a point of mean

image intensity was calculated on the image, and again a vector made from these points would

stand for the resulting rotation angle (negated).

Algorithm 4:

The fourth algorithm used the idea from section 3.3.1; it calculated the Fourier diagram of the

image, and then using Bresenham´s Line algorithm, the line of most intensity was found in the

diagram, and this angle would represent the angle for the image.

34

Algorithm 5:

The fifth algorithm was based on orientation gradients (so it was inspired by HOG, described in

section 3.2.2.3), and calculated a resultant vector by summing the gradient vectors. This would

then represent the angle of the image. The algorithm is referred to as the HOG algorithm though

there is a slight difference from the standard approach, namely that no histograms were used;

calculations were made instead by getting the gradient orientation pixel by pixel and filtering out

weak gradients.

Algorithm 6:

The sixth algorithm simply used the bounding box acquired by the segmentation algorithm when

segmenting the objects (the pixel-wise segmenter was used for this, as stated earlier). The angle

for the bounding box was used to rotate the box back. At this stage, there is a rectangular

bounding box which could be turned 0, 90, 180 or 270 degrees to maintain the property of the

sides being parallel to the computer screen. First, the longest sides are turned so they represent

the width of the box. Next and finally, there is a choice of rotating the bounding box either 0 or

180 degrees. This is decided by the Image Moments algorithm; if the direction of the resulting

vector is to the right (between -90 and 90 degrees), the image is rotated 180 degrees. This means

that for long objects, there will be no problem in choosing which side will represent the width

(which poses a problem for quadratic objects, though); only the choice of the final rotation of

either 0 or 180 degrees could be problematic if the light conditions are very homogeneous in the

image.

4.3.2 Results

Here follows the results from the experiment. Note that the experiment was done with three

different edge detection methods for each rotation algorithm, and the result is presented for each

of them. The reason for testing against three different edge detection methods was that features

for the individual detectors would not bias the result; they all worked a little different, so testing

against all three gave a better overview. Also, the results are showed when no edge detection is

used as pre-processing.

Test measuring average times for running algorithm 6

The time for segmentation is included here since the bounding box is what gives the rotation

angle for this algorithm, and segmenting the objects is thus required. The segmentation should

really be separate from the rotation and not included if segmentation and rotation is run in

sequence, however this might not always be the case; rotation could be run alone. Therefore the

time for segmentation is included; in that case it is part of this algorithm.

Here “Both” means time in total including the rotating of the images,

“Seg” means that just the segmentation algorithm was used and

“Rot” means correspondingly that only the rotation algorithm was used.

35

Testing average time for rotation

Algorithm Average speed

Fourier 780 ms

HOG 44 ms

Hougline 210 ms

Moments 0.98 ms

POI 220 ms

Tests of performance of rotation algorithms with different edge detectors as pre-processing

Here the results are compared for the different rotation algorithms. As noted earlier, different

edge detectors are compared, working as image pre-processing tools.

For each object in the tests, green color is used to mark the best result and red the worst result.

Fourier Rotation - Standard Deviation

 Canny edge

detection

Laplacian edge

detection

Sobel edge

detection

No pre-processing

(plain)

Battery 62,40 29,43 36,79 79,79

Long green circuit card 41,71 79,59 85,62 75,59

Green circuit card 80,55 76,96 77,62 80,13

Christmas tree lightbulb 63,32 99,54 89,95 99,83

Keychain (electronic) 43,01 63,74 30,39 40,73

Orange circuit card 49,77 23,48 19,86 51,77

Orange irregular shaped

circuit card

9,68 58,83 58,95 77,60

Spotlight lamp 66,38 65,14 72,76 56,84

Oven lamp 46,45 48,61 36,00 40,39

White lamp 44,62 31,57 34,42 43,53

HOG Rotation - Standard Deviation

36

 Canny edge

detection

Laplacian edge

detection

Sobel edge

detection

No pre-processing

(plain)

Battery 82,69 57,33 67,07 107,68

Long green circuit card 65,11 60,57 59,29 81,44

Green circuit card 97,84 51,07 44,54 82,81

Christmas tree lightbulb 83,25 67,31 92,73 99,06

Keychain (electronic) 95,30 96,61 62,81 103,96

Orange circuit card 82,27 81,50 91,42 92,03

Orange irregular shaped

circuit card

95,37 74,67 88,26 87,32

Spotlight lamp 97,88 76,15 74,81 87,36

Oven lamp 91,44 78,96 80,97 44,82

White lamp 30,95 51,18 13,06 29,82

Houghline Rotation - Standard Deviation

 Canny edge

detection

Laplacian edge

detection

Sobel edge

detection

No pre-processing

(plain)

Battery 61,80 86,45 91,88 56,64

Long green circuit card 62,57 42,73 48,38 69,70

Green circuit card 56,19 93,59 97,91 95,21

Christmas tree lightbulb 103,85 94,14 70,95 82,83

Keychain (electronic) 96,52 97,70 89,56 60,01

Orange circuit card 80,79 86,92 84,23 84,50

Orange irregular shaped

circuit card

91,10 78,60 87,09 83,26

Spotlight lamp 80,64 85,50 61,95 84,51

Oven lamp 65,57 94,48 105,03 63,90

White lamp 59,74 71,65 78,45 112,52

Moment Rotation - Standard Deviation

37

 Canny edge

detection

Laplacian edge

detection

Sobel edge

detection

No pre-processing

(plain)

Battery 99,19 14,65 19,47 16,26

Long green circuit card 46,70 62,69 52,39 68,27

Green circuit card 71,74 49,57 45,49 66,40

Christmas tree lightbulb 39,83 68,91 60,28 74,93

Keychain (electronic) 51,67 8,18 5,10 13,12

Orange circuit 33,68 16,67 14,03 48,55

Orange irregular shaped

circuit card

55,52 71,92 66,34 55,99

Spotlight lamp 99,18 34,07 40,19 50,91

Oven lamp 9,76 26,17 45,68 70,76

White lamp 24,00 1,81 2,73 17,33

POI Rotation - Standard Deviation

 Canny edge

detection

Laplacian edge

detection

Sobel edge

detection

No pre-processing

(plain)

Battery 74,39 14,60 20,92 82,59

Long green circuit card 48,13 62,50 79,76 73,65

Green circuit card 59,67 70,84 66,16 70,72

Christmas tree lightbulb 55,28 98,74 103,87 99,17

Keychain (electronic) 18,16 47,63 33,98 28,82

Orange circuit card 41,96 48,18 32,51 58,59

Orange irregular shaped

circuit card

25,04 50,45 50,67 94,65

Spotlight lamp 102,47 60,82 60,37 67,48

Oven lamp 19,23 36,13 44,35 49,74

White lamp 8,20 15,24 23,31 15,81

38

Theoretically possible results by using a single image rotated in turns of 45 degrees using

Photoshop for a total of 8 images per test set.

Here the result is shown for the Moments algorithm with the theoretical ideal test images as

input. It turns out that in this setting, it performs very well.

Moments

 Standard deviation

rectangular circuit card 0,90

oval circuit card 1,06

Results of algorithm 6 using Sobel pre-processing (both results as they are and if 180

degrees rotation is allowed as in using two reference images for each object)

Here the bounding box based rotation algorithm is tested with Sobel edge detection as pre-

processing for the images, and it shows that when allowing images being rotated 180 degrees (in

other words, it does not matter if the image is flipped over), the algorithm performs very well.

Boxwise Rotation - Standard Deviation

 Standard Allowing 180 degrees rotation

Battery 2,68 2,58

Long green circuit card 67,71 1,05

Green circuit card 0,36 0,31

Christmas tree lightbulb 63,55 1,11

Keychain (electronic) 4,70 4,76

Orange circuit card 0,26 0,22

Orange irregular shaped circuit card 112,36 9,79

Spotlight lamp 36,96 36,84

Oven lamp 64,72 5,79

White lamp 0,96 1,19

39

4.4 Experiment 3: Testing how the segmentation and rotation algorithms can
enhance the performance of an object classifier

This experiment was done using an implementation of the object classifier described in section

3.6. The purpose of this experiment is to tie together the previous algorithms into a single applied

program as a pre-processing stage to an object classifier, ideally showing that the previous

results in this thesis are of benefit for real applications.

The experiment was done in the following way: using the best rotation algorithms from the

previous experiment, images were sent into it that had been segmented by the pixel-wise

background segmentation algorithm (which had achieved the best results among the

segmentation algorithms), whose input in turn came from the test set. So in other words, images

from the test sets were both segmented and rotated, and then sent into the image classifier. This

was done for 20 different objects, and since the classifier would always output exactly one image

from the template bank which was regarded as the one resembling the input most, the score

system was completely binary for each object; it was either the right object that was suggested,

or it was the wrong one.

Since the segmentation algorithm chosen here worked very well, the main interest was

comparing different rotation algorithms. This was what would be the main issue in the end;

assuming every object was segmented in a perfect way, rotating each object in the same way for

all images in the sense that they all look more or less the same, should intuitively give good

results for the classifier. The two best rotation algorithms had shown to be the one using the

angle for the bounding box and having Image Moments as a secondary algorithm, and the Image

Moments algorithm. These were the one used in this experiment for comparison.

4.4.1 Results

The results were the following with the following algorithms as pre-processing stages before

classification:

Image rotation with bounding box angle: 12 out of 20 correctly classified images

Image rotation with image moments: 3 out of 20 correctly classified images

The results will be discussed in the Discussion section, which follows below.

5 Discussion

In this chapter, it is going to be discussed not only what algorithms worked best, but also what

underlying features are important for the different tasks. Four algorithms were tested in the

segmentation experiment, and five algorithms in the rotation experiment. The results could

clearly show which algorithms worked best, though at the same time most algorithms had

different strengths and weaknesses.

40

5.1 Segmentation

It turned out that background subtraction done by having an averaged background and

classifying pixels in the input image with intensity above a certain threshold difference as

foreground, would be the best approach for segmenting objects (the algorithm described in

section 3.5.1). It appears that this is a rather straightforward approach, which works well since

the background does not change very much for different images (the conveyor belt has moved,

however the color nuances are still almost the same).

The histogram segmentation also works rather well, however it is a little different while still

being similar, which has some consequences. The most important difference is that it does not

make operations pixel-wise when deciding which pixels will be foreground and which will be

background; the overall difference is compared for certain nuances. The intuitive weakness that

could arise is when an object contains nuances from the background, and the comparison shows

that this nuance in the input image does not differ from the background with an amount which is

large enough. Then partial detections could be the resulting error, since the pixels were regarded

as background. Missed detections could also be made in this way, and both kinds of errors were

seen in the experiments.

The MOG and Gaussian segmentation algorithms are harder to analyze directly since they are

more high level algorithms, using pre-implemented functions from OpenCV. However it

becomes clear from the results that the higher level (abstraction level, to be specific) the worse

the performance of the algorithm becomes. Also, with higher abstraction level, it also followed

that the time it took to perform the last two algorithms increased to a degree such that it was

unacceptable (more than 1 second on average per object).

It seems that the pixel-wise background subtraction worked best just because it does not

complicate the task more than necessary, and all that really is needed is a pixel-wise comparison;

it is a straightforward and very controlled way of segmenting the objects.

5.2 Rotation

It seems from the results that the best algorithm seems to be the sixth algorithm, which uses the

bounding box of the segmentation algorithm. The main strength of this algorithm is the

robustness of it compared to the Image Moments algorithm for example; the Image Moments

algorithm worked well on the ideal test set with the exact same light settings and proportions but

would encounter some problems when these properties were changed just a little for the real test

set. Additionally, the bounding box algorithm showed to be relatively fast. There is a slight

weakness though; namely handling images with a very homogeneous intensity distribution and

having close to quadratic shape, since these are ambiguous in terms of orientation. It should be

mentioned however, that even though some objects images in the experiment failed in the sense

that there were 90- or 180 degree differences between them, these kinds of errors are not very

serious from a practical point of view. While they clearly make the results in the table look

worse, it can be imagined that in a practical setting with an image classifier for example,

templates of a certain object could be stored with 0, 90, 180 and 270 degree rotations to solve

41

this problem. Thus, only irregular variations will pose a real problem where the error degree

cannot be known beforehand, and these were not seen very much for this algorithm. Therefore, it

can be stated that the bounding box based rotation algorithm worked best. It should also be noted

that the other algorithms did not encounter the above problem in a noticeable way.

Among the other algorithms the Image Moments seemed to be the best one, with a very low

running time and relatively accurate results. This was also an algorithm that would have very

accurate results on the ideal test case with same proportions and light settings; in this ideal case,

the variance was only 1 or 2 degrees. However for this algorithm, as well as for the remaining

ones, the problem was that it was sensitive for light variations. Reflections in the object seemed

to alter the resulting angle rather much. Thus it can be stated that while this algorithm works very

well theoretically in a perfect setting with a very even light distribution, some problems can be

encountered in a practical setting.

Another algorithm that gained decent results was the one based on Fourier analysis. The same

also holds here; it performs very well theoretically, but has a weakness in the sense that the

results might be inconsistent when the settings change slightly. Another weakness is the running

time, which is comparatively long.

The Hough Lines algorithm did not work very well, and the problem seems to lie in the fact that

it is a very high level algorithm whose output can change radically when the input is tweaked

just a little, and while there are parameters possible to adjust somewhat, it is hard to gain good

control of it.

All in all, it can be stated that object shape is a much more stable guideline for choosing the

angle than intensity distribution or color, which can vary for different images though it is the

same object with the same background. However it follows then also that in general, objects with

more of a symmetrical shape are harder than unevenly shaped objects for the algorithms. Other

things that could be of influence are the various image transformations and processing methods;

these are operations that could make individual pixels vary for the same object in the same place

for two different images, and thus make algorithms based on color or pixel intensity distributions

more sensitive, so they should be applied in a careful, controlled manner.

5.3 Image classification

It would appear that when having well segmented images, rotating them with the algorithm

based on the bounding box would be a helpful way of pre-processing for object classification.

The reason why this works rather well (12 of 20 correct classifications) seems to be not only

because the algorithm rotates the images of objects in a consistent way, but also because the

angles are chosen in an intuitive way that makes the classification task easier. For example,

practically all rectangular objects will be rotated in a way that they are oriented either

horizontally or vertically. This is very practical since by knowing this, errors are almost only

made with 90 or 180 degrees in some direction. Thus one can for instance store four pictures for

each object as templates; each rotated 0, 90, 180 and 270 degrees respectively, in order to

42

minimize this kind of error. Then the rest is up to the image classifier; the images are rotated in a

consistent way that minimizes the difficulties for it.

It seemed that the Image Moments gained considerably worse results here (3 of 20 correct

classifications). Most probably, an important aspect to notice is that this did not do what was

described above; it did not necessarily rotate the objects in a way so they became horizontal or

vertical. The problem with this is that differences occurs naturally, and while we could correlate

them easily with the previous algorithm (rotate 90, 180 or 270 degrees), this is not done as easily

here as the amount the angle is wrong can be practically random. Furthermore, if we have a

rectangular object and it is not rotated horizontally or vertically, the image it is contained in will

have an additional amount of unnecessary black background. This will practically work as noise

as it distorts the shape of the object when sending it into the classifier. Therefore it can be said

that it is not only important that the objects are rotated in a consistent way; how the angle is

chosen is also of importance, i.e. rectangular objects should be vertical or horizontal.

It is important to note that the results here are relative – the classifier is very simple, so 12 of 20

correct classifications is good enough to show that the pre-processing with segmentation and

rotation can be helpful.

Figure 23: To the right the object is horizontal and no unnecessary background is sent into the

classifier. On the image to the left, on the contrary, the object has a skew angle which adds the

black background, and the result is that more pixels have to be compared by the classifier (since

a saved image has to be rectangular).

43

6. Further work

There are several aspects that could be of interest for further work. The hardware is an aspect

that is of interest; for segmentation, having a laser that could scan the height of the locations in

the image would enable another kind of algorithm for background subtraction. Several versions

of this has already been tried, as stated in the “Earlier Work” section, however one possibility

could be to combine height scanning with pixel-wise intensity comparison. Different hardware

could also be used to take the test pictures, possibly enabling different results; having a neutral

light setting that is very even and causes minimal reflection could improve the results of the

rotation algorithms (as edge detection maybe would not have to be used). Also, another kind of

conveyor belt of larger size could be used, enabling the possibility of having larger objects.

Another aspect that would be of interest is having other frameworks than OpenCV; as an

example, one could make own implementations of the Fourier Transform as an attempt to speed

it up. So other ways of implementing the various algorithms in this thesis would be an interesting

way of trying to get a faster running time. Furthermore, finding the ideal resolution for the

images could also be interesting as a way to increase the speed while preserving as much

precision as possible.

The classifier here is, as stated earlier, a very simple one that was chosen because of time

constraints. Using a more complex classifier based on Neural Networks, for instance, would

probably be much more effective. Something that would be of high interest would be to test

having the algorithms here as a pre-processing stage for Optisort´s Object Classifier, and

comparing the performance with and without this. However it can only be assumed that since

effective algorithms has been found for pre-processing images before classification, they can be

used in some way to enhance their results.

In the segmenter based on background difference separation, the average background has mainly

been used. For the images taken by the object scanner at Optisort this worked fine. In other

circumstances such as when using a conveyor belt with strong stains and tears, it might be

beneficial to treat the background differently. Photographing the whole belt part by part and

synchronizing the current photo with the corresponding photo of the background conveyor belt

might be a solution.

Another remark is that the current approach is based on taking single photos, however a different

approach could be to use video input. By tracking objects in a video sequence, there is less risk

of having the same object analyzed multiple times or the picture taken a bit too early or too late

and thus leaving part of the object outside the frame (making it harder to recognize a partial

object). The approach used in this report should still be valid. Still, the possible precision

benefits should be properly weighed against the extra costs in processing introduced, and it

might be possible that video recognition could add effectiveness if only these added costs seem

reasonable.

44

7. Conclusions

It has been shown that Foreground Segmentation can be done effectively in an environment

where the background is partly static and partly dynamic. The method for this can be chosen as

calculating an averaged background image based on a multitude of different background images,

and then making a pixel-wise threshold selection of pixels probable of being foreground because

of the intensity difference, and finally marking dense areas of such pixels as foreground objects.

Calculating angles for an object in the above setting in a way such that for every image of it,

rotating them with the respective angles calculated will result in images looking almost the same

can be done in the following way. Use a good image segmentation algorithm (like the one

described previously) and rotate the objects with the angles of the bounding boxes. Then, use

simple rules like having the longest side representing the width and the brightest side up, in order

to avoid mirrored images.

To answer the question if pre-processing can be helpful for the algorithms presented in this thesis

it seems that for the rotation task, edge detection might be more or less necessary if the light

conditions are uneven.

Finally, it has been shown that using effective algorithms for segmentation and rotation can be

helpful for the task of object recognition. It is possible to implement pre-processing algorithms

that segments and rotates objects in a sense that they are likely to match templates previously

stored in the classifier of the same object. This could then be a possibility of making object

recognition easier.

45

References

Ahmed, Ward, (2002), A Rotation Invariant Rule-Based Thinning Algorithm for Character

Recognition, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE, VOL. 24, NO. 12

Arifin, Asano, (2006), Image segmentation by histogram thresholding using hierarchical cluster

analysis, Pattern Recognition Letters 27 1515-1521

Bay, Ess, Tuytelaars, Gool, (2008), SURF: Speeded Up Robust Features, Computer Vision and

Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359

Bebis, (2003), Edge detection, Available: <

http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf >, [2012-03-30]

Bhadauria, Dewal, (2010), Comparison of Edge Detection Techniques on Noisy Abnormal Lung

CT Image before and after Using Morphological Filter, Roorkee: IIT Roorkee

Bovik (ed), Alan C., (2005), Handbook of image and video processing, [Books24x7 version]

Available from http://common.books24x7.com/toc.aspx?bookid=25360.

Bresenham, (1965), Algorithm for computer control of a digital plotter, IBM Systems Journal,

Vol. 4, No.1, pp. 25–30

Chan, Tony F. & Shen, Jianhong, (2005), Image processing and analysis: variational, pde,

wavelet, and stochastic methods, [Books24x7 version] Available from

http://common.books24x7.com/toc.aspx?bookid=23051.

Dalal, Triggs, (2005), Histograms of Oriented Gradients for Human Detection, INRIA Rh.one-

Alps, 655 avenue de l'Europe, Montbonnot 38334, France

Doringa, Mihai, (2010), Comparison of Two Image Segmentation Algorithms, Second

International Conferences on Advances in Multimedia

Duda, Hart, (1972), Use of the Hough Transformation to Detect Lines and Curves in Pictures,

Comm. ACM, Vol. 15, p. 11–15

E. Dop, (1999), Multi-sensor object recognition: The case of electronics recycling, University of

Twente

Fisher, Perkins, Walker, Wolfart, (2003), A to Z of Image processing, Available: <

http://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm,

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,

http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,

http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm,

http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm>, [2012-03-23]

http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
http://homepages.inf.ed.ac.uk/rbf/HIPR2/copyrght.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/copyrght.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/copyrght.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/copyrght.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/copyrght.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/copyrght.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/copyrght.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/copyrght.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm

46

Gonzalez, Woods, (2002), Digital Image processing Second Edition, New Jersey: Prentice-Hall

Inc. p. 91-94, 147-219, 222, 523-527, 569-570

Gould, Arfvidsson, Kaehler, Sapp, Messner,

Bradski, Baumstarck, Chung, Ng, (2007), Peripheral-Foveal Vision for Real-time Object

Recognition and Tracking in Video, Stanford University

Horprasert, Harwood, Davis, (1999), A Statistical Approach for Real-time Robust

Background Subtraction and Shadow Detection, University of Maryland

Intelligent Perception, (2010), Centroid, Available: <

http://inperc.com/wiki/index.php?title=Centroid >, [2012-03-30]

KaewTraKulPong P, Bowden R, (2001), An Improved Adaptive Background Mixture Model for

Real-time Tracking with Shadow Detection, Video based surveillance systems: Computer Vision

and Distributed Processing, Kluwer Academic Publishers.

Lee, Pun, (2002), Rotation and scale invariant wavelet feature for content-based texture image

retrieval, Journal of the American Society for Information Science and Technology

Volume 54, Issue 1, pages 68–80

Li, Huang, Yu-Hua Gu, Qi Tian, (2004), Statistical Modeling of Complex Backgrounds

for Foreground Object Detection, IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.

13, NO. 11, 1459-1471

Makadia, Daniilidis, (2003), Direct 3D-Rotation Estimation from Spherical Images

via a generalized shift theorem, University of Pennsylvania

Mamoru, Katsuhisa, (2000), Investigation of Image Sensing Technique for Recyclable Waste

Sorting, Japan: Mekatoronikusu Koenkai Koen Ronbunshu

Marshall, (2001), The Discrete Fourier Transform (DFT), Available: <

http://www.cs.cf.ac.uk/Dave/Multimedia/node228.html >, [2012-05-25]

Mattonea, Campagiornia, Galatib, (2000), Sorting of items on a moving conveyor belt. Part 1: a

technique for detecting and classifying objects, Robotics and Computer-Integrated

Manufacturing 16 (2), pp. 73-80.

Nadernejad, Sharifzadeh, (2008), Edge Detection techniques: Evaluations and Comparisons,

Babol: Applied Mathematical Sciences, Vol. 2, 2008, no. 31, 1507 – 1520

Nandini, Srikanta, Kumar, (2008), Estimation of Skew Angle in Binary Document

Images Using Hough Transform, World Academy of Science, Engineering and Technology 42

2008

http://onlinelibrary.wiley.com/doi/10.1002/asi.v54:1/issuetoc
http://onlinelibrary.wiley.com/doi/10.1002/asi.v54:1/issuetoc
http://onlinelibrary.wiley.com/doi/10.1002/asi.v54:1/issuetoc
http://onlinelibrary.wiley.com/doi/10.1002/asi.v54:1/issuetoc
http://www.sciencedirect.com/science/article/pii/S073658459900040X#ORFA
http://www.sciencedirect.com/science/article/pii/S073658459900040X#ORFB

47

Natural Resources Canada, (2008), Image Transformations, Available: <

http://www.nrcan.gc.ca/earth-sciences/geography-boundary/remote-sensing/fundamentals/2062

>, [2012-05-14]

opencv dev team, (2011), Sobel derivatives, Back projection, Available: <

http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.htm

l#sobel-derivatives,

http://opencv.itseez.com/doc/tutorials/imgproc/histograms/back_projection/back_projection.html

#back-projection >, [2012-03-23]

Owens, (1997), Fourier transform theory, Available: <

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT4/node2.html >,

[2012-05-25]

Palágyi, Skeletonization, Available: < http://www.inf.u-

szeged.hu/~palagyi/skel/skel.html#Thinning >, [2012-03-30]

Pinto, Baikerikar, Sridhar, Deshmukh, Kavthekar, Mudhliyar, (2010), Template Matching Using

Sum and Difference in Pixel Intensities, The 3rd International Conference on Machine Vision

Qiu, (2001), Some recent developments on edge detection and Image Reconstruction based on

local smoothing and Nonparametric Regression, Minneapolis: University of Minnesota

Qureshi, Shehrzad, (2005), Embedded image processing on the tms320c6000 dsp: examples in

code composer studio and matlab, [Books24x7 version] Available from

http://common.books24x7.com/toc.aspx?bookid=30945.

Saeed, Tabedzki, Rybnik, Adamski, (2010), Km3: A universal algorithm for image

skeletonization and a review of thinning techniques, Applied Mathematics and Computer Science

20(2): 317-335

Sezgin, Sankur, (2004), Survey over image thresholding techniques

and quantitative performance evaluation, Journal of Electronic Imaging 13(1), 146–165

Shapiro, Stockman, (2001), Computer vision, Upper Saddle River: Prentice Hall

Smith, (1997), The Scientist and Engineer’s guide to Digital Signal Processing, California:

California Technical Pub

Song Ho, (2006), Histogram, Available: < http://www.songho.ca/dsp/histogram/histogram.html

>, [2012-03-22]

Spring, Russ, Turchetta, Parry-Hill, Long, Fellers, Davidson (2007), Introduction to Digital

Imaging in Microscopy, Available: <

http://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/kernelmaskoperation/ >,

[2012-03-22]

http://www.nrcan.gc.ca/earth-sciences/geography-boundary/remote-sensing/fundamentals/2062
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html#sobel-derivatives,
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10
http://www.informatik.uni-trier.de/~ley/db/journals/amcs/amcs20.html#SaeedTRA10

48

Sundararajan, (2001), Discrete Fourier Transform: Theory, Algorithms and Applications,

Singapore: World Scientific Publishing Co. Ptc. Ltd

Suzuki, Abe, (1985), Topological Structural Analysis of Digitized Binary Images by Border

Following, COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 30, 32-46

Tkalcic, Tasic (2005), Colour spaces - perceptual, historical and applicational background,

Ljubljana: Faculty of electrical engineering

Turkel, (2011), Hough Transform, Available: <

http://www.math.tau.ac.il/~turkel/notes/HoughTransform.pdf >, [2012-03-30]

Utkarsh, (2011), Image moments, Available: < http://www.aishack.in/2011/06/image-moments/

>, [2012-03-30]

Vincent, Folorunso, (2009), A descriptive algorithm for Sobel Edge Detection, Information

Science IT education

Wikimedia Commons, (2009), Example density of the mixture of three gaussian random

variables., Available: http://commons.wikimedia.org/wiki/File:Gaussian-mixture-example.png

>, [2012-05-17]

Wikimedia Commons, (2010), HSL-HSV Models b, Available: <

http://upload.wikimedia.org/wikipedia/commons/1/16/Hsl-hsv_models_b.svg >, [2012-05-15]

Wu, Qiang & Merchant, Fatima & Castleman, Kenneth, (2008), Microscope image processing,

[Books24x7 version] Available from http://common.books24x7.com/toc.aspx?bookid=28062.

Young, Gerbrands, Van Vliet (1998), Fundamentals of Image Processing, Deen Haag: CIP-Data

Koninklijke Bibliotheek.

