
Machine Learning for Lane Positioning
in Autonomous Vehicles
Supervised Learning on High-Dimensional Data

Master’s thesis in Complex Adaptive Systems

ANDERS HANSSON
RICHARD SUNDQVIST

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

This page intentionally left blank.

Master’s thesis 2018

Machine Learning for Lane Positioning in
Autonomous Vehicles

Supervised Learning on High-Dimensional Data

ANDERS HANSSON
RICHARD SUNDQVIST

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2018

Machine Learning for Lane Positioning in Autonomous Vehicles
Supervised Learning on High-Dimensional Data
ANDERS HANSSON
RICHARD SUNDQVIST

© ANDERS HANSSON, 2018.
© RICHARD SUNDQVIST, 2018.

Supervisors: Tommy Tram, Zenuity & Department of Electrical Engineering
Hannes Marling, Zenuity

Examiner: Mats Granath, Department of Physics

Master’s Thesis 2018
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A Volvo XC90, Volvo Car Corporation (CC BY-NC 4.0)

Typeset in LATEX
Compiled with pdfLaTeX via sharelatex.com
Gothenburg, Sweden 2018

iv

sharelatex.com

Machine Learning for Lane Positioning in Autonomous Vehicles
Supervised Learning on High-Dimensional Data
ANDERS HANSSON
RICHARD SUNDQVIST
Department of Physics
Chalmers University of Technology

Abstract
The lateral position of a car in its current lane affects the perceived comfort and
safety of passengers. The problem of selecting a comfortable lateral position for an
autonomous car in traffic is not trivial. This thesis addresses this issue by breaking
it down into two related problems to be solved, using Feed-Forward Neural Networks
and Random Forests. The first problem, Barrier Detection (BD), is a perception
problem. It involves identifying relevant variables for detecting barriers on the road
side and distinguishing barriers from instances resulting in similar sensor stimuli
such as traffic signs. The second problem, Lane Positioning (LP), is a Decision &
Control (D&C) problem. The task is to select a suitable lateral position for the host
vehicle within the current lane, given the immediate surroundings.

Furthermore, strict timing and memory requirements are in place. This neces-
sitates pruning and preprocessing of high-dimensional raw data before the data is
forwarded, and places constraints on the implementations. Both problems were ap-
proached with supervised learning methods, and the results for BD were promising
with a test set accuracy of 80% using neural networks. The neural networks for LP
failed, with the best neural network attaining only 60% accuracy.

By using a different classifier type, Random Forest (RF), an out-of-bag1 error
of 4% was achieved for the LP problem. However, sufficient performance was only
reached for extreme lateral offsets and these classifiers grossly violated the memory
constraints. Random lateral offsets in the data appeared to overshadow the offsets
taken in response to significant scenarios. This could explain why the classifiers
failed to identify trends for smaller offsets.

Keywords: autonomous cars, supervised learning, deep learning, neural networks,
random forests, decision & control, perception

1Out-of-bag error: Estimate of predictive power for ensemble classifiers, see subsection 2.3.2.

v

This page intentionally left blank.

Acknowledgements
The authors of this Master thesis would like to thank Zenuity for being our hosts and
for giving us the opportunity to solve a real industry problem, with all the frustrating
little quirks that it entails. In particular we would like to thank Team Kalman and
Team Turing at Zenuity for mentoring us and for enriching our experience at the
company. Furthermore, we would like to thank our opponents Jonas Ericsson and
Linus Arnö for their feedback.

We would like to thank our supervisors, Tommy Tram and Hannes Marling
at Zenuity, for their guidance and for the many rewarding discussions (and the
unrelated banter) we’ve enjoyed in the months that we’ve known them. Finally, we
would like to thank our examiner Mats Granath at the Department of Physics at
Chalmers, for his advice and for giving us freedom to steer the direction of the thesis
ourselves. We would also like to thank him for the work he’s done as the director
of the Complex Adaptive Systems programme, which we have enjoyed immensely
during our final years at Chalmers.

Anders Hansson, Gothenburg, June 2018
Richard Sundqvist, Gothenburg, June 2018

vii

This page intentionally left blank.

Table of Contents

Abstract v

Acknowledgements vii

Table of Contents ix

Lists and definitions xii
List of Figures . xiii
List of Tables . xiv
Acronyms . xv
Glossary . xvi

1 Introduction 1
1.1 Levels of autonomy – incremental progress 1
1.2 Background . 1
1.3 Purpose . 2
1.4 Problem formulations . 2
1.5 Motivation for a machine learning approach 3

2 Theory 4
2.1 Classification and regression . 4
2.2 Artificial neural networks . 4

2.2.1 Feed-forward neural network 5
2.2.2 Optimization of neural networks 5
2.2.3 Backpropagation . 6
2.2.4 Softmax loss function . 6
2.2.5 Adaptive learning rate . 7

2.3 Random Forests . 7
2.3.1 Ensemble learning . 8
2.3.2 Out-of-bag error . 8

2.4 t-Distributed Stochastic Neighbor Embedding 8
2.4.1 The mathematics of t-SNE . 9

2.5 Feature selection . 9
2.5.1 Dependence measures . 10
2.5.2 Correlation-based Feature Selection 10
2.5.3 ReliefF . 11

2.6 Evolutionary Algorithms . 11

ix

Table of Contents

2.7 Random Undersampling . 11

3 Methods 12
3.1 Data . 12

3.1.1 Data mining . 13
3.2 Classification schemes . 13

3.2.1 Lane Positioning schemes . 13
3.2.2 Barrier Detection schemes . 14

3.3 Lane Positioning . 14
3.3.1 Labels . 14

3.3.1.1 Eager and delay labelling heuristics 15
3.4 Barrier Detection . 15

3.4.1 Proprietary algorithm for Barrier Detection 16
3.4.2 Labels . 16

3.4.2.1 Eager labelling heuristic 16
3.5 Neural networks . 17
3.6 Class imbalance . 18
3.7 Feature selection . 19

3.7.1 Exception for Lane Positioning 19
3.8 Signal Preprocessing . 19
3.9 Hyperparameters . 20
3.10 Random Forest . 20

4 Results 21
4.1 Lane positioning . 21

4.1.1 Class balance . 21
4.1.2 Selected features . 22
4.1.3 Random Forest . 22

4.2 Barrier Detection . 22
4.2.1 Confusion matrices . 23
4.2.2 Class balance . 24
4.2.3 Selected features . 24

5 Discussion and Conclusions 27
5.1 Lane Positioning . 27

5.1.1 Future work . 28
5.2 Barrier Detection . 28

5.2.1 Barrier ground truth . 28
5.2.2 Future work . 29

Bibliography 33

A Appendix: Functions and Derivations I
A.1 Activation functions . I
A.2 Softmax . II

A.2.1 Derivative of Softmax . II
A.2.2 Softmax cross-entropy derivation II

x

Table of Contents

A.2.3 Derivative of Softmax cross-entropy III
A.3 Backpropagation . III

A.3.1 Error of output layer . IV
A.3.2 Error of hidden layers . IV
A.3.3 Bias derivatives . V
A.3.4 Weight derivatives . V

B Appendix: Barrier Detection VII
B.1 Figures . VII
B.2 Tables . VII
B.3 Network size estimates . IX

C Appendix: Signals X

xi

List of Figures

1.1 A possible scenario with three vehicles on a damaged road. The red
car is avoiding a heavy freighter on its left side: The line shows how
lateral offset is measured for the Lane Positioning (LP) problem. The
green car has barriers on both sides: The lines show how lateral dis-
tance to barriers is measured for the Barrier Detection (BD) problem.
(Note that traffic cones are out of scope.) 2

2.1 A binary decision tree which incorrectly classifies an old, three-legged
dog as a human. Ensemble learning corrects for weaknesses of indi-
vidual trees. 8

3.1 Discretization of the lateral position relative to the lane into k = 3
intervals. For instance a car with no lateral offset will have a lane
position y = 2. The intervals have an equal size which it depends on
the width of the lane. 14

3.2 A hand-craft, graphical demonstration of the difference between the
raw labels (lane position switch with k intervals) and with the eager
and delayed labelling. 15

3.3 A hand-crafted, graphical demonstration of the difference between the
quality counter, raw labels (live signal), and the eager labels. signal
high means that there is a barrier present. 17

3.4 FFNNs with 1 to 8 hidden layers and 4 to 512 neurons per layer were
used. The output layer was a Softmax layer, which squashed output
into probabilities. 18

4.1 Class distribution of a data set when using lane position with 5 in-
tervals as labels. The classes are the discrete lane position intervals
sorted from left to right. Note that the vertical axis is logarithmic,
the most dominant class (class 3) takes up 93.89% of all samples. In
comparison the smallest class, furthest to the left (class 1), makes up
only 0.3%� of all samples. 22

4.2 Random Forest perfomance on lane positioning with k uniform in-
tervals. Out-of the bag errors plotted against the number of grown
decision trees. The features used as inputs are described in Table 4.1. 24

xii

List of Figures

4.3 Projection of the selected features (see Table 4.6) for BD in 2D using
t-SNE. The data has been coloured after manually made labels. De-
spite some overlap, the samples have been projected into class-wise
clusters. This clustering indicates that there is a correlation between
the selected features and the presence of barriers. Note that the plot
contains only 5000 random samples of each class, a larger data set
could potentially result in larger class overlap. 26

B.1 Hyperparameter results for the left side. Set size: 2.3 · 105 samples. . VII
B.2 Hyperparameter results for the right side. Set size: 2.3 · 105 samples. VIII

xiii

List of Tables

4.1 Selected signals for the LP problem. All signals related to local ob-
jects (below the dividing line) are vector quantities and sorted as
described in section 3.8. These signals explained further in Appendix C. 23

4.2 Out-of the bag errors (lower is better) found using random forest
and sampling equally number of instances of each class. The higher
number of intervals, the less instances exist of the smallest class, hence
the decrease in total samples. The third column shows the number
of decision trees used to obtain the best result. The features used as
inputs are described in Table 4.1. 24

4.3 Accuracy for our classifier and the proprietary algorithm (see subsec-
tion 3.4.1) on manual labels. The first row shows the performance
on the labels (barrier detection with eager labelling) used in training.
Note that these values were computed on a smaller data set, which
had been manually labelled, of about 5 · 104 samples. 25

4.4 Confusion matrices for the Barrier Detection-network ([80]-Sigmoid-
Adagrad), with the true values on the columns. The different sets
are: [Z]enuity (with the eager heuristic, i.e. the labels), [N]etwork
output, and [M]anual labels. Note that these values were computed
on a smaller data set, which had been manually labelled, of about
5 · 104 samples. 25

4.5 Barrier counts in time series and samples. A single sample in a series
having a property makes the series count as having that property, so
Left only + right only + both 6= any for the series (they do for samples). 25

4.6 Selected signals for the Barrier Detection problem. All signals related
to local stationary objects (below the dividing line) are vector quan-
tities and sorted as described in section 3.8. The signals in this table
are further explained in Appendix C. 26

B.1 Performance for a few different networks, left side. A/T1/T2: Accuracy/Type-
1 error/Type-2 error, in percent. Sample size: 5 · 104 points. VIII

B.2 Performance for a few different networks, right side. A/T1/T2: Accuracy/Type-
1 error/Type-2 error, in percent. Sample size: 5 · 104 points. IX

B.3 Estimated size in kilobytes (1 KB = 210 bytes) of networks with a
given number of hidden layers. The leftmost layer connects to the
input layer. IX

xiv

Acronyms

Acronyms
ANN Artificial Neural Network.

BD Barrier Detection.

CFS Correlation-based Feature Selection.

D&C Decision & Control.

EA Evolutionary Algorithm.

FFNN Feed-Forward Neural Network.

GD Gradient Descent.

LP Lane Positioning.

ReLU Rectified Linear Unit.
RF Random Forest.
RUS Random Undersampling.

SGD Stochastic Gradient Descent.

t-SNE t-Distributed Stochastic Neighbor Embedding.

xv

Glossary

Glossary
AdaGrad The Adaptive gradient algorithm, see [1].
Adam The Adam algorithm, see [2].

Ftrl The Follow The (Proximally) Regularized Leader algorithm, see [3].

RMSProp The RMSProp algorithm, see [4]. This algorithm is not accompanied
by a published scientific paper, but was introduced as part of a COURSERA
lecture.

xvi

1
Introduction

1.1 Levels of autonomy – incremental progress
The landscape of the automotive market is changing rapidly, with the development
towards autonomous vehicles making steady progress. Most of the traditional car
manufacturers are involved, as well as a large number of well-known tech companies
[5], [6]. A majority of consumers, however, still state that they would be afraid
to ride in a fully autonomous car today [7], [8]. Such vehicles, in which a steering
wheel is essentially optional, are often referred to as having level 4 [9] or level 5 [10]
automation, depending on the standard used.

There are no personal vehicles at this level of automation today, though several
manufacturers offer systems with partial autonomy [11]–[14]. The car must have an
alert and active driver, however in limited situations, the car can manage its own
operation. These are commonly referred to as Advanced Driver-Assistance Systems
(ADAS). These systems can be seen as an intermediate step, and are being further
developed to allow for even higher levels of automation in the future.

1.2 Background
Zenuity is a developer of ADAS software [15], and routinely performs test driving
around Gothenburg as a part of the development effort. During several such sessions,
developers noted that the prototype vehicle appeared to position itself closer to
adjacent freighters than was intended. The on-board logs of the prototype vehicle
later revealed that an appropriate distance had in fact been kept between the vehicles
in question, indicating that the freighters simply made for more imposing figures
than a personal vehicle at the same distance.

The discomfort of the prototype vehicle’s passengers, however, was real. The
effect is not limited to freighters; similar complaints were made about, for example,
road barriers. A flat offset could be implemented, but the host vehicle may then
end up crowding smaller vehicles such as motorcycles instead. This is an issue for
manufacturers: An autonomous car must not only be physically safe, it must also
feel safe, both to its passengers and to the surrounding traffic. The lateral position
of the host vehicle within the current lane plays an important role in this endeavour.

Barriers also play a more subtle role in the positioning of the vehicle: Vision
based perception algorithms usually rely on estimating the position of the road
markers for determining the lateral position of the car [16]. To a black-and-white
camera, the top of a barrier may appear as if it were a road marker. The barrier

1

1. Introduction

Lateral offset Barrier distance right

Barrier distance left

Figure 1.1: A possible scenario with three vehicles on a damaged road. The red
car is avoiding a heavy freighter on its left side: The line shows how lateral offset
is measured for the Lane Positioning (LP) problem. The green car has barriers
on both sides: The lines show how lateral distance to barriers is measured for the
Barrier Detection (BD) problem. (Note that traffic cones are out of scope.)

may also be placed inside the lane; this is very common during road work. Both of
these cases may result in the vehicle positioning itself improperly in the lane.

The problem arises: How does one detect a scenario where a lateral offset from
the centre of the lane is desirable? The vehicle must be able to detect that there
is a relevant object, such as a barrier or a heavy vehicle, present in the first place.
Once this is done, the vehicle can consider what it knows about its surroundings to
make a decision.

Note that choosing a position for the car in the lane is a Decision & Control
problem. This differs from the task of estimating the current position of the car
in the lane, which is a perception problem, that has previously been solved using
deep learning methods [17]. The detection of relevant objects such as barriers and
freighters are perception problems as well.

1.3 Purpose
The purpose of this thesis is to develop a prototype system for detecting when a
lateral offset is desired in an autonomous car. Solutions should, if possible, respect
timing and memory constraints in place for an autonomous vehicle. The goal is not
to create a finished product, but to explore possible solutions.

1.4 Problem formulations
In order to develop a lateral positioning system, perception algorithms for detect-
ing objects and scenarios must be implemented. Zenuity can reliably detect road
vehicles, but have had issues with reliably detecting barriers (see subsection 3.4.1

2

1. Introduction

for details). The lateral positioning issue will thus be split into two separate prob-
lems: Lane Positioning (LP) and Barrier Detection (BD). The motivation for this
split is two-fold: a strong BD solution is needed regardless of the outcome for the
LP problem, while perception algorithms for other known factors related to lateral
positioning already exist. The formal definitions of the problems are as follows:

Lane Positioning (Decision & Control problem): Given the local environment of
the host vehicle, select a position in the current lane which minimizes the
discomfort of the passengers and surrounding traffic. The key assumption is
that mimicking human drivers will lead to comfortable behaviour.

Barrier Detection (Perception problem): Given the local environment of the host
vehicle, determine if there are any laterally adjacent barriers present. In this
thesis barriers are defined as fences, guard rails, and concrete barriers1.

Distances are measured using the ISO-88552 axis reference frame. Please refer to
Figure 1.1 for an explanation of how they are defined for both problems.

1.5 Motivation for a machine learning approach
This study attempts to solve the problems defined in section 1.4 using machine
learning methods, specifically supervised learning. The reasons are that both LP
and BD are complex problems which depend on many interacting variables, and the
best strategy in some scenarios may be unknown. Zenuity has provided access to
recorded data of human driving in real-world traffic.

The complex nature of the problems and the fact that we have access to statis-
tical data motivates a machine learning approach. Mimicking human drivers using
supervised learning methods avoids the issue of having to mathematically define
what it means for something to be "comfortable".

1Temporary barriers, such as traffic cones, are out of scope.
2ISO-8855: Coordinate system standard commonly used for road vehicles. The origin is fixed

in the middle of the plane which spans the wheels.

3

2
Theory

This section aims to provide the reader with a brief theoretical background related
to the upcoming methods and results in this thesis.

2.1 Classification and regression
In machine learning and statistics, two central problems are classification and re-
gression. Classification is the problem of predicting the associated class or category
of new observations [18].
Classification

Given: n observations
(
~X1, . . . , ~Xn

)
with associated labels (Y 1, . . . , Y n).

∀i : ~X i ∈ Rp, Y i ∈ N∗k = {1, 2, . . . , k}, where k is the number of classes.
Goal: Predict the label Y i for observation ~X i.
A classifier is an algorithm that (approximately) solves the classification prob-
lem.

Regression
Given: n observations

(
~X1, . . . , ~Xn

)
associated with target values (Y 1, . . . , Y n).

∀i : ~X i ∈ Rp, Y i ∈ R
Goal: Predict the values ~Y i such that the distance from the true vales to the
predicted values is minimized [19]. This is essentially function fitting.
A regressor is an algorithm that (approximately) solves the regression problem.

The main difference is that regression deals with ordinal target labels and classifi-
cation deals with discrete and nominal target labels.

2.2 Artificial neural networks
The Artificial Neural Network (ANN) computational model is a class of mathemati-
cal models which can be used as classifiers or regressors. More specifically an ANN is
a directed graph with weighted edges and the nodes are computational units called
neurons. ANNs are inspired by biological neural networks found in brains, hence the
name [20]. In this thesis neural networks will always refers to ANNs, not biological
neural networks.

Each neuron in an ANN is associated with two scalar values called activation
and local field. The local field is a weighted sum of all inputs to the corresponding
neuron. The activation of a neuron is the neural output and it is computed by
using the local field as an input variable to an activation function. The activation

4

2. Theory

function is a parameter of the network model. See section A.1 for some examples of
activation functions. For further reading about ANNs, see [21].

2.2.1 Feed-forward neural network
A Feed-Forward Neural Network (FFNN) is a directed acyclic graph of neurons; a
structure of topologically ordered layers of neurons. The activation of neurons in
one layer will serve as input to the next layer [20]. The activation of the last layer is
the network output. Layers between the network inputs and the last layer (output
layer) are referred to as hidden layers. The activation ali of the neuron with index i
in layer l are given by Equation 2.1. Note that the superscript is not an exponent,
but the layer index.

ali = σl

∑
j

wlija
l−1
j + bli

 = σl(zli) (2.1)

σl is the activation function for layer l (assuming all neurons in one layer has the
same activation function). w is the weight tensor, an element wlij is the weight
between neuron i in layer l and neuron j in layer l − 1. b is the bias matrix, an
element bli is the bias of neuron i in layer l. zli is the local field (input) to neuron i
in layer l [21].

The weights and biases are parameters that are tuned in a process referred to
as training. In supervised learning one must define a cost function C (sometimes
called a loss function), which measures the error of the network output based on the
target values and the actual output. The cost function is optimized with gradient
descent with respect to the weights and biases [21]. A visualization of the neural
networks used in this thesis can be seen in Figure 3.4.

2.2.2 Optimization of neural networks
Neural networks are usually trained by optimizing a defined loss function and per-
forming gradient descent, though other methods such as an Evolutionary Algorithm
(EA) can be used (see section 2.6). The update rule with gradient descent is:

wl → wl − η∇l
wC bl → bl − η∇l

bC (2.2)

η is a parameter called the learning rate. The derivatives are computed with an
algorithm called backpropagation, see subsection 2.2.3.

Using Gradient Descent with respect to the entire training data set at each
iteration is called batch training. Batch training takes a long time and is usually not
practical when dealing with large data sets. An alternative is Stochastic Gradient
Descent (SGD). In SGD, only one instance of training data is considered at each
iteration with random sampling [21]. Mini-batch training is a combination of both
methods, which randomly samples a subset of the training data at each iteration.
The optimization methods used in this thesis are based on this idea [1]–[4].

5

2. Theory

2.2.3 Backpropagation
Backpropagation is an algorithm for computing the partial derivatives needed when
training a FFNN with gradient descent [21], see Algorithm 1. Backpropagation for
a FFNN can be summarized with the following four equations:

δL = ∇L
aC � ∂σL(zL)

δl =
(
(wl+1)T δl+1

)
� ∂σl(zl),∀l 6= L

∇l
bC = δl

∇l
wC = al−1(δl)T

(2.3a)
(2.3b)
(2.3c)
(2.3d)

C is the cost function, L is the index of the final layer, δl is the error vector for layer l,
∂σl(zl) is the derivative of activation functions in layer l, and the � symbol denotes
the Hadamard product (elementwise multiplication). See section A.3 for derivation
of these equations. Different termination criteria can be used in Algorithm 1. A

Algorithm 1 Backpropagation with gradient descent for a FFNN
1: while not Termination Criteria do
2: Feed FFNN with training input
3: for l = 1, . . . L do
4: Compute al = σl(zl) . Equation 2.1
5: end for
6: Use output aL to compute cost C
7: Compute output error δL . Equation 2.3a
8: for l = L− 1, . . . , 2, 1 do
9: Compute δl . Equation 2.3b

10: end for
11: Compute derivatives . Equation 2.3c & Equation 2.3d
12: Update weights and biases . Equation 2.2
13: end while

common method is holdout validation. The data is split into two sets, the training
set and validation set. The neural network does not train on the validation set, but
the validation error is measured during training. In order to prevent overfitting on
the training set, training is halted when the validation error stops decreasing [21].

2.2.4 Softmax loss function
The Softmax function ζ can be used as the activation function for the final layer
of a classifier neural network. The Softmax (Equation 2.4) squashes the local fields
of the final layer into probabilities, similar to the Boltzmann distribution [22], [23].
The output y is the estimated probabilities of fed input belonging to the respective
classes.

ζ
(
zL
)

= 1∑K
j=1 e

zL
j

ez

L
1

...
ez

L
K

 =

y1
...
yK

 = y (2.4)

6

2. Theory

K denotes the number of classes and zL is a vector containing the activations of all
neurons in output layer. t =

(
t1 . . . tK

)T
is a vector containing the true probabilities

of the label. A data instance can only belong to one class, which means that t
follows a categorical distribution.

∃i ∈ {1, . . . , K} such ∀j 6= i : {tj = 0} and ti = 1

The derivative of the Softmax function (which is needed for backpropagation,
see subsection 2.2.2), is given by Equation 2.5 [22], [23].

∂yi
∂zLj

= yjδij − yiyj (2.5)

where δij is the Kronecker delta.
A loss function related to the Softmax can be derived with a maximum log-

likelihood estimation. The loss function for one data instance is defined by Equa-
tion 2.6.

H(t, y) = −
K∑
i=1

ti log (yi) (2.6)

Since ti are the true probabilities and yi the estimated probabilities, H is a cross-
entropy function. For this reason, it is often called the Softmax cross-entropy func-
tion.

2.2.5 Adaptive learning rate
An adaptive learning rate refers a dynamically adjustable η-value (see Equation 2.2)
[24]. How exactly this is done varies, but some common strategies are to begin with
a large η to quickly find a minimum, then reducing it to find the exact value.
Two optimization methods which use strategies similar to this are RMSProp [4] and
Adam [2]. The learning rate η may also be increased in order to escape local minima.
Another optimation method, AdaGrad [1], uses different values for different features
depending on properties discovered during training.

2.3 Random Forests
Random Forest (RF) ("random decision trees") is an ensemble learning method, first
proposed by Ho in 1995 [25]. The basic idea is to combine multiple decision trees
to produce a more accurate estimator. Several decision trees are created, and the
final value is then decided by a vote (for classification) or by taking the average (for
regression). The available hyperparameters vary, but parameters such as the number
of trees to create and the number of children per node are generally tunable. They
are known for being both accurate and easy to use, as they construct themselves,
but offer less control compared methods such as FFNNs.

A decision tree is a cascading sequence of decisions, which can perform both
regression and classification. It works by answering a series of questions about
various properties to reach a decision. The same property can occur more than once,

7

2. Theory

Figure 2.1: A binary decision tree which incorrectly classifies an old, three-legged
dog as a human. Ensemble learning corrects for weaknesses of individual trees.

and the tree does not have to use all of the properties available to it. Figure 2.1
shows a decision tree which has incorrectly learned that a dog cannot be older than
10 years old, causing it to classify "Cooper" as a human. Individual trees tend to
overfit to their training data [26], and one of the benefits of the RF method is that
it avoids overfitting by ensemble learning [27].

2.3.1 Ensemble learning
Random Forests use bootstrap aggregating ("bagging") [27], [28]. Bootstrap aggre-
gating means that given a data set, new data sets are generated by sampling from
the original set. Each new set is referred to as a bag which are true subsets of
the original training set. When training the RF, the decision trees are trained on
different bags. Each tree is trained on a single bag. For further reading about how
individual decision trees are trained, see [29], [30].

2.3.2 Out-of-bag error
The out-of-bag error (sometimes out-of-bag estimate) is a method commonly used to
measure the accuracy of ensemble methods such as Random Forests. The technique
works by feeding decision trees with data from a bag which was not used to train
them. This gives a measurement of the accuracy, but sometimes underestimates the
actual performance [31], [32]. All data is used for training, but the test data and
the training data is always different for any given decision tree.

2.4 t-Distributed Stochastic Neighbor Embedding
The t-Distributed Stochastic Neighbor Embedding (t-SNE) method was introduced
by Maaten and Hinton in 2008 [33]. It is used to project high-dimensional data
on 2d or 3d-space. It differs from some older techniques such as Principal Com-
ponent Analysis (PCA), which attempts to minimize the sums of Euclidean dis-
tances [34]. Conversely, the t-SNE method uses pairwise probabilistic distances
(Equation 2.8) and attempts to preserve the high-dimensional structure by keeping

8

2. Theory

points which are close together in the high-dimensional structure close together in
the low-dimensional projection. This is sometimes beneficial when regarding high-
dimensional with complex local structures. In practice, t-SNE and PCA can be
combined to speed up computations for high dimensional problems [33].

2.4.1 The mathematics of t-SNE
Given a set of N high dimensional points ~xi, i = 1, . . . N , distance metric d and
a desired perplexity, t-SNE starts with computing the pairwise similarities using
a gaussian kernel, Equation 2.7 and Equation 2.8. The kernel variances σi are
parameters for each point that is set in order to attain a desired perplexity.

pi|j = exp
(
−d(~xi, ~xj)2

2σ2
i

)∑
k 6=i

exp
(
−d(~xi, ~xk)2

2σ2
i

)−1

(2.7)

pi|i = 0

pij = pi|j + pj|i
2N (2.8)

The low dimensional similarities qij are computed with a t-Student kernel.

qij = exp
(
1 + ||~yi − ~yj||2

)−1
∑
k 6=l

(1 + ||~yk − ~yl||)−1

−1

(2.9)

The low-dimensional counterparts ~yi of ~xi are computed by minimizing the Kullback-
Leibler divergence between the joints distributions P and Q, Equation 2.10 [35].

KL(P ||Q) =
∑
i 6=j

pij log
(
pij
qij

)
(2.10)

2.5 Feature selection
A feature is a variable to use as input to a machine learning algorithm. The feature
itself can be of any type, such as an integer, Boolean or decimal value. Feature se-
lection is the process of selecting a minimum subset of features in order to minimize
computational load while maintaining high performance with the predictor algo-
rithm. A standing hypothesis is that the best subset has a high class-dependency
and low dependency among the selected features. Mathematically formulated, fea-
ture selection is selecting a feature subset Smax such that the sum in Equation 2.11
is maximized [36]. Note that there are alternative measures of the merit of a feature
subset, such as Equation 2.13.

Smax = argmax
S

 1
|S|

∑
Xi∈S

I(X i, Y)− 1
|S|2

∑
Xi,Xj∈S

I(X i, Xj)
 (2.11)

Where |S| is the cardinality of subset S = {X1, . . . , X |S|}, and I is a dependence
measure. Y denotes the response variable. In order to find relevant features for
estimating the predictor variable, one must find a way to measure relations between
variables. In other words, one must define a dependence measure.

9

2. Theory

2.5.1 Dependence measures
A dependence measure I(X, Y) between two stochastic variables X, Y is a measure
of statistical relationship. An ideal dependence measure should satisfy the following
axioms [37].
(i) I(X, Y) should be defined for both continuous and discrete variables.
(ii) I should be normalized, I(X, Y) ∈ [0, 1]
(iii) I(X, Y) = 0 iff X and Y are independent.
(iv) I(X, Y) = 1 iff there is a deterministic relation f(X) = Y .
(v) I(X, Y) is invariant under any strictly increasing transformation.
(vi) I(X, Y) is a metric, it measures the "distance to a deterministic dependence".

If X, Y are neither independent nor related by a deterministic function, the
dependence measure lies in (0, 1).

Pearson correlation coefficient

The Pearson correlation coefficient is a measure of linear dependence between two
stochastic variables [38] X and Y , and is defined by Equation 2.12.

ρ(X, Y) = Cov[X, Y]√
Var[X]Var[Y]

= E [(X − µx)(Y − µy)]
σXσY

(2.12)

Pearson correlation is also a measure of negative linear correlation, ρ(X, Y) ∈ [−1, 1].
The Pearson correlation coefficient can be used a dependence measure by taking the
absolute value |ρ(X, Y)|, since a negative correlation also indicates a relation.

2.5.2 Correlation-based Feature Selection
The Correlation-based Feature Selection (CFS) method was introduced by Mark
A. Hall in a 1999 dissertation [39]. The working hypothesis of the paper is clearly
stated by the author:

A good feature subset is one that contains features highly correlated with
(predictive of) the class, yet uncorrelated with (not predictive of) each
other.

A heuristic measure of the goodness of a feature subset is used to accomplish this.
Features are added to an initial empty set (or removed, if the initial set is all available
features) such that the score, given by Equation 2.13, is maximized. The optimiza-
tion can be carried out with heuristic search such as evolutionary algorithms, best
first search and greedy hill climbing [39].

score = kr̄cf√
k + k(k − 1)r̄ff

(2.13)

Where k is the number of chosen features in the subset, r̄cf is the average class-
feature correlation, and r̄ff is the average feature-feature correlation. Different
correlation metrics may be used.

10

2. Theory

The method may fail when the hypothesis is violated, though there is some
tolerance and failure isn’t immediate. Once again, in the words of the author:

CFS may fail to select relevant features, however, when data contains
strongly interacting features or features with values predictive of a small
area of the instance space.

For real-world data, the hypothesis often holds reasonably well. Feature interaction
to the degree required to make CFS fail is primarily found in carefully constructed
artificial data such as the MONK’s problems, see citation [40].

2.5.3 ReliefF
Relief is a feature selection algorithm for binary classification, originally proposed
by Kira and Rendell in 1992 [41]. Relief ranks each feature depending on how well
it can distinguish between closely placed samples. ReliefF is an extension of Relief
for multiclass classification [42]. ReliefF randomly selects a sample and utilizes
its k-nearest neighbours. The quality of each feature depends on how many of
the k-nearest neighbours belong to the same class, measuring the difference in the
respective feature. Read more about Relief and ReliefF in [43]. The ranks computed
by Relief or ReliefF can be used as ad-hoc dependence measures.

2.6 Evolutionary Algorithms
An Evolutionary Algorithm (EA) is a stochastic optimization method inspired by
Darwinian evolution. It works by treating vectors of variables as biological individu-
als [21]. The fitness of an individual is measured by a fitness function, which must be
designed for the specific problem being solved. Individuals with a high fitness are se-
lected for reproduction using a random (this is what makes it a stochastic method)
selection process, combining the variables of several individuals in a reproduction
process to produce "children", which form the next generation (iteration). A few of
the best individual are often preserved the next generation as well: this is called
elitism. EAs have been used for a wide range of tasks, including the optimization
of ANNs. For more information about EAs, see [21].

2.7 Random Undersampling
Random Undersampling (RUS) is a common technique used to prevent bias in es-
timators when the underlying data has an overwhelmingly dominant class, whose
members greatly outnumbers other classes. The technique is simple: An appropriate
amount of samples are selected at random and removed from the dominant class.
This has been shown to increase accuracy [44], [45].

11

3
Methods

This thesis is split into two main problems: Barrier Detection (BD) and Lane Po-
sitioning (LP). Zenuity provided recorded data from cars driven in real world traf-
fic. Given that data with recorded outcomes was available, the problems were ap-
proached as classification tasks using supervised learning. Data logs, in the form of
time series, were data mined with relevant scenarios in order to create data sets.

In order to train a classifier on the data sets, the data had to be labelled with
categories using various classification schemes. The data was labelled based on the
available signals. This worked well for LP, giving that the position which was then
discretized into intervals as a simplification. No strong ground truth labels for BD
were available, so a proprietary algorithm provided by Zenuity (see subsection 3.4.1)
was used instead. This algorithm was not designed to produce machine learning
labels and sometimes fails to identify barriers. The output of this algorithm was
used as labels after being converted to a boolean value and improved somewhat
using a heuristic postprocessing algorithm.

After labelling the data, it was noted that the class distribution was highly
skewed (which was expected). In order to remove learning biases towards dominant
classes, Random Undersampling (RUS) was used to handle the imbalances.

The data available had over 6000 variables and thus required dimensionality re-
duction. The available variables were not raw sensor readings, but state estimations
from various processing algorithms. These state estimations includes information
about the local surroundings such as nearby cars, road signs, lane markers, road ge-
ometry etc. Relevant input variables were selected and identified using correlation-
based methods. Data samples in the feature space were visualized using the t-SNE
algorithm to visualize the selected features.

Feed-Forward Neural Network and Random Forest (RF) were used as the clas-
sifier models, with time steps treated independently. Various hyperparameters, such
as activation functions and network structure, were tested to find the strong neural
network candidates. For RF, the number of decision trees was the only hyperpa-
rameter considered.

3.1 Data
Zenuity provided access to a database containing measurements from car expeditions
worldwide. The data was stored in log files, in the form of time series. Each
step in a time series contained recorded signals from real-world driving in traffic.
The data used was recorded in various conditions and locations, with a focus on

12

3. Methods

right-hand European traffic. Most of the data was recorded during test driving in
Gothenburg highway traffic, along a route commonly referred to as the "Volvo Drive
Me Gothenburg route" (see [46]).

3.1.1 Data mining
An excessive amount of data was available, most of which was irrelevant for the
given tasks. In order to create a suitable data set, time series that fulfilled a certain
set of conditions were selected.

Here are the conditions that each time series needed to satisfy in order to be
included in the data set. Note that slightly different conditions were used for finding
data for LP and BD.

• No outdated log files
• Only driving on a freeway or a carriageway
• Additional conditions: Lane Positioning

– A log file must not contain any of the following:
∗ Lane changes

– A log file must contain any of the following:
∗ Horizontal curvature (road turns)
∗ Motorcycles
∗ Trucks
∗ Road barriers

• Additional conditions: Barrier Detection
– A log file must contain the following:

∗ Road barriers

3.2 Classification schemes
In order to approach both BD and LP with supervised learning, we must formulate
them as classification or regression problems. BD was split into two binary classifi-
cation tasks, one for each side of the host car. The lateral position is a continuous
signal but instead of using regression for LP, the lateral position was discretized in
order to be solved as a classification problem. The reason is to minimize the noise,
as an autonomous car which makes sudden and sharp adjustments with the steering
wheel will discomfort and possibly scare its passengers.

3.2.1 Lane Positioning schemes
Classification schemes considered as labels for the LP problem:

• Lane position with k intervals After discretizing the lateral space in the
lane into k intervals of equals size, classify which interval the host car should
be positioned in.

• Lane position switch with k intervals After discretizing the lateral space
in the lane into k intervals of equals size, classify when the host car should
switch interval and when it should stay in the current interval.

13

3. Methods

• Discretized lateral offset This identical to lane position with 3 intervals,
with the exception that the centre interval has a width 2d not dependent on
the lane width1.

See subsection 3.3.1 for a detailed description on how the LP labels were created.

3.2.2 Barrier Detection schemes
Classification schemes considered as labels for the BD problem:

• Barrier detection (Left) Classify if there is a barrier or not within 1.5
meters to the left of the host vehicle.

• Barrier detection (Right) Classify if there is a barrier or not within 1.5
meters to the right of the host vehicle.

See subsection 3.4.2 for a detailed description on how the BD labels were created.

3.3 Lane Positioning

Lane Positioning (LP) was approached as a multiclass classification problem. In
order to reduce noise, the position in the lane was transformed from a continuous
signal to a discrete one by dividing the lane into intervals. A few different approaches
to creating labels were tested, described in section 3.2. This problem differs from
Barrier Detection, in that there are additional restrictions on the signals that can be
used. Signals such as blinker activation generally suggest a lane change or a turn,
not a simple adjustment within the current lane. The classifiers should learn to
make decisions to select where car should be positioned in the lane, not to estimate
where it is positioned. The assumption was made that by mimicking human drivers,
the classifiers will learn to select comfortable offsets in relevant scenarios.

3.3.1 Labels
The classification scheme lane position with k intervals, described in section 3.2,
was computed by discretizing the lateral position relative to the lane width into k
positions. See Figure 3.1 for an example with k = 3 intervals.

Figure 3.1: Discretization of the lateral position relative to the lane into k = 3
intervals. For instance a car with no lateral offset will have a lane position y = 2.
The intervals have an equal size which it depends on the width of the lane.

1The width of the inner interval is fixed for any given value of the parameter d, but the width
of the outer intervals varies depending in the width of the lane.

14

3. Methods

The discretized lateral offset scheme is identical to the lane position with 3
intervals scheme, with the exception that the width of the centre interval is a fixed
parameter (typically 10-30 cm, as opposed to being dependent on lane width). The
motivation behind this classification scheme was to detect smaller offsets without
introducing too many classes.

3.3.1.1 Eager and delay labelling heuristics

The classification scheme lane position switch with k intervals was implemented using
eager labelling. The reason for this is because otherwise, only the exact sample when
the host car crosses the border between two intervals will count as a position switch.
A relevant event, such as an overtake, which triggers an offset will cover many
samples due to the sampling frequency. A delayed effect was also added, where
samples after the switch were labelled as a position switch, see Figure 3.2. There is
a risk of introducing more noise when choosing large delay or eager values, as the
duration of the events are unknown.

2 4 6 8 10 12 14 16 18

Sample

Switch right

Stay

Switch left

Lane switch heuristics

Raw

Eager and delay

Figure 3.2: A hand-craft, graphical demonstration of the difference between the
raw labels (lane position switch with k intervals) and with the eager and delayed
labelling.

3.4 Barrier Detection

Barrier Detection (BD) was approached with binary classification, as described pre-
viously in section 3.2. The task was simplified into estimating if there was a barrier
within 1.5 meters (lateral distance) of the car2. Two classifiers are created, one for
the left side and one for the right. A major simplification was to treat each time step
independently, and to detect barriers at each step instead of remembering previous
states.

2Barriers are detected by the classifier when they are directly lateral to the host, see Figure 1.1.

15

3. Methods

3.4.1 Proprietary algorithm for Barrier Detection
Zenuity has a proprietary detection algorithm for detecting barriers, designed with
following properties:

• Low rate of false positives
• Low memory consumption and fast execution
• Accurate estimate of the position of the barrier

The algorithm is based on a set of conditions and a quality counter with a mini-
mum and a maximum value. The quality counter starts at its minimum value. In
each sample, the quality counter increases or decreases depending on whether the
conditions are fulfilled. Once the maximum value is reached, the sensor input used
to decide whether to increment or decrement the quality counter is processed to
calculate the position of the barrier.

Availability and accuracy had been issues with this approach, as well as the
detection of barriers with poor radar reflection properties. The lack availability
manifests as false negatives (failure to detect a barrier) when converting to boolean
labels. Motivated by the lack of availability, it was decided that a machine learning
solution would be attempted for the Barrier Detection problem instead. This algo-
rithm will be referred to as the proprietary algorithm. These labels were improved
as described in subsection 3.4.2.

3.4.2 Labels
The proprietary algorithm was used to create class labels for BD. A sample is la-
belled as barrier detected when the quality counter (recall the description in subsec-
tion 3.4.1) is at its maximum value. This happens when a barrier is less than 1.5m
from the host vehicle. A sample is labelled as no barrier detected otherwise. Recall
that this ground truth is not always accurate.

3.4.2.1 Eager labelling heuristic

The algorithm described in subsection 3.4.1 was designed to be used in real-time
and not to immediately react to potential barriers, however we are using prerecorded
data and thus know the future. With this in mind, we can improve the labels using
this simple rule:

If the quality counter reaches the maximum value, assume there is a bar-
rier present in all steps between where the maximum value was reached
and the step where it started to increase.

This will be referred to as eager labelling. Eager labelling is beneficial as it makes
the labels more consistent: A barrier looks the same to the network whether the
labelling algorithm has just spotted it, when the raw label still says there there is no
barrier, and when it has been following the same barrier for a while. A second issue
is that the proprietary algorithm may erroneously "drop" the barrier if the sensor

16

3. Methods

input is disrupted by a spike in noise. Eager labelling handles both of these cases
to some degree. Refer to Figure 3.3 for a graphical view of the difference between
the quality counter, raw labels, and eager labels.

Figure 3.3: A hand-crafted, graphical demonstration of the difference between the
quality counter, raw labels (live signal), and the eager labels. signal high means
that there is a barrier present.

3.5 Neural networks
In order to solve the classification problems, Feed-Forward Neural Networks were
used. The main reason why neural networks are suitable is because they have many
adjustable hyperparameters. This allows them to be scaled in order to meet the
memory constraints. Once a neural network is trained an output can quickly be
computed by feeding an input, which allows it to be used as a real-time application
(given that the network is not too large). This is a critical property as there are
strict timing and memory requirements in place in an autonomous vehicle.

Google’s machine learning library TensorFlow3 was used to implement and train
the neural networks. A motivation for using TensorFlow is that it has built-in func-
tionality for utilizing GPUs when training neural networks [49]. Due to the size of
our data set, GPUs were needed. The DNNClassifier class in the TensorFlow Python

3In machine learning, a tensor is an array with an arbitrary number of indices [47], hence the
name TensorFlow. Tensors in mathematics and physics have a more restrictive definition, see [48].

17

3. Methods

API was used for implementation. The Softmax function was used for activation
in the final layer in order to squash the raw outputs into probabilities. Different
activation functions were tested for the hidden layers. During training, Softmax
cross entropy was used as the cost function. The cost function was optimized with
various optimization algorithms based on backprogagation such as AdaGrad, Adam,
RMSProp and Ftrl.

The data set was split into 3 sets: 70% training data, 10% validation data, 20%
test data. The training stops when the error on the validation data stops decreasing
for a given number of iterations. After training, the performance was evaluated on
the test data.

Figure 3.4: FFNNs with 1 to 8 hidden layers and 4 to 512 neurons per layer
were used. The output layer was a Softmax layer, which squashed output into
probabilities.

3.6 Class imbalance
The distribution of classes was highly skewed in the available data. When using
randomly chosen time series the most dominant class was often several orders of
magnitude larger (in terms of number of instances) than the smallest (or even the
second largest) class. When training a classifier on imbalanced data, there will
be learning biases toward majority classes [50]. Previous studies have shown that
classification performance on imbalanced data can be improved by using Random
Undersampling (RUS) on majority classes [51], [52]. Random Undersampling was
therefore used to combat class imbalances.

18

3. Methods

3.7 Feature selection

Over 2000 signals are typically as inputs. Many of these are vector or matrix quan-
tities, resulting in about 6000 scalar features. Radar and cameras were used as the
physical sensors, but raw sensor data was not available. Instead the outputs of pre-
processing algorithms, state estimations by Kalman filters, or other types of sensor
fusion were used. Most of the signals were irrelevant to both BD and LP, and must
be pruned using feature selection. Three different methods were chosen:

Pearson correlation (Equation 2.12) was used to measure the class dependency
of each feature. Features were handpicked to form an input set among features
with the highest correlated variables.

ReliefF was used as an alternative way of measuring the class dependencies. A
feature subset was handpicked among the variables with highest ReliefF ranks.
MathWorks’ implementation of the algorithm in MATLAB [53] was used, with
the number of nearest neighbours set to 5.

Correlation-based Feature Selection is a way to measure the merit of a feature
subset. Person correlation was used to measure the dependence between fea-
tures. The merit score in Equation 2.13 was optimized with an Evolutionary
Algorithm, using binary arrays as individuals and a population size of 50 indi-
viduals, roulette wheel selection, elitism, and a mutation rate as the reciprocal
of the individual length.

3.7.1 Exception for Lane Positioning

The feature selection methods mentioned above were used for BD. While feature
selection was performed for the LP problem, it did not yield any useful results.
The most correlated features included signals such as blinker activation or steering
wheel angle. These signals should not be used. The reason is that because the
classifiers should learn to make a decision, not just inform of something that is
already happening (recall that LP is a D&C problem). Once the steering wheel or
blinkers are used, the decision has already been made. Instead of using the feature
selection methods described in the previous section, various features relating to road
curvature, barriers and nearby vehicles were hand picked.

3.8 Signal Preprocessing

Some of the selected input features underwent additional preprocessing. All features
related to objects surrounding the host car were presented in arrays, without order.
These objects were sorted in ascending order in terms of distance to the host car.
This ensures that the first element in such an arrays is always related to the object
closest to the host car, the second element corresponds to the second closest object,
and so on.

19

3. Methods

3.9 Hyperparameters
In order to optimize the prediction accuracy of the ANNs, the following hyperparam-
eters were tested: activation function, network structure, and optimization method.
A hyperparameter search is a time-consuming task since an ANN must be trained
and evaluated for each hyperparameter configuration. In order to minimize long
simulation runs, the hyperparameter search process was carried out on smaller data
sets of a few hundred time series. There is a risk of the hyperparameters not being
optimal after transitioning to larger data sets, but it can be used to get an idea of
what works.

• Activation function:
– ReLU (Equation A.2)
– LeakyReLU (Equation A.3)
– Sigmoid (Equation A.4)
– Softsign (Equation A.5)
– Tanh

• Network structure:
– Number of hidden layers (between 1 and 8)
– Number of neurons in each hidden layers (between 4 and 512)

• Optimizer:
– AdaGrad
– Ftrl
– Adam
– RMSProp

3.10 Random Forest
RFs were used as a complement to neural networks for the LP problem. MathWork’s
implementation in MATLAB, TreeBagger [54], was used. The same features were
used for RF as for the FFNNs. Each class was sampled evenly by using RUS on
the dominant classes. The performance of the RF classifiers were evaluated using
the out-of-bag error, see subsection 2.3.2. The RF method is quicker to use since it
does not need any hyperparameter tuning, but often performs at a level similar to
neural networks [55]–[57].

20

4
Results

Data sets with a total of 16 to 17 million samples, which corresponds to over 100
hours of driving, were created. The Barrier Detection (BD) and Lane Positioning
(LP) problems use their own appropriately selected subsets of this data set.

A set of highly correlated features were identified and classifiers with high per-
formance were found for the BD problem. Features for LP were hand picked to avoid
using features which reflect an already taken decision, since LP is a D&C problem.
The neural networks failed to attain high accuracy for all LP classification schemes.
RF classifiers were able to achieve a high performance for LP labels with 3 uniform
intervals, but these classifiers violated the memory constraints.

4.1 Lane positioning
Feed-Forward Neural Networks were initially trained using the (lane position with
k intervals labels, see section 3.2). The best network used labels with 5 intervals
and resulted in a 93% classification accuracy on the test set. Due to heavy class
imbalances, the neural networks had a huge bias towards the centre interval. The
class distribution is plotted in Figure 4.1. When using RUS on the dominant class,
the test set accuracy dropped below 50%.

In an attempt to improve performance, the output was converted into a recur-
rent feature by feeding the previous output as an input. This added memory to the
classifier and resulted in high test set accuracy, but the classifiers just repeated last
output. For every sample where the lane position changed, the classifiers failed. The
lane switch labels (see subsection 3.3.1) were created with the hope that they would
allow for better performance without repeating the previous output. By training
on the lane position switch labels, the best network got a test set accuracy of 60%,
with class balancing.

Finally the lane position with k intervals labels were attempted again, but
with a Random Forest as the classifier. The best such classifiers achieved an out-of-
bag accuracy of 96% with 3 intervals, which corresponds to very large offsets.

4.1.1 Class balance
The centre position is, as expected, the dominant class. Figure 4.1 shows the dis-
tribution of about 17 million samples. The number of instances drops by several
orders of magnitude each step away from the centre. The most dominant class,
when the car is the middle interval takes, up 93.89% of all samples. The smallest

21

4. Results

class, furthest to the left, makes up only 0.3%� of all samples. Similar imbalances
appeared in the class distributions for LP with different k-value labels.

Class distribution for lane positioning with 5 intervals

1 2 3 4 5

Class

10-4

10-3

10-2

10-1

100

Figure 4.1: Class distribution of a data set when using lane position with 5 intervals
as labels. The classes are the discrete lane position intervals sorted from left to right.
Note that the vertical axis is logarithmic, the most dominant class (class 3) takes up
93.89% of all samples. In comparison the smallest class, furthest to the left (class
1), makes up only 0.3%� of all samples.

4.1.2 Selected features
The problem with approaching LP with supervised learning is that the classifiers are
to learn where the host car should be positioned, not where the host car is positioned.
To do this, the chosen features should be used to detect scenarios in which a lateral
offset is desired, not simply reflect an already taken decision. The best correlated
signals were those related to blinker activation and steering wheel angle, but these
indicate that a decision has already been made. The features selected for LP (see
Table 4.1) had poor correlations with the class labels. No significant clusters were
identified using t-SNE visualizations.

4.1.3 Random Forest
The best performer was the Random Forest algorithm. Error values are shown in
Table 4.2. The method offers little control over the size of the forests (see section 2.3),
which resulted in classifiers which were too large to use in our current environment.
It is possible that the forests can be made smaller though (see Figure 4.2), since
high accuracy is achieved fairly early, however each decision tree consisted of around
30000 nodes which is far too many.

4.2 Barrier Detection
All results in this section are for a network with a single hidden layer of 80 neurons,
using Sigmoid as the activation function and trained for the left side using Adagrad

22

4. Results

Signal Description
Barrier present (Left) Barrier within 1.5 m left of the host car, boolean.
Barrier present (Right) Barrier within 1.5 m right of the host car, boolean.
Road curvature A measurement of how fast the road turns.
Lane width Width of the current lane.
Speed (self) Absolute speed relative to the ground, of the host car.
Local objects
- Lateral positions
- Longitudinal positions
- Lateral velocities
- Longitudinal velocities
- Lateral accelerations
- Heading angles
- Object curvatures
- Object types Truck, motorcycle, pedestrian, etc.
- Motion patterns Oncoming, receding, stationary etc.
- Speeds Absolute speed relative to the ground.

Table 4.1: Selected signals for the LP problem. All signals related to local objects
(below the dividing line) are vector quantities and sorted as described in section 3.8.
These signals explained further in Appendix C.

as the optimizer. Everything in the section applies to the right side as well, but for
a different neural network and and with slightly different yet similar numbers. Since
data consists of right-hand traffic there is a small asymmetry between the left and
the right side. See tables and figures summarizing the neural networks trained for
the BD problem in Appendix B.

A test set accuracy of about 80% was reached by the best neural networks on
BD with eager labelling. Accuracy among the top performers was very close, so a
minor sacrifice in accuracy was made by selecting one of the smaller neural networks
to save some valuable memory (see section B.3). The performance of the network is
shown in Table 4.3, but note that the numbers in this table are for a much smaller
set which had been manually labelled. Manual labelling was done by watching
forward-facing camera footage. Incidentally, we discovered that this network has an
unintended quirk: it may classify a line of stationary cars as a barrier.

4.2.1 Confusion matrices
Confusion matrices for the BD problem are shown in Table 4.4. As the table shows,
the neural network was proficient at correctly identifying barriers. The issue seemed
to be false positives, which comes in at 29%. Something interesting happens when
switching to manual labels, which includes barriers not detectable by the proprietary
algorithm: the number of false positives is reduced by more than 50%. It appears
that the classifiers are able to find barriers which are not labelled in the training
data. It is not clear why this happens, but there is some discussion on the subject
in subsection 5.2.1. The final confusion matrix, "Z/M", compares the training labels

23

4. Results

Label Total samples Trees OoB-error
3 intervals 276360 286 0.040549
5 intervals 19760 248 0.29061
7 intervals 9744 287 0.34266
9 intervals 6146 296 0.38926
11 intervals 3130 131 0.44688

Table 4.2: Out-of the bag errors (lower is better) found using random forest and
sampling equally number of instances of each class. The higher number of intervals,
the less instances exist of the smallest class, hence the decrease in total samples.
The third column shows the number of decision trees used to obtain the best result.
The features used as inputs are described in Table 4.1.

Figure 4.2: Random Forest perfomance on lane positioning with k uniform inter-
vals. Out-of the bag errors plotted against the number of grown decision trees. The
features used as inputs are described in Table 4.1.

to the manual labels. This shows that a large number of barriers (mostly concrete
barriers) are missed by the proprietary algorithm.

4.2.2 Class balance
Barrier Detection class balance can be seen in Table 4.5. The majority of time series
do not contain any barriers, necessitating data mining as well as RUS to aid in the
training of the networks. Even if a fair number of series contain barriers on either
side (39.2%), relatively few individual samples do (11.6%). This necessitated class
balancing, even when only selecting time series with barriers present.

4.2.3 Selected features
The selected features for BD are shown in Table 4.6, and visualized with t-SNE in
Figure 4.3. Using an Evolutionary Algorithm for optimizing a feature subset with
a high metric score resulted in feature subsets which were too large. Instead, the
features with highest class-correlation and best rank from ReliefF were selected.
Not all highly correlated features were used to compute the final results in order to
save memory, but could be included to produce successful classifiers for BD. Local

24

4. Results

Predictor Truth Accuracy
FFNN Labels 72.28%
FFNN Manual 86.81%
Zenuity Manual 75.97%

Table 4.3: Accuracy for our classifier and the proprietary algorithm (see subsec-
tion 3.4.1) on manual labels. The first row shows the performance on the labels
(barrier detection with eager labelling) used in training. Note that these values
were computed on a smaller data set, which had been manually labelled, of about
5 · 104 samples.

N/Z T F
T 0.96 0.29
F 0.04 0.71

N/M T F
T 0.88 0.141
F 0.12 0.859

Z/M T F
T 0.51 0.17
F 0.49 0.859

Table 4.4: Confusion matrices for the Barrier Detection-network ([80]-Sigmoid-
Adagrad), with the true values on the columns. The different sets are: [Z]enuity
(with the eager heuristic, i.e. the labels), [N]etwork output, and [M]anual labels.
Note that these values were computed on a smaller data set, which had been man-
ually labelled, of about 5 · 104 samples.

objects that were moving were filtered out by a preprocessing step before being fed
as inputs to the classifiers, since they cannot be part of a barrier.

The road edge and lane marker signals may seem like strange candidates for
detecting barriers, but make sense when considering the fact that a barrier is very
often accompanied by one or both. A barrier will of course effectively end the lane
in that direction, effectively making it a road edge.

1Relative to the ground.

left only right only both any neither total
series 1181 901 77 1930 4925 4925
% series 24.0 18.3 1.6 39.2 100
samples (million) 1.27 0.49 0.03 1.79 14.4 15.7
% samples 8.1 3.1 0.2 11.6 91.7

Table 4.5: Barrier counts in time series and samples. A single sample in a series
having a property makes the series count as having that property, so Left only +
right only + both 6= any for the series (they do for samples).

25

4. Results

Signal Description
Lane marker presence
Lane marker track status
Road edge properties Both sides.
Road edge quality Reliability of road edge estimations
Road edge track status
Local objects Stationary objects only1.
- Lateral positions
- Longitudinal positions
- Type Truck, motorcycle, pedestrian, etc
Excluded significant signals
Adjacent lane type Lane type of neighbouring lanes
Current Lane
Lane marker type Solid, dashed, unknown etc
Road geometry
Local objects
- Motion pattern Oncoming, receding, stationary etc

Table 4.6: Selected signals for the Barrier Detection problem. All signals related
to local stationary objects (below the dividing line) are vector quantities and sorted
as described in section 3.8. The signals in this table are further explained in Ap-
pendix C.

t-SNE: Barrier detection (left), 10000 samples

No barrier

Barrier

Figure 4.3: Projection of the selected features (see Table 4.6) for BD in 2D using t-
SNE. The data has been coloured after manually made labels. Despite some overlap,
the samples have been projected into class-wise clusters. This clustering indicates
that there is a correlation between the selected features and the presence of barriers.
Note that the plot contains only 5000 random samples of each class, a larger data
set could potentially result in larger class overlap.

26

5
Discussion and Conclusions

Our conclusions and suggestions for future work for the Lane Positioning (LP) and
Barrier Detection (BD) problems are presented below. In summation, we believe
that better data is needed for a machine learning solution to LP. The results for BD
are promising, but could be further improved using better ground truth labels.

5.1 Lane Positioning

We were not able to produce any useful classifiers which respected the memory con-
straints for the Lane Positioning (LP) problem, with accuracy topping out at about
60% for the best FFNNs when expunging any features, such as blinker activation,
which indicate that a decision has already been made (recall that we want a decision-
making algorithm here, not a position estimator). The best results were achieved
with the Random Forest algorithm (4% out-of-bag error), though the structures
are quite large. Figure 4.2 shows that only around 15 decision trees are needed to
surpass 90% out-of-bag accuracy, but each tree consisted of approximately 30000
nodes. In comparison, the largest neural networks consisted of no more than 1024
neurons. The size of the decision trees might suggest that many more neurons are
needed to achieve success with neural networks. However, such large models violate
the memory constraints of the autonomous car.

One important remark is that RF could only attain successful results when
discretizing the lane into 3 lateral positions. This means that if the lane width is
3.5 meters, then the implementation can only recognize offsets larger than approx-
imately 58 centimeters. At such large offsets the car ends up almost next to the
lane edge, which is only desired in rare occasions and during lane changes. It is also
possible that the RF classifier learned to identify samples after a lane change, not a
position change within the current lane as intended.

We have not found any indication that LP is solvable with smaller offsets on our
data set with our classification schemes, and treating each sample independently was
probably inappropriate for LP since the position depends on past events. By watch-
ing recorded front camera footage we noticed another problem for the supervised
learning approach: In most cases when the car had an offset there was no special
scenario such as an adjacent freighter, barrier, motorcycle, or road curvature. The
driver seemed to have random offsets every now and then, overshadowing the actual
relevant scenarios.

27

5. Discussion and Conclusions

5.1.1 Future work
Our suggestions for future work on the Lane Positioning problem:

1. Create and use a data set with less random offsets. We believe this is the most
important point, as the lateral offsets seemed to be taken at random more
often than they were in response to significant scenarios.

2. Mimicking human drivers may not be the best approach to train a classifier
for LP, as driver behaviour is individual and sometimes random.

3. Try alternative machine learning methods, such as:
• Recurrent neural networks such as LSTM networks, which can remember

previous states instead of treating the samples independently.
• Reinforcement learning. This would require a realistic simulation of the

host car in traffic and a suitable reward function. How does on define a
reward function that results in comfort?

4. Use a classical algorithm such as a scoring system. This approach faces the
same issue as reinforcement learning by trying to measure comfort.

5.2 Barrier Detection

For the Barrier Detection (BD) problem, an 80% classification accuracy on a large
test set was achieved using FFNNs. The clustering shown in Figure 4.3 indicates
that there is a correlation between barrier presence and the selected features. Some
of the highly correlated features in Table 4.6 might seem strange at first glance: we
noted that several signals related to the quality of road edge estimation were highly
correlated with presence of barriers. A possible explanation for this might be that
perception algorithms could confuse the top of barriers as the road edge markers, as
mentioned in chapter 1. An interesting discovery is that many of highly correlated
variables were not used at all by the proprietary algorithm used to create the labels.

5.2.1 Barrier ground truth
As noted in subsection 4.2.1, most false positives were in fact true positives when
we looked at the actual camera footage1. The proprietary algorithm used as ground
truth is not perfect and does make mistakes (which is why we are addressing the
BD problem in the first place). Perhaps samples that were incorrectly labelled as no
barrier present by the proprietary algorithm (false negatives, see subsection 3.4.1)
were close to clusters of samples labelled as barrier present in the feature space.
This might be indicated by the t-SNE projection of the features in the plane, as
shown in Figure 4.3.

We believe that the available data can be used to create more accurate classifiers
for detecting barriers, given that appropriate ground-truth labels are available. This
should be possible using the same features and hyperparameters as we’ve used.

1Keep in mind that the test set with manual labels (around 5 · 104 samples), while not tiny, it
is relatively small compared to the total data set.

28

5. Discussion and Conclusions

5.2.2 Future work
Our suggestions for future work on the Barrier Detection problem:

1. Create and use better ground truth labels for training. We believe this is the
most important point.

2. Include barriers excluded here, such as traffic cones (we had no reliable way
to label them).

3. Try different hyperparameters, especially smaller networks.
4. Create one neural network which handle both the left and the right side. This

could save memory compared to having two separate solutions.
5. Introduce several classes per side, sorted by lateral distance to an adjacent

barrier. This could also be relevant for LP when weighing different factors.

29

Bibliography

[1] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization”, Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

[2] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, arXiv
preprint arXiv:1412.6980, 2014.

[3] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T.
Phillips, E. Davydov, D. Golovin, et al., “Ad click prediction: A view from the
trenches”, in Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, 2013, pp. 1222–1230.

[4] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude”, COURSERA: Neural networks for
machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[5] C. Mercer and T. Macaulaych, “Which companies are making driverless cars?”,
2018. [Online]. Available: https://www.techworld.com/picture-gallery/
data/- companies- working- on- driverless- cars- 3641537/ (visited on
06/05/2018).

[6] J. Kaplan, “Here’s every company developing self-driving car tech at ces 2018”,
2018. [Online]. Available: https://www.digitaltrends.com/cars/every-
company- developing- self- driving- car- tech- ces- 2018/ (visited on
06/05/2018).

[7] B. Schoettle and M. Sivak, “A survey of public opinion about autonomous and
self-driving vehicles in the us, the uk, and australia”, 2014.

[8] E. Stepp, “More americans willing to ride in fully self-driving cars”, American
Automobile Association, 2018. [Online]. Available: https://newsroom.aaa.
com/2018/01/americans- willing- ride- fully- self- driving- cars/
(visited on 06/05/2018).

[9] R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “A model for types and
levels of human interaction with automation”, IEEE Transactions on systems,
man, and cybernetics-Part A: Systems and Humans, vol. 30, no. 3, pp. 286–
297, 2000.

[10] SAE On-Road Automated Vehicle Standards Committee and others, “Tax-
onomy and definitions for terms related to on-road motor vehicle automated
driving systems”, SAE International, 2014.

30

https://www.techworld.com/picture-gallery/data/-companies-working-on-driverless-cars-3641537/
https://www.techworld.com/picture-gallery/data/-companies-working-on-driverless-cars-3641537/
https://www.digitaltrends.com/cars/every-company-developing-self-driving-car-tech-ces-2018/
https://www.digitaltrends.com/cars/every-company-developing-self-driving-car-tech-ces-2018/
https://newsroom.aaa.com/2018/01/americans-willing-ride-fully-self-driving-cars/
https://newsroom.aaa.com/2018/01/americans-willing-ride-fully-self-driving-cars/

Bibliography

[11] Drive me - the self-driving car in action, https://www.volvocars.com/intl/
buy / explore / intellisafe / autonomous - driving / drive - me, Accessed:
2018-06-05.

[12] Autopilot | tesla, https://www.tesla.com/autopilot, Accessed: 2018-06-05.
[13] K. Mays, Which cars have self-driving features for 2017?, https : / / www .

cars.com/articles/which- cars- have- self- driving- features- for-
2017-1420694547867/, Accessed: 2018-06-05, 2017.

[14] A. D. Rayome, Dossier: The leaders in self-driving cars, https://www.zdnet.
com/article/dossier-the-leaders-in-self-driving-cars/, Accessed:
2018-06-05, 2018.

[15] Make it real, https://www.zenuity.com/make-it-real/, Accessed: 2018-
06-05.

[16] J. Sjöberg, “Road positioning and lane identification for autonomous vehicles”,
2016.

[17] A. Gurghian, T. Koduri, S. V. Bailur, K. J. Carey, and V. N. Murali, “Deeplanes:
End-to-end lane position estimation using deep neural networks.”, in CVPR
Workshops, 2016, pp. 38–45.

[18] E. Alpaydin, Introduction to machine learning. MIT press, 2014.
[19] G. M. Fitzmaurice, “Regression”, Diagnostic Histopathology, vol. 22, pp. 271–

278, 2016.
[20] S. Shanmuganathan and S. Samarasinghe, Artificial neural network modelling.

Springer, 2016, vol. 628.
[21] M. Wahde, Biologically inspired optimization methods: an introduction. WIT

press, 2008.
[22] Onfido. (2018). How to implement a neural network intermezzo 2, [Online].

Available: http://peterroelants.github.io/posts/neural_network_
implementation_intermezzo02/ (visited on 03/05/2018).

[23] E. Bendersky. (2016). The softmax function and its derivative, [Online]. Avail-
able: https://eli.thegreenplace.net/2016/the-softmax- function-
and-its-derivative/ (visited on 03/05/2018).

[24] M. D. Zeiler, “Adadelta: An adaptive learning rate method”, arXiv preprint
arXiv:1212.5701, 2012.

[25] T. K. Ho, “Random decision forests”, in Document analysis and recognition,
1995., proceedings of the third international conference on, IEEE, vol. 1, 1995,
pp. 278–282.

[26] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.
Springer series in statistics New York, 2001, vol. 1.

[27] L. Breiman, “Random forests”, Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[28] L. Breiman, “Bagging predictors”, Machine learning, vol. 24, no. 2, pp. 123–
140, 1996.

31

https://www.volvocars.com/intl/buy/explore/intellisafe/autonomous-driving/drive-me
https://www.volvocars.com/intl/buy/explore/intellisafe/autonomous-driving/drive-me
https://www.tesla.com/autopilot
https://www.cars.com/articles/which-cars-have-self-driving-features-for-2017-1420694547867/
https://www.cars.com/articles/which-cars-have-self-driving-features-for-2017-1420694547867/
https://www.cars.com/articles/which-cars-have-self-driving-features-for-2017-1420694547867/
https://www.zdnet.com/article/dossier-the-leaders-in-self-driving-cars/
https://www.zdnet.com/article/dossier-the-leaders-in-self-driving-cars/
https://www.zenuity.com/make-it-real/
http://peterroelants.github.io/posts/neural_network_implementation_intermezzo02/
http://peterroelants.github.io/posts/neural_network_implementation_intermezzo02/
https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Bibliography

[29] C. Zheng and Z. Wei, “Speeding up boosting decision trees training”, in AOPC
2015: Image Processing and Analysis, International Society for Optics and
Photonics, vol. 9675, 2015, 96750F.

[30] A. Liaw, M. Wiener, et al., “Classification and regression by randomforest”,
R news, vol. 2, no. 3, pp. 18–22, 2002.

[31] G. Ridgeway, “Generalized boosted models: A guide to the gbm package”,
Update, vol. 1, no. 1, p. 2007, 2007.

[32] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statis-
tical learning. Springer, 2013, vol. 112.

[33] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne”, Journal of
machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[34] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in
space”, The London, Edinburgh, and Dublin Philosophical Magazine and Jour-
nal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[35] L. Van Der Maaten, “Accelerating t-sne using tree-based algorithms.”, Journal
of machine learning research, vol. 15, no. 1, pp. 3221–3245, 2014.

[36] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine learning:
A new perspective”, Neurocomputing, vol. 300, pp. 70–79, 2018.

[37] C. Granger, E. Maasoumi, and J. Racine, “A dependence metric for possibly
nonlinear processes”, Journal of Time Series Analysis, vol. 25, no. 5, pp. 649–
669, 2004.

[38] J. S. Milton and J. C. Arnold, Introduction to Probability and Statistics: Prin-
ciples and Applications for Engineering and the Computing Sciences, 4th. New
York, NY, USA: McGraw-Hill, Inc., 2002, isbn: 0071198598.

[39] M. A. Hall, “Correlation-based feature selection for machine learning”, 1999.
[40] S. B. Thrun, J. W. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. A. De

Jong, S. Dzeroski, D. H. Fisher, S. E. Fahlman, et al., “The monk’s problems:
A performance comparison of different learning algorithms”, Tech. Rep., 1991.

[41] K. Kira and L. A. Rendell, “The feature selection problem: Traditional meth-
ods and a new algorithm”, in Aaai, vol. 2, 1992, pp. 129–134.

[42] I. Kononenko, “Estimating attributes: Analysis and extensions of relief”, in
European conference on machine learning, Springer, 1994, pp. 171–182.

[43] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical analysis of
relieff and rrelieff”, Machine learning, vol. 53, no. 1-2, pp. 23–69, 2003.

[44] A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi, “Calibrating
probability with undersampling for unbalanced classification”, in Computa-
tional Intelligence, 2015 IEEE Symposium Series on, IEEE, 2015, pp. 159–
166.

[45] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Rusboost:
Improving classification performance when training data is skewed”, in Pattern
Recognition, 2008. ICPR 2008. 19th International Conference on, IEEE, 2008,
pp. 1–4.

32

Bibliography

[46] Volvo, Driveme research route. [Online]. Available: https : / / www . media .
volvocars.com/global/en-gb/media/photos/202076/drive-me-research-
route-gothenburg-sweden-illustration.

[47] Q. Song, H. Ge, J. Caverlee, and X. Hu, “Tensor completion algorithms in big
data analytics”, arXiv preprint arXiv:1711.10105, 2017.

[48] S. Weinberg, “Gravitation and cosmology”, ed. John Wiley and Sons, New
York, 1972.

[49] TensorFlow. (2018). Using gpus | tensorflow, [Online]. Available: https://
www.tensorflow.org/programmers_guide/using_gpu (visited on 06/01/2018).

[50] D.-C. Li, C.-W. Liu, and S. C. Hu, “A learning method for the class imbalance
problem with medical data sets”, Computers in biology and medicine, vol. 40,
no. 5, pp. 509–518, 2010.

[51] J. Prusa, T. M. Khoshgoftaar, D. J. Dittman, and A. Napolitano, “Using ran-
dom undersampling to alleviate class imbalance on tweet sentiment data”, in
Information Reuse and Integration (IRI), 2015 IEEE International Confer-
ence on, IEEE, 2015, pp. 197–202.

[52] Y. Sui, Y. Wei, and D. Zhao, “Computer-aided lung nodule recognition by
svm classifier based on combination of random undersampling and smote”,
Computational and mathematical methods in medicine, vol. 2015, 2015.

[53] MathWorks. (2018). Rank importance of predictors using relieff or rrelieff
algorithm - matlab - mathworks nordic, [Online]. Available: https://se.
mathworks.com/help/stats/relieff.html (visited on 06/02/2018).

[54] MathWorks. (2018). Create bag of decision trees, [Online]. Available: https:
//se.mathworks.com/help/stats/treebagger.html#bvf7_tc-1 (visited
on 06/02/2018).

[55] M. W. Ahmad, M. Mourshed, and Y. Rezgui, “Trees vs neurons: Compari-
son between random forest and ann for high-resolution prediction of building
energy consumption”, Energy and Buildings, vol. 147, pp. 77–89, 2017.

[56] S. Nawar and A. M. Mouazen, “Comparison between random forests, artificial
neural networks and gradient boosted machines methods of on-line vis-nir
spectroscopy measurements of soil total nitrogen and total carbon”, Sensors,
vol. 17, no. 10, p. 2428, 2017.

[57] E. Raczko and B. Zagajewski, “Comparison of support vector machine, random
forest and neural network classifiers for tree species classification on airborne
hyperspectral apex images”, European Journal of Remote Sensing, vol. 50,
no. 1, pp. 144–154, 2017.

[58] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks”, in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

33

https://www.media.volvocars.com/global/en-gb/media/photos/202076/drive-me-research-route-gothenburg-sweden-illustration
https://www.media.volvocars.com/global/en-gb/media/photos/202076/drive-me-research-route-gothenburg-sweden-illustration
https://www.media.volvocars.com/global/en-gb/media/photos/202076/drive-me-research-route-gothenburg-sweden-illustration
https://www.tensorflow.org/programmers_guide/using_gpu
https://www.tensorflow.org/programmers_guide/using_gpu
https://se.mathworks.com/help/stats/relieff.html
https://se.mathworks.com/help/stats/relieff.html
https://se.mathworks.com/help/stats/treebagger.html#bvf7_tc-1
https://se.mathworks.com/help/stats/treebagger.html#bvf7_tc-1

A
Appendix: Functions and

Derivations

A.1 Activation functions
An activation function is the final step before the computed value of a neuron is
passed to the next layer (possibly the output layer). Some of the most common
activation functions are discussed below. Unless included, the derivative is left as
an exercise to the reader. Man that feels good to write.

Tanh
The hyperbolic tangent (tanh) function is defined as:

tanh(z) = exp(2z)− 1
exp(2z) + 1 (A.1)

The Rectified Linear Unit (ReLU) function
The rectified linear unit (ReLU) function is defined as:

ReLU(z) =

z if z > 0
0 otherwise

(A.2)

The function is used for a few reasons. It is fast to compute; about six times faster
than using tanh neurons [58]. Since the gradient is constant (0 or 1), ReLU also
solves the vanishing gradient problem. The final reason is that it is non-linear.

The leaky ReLU function
The leaky rectified linear unit (LeakyReLU) function is defined as:

ReLU(z) =

z if z > 0
az otherwise

(A.3)

where a is some small, constant value. This is used to avoid the gradient becoming
zero for z < 0, which may cause convergence issues in some cases. There are other
variants of the ReLU function where a is a tunable parameter.

I

A. Appendix: Functions and Derivations

The sigmoid function
The sigmoid function is defined as:

Sigmoid(z) = 1
1 + e−z

(A.4)

The softsign function
The softsign function is defined as:

Softsign(z) = z

1 + |z| (A.5)

A.2 Softmax
The softmax function is defined as:

y =

y1
...
yK

 = 1∑K
j=1 e

zL
j

ez

L
1

...
ez

L
K

y is a vector containing the estimated probabilities for each class, K is the number
of classes, zL is the local field vector of

A.2.1 Derivative of Softmax

∂yi
∂zLi

=
ez

L
i
∑K
j e

zL
j − ezL

i ez
L
i(∑K

j e
zL

j

)2 = ez
L
i∑K

j e
zL

j

∑K
j e

zL
j − ezL

i∑K
j e

zL
j

= yi(1− yi) = yi − yiyi

k 6= i
∂yi
∂zLk

= 0− ezL
i ez

L
k(∑K

j e
zL

j

)2 = − ez
L
i∑K

j e
zL

j

ez
L
k∑K

j e
zL

j

= −yiyk

=⇒ ∂yi
∂zLj

= δijyi − yiyj ∀i, j

A.2.2 Softmax cross-entropy derivation
When training a neural network with softmax classification, the network parameters
can be tuned with a maximum likelihood estimation. Let θ denote a set of weights
and biases in a neural network.

argmax
θ
L
(
θ | t, zL

)
II

A. Appendix: Functions and Derivations

Since only one ti = 1 and all other tj = 0,∀j 6= i, the true labels t follows a categor-
ical distribution. The likelihood function for categorically distributed variables can
be written:

L
(
θ | t, zL

)
= pθ(t, zL) =

K∏
i=1

P
(
ti, z

L | θ
)ti

This can be rewritten into: (Joint probability)

P
(
t, zL | θ

)
= P

(
t | zL, θ

)
P
(
zL | θ

)
→ P

(
t | zL, θ

)
→ P

(
t | zL

)
Now the likelihood function can be rewritten:

L
(
θ | t, zL

)
=

K∏
i=1

P
(
ti | zL

)ti =
K∏
i=1

ytii

By looking at the log-likelihood, the likelihood function gets simplified into a sum.

log
(
L
(
θ | t, zL

))
= log

(
K∏
i=1

ytii

)
=

K∑
i=1

ti log (yi)

Finding θ that maximizes the likelihood is the same θ that minimizes the negative
log-likelihood function. It turns out that the negative log-likelihood function is a
cross entropy function H.

H(t, y) = −
K∑
i=1

ti log (yi)

A.2.3 Derivative of Softmax cross-entropy

∂H

∂zLi
= −

K∑
j=1

tj
∂ log(yi)
∂zLi

= −ti
∂ log(yi)
∂zLi

−
K∑
j 6=i

tj
∂ log(yj)
∂zLi

= − ti
yi

ezL
i
∑K
k=1 e

zL
k − ezL

i ez
L
i(∑K

k=1 e
zL

k

)2

+
K∑
j 6=i

tj
yj

 ez
L
i ez

L
j(∑K

k=1 e
zL

k

)2

= − ti

yi

(∑K
k=1 e

zL
k − ezL

i∑K
k=1 e

zL
k

)
ez

L
i∑K

k=1 e
zL

k

+
K∑
j 6=i

tj
yj
yiyj

= − ti
yi

(1− yi)yi +
K∑
j 6=i

tjyi = −ti + tiyi +
K∑
j 6=i

tjyi

= −ti +
K∑
j=1

tjyi = −ti + yi
K∑
j=1

tj = yi − ti

A.3 Backpropagation
This section derives the equations of backpropagation for the derivatives in subsec-
tion 2.2.3.

III

A. Appendix: Functions and Derivations

A.3.1 Error of output layer
Equation 2.3a describes the error in the output layer, δL. The error is defined as
the derivative of the cost function C respect to the local field zL. Let n denote the
number of neurons in the output layer L and aLi denote the activation of the output
neuron with index i, i = 1, 2, 3, . . . n. Using the multivariate chain rule the error for
output neuron i can be computed:

δLi = ∂C

∂zLi
= ∂C

∂aLi

∂aLi
∂zLi

= ∂C

∂aLi

∂σL(zLi)
∂zLi

(A.6)

σL is the activation function, aLi = σL(zLi). Equation A.6 can rewritten on matrix
form:

δL =

δL1
...
δLn

 =

∂C
∂aL

1...
∂C
∂aL

n

�

∂σL(zL

1)
∂zL

1...
∂σL(zL

n)
∂zL

n

 = ∇L
aC � ∂σL(zL)

The � symbol denotes element-wise multiplication.

A.3.2 Error of hidden layers
In this subsection, the error for the hidden layers (l 6= L) will be derived, see
Equation 2.3b. The error for neuron i in layer l are defined as the derivative of the
cost function respect to the local field.

δli := ∂C

∂zli

Now lets compute the error for the last hidden layer, l = L− 1.

δL−1
i = ∂C

∂zL−1
i

=
∑
j

∂C

∂aLj

∂aLj
∂zLj

∂zLj
∂aL−1

i

∂aL−1
i

∂zL−1
i

=
∑
j

δLj
∂zLj
∂aL−1

i

∂aL−1
i

∂zL−1
i

(A.7)

=
∑
j

δLj w
L
ji

∂aL−1
i

∂zL−1
i

(A.8)

Every neuron j in layer L depends on zj−1
i , this causes a sum over the j indicies

to appear. Note that Equation A.8 is consistent with the matrix equation for layer
l = L−1, see Equation 2.3b. Now lets attempt to compute the error for any hidden
layer.

δli = ∂C

∂zli
=
∑
j

∂C

∂aLj

∂aLj
∂zLj

∂zLj
∂zli

=
∑
j

δLj
∂zLj
∂zli

=
∑
k

∑
j

δLj
∂zLj
∂aL−1

k

∂aL−1
k

∂zL−1
k

∂zL−1
k

∂zli

=
∑
k

∑
j

δLj w
L
jk

∂aL−1
k

∂zL−1
k

∂zL−1
k

∂zli
=
∑
k

δL−1
k

∂zL−1
k

∂zli
= {recursive pattern emerges}

. . . =
∑
n

δl+1
n wl+1

ni

∂ali
∂zli

=
∑
n

δl+1
n wl+1

ni

∂σl(zli)
∂zli

IV

A. Appendix: Functions and Derivations

Now the expression for the errors is a recursive formula:

δli =
∑
j

δl+1
j wl+1

ji

∂σl(zli)
∂zli

(A.9)

Equation A.9 can be written on matrix form:

δl =

δl1
...
δln

 =

wl+1

11 . . . wl+1
1n

...
wl+1
m1 . . . wl+1

mn

T

δl+1
1
...

δl+1
m

�

∂σl(zl

1)
∂zl

1...
∂σl(zl

n)
∂zl

n

 =
(
(wl+1)T δl+1

)
� ∂σl(zl)

n,m is the number of neurons in the layer l, respective l + 1.

A.3.3 Bias derivatives
In order to update the biases using gradient descent, an expression for the bias
derivatives need to be derived. By using the errors the derivatives can be derived
in similar fashion as Equation A.9.

∂C

∂bli
=
∑
j

∂C

∂aLj

∂aLj
∂zLj

∂zLj
∂bli

=
∑
j

δLj
∂zLj
∂bli

=
∑
k

∑
j

δLj
∂zLj
∂aL−1

k

∂aL−1
k

∂zL−1
k

∂zL−1
k

∂bli

=
∑
k

∑
j

δLj w
L
jk

∂aL−1
k

∂zL−1
k

∂zL−1
k

∂bli
=
∑
k

δL−1
k

∂zL−1
k

∂bli
= {recursive pattern emerges}

. . . =
∑
n

δl+1
n wl+1

ni

∂ali
∂zli

∂zli
∂bli

=
∑
n

δl+1
n wl+1

ni

∂σl(zli)
∂zli

· 1 = δli

Putting it together, we get:
∂C

∂bli
= δli (A.10)

Equation A.10 can be written on matrix form:

∇l
bC =

∂C
∂bl

1...
∂C
∂bl

n

 =

δl1
...
δln

 = δl

A.3.4 Weight derivatives

∂C

∂wlij
=
∑
k

∂C

∂aLk

∂aLk
∂zLk

∂zLk
∂wlij

=
∑
k

δLk
∂zLk
∂wlij

=
∑
m

∑
k

δLk
∂zLk
∂aL−1

m

∂aL−1
m

∂zL−1
m

∂zL−1
m

∂wlij

=
∑
m

∑
k

δLkw
L
km

∂aL−1
m

∂zL−1
m

∂zL−1
m

∂wlij
=
∑
m

δL−1
m

∂zL−1
m

∂wlij
= {recursive pattern emerges}

. . . =
∑
n

δl+1
n wl+1

ni

∂ali
∂zli

∂zli
∂wlij

= δlia
l−1
j

V

A. Appendix: Functions and Derivations

This results in the following scalar equation:

∂C

∂wlij
= δlia

l−1
j (A.11)

Equation A.11 can be written on matrix form:

∇l
wC =

∂C
∂wl

11
. . . ∂C

∂wl
1n...

∂C
∂wl

m1
. . . ∂C

∂wl
mn

 =

al−1

1
...

al−1
m

(δl1 . . . δln
)

= al−1(δl)T

n,m is the number of neurons in the layer l, respective l − 1.

VI

B
Appendix: Barrier Detection

Layers are read left to right: 1-2-3 denotes a network where the first layer (after the
input layer) has 1 node, the second layer has 2 nodes, and the final layer (before the
output layer) has 3 nodes.

B.1 Figures
Figure B.2 and Figure B.1 show the results of the hyperparameter search. The 8
best/worst networks are shown on the barcharts. Numbers are based on about 5000
time series.

Hyperparameter Search: Left side
Top 8 Hyperparameter Settings

 128-128, ReLU, Ftrl

 128-128-128, sigmoid, Adagrad

 128-128, sigmoid, Ftrl

 90-90-90, sigmoid, Ftrl

 90-90, softsign, Adagrad

 128-128, softsign, Ftrl

 90-90, softsign, Ftrl

 90-90-90, softsign, Ftrl

 80.73%

 80.76%

 80.77%

 80.77%

 80.78%

 80.79%

 80.79%

 80.86%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy

H
y
p
e
rp

a
ra

m
e
te

r
s
e
tt
in

g

Bottom 8 Hyperparameter Settings

 128-128, tanh, Adam

 128-128, tanh, RMSProp

 128-128-128, tanh, Adam

 128-128-128, tanh, RMSProp

 90-90-90, tanh, Adam

 90-90-90, tanh, RMSProp

 128-128-128, leakyReLU, RMSProp

 128, leakyReLU, RMSProp

 50.03%

 50.03%

 50.03%

 50.03%

 50.03%

 50.03%

 50.03%

 50.04%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy

1

2

3

4

5

6

7

8

H
y
p
e
rp

a
ra

m
e
te

r
s
e
tt
in

g

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

Hyperparameter setting Performance Distribution (200 total)

Intermediate (184)

Best (8)

Worst (8)

Hyperparameter group

Figure B.1: Hyperparameter results for the left side. Set size: 2.3 · 105 samples.

B.2 Tables
Table B.1 and Table B.2 show the accuracy and error rates for a few networks.
The networks in the tables are not sorted, but have been chosen to highlight a few
typical networks. "Raw" refers to the proprietary algorithm labels without the eager

VII

B. Appendix: Barrier Detection

Hyperparameter Search: Right side
Top 8 Hyperparameter Settings

 128-128, sigmoid, Adagrad

 32-32-32, softsign, Ftrl

 128-128-128, tanh, Ftrl

 90, sigmoid, Adagrad

 32-32-32, tanh, Ftrl

 90, tanh, Ftrl

 128-128-128, ReLU, Adagrad

 90-90, softsign, Adagrad

 78.18%

 78.20%

 78.30%

 78.44%

 78.44%

 78.51%

 78.65%

 78.81%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy

H
y
p
e
rp

a
ra

m
e
te

r
s
e
tt
in

g

Bottom 8 Hyperparameter Settings

 128-128, tanh, Adam

 128-128, tanh, RMSProp

 128-128-128, tanh, RMSProp

 32-32-32, tanh, RMSProp

 90-90-90, sigmoid, Adam

 90-90-90, tanh, RMSProp

 128-128-128, tanh, Adam

 90-90, tanh, RMSProp

 49.95%

 49.95%

 49.95%

 49.95%

 49.95%

 49.95%

 50.05%

 50.05%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy

1

2

3

4

5

6

7

8

H
y
p
e
rp

a
ra

m
e
te

r
s
e
tt
in

g

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

Hyperparameter setting Performance Distribution (200 total)

Intermediate (184)

Best (8)

Worst (8)

Hyperparameter group

Figure B.2: Hyperparameter results for the right side. Set size: 2.3 · 105 samples.

heuristic. A 100% T2 error-rate means that all points with barriers were classified
incorrectly. Numbers are based on about 15 time series, a subset of the ca 5000 time
series used to produce the figures.

Hidden Activation Optimizer Manual Eager Raw
layers function A/T1/T2 A/T1/T2 A/T1/T2
90-90-90 softsign Ftrl 86.62/14.31/11.95 75.90/29.42/4.43 74.59/30.66/3.92
90-90 softsign Adagrad 78.79/27.18/12.10 68.18/39.23/4.45 66.90/40.25/3.87
90 sigmoid Adagrad 86.70/13.97/12.29 76.17/29.03/4.59 74.87/30.27/4.07
128-128 tanh Adam 60.40/0.00/100.00 78.70/0.00/100.00 80.35/0.00/100.00
90 tanh Ftrl 87.10/13.30/12.29 76.50/28.57/4.76 75.25/29.79/4.15
80 sigmoid Adagrad 86.81/14.09/11.81 75.97/29.33/4.45 74.67/30.57/3.92
90-90 softsign Ftrl 86.77/13.71/12.49 76.23/28.85/5.01 74.97/30.07/4.42

Table B.1: Performance for a few different networks, left side. A/T1/T2:
Accuracy/Type-1 error/Type-2 error, in percent. Sample size: 5 · 104 points.

VIII

B. Appendix: Barrier Detection

Hidden Activation Optimizer Manual Eager Raw
layers function A/T1/T2 A/T1/T2 A/T1/T2
90 tanh Ftrl 79.59/20.93/16.48 77.53/21.74/8.89 77.15/23.88/7.75
90-90-90 softsign Ftrl 85.47/11.12/40.21 87.00/11.60/22.86 87.01/12.51/20.07
80 sigmoid Adagrad 75.11/26.57/12.22 72.28/26.56/7.26 71.90/29.61/5.92
90-90 softsign Adagrad 79.58/21.06/15.58 77.59/21.74/6.84 77.21/23.97/5.55
128-128 tanh Adam 88.30/0.00/100.00 92.97/0.00/100.00 93.61/0.00/100.00
90-90 softsign Ftrl 85.75/10.87/39.77 87.26/11.49/22.22 87.27/12.28/19.36
90 sigmoid Adagrad 79.70/20.71/17.20 77.94/20.97/7.95 77.56/23.51/6.67

Table B.2: Performance for a few different networks, right side. A/T1/T2:
Accuracy/Type-1 error/Type-2 error, in percent. Sample size: 5 · 104 points.

B.3 Network size estimates
Assumptions: Weights and biases are 4-byte double values. Each neuron has a single
bias value and as many weights as the number of neurons in the previous layer. It
is assumed that the input layer has 50 neurons (one per feature). We’re assuming
fully connected layers as well. Note that this is an optimistic estimate. In practice,
a non-trivial amount of additional memory will be needed for the softmax layer and
for execution. The formula used is shown in Equation B.1, and values calculated for
the networks in Table B.1 and Table B.2 are shown in Table B.3.

Approximate size = ΣN
l=1(Ol−1 ·Ol +Bl) (B.1)

where O0 is the the number of inputs to the network, Ol is the number of outputs
in layer l, and Bl is the number of biases in layer l. Note that Ol = Bl. The value
Ol−1 · Ol is simply the size of the weight matrix in layer l. For a network with the

Hidden layers Size (KB)
80 16
90 18
90-90 50
90-90-90 82
128-128 90

Table B.3: Estimated size in kilobytes (1 KB = 210 bytes) of networks with a given
number of hidden layers. The leftmost layer connects to the input layer.

layer structure "90-90-90", Equation B.1 yields: Approximate size = (50 · 90 + 90) +
2 · (90 · 90 + 90) = 20970, since we assume O0 = 50. Using 4 bytes per variable, the
final size is 83880 bytes = 83880/1024 KB = 81.91 KB.

IX

C
Appendix: Signals

These section explains the selected signals as inputs as described in Table 4.6 and
Table 4.1. Note that all signals are online estimations, not ground truths.

• Adjacent lane type - Lane type of neighbouring lanes, also flags if an adja-
cent lane does not exist.

• Barrier present - Barrier within 1.5 m left of the host car, output of the
barrier detector.

• Lane marker presence - Check if the host car identify any nearby lane
markers.

• Lane marker track status - Status of lane marker tracking. Is the tracking
of adjacent lane markers reliable, have the current tracked markers been seen
in a previous sample or is it a new marker.

• Road edge quality - Measurement of how reliable the road edge estimations
are.

• Road geometry - Geometry of drivable area.
• Local objects: The signals below are related to local objects such as cars,

bikes, road signs, etc.
– Motion pattern - Enum if an object is oncoming, receding or stationary

relative the host car.
– Object types - Enum if an object is identified as a truck, motorcycle,

pedestrian etc.

X

	Abstract
	Acknowledgements
	Table of Contents
	Lists and definitions
	List of Figures
	List of Tables
	Acronyms
	Glossary

	Introduction
	Levels of autonomy – incremental progress
	Background
	Purpose
	Problem formulations
	Motivation for a machine learning approach

	Theory
	Classification and regression
	Artificial neural networks
	Feed-forward neural network
	Optimization of neural networks
	Backpropagation
	Softmax loss function
	Adaptive learning rate

	Random Forests
	Ensemble learning
	Out-of-bag error

	t-Distributed Stochastic Neighbor Embedding
	The mathematics of t-SNE

	Feature selection
	Dependence measures
	Correlation-based Feature Selection
	ReliefF

	Evolutionary Algorithms
	Random Undersampling

	Methods
	Data
	Data mining

	Classification schemes
	Lane Positioning schemes
	Barrier Detection schemes

	Lane Positioning
	Labels
	Eager and delay labelling heuristics

	Barrier Detection
	Proprietary algorithm for Barrier Detection
	Labels
	Eager labelling heuristic

	Neural networks
	Class imbalance
	Feature selection
	Exception for Lane Positioning

	Signal Preprocessing
	Hyperparameters
	Random Forest

	Results
	Lane positioning
	Class balance
	Selected features
	Random Forest

	Barrier Detection
	Confusion matrices
	Class balance
	Selected features

	Discussion and Conclusions
	Lane Positioning
	Future work

	Barrier Detection
	Barrier ground truth
	Future work

	Bibliography
	Appendix: Functions and Derivations
	Activation functions
	Softmax
	Derivative of Softmax
	Softmax cross-entropy derivation
	Derivative of Softmax cross-entropy

	Backpropagation
	Error of output layer
	Error of hidden layers
	Bias derivatives
	Weight derivatives

	Appendix: Barrier Detection
	Figures
	Tables
	Network size estimates

	Appendix: Signals

