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Using neural networks to predict the optimal roof deflector position on trucks
Anton Fahlgren
Department of Electrical Engineering
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Abstract
In an attempt to meet the increasing demands on the transport sector, the heavy
truck industry is focused on finding alternative ways beyond the scope of an efficient
powertrain to reduce its environmental impact. A roof air deflector is an aerody-
namic component mounted on the truck cab’s roof with the purpose of reducing the
total air resistance of the truck. The deflector has to be adjusted manually whenever
the trailer is changed in order to minimize the achieved fuel consumption. Unfor-
tunately, this process is often overlooked in practise. As a result, efforts have been
made to automate the adjustment and finding of optimal roof deflector position to
remove the necessity of driver interaction.

In this work, an approach for predicting the optimal roof deflector position of a
truck using convolutional neural networks is implemented and evaluated. The pre-
diction algorithm uses current consumption data from a linear actuator that moves
the roof deflector as its only input. The current consumption has been sampled dur-
ing a sweeping motion of the roof deflector while the truck is driving with a range
of different trailers. This makes it possible to detect the aerodynamic at different
roof deflector positions through the current samples

Results show that a neural network based approach is feasible and the algorithm
is capable of consistently predicting the optimal position for previously unseen data.
The proposed algorithm is completely end-to-end and uses convolutional layers for
extracting discriminating features in order to predict the correct position.

Keywords: active aerodynamics, deep machine learning, signal processing, time
series classification, artificial neural networks, convolutional neural networks
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1
Introduction

1.1 Background
The transport sector, and in particular the heavy truck industry, is under constant
scrutiny from customers and authorities in regards to its environmental impact. New
regulations for air pollution and carbon emissions have been passed continuously
throughout recent years. In an attempt to meet the increasing demands, the heavy
truck industry is focused on finding alternative ways, beyond the scope of an efficient
powertrain, to reduce the environmental impact.

Roof air deflectors (RAD) are commonly used aerodynamic components on trucks
to reduce the air resistance, which in turn reduces fuel consumption. Typically, the
deflector’s position needs to be manually adjusted whenever the truck changes to
a trailer with a different height or gap to the truck cab. This adjustment is often
overlooked as it requires taking several measurements between the cab and trailer
and then finding the optimal position in the truck’s handbook. The result is that
many trucks go long periods of time with an incorrectly positioned RAD, leading to
unnecessarily high fuel consumption.

The company Rumblestrip has developed an adaptive RAD, mounted on linear
electric actuators, in order to automate the positioning procedure. After the truck
has changed trailer and reached a certain speed, the adaptive RAD does a sweeping
motion while measuring current consumption and extension state of the actuators.
Because the current consumption contains information of the aerodynamic forces
acting on the RAD, its time series can be used to predict the optimal position. This
is achieved by training a model using labeled data and supervised learning methods.

1.2 Related work
The problem of time series classification (TSC) has been heavily researched in recent
years. Traditionally, state-of-the-art TSC algorithms have largely been based on
nearest neighbor (NN) classifiers using alternative distance metrics such as dynamic
time warping [1]. However, the main drawback of NN classifiers is the computational
cost and storage requirements since the entire training set has to be searched for
every prediction. Less computationally heavy approaches have been shown to yield
good performance, but often rely on hand engineered features extracted from the
raw time series [2, 3]. Furthermore, useful features are often domain specific and
can be difficult to find.

With the advancement of machine learning and deep neural networks, several

1



1. Introduction

methods to derive end-to-end TSC algorithms have been proposed. This eliminates
the need for manual feature engineering and the models can be trained on mostly
raw data. The simplest neural network type is the multi layer perceptron, also
known as fully connected. This type of network is not well suited for TSC as the
structure does not take temporal information into account. Instead, the time series
samples are treated independently, which can be detrimental to the accuracy of the
classifier [4].

Convolutional neural networks (CNN) are typically used for image classification
because of their ability to capture spatial structure in the data by sliding filter
over the data. The same methodology can be applied to time series by sliding the
filter across the temporal dimension rather than spatial. Several studies show that
CNNs, alone or in conjunction with other network types, are able to accurately
classify time series in multiple areas of application. In [5], a pure end-to-end CNN
model is proposed and shown to achieve comparable performance to other state-
of-the-art methods. Furthermore, the network structure used makes it possible to
compute a class activation maps, which illustrates which sections in the data that
contributes to specific labels. The CNN architecture from [5] is further developed
in [6] by augmenting it with a recurrent neural network (RNN) module called long
short term memory (LSTM). The LSTM cell processes a dimension shuffled version
of the input data, and its output is concatenated with the CNN’s output before the
final layer. The proposed methodology is shown to increase accuracy with a nominal
increase in number of parameters.

A review and benchmark of nine end-to-end deep learning architectures for TSC
is conducted in [4], using both uni- and multivariate data sets. It is shown that for
small data sets some CNNs tend to overfit the training data. However, algorithms
that deploy data augmentation steps before training tend to overfit significantly less.
A technique for augmenting time series data called window slicing is presented in
[7]. Here, each time series is sliced into several smaller segments and then treated
as separate training instances. At test time, the same slicing is conducted and the
prediction is computed using the majority vote. It is shown that this augmentation
can reduce the overfitting problem for CNNs.

Inspired by computer vision research, several techniques to transform time series
data into images before classification have been proposed. In [8, 9, 10], the time
series are converted into both Gramian angular fields and Markov transition fields
before being fed into CNNs. Converting the time series into recurrence plots before
classification has been done in [11, 12]. Both methodologies show good results in
terms of classification accuracy. These image transformations are domain agnostic
and enables the use of well established image classification methodologies [4].

RNNs, and in particular LSTM, have been shown to have robust performance
in natural language processing tasks [13, 14]. While time series have a lot of simi-
larities to the sequenced nature of sentences, pure RNNs are rarely applied to TSC
problems because they are considered difficult to train and parallelize [4]. In [15],
the speed and convergence of the training is improved by training the RNN model
for time series forecasting and classification at the same time. However, the result-
ing classification accuracy is no better than typical CNN models across several data
sets. Nonetheless, in [16] it has been demonstrated that a pre-trained RNN can

2



1. Introduction

be used to extract features from raw time series across several application domains
with good performance. The extracted features can then be fed to any classifier.

1.3 Purpose
The purpose of the project is to aid in the development of an algorithm that can
predict the optimal roof deflector position based on sensor data from the actuators
and truck. Various neural network based approaches are researched and evaluated
in regards to their predictive performance and computational complexity. Results
should indicate if prediction using neural networks is feasible for use in the embedded
application and if the computational hardware can be a bottleneck for the predictive
performance.

1.4 Scope
The thesis focuses on the comparison and evaluation of different deep neural net-
works trained to predict the optimal RAD position. The work targets low complexity
neural network structures that are feasible for deployment on a resource constrained
microcontroller. Primarily, the current consumption of the actuators and corre-
sponding correct roof deflector position is used as training and test data for the
models.

1.5 Objective
The goal of the thesis is to provide a comparative study and implementation of
several deep neural network based prediction methods. In order to achieve this
goal, there are various tasks and problems that need to be addressed:

• Literature study about using deep neural networks for TSC
− What type of network architectures are typically used?
− What are their main benefits and drawbacks?
− Which architectures are suitable for running on resource constrained

hardware?
• Based on the literature study, determine which network architectures to pro-

ceed with
• Establish a framework to work with deep machine learning tools

− Determine suitable software environment to use
− Ensure compatibility with the data set and comparison with existing

algorithms
− Set up cloud computing capabilities for efficient training and evaluation

• Implement and train the deep neural network models
− What type of loss function should be used during training?

• Evaluate the trained models
− Establish performance metrics to be used for evaluation
− Analyze the predictive performance on unseen data

3



1. Introduction

− Compare the computational complexity of the trained neural network
models

− Evaluate how the performance is influenced by various data set charac-
teristics

4



2
Theory

2.1 Supervised learning
Supervised learning is a class of machine learning problems where input and output
pairs are used to teach a machine to identify the relation between the variables. I.e.
for a given set of collected data points

(x, y), x ∈ X, y ∈ Y (2.1)

the objective of supervised learning is to find a function f such that

f : X → Y (2.2)

by training a model using example pairs of input and output data. The trained
model can then be used for inference to generate a prediction, ŷ, for previously
unseen input samples.

Typically, the choice of algorithm to accomplish this varies a lot in different areas
of application. However, there are some general factors to consider when dealing
with supervised learning tasks.

2.1.1 Bias-variance
For a trained model, the expected prediction error, often called generalization error,
can be divided into several components using bias-variance decomposition [17, 18].
For a given input sample x and true function f(x), the expected prediction error of
the estimated model f̂(x) becomes

E[(f − f̂(x))2] = (Bias[f̂(x)])2 + V ar[f̂(x)] + σ2
e (2.3)

Here, the error due to bias is defined as the difference between the expected predic-
tion of the model and the true output, according to

Bias[f̂(x)] = f(x)− E[f̂(x)] (2.4)

and the error due to variance is a measure of how much the prediction for a given
data sample x varies. Alternatively, it can be seen as the variance of the used
learning method. It is mathematically defined as

V ar[f̂(x)] = E[(f̂(x)− E[f̂(x)])2] (2.5)

5



2. Theory

Finally, σ2
e is the irreducible error due to the noise in the data set used. Therefore,

when developing a model through supervised learning, the ultimate goal is to min-
imize the bias and variance error. However, how much these two error sources can
be reduced is limited by the so called bias-variance tradeoff.

Typically, a model with a high bias is too simplistic to capture the characteristics
of the underlying process. This is often called underfitting and is the consequence
of using a model structure that is too inflexible. To reduce bias, a more complex
and flexible model can be used. However, doing this increases the variance due to
the tradeoff property. A model with high variance may have good performance on
the training set, but likely has very poor performance on a test set. This is because
the high flexibility leads to noise in the data being modelled while training. When
evaluating the model on the test set, the noise component is entirely different, and
the error rates become higher as a result. This phenomenon is known as overfitting.

For a given data set, the optimal fit is the one that minimizes the total error. In
practise, it is impossible to accurately decompose the error contribution due to the
stochastic nature of the noise component. As a result, finding a model that strikes
a good balance between bias and variance is one of the most difficult parts of any
supervised learning problem.

2.1.2 Data set characteristics
The characteristics of the data set, and by extension the underlying process, play
a significant role when deciding on what algorithm to use. In general, if the true
function that the data is drawn from is simple, less data is required to learn a
good approximation. Furthermore, this can often be accomplished using a relatively
inflexible learning algorithm. When the true function is more complex, a more
flexible learning algorithm and significantly more data is often needed to reach a
good approximation.

Another factor is the dimensions of the input data. If the input space dimen-
sion is large and contains many features that are not relevant for mapping input
to output, some learning algorithms may struggle to find a good approximation.
This is because a lot of the flexibility of the algorithm may be wasted on mod-
elling irrelevant input features. In such cases, performance can often be increased
by removing unneeded features or choosing an algorithm with lower variance and
flexibility. There also exists learning algorithms that attempts to automatically
determine the importance of different features in order to avoid making assump-
tions about the underlying function and data. Furthermore, strongly correlated or
redundant features can make certain learning algorithms struggle to find a good
approximation of the true function.

The magnitude and type of noise present can also have an effect on what learning
algorithm is appropriate for the data set. If the output data contains noise, the
algorithm should not attempt to perfectly fit the output values. Doing so would
mean the learned function uses some expressiveness to model noise. This could
result in large generalization errors when the algorithm is used for inference on
unseen data.

In addition to the internal characteristics of the data set, the actual size of the

6



2. Theory

data set can have a large impact on the outcome of the applied machine learning
approach. With more observation available it often becomes easier for models to find
the underlying function as it is given many more examples of this but with varying
noise components. Nonetheless, it is not a universal truth that more training data
yields better performance. If the chosen algorithm is of very low complexity it may
have already plateaued in terms of its performance. If there are no degrees of freedom
left in the model, then more data will not necessarily yield any returns. Determining
if this type of plateauing is occurring or not can be of high importance if it possible
to gather more training data. In order to do this, one can deliberately withhold
a portion of the training data and train the model on a small subset rather than
the full data set. By doing this several times, with a different ratio of the training
data at each step, one can determine if the size of the training set influences the
performance.

2.1.2.1 Splitting data

As discussed, the performance of a machine learning algorithm is largely affected by
the characteristics and size of the data set. Another important aspect is how that
data set is actually used. While one may want to use all of the available data set for
training, doing so eliminates the possibility of objectively evaluating the performance
of the trained model. Therefore, to be able to compare and evaluate various models
a portion of the data set has to be set aside and not used for training as this would
yield unrealistically optimistic performance results. If the set used for testing the
trained model has no overlap with the set used for training, the performance on the
test set is a much more reliable measure of how good the model is.

In cases where the machine learning approach has a lot of tunable hyperparam-
eters, a validation set may also be used. The idea is then that the training set
is used to learn the actual model parameters. The validation set is then used to
tune hyperparameters such as network architecture, model complexity or optimiza-
tion settings. Furthermore, it is used to estimate the performance of the evaluated
models in order to select the best one. Finally, the test set is used to get an un-
biased estimate of the algorithms performance as none of those data observations
have been used to train the model or select hyperparameters. As a result, it is not
always strictly necessary to use separate validation and test sets if a comparison of
different models trained and tuned on the same data is the goal. This is partic-
ularly true for application where there is a very limited amount of data and it is
desirable to use as much as possible for training. However, in the era of big data,
it is very common to use all three splits of data as there is often an abundance of
observations available. Unfortunately, there are no well established ratios to use for
splitting the data into these sets. For example, in [18] it is suggested to use 50% for
training and the remainder for validation and testing. However, in [19] it is stated
that a common practise is to use 70% for training. Moreover, the author suggests
to only use as much validation and test data as is necessary to accurately evaluate
the performance of your algorithms.

Another factor to consider is the stochasticity introduced when actually dividing
the data into subsets. Two different splits, even though the same number of obser-
vation are drawn from the same data pool, may yield very different results. It is

7



2. Theory

therefore imperative to not only use the same data set, but also the same data split
for training and comparing machine learning models. It can also be beneficial to
train and evaluate models on several different splits of data. By doing this, it can
be determined if the performance results seen are consistent and not just the results
of a particularly favorable data split.

2.2 Artificial neural networks
An artificial neural network is a type of mathematical model which structure is
inspired by the human brain. The approach revolves around not making any prior
assumptions on the nature of the underlying process that one is trying to model.
Instead, the learning is exclusively driven by what characteristics the network can
identify in the used training data. This is accomplished by building a network using
layers of interconnected neurons, or nodes. The output of each neuron is connected
to at least one subsequent neuron or is the output of the network. The input of
each neuron comes from one or several previous neurons or from the actual input
data. The layers between input and output, often denoted as hidden layers, are
what defines different types of neural networks. Infinitely many different network
structures can be derived by changing the number of layers, neurons, connections
and characteristics of each neuron. When using a neural network based approach
to supervised learning, determining the best network structure for the task at hand
is often the most time consuming and difficult part of the problem. An example of
a very simple neural network with two inputs and one output can be seen in figure
2.1 below.

Figure 2.1: Simple fully connected neural network structure with two inputs and
one output.

As can be seen, the network has two hidden layers with three neurons in each
layer. These hidden layers are where the function approximation takes place. In
training, the network attempts to learn the mapping from input to output by looking
at a number of examples from a set of input-output pairs. The learning is largely
dictated by the characteristics of each neuron and the network structure, which
are both determined by the designer in beforehand. Neurons typically perform
some mathematical operation, that can be expressed by one or several numerical

8



2. Theory

parameters, on the input signal. After the mathematical operation, the resulting
value is passed through a nonlinear function, called activation function, before being
output to subsequent neurons. Common neuron operations are the linear matrix
equation and convolutions, but several other operations are possible. The limiting
aspect is that the output of the neuron needs to be differentiable with respect to
its parameters in order for the learning algorithm to work. This property is what
enables the whole network to learn anything from the data. First, the derivative of
the output with respect to each of the networks parameters is computed. Then, an
optimization algorithm is used to reduce the error between the networks output and
training data. This is done by optimizing a loss function using stochastic gradient
descent. The optimization passes over the entire training set several times and can
run for an arbitrary amount of time. Introducing this stochasticity into the learning
algorithm is crucial for the learnability of neural networks. However, this also makes
them differ from a lot of traditional machine learning techniques where the learning
algorithm typically is deterministic.

Another defining property for neural networks is that the flexibility and expres-
siveness is infinite in theory. It has been shown by the universal approximation
theorem that neural networks can approximate any continuous convex function of
n-dimensional input variables. The theorem was first proven by [20], but then only
for specific activation functions. Later, [21] improved the theorem by showing that
the potential expressive power of neural networks comes from the layered structure
rather than the choice of activation function. It was shown that a single layer neural
network can be a universal approximator in the single output case if the width of
the layer is unbounded. In recent years, [22] and [23] has proven that the univer-
sal approximation theorem holds for neural networks that have limited width, but
more than one layer. However, the universal approximation theorem does not give
any indication as to how many neurons are necessary, the network topology, or the
feasibility of learning the correct parameter values.

2.2.1 Fully connected layers
Fully connected layers are very commonly used building blocks in neural networks.
They are created by connecting all the outputs of a neuron to all the neurons in
the next layer. An illustration of these connections can be seen in figure 2.1 above.
With a fully connected structure, the input x of the jth neuron in the ith layer is
passed through the linear matrix equation according to

ai,j = wi,jx+ bi,j (2.6)
where wi,j and bi,j is the neurons weight and bias matrices respectively. These ma-
trices contain all the trainable parameters of a fully connected layer. Furthermore,
ai,j is the activation of the neuron. This activation is in turned passed through the
neurons activation function f to compute the output zi,j as

zi,j = f(ai,j) (2.7)
These operations can be summarized into a single equation for computing the output
of all the neurons in the ith layer according to

zi = f(Wizi−1 +Bi) (2.8)
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2. Theory

where zi−1 is the output from the previous layer. Because of this matrix multiplica-
tion, the number of trainable parameters is directly proportional to the number of
neurons in the layer and the input dimension.

2.2.2 Convolutional layers
Convolutional layers are in a lot of ways similar to fully connected layers. They
consist of neurons with weights and biases that can be trained in a similar fash-
ion. However, instead of the matrix multiplication seen in fully connected layers,
convolutional layers uses the convolution operator to compute the activation of the
neuron. Here, the input signal is convolved with a filter, with dimensions manually
chosen, before being passed to the activation function. In order to reduce the num-
ber of parameters in a convolutional layers, the filter coefficients are shared across
the dimension that the convolution is computed along. This works particularly well
for time series and image data, where the convolution is computed across time and
spatial dimensions respectively. By doing this, the number of trainable parameters
is significantly reduced. Furthermore, this enables convolutional layers to be used
on data with none or minimal pre-processing. Extracting useful features from the
large dimension input then becomes part of the learning task. The actual filter
coefficients that are needed for this are learned automatically in a similarly to fully
connected layers.

The characteristics of a convolutional layer is defined by several design param-
eters. First, the number of neurons in the layer has to be determined. Secondly,
the filter dimensions, also known as receptive field, have to be defined. Lastly, pa-
rameters for the convolution itself needs to be set. The stride parameter denotes
how much the receptive field moves for every step in the convolution. An output
is computed at every step, so by using a large stride the output dimension can be
reduced. Zero padding is another parameter for the convolution. This can be used
to control the dimension of the output, by concatenating the input signal with zeros
before computing the convolution. It is typically used to keep the input and out-
put dimensions equal. After convolution operation, the signal is passed through an
activation just as in the fully connected layers.

While it is possible to define convolutional layers over any dimension, with and
without parameter sharing, the most commonly used convolutional layers are

• Temporal convolutional layers, which are used with time series data xts

and a one dimensional filter hts. The output yts of the convolution is then a
time series and is computed along the time axis according to

yts[i] =
∞∑

k=−∞
xts[k]hts[i− k] (2.9)

• Spatial convolutional layers, which are used with image data xim and a
two dimensional filter him. The output yim of the convolution is then an image
and is computed along the spatial axes according to

yim[i, j] =
∞∑

ki=−∞

∞∑
kj=−∞

xim[ki, kj]him[i− ki, j − kj] (2.10)

10



2. Theory

In both of these cases, the convolutional layers automatically learn to extract useful
features from the time series or images in order to perform regression or classification.
Furthermore, this type of structure can be used with data that has more than one
channel, for example xyz readings from an accelerometer or images represented with
an RGB color model.

2.2.3 Recurrent layers
Recurrent layers are different from normal feed forward layers because they keep an
internal state, also known as memory. This enables the layers to have temporal dy-
namic behaviour, which has been shown to very useful when dealing with sequential
data. Recurrent layers are typically used with both input and output data being
sequences, but it is possible to use them without sequential altogether. The result
is that while processing a sequence, a recurrent layer does not start from scratch
on every sample when it computes the activation. Consider an input sample at a
given time x. A recurrent layer computes the output y using both the input and an
internal state h. This internal state is also updated when the output is calculated.
At the next sample, the output is calculated in exactly the same way, but now the
internal state of the layer is different. An illustration of how a recurrent layer can
be seen in figure 2.2 below. It shown in both a condensed and unrolled form.

Figure 2.2: Simple recurrent layer in both its condensed and unrolled form.

Now consider a recurrent layer with fixed parameter values. The computed output
for a given input sample’s value is different depending on the characteristics of the
previous input samples. This is very different from a traditional feed forward layer,
where a given input value always maps to the same output value, regardless of how
the input looks before and after in time. This temporal dynamic behaviour has
been shown to be very effective when dealing with for example machine translation
problems. Recurrent layers then enable the model to translate words while taking
the context of the sentence into account, rather than simply translating one word
at a time independently.

One major drawback of recurrent layers is that they are notoriously difficult to
train [24]. In order to update the network parameters using optimization all the
gradients in the network have to computed. To do this for a recurrent layer it
has to be unrolled, and gradients have to be computed backwards in time. This
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involves computing gradients for every instance of the layer, as it changes over time
while processing a sequence. Unrolled recurrent layers tend to be very deep, which
leads to something called the unstable gradient problem. This problem can yield
gradients that tend toward zero or infinity, which stops the optimization process
and by extension the learning.

2.2.3.1 Long short-term memory layers

The LSTM layer is a variation of the traditional recurrent layer. The major difference
is the addition of a forget gate, which allows the layer to selectively choose what
should be kept in the layer’s internal state. An illustration of the LSTM layer
architecture can be seen in figure 2.3 below. Here, σ is the sigmoid function and
tanh is the hyperbolic tangent function.

Figure 2.3: Architecture of a long short-term memory layer.

This layer architecture is significantly more complex than the normal recurrent
layer seen in figure 2.2. However, the augmentations allow LSTM layers to model
long term dependencies in sequential data without exhibiting the unstable gradient
problem as in regular recurrent layers. Due to this, networks built with LSTM layers
instead of normal recurrent layers have much better convergence rate during training
with very little drawbacks. As a result of these improvements, the LSTM layers are
commonly used in practise and have been used to break several previous records in
areas such as machine translation, language modeling and image captioning [25, 26,
27].
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2.2.4 Pooling layers
Pooling layers are commonly used together with convolutional layers because of
their ability to reduce the dimensionality of the input. They contain no trainable
parameters, but rather just carry out a simple pooling operation on the layers input
features. By pooling the features as they propagate through the network, much
faster training and prediction computations can be achieved. It can also serve as a
way to reduce overfitting in the model.

The pooling operation can be carried out along any dimension of the input, but
it is typically used along the temporal or spatial axes. The operation consists of
moving a window across the chosen dimension and at every step it summarizes the
content of the window into a single value. Typically, this is done by either averaging
the value in the window, or by extracting the maximum value in the window. The
dimensions of the pooling layers output is therefore a function of the window size
and stride. An illustration of the average and maximum pooling operations applied
on a temporal input can be seen in figure 2.4 and on an image input in figure 2.5.

Input

3 5 4 6 1 3 8 4

4 5 2 6 5 6 3 8

Average Max

Figure 2.4: Example of the average and max pooling operations carried out on
one dimensional data.
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Figure 2.5: Example of the average and max pooling operations carried out on
two dimensional data.

In both examples the pooling layers use a windows size of 2 and a stride of 2.
This reduces the feature size to half for both the temporal and image data. The
special case when the window size is equal to the input dimension is often denoted
as global pooling. A global pooling operation summarizes the input into a single
values along a given dimension.

2.2.5 Activation functions
As previously mentioned, activation functions play a crucial role in computing the
output of neurons in a network. Depending on the area of application and where
in the network they are located, different activation functions are used. However,
the common denominator among typical activation functions is that they are all
nonlinear. Due to the layered structure of neural networks, any network with only
linear activation functions could be replaced with a single layer and achieve the
same input to output mapping. This is because any linear combination of linear
functions is just another linear function. Having nonlinear activation functions is
therefore essential to the success of deep neural networks. Furthermore, the universal
approximation theorem has only been shown to for neural networks with nonlinear
activation functions.

Typical choices of activation functions are step functions, sigmoids, hyperbolic
tangent (TanH) and variations of the rectified linear unit (ReLU). In some cases,
intuitions about the data characteristics and underlying process can help in choosing
what activation functions to use in the network. Nevertheless, it is often a trial-
and-error procedure. In figure 2.6, a few examples of commonly used activation
functions can be seen.
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Figure 2.6: Four commonly used activation functions in neural networks.

For classification problems, the desired output is often the probability that a
sample belongs to a certain class. For this purpose, a sigmoid function is often used
in the output layer as it yields values in the range [0, 1]. For multiple class classifica-
tion problems a variation of the sigmoid function, called softmax, is often used. This
activation function normalizes the output probabilities of the sigmoid function such
that the sum of probabilities is 1. For regression, the choice of activation function
in the output layer is typically identity mapping so that the output may take any
values.

For hidden layers, ReLU is often the go to option because of its simple gradient.
During training, activation functions like TanH and sigmoid can lead to problems
with vanishing gradients due to the low rate of change in the functions during certain
intervals. This in turn leads to weights not being updated, which stop the learning
process. The two are also computationally heavier than ReLU, which can be of im-
portance when designing very deep neural networks. The ReLU activation function
does exhibit some issues with the gradients as well. The horizontal component of
the activation can lead to some neurons being unresponsive during training because
of the gradient being zero. Variations of the ReLU where the negative side has a
slope can be used to remedy this. The LeakyReLU function seen in figure 2.6 is
one example of this. Even if ReLU has some potential issues with the gradients,
empirical results show that the convergence speed is often several times faster for
networks with ReLU activation in the hidden layers than for networks using sigmoid
or TanH activations.
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2.2.6 Batch normalization
The use of very deep and complex neural networks has become increasingly popular
in recent years, as the collection of very large sets of training has become feasible.
Using more complex models often results in much slower training times and converge
speeds. In some cases, a too complex model may not converge at all. As flexible
neural networks are often desired because of the complex true function, several
techniques have been proposed to improve convergence and training speeds. One
common approach is to normalize the training data to zero mean and unit variance.
This ensures that the training does not start in an area where the derivatives of
the activation functions are close to zero, which improves the convergence speed
[28, 29]. Batch normalization is another technique that takes this one step further
by normalizing, scaling and shifting the input of every layer in the network. The
batch normalization operation is typically computed before the activation function
of a neuron. More specifically, given a batch of training data x with m number of
features, the batch mean µB and variance σ2

B is calculated for each feature as

µB = 1
m

m∑
i=1

xi (2.11)

σ2
B = 1

m

m∑
i=1

(xi − µB)2 (2.12)

Then, using the batch mean and variance, the input of the layer is normalized to
zero mean and unit variance according to

x̄i = xi − µB√
σ2

B + ε
(2.13)

where ε is small constant added for numerical stability. Simply normalizing each
layers input could change what the layer can represent. For example, in the sigmoid
case the normalization constraints the inputs to the linear section of the nonlinear
activation functions. Therefore, a scaling and shift operations is done to ensure that
the batch normalization can yield an identity transformation. For the normalized
input x̄i, the output yi of the batch normalization is then computed as

yi = γix̄i + βi (2.14)

where γ and β are additional parameters of the network that are learned during
training. Note that using γ = √σB and β = µB would yield the same output as
without the batch normalization layer inserted. Even with the additional parameters
in the network, empirical results shown that adding batch normalization layers often
significantly reduce training time [30].

Despite the widespread adoption of batch normalization layers in neural net-
works, there is no well established explanation for why they work so well. It has
been proposed that batch normalization helps with convergence by reducing the in-
ternal covariate shift in the network [31]. Internal covariate shift is defined as the
change in distribution in activations due to training updates of the network param-
eters. It is suggested that batch normalization whitens these distribution, which in
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turn benefits the training. In [30] it is shown that batch normalization might not
actually reduce internal covariate shift. Instead, authors suggest that the success
of batch normalization is due to a smoothing effect that makes the gradients in the
optimization more predictive. This enables the use of larger learning rate and leads
to faster convergence rates.

2.2.7 Dropout
Dropout is a stochastic regularization technique that was originally proposed in
[32]. It serves as a method to reduce overfitting when training neural networks. The
general idea is that at each training pass, one or several nodes in the network are
dropped out of the network. In practise, this means removing the nodes from the
network, along with all of its connections. The sampled network after dropout is
a thinned version of the original neural network, as an arbitrary number of nodes
and connections have been excluded. An example of a thinned network can be seen
below in figure 2.7, where two nodes have been removed from the fully connected
neural network structure.

Figure 2.7: Fully connected network where one node in each hidden layer is ex-
cluded due to dropout.

Now consider a neural network of n nodes. This network can be expressed as a
collection of 2n unique thinned neural networks. Note that the number of parame-
ters stays the same, as all thinned networks in the collection share parameter values.
At every training step, one of these networks are sampled and used to update the
trainable parameters as per the normal learning procedure. At the next step, an-
other network is sampled randomly to be used for training. This procedure could
potentially generate up to 2n number of trained networks, which is typically not
feasible to use at test time as it would require combining the prediction from every
single network in the collection. Therefore, the dropout technique uses a simple ap-
proximating averaging method. Given that node has been kept with a probability
p during the training stage, the output of that node is then multiplied with p when
used for inference. Doing this ensures that the output during test time is equal to
the expected output during training time. By applying the approximation method
the collection of networks can be condensed into a single trained neural network
that can be used for prediction.
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One of the drawbacks of using the dropout technique is that the number of passes
over the training data, called epochs, required to converge increases. This happens
because the parameters in nodes that are excluded are not updated for a given
training step. However, while the number of epochs grows, the time to complete
an epoch decreases with more dropout. With less active nodes at each step, the
computation of derivative during training takes less time, which means that a single
pass over the data is faster than without dropout. Another factor to consider is that
using dropout reduces the expressive power of a neural network with a given number
of nodes, as not all of them are active all the time. In [33] it is suggested that this can
be remedied by increasing the number of nodes n in a layer to n/p, if dropout with
retaining rate p is applied after the layer. Finally, as dropout introduces a type of
noise to the training procedure, some adaptations to the learning rate and optimizer
settings may be necessary to reach satisfactory results when dropout layers are used.

2.2.8 Squeeze-and-excitation blocks
Squeeze-and-excitation (SE) blocks were originally proposed in [34] as an augmenta-
tion to CNNs. The aim of the SE block is to improve the predictive performance by
capturing dependencies between different channels in the network. This is accom-
plished by adding a block that allows the network to process global, cross channel,
information in order to extract useful features. The SE block was initially proposed
for input data formatted as images, but the same operations can be applied in any
context where convolutional layers are used as they produce outputs that consist of
features with multiple channels. In figure 2.8, the SE operation is illustrated for a
set of image features.
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Figure 2.8: Architecture of an SE block.

First, the features are pooled across the height and width dimensions using a
global averaging layer. The averaged features are then passed through two fully
connected layers. The first one with a ReLU activation function and the second one
with a sigmoid activation function. Finally, the output of the fully connected layer
is multiplied with the original features to produce the final output of the SE block.
In the end, the SE block is simply a scaling on the input features in the channel
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dimension. However, this scaling is determined by the channel-wise dependencies
that the fully connected layers manage to identify.

2.2.9 Parameter learning
Learning the parameters of a neural network is done iteratively using optimization
techniques. The general idea is that the network is presented one or several input-
output pairs at a time. Then, the parameter values are updated such that the error
between the predicted outputs and the true labels is minimized. When the last
sample has been used, the process start over from the first sample again. One such
pass over the training data set is typically called epoch and neural networks often
need to be trained for many epochs before good convergence is achieved.

Because of the connectionist nature of neural networks, all the nodes in the net-
work have to be taken into account to perform a single parameter update. Consider
the network seen in figure 2.9 below.

Figure 2.9: Simple fully connected neural network structure with two inputs and
one output.

As seen, if a parameter value is updated in the node circled in red, that change
propagates through the network and changes the output of every following node.
As such, every parameter value in the network have to be updated simultaneously
rather than independently in order to minimize the prediction error. To accomplish
this, gradient based optimization techniques are used.

2.2.9.1 Gradient descent

Gradient descent is a class of optimization techniques that utilizes the derivative of
the optimization loss with respect to the parameters that are being optimized. A
step in the parameter values is then taken in the direction that minimizes the loss.
In the context of neural networks, this means first propagating through the network
to calculate a prediction, which in turn yields an error. Then, the derivative of the
error with respect to weights in all nodes is calculated. An update is then performed
on the values of the network parameters. There are several variations of the gradient
descent technique that offer different characteristics and the problem at hand often
dictates which technique is the best.
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2.2.9.1.1 Batch gradient descent
When using batch gradient descent, the entire training set is used at the same time
to calculate the parameter updates. More specifically, the error is computed using
the prediction for every training sample. Then, the parameter update is calculating
by minimizing the loss for all training samples at once, which in practise means
once per epoch. This is very computationally efficient, but can be problematic for
very large data sets, as all training samples need to be kept in memory. Another
issue with this approach is that there is a risk that the optimization stops in a local
optima. Model updates are also done very infrequently, which can lead to slow
training speeds for very large data sets.

2.2.9.1.2 Stochastic gradient descent
Stochastic gradient descent is in some ways the complete opposite of batch gradient
descent. Here, the parameter update is carried out for a single training example
at a time. By doing this, the network parameters are updated very frequently,
which can lead to faster convergence for some problems. Furthermore, calculating
derivatives for a single training example at a time introduces noise into the gradients.
As a result, stochastic gradient descent does not have as much problems with local
optima as the batch gradient descent technique.

Dealing with one training sample at a time is very computationally inefficient,
which means that the training process may be slower than for other gradient descent
techniques. Moreover, noise in the gradients can lead to a large variance in the
prediction error of the model for different training epochs.

2.2.9.1.3 Mini-batch gradient descent
Mini-batch gradient descent is a compromise between batch and stochastic gradient
descent. The technique updates parameters using small batches of the training set at
once. By choosing batch sizes that fits the hardware’s memory architecture perfectly
very high computational efficiency can be reached while maintaining frequent model
updates. Mini-batch gradient descent offers the same benefits and drawbacks as
stochastic and batch gradient descent to varying degree depending on the batch size
chosen. As a result of this, it is the gradient descent technique most commonly used
when training neural networks.

2.2.9.2 Backpropagation

One prerequisite to use gradient descent methods in optimization is that the loss
function is differentiable with respect to the parameters. Backpropagation, which is
short for the backward propagation of errors, is a method to calculate these derivates
for neural networks. The algorithm starts in the output layer with the prediction
error for a given sample. Then, the chain rule for multivariate functions is used
to iteratively calculate the derivative of the error for one layer at a time. This
is repeated until the input layer is reached and the gradients for all the networks
parameters are calculated.
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2.3 Image transformations
Transforming time series data to different types of images can be a way to gain in-
sightful knowledge about the underlying process that the data was sampled from. It
has also been shown useful for classification tasks in various domains [8, 9, 10, 35, 11].
One major drawback of image transformations is that the dimensionality of the in-
put increases significantly, which may affect the computational complexity of the
algorithm and convergence of the training procedure. Even so, image transforma-
tions can be used to extract discriminatory features that may improve classification
performance. Two such transformations are Gramian angular fields (GAF) and
recurrence plots (RP), which are both presented in the following sections.

2.3.1 Gramian angular fields
GAFs were proposed in [8] as a way to encode time series as images for use in a
classification algorithm. To derive the Gramian matrices, the time series must first
be scaled to range between 0 and 1 and then converted into polar coordinates. Given
a time series x of N samples, the polar coordinates can be calculated according toφi = arccos(xi)

ri = i
N

(2.15)

where φ and r is the angle and radius respectively. An example of this type of polar
encoding can be seen below. An example time series signal is shown in figure 2.10.
In figure 2.11 the polar encoding of said time series is depicted.
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Figure 2.10: Example time series signal.
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(0,1)

(1,1)

(-1,0)
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Figure 2.11: Unit circle with the polar encoding of an example time series signal.

With the polar encoding given, trigonometric sums and differences can be used
to find dependencies between different time intervals in the signal. More specifically,
the Gramian angular summation field (GASF) and Gramian angular difference field
(GADF) are calculated according to

GASF =


cos(φ1 + φ1) · · · cos(φ1 + φN)
cos(φ2 + φ1) · · · cos(φ2 + φN)

... . . . ...
cos(φN + φ1) · · · cos(φN + φN)

 (2.16)

GADF =


sin(φ1 − φ1) · · · sin(φ1 − φN)
sin(φ2 − φ1) · · · sin(φ2 − φN)

... . . . ...
sin(φN − φ1) · · · sin(φN − φN)

 (2.17)

A visualization of GASF and GADF matrices calculated in this way can be seen in
figures 2.12 and 2.13 respectively. These images are derived using the time series
and polar encoding given in figures 2.10 and 2.11 above.
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Figure 2.12: GASF for an example time series signal.

Figure 2.13: GADF for an example time series signal.

The transformations into GAFs are a way to preserve the temporal dependencies
in the the time series data. Furthermore, the matrices yields the relative correlation
by superposition and difference for varying time intervals. Lastly, the original time
series can be recovered from the main diagonal of the GASF matrix, as it contains
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the special case when the time interval is zero. Therefore, there is no information
loss when going from a time series representation to the GAF representation.

2.3.2 Recurrence plots
RPs were originally proposed in [36] as a method to represent a phase space tra-
jectory of arbitrary dimension as a two dimensional matrix. More specifically, a
recurrence plot is a matrix that counts the number of recurrences of a dynamical
system. A recurrence takes place whenever the phase space trajectory x gets within
some distance to a point in the phase space that the trajectory crosses at some other
time instance. Given a pair of time instances i and j, the corresponding element in
a matrix of distances D can be calculated as

D(i, j) = ‖x(i)− x(j)‖ (2.18)

Then, the recurrence matrix R can be acquired by filtering the distance matrix using
a distance threshold ε, according to

R(i, j) =

1, D(i, j) < ε

0, otherwise
(2.19)

These matrices can then easily be visualized. In figures 2.14 and 2.15 the distance
and recurrence matrices for the example time series given earlier in figure 2.10 are
shown.

Figure 2.14: Distance matrix for an example time series signal.
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Figure 2.15: Recurrence matrix for an example time series signal.

This type of image transformations can be used to identify several aspects of
the underlying process, such as periodicity and trends. As such, the recurrence
transformation can be used to extract meaningful features from a time series as part
of a classification or regression algorithm.
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3.1 Development setting
In order to efficiently develop and evaluate various neural network structures, vari-
ous software tools are necessary. Python is the most commonly used programming
language when it comes to data science and machine learning [37]. Several tools
and libraries for developing machine learning algorithms exists, which can greatly
accelerate the development process. In this work, the TensorFlow library for Python
is used because of its extensive documentation and wide support for various neural
network architectures [38]. Keras, which is a high level application programming
interface for different machine learning libraries, will be used to interact with the
TensorFlow backend [39]. The benefit of using Keras is that it unifies several ma-
chine learning libraries into a single syntax and way of working. This yields more
interpretable code and allows for fast experimenting and prototyping of neural net-
work models.

3.2 Data set
For the task of training models, a large data set of annotated samples is used. The
input data is the sampled current consumption of the linear actuator that the roof
deflector is mounted on. Each observation in the input data corresponds to a time
series of current measurements taken while the linear actuator extracts from the
minimum to maximum position. During every sweep, the trailer height and gap
has been kept fixed and logged. The height and gap data has later been used to
calculate the optimal actuator position, according to the table given by the truck
models handbook. This set of optimal positions is what constitutes the output data
to be used for training and evaluating models.

The data set has been collected using two separate truck models from different
manufacturers. Furthermore, the mechanical configuration of the roof deflector is
different for the two brands. The most major difference being that there is either
one or two actuators moving the roof deflector, depending on the brand. In the
dual case, there is more data available as the sampled current consumption is a
series with two channels, one for each actuator. However, the aerodynamic load
is now shared between the two actuators, which means the signal-to-noise ratio is
significantly lower.

Due to the difference in mechanical configuration, there are large differences
between the collected data for the two brands and training a single model that
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performs well for both truck models is therefore highly unlikely. As such, it is
desired to train separate models for the two models and only evaluate them on data
from the same model.

This work primarily use data from the single actuator case. Both data sets are
used during the development process in order to converge to a limited number of
network architectures that work well for both truck brands. However, the final
evaluation and comparison of networks will be done using the single actuator data
for the sake of clarity. In the remainder of this report, all mentions of the data set
is in reference to the single actuator data unless otherwise specified.

The available sweep data is collected while the truck is driving over a certain speed
threshold. This is done to ensure that the small aerodynamic effects that the models
aims to find are significant enough to be detected in the data. While above the
threshold, there is no emphasis on keeping the vehicle speed fixed. This corresponds
well to normal driving conditions, which is crucial for good generalization of the
models trained. A histogram of the vehicle speed present in the data set used can
be seen in figure 3.1 below.

Figure 3.1: Histogram of the vehicle speed during the collected data set.

Furthermore, the height and gap configuration of the trailer is also varied through-
out the data collection. This is done using an adjustable trailer that can be extended
forwards and upwards while the truck is driving to simulate different trailer config-
urations. These height and gap configurations all correspond to an optimal roof
deflector position. Histograms for the trailer height, trailer gap and optimal roof
deflector position during data collection can be seen in figures 3.2, 3.3 and 3.4 re-
spectively.
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Figure 3.2: Histogram of the collected trailer heights in the data set.

Figure 3.3: Histogram of the collected trailer gaps in the data set.
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Figure 3.4: Histogram of the optimal roof deflection position in the data set.

It is important to note that a specific roof deflector position can be optimal for
several different height and gap configurations. This means that the aerodynamic
effects, and by extension the current consumption, can look significantly different
even for the same optimal roof deflector position.

To summarize, the models will be trained and evaluated using series of current
consumption data during sweeps carried out with a single linear actuator. Every
time series have a length of 280 samples. Furthermore, each observation has a
corresponding optimal position, which is a function of the trailer height and gap. In
total, there are 7237 number of observations available for training and evaluation.

3.3 Network architectures
In order to evaluate the effectiveness of using neural networks for predicting the
optimal roof deflector on trucks, several different architectures are implemented.
One very important aspect of the classification problem at hand is the temporal
characteristics of the input signals. It is therefore highly beneficial if the algorithms
are able to model this kind of dependencies. Thus, convolutional neural networks are
very suitable for this type of application, as they have been used in other domains
to identify similar characteristics.

The focus of this section is to present the various neural network architectures
that are implemented and evaluated. The complexity of each architecture can be
tuned by increasing or decreasing the number of nodes in each layers. As there are
infinitely many ways to choose the number of nodes, it is not feasible to evaluate
every combination. Instead, for each type of architecture, a base complexity will
be set. Then, variants of this network where a factor k has been used to scale the
number of nodes in each layer will be evaluated. As an example, consider a base
architecture that consists of 3 layers with 8, 16 and 8 nodes respectively. Using
k = 2, a network with 16, 32 and 32 nodes in each layer can then be realized.
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By scaling the networks in this way a comparison and evaluation of the networks
complexity can be made while retaining the relative complexity between layers inside
the networks.

3.3.1 Time series based networks
As the goal is to find an approach that offers complete end-to-end functionality,
the natural first step is to investigate neural network approaches where feature
extraction is learned automatically. As such, several convolutional neural networks
that function as complete end-to-end algorithms are implemented and presented
in this section. All the neural network architectures presented use raw current
consumption sequences as input and any data processing steps are part of the learned
algorithm.

3.3.1.1 FCNN

Fully convolutional neural networks (FCNN) were proposed in [5] as a baseline
approach for any time series classification problem. The presented architecture
consisted of three subsequent convolutional layers, followed by a global averaging
pool layer. At the output of every convolutional layer, the signal is normalized
using a batch normalization layer before being passed through a ReLU activation
function. The convolution operation in each layer uses a stride of 1 and pads the
input sequence in order to maintain the dimensions of the time series throughout
the network. An illustration of the FCNN architecture can be seen in figure 3.5.
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Figure 3.5: FCNN architecture.

The baseline for this architecture is to use 8, 16 and 8 nodes in the first, second
and third convolutional layers respectively. These numbers are then adjusted using
a scaling k to evaluate various complexities as discussed before.

3.3.1.2 LSTM-FCNN

In [6] it was shown that augmenting the FCNN architecture with an LSTM cell can
be beneficial for performance. The cell processes a dimension shuffled version of the
input in parallel to the FCNN structure. A dropout layer is added after the LSTM
cell to avoid overfitting. The outputs from the two branches are then concatenated
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before being passed to the output layer. The resulting architecture can be seen in
figure 3.6 below.
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Figure 3.6: LSTM-FCNN architecture.

3.3.1.3 FCNN-SE

Another addition to the FCNN architecture was proposed in [40]. It introduces an
SE block after the activation function of the two first convolutional layers. The SE
block aims to capture channel-wise dependencies. Note that the input data in this
application only has a single channel. However, the output of a convolutional layers
consists of as many channels as there are neuron in the layer, which enables the appli-
cation of an SE block. The resulting architecture when using the SE augmentation
on the FCNN architecture can be seen below in figure 3.7.
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Figure 3.7: FCNN-SE architecture.

3.3.1.4 LSTM-FCNN-SE

The SE augmentation can also be applied on the LSTM-FCNN architecture. The
resulting architecture when doing this can be seen in figure 3.8 below.
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Figure 3.8: LSTM-FCNN-SE architecture.

3.3.2 Image based networks
Another approach to the time series classification problem is to use image trans-
formation to extract useful features for distinguishing between classes. As such, a
neural network architectures that utilize GAFs and RPs as input data have been
implemented. The image transformations are not a part of the trainable network,
but they are an essential component for the end-to-end functionality of the proposed
prediction model. The implemented image transformation procedure is depicted in
figure 3.9 below.

Image Data

RP Transform

GASF Transform

GADF Transform

St
ac

k

Time Series Data

Figure 3.9: Time series to image transformation procedure.

As can be seen, a time series in the input time series generates 3 channels of image
data. The GASF, GADF and RP images are then stacked in the third dimension
before being sent as input to an image based neural network with both convolutional
and fully connected layers (IM-CNN). The size of the images can be scaled freely
depending on the desired level of detail in the images. As such, networks trained
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on images with sizes of 64 and 128 are evaluated to see how much resolution affects
the performance and computational complexity.

3.3.2.1 IM-CNN

The IM-CNN architecture uses a combination of convolutional and fully connected
layers. The image inputs are first processed by the convolutional layers, and then
extracted features are then handled by fully connected layers in order to produce a
prediction. Similar to previously presented architectures, batch normalization and
the ReLU activation function is used after each convolution. Furthermore, a max
pooling operation is inserted after each convolutional layer with a pooling size of 2.
This reduces the size of the feature images to half after each convolutional layer,
which in turn reduces the number of parameters in subsequent layers. Similar to the
convolutional layers, the fully connected layers also utilize batch normalization and
ReLU activation functions. The complete IM-CNN architecture can be seen in figure
3.10 below. Note that the architecture is the same for the network based on images
of size 64 (IM64-CNN) and the network based on images of size 128 (IM128-CNN).
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Figure 3.10: IM-CNN architecture.

The baseline complexity for the IM-CNN architecture is to use 8, 16 and 8 nodes
in the convolutional layers. Furthermore, the fully connected layers both have 8
nodes each.

3.4 Evaluation metrics
Several evaluation metrics are necessary in order to objectively compare the derived
neural network in various aspects. The predictive performance is evaluated using a
function that relates the error in estimated optimum position to a relative increase in
fuel consumption. Number of parameters in each model will be used as the metric
for comparing architectural complexity. In the following sections, the mentioned
evaluation metrics are broken down and outlined in more detail.

3.4.1 Fuel consumption penalty
Fuel consumption penalty (FCP) is a way to transform the prediction errors of
an algorithm into something more tangible that relates to the fuel consumption of
the truck. It makes requirements set on the end product directly related to the
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algorithm which help the development and evaluation process. It also summarizes
the predictive performance on a whole data set into a single value.

The ground truth for prediction is derived using the truck manufacturers hand-
book for setting the roof deflector. This typically consists of taking some measure-
ments of the cab and trailer and then looking up a value in a table in the handbook.
The optimal position is not a single number, but rather a small range, bounded by
±ε. Inside this range, the position is considered optimal and thus yields no penalty
to the fuel consumption. Outside the optimal position range, the increase in fuel
consumption can approximated by straight lines. For roof deflector positions higher
than the optima the slope is generally slightly steeper than for positions lower than
the optima. However, for practical purposes these slopes can be averaged to form
the slope coefficient K. This K constitutes the percentual increase in fuel consump-
tion per millimeter in error. The exact values of the limit ε and the slope K depend
on the truck and roof deflector used.

To produce a single value for an entire set of test examples, the FCP is calculated
as the mean of the fuel consumption increase over all observations. For clarity, the
calculation of FCP can be summarized into a mathematical expression. Given the
vector of N prediction errors e = |y− ŷ|, the FCP value for the set can be calculated
as

FCP (e) = 1
N

N∑
i=1

0, ei < ε

K(ei − ε), otherwise

 (3.1)

In the evaluation, the FCP values are normalized, FCPnorm, against a baseline
algorithm trained on the same data set according to

FCPnorm = FCP

FCPbaseline

(3.2)

where FCPbaseline is the baseline algorithms FCP on test data. The baseline al-
gorithm is not based on deep neural networks and instead uses classical machine
learning. As a result of the normalization, the baseline FCP after normalization
is 1. The normalized FCP can be used to easily determine if the neural networks
perform better or worse than the baseline and by how much. E.g. a normalized FCP
of 0.8 corresponds to a 20% decrease in FCP from the baseline and a normalized
FCP of 1.1 corresponds to an increase in FCP by 10%.

3.4.2 Number of parameters
Counting the number of parameters in a neural network gives an estimate of how
much space is required to store the trained model. Furthermore, it can be a measure
of complexity in the case of similar network architectures. In this count, both
trainable and fixed parameters of the neurons in the network is included. Even so,
this number can not accurately be transformed into a measure of storage space in
bytes, as this is largely dependent on various implementation aspects. However,
the actual parameters of a network is by far the biggest contributor to storage
requirements when it come to deployment. Any overhead used to describe the
architecture, operations or connections is insignificant in comparison. Performing
a full analysis of every neural network is a very time consuming process and does
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not yield much useful information in a direct comparison. For practical purposes,
the number of parameters is therefore a good enough metric to use in evaluation of
different neural networks. The number itself is often largely decided by the number
of fully connected or convolutional layers and their depth, as other types of layers
contain very few parameters in comparison.

The number of parameters NOPF C in a fully connected layers can be calculated
using the input size nin and the width of the layer w, according to

NOPF C = w(nin + 1) (3.3)

In the case of multidimensional inputs, nin denotes the total number of elements in
the matrix across all dimensions. This is because all inputs are vectorized before
being passed to a fully connected layer.

For a convolutional layer, calculating the number of parameters is slightly differ-
ent. It also differs for time-series and image input data, due to varying number of
dimensions in the convolution. Using the same notation as before, with the input
size nin and width of the layer w, the number of parameters for a convolutional layer
NOPCNN can be calculated as

NOPCNN =

w(kwc+ 1), for time series inputs
w(kwkhc+ 1), for image inputs

(3.4)

where kw is the filter kernel width, kh the kernel height and c is the number of
channels in the input.

In LSTM layers, the number of parameters NOPLST M can be calculated using
input dimension nin and the number of hidden units w in the layer according to

NOPLST M = 4(w2 + w(nin + 1)) (3.5)

for both time series and image input data.

3.5 Evaluation strategy
To evaluate the neural network based approach, a large number of neural networks
are first trained using varying values of complexity k and dropout rate d. Then,
a small selection of the most promising networks are chosen for further analysis.
The predictive performance of all neural networks are measured as the percentual
increase or decrease in FCP compared to the baseline algorithm. The methodologies
of training, comparing and analyzing the networks are presented in the following
sections.

3.5.1 Training
All evaluated neural networks are trained using the same training options and data
set. The available data will be split in half in order to form a training set and a
test set. The training is based on the Adam optimization algorithm proposed in
[41] together with mini-batch gradient descent. FCP is used as the loss function
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that optimizer attempts to minimize by iteratively adjusting the parameters of the
networks. Because the Adam optimizer employs an adaptive learning rate scheme, it
is used with its default initial learning rate setting of α = 10−3. A batch size of 256
is used, as it strikes a good balance between training speed and convergence for the
optimization. The actual learning procedure is run for a total of 1000 epochs, i.e.
passes over the training set. After each epoch, the training set is shuffled randomly
as this has been shown to improve convergence of optimization based on mini-batch
gradient descent based [42]. Note that the training and test splits are preserved
and the training set is only shuffled internally. Moreover, the loss on the test data
is calculated at the end of each epoch and if it is lower than for previous epochs,
the current parameter values are saved externally. When the training procedure
is complete, the parameter values that yielded the test loss are loaded from the
external file and used for evaluation. By doing this, an early stopping criteria is not
necessary and any problems of overfitting due to prolonged training are avoided.

Furthermore, dropout layers will be used in the networks so that the more com-
plex architectures are able to reach acceptable performance and avoid overfitting.
The dropout layers are inserted after the activation function of each convolutional
layer in the time series based networks, and after the fully connected layers in the
image based networks. The already existing dropout layer in the LSTM networks,
seen in figures 3.6 and 3.8, is kept at a constant rate of 0.8 as suggested by the au-
thors in [6]. Note that the addition of dropout only impact the training procedure
and most importantly has no affect on the complexity or number of parameters in
the network.

Both the complexity scaling k and dropout rate d are varied in order to find the
best performing network for each architecture using a grid-search approach. The
values of k and d used for this are given below.

k = [1, 2, 4]
d = [0, 0.2, 0.4, 0.6, 0.8]

A unique network is trained and evaluated for each configuration of network ar-
chitecture, k and d. As a result, a total of 90 trained networks with six different
architectures are subsequently produced.

3.5.2 Comparison
From the complete pool of 90 networks, the best performing network of each com-
plexity and architecture is then selected for comparison. The networks are com-
pared against each other in terms of predictive performance and complexity. In
other words, both normalized FCP and NOP are used. By doing this comparison,
the number of networks can be reduced into something manageable for further anal-
ysis. This smaller subset of networks will contain the best performing networks for
varying levels of complexity.

3.5.3 Analysis
The purpose of reducing the number of networks is to enable the possibility of
retraining the networks to evaluate the effect of different data set characteristics.
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Because of the large amount of time it takes to train multiple networks, it is not
feasible to conduct this type of analysis on every network.

First, it will be analyzed if aggregating data into batches during testing has
an affect on performance. Due to the nature of the application, it is possible to
collect multiple sweep signals in a row while knowing that all of them belong to the
same optimal position. The batch can then be processed by an algorithm to form
a prediction based on information from all of the individual sweep. This approach
has proven to be successful in improving the performance of traditional machine
learning techniques in this application. As such, it will be investigated if this is the
case for the neural networks as well. To leverage the information of all sweeps in
a batch, the networks will predict the optimal position for each individual sweep.
Then, the individual sweep predictions are averaged to form a final batch prediction.
When using the data set in this type of batches, it is important to keep track of the
ordering of the sweeps. To mimic the behaviour in the real application, the individual
sweeps in a batch should be sequential. This affects the data splitting procedure
substantially, as sweeps have to be aggregated into batches before being split into
training and test sets. Furthermore, there will be some loss of data when building
the batches, as there exist observations that do not have neighboring sweeps to form
a batch. As such, to evaluate the effects of using batches during test, the networks
have to be retrained with a data set that was generated with a specific batch size
in mind. The batch sizes to be evaluated are three and five, which generates data
sets with 6033 and 5155 observations respectively. For reference, the original data
set contains 7237 observations, which means the set has shrunk significantly. These
sets are split equally into training and test data as before.

Another aspect to be investigated is if the size and split of the data set affects the
predictive performance notably. This is accomplished by retraining the networks on
new splits of the original data set. Varying the size of the training data and plotting
the predictive performance as a function of training set size, can indicate if gathering
more data is a way to improve performance. This type of plot is called learning
curve. As this requires retraining the networks multiple times, this analysis will
use the small selection of promising networks as previously defined. For producing
the learning curves, 80% of the original data set is used for training and 20% is
used for testing. This yields less test observations, which may negatively affects the
statistical significance of the test results. However, the size of the data set used
in this project is sufficiently large to still yield acceptable results in this regard.
The first point in the learning curves will use 10% of the training set observations.
Then, increments of 10% are used until the network has been trained on the full
training set. This results in a total of ten steps in the learning curve. Note that
after each step, the network is used on the full test set to compute the corresponding
FCP. Furthermore, after each step in the learning curve, the networks are reset to
their untrained state. Because of the many iterations necessary to produce learning
curves, the number of training epochs for each step is reduced to 500, instead of the
original 1000. In other words, to produce one learning curve a network is trained for
500 epochs for a total of ten times using varying fractions of the available training
data.

Finally, it will be evaluated if the stochasticity of the data splitting procedure
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has had a large influence on the performance numbers achieved. The same small
selection of network as before will be retrained an additional three times, but with
new random splits of the data set. Doing three new permutations is not enough for
any statistical evidence of the performance. However, it can be used to determine
if the original data split was particularly biased by analyzing the spread in FCP
values for different data splits.
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4
Results

4.1 Training history
In this section, the training history of each network is presented. Figures 4.1 through
4.6 show the evolution of the loss function after normalization as the number of
training epochs increases. Each plot shows the normalized FCP of a single network
on both training and test data. The plots are grouped according to the network
architecture used. Each column represents a given network complexity, indicated by
k. Furthermore, each row represents a given dropout rate d.
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FCNN
Training histories for the networks based on the FCNN architecture can be seen in
figure 4.1 below.
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Figure 4.1: Training history for networks based on the FCNN architecture.

It can be seen that very few of the networks with the FCNN architecture manages
to perform better than the baseline. In other words, the normalized FCP is lower
lower than 1. With increasing k, the performance increases minimally. However,
substanstial overfitting occurs in the networks with a high complexity k and low
dropout rate d. The tendencies of overfitting are reduced with increasing d, but the
performance does not become better.
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LSTM-FCNN
Training histories for the networks based on the FCNN architecture can be seen in
figure 4.2 below.
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Figure 4.2: Training history for networks based on the LSTM-FCNN architecture.

The LSTM-FCNN architecture yields more promising results than the FCNN
networks. All of the training histories reach lower FCP values than networks seen
previously. Performance is generally better for higher complexity k. This is par-
ticularly clear when the dropout rate d also is high, as the networks overfit a lot
less.
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FCNN-SE
Training histories for the networks based on the FCNN architecture can be seen in
figure 4.3 below.
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Figure 4.3: Training history for networks based on the FCNN-SE architecture.

The FCNN-SE architecture exhibits similar problems to what was seen for the
FCNN networks. The FCP reaches slightly lower values than the FCNN case, but
it is generally higher than the LSTM-FCNN results for most networks. Overfitting
is reduced with increasing dropout rate d but does not give any improvements to
the performance.
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LSTM-FCNN-SE
Training histories for the networks based on the FCNN architecture can be seen in
figure 4.4 below.
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Figure 4.4: Training history for networks based on the LSTM-FCNN-SE architec-
ture.

Networks with the LSTM-FCNN-SE architecture perform well compared to the
previously seen network types. The FCP generally decreases with increasing com-
plexity k. The increasing dropout rate d manages to reduce the overfitting and
yields a clear improvement in the performance for the high complexity networks.
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IM64-CNN
Training histories for the networks based on the IM-CNN architecture with input
images of size 64 can be seen in figure 4.5 below.
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Figure 4.5: Training history for networks based on the IM64-CNN architecture.

It is clear that most networks with the IM64-CNN architecture have severe issues
with overfitting. However, validation performance is quite good and on par with
the LSTM-FCNN-SE networks even if the training loss is minimized very quickly.
Increasing the dropout rate has a clear impact on the training loss trajectory, but
unlike the other architecture it actually increases the overall validation loss.
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IM128-CNN
Training histories for the networks based on the IM-CNN architecture with input
images of size 128 can be seen in figure 4.6 below.
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Figure 4.6: Training history for networks based on the IM128-CNN architecture.

The networks trained with images of size 128 have very similar tendencies as the
ones trained on images of size 64. Overfitting occurs for networks of all complexities
and is reduced significantly with increasing dropout rate. However, the reduction of
overfitting does not yield any gain in predictive performance.

4.2 Predictive performance
The final performance, in terms of normalized FCP, for each of the trained networks
can be seen in table 4.1 below. The final FCP value shown here is given by the
lowest point in each of the validation loss curves seen in figures 4.1 through 4.6
previously.
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Table 4.1: Final normalized FCP for all trained neural networks. The best FCP
score for each architecture and complexity is shown in bold.

d = 0.0 d = 0.2 d = 0.4 d = 0.6 d = 0.8

FCNN
k = 1 1.0051 1.0474 1.1386 1.4747 1.4981
k = 2 0.9693 0.9883 1.0477 1.0736 1.2177
k = 4 0.9612 0.9426 1.0035 1.0202 1.1109

LSTM-FCNN
k = 1 0.7771 0.7705 0.8479 0.8284 0.9941
k = 2 0.7254 0.6856 0.6814 0.7073 0.7363
k = 4 0.6953 0.6364 0.6346 0.6426 0.6487

FCNN-SE
k = 1 0.9706 1.0506 1.0852 1.1445 1.4639
k = 2 0.9328 0.9301 1.0064 1.0340 1.1746
k = 4 0.8556 0.8283 0.8902 0.9033 1.0629

LSTM-FCNN-SE
k = 1 0.8022 0.8097 0.7769 0.9800 0.8640
k = 2 0.6608 0.6723 0.7300 0.7124 0.8996
k = 4 0.6771 0.6328 0.6141 0.6181 0.6428

IM64-CNN
k = 1 0.7746 0.7223 0.7358 0.7458 0.8543
k = 2 0.6731 0.6810 0.6711 0.7121 0.7834
k = 4 0.6436 0.6404 0.6564 0.6622 0.6994

IM128-CNN
k = 1 0.7398 0.6833 0.6937 0.7150 0.9440
k = 2 0.6364 0.6660 0.6847 0.6942 0.7518
k = 4 0.5812 0.6168 0.6249 0.6397 0.6701

For all the trained network architectures, the performance increases with the
complexity factor k. Whether the dropout rate d should be set high or low to
maximize performance depends entirely on the networks architecture. When taking
all the networks into account there are no clear trends that indicate that dropout has
to be used to avoid overfitting for good performance with high complexity networks.
On the contrary, the best performing network in this experiment is the IM128-CNN
architechture with complexity factor k = 4 and dropout rate d = 0, which clearly
overfit the training data as seen in figure 4.6. However, for time based networks
with the LSTM augmentation and high complexity, a higher dropout rate have a
clear positive impact on the performance.

Looking at the final FCP value for all time series based networks it is clear
that the LSTM augmentation performs very well. Both LSTM-FCNN and LSTM-
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FCNN-SE perform significantly better overall compared to the FCNN and FCNN-SE
counterparts. The SE augmention also reduces the final FCP values, especially when
not combined with the LSTM augmentation. While the FCNN-SE networks have
clearly better performance than the FCNN networks, the SE augmentation on its
own is not enough to reach the performance standards set by the LSTM-FCNN and
LSTM-FCNN-SE networks.

When it comes to the image based networks, using a higher resolution image
yields a notable performance increase. Overall, both IM64-CNN and IM128-CNN
are on par with the best performing time series networks, LSTM-FCNN and LSTM-
FCNN-SE, in terms of final FCP values.

4.2.1 Cumulative distribution function
Another way to examine the predictive performance is to study the cumulative
distribution function (CDF) of the prediction errors. Rather than a single number
as the metric of performance, the CDF plots indicates what types of errors the model
makes. More specifically, the CDF plot shows the percentage of prediction errors
that are within certain ranges. A CDF plot for the networks trained in this work
can be seen in figures 4.7 through 4.12 below. Note here that the error axes are all
normalized against an arbitrary maximum value. However, all figures are normalized
against the same value to allow for comparison of maximum error between figures.
For clarity, only the best performing network of each complexity, i.e. the networks
marked with bold in table 4.1 above are shown in the CDF plots below.
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Figure 4.7: CDF curves for the best performing FCNN network for each level of
complexity.

49



4. Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Error

0

0.2

0.4

0.6

0.8

1
C

D
F

LSTM-FCNN | k = 1 | d = 0.2 | Normalized FCP = 0.771

LSTM-FCNN | k = 2 | d = 0.4 | Normalized FCP = 0.681

LSTM-FCNN | k = 4 | d = 0.4 | Normalized FCP = 0.635

Figure 4.8: CDF curves for the best performing LSTM-FCNN network for each
level of complexity.
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Figure 4.9: CDF curves for the best performing FCNN-SE network for each level
of complexity.
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Figure 4.10: CDF curves for the best performing LSTM-FCNN-SE network for
each level of complexity.
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Figure 4.11: CDF curves for the best performing IM64-CNN network for each
level of complexity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Error

0

0.2

0.4

0.6

0.8

1

C
D

F

IM128-CNN | k = 1 | d = 0.2 | Normalized FCP = 0.683

IM128-CNN | k = 2 | d = 0.0 | Normalized FCP = 0.636

IM128-CNN | k = 4 | d = 0.0 | Normalized FCP = 0.581

Figure 4.12: CDF curves for the best performing IM128-CNN network for each
level of complexity.

Looking at the CDF plots it is clear that the largest difference between low
and high complexity networks is in the small error range. For all networks, the
percentage of errors larger than 0.5 in the normalized scale is very similar for different
complexities. For most of the architecture the major difference between the curves
is in the lower half of the error range. Unfortunately, this range of errors is also the
area where improvements has the smallest impact on the FCP performance of the
network.

By examining where the CDF curves terminate on the right hand side, it can
be determined what the maximum prediction error was for the validation data set.
Using this approach in figures 4.7 through 4.12 above yields that high complexity
networks often have larger maximum prediction errors even though the overall FCP
performance is better.

4.3 Computational complexity
The number of parameters of all trained neural networks can be seen in table 4.2
below. The FCP for the best performing network of each complexity is also shown.
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Table 4.2: Neural network size and predictive performance of the best performing
neural network of each architecture and complexity.

NOP Normalized FCP

FCNN
k = 1, d = 0.0 1473 1.0051
k = 2, d = 0.0 4969 0.9693
k = 4, d = 0.2 18105 0.9426

LSTM-FCNN
k = 1, d = 0.2 10953 0.7705
k = 2, d = 0.4 24441 0.6814
k = 4, d = 0.4 59097 0.6346

FCNN-SE
k = 1, d = 0.0 1633 0.9706
k = 2, d = 0.0 5609 0.9328
k = 4, d = 0.2 20665 0.8283

LSTM-FCNN-SE
k = 1, d = 0.4 11113 0.7769
k = 2, d = 0.0 25081 0.6608
k = 4, d = 0.4 61657 0.6141

IM64-CNN
k = 1, d = 0.2 10513 0.7223
k = 2, d = 0.4 38025 0.6711
k = 4, d = 0.2 144121 0.6404

IM128-CNN
k = 1, d = 0.2 22801 0.6833
k = 2, d = 0.0 87177 0.6364
k = 4, d = 0.0 340729 0.5812

In order to study the relation between the network complexity and performance,
the two metrics can be visualized together. In figure 4.13 below, the normalized FCP
of each network is plotted against the NOP. For clarity, only the best performing
network of each complexity is shown.
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Figure 4.13: Normalized FCP of the trained neural networks plotted against the
NOP. Networks chosen for further analysis are circled.

As can be seen, some networks have a performance advantage against others
without suffering from any notable increase in complexity. For example, FCNN-SE
consistently perform better than FCNN while increasing the NOP very little. Sim-
ilarily, LSTM-FCNN-SE networks achieve equal or lower FCP values than LSTM-
FCNN with an insignificant increase in complexity. When it comes to the image
based networks it can be seen that the FCP is trending downwards when the NOP
increases. However, it is also seen that the highest complexity IM64-CNN network
actually performs worse and has a higher NOP than the middle complexity IM128-
CNN network. This is another indication that the increase in image resolution has
a positive effect on the predictive performance.

Based on this plot, a small selection of networks is made to facilitate retraining
and deeper analysis. The networks are chosen based on their predictive performance,
but also to get a wide spread of complexities. As such, the networks used for analysis
of varying batch size and training set size are
− FCNN-SE, k = 1, d = 0.0
− LSTM-FCNN-SE, k = 4, d = 0.4
− IM64-CNN, k = 1, d = 0.2
− IM128-CNN, k = 4, d = 0.0

as can be seen in figure 4.13 where the markers of the selected networks are circled.

4.4 Varying batch size
The selected networks are then retrained on data sets generated with different batch
sizes using the same training settings as before. The resulting CDF plots for each
network type and batch sizes of 1, 3 and 5 can be seen in figures 4.14 through 4.17.
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The CDF curves with a batch size of 1 are the same as previously, but are included
in the plots for easy comparison.
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Figure 4.14: CDF curves with varying sweep batch size for the FCNN-SE network
with k = 1 and d = 0.0.
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LSTM-FCNN-SE | k = 4 | d = 0.4 | Batch Size = 1 | Normalized FCP = 0.614

LSTM-FCNN-SE | k = 4 | d = 0.4 | Batch Size = 3 | Normalized FCP = 0.505
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Figure 4.15: CDF curves with varying sweep batch size for the LSTM-FCNN-SE
network with k = 4 and d = 0.4.
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Figure 4.16: CDF curves with varying sweep batch size for the IM64-CNN network
with k = 1 and d = 0.2.
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Figure 4.17: CDF curves with varying sweep batch size for the IM128-CNN net-
work with k = 4 and d = 0.0.

For all the networks evaluated here, the FCP is significantly lower with larger
batch sizes. This is inline with what has been observed for traditional machine learn-
ing approaches applied on this data set. It can be seen that when using batches of
3 sweeps, the FCP is reduced by 10% to 18% depending on the network. Increasing
the batch further, up to 5, improves the performance even more. The further re-
duction of FCP, compared to a batch size of 3, then ranges from 4% to 18%. It can
also be seen that for increasing batch size, the performance gains are mostly in the
large error range. Moreover, for all the networks except FCNN-SE the maximum
prediction error on the test set is reduced notably.

4.5 Learning curves
The results of retraining the networks with varying size of the training set can be
seen in figures 4.18 through 4.21 below.
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Figure 4.18: Learning curve trajectory for the FCNN-SE network with k = 1 and
d = 0.0.
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Figure 4.19: Learning curve trajectory for the LSTM-FCNN-SE network with
k = 4 and d = 0.4.
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Figure 4.20: Learning curve trajectory for the IM64-CNN network with k = 1 and
d = 0.2.
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Figure 4.21: Learning curve trajectory for the IM128-CNN network with k = 4
and d = 0.0.
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In all of the above learning curves the test performance is trending downwards
when a larger training set is used. There is no clear indication that the performance
plateaus when the number of training observations increase. Instead, the learning
curves above are an indication that introducing more training data could potentially
increase the predictive performance of the networks further.

4.6 Varying data splits
Retraining the small selection of networks on three new splits of the data results in
the normalized FCP values seen in table 4.3 below.

Table 4.3: Normalized FCP for a selection of networks trained and evaluated on
four different permutations of the same data set.

I II III IV

FCNN-SE
k = 1, d = 0.0 0.9706 0.9588 0.9986 0.9679

LSTM-FCNN-SE
k = 4, d = 0.4 0.6141 0.5970 0.6374 0.5972

IM64-CNN
k = 1, d = 0.2 0.7223 0.7122 0.7576 0.7138

IM128-CNN
k = 4, d = 0.0 0.5812 0.5851 0.5853 0.5876

As can be seen in the table, retraining the networks on different splits of data
changes the performance outcome very little. The most significant difference can
be seen in the third split, where the normalized FCP is slightly higher than for
other splits. It can also be seen that the highest complexity network, IM128-CNN,
is affected very little by changing data split. Furthermore, the effects of the data
splits seem to be consistent for all networks trained here. The performance is affected
in the same manner for all networks when the data permutation changes, with the
exception of IM128-CNN which is largely unaffected.
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The goal of this project was to evaluate the feasibility of using neural networks to
predict the optimal roof deflector position on trucks. Results indicate that neural
networks able to successfully predict the optimal position and achieve normalized
FCP values ranging from 1 to 0.58 depending on the complexity of the network. Note
that a normalized FCP of 1 corresponds to the same performance as the baseline
algorithm and any lower value is an improvement. There is a strong trend in the
results that more complex networks yields better predictive performance. This is
a quite typical result when applying machine learning algorithms, as more degrees
of freedom tends to yield closer fit to the training data. However, there is often a
cutoff where the flexibility of the model is so high that noise in the training data
starts being captured by model. This can be clearly seen in the results where the
high complexity models almost perfectly fit the training data, i.e. training FCP is
very close to zero.

In order to combat the tendencies of overfitting, dropout layers were used. Results
show that the fit against training is consistently reduced with increasing dropout
rate for all network types. However, whether the reduction of overfitting actu-
ally increases performance depends on the architecture of the network. FCNN and
FCNN-SE networks showed little overfitting for all complexities and dropout had
very little impact on the resulting validation performance. The LSTM-FCNN and
LSTM-FCNN-SE networks had much more overfitting. However, this was success-
fully reduced with dropout, which also increased the validation performance of the
networks augmented with an LSTM block. Tendencies of overfitting was the most
clear in the image base networks. Regardless of complexity and image resolution, the
networks reached almost zero training loss when no dropout was used. For the lower
image resolution of 64, performance was improved when dropout was introduced to
the training procedure. With networks trained on images of size 128 the results
were quite different as there was no clear performance gain by reducing overfitting
through dropout layers.

There are strong indications from the analysis of the time series based networks
that augmenting the baseline FCNN architecture with SE and LSTM blocks im-
proves the quality of the predictions significantly. Out of the two, the LSTM block
yields the highest performance gains. Unfortunately, it also has a very large impact
on the NOP, which is increased by 300% to 700% depending on the network com-
plexity. This increase in NOP does however push the normalized FCP to 0.6346
from 0.9426 when augmenting the best performing FCNN network with an LSTM
block. The performance gains of the SE augmentation is not as substantial, but the
reduction of normalized FCP on the same original FCNN network is 0.114. Though,
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the cost in NOP is significantly less and it only increases by around 10% to 15%
depending on the network complexity.

Another interesting results is that the base complexity LSTM-FCNN network
significantly outperforms the highest complexity FCNN and FCNN-SE networks in
terms of both FCP and NOP. In other words, unless an exceptionally low complexity
model is desired, it is always preferable to implement the LSTM augmentation for
this type of networks.

The image based networks have shown very good results in terms of FCP. The
networks trained on images with higher resolution achieve lower FCP across the
board, but also use a higher NOP to achieve those numbers. More specifically, a
higher image resolution results in a reduction of the normalized FCP of 0.035 to
0.06 depending on the complexity chosen. However, this performance comes at the
cost of increasing the NOP by approximately 200%. Nonetheless, the behaviour of
both networks types are very similar as the FCP decreases steadily with increasing
NOP.

When comparing networks compared on time series data and image data, there is
no clear winner. For example, the IM64-CNN architecture outperforms both LSTM-
FCNN and LSTM-FCNN-SE in both FCP and NOP when the base complexity
is used. For k = 2 and k = 4, the results are quite different as both LSTM-
FCNN and LSTM-FCNN-SE reached lower FCP than any image based network
with a comparable NOP. The lowest FCP overall is reached by an IM128-CNN
networks. It does however have around a 550% higher NOP and only yields 0.033
lower normalized FCP than the closest performing network, which is of type LSTM-
FCNN-SE.

Introducing batches of sweeps during testing has been shown to increase the
predictive performance of the networks. Going from predicting on single sweeps to
predicting on batches of three sweeps reduces the normalized FCP substantially.
For FCNN-SE the normalized FCP is reduced by as much as 0.13, while for the
other network the reduction ranges from 0.07 to 0.11. Using a total of five sweeps
in each batch further reduces the FCP of the neural networks. Compared to using
batches of three, the normalized FCP is then reduced by 0.03 to 0.11 depending on
the chosen network. This result is somewhat expected as this trend in improving
performance has been observed for the baseline algorithm. By using more sweeps
for each prediction, a single bad observation does not necessarily lead to a bad
prediction. The other sweeps in the batch may compensate for the bad prediction
as the individual predictions are averaged. Likely as a result of this, the maximum
prediction error on the entire test set was smaller when batches of sweeps were used.
Furthermore, it was observed that the performance mostly improved in the large
error range, which is why the FCP is significantly better with higher batch sizes.

The effects of varying the size of the training data set was investigated by produc-
ing learning curves for the neural networks. Results show that there is a clear trend
of improved predictive performance when the number of observations in the train-
ing set grew. The trend indicates that gathering more data to be used for training
neural networks is a potential way to improve the performance further. This type of
dependence on the training set size is quite typical for neural networks in general.
As networks have a very large number of degrees of freedom and are highly flexi-
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ble, more data can be a way to reduce overfitting and improve generalization of the
models. A more inflexible model may have yielded a learning curve that plateaus,
indicating that there is not that much to gain from introducing more data. However,
the learning curves for the neural networks gave no such indication which reinforces
that adding more observations to the data set should yield better predictions.

It was also investigated if the permutation of data used throughout this work
was particularly biased towards better or worse performance. By retraining a selec-
tion of networks on new random splits of the data, a small spread in the achieved
performance could be observed. The difference between various data splits was very
small in comparison to the absolute normalized FCP values. The small number of
permutations of data used in this work is not enough to give statistical credibility
to the achieved performance results. However, the fact that performance was very
similar across the board is an indication that the achieved performance numbers are
legitimate and not the result of a particularly favorable data permutation.
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This thesis set out to investigate the potential of using neural networks to predict the
optimal roof deflector position on trucks. To accomplish this, several deep learning
methodologies were researched, implemented and evaluated.

A literature survey identified that most time series classification algorithms use
either the raw time series or utilize various image transformations. As such, both
methodologies were implemented in this work. The time series based approach is a
complete end-to-end algorithm that requires no data pre processing or feature en-
gineering. The image based approach uses two image transformations procedures,
Gramian angular fields and recurrence plots, to derive the input to the neural net-
work predictor. Both approaches were shown to yield good predictive performance,
with the image based networks reaching slightly better scores. However, these scores
were achieved using a higher number of model parameters and the image based ap-
proach also adds another layer of complexity in terms of pre processing.

Despite the exploratory nature of this thesis, results have shown that deep con-
volutional neural networks can be used to successfully predict the optimal position
of roof deflectors. The neural network based approach yield a lower average fuel
consumption increase than the traditional machine learning approach that it was
compared against. Moreover, a comparison of the number of parameters of all
trained neural networks was carried out. It was shown that if computational com-
plexity is a limiting factor, the number of network parameters can be greatly reduced
at only a small cost of predictive performance. This makes the proposed prediction
algorithm feasible for deployment on resource constrained hardware.

6.1 Future work
There are several topics in this thesis that would be suitable for further analysis
in future work. While the chosen neural networks types evaluated in this work
are inline with current literature, there are endless more possibilities to explore in
regards to deep machine learning. More types of networks, across a broader range
of complexities, could be analyzed to find better performing architectures.

The data set used in this project was somewhat limited, both in terms of size and
scope. It has been shown numerous times before that deep neural networks can be
made to achieve better performance simply by increasing size of the training data
set. Another way to approach this is to add more signals to the input data than just
the actuators current consumption. It would be interesting to see if instantaneous
fuel consumption or other drivetrain signals could be used to identify changes in the
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trucks air resistance to find the optimal roof deflector position. This approach is of
course limited by the quality and availability of such data, as it would be feasible
to train the networks with signal data that is not available to the algorithm at
prediction time.

Another topic that could be evaluated further is the feasibility of deploying the
neural network based algorithms on an embedded device with resource constrained
hardware. By going into detail on the preparation and deployment of a neural
network, factors such as computation time and memory requirements of calculating
predictions on-the-fly could be evaluated. Furthermore, it could be evaluated how
performance is affected by quantization of network parameters, as this may be a
prerequisite for being able to fit the trained networks in an embedded device.
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