
 

Chalmers University of Technology 

University of Gothenburg 

Department of Computer Science and Engineering 

Göteborg, Sweden,  June 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Centrality in Biological Networks 

Master of Science Thesis in Bioinformatics 
 

 

 

TRIINU TASA 

 



 

The Author grants to Chalmers University of Technology and University of Gothenburg  

the non-exclusive right to publish the Work electronically and in a non-commercial 

purpose make it accessible on the Internet.  

The Author warrants that he/she is the author to the Work, and warrants that the Work 

does not contain text, pictures or other material that violates copyright law.  

 

The Author shall, when transferring the rights of the Work to a third party (for example a 

publisher or a company), acknowledge the third party about this agreement. If the Author 

has signed a copyright agreement with a third party regarding the Work, the Author 

warrants hereby that he/she has obtained any necessary permission from this third party to 

let Chalmers University of Technology and University of Gothenburg  store the Work 

electronically and make it accessible on the Internet. 
 

 

 

 

Centrality in Biological Networks 

 

Triinu Tasa 

 

© Triinu Tasa, June 2011. 

 

Examiner: Graham Kemp 

 

Chalmers University of Technology 

University of Gothenburg 

Department of Computer Science and Engineering 

SE-412 96 Göteborg 

Sweden 

Telephone + 46 (0)31-772 1000 

 

 

 

 

 

 

Department of Computer Science and Engineering 

Göteborg, Sweden June 2011



Centrality in Biological Networks
Master’s Thesis in the International Master’s Programme in Bioinformatics

Triinu Tasa
Department of Mathematical Sciences
Chalmers University of Technology

Abstract

Centrality analysis has become an important part of biological network studies, notably
that of protein-protein interaction networks. It has long been known that the impor-
tance of a protein is determined by its connections and relationships to other proteins.
In the current work we look into centrality in other kinds of networks as well, notably
those based on gene expression data and drug effects on cancer cell lines. The purpose
of this project is to show that centrality is useful for the analysis of several different
kinds of biological networks. Firstly, we show that the most central genes in the p53
protein interaction network are also the most relevant regarding the network’s ability
to suppress tumors. Secondly, we look into different types of breast cancer and demon-
strate that central genes are among the best discriminators between different classes of
data. It is also interesting to see many of the p53 pathway elements coming up among
the top central genes. Finally, we apply centrality on cancer treatment data and show
how it can be used to identify good drug candidates for different kinds of cancer.
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1 Introduction

Until recently the importance of a gene was determined by its individual actions as cat-
alysts, signalling molecules, or building blocks of cells. It is increasingly clear though,
that most of its biological characteristics are determined by interactions with other con-
stituents of the cell, such as proteins, DNA, RNA, and small molecules. Therefore, a lot
of time and effort is put into constructing different kinds of networks based on these
interactions.

Various types of interaction networks emerge from the sum of these interactions, in-
cluding protein-protein interaction, metabolic, signalling and transcription-regulatory
networks. It is also possible to construct networks based on gene expression data where
genes with similar expression profiles are linked together. None of these networks are
independent, instead they form a ”network of networks” that is responsible for the
behavior of the cell. In the current project we look into protein-protein and gene ex-
pression networks, and last but not least, a network constructed from drug reaction
data on different cancer cell lines.

Networks are usually represented in the form of graphs. Informally speaking, a
graph is a set of vertices (also referred to as nodes) and edges (links) connecting them.
In protein-protein interaction networks proteins are denoted by nodes, and a link repre-
sents a mutual binding relationship: if protein A binds to protein B, then protein B also
binds to protein A. In gene expression networks the genes are represented as nodes,
and connections between genes symbolize similarity in expression. Finally, in drugs
vs. cancer cell-lines we denote different drugs with nodes and the connections between
the drugs represent their similar inhibition properties on cancer cell lines.

The purpose of this work from the computational point of view is to find the most
important vertices in the graph. The importance of a vertex is determined by the level
of damage (the connectivity of the whole graph diminishes greatly) that the removal
causes. It has been shown in several works [21, 12] that the genes representing the most
important vertices are often also the most important ones in their biological networks.
In protein-protein interaction networks a cancellation or mutation in any of these genes
often leads to serious consequences and might even be lethal for the cell. The signif-
icance of the central genes of gene expression and drug vs. cell line networks will be
studied further in chapter 3.
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Chapter 2 discusses all the computational issues - gives an overview of the relevant
graph theory, discusses the algorithms for finding the vital vertices in a graph and ex-
plains the most important aspects of the developed software. The second part of the
work puts the previously developed software into use. Firstly, in section 3.1 we exam-
ine the p53 protein interaction network and look into its most central proteins and their
significance in the p53 pathway. In section 3.2 we analyze the gene expression data
on two different types of breast cancer. We cluster the genes by expression similarities
and analyze the most central genes in some of the most interesting clusters. We also
study where the central proteins from the p53 pathway are placed in this gene expres-
sion network. Finally in section 3.3 we construct a network based on drug inhibition
properties on different cancer cell lines and try to employ centrality for locating the best
compounds for treating breast cancer.
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2 Theoretical background

2.1 Scale-free networks

For decades graph theory was focused on either regular or completely random graphs.
However, neither model is suitable for describing most real-life networks like social net-
works, internet and biological networks (protein-protein interaction, metabolic, trans-
cription-regulatory and signalling networks). Only recently a new graph model was
introduced which describes all of these networks - the model of scale-free networks [3].

It was first noted that for many real-life networks the number of nodes with a given
degree follows a power law. That is, the probability that a chosen node has exactly
k links follows P(k) ∼ k−γ, where γ is the degree exponent with its value for most
networks being between 2 and 3 [3]. Most networks only have a few nodes with a
large number of links (often called hubs) whereas most nodes only have a few. Such
networks are called scale-free [3].

Scale-free networks are amazingly robust against accidental failures - even if 80%
of randomly selected nodes fail, the remaining 20% still form a compact cluster with a
path connecting any two nodes [1]. On the other hand, a lot of damage might be caused
if a few key hubs are knocked out.

An important feature of every network is its average path length. Path length is the
number of links we need to pass through to travel between two nodes. Average path
length represents the average over the shortest paths between all pairs of nodes and
offers a measure of a network’s overall navigability. A common feature of all complex
networks is their small average path length (known as the ”small world effect”) [4].
Scale-free networks are ”ultra small” [5, 6]. Path length in scale-free networks with
degree exponents 2 < γ < 3 is even smaller, with the average path length following
l ∼ log log N [5, 6], which is significantly shorter than logN that characterizes random
small-world networks.

It has been shown in several organisms now that most networks, including protein-
protein interaction networks, within the cell approximate a scale-free topology [21, 13,
24]. The reason for that lies in the evolutionary history of biology. For example, protein-
protein interaction networks are believed to be scale-free because of gene duplication
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[30]. Duplicated genes produce identical proteins that interact with the same protein
partners. Therefore, each protein that is in contact with a duplicated protein gains
an extra link. The scale-free model predicts that the nodes that appeared early in the
history of the network are the most connected ones [3].

The ultimate description of cellular networks requires some extra information in ad-
dition to the interaction schema. The intensity and temporal aspects of interactions
must also be considered, as some are more active than others and some are active only
during a certain period. So far we only have little information about the temporal as-
pects of various cellular interactions, but our knowledge of intensities is improving. In
protein-protein interaction networks we often have information about the intensity of
a relationship, which is represented in the graph as the weight of the link.

This section is, to a large extent, based on the excellent review by Barabási and Oltvai
[4], which gives an overview of different graph models and their usability in biological
networks.

Figure 2.1: Examples of A) random and B) scale-free network (from [20])

In figure 2.1 both networks have 36 nodes and 44 links. However the organization
of connections makes the difference. In the random network, majority of nodes have
2 or 3 connections, making it follow Poisson distribution (C). Scale-free networks with
a relatively small number of hubs follow power law P(k) (D), which is defined as the
probability that a randomly chosen node in the network has exactly k links.
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2.2 Average path length

Path length is the distance between two vertices in the graph. Average path length of a
graph is the average of the minimal path lengths between all vertices in the graph. The
mathematical formula for calculating the average path length is given in equation 2.1:

APLG =
∑n

i=1 ∑n
j=i lij

n2 , (2.1)

where G - graph G,
n - numer of vertices,
lij - minimal path length between vertices i and j

In the current work however we will not need the average path length of the whole
graph but we will need it for each vertex separately. The average path length for each
vertex i is calculated as the average of all minimal path lengths lij, where j ∈ V\{i} and
V is the set of all vertices. The corresponding formula is given in equation 2.2.

APLi =
∑i−1

j=1 lij + ∑n
j=i+1 lij

n− 1
(2.2)

Various algorithms can be used for calculating the average path lengths. I compared
two main algorithms, Dijkstra (Algorithm 1) and Floyd-Warshall (Algorithm 2) algo-
rithms. Dijkstra in essence is intended for finding the shortest path between two given
vertices. Floyd-Warshall algorithm in contrast calculates all shortest paths in the graph.
However, adapting Dijkstra to calculate all shortest paths resulted in an algorithm that
works at least as fast as Floyd-Warshall or even faster for larger data amounts.

The Dijkstra algorithm (Algorithm 1) works by memorizing for each vertex v the cost
d[v] of the shortest path found so far between s and v. Initially, this value is 0 for the
source vertex s (d[s] = 0), and infinity for all other vertices, which means that we do
not know any path leading to those vertices (d[v] =? for every v in V, except s). The
notation w(u, v) represents the cost of traversing the edge between the vertices u and v.
Extract Min(Q) retrieves the vertex with the shortest path from vertex s, which initially
is s itself. When the algorithm finishes, d[v] will be the cost of the shortest path from s
to v or infinity, if no such path exists [47].

The Floyd-Warshall algorithm (2) is a brute-force algorithm calculating all distances
between all vertices and memorizing the shortest paths.
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Algorithm 1 Dijkstra(G, t, s)
1: for all vertex v in V[G] do
2: d[v] := infinity

3: previous[v] := undefined

4: end for
5: d[s] := 0 //Distance from s to s

6: S := empty set //Set of all vertices

7: Q := V[G]

8: while Q is not an empty set do
9: u := Extract Min(Q)

10: S := S union {u}
11: for all edge (u,v) outgoing from u do
12: if d[u] + w(u,v) < d[v] then
13: d[v] := d[u] + w(u,v)

14: previous[v] := u

15: end if
16: end for
17: end while

2.3 Clustering

Throughout this work we are using clustering for grouping together similar data and
for finding the nearest neighbors of the node of interest. The algorithm we opted
for combines the Minimum Spanning Tree and k-Nearest Neighbors algorithms and
is hence abbreviated as MSTkNN. It constructs a disconnected graph by computing the
intersection of the outputs of the two algorithms mentioned above. The algorithm was
first presented by González-Barrios and Quiroz [14], but in this work we are using a
modification of it by Inostroza-Ponta[17].

A spanning tree of a connected, undirected graph is a subgraph which is a tree and
connects all the vertices together. There can be many different spanning trees, and a
minimum spanning tree is the one with the smallest weight. The total weight of a
spanning tree is calculated by summing up all individual weights of the edges [56].

k-nearest neighbor algorithm is a simple classification method where an object is
assigned to a class that the majority of its nearest neighbors belong to [57].
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Algorithm 2 Floyd-Warshall(int[1..n, 1..n] graph)
1: //Initializing the distance matrix dist[i][j]

2: for all i = 1 to n do
3: for all j = 1 to n do
4: if i == j then
5: dist[i][j] := 0

6: else if exists distance from i to j then
7: dist[i][j] := distance i j

8: else
9: dist[i][j] := infinity

10: end if
11: end for
12: end for
13: //Main loop of the algorithm

14: for all k = 1 to n do
15: for all i = 1 to n do
16: for all j = 1 to n do
17: if dist[i][j] > dist[i][k] + dist[k][j] then
18: dist[i][j] = dist[i][k] + dist[k][j]

19: end if
20: end for
21: end for
22: end for
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2.3.1 Distance metrics

There are different ways to calculate the weights of the minimum spanning tree. In the
current work we compared 3 different methods: Euclidean distance, Pearson correla-
tion and Spearman correlation.

Euclidean distance is calculated between two points p and q using the following
formula [60]:

d(p, q) =

√
n

∑
i=1

(pi − qi)2 (2.3)

When working with gene expression data we are using expression values for p and
q, and n is the number of probes. Euclidean distance works reasonably well when data
is normalised and values in rows are comparable. In gene expression data that hasn’t
been normalised it cannot be used though, as values of different probes can differ by
thousands of times. In such cases it is better to use correlation.

Pearson correlation coefficient is widely used in the sciences as a measure of the
strength of linear dependence between two variables. Pearson’s correlation coefficient
between two variables is defined as the covariance of the two variables divided by the
product of their standard deviations [58]:

ρ =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σxσY
(2.4)

The above formula defines the population correlation coefficient. Substituting esti-
mates of the covariances and variances based on a sample gives the sample correlation
coefficient, commonly denoted r:

r =
1

n− 1

n

∑
i=1

[(
Xi − X̄

sX
)(

Yi − Ȳ
sY

)] (2.5)

where Xi−X̄
sX

, X̄, and sX are the standard score, sample mean and sample standard
deviation respectively [58].

Another correlation coefficient that we use is the Spearman’s rank correlation coef-
ficient. It is a non-parametric measure of statistical dependence between two variables.
It assesses how well the relationship between two variables can be described using a
monotonic function. If there are no repeated data values, a perfect Spearman correla-
tion of +1 or 1 occurs when each of the variables is a perfect monotone function of the
other [59].
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The formula for calculating the Spearman correlation is the same as Pearson’s corre-
lation coefficient with the exception of using ranks instead of values for xi and yi:

ρ =
∑i(xi − x̄)(yi − ȳ)√

∑i(xi − x̄)2 ∑i(yi − ȳ)2
(2.6)

Pearson correlation only gives a perfect value when X and Y are related by a lin-
ear function. In contrast Spearman correlation gives a perfect value when X and Y are
related by any monotonic function, which is why it is often described as being nonpara-
metric [59].
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3 Tests

3.1 The p53 Protein Interaction Network

3.1.1 Introduction

The p53 pathway has caught the attention of hundreds of scientists because of its role
in apoptosis, cellular senescence (aging) and cell cycle arrest [23]. It is also involved in
preventing DNA damage and repairing already damaged DNA [23]. One of the most
central players in the p53 pathway is the p53 protein.

There are many reasons for DNA damage like UV irradiation, duplication errors,
reaction with oxidative free radicals and many more. Each type of DNA damage is
detected and fixed by a different set of proteins, but they are all reported to the p53
protein and its pathway [23]. The p53 pathway acts as a supervisor and removes the
cells with DNA errors [23].

Considering the function of the p53 network it is only natural that any major muta-
tion in the network’s central genes can have severe consequences. In fact it has been
observed that the p53 gene is mutated about 50% of the time in a wide variety of can-
cers, and at other times the proteins that frequently interact with p53 are mutated [39].

In this thesis we concentrate on a simplified version of the p53 pathway - the p53 pro-
tein interaction network. Protein-protein interactions occur when two or more proteins
bind together. The graph of the network is shown below (3.1). As the p53 network is a
scale-free network, it is amazingly robust to the knockout of most genes whereas mu-
tations in some of the most connected or central ones often result in the development
of cancer. Next we explore the most central genes in more detail.

3.1.2 The p53 gene

In order to get a better grip of the p53 network, we first calculated the average path
lengths of all the genes in the network and then sorted the results accordingly. The 25
most central genes are given below with average path length in the brackets :

• 1. p53 (1.9)
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Figure 3.1: The p53 network [7]

• 2. Cdk2 (2.1)

• 3. CycA (2.2)

• 4-7. Cdk1, Mdm2, DP1-2, pRb (2.3)

• 8-12. PCNA, RPA, DNA-PK, p21, p300 (2.4)

• 13-15. E2F1-2-3, CycH, Cdk7 (2.5)

• 16-17. Abl, Gadd45 (2.6)

• 18-22. CycB, CycD, CycE, PARP, ATM (2.7)

• 23-25. ssDNA, Cdc25A, 14-3-3 (2.8)

The most important gene in the p53 network is the p53 gene itself. According to
average path length calculations it is also the most central. The protein product of the
p53 gene responds to stress signals caused by DNA damage and acts upon it. Whenever
the p53 protein is informed about DNA damage, the concentration of the protein is
increased [23]. As p53 also regulates the transcription genes like MDM-2, p21, 14-3-3
sigma and GADD45, the concentration rates of those also increase [23]. Most of the
genes regulated by p53 are involved in apoptosis.

The most interesting feature of p53 for us is it’s activation when certain tumor sup-
pressor genes get inactivated because of a mutation. Such genes include oncogenes like
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mys and Ras, the APC tumor suppressor and the retinoblastoma protein pRb. Muta-
tions in the retinoblastoma proteins can cause the development of the cancer of retina
(in the eye), which usually occurs in children of less than 5 years of age. pRb acts by
regulating the E2F-1 transcription factor, which controls cell proliferation and apopto-
sis. Mutations in the APC gene often contribute to the development of colon cancer.
Oncogenes are genes that code for a protein that is believed to cause cancer. For exam-
ple, when myc is specifically mutated, or overexpressed, it increases cell proliferation
[49]. Proteins in the Ras family control such processes as cytoskeletal integrity, prolifer-
ation, cell adhesion, apoptosis, and cell migration. Ras proteins are often deregulated
in cancers, leading to increased invasion and metastasis, and decreased apoptosis [50].

Cdk2 is a catalytic subunit of the cyclin-dependent kinase complex, whose activity
is restricted to the G1-S phase of the cell cycle, and is essential for the G1/S transition.
This protein associates with and is regulated by the regulatory subunits of the complex
including cyclin E or A. Cyclin E binds G1 phase Cdk2, which is required for the tran-
sition from G1 to S phase while binding with Cyclin A (CycA) is required to progress
through the S phase.

3.1.3 Other central genes

In this section we will discuss some of the genes from the listing above that have not
yet been mentioned.

As can be seen from the graph in figure 3.1, one of the most central genes is DP1-2. It
is a cell cycle regulatory transcription factor that forms a functional heterodimer with
E2F1. The dimer can in turn bind to MDM-2, which is involved in cell cycle arrest.
In addition, it is known that DP1-2 expression is strongly inhibited by p53 at the level
of transcription. Inhibition of DP1 transcription has implications in one of the several
possible mechanisms through which p53 induces cell cycle arrest [15].

PCNA or Proliferating Cell Nuclear Antigen is a protein that is transcriptionally ac-
tivated by p53 and is important for both DNA synthesis and DNA repair.

Replication protein A (RPA) is required for both DNA replication and nucleotide
excision repair. In normal state RPA binds to p53, but it has been shown that in the case
where the cell is radiated with UV, the ability of RPA binding to p53 is greatly reduced.
In conclusion it has been proposed that RPA may participate in the coordination of
DNA repair by releasing p53 when sensing UV damage. When released, p53 can act to
repair any damage.

ATM and DNA-PK are protein kinases that in addition to responding to DNA dam-
age are also involved in controlling genome stability and cell cycle progression [22].
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Insufficient levels of ATM in humans can cause neurodegeneration, immunodeficiency,
genome instability and cancer predisposition [22]. The deficiency of DNA-PK in mice
leads to severe immunodeficiency [22]. ATM and DNA-PK phosphorylate p53 which
initiates activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA
repair or apoptosis.

p300 is a transcriptional co-activating protein. The members of p300 family are tran-
scriptional adaptors for p53, modulating its checkpoint function in the G1 phase of the
cell cycle and its induction of apoptosis [26].

When Abl oncogene is translocated within the bcr (breakpoint cluster region) gene it
activates a tyrosine kinase which allows the cells to proliferate without being regulated,
leading to chronic leukemia [51].

PARP (Poly ADP-ribose polymerase) is a protein involved in a number of cellular
processes involving mainly DNA repair and programmed cell death. It has been sug-
gested that PARP-1, a protein in the PARP family, participates in the p53 response fol-
lowing irradiation [40].

CDC25A is a member of the CDC25 family of phosphatases. CDC25A is required for
progression from G1 to the S phase of the cell cycle [52]. Overexpression of Cdc25A
phosphatase is often observed in cancer and results in poor prognosis. Cdc25A mainly
dephosphorylates and thereby activates CDK2 and thus induces progression in the cell
cycle from G1 to S phase. p53 downregulates expression from the Cdc25A gene [36].

Now that some of the most important genes in the p53 network have been shortly
described, we continue with studying their behaviour in different types of breast cancer.
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3.2 Basal-Like vs. Non-Basal-Like Breast Cancer

3.2.1 Biological Background

In the current study we are comparing the gene expression profiles of basal-like and
non-basal-like breast cancers with each other and normal breast cells. Basal-like cancers
(BLC) account for 10

3.2.2 Materials and Methods

We are analysing the dataset provided by the NCBI library [54] which provides 7 sam-
ples for normal breast cells, 18 for basal-like and 20 for non-basal-like cancers. We ran
3 separate tests, comparing 2 breast cancer types in each (normal vs. basal-like, normal
vs. non-basal-like, basal-like vs. non-basal-like). For that, we first separated the sam-
ples for each test and calculated expression averages for each type. We then removed
probes with similar expression rates in each two sample groups in a test leaving us with
10000-16000 probes for each test instead of 54000 as in the original dataset.

We then ran the minimum spanning tree k-nearest neighbor algorithm on each test
separately. Finally we analysed the results by focusing on the most differentially ex-
pressed genes in each test and the most central genes from the p53 network.

3.2.3 Results

The clustering results for normal vs. basal-like, normal vs. non-basal-like, and basal-
vs. non-basal-like samples are displayed in figures 3.2, 3.9 and 3.10 correspondingly.
We also located the most interesting genes from the p53 network and marked down
the clusters in each of the tests (results in table 3.1). Not all genes were present in the
dataset and not all of them were expressed differently enough to appear in our final
results.

Normal breast cells vs. basal-like breast cancers

After calculating the ratios of average expression rates in the two cell types we identi-
fied the probes that displayed an approximately 3-fold difference. These gene names
are listed in table 3.2.

We can see from the results that the most underexpressed probes in basal-like cancer
cells compared to normal ones are all positioned in cluster 2. Taking a look at table 3.1
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Central proteins(genes) from p53
network

Normal vs. basal
cluster nr

Normal vs. non-
basal cluster nr

Basal vs. nonbasal
cluster nr

p53 (TP53) 2 1
Cdk1 (CDC2) 1,0 0
Mdm2 4
pRb (RB1) 2 3
PCNA 0 0
DNA-PK (PRKDC) 1
p21 (CDKN1A) 2
E2F1-2-3 1,0,0 19,19,57 29,0,14
Abl (ABL1) 2
Gadd45* 8 7
PARP* 1,2,19 1,4,10,40 3,6
ATM 2
Cdc25A 1,9 8,19 0,1

Table 3.1: The most central proteins from the p53 protein-protein interaction network
and their locations in test results.

Underexpressed in cancerous cells Cluster nr Overexpressed in cancerous cells Cluster nr
hCG 25653 2 ART3 9
CITED1 2 CXorf61 0
FIGF 2 CENPA 0
SCUBE2 2 FOXM1 0
SCARA5 2
AI492388 2

Table 3.2: Probes with at least a 3 fold expression difference between normal breast cells
and basal-like breast cancer cells.

we can see that several of the interesting p53 network genes are also located in clus-
ter nr. 2: p53, pRb, p21, Abl, PARP and ATM. The fact that these genes are clustered
together with the most differentially expressed probes further emphasizes the impor-
tance they have in the development of malignant tumors. Cdk1, PCNA, E2F1-2-3 and
Cdc25A are clustered together with some of the most overexpressed probes in basal-like
cancer cells.

Results from the centrality calculations for clusters 2 and 0 are displayed in table 3.3.
The expression rates for some of the probes can be seen in figures 3.3 and 3.4. It is inter-
esting to note by looking at the graphs and the centrality results that the genes that best
distinguish between basal-like breast cancers and healthy cells are the most central ones
in their clusters. TFAP2 is a transcription factor believed to stimulate cell proliferation
and suppress terminal differentiation of specific cell types during embryonic develop-
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Figure 3.2: Clustering results for the gene expression analysis of normal breast cells and
basal-like breast cancer cells

ment. It distinguishes perfectly between healthy and basal-like tumor cells, as well as
other genes with short average path lengths like FIGF. TP53 (gene that encodes the p53
protein), which is among the least central in the cluster, behaves quite chaotically mak-
ing it a bad discriminator for basal-like breast tumors. However, it is interesting to note
that p53 levels are hardly ever similar to those of normal cells in any basal-like tumors.
They are either too high or too low, but not normal.

Other great biomarkers for basal-like breast tumors include TOP2A and CDC2, which
are some of the most central probes in cluster 0. TOP2A is an enzyme that functions
as the target for several anticancer agents and a variety of mutations in this gene have
been associated with the development of drug resistance. CDC2 (Cdk1) is familiar to
us as one of the most central proteins in the p53-network. It is a highly conserved
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protein that is a key player in cell cycle regulation. Again we can make a conclusion
that the probes that discriminate the best between normal breast cells and basal-like
breast tumors can be found among the most central genes in the clusters with the most
differentially expressed probes.

Cluster 2 results ( 8159 probes) Cluster 0 results (777 probes)
Position APL Probe name Position APL Probe name
1 0.28345 TFAP2B 1 0.19292 TOP2A
2 0.28789 PNLIPRP3 2 0.20032 CDC20
3 0.28953 COL17A1 10 0.21914 FOXM1
5 0.29059 FIGF 11 0.21966 CDC2
81 0.32483 SCUBE2 12 0.22030 CENPA
86 0.32608 CITED1 59 0.26502 PCNA
148 0.33802 AI492388 62 0.26683 E2F3
188 0.34391 hCG 25653 416 0.43508 CXorf61
683 0.38600 SCARA5 555 0.49370 E2F2
2784 0.46242 ABL1
3142 0.47260 PARP8
3616 0.48587 PARP3
4533 0.51016 ATM
4881 0.52052 CDKN1A
6738 0.58425 RB1
7306 0.61669 PARP11
7675 0.65077 TP53

Table 3.3: Average path lengths of interesting probes

Figure 3.3: Expression rates in normal breast cells and basal-like breast tumors of the
genes that are underexpressed in tumors
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Figure 3.4: Expression rates in normal breast cells and basal-like breast tumors of the
genes that are overexpressed in tumors

Figure 3.5: Expression rates in normal breast cells and non-basal-like breast tumors of
the genes that are underexpressed in tumors

Normal breast cells vs. non-basal-like breast cancers

The most differentially expressed genes in non-basal-like breast tumors compared to
normal cells are listed in table 3.4. According to this table the most underexpressed
genes in cancerous cells seem to be in clusters 1 and 16, and the most overexpressed
ones in clusters 0 and 27. Some of the most central genes from the p53-network appear
also in cluster 1 (p53, PARP) and some in cluster 0(CDC2/Cdk1, PCNA), but none in
clusters 16 and 27 and so we won’t analyze these any further.

The results from the centrality calculator on clusters 0 and 1 are displayed in table
3.5 and figures 3.5 and 3.6. The best genes for differentiating between non-basal-like
cancers and normal breast cells are CAPN6, FXYD1 and FIGF, which are all significantly
underexpressed in tumors. CAPN6 is a calpain, a calcium-dependent cysteine protease
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Figure 3.6: Expression rates in normal breast cells and non-basal-like breast tumors of
the genes that are overexpressed in tumors

Figure 3.7: Expression rates in basal- and non-basal-like breast tumors of the genes that
are overexpressed in basal-like cancers

Underexpressed in cancerous cells Cluster nr Overexpressed in cancerous cells Cluster nr
SCARA5 1 AF401033 0
FIGF 1 COL11A1 0,27
FXYD1 1 A1376003 27
ROPN1 16

Table 3.4: Probes with at least a 3 fold expression difference between normal breast cells
and non-basal-like breast cancer cells.

involved in signal transduction in a variety of cellular processes. FXYD1 is thought
to form an ion channel or regulate ion channel activity. FIGF is an endothelial growth
factor.
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Figure 3.8: Expression rates in basal- and non-basal-like breast tumors of the genes that
are underexpressed in basal-like cancers

Cluster 0 results ( 1270 probes) Cluster 1 results (4187 probes)
Position APL Probe name Position APL Probe name
1 0.30644 CDC2 1 0.29420 CAPN6
40 0.37822 PCNA 3 0.29709 FXYD1
458 0.52773 AF401033 6 0.29958 FIGF
637 0.56233 COL11A1 221 0.38115 SCARA5

964 0.46894 TP53
1849 0.52536 PARP3

Table 3.5: Average path lengths of interesting probes in normal vs. non-basal-like cells

Yet again, the most central probes in cluster 1 are the best markers for distinguishing
between normal cells and non-basal-like tumors. Cluster 0 however does not seem to
be the best pick for separating normal cells from the tumors in consideration. The most
central genes in the cluster, CDC2 and PCNA, are expressed quite similarly in the two
groups and without major fluctuations. Even COL11A1 does not separate healthy cells
from diseased in several samples, even though it is the best of the four.

Basal- vs. non-basal-like breast cancers

The probes that differentiate the best between basal- and non-basal-like breast cancers
are listed in table 3.6. The most overexpressed probes in non-basal-like breast tumors
compared to basal-like ones are all located in cluster 14, and underexpressed probes in
clusters 3 and 26. Not many proteins from the p53-network were differentiating well
between basal- and non-basal-like tumors, and only pRb, PARP and E2F are present in
the clusters that we are interested in.
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Figure 3.9: Clustering results for the gene expression analysis of normal breast cells and
non-basal-like breast cancer cells

Underexpressed in non-basal cells Cluster nr Overexpressed in non-basal cells Cluster nr
AF401033 26 ROPN1 14
AGR2 3 FABP7 14
FOXA1 3 ART3 14
AGR3 26 CXorf61 14

SCRGI 14
HORMAD1 14

Table 3.6: Probes with at least a 3 fold expression difference between basal- and non-
basal-like breast cancer cells.
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Figure 3.10: Clustering results for the gene expression analysis of basal- and non-basal-
like breast cancer cells

When looking at the centrality calculation results in table 3.7 and the graphs with
some of the probes in figures 3.8 and 3.7 we can yet again see that the most central genes
in these clusters differentiate the best between different types of breast cancers. One
of the best genes to differentiate between basal- and non-basal-like tumors is FOXA1
(Forkhead box protein A1). It is overexpressed in non-basal-like tumors (hormone in-
duced breast cancers). In the past FOXA1 expression was always observed in human
prostate carcinomas, which are mostly also hormone dependent.
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Cluster 14 results ( 602 probes) Cluster 3 results (1848 probes)
Position APL Probe name Position APL Probe name
1 0.41478 FOXC1 1 0.48252 AU147591
2 0.45433 FABP7 3 0.48871 FOXA1
12 0.51280 ART3 13 0.51409 AGR2
20 0.52288 SCRG1 901 0.70173 RB1
22 0.52657 ROPN1
35 0.54140 CXorf61
137 0.62578 HORMAD1
144 0.62851 E2F3

Table 3.7: Average path lengths of interesting probes (basal- vs. non-basal-like breast
cancers)

3.2.4 Conclusions

It is visible from the results presented in this test that centrality can be used for an-
alyzing gene expression data. We saw that the most central genes of certain clusters
can be the best discriminators between different classes of data. It is also interesting
to note how many of the p53 pathway genes came up among good distinguishers be-
tween normal breast cells and basal-like breast tumors. It might shed some light on
why basal-like tumors are generally more resistant to popular chemotherapy drugs
than hormone-dependent tumors.

3.3 Alternative Drugs for Breast Cancer Treatment

3.3.1 Motivation

Breast cancer is the second leading cause of cancer deaths in women today (after lung
cancer) and is the most common cancer among women, excluding nonmelanoma skin
cancers. According to the American Cancer Society, about 1.3 million women will be
diagnosed with breast cancer annually worldwide and about 465,000 will die from the
disease. One out of 8 women develop breast cancer during their lifetime.

Most cancer chemotherapy drugs come with the cost of severe side effects which
range from temporary hair loss and nausea to longer term organ damage. The total
economic cost of breast cancer in New South Wales, Australia in 2005 was estimated
at 653600AUD per person, of which the financial cost is 64300AUD and the burden
of disease is 589300AUD [42]. Drugs that would specifically target breast cancer cells
could save patients from most side effects and hence also reduce the economic cost of
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cancer radically.

3.3.2 Biological Background

Breast cancers are often regulated by gonadal hormones like estrogen and/or proges-
terone. Therefore one possible treatment for such cancers is by blocking the hormone
receptors on affected cells. People with hormone positive tumors have better chances
for survival and their treatment is also less agressive than that for patients with hor-
mone negative tumors [48].

3.3.3 Materials and Methods

The US National Cancer Institute (NCI) 60 human tumour cell line anticancer drug
screen (NCI60) was developed in the late 1980s as an in vitro drug-discovery tool in-
tended to supplant the use of transplantable animal tumours in anticancer drug screen-
ing [38]. It holds a large amount of data describing the cell growth inhibition effects of
specific drugs on different cancer cell lines.

In our research we focused on the 7 breast cancer cell lines and used the other cancer
cell lines as controls, as it has not been possible to create immortalised, i.e. indefinitely
proliferating cell lines from normal cells. The objective of this work was to find a drug
or a drug combination that might be a good alternative for current popular breast can-
cer chemotherapy drugs.

The effectiveness of cancer treatment depends on many factors: age, lifestyle and
perhaps most importantly, the genetic signature of cancer cells. That explains why
most medications generally work for only up to 15-20% of patients. In addition, most
popular treatments come with severe side effects due to the inability of the medications
to differentiate between normal and cancerous cells.

The graph in figure 3.11 shows cell growth inhibition properties for some of the most
popular breast cancer treatment drugs. It is based on the GI50 data from the National
Cancer Institute Developmental Therapeutics program. The values are negative log-
arithms of drug concentrations that inhibit the growth of the specific cell line by 50%
[55]. In short, the bigger the number the better the drug is for controlling the growth of
specific cells.

It is visible from the graph above that most drugs work more or less similarly for all
cancer cell lines. In fact, most cancer treatment drugs used today cannot differentiate
between cancerous and healthy cells, but instead target all fast dividing cells, including
hair growth and white blood cells. So not only does hair fall out and does not grow back
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Figure 3.11: Inhibition properties of popular breast cancer chemotherapy drugs on dif-
ferent cancer cell lines

until after treatment has stopped, but also the patients’ immune system is diminished
leaving them more susceptible to colds, flu and other infectious diseases.

Another problem with chemotherapy is resistance to treatment. The mechanisms
causing resistance to chemotherapeutic drugs in cancer patients are poorly understood.
Certain mutations in essential proteins like the tumor suppressor p53 can often be
blamed. In case of hormone induced cancers like breast and prostate cancer resistance
develops over time.

Even though breast and prostate cancers arise in anatomically different organs, both
organs need sex steroids for their development. Therefore the tumors that develop
from them are often hormone-dependent and biologically similar. The main hormones
that these cancers depend on are oestrogen and androgen. A common trait of hormone-
dependent tumors is that even though they initially respond to hormone therapy they
eventually develop resistance to the drugs [35]. Therefore it is of great importance to
find combinations of drugs to overcome this problem.

Our goal for this project is to find alternatives for the common chemotherapy drugs
for breast cancer. We are looking for substances that are less damaging for healthy cells
while still effectively attacking cancerous cells. That would in theory reduce bad side
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effects which can often be so severe, that patients have to stop treatment altogether.

In order to analyze the NCI60 dataset with our clustering tools we had to make cer-
tain modifications to the data. We removed all drugs where standard deviation was
below 0.01, i.e. the drugs that worked with the same efficiency for all cancer cell lines.
We also removed all drugs and cell lines where at least half of the values were missing.
We did not normalize the data, but we replaced missing values with drug response
averages over all cell lines in order for the programs to work correctly.

We added a dummy row to the dataset representing a perfect drug for treating breast
cancer. We set the effectiveness of the drug to the maximum for all breast cancer cell
lines and minimum for the rest. The intention of this was for the clustering algorithm
to find the best compounds for treating breast cancer and save them as the nearest
neighbors to the dummy row.

3.3.4 Description of relevant cancer cell lines

In this study we are focusing on breast and prostate cancer cell lines. In order to un-
derstand the results better I provide here a short description about each of these cell
lines.

MDA-N MDA-N was derived from MDA-MB435. By gene expression pattern, MDA-
N and MDA-MB435 are very similar.

MCF7 Estrogen receptor positive cell line, breast carcinoma.

HS 578T Highly metastatic, growth inhibited by retinoids (compounds related to vi-
tamin A); infiltrating ductal carcinoma (a type of tumor that primarily presents in
the ducts of a gland).

BT-549 Infiltrating ductal carcinoma.

T-47D Estrogen-dependent, estrogen receptor positive. Infiltrating ductal carcinoma.

MDA-MB-231/ATCC Estrogen-independent, estrogen receptor negative cell line; ade-
nocarcinoma (cancer of epithelia originating in glandular tissue)

MDA-MB-468 Estrogen receptor negative cell line; adenocarcinoma.

NCI/ADR-RES This cell line was initially believed to be derived from a breast tumor
cell line MCF-7, but it was later found to share a large number of karyotypic ab-
normalities with the ovarian tumor cell line OVCAR-8, that it is now believed to
be derived from [61].

MDA-MB-435 This cell line was derived at M.D. Anderson in 1976 from a 31-year old
woman with a history of breast cancer. Recently it has been shown however that
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the MDA-MB-435 and M14 (melanoma) cell lines are essentially identical with
respect to cytogenetic characteristics as well as gene expression patterns [32]. It
has not been determined, however, whether the melanoma-like properties of the
MDA-MB-435 cell line are the result of misclassification or due to transdifferenti-
ation (a non-stem cell transforms into a different type of cell) to a melanoma-like
phenotype.

PC-3 Originally derived from advanced androgen independent metastasized prostate
cancer (bone metastasis). PC3 cells have high metastatic potential compared to
DU145 cells which have a moderate metastatic potential.

DU-145 It is a prostate cancer cell line derived from brain metastasis. It is not hormone
sensitive.

3.3.5 Results

As a first step we ran the clustering algorithm on the dataset using three different dis-
tance metrics: Eucleidean, Pearson and Spearman correlation metrics. We got different
scale-free networks for each metric. The results are displayed in figures 3.12, 3.13 and
3.14.

It is visible from the results that all three metrics produce rather different clustering
results. The next step is to take a closer look at the compounds that have been identified
by the clustering algorithm as the ones with the most similar behaviour to that of our
ideal dummy drug. We generated graphs 3.15(a), 3.15(b) and 3.15(c) displaying the
response rates of the closest compounds of our dummy drug according to each distance
metric.

Both Euclidean and Pearson distance metrics identified enhydrin and kedarcidin as
the best compounds for curing breast cancer while leaving other cancer cell lines rel-
atively untouched. Methanesulfinic acid and hydramycin were identified as the third
best choices, but one look at the charts reveals that both of them work uniformly simi-
larly for all cell lines.

The two best results when using the Spearman correlation coefficient are compounds
that we could not find any information about. But as both of them work uniformly
similarly for all cell lines we are not studying them any further.

The behaviour of enhydrin and kedarcidin on all cancer cell lines can be seen in
3.16(b). For comparison we also added a graph showing the effects of two common
breast cancer drugs, docetaxel and imatinib in 3.16(a). As can be seen from these fig-
ures, docetaxel and imatinib target quite uniformly all cancer cell lines. It can therefore
be assumed that they have a similar effect on other rapidly growing cells, resulting in
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Figure 3.12: Clustering results using Euclidean distance as the metric

severe side effects in patients.

Taking a look at enhydrin and kedarcidin, we notice that they effectively inhibit the
growth of all breast and prostate cancer cell lines that we have information about, and
a single melanoma and ovarian cancer cell lines. The specificity of how enhydrin and
kedarcidin target cancer cells suggests the possibility that other fast growing healthy
cells would be left relatively untouched. That would result in less severe side effects of
chemotherapy.

An interesting fact about the melanoma cell line MDA-MB-435 and the ovarian cell
line ADR-RES is that they were mistaken for breast cancer cell lines and only recently
after gene expression studies classified as melanoma and ovarian cancer cell lines cor-
respondingly ([43], [44]). The study by Rae et al. [32] supports the hypothesis that
while MDA-MB-435 cells may originally have been of breast cancer origin, sometime
after their establishment the cells were either contaminated with M14 melanoma cells,
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Figure 3.13: Clustering results using Pearson correlation coefficient as the metric

which subsequently overgrew and replaced the breast cells, or some labelling error or
other accident led to the misidentification of the culture. Considering that enhydrin
and kedarcidin do not show much effect on the M14 melanoma cell line whereas dis-
playing strong inhibition ability on MDA-MB-435, the results of our study suggest that
MDA-MB-435 still has some similarity with breast cancer cell lines, and therefore might
be of breast cancer origin.

It is tempting to explain the behaviour of enhydrin and kedarcidin by referring to the
fact that breast and prostate cancers are mostly sex hormone dependent. It is therefore a
logical assumption that enhydrin and kedarcidin somehow regulate hormone binding
or inhibit hormone production. However, taking a look at the cell line descriptions it
is obviously not as simple as that. Most breast and prostate cancer cell lines in NCI-60
database are not hormone-dependent.
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Figure 3.14: Clustering results using Spearman correlation coefficient as the metric

Centrality

Centrality studies for drug responses might at first glance seem useless and puzzling.
Why would we be interested in finding the drugs that behave in the most average man-
ner? Thinking about the meaning of clusters in the context of drug effects on different
tumors provides us with an answer.

Clustering helped us retrieve all compounds that have similar cancer cell growth
inhibition properties as our dummy drug. Given that cancer is genetically highly vari-
able it is fairly safe to assume that a single drug will not be effective for curing different
tumor types, even if they are all classified as breast cancers. Therefore therapies con-
sisting of a combination of drugs are an attractive proposition. In addition to using
compounds that are working well on test samples it makes sense to include drugs that
work more generally with the hope that they work better for outliers. Looking at the
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(a) Best breast cancer treatment compounds using Euclidean distance

(b) Best breast cancer treatment compounds using Pearson correlation coefficient

(c) Best breast cancer treatment compounds using Spearman correlation coefficient

Figure 3.15: Best breast cancer treatment compounds
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(a) Two common breast cancer chemotherapy drugs imatinib and docetaxel

(b) Our proposed compounds enhydrin and kedarcidin

Figure 3.16: Comparision of in vitro cell growth inhibition properties for common
breast cancer chemotherapy drugs and our proposed compounds over all
cancer cell lines
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most central compounds in the cluster is a good start as in a sense they generalize the
clusters.

As Spearman correlation did not prove to be a useful clustering metric for this prob-
lem, we are only focusing on Euclidean distance and Pearson correlation for centrality
studies.

Using Euclidean distance as the clustering metric our fake drug was clustered to-
gether with 71 other compounds. The output from the centrality calculator is given in
table 3.8.

Centrality
index

APL NSC number Compound Name

1 4.09542 636194 NOR 5H10
2 4.09985 636208 FRI 3C3
3 4.24627 636203 FRI A12
60 12.57550 294601 Enhydrin
66 18.21825 646276 Kedarcidin
72 64.36332 fake

Table 3.8: Average path lengths (APL) for clustering results using Euclidean distance as
a metric

Figure 3.17: Three most central compounds using Euclidean distance as a clustering
metric

The graph displaying the inhibition properties for the top 3 most central compounds
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can be seen in figure 3.17. When looking very carefully we can observe a slight bump
for all breast and prostate cancer cell lines, and also specific melanoma lines. As the
inhibition properties for all these substances are too small to be considered interesting
we will not look into them any further. Our fake drug is the least central compound
in this cluster, and enhydrin and kedarcidin are also among the last which emphasizes
the uniqueness of these drugs.

Centrality calculations for the clustering results using Pearson correlation as a clus-
tering metric can be found in table 3.9. This time the cluster consists of 25 different
compounds including our fake drug.

Centrality
index

APL NSC number Compound Name

1 0.45192 294601 Enhydrin
2 0.46287 86005 Nogalamycin compound A
3 0.54713 646276 Kedarcidin
25 2.12858 fake

Table 3.9: Average path lengths (APL) for clustering results using Pearson correlation
as a metric

Figure 3.18: Three most central compounds using Pearson distance as a clustering
metric

The results using Pearson correlation coefficient as a clustering distance metric differ
considerably from the previous results using Euclidean distance as a metric. Enhy-
drin is the most central compound in this cluster, nogalamycin compound A following
closely behind and kedarcidin coming third. Our fake drug is again positioned as the
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least central substance. The graph displaying the inhibition properties for the 3 most
central compounds can be seen in figure 3.18. Enhydrin and kedarcidin are both very
effective for inhibiting breast and prostate cell lines from growing whereas having only
a little effect on other cell lines. Nogalamycin compound A is cytotoxic to all cancer cell
lines, being even more effective in case of breast and prostate cancers. When added in
small doses to enhydrin or kedarcidin it might help beat cancers that these two drugs
on their own cannot. All these three compounds are covered in more detail below.

Enhydrin

Enhydrin is a sesquiterpene lactone which is found in two plants native to the south-
eastern United States, Magnolia grandiflora (Southern Magnolia) and Smallanthus uvedal-
ius (known as Bear’s foot). Enhydrin is also a major component of Smallanthus sonchi-
folius (popularly known as yacón) leaf extracts. Yacón is a perennial herb endemic to
the eastern Andes of South America (from Venezuela to Argentina), but it has also been
successfully cultivated in Italy, France, Germany, USA, Czeck Republic, Russia and
Japan.

Ethnomedicinal records from Native American Cherokee note the use of Bear’s Foot
for its analgesic properties and Southern Magnolia for the treatment of fever, diarrhea,
rheuma and arthritis. Feltenstein et. al. have shown that enhydrin might indeed be
useful in the treatment of inflammation and pain [10]. In addition to that, enhydrin
shows anti-fungal and antimicrobial activities [18], and is an anti-diabetic agent and
an important component of pharmaceutical formulations [19]. We did not find any
references to a study conducted with enhydrin in relation to breast cancer though.

Nogalamycin compound A

Nogalamycin compound A is an antracycline antibiotic used in cancer chemotherapy.
It is derived from Streptomyces bacteria. These compounds are used to treat a wide
range of cancers, including leukemias, lymphomas, and breast, uterine, ovarian, and
lung cancers. The anthracyclines are some of the most effective anticancer treatments
ever developed and are effective against more types of cancer than any other class of
chemotherapy agents. Their main adverse effects are heart damage (cardiotoxicity),
which considerably limits their usefulness, and vomiting [45].
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Kedarcidin

Kedarcidin is a potent antitumor antibiotic chromoprotein, composed of an enediyne-
containing chromophore embedded in a highly acidic single chain polypeptide [41]. It
has attracted several research teams since 1990 and it has been generally regarded as
having potential action of leukaemia and melanoma. Our findings seem to correlate
well with this view (there are clear signs of differential inhibition behaviour of some
Leukaemia cell lines (LE:CCRF-CEM, LE:MOLT-4, LE:HL-60, LE:RPMI-8226, LE:SR)
and in one melanoma (ME:MDA-MB-435).

3.3.6 Conclusions

The exploration of mass datasets such as the NCI60 dataset provides a useful avenue for
exploration of possible agents without incurring the temporal and financial costs of a
similar wet-lab exploration. We have discovered two possible drugs for treating breast
and prostate cancer that have given extremely promising results from in vitro studies.
It is of great importance to continue studying the effects of enhydrin and kedarcidin on
human body. As enhydrin has been used for centuries as a major constituent of yacón
leaves in herbal medicine it has proved to be nontoxic, at least in small amounts. If it
worked against breast and prostate cancer it would result in considerably less averse
side effects for treating these cancers than chemotherapy drugs generally come with.
Also, it would be interesting to find out why enhydrin and kedarcidin target these
specific cell lines and not others. To some extent it could be explained by the cancers’
dependence on sex hormones like oestrogen and androgen, but not all of these cell
lines are hormone-induced. Actually, only 2 breast and 1 prostate cancer cell lines are
hormone dependent and there are equally 2 breast and 1 prostate cancer cell lines that
are hormone independent.
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4 Applications

There are several applications that have been used throughout this thesis. I will de-
scribe here shortly some that I have written while working on this project.

4.1 The APLProject

This application was written for calculating average path lengths for all nodes of a
graph as was described in chapter two. The opening page of the program is shown
below (Figure 4.1). Accepted input file formats for this program are .vna and .net. The
.net file format is in more detail described in [53]. The .vna file format simply describes
all links in the graph by giving the origin and destination vertex names, states whether
a link between them exists and how strong the connection is (Table 4.1).

from to exists strength
p53 CycA 1 4
p53 RPA 1 1

Table 4.1: An example of a vna file

The opened file is displayed in the edit box and the combo box with the choice of
algorithms becomes enabled (4.2). The output from Dijkstra and Floyd-Warshall is the
same, the only difference is the running time for large graphs. Dijkstra in general per-
forms slightly faster.

When ”Calculate average path lengths” is pressed, the output from the program is
displayed (4.3). On top there is the distance matrix that was produced from the input
graph, and further below the vertex names with their average path lengths are dis-
played, ordered according to centrality. Both the matrix and the centrality list can be
saved separately by selecting one of the buttons above, or the whole output can be
saved by choosing “File→ Save” or “File→ Save As”.
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Figure 4.1: The APL project opening page

4.2 GeneFinder

GeneFinder is a simple tool for finding a list of genes from a folder or file and printing
out all the rows where the genes occurred. It resembles the grep application, but has a
graphical user interface.
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Figure 4.2: The APLProject

Figure 4.3: The APLProject
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Figure 4.4: GeneFinder
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5 Conclusion

5.1 Future directions

There are several things left to do regarding the current project. It is essential to con-
tinue studying enhydrin and kedarcidin, and perhaps also hydramycin as possible
drugs for treating breast cancer. So far we only have in vitro results about their cell
growth inhibition properties which are hardly reliable as proof for curing breast cancer
in humans. Several in vivo experiments need to be conducted in order to get a better
idea of the effects these compounds might have on human body. It takes a lot of time
and money to run such tests, but the ever increasing cost of treating cancers should be
a good enough inducement.

Another possible direction for future work is looking deeper into different types of
breast cancer. If we understand the reasons for the development of cancers better, we
can find better ways for fighting them. It would be interesting to continue studying
the gene expression differences between basal- and non-basal-like breast cancers. In
this project we only looked into a few most differentially expressed genes, but a more
thorough analysis is required for determining the underlying differences between these
two types of tumors.

5.2 Summary

In this project we looked into the usefulness of centrality in biological data analysis.
We wrote the software for calculating average path lengths for large networks and then
used it in three different projects.

First we looked into p53 pathway. p53 network regulates the cell cycle and thus
plays an important part in the biology of cancer. We calculated the centrality measures
for each protein and sorted them accordingly. We found that the most central genes in
the network are indeed crucial in the development of cancers and mutations in any of
them can have serious consequences for the natural progression of cell proliferation and
apoptosis. p53 is the most central protein in the network and its importance as a tumor
suppressor protein is widely acknowledged. Cdk2 and CycA are the second and third
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most central proteins in the network. Cdk2, or cyclin-dependent kinase 2, is essential
for the G1/S transition in cell cycle. This protein associates with and is regulated by
the regulatory subunits of the complex including cyclin E or A. Binding with Cyclin A
(CycA) is required to progress through the S phase. S phase starts when DNA synthesis
commences and when it is complete, all of the chromosomes have been replicated. It is
easy to see the importance of these three proteins in the context of cell cycle.

Secondly, we analysed a gene expression dataset of different types of breast can-
cers and normal breast cells with the focus on expression differences between different
groups. We used clustering for splitting the data into more manageable partitions and
calculated the ratios between the averages of different types of breast cancers to locate
the clusters with the most differentially expressed probes. We then ran the centrality
algorithm on those clusters and showed that in most cases the most central probes dis-
tinguish different types of cancers best. We also analysed the expression levels of the
proteins from the p53-network in this context and found that many of these genes are
differentially expressed in the tumors in comparison to normal breast cells.

Finally we used clustering and centrality for finding the best compounds for treating
breast cancer according to the in vitro cancer cell growth inhibition data from NCI. We
found that enhydrin and kedarcidin would make for perfect trial drugs as they only
target specific cancer cell lines. This implies that there might be considerably fewer
side effects when using these compounds for cancer chemotherapy.

As a conclusion, we have shown with this work that centrality can be useful in many
different applications. Its significance in protein-protein interaction networks is easy to
see, wheres in drug vs. cell line and gene expression based networks we might have
to look deeper to understand the meaning of centrality. However, we have displayed
here that applying centrality on large datasets can help us significantly with finding the
information we are looking for.
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