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Altruistic model predictive control in mixed autonomy multi-lane traffic
Jacob Larsson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Traffic jams in transportation networks, e.g. road networks, is a challenge and
concern for road safety, fuel economy, comfort and throughput . In such conditions,
small disturbances in the road network due to accidents, closed lanes or random
braking of preceding vehicles can cause serious propagation throughout the traffic.
This is caused by the car-following dynamics of human driven vehicles (HDVs). To
mitigate the effect of such events and to improve traffic flow, connected automated
vehicles (CAV) are used. The idea is that CAVs have the capabilities of smoothing
traffic on the highway, thus reducing jamming. Current control strategies for CAVs
increase comfort, efficiency and safety of the CAV through using a MPC framework.
However, the current approaches disregards surrounding HDVs driving objectives in
order to benefit the selfish CAV. They also do not consider overall traffic situation
and possibilities of traffic jamming based on control decisions. This is so called selfish
driving. A new approach to controlling the CAV’s is through altruistic control. Here,
the idea is to incorporate information from surrounding vehicles in order to optimize
the overall traffic situation for the benefits of other vehicles on the road, effectively
sacrificing ones-self for the benefit of others. The work presents methods of how this
type of control can be formulated and what the benefits of altruistic control are.
The methods are validated in a high fidelity traffic simulator using single lane and
multi lane scenarios with varying degree of traffic conditions.

Keywords: Altruism, MPC, traffic, simulation, autonomous, vehicle.
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1
Introduction

This thesis aims to explore the area of model predictive control for autonomous
vehicles in transportation networks. This chapter provides some background infor-
mation regarding the reasons why the problem is interesting, the overall aim of the
project as well as the research questions and limitations.

1.0.1 Background
Traffic jams in transportation networks, e.g. road networks, is a challenge and
concern for road safety, fuel economy, comfort and throughput [1]. In such con-
ditions, small disturbances in the road network due to accidents, closed lanes or
random braking of preceding vehicles can cause serious propagation throughout the
proceeding traffic. This is caused by the car-following dynamics of human driven
vehicles (HDV). To mitigate the effect of such events and to improve traffic flow,
connected automated vehicle (CAV) flow control has become a popular topic [2, 3].
The idea is that CAVs have the capabilities of smoothing traffic on the highway, thus
reducing jamming. Current control strategies for CAVs increase comfort, efficiency
and safety of the CAV through using a MPC framework. However, the current
approaches disregards surrounding vehicles driving objectives in order to maximize
the driving goals of the selfish CAV. They also do not consider overall traffic sit-
uation and possibilities of traffic jamming based on control decisions. This is so
called selfish driving. A new approach to controlling the CAV’s is through altruistic
control [4], which is an active area of research at the automatic control group. Here,
the idea is to incorporate information from surrounding vehicles and other CAVs in
order to optimize the overall traffic situation.

1.0.2 Aim
The aim of the thesis is to explore the design of altruistic driving strategies for
CAVs and how altruistic control of CAVs can affect the traffic smoothness on mixed-
autonomy, multi-lane roads. More specifically, the thesis work will implement an
altruistic MPC based controller design and test the performance on mixed-autonomy
multi-lane roads in real life scenarios using the PTV Vissim simulation environment
[5]. The simulations concern individual altruistic driving and investigates its impact
on the attenuation of jamming. Altruism will also be compared to selfish driving
for the CAV’s using low and high fidelity traffic simulations. The overall goal of the
thesis is to produce and publish a journal paper. The journal paper can be seen in
Appendix A.
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1. Introduction

1.0.3 Research questions
Research questions are important in order to guide the development work throughout
the thesis and are mainly used to design and evaluate experiments and their results.
For the purpose of improving traffic using altruistic behaviour, some main areas of
interest are considered:

• Can altruistic driving reduce impact of congestion compared to other driving
modes?

• What are the traffic improvements that can be made?
• In what traffic situations can/cannot altruistic driving be beneficial?
• Can the controller handle disturbances by vehicles?
• Under what conditions does altruism work/not work?

1.0.4 Limitations
The aim of the project is to implement and validate altruistic MPC control on
multi-lane roads. The work will thus be limited to multi-lane highways without
intersections. This means that other driving scenarios, such as urban driving, will
not be included in the work. Furthermore, CAV penetration rate and multi-CAV
optimization problems will be left for foture work on this topic.

2



2
Methodology

This chapter covers the methods that are used in order to investigate the main
hypothesis presented previously. Here, the MPC problem formulation is covered
to provide an in-depth view of the equations. The simulation software is then
presented, along with scenario designs, ways of programming the MPC problem and
the simulation. The optimization programming toolbox is also briefly covered.

2.1 Altruistic vs. selfish control strategy
An altruistic control strategy can, in the context of a CAV, be described as sacrificing
ones own driving objectives for the benefit of the HDVs driving objectives. The
objectives can be anything from keeping a steady pace to lowering the emissions [4].

Figure 2.1: Altruistic vs. selfish action: Red HDV causes congestion on the lane

Figure 2.1 depicts a hypothetical scenario where the CAV has two options: A) go
in the left lane in order to reduce traffic oscillations caused by the leading HDV
or B) change to the right lane and keep a steady pace. It is also assumed that
the driving objective of the CAV is to increase the comfort of vehicles. Under
these circumstances, an altruistic controller would sacrifice its own comfort for the
benefit of the succeeding HDVs by choosing option A. If the CAV were to act in a
selfish manner, the best option would be B since it would not impact the CAVs own
acceleration.

2.2 Model Predictive Control
Model predictive control (MPC) schemes are set-up as quadratic optimization prob-
lems where an objective function is minimized, when subjected to constraints, over a
future time horizon [6]. By using a dynamic model and problem specific constraints,

3



2. Methodology

MPC is able to predict the systems trajectories in to future time and optimize them
using control input variables. The optimal control input is then obtained, and the
first input is used to control the actual system.

Optimization

Model

System

MPC controller

𝑢𝑘
∗ 𝑥𝑘

Control 
sequence

prediction

Figure 2.2: A basic diagram of system and controller interaction

Figure 2.2 shows a simple diagram of how the controller interacts with the system.
The system output xk is the system states and the MPC controller uses these to
calculate an optimal control sequence by predicting the systems future trajectories
over a time horizon N using a model of the system. When the optimization is suffi-
ciently satisfied, the optimal control input u∗k is applied to the system, and the cycle
repeats. Since the implementation of MPC is most often made on a microcontroller,
only discrete time k is considered for the controller. Thus, a MPC controller suitable
for controlling a CAV on a highway consists of three main components; a discrete
time LTI system xk+1 = Axk + Buk, an objective function J and an optimization
algorithm to minimize J over the time horizon using the control input sequence u.
The problem of MPC can be formulated based on the knowledge the discrete dy-
namical system along with the structure of quadratic optimization. As previously
described, MPC optimizes the control input u over a horizon of length N in order to
minimize some objective function J . The general MPC optimization problem can
be described as;

minimize
u

J(x,u)

subject to xk+1 = Axk + Buk
xmin ≤ xk ≤ xmax
umin ≤ uk ≤ umax

(2.1)

From (2.1), the MPC task is divided into three main categories: The dynamical
system model, the objective function and additional design constraints. Since MPC
can be very notation heavy, and that there are many vehicles that are taken into
account in the optimization problem, some clarification of notations will be made
throughout.
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2. Methodology

2.2.1 Dynamical system model
Control systems are most often implemented on a microcontroller. Since a computer
is a digital device, continuous time is difficult to work with. The MPC controller
is instead implemented in a discrete time fashion and thus the dynamical system
model must take this in to account. Therefore, a discrete time dynamical system is
used in the controller implementation.
A discrtete time LTI system [7] can be represented in a state space formulation as

xk+1 = Axk +Buk

yk = Cxk

where k = 1, ..., N
(2.2)

For the purposes of MPC, one would like to make predictions along a horizon of
fixed length. This is accomplished by utilizing the state model in 2.2 over a horizon
of length N . To use this representation in an optimization friendly format, one can
see that step k = 2 will depend on step k = 1 and so forth, i.e.

x1 = Ax0 +Bu0

x2 = Ax1 +Bu1 = A(Ax0 +Bu0) +Bu1

= (A2x0 + ABu0) +Bu1
...

xN = AxN−1 +BuN−1 = AN−1x0 +
[
AN−1B AN−2B . . . B

]

u0
...

uN−1
uN



(2.3)

From 2.3, it is clear that future states depend only on the initial state, succeeding
control inputs and the dynamical system matrices from 2.2. Furthermore, 2.3 can
be represented with matrix formulation;

x1
x2
...
xN

 =


A
A2

...
AN−1

x0 +


B 0 . . . 0
AB B . . . 0
... . . . . . . ...

AN−1B AN−2B . . . B



u0
...

uN−1
uN

 (2.4)

In compact form, one can formulate 2.4 as;

X = Abx0 +BbU (2.5)

The general formulation can then be applied to the specific scenario of a CAV
controlling HDVs in traffic. First, the system states are defined. The CAV system
model contains three states:

xCAVk =
[
pCAVk vCAVk yCAVk

]T
where pCAVk ∈ R, vCAVk ∈ R, yCAVk ∈ [1, 2, ..., Nlanes]

(2.6)

5



2. Methodology

The CAV states at discrete time instant k in (2.6) are longitudinal position p[m],
longitudinal velocity v

[
m
s

]
and lane number y. On a road, the lane numbering starts

at the rightmost lane and increases with each lane until the leftmost lane. There
are also two inputs to the system:

uCAVk =
[
aCAVk δCAVk

]T
where aCAVk ∈ R, δCAVk ∈ [−1, 0, 1]

(2.7)

The inputs in (2.7) are longitudinal acceleration a
[
m
s2

]
and lane change decision δ.

The lane change decision will either keep the vehicle in the current lane: δCAVk = 0,
change to the left lane: δCAVk = 1 or change to the right lane: δCAVk = −1. This
is a simplified lane changing model in order to produce a tractable optimization
problem. By means of these inputs, the CAV can control its own movements. The
CAV will also indirectly control the succeeding HDVs and thus influencing the traffic
behind itself.
Similarly, the states and inputs are for the jth HDV at discrete time instant k are
defined:

xHDVj,k =
[
pHDVj,k vHDVj,k yHDVj,k

]T
for j = 1...NHDV

where pHDVj,k ∈ R, vHDVj,k ∈ R, yHDVj,k ∈ [1, 2, ..., Nlanes]

uHDVj,k =
[
aHDVj,k δHDVj,k

]T
for j = 1...NHDV

where aHDVj,k ∈ R, δHDVj,k ∈ [−1, 0, 1]

(2.8)

The discrete time dynamical model intends to update the states in a linear fashion.
As the focus of the thesis is to control the CAV in order to influence traffic behind
it, the system model is kept simple. The model disregards any vehicle dynamics
related equations and simply acts as a point moving through space by updating the
aforementioned states based on the inputs. Thus, the system can be represented as
a linear state space model:

xCAVk+1 = AxCAVk + BuCAVk

xHDVj,k+1 = AxHDVj,k + BuHDVj,k

where A =

1 ∆t 0
0 1 0
0 0 1

 ∈ R3×3,B =


∆t2

2 0
∆t 0
0 1

 ∈ R3×2

(2.9)

As mentioned previously, MPC is based on future time predictions based on the
dynamic model used. As such, MPC considers a time horizon of length N . At each
time instant k, the controller will optimize over a horizon length of N steps. As
such, the states and inputs used as optimization variables are:

xCAVk+n ,xHDVj,k+n

uCAVk+n ,uHDVj,k+n

where n = [1, ..., N ]
(2.10)

6



2. Methodology

The current states in (2.8) and (2.6) at time k are used as initial conditions for the
optimization. The states and inputs in (2.43) are used as optimization variables,
where specifically the controller input aCAVk+n will be minimized. The state trajectory
for the CAV in the optimization, according to (2.3), is then:

xCAVk+1 = AxCAVk + BuCAVk

xCAVk+2 = AxCAVk+1 + BuCAVk+1 = A2xCAVk + BuCAVk + BuCAVk+1
...

xCAVk+N = AxCAVk+N−1 + BuCAVk+N−1 = AN−1xCAVk + AN−1BuCAVk + ...+ BuCAVk+N

(2.11)

In a similar manner as (2.11) the HDV trajectories are formulated.

2.2.2 Driver model
Car following models are used to describe the behaviour human-driven vehicles in
a traffic situation [8]. They take information from the surroundings and try to
mimic real driving behaviour. There are several different models available, simple
acceleration setting based on own vehicle velocity and preceding vehicle velocity to
psycho-physical models that take psychological phenomena in to account.
The goal of the MPC is to calculate an optimal input acceleration for the CAV, such
that the HDVs are indirectly controlled. The CAV acceleration is thus a variable
which will be minimized in the optimization problem. For the HDVs, their accel-
eration is determined by the driver model used. In simulation software, a complex
driver model is often used in order to create a realistic scenario. The philosophy be-
hind a MPC controller is to use simpler representations of reality in order to predict
the behaviour of a more complex system.
Optimal velocity relative velocity (OVRV) [4] is a driver model which weighs the
optimal velocity of own vehicle verses the relative velocity between the own vehicle
and the preceding vehicle. OVRV is a piece-wise linear function which determines
the own vehicles acceleration at each time instant;

a(t) = f(h(t), v(t),∆v(t)) = α(V (h(t))− v(t)) + β∆v(t) (2.12)
In 2.12, the own vehicles longitudinal acceleration a(t) is determined by a function
that depends on the distance between the own vehicle and the preceding vehicle,
i.e. the headway h(t), the own vehicles velocity and the relative velocity between
the two, ∆v(t). V (h(t)) is a piece-wise linear function that maps a headway to a
desired velocity;

V (h(t)) =
[
V̄ (h(t))

]vmax

0
= max(0,min(vmax, V̄ (h(t)))

where V̄ (h(t)) = vmax
h(t)− hmin
hmax − hmin

(2.13)

By the max() operator in 2.13 it is clear that the OVRV model is piece-wise linear.
In 2.13, there are tuning parameters that determine the behaviour of V̄ (h(t)). vmax
is the maximum allowed velocity of the vehicles, hmax and hmin are the maximum
and minimum allowed headway between the two vehicles.

7



2. Methodology

In 2.12, the parameters α and β weigh the effect of headway based on desired velocity
verses the relative velocity on the longitudinal acceleration.
Due to OVRV being an intractable and piece wise linear function, it cannot be
directly used as a linear constraint in the optimization problem.
In equation 2.12, there is a function that maps headway to velocity in a piece wise
linear fashion;

V̄ (h(t)) = vmax
h(t)− hmin
hmax − hmin

(2.14)

Plotting this function reveals it’s shape and gives an idea how to reformulate in to
linear equations suitable for use in a convex optimization problem.

𝑣𝑚𝑎𝑥

𝑉(ℎ)

0
ℎ

𝑓2(ℎ)

𝑓3(ℎ𝑚𝑎𝑥)

𝑓1(ℎ𝑚𝑖𝑛)

ℎ
𝑚
𝑖𝑛

ℎ
𝑚
𝑎
𝑥

Figure 2.3: Illustration of 2.14

The function 2.14 works by taking the min(...) and max(...) operators in order to
clip f2(h) to lie between 0 and vmax. This can also be accomplished by constraining
f2(h) using linear constraints f1(hmin) and f3(hmax) in conjunction with a slack
variable in f2(h). In 2.3, the blue shaded area is constraint f3(hmax), which bounds
from above. The red shaded area is constraint f1(hmin), which bounds from below.
The constraint equations for the reformulated OVRV model is then;

aHDVj,k =
(
α(V̄ (hHDVj,k )− vHDVj,k

)
− β∆vHDVj,k + γHDVj,k

aHDVj,k ≥
(
α(V̄ (hmax)− vHDVj,k

)
− β∆vHDVj,k

aHDVj,k ≤
(
α(V̄ (hmin)− vHDVj,k

)
− β∆vHDVj,k

(2.15)

As can be seen, the equality constraint in 2.15 has an added slack variable. In order
to keep the OVRV model correct, the slack variable has to be as small as possible.
This can be accomplished by minimizing the variable by adding a quadratic function
as an objective function. With this added, the objective function becomes;

8



2. Methodology

Jslack = λ
∑

j∈GfHDV

∣∣∣∣∣∣γHDVj,k

∣∣∣∣∣∣2
2 (2.16)

In 2.16, the slack variable is a quadratic function using the squared L2-norm. The
set GfHDV contains all HDVs following the leading HDV. The weight λ controls how
much the slack variable will influence the overall objective function and thus controls
how much the slack variable γ is minimized. Increasing λ will cause γ to decrease.
It is worth noting that the reformulation is not exact, and will vary from the true
OVRV model, however minimizing the slack variable and using λ will ensure that
the gap is small and that the model mismatch is low.
By the addition of slack variables for all HDVs, γ must be added to the MPC
optimization variables as well.
As mentioned, the OVRV model is used for all HDVs in order to set their accelera-
tions at each simulation step. However, since the OVRV model relies on information
regarding a preceding vehicle, this model will not work for the leading HDV. The
leading HDV will instead have to be accounted for by keeping the acceleration con-
stant throughout the entire prediction horizon. This is assumed due to the leading
HDV being treated as a black box, where the controller has no information regard-
ing what is ahead of the leading vehicle. Thus, a safe way of predicting the leading
vehicles movements would be to keep the acceleration constant. The velocity will
also remain constant, however the velocity will never become negative. As such,
every optimization will use a pre-calculated acceleration and velocity profile for the
leading HDV.

2.2.3 Driving objective
The objective function is the function which the optimization solver tries to min-
imize. For a self driving vehicle, which should act in an altruistic manner with
regards to the surrounding traffic, there are a few objectives that are of interest in
this work: Traffic efficiency and driving comfort.

2.2.3.1 Traffic efficiency

Traffic efficiency can be described as how well the vehicle is keeping up with the
speed limit on the road. When traffic congestion increases, the vehicle speed will
decrease and thus the traffic efficiency is reduced. To describe the objective in a way
that can be used in a quadratic minimization problem, one may consider to use a
squared L2-norm between the desired velocity and the actual velocity of the vehicle.

Jefficiency = ||vactual − vdesired||22
In order to introduce altruism, a hyperparameter κ is used to weigh the importance
between the efficiency of the CAV and the HDVs. Furthermore, since the MPC
optimizes over the entire horizon length N , the sum of Jefficiency is used. The full
traffic efficiency objective is then;

Jefficiency = ||vCAV − vdesired||22 + κ
∑

j∈GsHDV
i

||vHDVj − vdesired||22 (2.17)

9



2. Methodology

When minimizing the objective in 2.17, the MPC tries to reduce velocity difference
between the CAV, HDVs behind the CAV and the desired velocity. By setting κ ≥ 0
it is possible to influence the altruistic behaviour of the controller. Increasing leads
to increasing altruism and thus sacrificing the velocity difference for the CAV in
favour of the HDVs.

2.2.3.2 Comfort

Comfort is an important aspect when it comes to stop-and-go traffic, or when a lane
is heavily congested. The objective to achieve comfort for passengers of both CAV
and HDV is to minimize both the magnitude and the rate of change of the longitu-
dinal acceleration. As such, the comfort objective is twofold; minimize acceleration
magnitude and minimize the derivative of acceleration, i.e. jerk. Similarly to the
traffic efficiency, acceleration magnitude and jerk objectives can be formulated as
minimizing the squared L2-norm;

Jacc. mag. = ||aactual||22 (2.18)

Jjerk = || d
dt
aactual||22 (2.19)

The acceleration magnitude objective in 2.18 is also implemented in an altruistic
manner using κ and takes in to account the CAV and the HDVs behind the CAV.

Jacc. mag. = ||aCAV ||22 + κ
∑

j∈GsHDV
i

||vHDVj ||22 (2.20)

Similarly, 2.19 is implemented. However, since the MPC controller will be using
discrete time, the derivative is replaced by a first-order Euler method approximation
by;

d

dt
a(t) ≈ a(t+ ∆t)− a(t)

∆t
(2.21)

Using 2.21, the jerk objective is implemented as;

Jjerk =
∣∣∣∣∣
∣∣∣∣∣aCAV,pre − aCAV

∆t

∣∣∣∣∣
∣∣∣∣∣
2

2
+ κ

∑
j∈GsHDV

i

∣∣∣∣∣∣
∣∣∣∣∣∣a

HDV,pre
j − aHDVj

∆t

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(2.22)

The total comfort objective will then be a the sum of 2.20 and 2.22. The influence
of each objective is weighted against each other using the hyperparameter w2;

Jcomfort = Jacc. mag. + w2Jjerk (2.23)

2.2.3.3 Total objective function

The traffic efficiency and the comfort objectives can be combined to form the final
MPC objective using 2.17 and 2.23. In order to tune the objective for either efficiency
or comfort, the hyperparameter w1 is used. Thus, the total objective function is;

JMPC objective = Jefficiency + w1Jcomfort + Jslack (2.24)
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2.2.4 Constraints
In the MPC formulation, constraints can be used to ensure that the controller ad-
heres to certain physical bounds. As described previously, the system model is used
as a constraint in order to ensure that the MPC controller will adhere to the physical
bounds of the vehicles. By similar reasoning, the OVRV model is also used in order
to constrain the HDVs motion so that the controller will follow the model. Other
physical constraints, such as constraints on input variables and other traffic related
properties are also used in order to create a desired behaviour of the controller.
One such behaviour is time headway. Time headway is a metric where the headway
distance is considered a function of velocity and time. Simply, multiplication of
velocity and time gives a distance, and this distance is considered a time headway.
This metric captures the behaviour that when the velocity is high, the distance
must be greater so that there is enough time to react to sudden events ahead of the
vehicle. Thus, it is dynamic and significantly contributes to driving behaviour. As
mentioned previously, the OVRV is a simple model that only takes in to account the
current headway with regards to distance to the preceding vehicle. As mentioned,
in the Wiedemann model, there is a time headway component. Since the MPC
controller will be used in a simulator using the more advanced Wiedemann model,
the controller can be upgraded with a time headway using constraints. This will
help the controller to better predict the true driving behaviour of the vehicles;

pPreceding HDV
j,k − pHDVj,k ≥ hmin + tHDVmin vHDVj,k (2.25)

In 2.25, the controller accounts for the HDV headway and ensures that it is at least
great than the minimum headway distance and a time headway controlled by tmin,
e.g. 3 seconds. The MPC controller should also ensure that the CAV keeps a similar
time headway;

pPreceding CAV
k − pCAVj,k ≥ hmin + tCAVmin v

CAV
k (2.26)

Additionally, to ensure that the CAV keeps a safe headway to vehicles in other lanes
during a lane change maneuver two additional constraint are added;

pPreceding CAV
k − pCAVj,k ≥ hsafe

pCAVj,k − pSucceeding CAV
k ≥ hsafe

(2.27)

Both 2.26 and 2.27 ensure that the CAV is controlled in a safe manner, leaving
enough space in front of the CAV so that the controller will be able to brake in
time. 2.27 also ensures that the succeeding vehicle in a new lane will not have to
perform any emergency braking maneuvers when the CAV switches lane.
In addition to safety constraints for CAVs and HDVs, there are also constraints on
CAV control inputs:

aCAVk+n ≤ amax

aCAVk+n ≥ amin
(2.28)

The constraints in (2.29) will ensure realistic acceleration and braking behaviour of
the CAV. Lastly, the CAV velocity must be bounded, as negative velocities are not

11



2. Methodology

desirable in the circumstances of driving on a highway:

vCAVk+n ≥ 0 (2.29)

2.3 Quadratic optimization
MPC optimization formulations are convex quadratic optimization problems.

2.3.1 Integer relaxation
The MPC formulation described in the previous section is a mixed-integer opti-
mization problem with quadratic objective function and linear constraints. This is
because the lane state in (2.6) is an integer variable due to discrete lane numbers
[1, 2, 3, . . . ] and this can be hard to work with in practice. Generally, integer op-
timization problems are NP-hard, and most often an integer relaxation is made in
order to solve the optimization problem. A common method for relaxing integer
problems is to use floating point numbers in the optimization and then rounding to
the nearest integer. However, for the purposes of this MPC optimization problem,
it is possible perform integer relaxation by exploiting the way the integer numbers
are used and the structure of the problem. As mentioned, the integer numbers are
strictly used for lane numbers and lane changing decisions. If the lane changing con-
trol decision is offloaded from the optimization and instead is handled externally, it
is possible to omit the integer states from the optimization. This may be achieved
by performing 3 concurrent MPC optimizations for the lanes that may be reached
in 1 step. For the HDVs, it must then be assumed that they do not change lane as
the optimization will only see a prediction over a single lane. Effectively, the CAV
optimizes three single lane scenarios even though the actual scenario is multi lane.
The lane change decision will then be to choose the lane with the best predicted
outcome:

δCAVk =


1, if J∗,leftk < min

(
J∗,currentk , J∗,rightk

)
−1, if J∗,rightk < min

(
J∗,currentk , J∗,leftk

)
0, otherwise

(2.30)

In (2.30), the lane change decision δCAVk is a conditional expression based on the
optimal function values of the current lane, the lane immediately left and right of
the CAV, J∗,currentk , J∗,leftk and J∗,rightk respectively. The lane decision is based on the
best predicted outcome, i.e. the lane with the lowest predicted cost. A lane change
to the left is, as before, represented by δCAVk = 1 in the lane numbering, a right lane
change is δCAVk = −1 and keeping in the same lane is δCAVk = 0. The altered system
states and inputs are then:

xCAVk =
[
pCAVk vCAVk

]T
, xHDVj,k =

[
pHDVj,k vHDVj,k

]T
uCAVk =

[
aCAVk

]T
, uHDVj,k =

[
aHDVj,k

]T (2.31)

12
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In addition, the lane states and inputs in the system model will be removed and
thus simpler state and input matrix are used:

A =

1 ∆t
0 1
0 0

 ∈ R2×2,B =


∆t2

2
∆t
0

 ∈ R3×1 (2.32)

Since the alteration is just removing the lane states and inputs from the system, no
other alterations are made to the system model equations in (2.2))

2.3.2 Formulating general quadratic programs
A quadratic program (QP) is a way of solving convex optimization problems on the
form of;

min
x
f0(x)

s.t.fi(x) ≤ bi, i = 1, ..., n
(2.33)

In 2.33, the objective function f0(x) can be any quadratic function. The function
is subject to constraints fi(x) ≤ bi, where fi(x) is a linear function. The goal is
to find a solution for the variables x such that the constraints are satisfied and the
quadratic equation is minimized. In general there are no analytical solutions to
convex optimization problems and thus iterative methods are used to solve such
problems. A common tool for solving 2.33 is interior-point methods. Interior-point
methods are used in most commercial optimization solvers.
A more common way of expressing 2.33 is to use matrix notation;

min
x

1
2x

TPx+ qTx

s.t. Gx ≤ H

Ax = b

(2.34)

The objective function in 2.34 is simply a quadratic function on matrix form with the
constant term being omitted, and is subject to both inequality constraints, Gx ≤ H,
and equality constraints, Ax = b. Since an equality constraint can be represented
by two inequality constraints with different sign, 2.33 and 2.34 are equivalent.

2.3.3 Formulating the MPC optimization problem
While the general formulation for QPs in (2.34) is the final form of the MPC opti-
mization problem, there are still practical considerations for creating "good" numer-
ical optimization problems. Some reformulation of the OVRV model has already
been made, and that allowed the model to be used as a constraint. However, when
the optimizer solves the problem, there are always numerical issues to take in to
account, e.g. there is no infinite precision for the numerical values of variables. One
of these particular issues is scaling of objective and constraints. For example:

J(x) = x2
1 + 1010x2

2 (2.35)
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The variables x1 and x2 in (2.35) will hase significatly different contribution to the
overall objective function value. When dealing with numerical optimization, the
differences in scale of 1010 may cause the variable x1 to simple be ignored. This
is because by having such a different scale for x2, this term becomes dominating
and thus one may not be sure if the numerical optimum for x1 is the near the true
optimum. Simply, the contribution of x1 may be unreliable. If x1 is the control input
for the CAV, the control input may be unusable and can have devastating effects
on the system. In order to address this type of issue, the objective function and
constraints are scaled down. The total objective function, including the addition of
the slack variable, is:

Jtotal = Jefficiency + w1 [Jacc. mag. + w2Jjerk] + λJslack (2.36)

For the total objective function (2.36), there will be scaling issues related both
to the hyperparameters w1, w2, λ and the internal altruism weight κ present in
Jefficiency, Jacc. mag. and w2Jjerk. Furthermore, there may also be large differences in
scale between the magnitude of velocities, accelerations and slack variables. Scaling
problems resulting from differences in weights may be resolved by capping all weights
to lie within a range [0, 1] and rewriting the objective function accordingly. Issues
related to the magnitude of variables can be solved by dividing by the maximum
value the variable can reach. The final, re-scaled, objective function is then:

Jtotal = (1− λ) [(1− w1)Jefficiency + w1 [(1− w2)Jacc. mag.+ . . .

w2Jjerk]] + λJslack

where w1 ∈ [0, 1] , w2 ∈ [0, 1] , λ ∈ [0, 1]
(2.37)

The individual objective functions are then also modified to accommodate the al-
tered altruism hyperparameter κ and scaling down the variables:

Jefficiency = (1− κ) 1
v2
max

||vCAV − vdesired||22 + . . .

κ
1

NsHDV v2
max

∑
j∈GsHDV

||vHDVj − vdesired||22

Jacc. mag. = (1− κ) 1
a2
max

∣∣∣∣∣∣aCAV ∣∣∣∣∣∣2
2

+ κ
1

NsHDV a2
max

∑
j∈GsHDV

∣∣∣∣∣∣aHDVj

∣∣∣∣∣∣2
2

Jjerk = (1− κ) 1
a2
max

∣∣∣∣∣∣∣∣ 1
∆t(a

CAV,pre − aCAV )
∣∣∣∣∣∣∣∣2

2
+ . . .

κ
1

NsHDV a2
max

∑
j∈GsHDV

∣∣∣∣∣∣∣∣ 1
∆t(a

HDV,pre
j − aHDVj )

∣∣∣∣∣∣∣∣2
2

Jslack =
∑

j∈GfHDV

1
γ2
maxNfHDV

∣∣∣∣∣∣γHDVj

∣∣∣∣∣∣2
2

where κ ∈ [0, 1] , NsHDV = #GsHDV , NfHDV = #GfHDV

(2.38)
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Note that the slack variable is present for all HDVs except for the leader, meaning
that we divide by (NHDV − 1) for the slack objective. The objective is now further
simplified by expanding the squared L2-norm in to more recognizable quadratic
equations:

Jefficiency =
N∑
i=1

(
(1− κ)
v2
max

(v2,CAV
i − 2vCAVi vdesired + v2

desired) + . . .

κ

NsHDV v2
max

∑
j∈GsHDV

(v2,HDV
i,j − 2vHDVi,j vdesired + v2

desired)
 (2.39)

Jacc. mag. =
N∑
i=1

(1− κ)
a2
max

a2,CAV
i + κ

NsHDV a2
max

∑
j∈GsHDV

a2,HDV
i,j

 (2.40)

Jjerk =
N∑
i=1

(
(1− κ)
a2
max∆t2

(
(aCAV,prei )2 − 2aCAV,prei aCAVi + (aCAVi )2

)
+ . . .

κ

NsHDV a2
max∆t2

∑
j∈GsHDV

(
(aHDV,prei,j )2 − 2aHDV,prei,j aHDVi,j + (aHDVi,j )2

) (2.41)

Jslack =
∑

j∈GfHDV

N∑
i=1

1
γ2
maxNfHDV

(γHDVj,i )2 (2.42)

The objective functions are now on an easily recognizable quadratic format.
As seen in the general quadratic optimization formulation on matrix form (2.34),
there are several matrices that contain the specific objective functions and con-
straints. In (2.34), the optimization variable not only contain the system states and
inputs, but it must also include the slack variables introduced in (2.16). Firstly, all
optimization states are concatenated in to a single vector:

xopt =
[
xCAVk+1 . . .xCAVk+N xHDV1,k+1 . . .xHDV1,k+N . . .xHDVNHDV ,k+1 . . .xHDVNHDV ,k+N . . .

. . .uCAVk . . .uCAVk+N uHDV1,k . . .uHDV1,k+N . . .uHDVNHDV ,k
. . .uHDVNHDV ,k+N

γHDV1,k . . . γHDV1,k+Nγ
HDV
NHDV −1,k . . . γ

HDV
NHDV −1,k+N

]T
∈ RNvars×1

where Nvars = Nstates +Nslack +Ninputs, Nstates = 3(N +NHDVN),
Ninputs = 2(N +NHDVN), Nslack = (NHDV − 1)N

(2.43)

The vector in (2.43) structure is simple. The CAV states come first, then the states
for allNHDV HDVs over the horizon are concatenated together. Afterwards, the CAV
inputs and HDV inputs are concatenated. Finally the slack variables are added to
form the final optimization variable vector. For example, in the scenario in figure
2.4 there are 4 vehicles in total, 1 CAV and 3 HDVs. Setting N = 50 time steps,
this would result in Nvars = 1100 optimization variables. The initial conditions are
also combined in to a vector:

x0,opt =
[
xCAVk xHDV1,k . . .xHDVNHDV ,k

]T
∈ RN0×1

where N0 = 3(1 +NHDV )
(2.44)
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It is important to note that x0,opt in (2.44) is considered as a vector of constant
terms, since the initial condition vehicle states are fixed for each MPC optimization
and only change between each optimization step. In order to give insight how
the optimization problem is formulated, a simple example will now be made. The
example involves 2 HDVs and 1 CAV, where there is one leading HDV, HDV2, one
CAV which follows HDV2, and lastly a HDV that follows the CAV, i.e. HDV1. To
simplify the scenario, the horizon length is only N = 2, meaning that the MPC
controller predict 2 time steps in to the future, e.g. 0.2 sec. Figure 2.4 shows this
simple scenario and how the prediction steps may be interpreted.
Firstly, the HDV and CAV states in this example are as follows:

xCAV0 =
[
pCAV0
vCAV0

]
, xCAV1 =

[
pCAV1
vCAV1

]
, xCAV2 =

[
pCAV2
vCAV2

]

xHDV1
0 =

[
pHDV1

0
vHDV1

0

]
, xHDV1

1 =
[
pHDV1

1
vHDV1

1

]
, xHDV1

2 =
[
pHDV1

2
vHDV1

2

]

xHDV2
0 =

[
pHDV2

0
vHDV2

0

]
, xHDV2

1 =
[
pHDV2

1
vHDV2

1

]
, xHDV2

2 =
[
pHDV2

2
vHDV2

2

] (2.45)

The inputs and slack variables are:

uCAV0 = aCAV0 , uCAV1 = aCAV1

uHDV1
0 = aHDV1

0 , uHDV1
1 = aHDV1

1 , γHDV1
1 , γHDV1

2

uHDV2
0 = aHDV2

0 , uHDV2
1 = aHDV2

1

(2.46)

The optimization variable vector is then

xopt =
[
xCAV1 xCAV2 xHDV1

1 xHDV1
2 xHDV2

1 xHDV2
2 . . .

uCAV0 uCAV1 uHDV1
0 uHDV1

1 uHDV2
0 uHDV2

1 γHDV1
1 γHDV1

2

]
∈ R20×1

(2.47)

By using the states and variables in (2.46) and forming them in to the optimization
variable vector (2.43), the objective in (2.38) can be formulated on matrix form
using quadratic matrix equations:

Jtotal = 1
2xToptPxopt + qTxopt

where P = diag
[ (1−λ)(1−w1)

v2
max

Pefficiency
(1−λ)w1
a2

max∆t2Pcomfort
λ

γ2
maxNfHDV

Pslack
]
∈ R20×20

q = −2vdesired
[
0 (1− κ) 0 (1− κ) 0 κ

NsHDV
0 κ

NsHDV
0 . . . 0

]T
∈ R20×1

and Pefficiency = diag
[
0 (1− κ) 0 (1− κ) 0 κ

NsHDV
0 κ

NsHDV
0 0 0 0

]
∈ R12×12

Pcomfort =



(1− κ)(1 + w2) −2w2(1− κ) 0 0 0 0
0 1 0 0 0 0
0 0 κ(1+w2)

NsHDV

−2κw2
NsHDV

0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


∈ R6×6

Pslack = I2×2 ∈ R2×2

(2.48)
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The constraints are also reformulated in to matrix form, where they are split in to
equality and inequality constraints according to the general quadratic optimization
problem (2.34).

Aeqxopt = b

where Aeq =

 AVM
AOV RV

AMPC pred. heuristic

 , beq =

 bVM
bOV RV

bMPC pred. heuristic

 (2.49)

In (2.56), AVM is the matrix of the vehicle model presented in (2.9). The conents
are the entire trajectories for each vehicle, which was presented in (2.4). bVM are all
the constant terms from these equations, i.e. the matrix of initial conditions from
(??). For this example, AVM and bVM are formulated as

AVM =
[
I12×12 BVM 012×2

]
∈ R12×20

where BVM = diag
[
BBM BBM BBM

]
∈ R12×6, BBM =


∆t2

2 0
∆t 0
3∆t2

2
∆t2

2
∆t ∆t

 ∈ R4×2

(2.50)

bVM = diag
[
ABM ABM ABM

]
x0,opt ∈ R12×6, ABM =


1 0
0 1
1 2∆t
0 1

 ∈ R4×2

(2.51)
The OVRV model constraints, presented in (2.15) contains both equality and in-
equality constraints, and the equality part is represented in matrix form as AOV RV
and the constant terms in bOV RV .

AOV RV ∈ R2×20 =[
−ρ β 0 0 ρ (α− β) 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 −ρ β 0 0 ρ (α− β) 0 0 0 0 0 0 0 1 0 0 0 1

]

where ρ = αVmax
hmax − hmin

(2.52)

bOV RV = ρ

[
−hmin
−hmin

]
∈ R2×1 (2.53)

As mentioned, the MPC prediction heuristics for the leading HDV is simply keeping
the acceleration constant. So, AMPC pred. and bMPC pred. are

AMPC pred. ∈ R2×20 =[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

] (2.54)

bMPC pred. =
[
alead0
alead0

]
∈ R2×1 (2.55)
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Finally, the inequality constraint also follow the general quadratic optimization for-
mat where

Gineqxopt = Hineq

where Gineq =


GOV RV

Gsafety

GCAV input

Gvelocity

 , Hineq =


HOV RV

Hsafety

HCAV input

Hvelocity

 (2.56)

Firstly, the remaining OVRV constraints are contained in GOV RV and the respective
constant terms in HOV RV .

GOV RV ∈ R4×20 =
0 −β 0 0 0 (−α + β) 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 −β 0 0 0(−α + β) 0 0 0 0 0 0 0 1 0 0 0 0
0 β 0 0 0 (α− β) 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 β 0 0 0(α− β) 0 0 0 0 0 0 0 0 1 0 0 0


(2.57)

HOV RV =


αVmax

0
αVmax

0

 ∈ R4×1 (2.58)

The safety constraints from (2.26) and (2.25) are formulated in matrix form using
Gsafety and the constant terms are considered in Hsafety.

Gsafety ∈ R4×20 =
−1 0 0 0 1 tHDVmin 0 0 0 0 0 0 . . . 0
0 0 −1 0 0 0 1 tHDVmin 0 0 0 0 . . . 0
1 tCAVmin 0 0 0 0 0 0 0 −1 0 0 . . . 0
0 0 1 tCAVmin 0 0 0 0 0 0 −1 0 . . . 0

 (2.59)

Hsafety =


−hmin
−hmin
−hmin
−hmin

 ∈ R4×1 (2.60)

The limits on acceleration input for the CAV in (2.29) are put in matrix form by
GCAV input and HCAV input.

GCAV input =


0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 . . . 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 . . . 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 . . . 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 . . . 0

 ∈ R4×20

(2.61)

HCAV input =


−amin
amax
−amin
amax

 (2.62)
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The velocity for the CAV and the leading HDV are also constrained, and in matrix
from these constraints are represented by Gvelocity and Hvelocity.

Gvelocity =


0 −1 0 0 0 0 0 0 0 0 0 0 . . . 0
0 0 0 −1 0 0 0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 0 0 0 −1 0 0 . . . 0
0 0 0 0 0 0 0 0 0 0 0 −1 . . . 0

 ∈ R4×20 (2.63)

Gvelocity = 04×1 ∈ R4×1 (2.64)

CAV

Driving direction

HDV HDV

CAVHDV HDV

CAVHDV HDV

Prediction step 0

Prediction step 1

Prediction step 2

CAVHDV HDV

Simulation step

Figure 2.4: Example of MPC problem formulation for simple 4 vehicle scenario.
Prediction step 0 show the initial states from the real environment which are used
for predicting in to the future. Prediction step 1 and 2 are performed by the MPC
controller to optimize the vehicle trajectories. The simulation step is again in the
real environment, where the inputs used to go from prediction step 0 to prediction
step 1 are applied by the controller on to the CAV in the simulation environment.
This procedure occurs at each simulation step, albeit with longer time horizon for
better predictions.
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3
Experiments

This chapter covers how the experiments were implemented, how the experiments
were set-up and the results along with a discussion.

3.1 Implementation
This section gives insights into the different aspects of implementing the MPC con-
troller and how the traffic simulator was set-up for the experiments. Firstly, the
traffic simulator is introduced and covers how the simulations work, what driving
behaviour is used as well as how the simulations are designed. Secondly, the Python
programming implementation is briefly covered, where the programming structure
and functions are explained along with the optimization toolbox that is used

3.1.1 Traffic simulator - PTV VISSIM
PTV VISSIM is a high fidelity, microscopic traffic simulator. The simulator is able to
accurately simulate real driving behaviour of vehicles on a variety of traffic conditions
and road types, from congested highway traffic to highly complex intersections with
multiple vehicle types. The simulator is highly customizable and allows one to design
road networks from scratch, or from map data. The traffic driving behaviours can
also be fully customized so that different aggressiveness levels of drivers can be
simulated. For the purposes of the thesis, the simulator is used to gain insight into
how the altruistic controller behaves in life-like conditions.
In the thesis, the traffic simulator is first used to design scenarios for testing the
controller behaviour. The scenarios includes both design of road network and design
of driving behaviours in traffic. As the focus is to control a CAV on a highway
with multiple lanes. The simulations should be simple yet representative of steady
highway traffic in differing conditions. Thus, the Ehra Leissen test track in Germany
was used as a base for modeling the highway scenarios. In order to reduce the
programmatic complexity of the simulator interaction with the MPC controller, and
that it was sought after to use straight road sections, the Ehra Leissen test track
was ideal. The long straight road sections ensure that the traffic is not affected by
sharp turns, which helps with repeatability of tests. The very wide turns also aid
in this regard.
There is also the ability to adjust the driving behaviour of vehicles in the simulator.
The simulator uses the Wiedemann99 (W99) driver model. The W99 model is a
psycho-physical driver model that not only accounts for headway and relative veloc-
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Figure 3.1: The CAV (in blue) during a single lane traffic simulation

Figure 3.2: The Ehra Leissen test track model in PTV VISSIM

ity, like OVRV, but also introduces psychological elements to the behaviour of the
vehicle. Unlike the OVRV model, W99 is also stochastic. This means that the driver
behaviour will have some level of randomness to the actions taken. Furthermore,
W99 is a non-tractable model consisting of both function and logical expressions,
meaning that no analytic function exists.
The W99 model has several parameters, and Figure 3.7 shows the W99 parameters
that may be customized in Vissim. CC0 is the desired vehicle standstill distance,
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CC1 is the headway time (in seconds) that the vehicle wants to keep. CC0 and CC1
define the safe vehicle headway by hsafe = CC0 + CC1v̇ where v [m/s] is the vehicle
velocity. CC2 controls the following variation in meters by defining the oscillation
boundaries by hsafe ≥ h ≥ hsafe + CC2. CC3 is a threshold parameter defining
when the vehicle recognized a slower vehicle ahead of it, starts to slow down and
entering a following state. CC4 and CC5 controls the speed differences during the
follwing state for deceleration and acceleration respectively where smaller values
increases the vehicles sensitivity to accelerations and deceleration of the preceding
vehicle. CC6 controls the speed dependency of oscillations, where larger values lead
to larger velocity with increasing distance while the vehicle is in the following state.
CC7, CC8 and CC9 controls the acceleration during oscillation, at standstill and at
80 km/h respectively.
In the Vissim simulations, the following parameters for W99 [9] are used, CC0=
1 [m], CC1= 0.9 [s], CC2= 1 [m], CC3= −8, CC4= −0.05, CC5= 0.05, CC6= 1,
CC7= 10 [m/s2], CC8= 10 [m/s2], CC9= 10 [m/s2]. Furthermore, the look ahead
distance is set to 150 m with 2 vehicles observed at most and the look back distance
is set to 100 m. For single lane scenarios, there are 5 HDVs behind the CAV. For
multi lane scenarios, there are 15 HDVs behind the CAVs with 3 CAVs in total.

Figure 3.3: Customizable driver model parameters in PTV VISSIM

For the purposes of the experiments, the driving behaviour that is important is
the level of aggressiveness of drivers. The parameters that correspond to aggressive
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driving behaviour are the standstill distance (CC0), headway time (CC1), following
variation (CC2), oscillation acceleration (CC7), standstill acceleration (CC8) and
acceleration at 80 km/h. Furthermore, the look ahead distance and number of
observed vehicles are crucial parameters for aggressive driving behaviour, as these
will indicate how late reactions occur and how much the driver is able to see in
front. To show the effects of altruism more clearly, these parameters are set very
aggressive. This means that the vehicles will be following at close distance at high
speed, not many vehicles will be observable and the traffic oscillations will be very
high.

In order to evaluate the altuistic behaviour of the controller, a few scenarios are
designed. Firstly, to validate that the optimization is correct, a simple simulation
using the OVRV model is implemented for a single-lane scenario. Then, a similar
scenario is implemented in the simulator so that the model-mismatch between OVRV
and W99 may be evaluated. Both of these simulations are single lane scenarios only,
which reduces the variability to only the driver model used. The final scenarios
are multi-lane freeway driving. Here, the altruistic behaviour is extended by also
including the lane-changing behaviour of both CAVs and HDVs. More details are
covered in the scenario descriptions in the result section.

3.1.2 Computer program

PTV VISSIM uses a Microsoft COM-Server API, through which all aspects of VIS-
SIM may be controlled. Since COM-Servers are widely used in most popular pro-
gramming languages, Python was chosen as the language to implement the MPC
controller and simulations. This was due to the simplicity of implementation using
Python and also that there are many readily available packages for optimization,
especially high performance optimization software. The three main functions of the
software implementation were the reading the surrounding vehicles in the simulator,
performing the MPC optimization and then applying the optimal control input to
the CAV in the simulation.

VISSIM is built around a link and connection type of structure, similar to edges and
nodes in graph theory. Vehicles are then categorized in to which link(road segment)
or connection(connecting road segments to road segments) they are currently on. By
the way VISSIM deals with these links and connections, the distance between two
vehicles on different links or connections is not trivial to calculate. This is because
the internal distance measurement in VISSIM only considers how far along a link
vehicles have traveled. Thus, the road network was considered as a bi-directional
graph structure in order to easily calculate distances. The shortest path between
the two vehicles was calculated from a simple graph search and the distance was
calculated based on the link lengths between the two vehicles and the distance they
traveled on their current link. Algorithm 1 shows a simple algorithm that will
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calculate the headway between the CAV and all nearby vehicles.

Algorithm 1: Calculate headway between HDVs and CAV
Result: List of headways
Init: Get link and lane number for HDVs in range;
for i = HDVs in range do

Llinks, forwards =graph search
Dforwards = (PCAV − LCAV,link) + Llinks, forwards +HDVpos;
Dbackwards = PCAV + Llinks, backwards + (PHDV − LHDV,link);
H[i] = min(Dforwards, Dbackwards)

end

In order to speed up calculation times for the MPC controller, the workload is
offloaded to a remote cloud server and the result is then downloaded to the simu-
lation in order to control the vehicle. The simulator sends data regarding HDVs
initial positions, velocities and accelerations. The server then receives this in-
formation and builds the optimization problem on matrix form according to the
structure in ??. The optimization problem is then solved by the optimization
toolbox CVX-OPT in Python, where the quadratic solver MOSEK uses an algo-
rithm incorporating interior-point methods to perform the optimization efficiently.
The server then returns the optimal control inputs, i.e. a∗CAV and the optimal
function value J∗ for each lane. Algorithm 2 shows how this was implemented.
Algorithm 2: Remote MPC computation
Result: CAV lane change and acceleration input
Init: Get surrounding HDVs data;
Simulator: Transmit HDV data to server for the 3 lanes, wait for response;
Server: Recieve HDV data;
Server: Spawn parallel processes to concurrently handle optimizations on each lane;

for i = 3 do
Server: Set up optimization matrices, constraints and objective function;
Server: Perform optimization using CVX-OPT with MOSEK solver;

end
Server: Return optimal accelerations

(
a∗,leftk , a∗,rightk , a∗,currentk

)
and objective function values

(
J∗,leftk , J∗,rightk , J∗,currentk

)
;

Simulator: Receive acceleration inputs and objective function values ;
Simulator: Make the lance change decision:

δCAVk =


1, if J∗,leftk < min

(
J∗,currentk , J∗,rightk

)
−1, if J∗,rightk < min

(
J∗,currentk , J∗,leftk

)
0, otherwise

The final computer program is then presented in Algorithm 3, where the above
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components are used to perform the most critical tasks.
Algorithm 3: Main program
Result: Simulation data
Init: Get altruism parameter κ, simulation length and scenario set-up;
Spawn vehicles on the road; for k = simulation length do

Record HDV and CAV data at time step k;
Function: Calculate headway between HDVs and CAV;
Function: Remote MPC computation Apply the optimal control input to
the CAV;
Take step in simulator;

end

3.2 Results
The result section covers the experiments conducted for different scenarios in the
simulator. Firstly, a baseline simulation using only the OVRV model is covered.
Then, the VISSIM simulator is used to obtain results for a single lane scenario.
Lastly, the VISSIM simulator is again used for two multi lane scenarios. The results
of all scenarios are then discussed.

3.3 Single-lane OVRV
The single lane OVRV simulations can be considered as a baseline for the MPC
controller and is used to validate that altruism can affect the traffic efficiency and
vehicle comfort. The single lane OVRV scenario concerns vehicle placements as seen
in figure 3.4.

Figure 3.4: Single lane OVRV scenario

In figure 3.4, the blue vehicle is the CAV, the yellow vehicles are HDVs that drive
using the OVRV driver model. The red vehicle is also a HDV, but it has a pre-
determined sinusoidal acceleration profile. The red HDV will cause disturbances on
to the following vehicles, where the CAV will try to optimize it’s own movements
and thus influence the yellow HDVs behind it.

3.4 Single-lane VISSIM
The single lane VISSIM simulations use an identical scenario set-up as the previous
OVRV simulations. This may help to give insights in to differences between the two
models, W99 and OVRV.
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Figure 3.5: OVRV mean acceleration
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Figure 3.6: OVRV mean velocity

In figure 3.8, the CAV and the yellow HDVs are influenced by the sinusoidal ac-
celeration profile of the leading, red HDV. The red HDVs acceleration and braking
behaviour causes oscillations throughout the following traffic, which the CAV tries
to mitigate.
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Figure 3.7: OVRV sensitivity analysis

Figure 3.8: Single lane VISSIM scenario

3.5 Multi-lane VISSIM
For the multi lane VISSIM simulations, there are two scenarios. The first one
concerns a multi lane scenario similar to the single lane ones above. Here, the single
CAV tries to mitigate the oscillations by leading HDVs on all three lanes. The idea is
to have a scenario where the traffic congestion is high and distances between HDVs
is rather small. This creates a very harsh traffic scenario.

3.5.1 Scenario 1
In figure 3.12, there are several yellow HDVs behind and infront of the CAV on all
lanes. These HDVs use the W99 model and are controlled by the simulator. The
CAV calculates the optimal control input for all lanes and change to the lowest
function value. On each lane, there are also leading HDVs in red. Their acceleration
profiles are again sinusoidal so that they create oscillations in the traffic.
The data to be evaluated is how different levels of altruism affects the mean ac-
celeration and velocity of all yellow HDVs in the simulation. Figure 3.13 and 3.14
presents results of the mean accelerations and velocities respectively. Since these
results are difficult to interpret, figure 3.15 is instead used as a way of visualizing
how altruism affects the two metrics.

28



3. Experiments

0 2000 4000 6000 8000 10000 12000

Time steps 
t
 = 0.1

0

1

2

3

4

5

6

7

8

A
cc

el
er

at
io

n

Mean acceleration

k=0.0
k=0.25
k=0.5
k=0.75
k=1.0
No MPC

Figure 3.9: VISSIM single lane: Mean acceleration of all yellow HDVs

3.5.2 Scenario 2
The second multi lane scenario is depicted in figure 3.16. Here, the scenario is
designed to show the lane changing behaviour of the CAV under complete altruistic
and selfish control strategy. There are again three lanes with yellow HDVs behind
the CAV in each lane. On the lane to the left of the CAV, there is a leading HDV
in red. The leading HDV causes oscilations on that lane and thus the traffic will
be worse. The middle lane is free driving, meaning that the leading yellow HDV
behaves according to the W99 model. The lane to the right of the CAV is free.
A red lane change maneuver represents a selfish strategy, where this control action
would reduce the acceleration of the selfish CAV. Simply, the CAV will not need to
decelerate at all and keep its own efficiency in an empy lane. A green lane change
maneuver represents the altruistic control strategy where the CAVs objective is to
reduce the traffics overall accelerations and increase the efficiency. By switching to
that lane, the idea is that the traffic will, overall, perform better than if the control
strategy is selfish. The results are presented as mean acceleration of all vehicles
in figure 3.17, mean velocity in figure 3.18 and a sensitivity analysis in figure 3.19.
Note that in this case, only selfish driving (κ = 0) and fully altruistic driving (κ = 1)
are evaluated.
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Figure 3.10: VISSIM single lane: Mean velocity of all yellow HDVs

3.6 Discussion
The implementation of the MPC controller was rather simple, and using Python
along with a highly optimized optimization toolbox and quadratic solver helped to
speed up simulation times. However, there was difficulty to validate the problem
set-up due to the large size of coefficient matrices for constraints and objective func-
tion, along with the large number of optimization variables. Significant time had to
be spent to ensure that the matrices were correct and that the optimization makes
sense. Furthermore, since the optimization problem is quite large and will be cal-
culated for each simulation step, some effort had to be made in order to optimize
code and increase performance. Therefore the choice of using cloud computing was
critical. For a multi-lane simulation, the program needs to solve three concurrent
optimizations, one of each lane, and then pick the lowest cost among these three.
This means that the program may be ran in parallel, and thus computation time
is reduced if these are ran as separate processes. Each process then ran the opti-
mization problem using the MOSEK solver. This solver is also multi-threaded and
is able to fully utilize multiple CPU cores. This means that in order to efficiently
run a large number of simulation batches, high CPU core count was critical. For-
tunately, cloud computing solutions widely offer computational servers that can be
used, which sped up simulation times significantly.
With regards to implementation of the MPC control strategy on a real-life vehicle,
the inherent use of multi-processing is highly beneficial. We believe that by utilizing
parallel computing for gathering information from sensors and running the highly
efficient optimization solver, along with switching to more high performance and
optimized C code, we will be able to achieve near real-time performance of the al-
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Figure 3.11: VISSIM single lane: Sensitivity analysis for differing altruism levels

Figure 3.12: Harsh multi lane VISSIM scenario

gorithm. This means that there may be vehicles in the traffic run these controllers
in a decentralized way and thus latency problems of centralized control are elimi-
nated, creating a much more responsive control system. Furthermore, modern high
performance computing hardware is faster than server grade hardware, and thus the
controller implementation is very feasible.
Another controller and simulation related implication was the parameter tuning.
It was quite difficult to choose suitable parameters for both the controller and the
traffic simulator. The thought behind using the OVRV simulations was to allow
for controller tuning in a more controller way. However, the model mismatch and
stochastic behaviour of the W99 model in the simulator proved to be difficult for the
controller that was tuned on the OVRV model. Instead, everything had to be tuned
together. Since the simulation times were long, even when using parallel processing
on high core count server CPUs, the tuning process was lengthy and difficult. And
the controller may need even further refinement. The first issue was how to tune the
OVRV models parameters to predict the vehicles in the simulator, where it seemed
that the headway parameters were important for the smoothness of the controller.
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Figure 3.13: Mean acceleration of all yellow HDVs
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Figure 3.14: Mean velocity of all yellow HDVs

Another issue was the simulator itself, where there were many parameters that could
be tweaked. Since the purpose of the control strategy is to improve highly congested
and aggressive traffic scenarios, the W99 model had to be modified to achieve this.
Thus, it was difficult to achieve a aggressive yet life-like behaviour of the vehicles. By
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Figure 3.15: Sensitivity analysis for differing altruism levels

Figure 3.16: Harsh multi lane VISSIM scenario

this tuning, the model mismatch may also have been further increased, rendering
the predictions by the OVRV model less reliable. For future work on this topic,
it would be interesting to investigate other possible control strategies, e.g. robust
control methods. It may be possible to account more for this model mismatch by
going to robust control, thus allowing for better control inputs.
As mentioned, the MPC controller was tested on both the simpler OVRV simula-
tions and the more complex Vissim simulations. As a starting point for validating
altruism and the MPC controller, the OVRV model shows great initial potential.
The altruism works well and the results are distinctively improving when altruism
increases, which from a theoretical standpoint is correct. This then means that the
controller is valid and that the MPC formulation works as intended. When moving
to more complex simulations, there is less distinctiveness in the results. Looking at
the single lane simulations of both OVRV and Vissim, it is evident that the benefits
of altruism in the Vissim scenario is not as clear. However, there is a general trend,
where the higher levels of altruism are clustered together. This seems to indicate
that the actual altruism number is less important, but the effect of the κ parameter
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Figure 3.17: Mean acceleration of all yellow HDVs

on the objective function is more important, i.e. the scaling. The results also seem
to indicate that either a lower altruism level ≤ 0.5 or a higher altruism level ≥ 0.75
are more meaningful as representing the selfish and altruistic behaviour respectively.
rather than the actual κ value. Furthermore, comparing OVRV and Vissim, it is
clear that the No MPC cases differ significantly. Again, since the model mismatch
is quite significant between OVRV and W99, this is to be expected, and W99 even
performs on the same level as a selfish MPC controller.
These behaviours are again present in the multi-lane scenarios. A more interesting
case is the second multi lane scenario. In comparison to having all lanes in high
congestion, this scenario was aimed to showcase that a altruistic CAV will sacrifice
itself for the benefit of the other HDVs. This behaviour is clearly shown in the
result, as the decrease in average acceleration is significantly improved when being
altruistic. The 7% improvement can be compared with the roughly 3% improvement
in multi lane scenario 1. These results suggest that the altruistic improvement comes
more from lane change decisions rather than purely controlling acceleration input.
It’s quite clear also that if all lanes are highly congested, the selfish goal and the
altruistic goal of reducing acceleration is similar. If the selfish CAV reduces it’s own
acceleration, by e.g. leaving a larger headway, this must mean that the HDVs will
see a positive improvement as well. Conversely, if the CAV is altruistic, it may also
leave a larger headway, resulting in similar improvements to itself and the following
vehicles. Thus, in scenario 1, the improvements are marginal and that is what
one may expect. In multi lane scenario 2, since the vehicles will act much more
differently, the improvements are greater. Thus, for future work, scenario design
has to be taken in to consideration so that the real benefits of altruism can be more
clear. Furthermore, for future work it is important to realize what kind of traffic
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Figure 3.18: Mean velocity of all yellow HDVs

situations that benefit from altruism. This may hopefully lead to a more situational
aware controller, which will adapt the altruism based on the traffic situation and
possible benefits of altruism.
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Figure 3.19: Sensitivity analysis for differing altruism levels
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4
Conclusion

The altruistic control strategy makes sense in theory, and in simulated environments
there is a benefit of acting altruistic. These benefits are not very distinctive in the
scenarios showcased, however there is a clear improvement when there is a lane
choice to be made, which was shown in scenario 2. The altruistic controller is
the best performing controller overall, and it does beat the aggressive W99 driver
model, meaning that there is some improvements that will be made by replacing
a HDVs with CAVs in a traffic network. What needs to be researched further is
how an increased number of CAVs may improve the traffic flow further. From the
simulation results, it is also quite clear that the controller may need more time for
tuning and a wider range of parameters have to be investigated. The implementation
of the controller is another important aspect, as this will ensure that the controller
will be feasible and may be applied in reality. By using cloud computing, the
optimization times were significantly reduced, which indicates that if the controller
was implemented using more efficient code and better computational hardware, real-
time performance can be achieved. Another conclusion that can be made is the
large model mismatch between OVRV and W99, and this is clearly shown in the
difference between simulations of the two. It’s clear that if a more realistic model is
used, the gap will be less and better predictions could be made. However, still the
MPC controller performs better than the W99 model when being altruistic, and it
performs on the same level when being selfish.
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Appendix A

This appendix includes the submitted journal paper "Pro-social Control of Con-
nected Automated Vehicles in Mixed-Autonomy Multi-Lane Highway Traffic" which
is a direct result of this master thesis work. The journal paper has been submitted to
the IEEE Transactions on Intelligent Transportation Systems (T-ITS) special issue
"Deployment of Connected and Automated Vehicles in Mixed Traffic Environment
and the Implications on Traffic Safety and Efficiency".

I



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Pro-social Control of Connected Automated
Vehicles in Mixed-Autonomy Multi-Lane Highway

Traffic
Jacob Larsson, Musa Furkan Keskin, Member, IEEE, Bile Peng, Member, IEEE, Balázs Kulcsár,

Henk Wymeersch, Senior Member, IEEE

Abstract—We propose pro-social control strategies for con-
nected automated vehicles (CAVs) to mitigate jamming waves in
mixed-autonomy multi-lane traffic, resulting from car-following
dynamics of human-driven vehicles (HDVs). Different from
existing studies, which focus mostly on ego vehicle objectives to
control CAVs in an individualistic manner, we devise a pro-social
control algorithm. The latter takes into account the objectives
(i.e., driving comfort and traffic efficiency) of both the ego
vehicle and surrounding HDVs to improve smoothness of the
entire observable traffic. Under a model predictive control (MPC)
framework that uses acceleration and lane change sequences of
CAVs as optimization variables, the problem of individualistic,
altruistic, and pro-social control is formulated as a non-convex
mixed-integer nonlinear program (MINLP) and relaxed to a
convex quadratic program via penalty based reformulation of
the optimal velocity with relative velocity (OVRV) car-following
model. Low-fidelity simulations using the OVRV model and high-
fidelity simulations using PTV Vissim simulator show that pro-
social and altruistic control can provide significant performance
gains over individualistic driving in terms of efficiency and
comfort on both single- and multi-lane roads.

Index Terms—Altruistic control, pro-social control, traffic
disturbance, model predictive control, connected automated ve-
hicles, stop-and-go waves.

I. INTRODUCTION

In urban transportation systems, traffic jams pose a sig-
nificant threat to vehicle safety, exhaust gas emission, fuel
economy and passenger comfort, especially in dense traffic
scenarios with stop-and-go waves. Disturbances such as ac-
cidents, lane restrictions or random braking may propagate
backwards through the traffic as a result of the car-following
dynamics of human-driven vehicles (HDVs), which leads
to moving traffic jams [1]–[3]. To reduce such disturbance
propagation, connected automated vehicles (CAVs) can be
applied to control traffic flow and smooth out stop-and-go
waves [2]–[5]. To circumvent jamming waves on single-lane
roads, predictive control of CAV acceleration has recently been
a popular strategy [3], [4], [6], while, for multi-lane highways,
high-level lane changing decisions can be incorporated as
additional degrees of freedom that can be optimized jointly
with low-level acceleration inputs [7].
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Historically in the literature, the emphasis of autonomous
driving has been focused on CAVs’ own (selfish) driving
objectives [5], [7], [8], while ignoring the traffic-smoothing
properties of CAVs [3]. In [5], a model predictive control
(MPC) framework is proposed, where efficiency, comfort and
safety of the CAV is improved by optimizing the acceleration
and lane changes in a multi-lane traffic scenario. However, the
focus of [5] is solely on the driving objectives of the CAV and
not the surroundings, making such a driving strategy selfish.
Another MPC-based approach is presented in [8], where a
mixed-integer quadratic programming problem is set-up to
optimize longitudinal velocity and lane-change maneuvers of
the CAV. An entirely different selfish control strategy using
reinforcement learning (RL) is presented in [7], where a
multi-agent (multi-vehicle) RL algorithm is trained to achieve
coordination between multiple CAVs in a highway scenario.

Altruistic agents have been considered in a variety of fields,
including linear quadratic Gaussian (LQG) control [9], traffic
route management [10], [11], microscopic traffic control [12],
water resource planning via Markov decision processes (MDP)
[13] and uncertain dynamic games [14]. In [10], a macroscopic
routing perspective is presented to compare the total driving
times of vehicles in a network obtained by a selfish user
equilibrium (UE) model and an altruistic social optimum
(SO) model. Similarly, the work in [11] provides a game-
theoretic analysis of altruistic autonomy from a vehicle routing
perspective and investigates its effect on traffic latency under
varying degrees of altruism of CAVs. Regarding microscopic
control, a cooperative altruistic driving strategy is developed
in [12], where traffic jamming on highways is resolved by
coordinating a group of CAVs using vehicle-to-vehicle (V2V)
communications.

In light of the existing literature on traffic control, imple-
menting purely individualistic (selfish) and/or purely altruistic
behaviour have partially been investigated before. While a
vehicle that behaves selfish/individualistic allocates control
input to actions to reward only itself, pure altruistic behaviour
allocates input in a way to reward only others (and disregard
its own rewards or benefits). These forms of expected CAV
behaviours can often be conflicting, even though they may
be beneficial in different traffic scenarios. Therefore, one
possible way to overcome the behaviour dilemma (selfish
or altruistic?) is to use both at the same time. As shown
in Fig. 1, the key insight of the altruistic controller is that
performing altruistic lane change maneuvers help to dissolve

II
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jamming waves while improving comfort and efficiency. In
[15], [16], socially compliant central coordination algorithms
are suggested to solve a traffic coordination problem. In
particular, these studies propose a large variety of Social
Value Orientation (SVO) algorithms via the definition of two
independent reward metrics: reward to self and reward to
others. In case of intersection crossing, in [15], pro-social
(combination of selfish and altruistic) behaviour provides most
of the benefits in terms of wait time reduction. [17] proposes
a decentralized intersection coordination mechanism using
principles similar to [15]: topological braids capture selfish-
altruistic modes. In the latter, however, elimination of unsafe
trajectories is the goal. SVOs are mapped via proper weighting
strategies, emphasizing the relative importance of altruistic
or selfish objectives. The aim with the above state-of-the-art
methods to influence/control/coordinate automated vehicles is
the same: adapt their behaviour in mixed traffic conditions. As
in mixed-autonomy traffic scenarios, both HDVs and CAVs
have to co-exist and CAVs may be coordinated following
social values known for human drivers.

In this paper, extending our preliminary work in [18] with
comprehensive low- and high-fidelity simulation results, we
propose in a comparative environment altruistic and pro-
social control/coordination strategies where CAVs mitigate
traffic jams by optimizing the driving objectives of the overall
traffic as well as of their own selfish trajectories. We define
the optimization problem that empowers CAVs with social
behaviours as a model based, finite horizon, multi-objective
optimization problem. Therefore, the contribution of this paper
is twofold:

• We develop solutions to incentivize the pro-social coor-
dination of mixed autonomy vehicles with model based
predictive optimization algorithms. To that end, we use
proper weighting strategies to map SVOs into vehicle
control solutions (traffic efficiency and comfort). The key
idea is to emphasize the relative importance of altruistic
versus selfish objectives and reach pro-social behavior.

• We evaluate the proposed methods on both low- and high-
fidelity traffic simulators, which helps us quantify the
benefits/drawbacks of SVOs in terms of fuel economy,
ride comfort, trajectory alignment, etc.

More precisely, in this work, we propose an MPC-based
selfish, altruistic, and pro-social coordination algorithm, where
CAVs in mixed traffic scenarios model HDVs with the Optimal
Velocity with Relative Velocity (OVRV) car following model
[19]. Then, a finite horizon time prediction window is created
in which CAVs can select their speed and lanes to minimize
the multi-objective cost function. The result is a non-convex
mixed-integer nonlinear program, which is relaxed to a simpler
convex quadratic program via penalty based reformulation of
the OVRV model. Simulations with low fidelity simulations
by the OVRV model, and with high fidelity simulations by
PTV Vissim microscopic traffic simulator are carried out to
investigate the impact of different social behaviour triggered
by CAVs.

CAV

Altruistic

Selfish

HDV

HDV

HDV

HDV

HDV

HDV

HDV

1
2
3

Fig. 1. Exemplary multi-lane highway scenario with CAVs (blue) and HDVs
(yellow) and decelerating HDVs (red). An altruistic strategy would involve
turning left in to lane 1 and try to mitigate the the traffic jamming caused by
the red HDV and help improve overall traffic smoothness. A selfish decision
is to take a right on to lane 3 and avoid the jamming, improving smoothness
for the CAV but reducing the overall traffic smoothness and jamming.

II. SYSTEM MODEL

In Fig. 1, a mixed autonomy multi-highway traffic scenario
is depicted, with both CAVs and HDVs. It is assumed that the
CAVs obtain position and speed information from surrounding
HDVs via vehicle-to-vehicle (V2V) communications [20],
[21]. Although there may be any number of CAVs in the traffic,
the focus here lies on individual automated driving, i.e., the
information at each CAV is self-contained and no additional
data is obtained from the other CAVs. In the scenario, the
objective of individual CAVs is to obtain optimal control
input sequences in terms of vehicle acceleration input and
lane change decisions. The CAV applies an altruistic MPC
controller and thus the optimization objective is to maximize
the entire traffic objectives in terms of comfort, efficiency and
indirectly, emissions.

A. Vehicle States

The state vector of ith CAV at discrete time k, with sampling
time ∆t, is defined as

xCAV
i,k =

[
pCAV
i,k vCAV

i,k yCAV
i,k

]T
(1)

for i = 1, . . . , Ncav, where pCAV
i,k ∈ R and vCAV

i,k ∈ R
are, respectively, the longitudinal position and velocity of the
vehicle, and yCAV

i,k ∈ L , {1, 2, . . . , Nlane} represents the lane
number of the vehicle. Similarly, the state vector of the jth
HDV at time k is expressed as

xHDV
j,k =

[
pHDV
j,k vHDV

j,k yHDV
j,k

]T
(2)

for j = 1, . . . , Nhdv, where pHDV
j,k , vHDV

j,k ∈ R and yHDV
j,k ∈ L.

B. CAV Control Inputs

The control input vector of the ith CAV at time k is given
by

uCAV
i,k =

[
aCAV
i,k δCAV

i,k

]T
(3)

where aCAV
i,k ∈ R is the longitudinal acceleration and δCAV

i,k

represents the lateral movement, i.e., the lane change decision,
defined as

δCAV
i,k ∈ L∆ , {−1, 0, 1} . (4)

Here, 0 denotes a lane-keeping decision and 1/−1 represents a
left/right lane change decision. To reduce modelling complex-
ity in controller design step (prediction), it is assumed that the

III
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lane change is instantaneous and is thus completed in a single
time step [22]. Note, more complex and dynamic lane change
maneuvers can be added if needed. Finally, in the numerical
case study, we use Vissim that has a continuous and dynamic
lane change model.

C. Car-Following Behavior of HDVs

The longitudinal dynamics of HDVs is described using a
car-following model as in [23], [24]

aHDV
j,k = f(hHDV

j,k , vHDV
j,k ,∆vHDV

j,k ) (5)

where aHDV
j,k ∈ R is the longitudinal acceleration of the jth

HDV at time k, hHDV
j,k is the headway and ∆vHDV

j,k the velocity
difference between the jth HDV and the preceding vehicle,
written as

hHDV
j,k = pHDV,pre

j,k − pHDV
j,k , (6)

∆vHDV
j,k = vHDV,pre

j,k − vHDV
j,k , (7)

with pHDV,pre
j,k and vHDV,pre

j,k representing the position and
speed of the vehicle preceding the jth HDV at time k on
the same lane. The car-following dynamics are represented by
the Optimal Velocity with Relative Velocity (OVRV) model
[19]

f(h, v,∆v) = α(V (h)− v) + β∆v (8)

where the velocity function V (h) is a piecewise-linear function
of headway h (driver perceived optimal and headway based
velocity), defined as [25]

V (h) =
[
Ṽ (h)

]vmax

0
, Ṽ (h) = vmax

h− hmin

hmax − hmin
, (9)

with [v]
vmax

0 , max(0,min(vmax, v)), and α, β, hmin, hmax

and vmax are driver-dependent model parameters. Further-
more, it is also assumed that HDVs keep the same lane
over the entire MPC prediction horizon [5], i.e., δHDV

j,k+n = 0
for n = 0, 1, . . . , Np − 1, where Np denotes the prediction
horizon. In Fig. 1, the described car-following behaviour is
shared among the yellow HDVs. However, the red HDV
causing disturbance on lane 1 is considered a leading HDV
on that lane. These HDVs are handled differently, where we
implement MPC prediction heuristics in the form of constant
acceleration over the horizon.

D. Discrete-Time Vehicle Dynamics

The dynamics of the ith CAV can be expressed as

xCAV
i,k+1 = AxCAV

i,k + BuCAV
i,k (10)

where

A =




1 ∆t 0
0 1 0
0 0 1


 , B =




∆t2/2 0
∆t 0
0 1


 . (11)

In a similar fashion, the dynamics of the jth HDV can be
written as

xHDV
j,k+1 = AxHDV

j,k + BuHDV
j,k (12)

where the input is defined as

uHDV
j,k =

[
aHDV
j,k δHDV

j,k

]T
. (13)

III. MPC FORMULATION FOR INDIVIDUAL ALTRUISTIC
DRIVING

This section covers the problem of how altruism can be
reached with carefully selecting CAV control input. The con-
straints for inputs and states are provided for a multi-lane
traffic scenario, and then the optimal CAV control problem
is formulated in the MPC framework.

A. Constraints

For the optimal CAV control problem, the following con-
straints are imposed on the vehicle inputs and states.

1) Acceleration Bounds: The following constraints bound
the longitudinal acceleration, i.e.,

amin ≤ aCAV
i,k+n ≤ amax , n = 0, 1, . . . , Np − 1 (14)

where Np is the horizon length.
2) Lateral Safety Constraints: At the nth prediction step,

a lane change occurs when
∣∣δCAV

i,k+n

∣∣ = 1. Here, the ith CAV
should keep the headway hsafe to the closest vehicle in the
new lane, i.e.,

pCAV,bg
i,k+n − pCAV

i,k+n ≥ hsafe, p
CAV
i,k+n − pCAV,sm

i,k+n ≥ hsafe (15)

where pCAV,bg
i,k+n and pCAV,sm

i,k+n are the longitudinal positions of
the vehicles on the new lane that are closest to the ith CAV at
time k + n with pCAV,bg

i,k+n ≥ pCAV
i,k+n ≥ pCAV,sm

i,k+n . Furthermore,
we also limit the number of lane changes over the horizon to
at most 1,

Np−1∑

n=1

∣∣δCAV
i,k+n

∣∣ ≤ 1 (16)

3) Longitudinal Safety Constraints: In order to avoid colli-
sions and keep a safe minimum headway to preceding vehicles
on the lane, CAVs and HDVs are constrained to a dynamic
headway [4]. Hence, for the ith CAV, we have

pCAV,pre
i,k+n −pCAV

i,k+n ≥ hmin+tminv
CAV
i,k+n , n = 1, . . . , Np (17)

where pCAV,pre
i,k+n is the position of the vehicle preceding the

ith CAV at time k + n and tmin denotes the minimum time
headway. Similar constraints also bound all HDVs during the
prediction in order to augment the OVRV model behaviour
with a dynamic and realistic headway behaviour.

B. Objectives

For the optimal CAV control problem, we apply two cate-
gories of objectives, namely, traffic efficiency and driving com-
fort. In addition, we split the driving comfort into acceleration
and jerk components.

1) Traffic Efficiency: Traffic efficiency can be defined as
the objective of maintaining a desired velocity V ∗ for the ith
CAV and for the overall traffic including observable HDVs
and other CAVs:

J eff
i (uCAV

i,k:k+Np−1)

=

Np−1∑

n=0

[
(vCAV

i,k+n − V ∗)2 + κ
∑

j∈GHDV
i,k

(vHDV
j,k+n − V ∗)2

]
(18)

IV
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where GHDV
i,k is the set of indices of those HDVs succeeding

the ith CAV at time k and that are also observable by it1, and
κ is a constant variable that indicates the level of altruism,
i.e., a weight that controls the CAV’s prioritization between
its own selfish driving objectives and the surrounding traffics
objectives2.

2) Driving Comfort - Acceleration Magnitude: This driving
objective aims to reduce the discomfort associated with large
magnitudes of acceleration:

Jmag
i (uCAV

i,k:k+Np−1)

=

Np−1∑

n=0

[(
aCAV
i,k+n

)2
+ κ

∑

j∈GHDV
i,k

(
aHDV
j,k+n

)2
]

(19)

where the dependency of HDV accelerations on CAV control
inputs is through (5)–(7).

3) Driving Comfort - Jerk: Another component of discom-
fort associated with acceleration is the jerky behaviour due to
rapid changes in the acceleration derivative:

J jerk
i (uCAV

i,k:k+Np−1) =

Np−1∑

n=0

[(
aCAV
i,k+n+1 − aCAV

i,k+n

∆t

)2

+ κ
∑

j∈GHDV
i,k

(
aHDV
j,k+n+1 − aHDV

j,k+n

∆t

)2]
(20)

which is an approximation of the functions derivative obtained
by Euler’s method.

4) Driving Comfort - Total Objective: We define the total
driving comfort as a two-component objective, where the
individual parts above are weighted against each other. The
total driving comfort objective for the ith CAV at time k is
defined as

J comf
i (uCAV

i,k:k+Np−1)

= Jmag
i (uCAV

i,k:k+Np−1) + w2 J jerk
i (uCAV

i,k:k+Np−1) (21)

where w2 is a weight to indicate the importance of the jerk
component on to the overall comfort objective.

5) Total Objective Function: For the ith CAV, the total
objective function at time k with prediction horizon length
Np is defined as

J tot
i (uCAV

i,k:k+Np−1)

= J eff
i (uCAV

i,k:k+Np−1) + w1 J comf
i (uCAV

i,k:k+Np−1) (22)

where w1 is a weight that balances the impact between
efficiency and comfort objectives. We note that safety is taken
into consideration as hard physical constraints through (16)
and (17) in the MPC formulation.

1The CAV is only able to control succeeding vehicles, i.e., Lagrangian
control scheme [3]), utilizing state information from both preceding and
succeeding vehicles.

2We note that both CAV and HDV velocities in (18) depend on CAV
control inputs uCAV

i,k:k+Np−1 through (5)–(7) and (10). From the car-following
behavior in (5)–(7), HDV acceleration is a function of the position and speed
of the preceding vehicle, which implies that the effect of CAV control actions
can be propagated downstream towards HDVs moving on the same lane and
affect the traffic efficiency in (18).

C. MPC Prediction Heuristics

Over the MPC prediction horizon, we assume a constant
acceleration heuristic [26]–[29] for predicting the leading
HDV trajectory3. At time k, we have

aHDV
j,k+n = âHDV

j,k , j ∈ FHDV
i,k (23)

for n = 0, 1, . . . , Np−1, where FHDV
i,k is the set of indices for

leading HDVs that are observed by the ith CAV, and âHDV
j,k is

the measured acceleration of the jth leading HDV at time k.
To ensure the non-negativity of the velocity over the prediction
horizon in (23), aHDV

j,k+n is set to zero for n > ñ if vHDV
j,k+ñ < 0.

In other words, we prioritize constraining the velocity over
(23) in the prediction horizon.

D. Problem Formulation

Given the initial internal states of the ith CAV at time k and
the initial states of HDVs observed by the ith CAV at time k,
the MPC problem over a prediction horizon of length Np can
be formulated as follows:

minimize
uCAV

i,k:k+Np−1

J tot
i (uCAV

i,k:k+Np−1) (24)

subject to (Prediction of Leading HDVs) (23)
(HDV Car-Following Model) (5)–(9)
(CAV-HDV Dynamics) (10)–(13)
(Vehicle/Traffic Constraints) (14)–(17) .

The formulation in (24) is a mixed-integer non-linear pro-
gramming problem (MINLP). The non-linearity (and non-
convexity) stem from the the car-following dynamics of the
HDVs in (8), where the range policy (9) is a piecewise-linear
function. The integer variables come from the lane change
sequence variables δCAV

i,k:k+Np−1.

IV. OPTIMIZATION STRATEGIES FOR ALTRUISTIC
DRIVING

In this section, we propose an optimization strategy for
handling the MINLP in (24). This is achieved by firstly
reformulating the non-linear car following dynamics in (8) as
linear constraints. To handle the integer lane change variables
in δCAV

i,k:k+Np−1, we decompose the optimization problem into
lower-level subproblems on each reachable lane. The solutions
of these problems can then be combined to form a final lane-
change decision.

A. Transformation of Piecewise-Linear Car-Following Con-
straints

To avoid the intractability of the piecewise-linear car-
following dynamics in (5)–(9), we take a penalty based ap-
proach for constraint reformulation. Precisely, we transform
the piecewise-linear equality constraint in (5) to a linear
equality constraint, two linear inequality constraints that bound

3Accelerations of leading HDVs on each lane cannot be determined
using a car-following function as in (5). Thus, we assume the accelerations
are available through on-board tracking filters on CAVs and therefore the
accelerations can be used to predict leading HDVs trajectories.

V
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the function from above and below, along with a penalty
term in the objective function. The car-following dynamics
constraint in (5) with the OVRV model in (8), given by

aHDV
j,k+n = α(V (hHDV

j,k+n)− vHDV
j,k+n) + β∆vHDV

j,k+n (25)

for n = 0, 1, . . . , Np − 1 and j ∈ HHDV
i,k , can be rewritten

by introducing slack variables γj =
[
γj,Np−1 . . . γj,0

]T
as

follows4. We begin by introducing a penalty term in the
objective function (24) using the `2-norm as

J tot
i (uCAV

i,k:k+Np−1) + λJ slack (26)

where

J slack =
∑

j∈HHDV
i,k

∥∥γj

∥∥2
. (27)

and γj =
[
γj,0 . . . γj,Np−1

]T
. Here, λ is a weight that

controls the tightness of car-following dynamics in (25) and
J slack enforces the driving models’ slack variable to be
minimized. Secondly, we reformulate (25) by introducing one
equality constraint and two inequality constraints that bound
the function from above and below, as

aHDV
j,k+n = α(Ṽ (hHDV

j,k+n)− vHDV
j,k+n) + β∆vHDV

j,k+n + γj,n (28)

aHDV
j,k+n ≤ α(Ṽ (hmax)− vHDV

j,k+n) + β∆vHDV
j,k+n (29)

aHDV
j,k+n ≥ α(Ṽ (hmin)− vHDV

j,k+n) + β∆vHDV
j,k+n (30)

for n = 0, 1, . . . , Np − 1 and j ∈ HHDV
i,k .

B. Optimization Subproblem for Fixed Lane Change Decision
In order to handle the integer lane change variables in (24),

we create three separate subproblems for each reachable lane
for the ith CAV, where each subproblem corresponds to a fixed
lane changing decision δCAV

i,k ∈ L∆. This means that each lane
change decision is optimized only for the initial time of the
MPC control problem, while the acceleration control inputs
are still obtained for Np steps forward in time on each lane5.
With this reformulation in (26)–(30), the MPC optimization
subproblem for each reachable lane of (24) for a given lane
change decision can be written as:

minimize
aCAV
i,k:k+Np−1,{γj}

J tot
i (uCAV

i,k:k+Np−1) + λJ slack (31)

subject to (Prediction of Leading HDVs) (23)
(HDV Car-Following Model) (28)–(30)
(CAV-HDV Dynamics) (10)–(13)
(Vehicle/Traffic Constraints) (14)–(17) .

Note that (31) is a convex optimization problem, with convex
quadratic objective function and linear constraints. Thus, the
optimization problem can be solved efficiently using interior-
point methods [30]. The solutions of (31) for δCAV

i,k ∈ L∆ can
be merged to obtain the optimal lane change decision and
its corresponding acceleration sequence aCAV

i,k:k+Np−1 . This
is achieved by choosing the solution with the lowest cost
J tot
i (uCAV

i,k:k+Np−1).

4HHDV
i,k is a set of indices for HDVs observed by the ith CAV, except for

the leading HDVs on each lane.
5Intuitively, the algorithm tends to select the lane with the highest proba-

bility of congestion in the horizon.

V. EXPERIMENTS

We perform experiments at two levels of simulation fidelity.
First, we carry out low-fidelity simulations where the simpler
OVRV model in (8) is used to simulate the car-following dy-
namics of HDVs in evaluating the performance of the proposed
MPC controller in (31) on a single lane scenario. Then, the
high-fidelity microscopic multi-modal traffic simulator PTV
Vissim is deployed to verify the controller in realistic single-
and multi-lane settings. Whilst with the OVRV model we
validate the proof of concept in simplified traffic scenarios,
with the multi-lane scenario Vissim tools, we partially test
the nominal controller in uncertain (car following model mis-
match) and more complex and realistic traffic environments.

A. Simulation Setup and Parameters

We consider three simulation scenarios with 2 different
setups. Firstly, the OVRV and Vissim single lane scenarios use
a setup where there is a leading HDV driving with a sinusoidal
acceleration profile. Following this leading vehicle there is
directly a CAV that tries to mitigate these disturbances. HDVs
driving with the OVRV model or the Vissim W99 model are
then following this CAV, and these HDVs are being controlled
by the CAV.

For the third scenario, which is multi-lane Vissim, there is a
second setup. The road consists of three lanes and the first row
of vehicles contain HDVs following a sinusoidal acceleration
profile on all three lanes. Following these leading HDVs,
there is the second row of another three HDVs, behaving
according to the OVRV or W99 driving model, on all three
lanes. Succeeding these HDVs is a single CAV in the middle
lane. After the CAV comes several rows of HDVs depending
on the penetration rate. For all setups, the headway distance
for all vehicles is 40 meters.

Both the low-fidelity OVRV and high-fidelity Vissim sim-
ulations have several parameters that determine the behaviour
of the MPC controller and HDV trajectories. In the appendix,
we briefly cover the parameters pertaining to the driver model
and the MPC optimization, used for the different simulation
scenarios. See Appendix A for specific optimization parame-
ters and Appendix B for specific simulation parameters.

B. Evaluation Metrics

For assessing the performance of the controller and the
impact of the different levels of altruism (parameter κ), we
evaluate three areas: overall traffic acceleration and velocity
directly impacted by the objective functions along with vehicle
emissions, which is an indirect byproduct of acceleration and
velocity via the vehicle emission model VT-Micro.

1) Vehicle Emission Model: Since vehicle emissions are
not directly optimized in the MPC controller, we use a vehicle
emission model to calculate the emissions of carbon monoxide
(CO), hydrocarbons (HC), nitrogen oxide (NOx) and fuel
consumption (FC). We adopt the VT-Micro model [31] to
calculate these metrics from the acceleration and velocity data
gathered from simulation. In addition, it is assumed that the

VI
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Fig. 2. Single lane OVRV simulation results of cumulative RMS acceleration
with varying altruism parameter κ.

traffic consists solely of gasoline passenger vehicles. Under
this setting, emissions can be calculated as

J y
k (vi,k,ai,k) = exp(vT

i,kPyai,k) (32)

where J y
k (vi,k,ai,k) is the prediction of the variable y ∈{

CO,HC,NOx,FC
}

at every simulation step k of the i-th
vehicle (CAV or HDV), Py ∈ R4×4 is a parameter matrix for
each variable y,

vi,k =
[
1 v?i,k (v?i,k)2 (v?i,k)3

]T
(33)

ai,k =
[
1 a?i,k (a?i,k)2 (a?i,k)3

]T
(34)

are the velocity and acceleration vectors for the i-th vehicle
at time k, respectively, and ? ∈ {CAV,HDV}. Emission and
fuel consumption rates are given in the units kg/s and l/s,
respectively.

C. Results

In this section, we present the experimental results for the
OVRV model and the Vissim W99 model in single- and multi-
lane scenarios.

1) Single Lane - OVRV: To evaluate the performance of the
proposed altruistic control strategy in a single-lane road, Fig. 2
showcases the cumulative RMS acceleration obtained via the
OVRV model and the proposed approach with different values
of the altruism parameter κ = [0, 0.5, 1]. It is observed that
cumulative acceleration decreases with an increasing degree
of altruism. The selfish controller improves upon the OVRV
driving model by reducing cumulative accelerations by 3.4%
while the altrustic controller with κ = 1 further improves on
the results with an additional 2.1% compared to the selfish
case with κ = 0. This indicates the potential of altruistic
control to mitigate traffic disturbances and improve driving
comfort and safety.

As an illustration of how stop-and-go waves are dampened
via the proposed altruistic strategy, Fig. 3a shows with respect
to time the headway of the HDV that follows the CAV.
Comparing the OVRV driving model with the selfish case,
κ = 0, there is only a minuscule smoothing effect that is
barely noticeable. However, when the altruistic controller is
applied, with κ = 1, the smoothing effect is more pronounced,
i.e., headway fluctuations are significantly reduced, which
proves the effectiveness of the altruistic strategy against the
disturbances caused by the leading HDV. In Fig. 3b, we
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Fig. 3. Headway and velocity difference between the HDV following the
CAV for each controller

investigate the velocity fluctuations, i.e., the velocity difference
between the HDV that follows the CAV and the CAV itself.
It is seen that the amplitude of fluctuations decreases for the
altruistic case in comparison to the OVRV driving model and
the selfish controller, which again demonstrates the smoothing
effect provided by the altruistic CAV. These results evidence
that an altruistic CAV can reduce the oscillations stemming
from the leading vehicle, leading to more stable velocities (i.e.,
efficiency) and lower accelerations (i.e., comfort) experienced
by the vehicles.

Fig. 4a–4d illustrate the benefits of altruism on the cu-
mulative vehicle emissions, where altruism reduces the total
emissions of all metrics. Similarly, Fig. 4e–4h demonstrate the
emission rate as distributions for the entire simulation, where
the pure altruistic driving strategy exhibits a lower mean value
and variance in comparison to other altruism levels.

2) Single Lane - W99: In the previous subsection, no car
following model uncertainties have been considered, i.e. the
MPC used the OVRV to create predictions. In PTV Vissim,
the car following model W99 aims at capturing significantly
more complex driver behaviour than the OVRV. We therefore
tested the MPC algorithm (based on OVRV predictions) in a
single lane context by emulating the real environment with
W99. First, the model mismatch between the OVRV and W99
has been appropriately handled by the altuistic controller,
showing clear signs of robustness. We can also report some
degradation of the performance (compared to the nominal case
in the previous subsection). Fig. 5a-5b show the benefits of
the controller in general, as the mean acceleration is reduced
and the mean velocity is increased for all altruism levels in
comparison to the coordination control free driving model.
Furthermore, the proposed MPC controller indicates lower
mean and variance leading to consistency in the driving and
reducing oscillations.

Fig. 6a–6d depict the cumulative emissions, which sug-
gests that the controller can provide significant reductions
in emissions in comparison to W99. However, there is no
noticeable difference between the altruism levels. For emission
distributions in Fig. 6e–6h, the pure altruistic driving strategy
exhibits a slight reduction in the variance in comparison to the
other altruism levels and the W99 model. Mean values for all
altruism are similar and all altruism levels show lower mean
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Fig. 4. Single lane OVRV simulation results of vehicle emissions with varying altruism parameter κ.
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Fig. 5. Single lane Vissim simulation results of mean acceleration and velocity
distribution with varying altruism parameter κ.

values in comparison to uncontrolled W99 models.

3) Multi-Lane - W99: For multi-lane simulations, the ben-
efits of altruism are more pronounced compared to single-
lane scenarios. These simulations involve the optimization of
longitudinal acceleration along with lane changing decisions,
meaning that the full control strategy is utilized in this sce-
nario. Furthermore, in this simulation scenario, we are running
3 CAVs in a decentralized control strategy. In other words,
CAVs do not coordinate their actions, and they view the other
CAVs as regular HDVs.
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Fig. 7. Multi lane Vissim simulation results of mean acceleration and velocity
distribution with varying altruism parameter κ.

In Fig. 7a, we observe that the mean accelerations are
reduced by adopting the pure altruistic driving strategy, while
the controller in general outperforms the W99 driving model
in both mean values and variance. The variance between the
different altruism levels is similar. For the velocity distribution
in Fig. 7b, all altruism levels and the W99 model perform
similarly in terms of mean values; however, the variance
differs. Pure altruism exhibits the lowest variance, while the
other altruism levels provide slightly higher variance. The
W99 model performs the worst when it comes to variance,
indicating that the traffic efficiency is negatively impacted.

To investigate vehicle emissions in multi-lane Vissim sce-
narios, Fig. 8a–8d illustrate the cumulative emissions with
respect to time. As seen from the figures, the altruistic driving
strategy significantly outperforms the W99 driving model,
with the performance gap increasing with higher levels of
altruism. In addition, Fig. 8e–8h show the histograms of the

VIII
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Fig. 6. Single lane Vissim simulation results of vehicle emissions with varying altruism parameter κ.

fuel consumption metrics, which exhibit similar trends, i.e., the
pure altruistic driving strategy achieves lower mean emission
values than the other controllers.

0 2 4 6 8 10 12 14

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

0 5 10 15 20 25

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(b)

Fig. 9. Multi lane Vissim simulation results of mean acceleration and velocity
distribution with varying altruism parameter κ for the CAVs.

To explore the CAV-specific results, Fig. 9 shows the distri-
bution of acceleration and velocities for only the CAVs in the
simulation. As expected, the highest mean CAV acceleration
is obtained in the case of pure altruism (i.e., κ = 1) since
an altruistic CAV sacrifices its own driving objectives for the
sake of overall traffic smoothness. The performance difference
between the altruistic and selfish controllers in terms of mean
acceleration is 20%, while the mean velocities are very close
to each other. In addition, the variance in velocity is slightly
lower for the altruistic case and the distribution is skewed
slightly towards higher velocities as well, giving an indication
that the traffic efficiency for HDVs is improved at almost no
cost of the efficiency of the CAVs.
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Fig. 10. Multi lane Vissim simulation results of mean acceleration and
velocity distribution with varying CAV penetration rate from 10% to 50%.

Fig. 10 showcases the selfish controller, κ = 0, altruistic
controller κ = 1 and the penetration rate of CAVs, i.e. the ratio
between HDVs and CAVs. For penetration rates between 50%
to 25%, the performance is lacking due to the larger mismatch
between driving models, which results from decentralized
control strategy and that the CAVs assume all vehicles it sees
are HDVs. The penetration rate of 20% is the best performing
one in terms of mean acceleration, and the penetration rates

IX
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Fig. 8. Multi lane Vissim simulation results of vehicle emissions with varying altruism parameter κ.

of 10% and 5% do have lower variance than the rest. This
pattern is also present in the velocity distributions, where
lower penetration rates show a lower variance meanwhile the
mean values for all penetration rates are similar, with a slight
increase for the 5% case. This indicates that even a low
penetration rate will provide the benefits of altruism to the
traffic.

It is worth emphasizing the importance of the model used in
predictive control, which influences the performance reached
by the altruistic controller. We therefore envisage the benefits
of (i) using more sophisticated car-following models in the
MPC design or (ii) robustifying the nominal MPC control
algorithm, which may help to reach better closed loop per-
formance.

VI. CONCLUSION

We proposed rolling horizon, model based control method-
ologies to coordinate connected automated vehicles (CAV) in
multi-lane highway traffic conditions. A set of realistic traffic
scenarios are defined where automated and human driven
vehicles (HDV) have to co-exist. The objective function of the
control algorithms for CAVs is formulated in a such a way
that selfish and altruistic goals can be addressed separately
or simultaneously. In this way, pro-social human behaviour
can be replicated via the control of CAVs. Simulation results
in cumulative and empirical distribution metrics showed that
traffic efficiency and comfort metrics could be significantly
improved by applying an altruistic driving strategy. We pointed
out that pro-social behaviour could be triggered with changing
the relative weights of the overall cost function, i.e., chang-
ing the weightings between the two objectives, namely, the

objective function to self and objective function to others.
Future research directions may involve changing the proposed
objective functions with the number of vehicles, i.e., traffic
density dependent weightings (e.g., no altruism is needed in
free-flow conditions). In addition to the decentralized control
strategies proposed in this paper, more complex MPC con-
trollers utilizing centralized control of CAVs on highways,
or cooperative CAV driving, can be designed to incorporate
inter-CAV communication for coordinating CAV driving and
improved controllability of the traffic flow.

APPENDIX A
MPC OPTIMIZATION PARAMETERS

The optimization parameters involve the constant terms in
the objective function and constraints in (31) used in the
simulation sequences. Since we are evaluating the altruistic
parameter, all parameters except κ remain static. The static
optimization parameters are set as follows: α = 2, β = 2,
hmax = 70 [m], hmin = 10 [m], amax = 5 [m/s2],
amin = −5 [m/s2], vmax = 30.5 [m/s], tmin = 0.25 [s],
w1 = 0.75, w2 = 0.5, λ = 0.99 and Np = 40. For numerical
stability in optimization, we perform scaling of the objective
function in (31), as described in the following.

A. Scaling the Objective Function in (31)

While not critical for the purposes of formulating the MPC
controller, there are some practical issues to consider when op-
timizing the objective function. In order to avoid the practical
issues related to differing scales of the numerical components
of the objective function, we normalize each objective in (18),
(19) and (20) and the slack objective in (26) to lie within the

X



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

interval of [0, 1] by dividing each component by its maximum
value. Additionally, we also modify the weights w1, w2, κ
and λ to lie within the same interval. Furthermore, we adopt a
decentralized control strategy, i.e., each optimization concerns
only a single CAV. However, there may be multiple CAVs on
the road, in which case the optimized CAV treats the other
CAVs as regular HDVs in predictive optimization.

We modify the efficiency objective in (18) by

J eff,scaled
i (uCAV

i,k:k+Np−1) =

Np−1∑

n=0

[
κ

(
vCAV
k+n,−V

∗

vmax

)2

(35)

+ (1− κ)
∑

j∈GHDV
i,k

(
vHDV
j,k+n − V ∗
vmax

)2]

where {κ ∈ R
∣∣ 0 ≤ κ ≤ 1}. Similarly, the acceleration

magnitude objective (19) and jerk objective (20) now becomes

Jmag,scaled
i (uCAV

i,k:k+Np−1) (36)

=

Np−1∑

n=0

[
κ

(
aCAV
i,k+n

amax

)2

+ (1− κ)
∑

j∈GHDV
i,k

(
aHDV
j,k+n

amax

)2 ]

J jerk,scaled
i (uCAV

i,k:k+Np−1) =

Np−1∑

n=0

[
κ

(
aCAV
i,k+n+1 − aCAV

i,k+n

amax∆t

)2

+ (1− κ)
∑

j∈GHDV
i,k

(
aHDV
j,k+n+1 − aHDV

j,k+n

amax∆t

)2
]

(37)

The objective function concerning the slack variable is also
modified as

J slack,scaled =
∑

j∈HHDV
i,k

∥∥∥∥∥
γj

maxj γj

∥∥∥∥∥

2

(38)

The scaled version of the objective function in (31) is then
given by

J tot,scaled
i (uCAV

i,k:k+Np−1) (39)

= (1− λ)

[
(1− w1)J eff,scaled

i (uCAV
i,k:k+Np−1)

+ w1

(
(1− w2)Jmag,scaled

i (uCAV
i,k:k+Np−1)

+ w2J jerk,scaled
i (uCAV

i,k:k+Np−1)

)]

+ λJ slack,scaled .

APPENDIX B
SIMULATION PARAMETERS

While the OVRV simulation results use the same parameters
as the driving model in the MPC formulation, the Vissim
Wiedemann99 (W99) model does not. The W99 model has
several parameters: CC0 is the desired vehicle standstill dis-
tance, CC1 is the headway time (in seconds) that the vehicle
wants to keep. CC0 and CC1 define the safe vehicle headway
by hsafe = CC0+CC1v̇ where v [m/s] is the vehicle velocity.
CC2 controls the following variation in meters by defining
the oscillation boundaries by hsafe ≥ h ≥ hsafe + CC2.

CC3 is a threshold parameter defining when the vehicle
recognized a slower vehicle ahead of it, starts to slow down
and entering a following state. CC4 and CC5 controls the
speed differences during the follwing state for deceleration
and acceleration respectively where smaller values increases
the vehicles sensitivity to accelerations and deceleration of
the preceding vehicle. CC6 controls the speed dependency
of oscillations, where larger values lead to larger velocity
with increasing distance while the vehicle is in the following
state. CC7, CC8 and CC9 controls the acceleration during
oscillation, at standstill and at 80 km/h respectively.

In the Vissim simulations, the following parameters for W99
[32] are used, CC0= 1 [m], CC1= 0.9 [s], CC2= 1 [m], CC3=
−8, CC4= −0.05, CC5= 0.05, CC6= 1, CC7= 10 [m/s2],
CC8= 10 [m/s2], CC9= 10 [m/s2]. Furthermore, the look
ahead distance is set to 150 m with 2 vehicles observed at
most and the look back distance is set to 100 m. For single
lane scenarios, there are 5 HDVs behind the CAV. For multi
lane scenarios, there are 15 HDVs behind the CAVs with 3
CAVs in total.
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