
Invariants from Tests in Boogie
Combining Dynamic and Static Testing Methods to identify
Loop Invariants of Boogie Programs

Master’s thesis in Master Programme Computer Science - algorithms, languages and
logic

Timon Lapawczyk

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Invariants from Tests in Boogie

Combining Dynamic and Static Testing Methods to identify Loop
Invariants of Boogie Programs

Timon Lapawczyk

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Invariants from Tests in Boogie
Combining Dynamic and Static Testing Methods to identify Loop Invariants of
Boogie Programs
Timon Lapawczyk

© Timon Lapawczyk, 2018.

Supervisor: Carlo A. Furia, Department of Computer Science and Engineering
Examiner: Wolfgang Ahrendt, Department of Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv

Abstract
Proving implementations with loops against their specifications using automatic
verifiers, requires annotations in the form of loop invariants. Loop invariants are
properties that must hold for every iteration of a loop and identifying them is gen-
erally a difficult endeavour. Invariant inference algorithms can assist this process
by generating possible invariants and identifying candidate invariants, using static
or dynamic testing.
This thesis examines how symbolic execution can compensate for the lack of tra-
ditional dynamic testing methods in the context of Boogie programs, to identify
candidate invariants for such programs using a combination of dynamic and static
testing. Boogie is a verification language that combines a typed logic and a simple
procedural language; this combination makes Boogie programs not executable in
general, which makes applying dynamic analysis techniques challenging. This thesis
implements an algorithm for invariant inference that generates possible invariants
from templates and post-conditions. The identification of candidate invariants is
split into disproving as many wrong invariants as possible, using the symbolic ex-
ecution engine Boogaloo, and identifying candidate invariants from the remaining
set of invariants, by proving them with the Boogie verifier.
A detailed analysis, on 15 carefully selected Boogie programs, shows that the com-
bination of dynamic and static testing can be quite powerful, being able to infer
invariants sufficient to prove 10 of the 15 programs correct fully automatically. How-
ever, the results also suggests a connection between the kinds of possible invariants
that are generated and the impact the symbolic execution has on the performance.

Keywords: Computer, science, computer science, engineering, project, thesis, loop
invariant, invariant inference, Boogie, Boogaloo, symbolic execution, software veri-
fication, formal methods.

v

Acknowledgements
At this point I would like to thank my supervisor Carlo A. Furia for his guidance
throughout this thesis. He allowed me the freedom to shape the thesis towards the
topics which interested me the most, always had great advice when I got stuck and
was very supportive in general.

Timon Lapawczyk, Gothenburg, June 2018

vii

Contents

1 Introduction 1
1.1 Goals and challenges . 3
1.2 Structure of the thesis . 3

2 Tools and Environment 5
2.1 Boogie . 5

2.1.1 The Boogie specification language 5
2.1.2 The Boogie verification tool 8

2.2 The symbolic execution engine Boogaloo 9

3 Methods 11
3.1 Invariant finder . 11
3.2 Boogie parser . 12
3.3 Invariants from templates . 13
3.4 Invariants from post-conditions . 14
3.5 Filtering invariants . 15

3.5.1 Disproving invariants . 16
3.5.2 Proving invariants . 17

3.6 Redundancy checks . 18
3.7 Configuration . 19
3.8 Implementational details . 21

4 Results 23
4.1 Benchmark selection . 23
4.2 Benchmark results . 24

4.2.1 Single procedures with default configuration 25
4.2.2 Single procedures with optimised configuration 28
4.2.3 Programs with multiple procedures 30

5 Conclusions 33
5.1 Discussion . 33
5.2 Future work . 35
5.3 Conclusions . 35

Bibliography 37

6 Appendix 39

ix

Contents

x

1
Introduction

With growing interest in formal methods, the need for formally verified programs is
growing as well. Having formally verified programs requires two things. A formal
specification and a proof that the implementation matches the formal specification.
A simplified example for a formal specification includes pre-conditions, which spec-
ify properties that hold before a function call, and post-conditions, which specify
properties that hold after the function call.

pre - condition x >= 0;
{ result = x; }
post - condition result >= 0;

Proving an implementation against its formal specification includes a formal proof
that, given the pre-conditions, the execution of the function body will result in the
post-conditions being true. This task can be highly automated with modern verifica-
tion tools. Small programs can be verified fully automatically but the undecidability
of predicate logic still makes this task an undecidable problem. In practice, most
applications of formal verification require a lot more input from the user to verify an
implementation automatically. This input can consist of different kinds of annota-
tions, at different points throughout the implementation, which state properties that
are true, at these points. The verification tool will have to prove these properties
but they can be a means to sort of guide the verification tool through the different
sections of longer implementations. One very important form of annotation is the
loop invariant, which is a property that has to hold before the first iteration and
after every iteration of a loop. The following pseudo code shows a function which
calculates the identity of a number n by counting from 0 up to the value of n.

Pre-Condition: n >= 0;
Post-Condition: i == n;
i = 0;
while i < n do

i + +;
end
Verification tools are generally not able to automatically verify the post-condition
i == n given the pre-condition n >= 0. Adding the property i <= n, which is true
before the first iteration and after every iteration of the loop, as a loop invariant,
enables verification tools to verify this implementation automatically.
While this example is pretty trivial, writing invariants is generally no trivial task.
For more complex implementations it usually requires trained engineers with a de-

1

1. Introduction

tailed understanding of the implementation and its specification and experience with
the verification tool, to annotate a loop with the correct invariants. However, certain
patterns can be found in loop invariants and they often relate closely post-conditions
from the specification. This observation raises the question if and how the important
step of writing loop invariants can be automated.
Different work has shown that automatic invariant inference can have a significant
effect on the capabilities of automatic verification for certain domains of programs.
This thesis further explores the capabilities of automatic invariant inference, by
implementing an invariant inference algorithm for Boogie [11] programs.
The Boogie intermediate verification language and its like-named verification tool
provide a layer on which to build program verifiers for other languages. There are
already a hand full of front-ends, translating programs from high level programming
languages into Boogie and Boogie already powers static program verifiers such as
Dafny [10].
The two main components of invariant inference are the generation of possible in-
variants and the identification of candidate invariants, which are likely to help with
the verification of the post-conditions. The algorithm generates invariants from
external templates and the post-conditions from the specification. To identify can-
didates, wrong invariants have to be sorted out. Static testing methods like the
Boogie verification tool can only reach a verdict over the correctness of an invariant
if they are able to prove it. Dynamic testing methods on the other hand are able to
provide concrete counter examples for wrong invariants and can be much more effec-
tive at removing wrong invariants. Programs written in Boogie are not executable
and traditional dynamic testing methods are thus not available. Instead, this thesis
examines how symbolic execution engines like Boogaloo [13] and Symbooglix [12]
can be used instead of traditional dynamic testing. With these tools the invariant
inference algorithm is able to combine dynamic and static testing to identify the
candidates invariant.
Figure 1.1 visualises how this approach fits into the context of recent research in the
field of invariant inference techniques.

Dynamic verification

Static verification
Boogie

Other
languages

TemplatesPostconditions

Dynamic verification
Static verification

Daikon
DYNAMATE

iliupc

This thesis

Figure 1.1: Context of the thesis compared with previous invariant inference tech-
niques

The Daikon system [6] generates likely invariants for programs of multiple high level
languages. Daikon executes the program, observes its effects and reports whether
certain properties were true during the observed executions. Daikon uses a base of

2

1. Introduction

templates to generates possible invariants.
The relationship between loop invariants and post-conditions has been explored in
past work like the DYNAMATE tool [8], which uses a combination of dynamic
analysis and static checking to generate loop invariants from post-conditions for
Java programs. Something similar has even been done for the Boogie language in
the research project Inferring loop invariants using post-conditions (iliupc) [7]. It
presents methods and experiments on loop invariant inference from post-conditions
for Boogie programs using static testing to identify candidate invariants.

1.1 Goals and challenges

The main goal of this thesis is to examine the possibilities of replacing traditional
dynamic testing, in order to identify candidate invariants, with symbolic execution
engines, like Boogaloo and Symbooglix. To answer the question how a combined
approach of dynamic and static testing affects the capabilities to identify candidate
invariants, an algorithm for invariant inference is implemented. The algorithm has
to include a method to generate a large number of possible invariants from templates
and post-conditions, a way to inject possible invariants into Boogie programs and
has to invoke and interpret the output of the dynamic and static testing methods
to identify candidate invariants. In order to answer the main question of the thesis,
a detailed evaluation is necessary, which examines both, the invariants necessary
and generated for different programs and the numbers of invariants removed by the
different testing methods.
The capabilities of the implemented invariant inference algorithm rely heavily on the
interaction with the symbolic execution engines Boogaloo and Symbooglix. These
are research tools with a relatively short history and thus potentially buggy. It is
also difficult to predict the efforts, necessary to build a framework to interact with
the Boogie implementation, in order to inject invariants and to invoke the Boogie
verifier for static testing.
Furthermore, the work with the Boogie language and the tools operating on Boogie
programs will require to get to know the language and to get comfortable using it.
Before the Boogie verification tool and the symbolic execution engines can be used
in an automated setting, it will be important to get to know the tools and their
peculiarities, which can be difficult due to a lack of documentation.

1.2 Structure of the thesis

The thesis starts with Chapter 2, which provides a short introduction into the fea-
tures of the Boogie language used throughout this thesis and the tools used to test
possible invariants. Next, Chapter 3 introduces the algorithm for invariant inference
developed in this thesis, alongside a detailed look at its execution on an example
program. Chapter 4 presents the results of the algorithm when run on a selection
of Boogie files and analyses them, already initiating parts of the discussion, held in
Chapter 5. In addition to a discussion on the results of the evaluation, Chapter 5

3

1. Introduction

lists a number of questions, which came up during the work on this thesis and pose
interesting topics for future work.

4

2
Tools and Environment

2.1 Boogie

Boogie is the name of both an intermediate verification language and a verification
tool. The combination of the two provides a layer on which to build program ver-
ifiers for other languages. Such verifiers can leave the difficult task of generating
verification conditions to the Boogie verifier and only have to provide a front-end
which translates into Boogie programs. The Boogie verifier can then transform from
the intermediate representation into logical formulas which are attempted to prove
by theorem provers, such as Z3 [5].
The Boogie language has both mathematical and imperative constructs. The math-
ematical ones consisting of types, constants, functions and axioms and the impera-
tive ones of global variables, procedure declarations and procedure implementations.
While the imperative components of Boogie are used to specify sets of execution
traces, the mathematical components can be used to describe and constrain them.
The language supports features like parametric polymorphism, partial orders, logical
quantification, non determinism, total expressions, partial statements and flexible
control flow, using labels and goto statements.
Both the imperative and mathematical components underlie a type system, which
consists of basic primitive types such as mathematical integers, floats and booleans
and type constructors. One- and two-dimensional arrays can be represented by maps
from mathematical integers to another type.
Mappings to Boogie programs from different programming languages, such as Spec# [3],
C [4], Dafny [10], Java bytecode with BML [9] and Eiffel [14], are already existent
or in development. This gives tools with Boogie programs as their input a large
number of possible applications.

2.1.1 The Boogie specification language

This section gives a brief introduction into both the mathematical and the imper-
ative constructs of the Boogie language needed for the examples in this thesis. A
concise introduction to the Boogie language is given by Furia and Meyer [7, Section
4.2]. This introduction will follow that one closely, introducing the example Boogie
procedure max along the way, which will also serve as an example for the invari-
ant inference algorithm in Chapter 3. For more detailed information on the Boogie
language, please consult the Boogie documentation [11].

5

2. Tools and Environment

Expressions

The structure of Boogie expressions is similar to that of formulas in standard pred-
icate logic. They consist of constants, variables, equality and arithmetic relations,
boolean connectives, simple arithmetic operators, logic quantifiers and an ordering
operator. The following expression states that one of the first n elements in a has
the value v, that is, the value v is contained by the array a of size n.

(exists j: int :: 0 <= j && j < n && a[j] == v);

Logic functions

For complex expressions or repeated use of them, logic functions are a means to
encapsulate them. The expression from above defines the logic function contains,
which will be used to specify the procedure max shown in Listing 2.1.

function contains (v:int ,a:[int]int ,n:int) returns (bool)
{ (exists j: int :: 0 <= j && j < n && a[j] == v) }

The logic function includes two of the build in types of Boogie, integer and boolean.
Furthermore the array is represented by a map from integer to integer. The type
integer represents mathematical integers and maps like these are therefore infinite.
The number of elements of which a valid element is expected in the array is specified
by n.

Axioms

In addition to the function body, axioms are another way to give meaning to func-
tions like contains and to provide the prover with additionally useful properties,
like in the one in the following example. If the array a contains the value v in the
first n elements, it also contains the value v in the first n + 1 elements.

axiom (forall v: int , a:[int]int , n:int :: contains (v, a,
n) ==> contains (v, a, n+1));

Procedures

A Boogie program is a collection of procedures, each of them consisting of a signa-
ture, a specification and (optionally) an implementation or body. The Listings 2.1
and 2.2 show excerpts of the Boogie program from Listing 6.1, which includes the
procedure max. The program begins with another definition of a logic function,
upper_bound. This function, together with contains, plays an important role in the
specification of the procedure max. After that comes the signature of the procedure,
followed by its specification. The signature gives the procedure a name and declares
its in- and output arguments, in the case of max, a and n as input arguments, and
max as an output argument.

6

2. Tools and Environment

function upper_bound(v:int,a:[int]int,n:int) returns (bool)
{ (forall j: int :: 0 <= j && j < n ==> a[j] <= v) }

procedure max(a:[int]int, n:int) returns (max:int);
requires n > 0;
ensures contains (max, a, n);
ensures upper_bound (max, a, n);

Listing 2.1: Example Boogie procedure max, which returns the maximum of an
integer array

Specifications

The signature is followed by the specification of the procedure, which is a collec-
tion of contract clauses: pre-conditions, post-conditions and frame conditions. Pre-
conditions are introduced by the keyword requires and are formulas which are
required to hold upon procedure invocation. Post-conditions are introduced by the
keyword ensures and are formulas that are guaranteed to hold upon successful ter-
mination of the procedure. The specification of max contains one pre-condition,
which states that the length of the array has to be greater than 0. It also contains
two post-conditions, which utilise the previously defined logic functions contains
and upper_bound. The value returned by the procedure max has to be contained
in the first n elements of a and has to be an upper bound for the first n elements
of a. The specification does not contain a frame condition, which would be marked
with the keyword modifies and would contain a list of global variables modified by
the procedure, to signalise possible side-effects of a call of procedure max.

Implementations

The implementation of a procedure can either follow the signature directly in the
procedure body, like in Listing 3.4, be separated as an implementation, like in the
example in Listing 2.2 or not exist at all.
Every Boogie implementation begins with the declaration of its local variables. It
follows a sequence of program statements. The syntax of most statements used
in the implementations in this thesis is pretty straight forward and very close to
notations in high level programming languages. While the Boogie language includes
a larger set of types of statements, those used in this thesis can be broken down to
the ones listed in a simplified syntax in Figure 2.1.
Naturally, when the aim is to infer loop invariants, all interesting programs will
contain a loop, in Boogie only while loops. Hence, also this example contains a
loop. The loop consists of three parts, the condition, the head and the body. While
the loop condition and body are self explanatory, the loop head is the section which
specifies the functionality of the loop, using loop invariants.
Note that the implementation does not contain a return statement. While it is
possible to include such a statement at any point of the implementation to let the
procedure return, it is optional to include one at the end of the implementation.

7

2. Tools and Environment

implementation max(a:[int]int , n:int) returns (max:int)
{

var i : int;
max := a[0];
i := 1;
while (i < n)

invariant i <= n;
invariant contains (max , a, i);
invariant upper_bound (max , a, i);

{
if (a[i] > max) {

max := a[i];
}
i := i + 1;

}
}

Listing 2.2: Implementation of the Boogie procedure max from Listing 2.1
returning the maximum of an array

Statement ::=Assertion |Modification |ConditionalBranch |Loop
Annotation ::= assert Formula | assume Formula

Modification ::= VariableId := Expression
| call [VariableId+ :=] ProcedureId (Expression∗)

ConditionalBranch ::= if (Formula) Statement∗ [else Statement∗]
Loop ::= while (Formula) Invariant∗ Statement∗

Invariant ::= invariant Formula
Figure 2.1: Simplified abstract syntax of Boogie statements

The class of annotation statements is not represented in this example but is used
later in the thesis, like in Listing 3.5. Annotations introduce checks at any program
point by stating logic formulas. A program is only correct, if every assertion holds
for every execution that reaches it. The property stated by an assumption can be
postulated at that point of the program for every execution.

2.1.2 The Boogie verification tool
The Boogie verification engine proofs the conformance of a procedure’s implemen-
tation against its specification. The tool parses the Boogie source file, generates
verification conditions and then reports the outcome of feeding the verification con-
ditions into a theorem prover, such as Z3. The outcome of such an attempt can be
either successful or unsuccessful. While in the latter case, the tool provides some
feedback on what parts of the specification or which annotations were not verified,
it does not follow that these are wrong. Verification with Boogie is sound but in-
complete. That means a verified procedure is always guaranteed to be correct, while

8

2. Tools and Environment

an unsuccessful verification attempt might simply be caused by limitations of the
technology. Especially, when running Boogie with a large number of invariants, it
can take quite a while to receive its verdict and every unverified invariant leaves the
user with the question if there is an issue with the correctness of the invariant or if
the incompleteness of the verifier caused the error.

2.2 The symbolic execution engine Boogaloo
Programs written in the Boogie language are not executable, which means that the
only feedback on an implementation is given by tools like the Boogie verification
engine. While the output of the Boogie verifier is great in the case of a successful
verification, it is only of little use when the verification fails. The incompleteness
of the verifier leaves the question whether the implementation is wrong or if Boogie
is simply not powerful enough to verify a post-condition or another annotation.
Boogaloo tries to give a hint on whether a post-condition or annotation is correct
or not by trying to find a concrete counter example for it. To do this, Boogaloo
creates small tests that fit the procedure’s pre-conditions and symbolically executes
the implementation. The calculated possible program states are checked against the
post-conditions and annotations using SMT constraint solving. If this step leads to
a contradiction with some annotation, the test serves as a counter example. Such a
counter example acts as a prove that the annotation is wrong for this implementation
and easily readable feedback on what changes have to be made. Generating concrete
inputs for a non deterministic language like Boogie is by no means a trivial task and
Boogaloo is not sound, meaning it is not able to find a counter example for every
wrong annotation.
An alternative for a symbolic execution engine for Boogie is Symbooglix. Symbooglix
was the main execution engine used in the early stages of the thesis but was replaced
by Boogaloo since that one seemed to find counter examples faster.

9

2. Tools and Environment

10

3
Methods

This chapter describes an invariant inference algorithm for automatic invariant de-
tection and introduces the methods behind the algorithm. To generate all necessary
invariants, different kinds of invariants have to be considered. Most of the times,
rather simple invariants are needed to specify the bounds of for example an iterator
in the loop. Such an invariant could look as follows, to specify the upper bound of
the iterator i.

invariant i <= n;

Invariants like this one can easily be generated from a template (Section 3.3) and
are likely to state a necessary property for many applications of such an algorithm.
Other invariants, like the one in the next example can be more complex and more
unique to one application.

invariant contains (max , a, i);

Especially when the invariant includes logic functions, it is not sufficient to write
a template for each one of them. The invariant finder therefore includes invariant
generation from post-conditions as well (Section 3.4). In the next sections, first,
the general algorithm will be introduced and then, step by step, the different parts
necessary for its implementation are discussed in closer detail. The example of max,
which was already introduced in Chapter 2, will guide through the different steps
of the algorithm, to illustrate their effects. The complete input for max and its
configuration for the algorithm, as well as the annotated output file can be found in
Listings 6.1, 6.2 and 6.3.

3.1 Invariant finder
The algorithm that incorporates all the functionality developed for this thesis, is
called the invariant finder. The algorithm takes a Boogie program as its input and
then iterates over all procedures in the program, annotating the ones that require
it with candidate invariants. This section roughly depicts the algorithm behind the
invariant finder, in pseudo code in Figure 3.1, and provides a road map through the
remainder of this chapter, which will go into more detail on the individual parts of
the implementation. In the end, this section will also explain certain design choices
in closer detail.
The first and last actions of the invariant finder are the input and output opera-
tions, which make use of the Boogie parser (Section 3.2). The invariant finder also

11

3. Methods

uses temporary files to execute Boogaloo on, which also requires functions from the
Boogie parser. If a procedure can not be verified automatically, the invariant finder
assumes that this is due to a lack of invariants and proceeds to generate invari-
ants from templates (Section 3.3) and from post-conditions (Section 3.4). Since the
generation of possible invariant itself takes virtually no time, most of the time the
invariant finder is busy checking possible invariants using Boogaloo and Boogie. A
lot of the generated invariants do not make any sense and can be sorted out with
small counter examples by Boogaloo. This is why, to cover the sheer amount of gen-
erated invariants, Boogaloo is run in multiple threads at once. In order to always
use the highest possible number of threads, the invariants are generated at once
and then injected in waves. After a wave of invariants has been injected, it is time
to filter out wrong invariants using dynamic and static testing (Section 3.5). This
continues until the procedure can be verified automatically or until the method runs
out of possible invariants. In the latter case the invariant finder can be run again
using a different configuration (Section 3.7). At the end or whenever the program
contains too many invariants at once another kind of invariant filtering comes into
play. Redundancy checks remove as many invariants as possible while maintaining
the same degree of automatic verification for the post-conditions (Section 3.6).

Data: Boogie program
Result: Boogie program annotated with loop invariants
foreach Procedure p in P do

if p can not be verified then
Generate invariants from templates;
Generate invariants from post-conditions;
while p can not be verified do

Add wave of invariants;
Check invariants using Boogaloo;
Remove wrong invariants;
Try to verify p;
Remove not verified invariants;

end
Remove redundant and trivial invariants;

end
end
Print annotated Boogie program;
Figure 3.1: Pseudo code of simplified structure of the invariant finder

3.2 Boogie parser
The implementation of the Boogie verification tool is open-source and the C# source
code is available on GitHub [2]. To work as close as possible with the actual structure
of Boogie programs and to be able to invoke the Boogie verifier directly on them,
the clear choice was to use the parser and type checker included in the Boogie
implementation. The Boogie parser returns a single program from a Boogie file.

12

3. Methods

Such a program is the input to the type checking and the verification condition
generation. The invariant finder takes the type checked program as its input. Boogie
programs, even for short Boogie files, quickly become overwhelming and complex in
their structure. The interesting part needed for this thesis is luckily fairly simple.
A program contains a list of top level declarations. These can be for example logic
functions, axioms, global variable declarations or procedures and implementations.
The last two are the most interesting ones for the invariant inference. A procedure
contains its name, input and output arguments and specification. Similarly an
implementation also contains its name and input and output arguments. In addition
it contains a list of blocks. These blocks are where one can find the loop of an
implementation, split into, amongst others, the loop head, which contains a list of
assert commands, and the loop body. The list of assert commands are the loop
invariants for the loop.
The parsed Boogie program does not contain comments and because each procedure
is split into its declaration and implementation, can also have a different appearance
when it is serialised using the print function.

3.3 Invariants from templates
The generation of invariants from templates consists of multiple steps. Firstly, a
template file is processed. Listing 3.1 shows the template file which is used to gen-
erate invariants stating that one integer is greater than of equal to another integer.
The first line of the file is written as a Boogie comment and contains a list of variable
declarations. The most important part of the file is the invariant in the second line,
which is written in the syntax of invariants in the Boogie language. The template
is parsed using a slightly adapted version of the Boogie parser, which returns an
assert command instead of a program. Next, the variables in the template have to
be replaced by appropriate candidates. Natural candidates to replace the variables
X and Y are global variables and the input and output parameters, as well as the
local variables of the procedure.

//@ Variables X:int Y:int
invariant X >= Y;

Listing 3.1: The template GreaterEquals.bpl

The variables in the template are replaced by all possible combinations of these
candidates, which quickly results in a large number of invariants. For the example
of max this leads to a total of 9 possible invariants being generated from the template
in Listing 3.1.

invariant n >= n;
invariant n >= i;
invariant n >= max;
invariant i >= n;
...
invariant max >= max;

13

3. Methods

While it is not required for max, it can also be useful to include constants like 0, 1
or true and false as candidates for the replacement of the variables of a template.
In fact, a variable in the template invariant can be considered as an expressions,
which allows for replacements with not only variables and constants but complex
expressions. The invariant X < Y could for example be replaced by something like
(0) < (i + (n + 1)). This example uses the constants 0 and 1 as well as the two
integer variables i and n. The template variable Y is replaced by the expression
(i + (n + 1)). The number of possible replacements thus becomes countless and the
possible invariants have to be limited to a reasonable set. Section 3.7 explains to
what degree the invariant finder allows for configurations of this set.
An additional mechanism, which is implemented to control the number of gener-
ated invariants, is the replacement of the same variable in the template with the
same expression in the one invariant. In the example invariant X + X == Y ; all
occurrences of X have to be replaced with the same expression in the same invariant.
For testing purposes, a small collection of templates was handwritten. This collec-
tion can be extended easily with new templates. However, while there are invariants
of common use like the X >= Y example, more complex templates are likely to only
fit certain applications. Such templates can not be used for other Boogie programs,
because they most probably will not make sense outside of their context. Choosing
the right base of templates to apply for every Boogie program, while offering a vari-
ety of templates to fit the needs of different programs, becomes a challenge in itself
and is where the next section, on invariants from post-conditions, chimes in.

3.4 Invariants from post-conditions
While handwritten templates are a good source for simple invariants, most of the
times invariants are more complex. Considering the invariants from the implemen-
tation of max in Listing 2.2, it becomes apparent that, while even these invariants
could be generated from templates, they would require more specific templates.
These would result in the generation of a lot of useless invariants for most other
procedures. This is the point where the connection between the required invariants
to verify post-conditions and the post-condition themselves comes into play. List-
ing 3.2 shows one of the post-conditions of max and one of its loop invariants, which
closely relates to it.

ensures contains (max , a, n);
...
invariant contains (max , a, i);

Listing 3.2: Post-condition from Listing 2.1

This observation originates back to the paper by Furia and Meyer [7], which also
presents techniques to modify post-conditions efficiently to generate likely invariants.
The invariant finder does something similar, by creating invariant templates from
post-conditions. Listing 3.3 shows the template file which would yield the same
internal representation of an invariant template as the generation from the post-
condition of max, shown in Listing 3.2.

14

3. Methods

//@ Variables max:int a:[int]int n:int
invariant contains (max , a, n);

Listing 3.3: Invariant template from post-condition in Listing 3.2

While the paper suggests techniques to modify the post-conditions to retrieve possi-
ble invariants, this algorithms, as of now, implements the same simple replacement
technique which is also used for the handwritten templates. For the example of
max, the invariant finder generates 18 possible invariants from its post-conditions,
which are indicated in Listing 2.1.

invariant contains (n, a, n);
invariant contains (n, a, i);
...
invariant contains (max , a, max);
invariant upper_bound (n, a, n);
invariant upper_bound (n, a, i);
...
invariant upper_bound (max , a, max);

During the creation of the template, multiple occurrences of one variable in the
post-condition yield only one variable in the template, as the following example
shows.

ensures (exists j: int :: 0<=j && j<n && a[j]==max);
...
//@ Variables idVar0:int i:int n:int a:[int]int max:int
invariant (exists boundVar0: int :: identVar0<=i&&i<n&&a[i]==max);

This again helps to limit the number of possible invariants which can be generated
from this template. It is likely that an invariant candidate which relates to this post-
condition has the same pattern. Of course this also prevents the invariant finder
from finding certain possible invariants which could be required.
The bound variable boundV ar0 does not show up in the variable list because its
type is already specified in the invariant itself and as a bound variable is not to
be replaced. Instead boundV ar0 itself becomes a replacement candidate for the
variables in the template.

3.5 Filtering invariants
Despite the measures to limit the number of possible invariants, the invariant finder
can quickly generate a large number of possible invariants. These are injected by
simply extending the list of assert commands of the loop head. Many of the pos-
sible invariants however, are wrong and have to be removed at some point of the
algorithm.
The invariant finder uses Boogaloo to dynamically find counter examples for wrong
invariants (Section 3.5.1) and Boogie to statically select candidate invariants (Sec-
tion 3.5.2). The combination of these two tools is instrumental for the success of the

15

3. Methods

invariant finder. Boogie is sound but incomplete, meaning it can attempt to verify
an invariant, but if it fails that does not have any meaning for the correctness of
the invariant. Boogaloo on the other hand is complete but unsound. If Boogaloo
finds a counter example for an invariant, it is a prove that the invariant is wrong.
However, if Boogaloo does not find a counter example, this does not imply that the
invariant is correct.

The two tools are chained together. First, as many wrong invariants as possible are
removed using Boogaloo. These can be discarded directly as they can not be candi-
date invariants and it would not make sense to attempt to prove something which
is proven to be wrong. Next, Boogie is used in an attempt to prove the remaining
invariants. All proven invariants are candidate invariants. The not provable invari-
ants have to be removed, as they might be wrong and can influence the verification
result of other wrong invariants, resulting in wrong candidate invariants.

3.5.1 Disproving invariants

The filtering of invariants using Boogaloo before selecting candidate invariants with
Boogie enables the invariant finder to test much larger amounts of possible invariants
at once. Boogie does not scale well with an increasing number of invariants and
neither does Boogaloo actually. When a certain number of invariants is reached,
Boogie’s executions seem to take forever and often only report a small number of
invariants which it could not prove. After these invariants have been removed,
Boogie needs to be executed again because other invariants might only have been
proven on the assumption that the not provable invariants from the previous run
were correct. It is not an option to attempt to prove each invariant independently
because more complex invariants often rely on each other and can only be proven
in a compound. Boogaloo executions on large numbers of invariants usually only
report a single counter example, which applies for a small number of invariants,
when Boogaloo is actually able to disprove so many more invariants.

However, finding a counter example for one invariant is not dependent on any other
invariant. Hence, the process of disproving multiple invariants can be parallelised
into one Boogaloo instance for each invariant. Disproved invariants are discarded
immediately and invariants for which no counter example could be found within a
given timeout are marked and will skip later Boogaloo tests.

For the Boogaloo execution, the program has to be serialised into one temporary
Boogie file per invariant. Because the serialisation and repeated parsing of the
program results in changes to the tokens of the invariants, which are used to identify
invariants, the original program has to be reparsed, from the temporary file, as well.

For the example of max the following 9 possible invariants are disproven by Booga-
loo.

16

3. Methods

invariant max >= n;
invariant max >= i;
invariant contains (n, a, n);
invariant contains (n, a, max);
invariant contains (n, a, i);
invariant contains (max , a, max);
invariant contains (i, a, n);
invariant contains (i, a, max);
invariant contains (i, a, i);

3.5.2 Proving invariants
The Boogie verifier operates on the remaining set of possible invariants and tries to
select candidate invariants which it can prove. Unlike for the Boogaloo execution,
the Boogie verifier is executed directly on the Boogie program. However, the Boogie
verifier makes irreversible changes to the program, which result in the Boogie verifier
not accepting the same program again. The development of a cloning method for
Boogie programs was attempted during this thesis but not successful and thus also
the Boogie verifier uses serialisation and reparsing to clone Boogie programs.
The clone of a program is fed into the Boogie verifier, which returns a verification
result. The verification result is then evaluated and depending on the evaluation
there are three possible next steps for the invariant finder.

• The procedure is verified completely This does not only mean, that all
added invariants are correct, but also that they are sufficient to verify the
procedure’s post-conditions. The invariant inference stops for this procedure
and all remaining invariants are candidate invariants.

• All invariants are verified This means that all remaining invariants are
correct and candidate invariants. However, they are not sufficient to verify
the procedure’s post-conditions and more invariants need to be tested.

• An invariant is not verified While it is unknown whether the invariant is
actually wrong, it is removed at this point. The whole process of statically
testing the invariants has to be repeated, because some other invariant might
have only been proven based on the now removed invariant.

For the example of max the following 7 invariants are selected as candidate invariants

invariant n >= n;
invariant n >= i;
invariant i >= i;
invariant max >= max;
invariant contains (max , a, n);
invariant contains (max , a, i);
invariant upper_bound (max , a, i);

17

3. Methods

while Boogie was not able to prove these 10 invariants, which are thus removed.
invariant n >= max;
invariant i >= n;
invariant i >= max;
invariant upper_bound (n, a, n);
invariant upper_bound (max , a, n);
invariant upper_bound (n, a, max);
invariant upper_bound (max , a, max);
invariant upper_bound (i, a, n);
invariant upper_bound (n, a, i);
invariant upper_bound (i, a, max);

3.6 Redundancy checks
A large number of candidate invariants state trivial properties or are redundant be-
cause of other candidates. Hence these candidates are not needed to verify the post-
condition and should be removed from the implementation, to not clutter the file
and consume additional time during the execution of Boogie. This section describes
the redundancy checks implemented for the invariant finder. They are executed
whenever the invariant inference for a procedure ends. The invariant finder can be
furthermore configured to execute them in between single waves to reduce the num-
ber of invariants that have to be checked by Boogie at the same time (Section 3.7).
The redundancy checks implement a fairly simple method to prove that an invariant
is redundant or trivial, introduced by Galeotti [8, Section 4.3]. Listing 3.4 shows
the structure of a Boogie procedure which shall be checked for redundant invariants.
All parts that are not needed for the redundancy checks, such as most parts of the
implementation, are left out. The procedure contains a loop which is annotated by
the two invariants i and j.
procedure p (in: int) returns (ret: int)

requires r;
modifies m;
ensures e;

{
var l: int;
...
while (c)

invariant i;
invariant j;

{
...

}
...

}

Listing 3.4: Example Boogie procedure for redundancy check

18

3. Methods

Listing 3.5 shows the modified procedure p to check whether the invariant j is trivial
or implied by invariant i.

procedure p (in: int) returns (ret: int)
requires r;

{
var l: int;
assume i;
assert j;

}

Listing 3.5: Modifies Boogie procedure for redundancy check

This modification could be performed analogously to check whether an invariant is
implied by a compound of other invariants.
For the max example the redundancy check at the end of the algorithm removes the
3 candidate invariants

invariant n >= n;
invariant i >= i;
invariant contains (max , a, n);

and results in the final set of candidate invariants

invariant n >= i;
invariant max >= max;
invariant contains (max , a, i);
invariant upper_bound (max , a, i);

In some cases a candidate invariant which is removed in this step might give the
deciding hint to the verifier on which property to use to prove a post-condition or
another invariant. However, this can only happen when the redundancy checks are
performed between two waves and at this point the only other option is to end the
invariant finder all together because the Boogie execution times become too long.

3.7 Configuration
The number of invariants generated grows quite fast with the number of replace-
ment variables, templates, constants and operations. Because of scalability issues,
discussed in closer detail in Chapter 4, the invariant finder can be configured for the
program it is executed on. Listing 3.6 shows the XML file for the base configuration.
The configurable features of the invariant finder are the handwritten templates, the
constants and the operations. Furthermore, the wave size and thus the maximum
number of Boogaloo threads can be adjusted, together with a maximum timeout for
Boogaloo and a threshold of injected invariants after which a redundancy check is
performed. The key templates has a list of semicolon separated template names
as its value. If one chooses to not use a certain template or wants to add a special
template for a program this list can easily be shortened or extended by the name of
the respective template. The key constants is pretty self explanatory and its value

19

3. Methods

can be shortened or extended analogously to the value of templates. As of right
now, the only two operations, to extend variables in the replacement candidates
with, are -1 and +1. This means that every variable in the replacement candidates
x, upon insertion into a template, will be considered as x, x-1 and x+1, depending
on the semicolon separated operation list in the configuration file. With the value
of multithreading one can basically adjust the number of invariants added in each
wave. This results in more or less Boogaloo threads. During the experiments con-
ducted for this thesis, this number did not have a huge impact, as the system already
posed a bottleneck for less than 200 threads. The value of maxinvariants deter-
mines after every how many injected invariants a redundancy check is performed.
This becomes necessary for larger amounts of candidate invariants. If the invariant
finder already injected several thousand possible invariants there might be up to
a few thousand candidate invariants. These invariants are proven again and again
during each wave of invariants that is injected. If the number of invariants in the
implementation grows over a few thousand, the execution time of Boogie can grow
up to multiple minutes to report a single invariant which it is not able to prove.
To keep the invariant finder running, it is thus important to do redundancy checks
in between waves, the frequency of which can be adjusted according to how many
candidate invariants are expected from the possible invariants. The last setting,
boogalootimeout, sets the number of seconds the invariant finder waits for each
Boogaloo instance to return a counter example. If Boogaloo finds a counter exam-
ple, it usually finds it in under one second. On the benchmark system there was no
success in attempting to optimise the invariant finder with the timeout value but it
was vital to include a timeout.

<?xml version="1.0" encoding="utf−8"?>
<configuration>
<appSettings>
<add key="template_directory"
value="/Users/timon/Education/masterthesis/templates/" />
<add key="templates"
value="Implies;Smaller;Greater;SmallerEquals;GreaterEquals;Equals" />
<add key="constants"
value="0" />
<add key="ops"
value="" />
<add key="multithreading"
value="200" />
<add key="maxinvariants"
value="1000" />
<add key="boogalootimeout"
value="5" />
</appSettings>
</configuration>

Listing 3.6: Base configuration for the invariant finder

20

3. Methods

3.8 Implementational details
This section gives a very basic overview of the architectural choices for the invariant
finder and discusses some challenges that arose from it or shaped the architecture
in the first place.
All of the main functionality of the invariant finder is written in C# in the visual
studio solution invariantFinder. Python scripts enable the use of the configuration
files and assist the interaction between the C# implementation and the invocations
of Boogaloo.
All Boogie implementation features such as the Boogie parser and verifier are in-
cluded directly in the C# implementation. A modified Boogie implementation is
used which has added functions that act as the interface for the invariant finder to
read and write Boogie programs and to perform program verification tasks. Since
the code of the Boogie parser is generated and as such scarcely documented, the
modifications, such as adapting the parser to also process invariant templates, re-
quired a lot of trial and error and debugging and were quite time consuming.
The attempt to use both, static and dynamic testing methods to identify candidate
invariants required a certain level of familiarity with the capabilities of the symbolic
execution engines and the Boogie verifier and how they report their results. For
the static verification part the invariant finder executes the verification section of
the Boogie verifier directly via the parsed and annotated Boogie program. While it
would have been easier to simply execute the whole verification tool on the program,
it is much more attractive to interact directly with the verification section of the
Boogie verifier, to receive the most detailed feedback possible on verification errors.
Even though this part is better documented than the parser section, it still required
a lot of work to make the verification part work on its own.
Another difficulty presented itself in the fact that the verifier makes a lot of irre-
versible changes to the program. Section 3.5.2 already mentioned that the attempt
to write a cloning method for Boogie programs has been made but was unsuccess-
ful. The parsing of Boogie files, which results in the initialisation of a new program
triggers a lot of functions and checks which posed a huge obstacle when attempting
to create a deep clone of a Boogie program.
In the end the development of a framework to support interaction with Boogie
programs in the sense of understanding their structure, injecting invariants at the
right place and being able to invoke the testing methods consumed the majority of
the time spent on the implementation of the algorithm.

21

3. Methods

22

4
Results

To evaluate the capabilities of the invariant finder, a benchmark, including carefully
selected Boogie programs, was executed on the method. This chapter goes through
the selection process of the different test cases and afterwards presents the results,
investigating the different properties of the programs and analysing their effect on
the results of the invariant finder. This helps to understand the limitations of the
algorithm and how it can be configured to achieve better results for certain programs.

4.1 Benchmark selection
The evaluation set consists of 15 Boogie programs, each containing one procedure.
Every procedures contains exactly one loop, as the functionality of the invariant
finder is limited to procedures containing exactly one loop right now. The example
procedures lie within a reasonable level of complexity for the invariant finder. Most
of them can be annotated sufficiently by the algorithm, while others will reach its
limits. In order to examine how different kinds of specifications and implementations
affect the capabilities of the invariant finder, several of the 15 Boogie programs are
variations of other programs in the benchmark. There are a total of three Boogie
programs containing procedures to calculate the maximum of an array. Analogously
three Boogie programs contain procedures to calculate the minimum of an array.
Three Boogie programs contain procedures to calculate the square sum of an integer.
The benchmark is executed in three steps. Firstly, each boogie program is annotated
on is own using the default configuration of the invariant finder. Next, given the
awareness of the required invariants to verify the post-conditions of each procedure,
the Boogie programs are annotated once more using an optimised configuration.
These examples give a good idea on the functionality of the invariant finder, but are
no good representation for real world Boogie examples. The handwritten Boogie
program max, for example, consists of less than 30 lines of code. Compare that to
several thousand lines of code one receives when translating a similar Dafny program
into a Boogie program. This is why the benchmark contains a third part which tries
to simulate some scalability examples by joining the single Boogie files into larger
ones. The first one contains all three variations of the max procedure and the second
one includes all procedures of this benchmark.
All of the procedures require invariants in order for Boogie to verify their post-
conditions. However, none of them are annotated with invariants yet. A set of
invariants, which is sufficient to verify all the post-conditions of a procedure, is
provided as comments in each of the input files to evaluate the output of the invariant

23

4. Results

finder. Listing 4.1 shows the commented invariants in the loop head needed to verify
the post-conditions of the procedure max in the program max_pred_v1.bpl.

while (i < n)
// invariant i <= n;
// invariant contains (max , a, i);
// invariant upper_bound (max , a, i);

Listing 4.1: Needed invariants for max_pred1̌.bpl

The invariants in this program contain the already introduced logic functions contains
and upper_bound. Hence, the Boogie program will also include their definition.
All benchmark programs, their optimised configuration, as well as the two large test
cases and the output of the invariant finder for all test cases can be examined in a
bitbucket repository [1].

Reference system

The benchmark is executed on a 2014 MacBook Pro (Retina 13-inch, Late 2013)
with a 2,4 GHz Intel Core i5 processor and 8 GB of 1600 MHz DDR3 RAM, running
macOS High Sierra Version 10.13.4. During the multithreaded Boogaloo execution
the system will be a bottleneck and better runtimes might be achieved by executing
the method on a more powerful machine. However, a method like the invariant
finder is only attractive if it is accessible on even low tier systems and does not take
a lot of time to execute.

4.2 Benchmark results
For each step of the benchmark, the invariant finder is executed on single Boogie
programs containing one or more Boogie procedure. The output of is summarised in
different multiple tables for the different steps. Table 4.1 contains the results for the
single procedures with the default configuration, Table 4.2 for the single procedures
with optimised configurations and Tables 4.3 and 4.4 for the Boogie programs with
multiple procedures.
The rows in the tables contain the name of the Boogie program which is the source
for the procedure tested, in the column PROC. The column INV and CND give
the minimum number of invariants which Boogie needs to verify the procedure and
the number of candidate invariants the invariant finder inferred for the procedure.
Be aware that a higher number of candidates than necessary invariants does not
imply that the procedure can be verified. It is easy to generate invariants that
are true but do not aid the verification of a procedure’s post-conditions. The next
two columns state the numbers of invariants generated from templates and from
post-conditions. Information about how successful the different methods were at
filtering out invariants is given in the next three columns. DYN gives the number
of invariants dynamically sorted out using Boogaloo, STC the number of invariants
which Boogie was unable to prove and RED the number of invariants removed
because of redundant or too trivial properties. The last two columns specify whether

24

4. Results

the candidates are sufficient to verify the post-conditions of the procedure and give
the time it took invariant finder to annotate the program. In Tables 4.3 and 4.4
the execution time is given in the caption of the tables instead. During each of the
steps of the benchmark, some programs are presented and special features and their
effects on the output of the invariant finder analysed.

4.2.1 Single procedures with default configuration
Table 4.1 summarises the output of the invariant finder when executed on a single
Boogie program at a time with the default configuration, which can be seen in
Listing 3.6. With only the constant 0 and no operations, the default configuration
adds almost no replacement candidates to the list of parameters and variables of
the program. However, this minimal set of replacement candidates combined with
a short list of templates is enough to infer a sufficient set of invariants for most of
the test cases.

PROC INV CND FTL FPC DYN STC RED PC T
count 2 6 134 125 72 92 30 YES 0:23
max 3 6 89 1250 717 223 393 YES 1:18
max_pred_v1 3 6 89 32 50 36 29 YES 0:07
max_pred_v2 2 3 89 16 50 26 26 YES 0:06
min 3 6 89 1250 757 196 380 YES 1:16
min_pred_v1 3 6 89 32 54 32 29 YES 0:07
min_pred_v2 2 3 89 16 49 26 26 YES 0:06
square 3 8 133 25 64 55 31 NO 0:08
square_easy_v1 2 6 88 16 30 46 22 NO 0:06
square_easy_v2 2 5 113 125 48 108 39 YES 0:12
small_numbers 2 6 134 125 136 31 27 YES 24:51
even 2 6 64 27 19 43 23 YES 0:13
is_even 2 6 63 9 19 27 20 YES 0:10
merge 6 10 257 98 98 134 113 NO 0:22
binary_search 4 12 254 2744 1108 789 1089 NO 3:55

Table 4.1: Running all procedures separately with the default configuration

Max and min

The max example is one of the examples alongside which the invariant finder was
developed. As such it exists with three different sets of post-conditions which can
be seen in Listing 4.2. All max examples share the same implementation and their
post-conditions could be verified using the same set of invariants. However, with
the main source of invariants in the default configuration being the post-conditions,
they end up with different candidate invariants.
As Table 4.1 shows, there are a lot more invariants generated for the first speci-
fication of max. This is the consequence of the larger number of variables in the
post-conditions and the different number of post-conditions compared to the other

25

4. Results

specifications. The results show that the majority of the generated invariants are
sorted out by Boogaloo, which is how the invariant finder is able to finish the anno-
tation in less than 80 seconds.

max.bpl:
ensures (exists i : int :: 0<=i && i<n && a[i]== max);
ensures (forall i : int :: 0<=i && i<n ==> a[i]<=max);

max_pred_v1 .bpl:
ensures contains (max , a, n);
ensures upper_bound (max , a, n);

max_pred_v2 .bpl:
ensures is_max (max , a, n);

Listing 4.2: Different ways to specify the procedure max

The three versions of the min example are, simply put, the exact same programs
as the max examples with all >= replaced by <= and vice versa. This does not
have any affect on the invariant generation. The results show that the invariant
finder generates the same number of invariants from templates and post-conditions.
The difference lies in the numbers of invariants sorted out by Boogaloo and Boo-
gie. While the rough proportions are still in tact, there is a significant difference
in invariants sorted out by Boogaloo. The number of invariants not provable by
Boogie is dependent on the number of invariants disproved by Boogaloo, since it is
not possible to verify a wrong invariant. The fact that Boogaloo and Boogie can
perform significantly different in really similar invariants and contexts is merely an
observation here, as it does not affect the final outcome of the invariant finder. The
later examples of larger Boogie files will however uncover more critical differences in
the performance of Boogaloo and Boogie when the task of disproving and verifying
invariants becomes more difficult.

Square

The procedure square calculates the square n · n of an integer n and exists in three
versions as well. Contrary to max and min however, the different versions have
different specifications and different implementations. The first version builds the
square by calculating the square sum of the iterator i during each iteration of the
loop until i reaches n. The two versions of square_easy calculate i · n during each
iteration of the loop, where i is again the iterator which becomes n in the end.
Listing 4.3 shows the post-conditions for the different procedures and a selection of
the necessary invariants to verify the post-conditions.
For the first example, the invariant finder can easily generate the first invariant from
the post-condition. The second invariant however, can not be generated from the
pattern of the post-condition. Even with the right constants and operations, the
invariant finder will only replace the two occurrences of n in the post-condition with
the same expressions in a generated invariant. Similarly it is not possible to generate
the necessary invariant for the second example, since it would require a replacement
of n with i and with n in the same invariant. The third example is not practical, as

26

4. Results

it introduces an additional parameter x to the square_easy procedure which must
be equal to n.

square.bpl:
ensures r == n*n;
invariant r == i*i;
invariant x == 2*i + 1;

square_easy_v1 .bpl:
ensures r == n*n;
invariant r == i*n;

square_easy_v2 .bpl:
ensures r == x*n;
invariant r == i * n;

Listing 4.3: The post-conditions and a selection of the required invariants from
the square examples

Because in this case the post-condition can be written with two different variables
in the product. From that the invariant finder is able to generate the invariant in
the last line.
An easier way to achieve this would be to add a template with a body like x == y∗z
or to allow the replacement of multiple occurrences of the same variable with different
expressions, which will be discussed in Section 5.1.

Small_numbers

The test case small_numbers presents a strange and unexpected result. The file
contains a procedure which is comfortably in the target subset of the Boogie language
for which the invariant finder should return a fully annotated loop. The procedure
has been properly annotated be previous versions of the invariant finder but in the
latest version, the invariants are injected in a certain order that results in a problem
with Boogie. For one temporary state of the generation, the execution of Boogie
takes an unusually long time to stop. Further investigation unveiled that it is the
combination the following three invariants, which causes this.

invariant r <= max * i;
invariant r <= r * r;
invariant r <= i * n;

The investigation on why this happens does not fit into the context of this thesis
but it is a good example for how working with verification tools like Boogie can be
challenging, even for simple examples. In the optimised execution the number of
invariants added at a time has been set to 1, in the configuration file, in order not
to trigger this edge case. The execution time can be expected to be slightly shorter
when using multithreading properly.

27

4. Results

4.2.2 Single procedures with optimised configuration
Table 4.2 summarises the output of the invariant finder when executed on a single
Boogie program at a time with a configuration which is optimised to its procedure.
Except for the procedures which were not annotated sufficiently with the default
configuration, which are discussed at some point in this chapter, the changes in
the configuration file mainly consist of removed templates and constants. Most
procedures actually only required one template and no constants at all.

PROC INV CND FTL FPC DYN STC RED PC T
count 2 5 16 64 6 66 3 YES 0:17
max 3 6 16 1250 683 203 374 YES 1:22
max_pred_v1 3 4 9 18 9 11 3 YES 0:02
max_pred_v2 2 3 9 9 9 4 2 YES 0:01
min 3 6 16 1250 723 174 363 YES 1:20
min_pred_v1 3 4 9 18 13 7 3 YES 0:02
min_pred_v2 2 3 9 9 9 4 2 YES 0:02
square 3 6 810 81 578 286 21 YES 0:46
square_easy_v1 2 3 36 9 0 38 4 YES 0:04
square_easy_v2 2 3 16 64 0 67 10 YES 0:06
small_numbers 2 3 16 64 39 9 5 YES 0:10
even 2 3 4 18 0 18 1 YES 0:07
is_even 2 3 4 6 0 6 1 YES 0:06
merge 6 22 8384 72 266 1292 6876 NO 23:47
binary_search 4 48 288 22464 7044 2235 7673 YES 27:13

Table 4.2: Running all procedures separately with optimised configurations

The executions of the invariant finder with optimised settings for the programs
merge and binary_search are the first ones that result in larger amounts of possible
invariants. It is interesting to see how 8456 possible invariants for merge and 17001
possible invariants for binary_search are tested in surprisingly similar time. This
observation can be explained by the large number of possible invariants that are
disproved by Boogaloo for binary_search compared to the relatively small number
for merge.

Merge

The Boogie procedure merge implements the merge operation needed for algorithms
like merge sort. It remains the only procedure which is not annotated sufficiently
by the invariant finder, even with an optimised configuration. While it would have
been easy to write the necessary templates to fit the needs of this procedure, that
would not really be the point of automatic invariant inference. To have a tool
choose the invariants without the need for additional input, the required invariants
must fit some sort of pattern. The creation of a new handwritten template is only
justified if it is interesting to a larger set of programs. Otherwise such a template
will help to solve a special case but will explode the execution time for simpler

28

4. Results

procedures which do not require this template. Furthermore, coming up with the
right template already requires a good idea of what the required invariant might look
like. Listing 4.4 shows the invariants necessary to verify the single post-condition of
merge, sorted(b, start, n).

invariant (forall j, k: int :: l<=j && j<k && k<mid ==> a[j]<=a[k]);
invariant (forall j, k: int :: r<=j && j<k && k<n ==> a[j]<=a[k]);
invariant l<mid ==> (forall j: int :: start<=j&&j<i==>b[j]<=a[l]);
invariant r<n ==> (forall j: int :: start<=j && j<i ==> b[j]<=a[r]);
invariant n-i == (mid-l) + (n-r);
invariant sorted (b, start, i);

Listing 4.4: Necessary invariants for merge

The invariants for this example are more complex than what is needed for for ex-
ample max and only one of the invariants relates to the post-condition. So how can
the invariant finder guess the remaining invariants? It can not. Finding the right
templates to generate these invariants is a task just as tedious as coming up with the
invariants in the first place. Add the time needed to run the invariant finder over
and over again and this becomes completely unpractical. The only change made in
the configuration for merge was the addition of the template from Listing 4.5.

//@ Variables A:int B:int C:int D:int E:[int]int
invariant (forall boundVar0, boundVar1: int :: A <= B && B < C && C

< D ==> E[B] <= E[C]);

Listing 4.5: Invariant templates from ForAll2ElemSmallerEquals.bpl

This template can be applied to other interesting implementations that are related to
sorting algorithms as well and is thus not too specific to merge. It could be included
in a collection of templates which are interesting for such procedures. When that
type of procedure is identified, one could simply activate the generation from the
templates of this collection. In the case of merge however, the addition of this
template just caused a higher number of possible invariants which did not even lead
to interesting candidate invariants. While the 8456 invariants surely included some
invariants close to the first two invariants from Listing 4.4, Boogie was not able to
verify them without the other required invariants. This further classifies that the
complexity of this example lies beyond the capabilities of the invariant finder.

Binary_search

The default configuration was not able to find the required invariants for binary_search
and at first it seemed like the steps to configure the invariant finder for this example
would take more effort than they actually did. The only change that was made was
to remove unnecessary templates and to add the operation +1. This resulted in ev-
ery replacement candidate x being extended to the expression (x + 1) and with that
the expression (high + 1) was added to the replacement candidates. The expression
(high + 1) is necessary for the required invariant for binary_search, which can be
seen in Listing 4.6.

29

4. Results

invariant ! contains (a, fromindex , low , key);
invariant ! contains (a, high + 1, toindex , key);

Listing 4.6: Selection of invariants necessary for binary_search

But how did this change result in the generation of sufficient invariants? The post-
conditions of binary_search do not include the right pattern for these invariants.
Very interestingly this did not pose a hurdle for the generation, as the invariant
finder simply generated the invariants in Listing 4.7.

invariant low==low ==> !contains(a, fromIndex, low, key);
invariant toIndex==toIndex ==> !contains(a, high + 1, toIndex, key);

Listing 4.7: Selection of candidates generated for binary_search

It becomes apparent quickly that the first expression of the implications can simply
be replaced by true and they are thus equivalent to the invariants from Listing 4.6.
While these are not the candidates someone would have written by hand, they serve
their purpose in both aiding the verification of binary_search’s post-conditions as
well as making the user aware of what invariants were necessary.

4.2.3 Programs with multiple procedures
To examine how the invariant finder performs on larger Boogie files, the invariant
finder was executed on two Boogie files containing more than one procedure. While
the results documented in Table 4.3 show the outcomes when executing the invariant
finder on a Boogie file containing all variations of the procedure max, Table 4.4
shows the results when including all programs except small_numbers, which is not
considered due to the unusually long execution time of Boogie, in one Boogie file.
Unfortunately the results show that the invariant finder does not scale well. Com-
pared to the single file execution, when the invariant finder was able to annotate all
three variations of max sufficiently, the test case with all variations of max in one
file only results in the verification of two of them. In the Boogie program containing
all the procedures only one of the variations of max gets annotated sufficiently.

PROC INV CND FTL FPC DYN STC RED PC
max 3 6 89 1250 717 223 393 YES
max_pred_v1 3 6 89 32 50 46 19 YES
max_pred_v2 2 4 89 16 42 46 13 NO

Table 4.3: Running all max procedures in one program. T=1:32

The main difference lies in the number of invariants disproved by Boogaloo and the
number of invariants not verified by Boogie. The general trend seems to be that, with
growing program length, the number of invariants disproved by Boogaloo decreases.
On the other hand, more invariants are sorted out using Boogie, because they can
not be verified. A portion of these invariants are surely ones that were missed by
Boogaloo and are actually wrong. However, some of the not proved invariants must
also be correct invariants which Boogie was able to verify in smaller programs.

30

4. Results

For both observations there is no easy explanation as the calculations of Boogaloo as
well as those performed by Boogie are highly complex and, as was already visible in
the max and min example, there is no way of knowing in advance which invariants
Boogaloo will be able to disprove and which invariants can be proven by Boogie.
The invariant finder attempts to narrow the task down as much as possible for both
Boogaloo and Boogie. Both tools are executed with only one target procedure and
in the case of Boogaloo such a procedure contains only one invariant at a time.
Still, the added complexity from the bigger files has a significant influence on the
capabilities of Boogaloo and Boogie.
As a result of the smaller number of wrong invariants disproved by Boogaloo the
runtime is expected to go up. The effect of Boogie not being able to verify as many
invariants, results in a smaller number of programs being annotated sufficiently
because more candidate invariants are wrongfully removed.
In the execution of single procedures, the procedure max resulted in 717 disproved
and 223 not verified invariants. The amount of invariants that are sorted out because
the invariant finder has to assume that they are wrong grew for that particular
example from 952 to 987. The decreased amount of invariants disproved by Boogaloo
might not only affect the execution time but also the outcome of Boogie, since Boogie
has to check more invariants at the same time. While, from this evaluation set, it can
not be pinpointed whether the problem for Boogie is the larger number of invariants
or the larger context, it is apparent that scalability is an issue with Boogie and the
verification tasks should be kept as simple as possible.
In the example of all procedures, as seen in Table 4.4, the different capabilities of
Boogie verifying the invariants of the very similar procedures max and min be-
comes even more apparent than in the separate tests. Now, not only the numbers
of invariants removed by dynamic and static methods differ but even the number
of procedures annotated sufficiently. Only one variation of max is annotated suffi-
ciently while two variations of min are annotated sufficiently.

PROC INV CND FTL FPC DYN STC RED PC
count 2 6 134 125 72 103 19 YES
max 3 6 89 1250 647 340 346 NO
max_pred_v1 3 6 89 32 43 54 18 YES
max_pred_v2 2 4 89 16 33 53 15 NO
min 3 6 89 1250 576 465 292 NO
min_pred_v1 3 6 89 32 30 65 20 YES
min_pred_v2 2 3 89 16 26 58 18 YES
square 3 4 133 25 47 93 14 NO
square_easy_v1 2 6 88 16 30 51 17 NO
square_easy_v2 2 5 113 125 48 132 15 YES
even 2 0 64 27 34 41 16 NO
is_even 2 1 63 9 18 39 14 NO
merge 6 10 257 98 98 152 95 NO
binary_search 4 12 254 2744 1108 789 1089 NO

Table 4.4: Running all procedures in one program. T=11:02

31

4. Results

32

5
Conclusions

This chapter continues the discussion, which already started together with the eval-
uation in Chapter 4, and gives suggestions for future work on this topic, followed by
a short conclusion.

5.1 Discussion
The observations during the evaluation in Chapter 4 suggest that the combination
of dynamic and static testing to identify candidate invariants can be quite powerful.
The two approaches complement each other as was already described in Section 3.5.
Especially when the invariant finder generates a lot of wrong invariants, the addition
of dynamic testing helps a lot with the performance of the identification of candidate
invariants. This results in the invariant finder actually performing quite well on
the evaluation set, considering the simple replacement techniques used to generate
possible invariants from templates and post-conditions.
Overall the algorithm for invariant inference developed in this thesis should not
be considered more than a prototype. Its framework however, could be deployed
to include more complex techniques to replace the variables from templates and
single terms from post-conditions. Similar to the concept of injecting and testing
possible invariants in waves, the generation of invariants could start with simple
expressions to replace the terms of the templates with and grow more complex with
each wave of generation. Section 3.3 described how, in order to limit the number
of possible invariants, the same variable in a template is always replaced with the
same expression in the same invariant. This is one obvious example where a second
wave of invariants which does not include this restriction could increase the number
of candidate invariants.
The main reason behind restricting the number of possible invariants at some was the
shier amount of possible invariants generated from complex hand written templates.
The next paragraph will explain how the number of templates required for the
successful annotation in the benchmark was kept quite low in the end, which is why
removing the restrictions in waves could be a good approach for this set of programs.
The invariant finder considers handwritten templates and post-conditions as sources
for the generation of possible invariants. During the longest part of the thesis, the
only source were the handwritten templates and a number of them was created
alongside the algorithm. With the integration of templates from post-conditions,
most of the hand written templates became obsolete and the templates from post-
conditions proved themselves much more effective. Especially with the benchmark

33

5. Conclusions

results, the question arises how many templates are actually needed for most ap-
plications, since in the end most candidate invariants came from templates created
from post-conditions. Furthermore the tests with optimised configurations showed
that most of the times only the template X >= Y was used. Considering that most
of the implementations in the benchmark have the loop condition i < n, the ques-
tion arises whether the loop condition could act as a source for possible invariants
instead. Together with more advanced techniques to replace the variables in the
templates, this could possibly result in a faster generation of the desired candidate
invariants.
If the generation of possible invariants can be improved to include more candidate
invariants and less wrong invariants, the effects of dynamic testing on these sets of
invariants have to be reevaluated. Furthermore it would be interesting to investigate
in more detail if the dynamic testing primarily improves the selection of candidate
invariants if a lot of wrong invariants are generated or if the dynamic method is
especially effective at finding counter examples for certain types of invariants. It
stands to reason that it could be easier to find a counter example for a logic formula
which contains a for all quantifier compared to an exists quantifier. It would be
interesting to examine whether Boogaloo shows such patterns in practice.
The results of the benchmark in this thesis also do not allow for a final conclusion
on which limitation of the testing methods were due to the tools and which might
have been due to the system, the benchmark was performed on. Especially when
Boogaloo was running, the system nearly froze, as all its computational power was
used up by Boogaloo. Considering how well the dynamic testing can be parallelised,
it would be interesting to see if the testing scales well on more powerful systems.
The Boogie files that can be handled by the invariant finder are limited to procedures
which include at most one loop. While it would be interesting to expand the target
programs to more complex structures with multiple or nested loops, the benchmark
programs were already complicated enough to show up the limits of the algorithm.
It would still be interesting to investigate whether there exists a certain subset of
Boogie programs which has multiple loops and could benefit from the invariant
finder.
A major effort during the implementation of the invariant finder was the direct
interaction with parts of the Boogie implementation, some of the difficulties with
which are described in Section 3.8. While the integration of Boogie functionalities is
robust enough to handle the examples from the benchmarks and even more complex
files, attempts to run real world examples like programs translated from Dafny code
were unsuccessful. The integration of the Boogie functionalities poses a limitation for
the processing of such programs and it is difficult to estimate how much time would
have to be invested into understanding the Boogie implementation to improving the
integration, which is why it was not further attempted in this thesis.
Section 2.2 mentions an alternative symbolic execution engine in Symbooglix. The
method was used in the early stages of the development of the invariant finder. How-
ever, it turned out that, while Symbooglix might be able to find counter examples
for more wrong invariants, Boogaloo was able to find a counter example, for the
invariants for which it could find one, significantly faster. This property made it the
preferred choice for the invariant finder.

34

5. Conclusions

5.2 Future work
The future work suggestions that initiate in this work basically split into three parts:
continue the development of the invariant inference techniques of the invariant finder,
examine the possible invariants rejected by Boogaloo in closer detail, and test the
alternative symbolic execution engine Symbooglix in the same setting.
The invariant inference technique developed in this thesis serves well as a proto-
type for invariant generation from different sources and candidate invariant selec-
tion through a combination of dynamic and static testing. The discussion section
describes how it would be interesting to implement more advanced replacement
methods for the variables in the templates. Time constraints also did not allow
to fit the invariant finder to more complex Boogie files and procedures containing
multiple loops. The invariant finder could be developed further to be able to pro-
cess such files and investigate if there is a possible application for more complex
programs.
The combination of dynamic and static testing for the selection of invariant can-
didates should be tested in a benchmark with more information on the invariants.
What percentage of the invariants is actually wrong and how many of these can
Boogaloo disprove. Furthermore, is there a certain pattern of wrong invariants for
which Boogaloo is more likely to find a counter example?
This thesis was not able to achieve practical results using Symbooglix to disprove
possible invariants. More investigation into the options of and possibly improved
settings for Symbooglix would be interesting.

5.3 Conclusions
This thesis resulted in an invariant inference algorithm for the Boogie intermediate
verification language which uses a combination of dynamic and static testing to
identify candidate loop invariants. The algorithm’s process of generating possible
invariants is very simple and results in a lot of wrong invariants but was already
run successful on small examples. The evaluation of the algorithm shows that the
combination of dynamic and static testing can be powerful at quickly identifying
candidate invariants out of large sets of invariants. The use of Boogaloo for the
dynamic testing part can boost the number of possible invariants the algorithm can
evaluate to up to 1000 invariants per minute.

35

5. Conclusions

36

Bibliography

[1] Bitbucket repository containing the benchmark for the invariant finder.
https://bitbucket.org/lapawczykt/invariant-finder-benchmark/src/
master/.

[2] Boogie github repository. https://github.com/boogie-org/boogie.
[3] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rus-

tan M Leino. Boogie: A modular reusable verifier for object-oriented pro-
grams. In International Symposium on Formal Methods for Components and
Objects, pages 364–387. Springer, 2005. https://www.microsoft.com/en-us/
research/wp-content/uploads/2005/01/krml160.pdf.

[4] Shaunak Chatterjee, Shuvendu K Lahiri, Shaz Qadeer, and Zvonimir Raka-
marić. A reachability predicate for analyzing low-level software. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 19–33. Springer, 2007. https://link.springer.com/content/
pdf/10.1007/978-3-540-71209-1_4.pdf.

[5] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analy-
sis of Systems, pages 337–340. Springer, 2008. https://link.springer.com/
content/pdf/10.1007/978-3-540-78800-3_24.pdf.

[6] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Car-
los Pacheco, Matthew S Tschantz, and Chen Xiao. The daikon sys-
tem for dynamic detection of likely invariants. Science of Computer Pro-
gramming, 69(1):35–45, 2007. https://homes.cs.washington.edu/~mernst/
pubs/daikon-tool-scp2007.pdf.

[7] Carlo A Furia and Bertrand Meyer. Inferring loop invariants using post-
conditions. Fields of Logic and Computation, 6300:277–300, 2010. http:
//bugcounting.net/pubs/yg70-post.pdf.

[8] Juan P Galeotti, Carlo A Furia, Eva May, Gordon Fraser, and Andreas Zeller.
Inferring loop invariants by mutation, dynamic analysis, and static checking.
IEEE Transactions on Software Engineering, 41(10):1019–1037, 2015. http:
//bugcounting.net/pubs/tse15-dynamate.pdf.

[9] Hermann Lehner and Peter Müller. Formal translation of bytecode into boo-
giepl. Electronic Notes in Theoretical Computer Science, 190(1):35–50, 2007.
https://www.researchgate.net/profile/Peter_Mueller14/publication/
223702915_Formal_Translation_of_Bytecode_into_BoogiePL/links/
53ee631e0cf26b9b7dc972bd.pdf.

[10] K Rustan M Leino. Dafny: An automatic program verifier for functional cor-
rectness. In International Conference on Logic for Programming Artificial In-

37

https://bitbucket.org/lapawczykt/invariant-finder-benchmark/src/master/
https://bitbucket.org/lapawczykt/invariant-finder-benchmark/src/master/
https://github.com/boogie-org/boogie
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/krml160.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/krml160.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-71209-1_4.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-71209-1_4.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-78800-3_24.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-78800-3_24.pdf
https://homes.cs.washington.edu/~mernst/pubs/daikon-tool-scp2007.pdf
https://homes.cs.washington.edu/~mernst/pubs/daikon-tool-scp2007.pdf
http://bugcounting.net/pubs/yg70-post.pdf
http://bugcounting.net/pubs/yg70-post.pdf
http://bugcounting.net/pubs/tse15-dynamate.pdf
http://bugcounting.net/pubs/tse15-dynamate.pdf
https://www.researchgate.net/profile/Peter_Mueller14/publication/223702915_Formal_Translation_of_Bytecode_into_BoogiePL/links/53ee631e0cf26b9b7dc972bd.pdf
https://www.researchgate.net/profile/Peter_Mueller14/publication/223702915_Formal_Translation_of_Bytecode_into_BoogiePL/links/53ee631e0cf26b9b7dc972bd.pdf
https://www.researchgate.net/profile/Peter_Mueller14/publication/223702915_Formal_Translation_of_Bytecode_into_BoogiePL/links/53ee631e0cf26b9b7dc972bd.pdf

Bibliography

telligence and Reasoning, pages 348–370. Springer, 2010. http://homepage.
divms.uiowa.edu/~tinelli/classes/181/Spring10/Papers/Lein10.pdf.

[11] Rustan Leino. This is boogie 2. Microsoft Research, June 2008. https://www.
microsoft.com/en-us/research/publication/this-is-boogie-2-2/.

[12] Daniel Liew, Cristian Cadar, and Alastair F Donaldson. Symbooglix: A sym-
bolic execution engine for boogie programs. In Software Testing, Verification
and Validation (ICST), 2016 IEEE International Conference on, pages 45–56.
IEEE, 2016.

[13] Nadia Polikarpova, Carlo A Furia, and Scott West. To run what no one has
run before: Executing an intermediate verification language. In International
Conference on Runtime Verification, pages 251–268. Springer, 2013. http:
//bugcounting.net/pubs/rv13.pdf.

[14] Julian Tschannen, Carlo A Furia, Martin Nordio, and Bertrand Meyer. Ver-
ifying eiffel programs with boogie. arXiv preprint arXiv:1106.4700, 2011.
https://arxiv.org/pdf/1106.4700.pdf.

38

http://homepage.divms.uiowa.edu/~tinelli/classes/181/Spring10/Papers/Lein10.pdf
http://homepage.divms.uiowa.edu/~tinelli/classes/181/Spring10/Papers/Lein10.pdf
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
http://bugcounting.net/pubs/rv13.pdf
http://bugcounting.net/pubs/rv13.pdf
https://arxiv.org/pdf/1106.4700.pdf

6
Appendix

function contains (v:int ,a:[int]int ,n:int) returns (bool)
{ (exists j: int :: 0 <= j && j < n && a[j] == v) }

function upper_bound (v:int ,a:[int]int ,n:int) returns (
bool)

{ (forall j: int :: 0 <= j && j < n ==> a[j] <= v) }

procedure max(a:[int]int , n:int) returns (max:int);
requires n > 0;
ensures contains (max , a, n);
ensures upper_bound (max , a, n);

implementation max(a:[int]int , n:int) returns (max:int)
{

var i : int;
max := a[0];
i := 1;
while (i < n)

invariant i <= n;
invariant contains (max , a, i);
invariant upper_bound (max , a, i);

{
if (a[i] > max) {

max := a[i];
}
i := i + 1;

}
}

Listing 6.1: The Boogie file max_pred_v1_short.bpl. It includes the invariants
needed to verify the post-conditions. These need to be commented out before
executing the invariant finder

39

6. Appendix

<?xml version=" 1 .0 " encoding=" utf−8" ?>
<con f i gu r a t i on>
<appSett ings>
<add key=" template_directory "
va lue=" /Users /timon/Education/mas t e r the s i s / templates / " />
<add key=" templates "
va lue=" GreaterEquals " />
<add key=" cons tant s "
va lue=" " />
<add key=" ops "
va lue=" " />
<add key=" mul t i thread ing "
va lue=" 200 " />
<add key=" maxinvar iants "
va lue=" 1000 " />
<add key=" boogaloot imeout "
va lue=" 5 " />
</ appSett ings>
</ con f i gu r a t i on>

Listing 6.2: Invariant finder configuration for the Boogie program from Listing 6.1

40

6. Appendix

implementation max(a:[int]int , n:int) returns (max:int)
{

var i: int;
max := a[0];
i := 1;
while (i < n)

invariant n >= i;
invariant max >= max;
invariant contains (max , a, i);
invariant upper_bound (max , a, i);
// invariant {: DYN} max >= n;
// invariant {: DYN} max >= i;
// invariant {: DYN} contains (n, a, n);
// invariant {: DYN} contains (n, a, max);
// invariant {: DYN} contains (n, a, i);
// invariant {: DYN} contains (max , a, max);
// invariant {: DYN} contains (i, a, n);
// invariant {: DYN} contains (i, a, max);
// invariant {: DYN} contains (i, a, i);
// invariant {: STC} n >= max;
// invariant {: STC} i >= n;
// invariant {: STC} i >= max;
// invariant {: STC} upper_bound (n, a, n);
// invariant {: STC} upper_bound (max , a, n);
// invariant {: STC} upper_bound (n, a, max);
// invariant {: STC} upper_bound (max , a, max);
// invariant {: STC} upper_bound (i, a, n);
// invariant {: STC} upper_bound (n, a, i);
// invariant {: STC} upper_bound (i, a, max);
// invariant {: RED} n >= n;
// invariant {: RED} i >= i;
// invariant {: RED} contains (max , a, n);

{
if (a[i] > max) {

max := a[i];
}
i := i + 1;

}
}

Listing 6.3: The annotated implementation of the procedure max from Listing 6.1
when the invariant finder is executed with the configuration from Listing 6.2

41

	Introduction
	Goals and challenges
	Structure of the thesis

	Tools and Environment
	Boogie
	The Boogie specification language
	The Boogie verification tool

	The symbolic execution engine Boogaloo

	Methods
	Invariant finder
	Boogie parser
	Invariants from templates
	Invariants from post-conditions
	Filtering invariants
	Disproving invariants
	Proving invariants

	Redundancy checks
	Configuration
	Implementational details

	Results
	Benchmark selection
	Benchmark results
	Single procedures with default configuration
	Single procedures with optimised configuration
	Programs with multiple procedures

	Conclusions
	Discussion
	Future work
	Conclusions

	Bibliography
	Appendix

