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Abstract
It is convenient to represent a clustering problem as an edge-weighted graph, where
the nodes and weights represent the objects and pairwise similarities of the problem.
Dominant set is a graph-theoretical definition that extends the idea of maximal
clique from unweighted to weighted graphs – intuitively it is a group of connected
nodes with relatively large weights. Dominant Set Clustering is based on extracting
groups of nodes (clusters) from the graph that satisfy the definition of dominant
set. The clusters are computed by solving standard quadratic optimization problems
(StQPs) and utilizing a correspondence between the solutions and graph-theoretical
definition. In this thesis we study the StQP from the perspective of the Frank-Wolfe
(FW) algorithm, and variants thereof, and relate them to replicator dynamics – a
method commonly used for computing dominant sets. We consider standard FW,
pairwise FW, and away-steps FW, and conclude that all variants perform similarly
and are much more efficient compared to replicator dynamics. Explicit proofs of
the convergence rate O(1/

√
t), in terms of the so called Frank-Wolfe gap, are also

included for the FW variants when applied to the StQP.

Keywords: clustering, convergence rate, dominant set, frank-wolfe, optimization,
replicator dynamics, stqp.
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1
Introduction

The vast amount of data generated by, for example, the Internet, cameras, and
other sensors, require algorithms that can automatically process and organize the
data to make it more accessible [1]. Data clustering is one approach to these kind
of problems – it is the task of organizing a set of objects into groups, based on
similarity measures, such that the groups have high intra-cluster and low inter-
cluster similarity. In other words, objects within a group should be highly similar
relative to the objects in other groups.

Data clustering has been applied to numerous applications and domains. Some ex-
amples include image segmentation in computer vision, organizing documents into
topics/categories for easier access, grouping customers into different types for mar-
keting, and studying genome data in biology [1]. Generally speaking, clustering is
used for a) exploratory data analysis (gaining insight into the data), b) classifica-
tion (e.g. image segmentation or organizing documents), and c) summarizing data
through cluster representatives [1].

1.1 Approaches to Clustering
The objects in a clustering problem can be represented by vectors in a feature space1,
where the similarity measure is commonly based on the Euclidean distance between
a pair of vectors. Clustering is then based on finding dense regions in this feature
space [1]. A probabilistic approach assumes the data was generated by a mixture
distribution, and the clusters then correspond to the components in the mixture
model [1]. Nonparametric methods directly search for dense connected regions, for
some definition of connected depending on the specific algorithm [1].

An alternative to a global feature representation is to define object relations in terms
of local pairwise similarities; in many real-world applications, this is often easier to
obtain, or more efficient for learning, compared to the feature-based approach [2]. In
this context, it is convenient to represent the clustering problem as an edge-weighted
graph, where objects are nodes and edges the similarity measures. Algorithms based
on the minimum cut2 naturally applies to this type of clustering.

1The object features are embedded as vectors in a normed vector space.
2A minimum cut separates a graph into two disjoint subgraphs such that the total weight of

the edges removed is minimized.
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1. Introduction

Furthermore, clustering algorithms can be categorized as hierarchical or partitional.
The former generates a tree of nested clusters, while the latter partitions the objects
into disjoint subsets [1].

1.2 Problem
The focus of this thesis is the Dominant Set Clustering (DSC) framework [2, 3] and
variants of the Frank-Wolfe (FW) algorithm [4] applied to it. DSC is a general frame-
work with links to graph, optimization, and game theory. It is based on pairwise
similarities and can be used for both partitional [2] and hierarchical [5] clustering.
The formulation of DSC most relevant to this thesis is that of the optimization
of a quadratic form constrained to the simplex, called standard quadratic problem
(StQP). Frank-Wolfe is an iterative method for solving nonlinear constrained opti-
mization problems, which will be studied in the context of the StQP defined by DSC.
We will consider three variants of Frank-Wolfe: standard, pairwise, and away-steps
– denoted by FW, PFW, and AFW, respectively.

The StQP defined by DSC has traditionally been solved by the method of repli-
cator dynamics (RD), a class of continuous- and discrete-time dynamical systems
from evolutionary game theory [2]. However, RD has quadratic per-iteration time
complexity, and as explained in [6], it is sensitive to a number of parameters and
can therefore result in widely different solutions, depending on their configuration.
The infection and immunization dynamics (InImDyn) was proposed in [7] as an
alternative to RD for StQP, with linear per-iteration time complexity. It turns
out InImDyn is equivalent to AFW for StQP, however, its derivation is based on
evolutionary game theory as opposed to the Frank-Wolfe method. It is therefore
interesting to investigate the same problem from the Frank-Wolfe perspective, and
also evaluate RD, standard FW, PFW, and AFW/InImDyn experimentally.

1.3 Contributions
The contributions of the thesis are two-fold. Chapter 4 provides derivations and
convergence rate analysis for the Frank-Wolfe variants when applied to the StQP.
While the convergence rates are not novel results, their proofs have been adapted
to the StQP and are therefore more easily accessible compared to their general
counterparts. The second contribution is the experimental evaluation of the Frank-
Wolfe variants for Dominant Set Clustering, relative to replicator dynamics.
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2
Notation

The notation is mostly standard. Bold lowercase and uppercase denote vectors
and matrices, respectively; normal lowercase are scalars and normal uppercase are
scalars/sets. Component i of vector x is denoted xi; element at row i and column
j of matrix A is aij. The i-th row of A is ai∗ and the j-th column of A is a∗j.
Vectors are in column order; the inner product of vectors x and y is xTy, where T
is the transpose. Vectors are n-dimensional unless otherwise stated. The t-th scalar
or vector in a sequence is indexed by t as subscript, e.g. γt or dt. If a sequence
also needs to be indexed by a component, then the sequence index is superscripted
in parenthesis and the component index is subscripted, e.g. x(t)

i . A named scalar,
vector, or matrix has uppercase letters in the superscript, e.g. gFW , dFW , or DP ;
note when T is in the superscript it is always the transpose. Sets have the name in
the subscript, e.g. CGT . Unless stated otherwise, || · || denotes the L2-norm.

Table 2.1: Frequently occurring notation.

General
I Identity matrix.
ei i-th column of the identity matrix.
e Vector of ones.

Dominant Set Clustering
G = (V,E,w) Edge-weighted graph, where V nodes, E edges, and w : E → R+

positive weight function.
V = {1, ..., n} Set of nodes.
E ⊆ V × V Set of edges.

A Similarity matrix. Definition 3.
∆ Simplex. Definition 3.
σ(x) Support; x is omitted when it is clear from context. Definition 4.
α Regularization parameter. Section 3.1.3.
δ Cutoff parameter. Section 5.1.

Frank-Wolfe
g Frank-Wolfe gap. Definition 6.
γ Step size. Equation (3.12).
d Ascent direction. Equation (3.11).
s Frank-Wolfe vertex. Equation (3.9).
v Away vertex. Equation (3.10).
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3
Background

This chapter presents an overview of the theory for Dominant Set Clustering, repli-
cator dynamics, and Frank-Wolfe. The most closely related work is summarized at
the end of the chapter.

3.1 Dominant Set Clustering
Generally speaking, clustering in this context is achieved as a byproduct from finding
subsets of nodes that satisfy the definition of a dominant set. It is a graph-theoretical
concept that formalizes the two key properties a cluster should satisfy: relatively
high and low intra-cluster and inter-cluster similarity, respectively. The definition
of dominant set is a generalization of maximal clique1 from unweighted to weighted
graphs, and for unweighted graphs, the two concepts are equivalent. This is some
motivation of why dominant set is an appropriate cluster definition, since maximal
clique can be considered as the strictest definition of a cluster in unweighted graphs
[2].

DSC has been shown to achieve good performance. Pavan and Pelillo [2] performed
numerical experiments, using image segmentation problems and point datasets, and
found that DSC generally outperformed, or performed on par with, K-means [1],
DBSCAN [8], and Normalized Cut (NCut) [9] – three popular clustering algorithms.

This section introduces the graph-theoretical notion of dominant set and its link to
optimization theory, as outlined in [2, 5], as well as clustering strategies based on
these ideas.

3.1.1 Graph-Theoretical Definition
Let G = (V,E,w) be an edge-weighted graph, where V = {1, ..., n} the set of nodes,
E ⊆ V ×V the set of edges, and w : E → R+ the positive weight function. The graph
G is represented by an adjacency (similarity) matrix A = (aij), where aij = w(i, j)
if (i, j) ∈ E and aij = 0 otherwise.

Let S ⊆ V be a nonempty subset and i ∈ S. The weighted degree of i with respect
1A clique is a subset of nodes such that any pair of nodes are connected, i.e. they form a

complete subgraph. A maximal clique is not contained in any larger clique.
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3. Background

to S is defined as
awdegS(i) = 1

|S|
∑
j∈S

aij,

and for j 6∈ S, define φS(i, j) = aij − awdegS(i). Intuitively, φS(i, j) measures the
similarity between nodes i and j, relative to the average similarity between node i
and the nodes in S.

Definition 1. Let S ⊆ V be a nonempty subset, i ∈ S, and Sci = S \ {i}. The
weight of i with respect to S is defined recursively as

wS(i) =

 1, if |S| = 1∑
j∈Sc

i

φSc
i
(j, i)wSc

i
(j), otherwise. (3.1)

Furthermore, the total weight of S is defined to be W (S) = ∑
i∈S

wS(i).

The weight wS(i) is a measure of the overall similarity between node i and the nodes
S \ {i}, relative to the overall similarity among the nodes in S \ {i}. For example,
we have w{1,2,3,4}(1) > 0 and w{1,2,3,4}(1) < 0 for Figures 3.1a and 3.1b, respectively.
This matches our intuition that in Figure 3.1a the edge weights connected to node 1
are large compared to the edge weights between nodes {2, 3, 4}, while the opposite
is the case in Figure 3.1b.

Definition 2. A nonempty subset S ⊆ V , such that W (T ) > 0 for any nonempty
subset T ⊆ S, is said to be dominant if

1. wS(i) > 0 for all i ∈ S,

2. wS∪{i}(i) < 0 for all i 6∈ S.

The two conditions correspond to relatively high and low intra-cluster and inter-
cluster similarity, respectively. Intuitively, one can think of condition 1 as being a
clique, and condition 2 ensures it is maximal.

The nodes {1, 2, 3} are a dominant set in Figure 3.1c, which can be understood by
observing the intra-cluster edge weights are 60, 70 and 90, while the inter-cluster
edges weights are in the range 5 - 25. That is, the main property of a dominant set
is that the overall similarity among internal nodes in a cluster is higher than that
between internal and external nodes. This is the motivation to consider dominant
set as a cluster of nodes.

3.1.2 Link to Optimization Theory
Definition 3. Optimization problem (3.2) is referred to as the standard quadratic
problem (StQP).

maximize f(x) = xTAx

subject to x ∈ ∆ =
{

x ∈ Rn : x ≥ 0n and
n∑
i=1

xi = 1
}
.

(3.2)
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Figure 3.1: Edge-weighted graphs.

The constraint ∆ is called the standard simplex. The matrix A is symmetric AT =
A, and we further restrict it to have nonnegative entries and zeros on the main
diagonal. Note that A is generally indefinite and the problem is then nonconcave.

When A is the similarity matrix of an edge-weighted graph, a relationship between
dominants sets and local solutions to the optimization problem is established in [2].
The key ideas are summarized here.

Let V = {1, ..., n} be the set of nodes in the graph. The vector x ∈ ∆ is an n-
dimensional vector that is associated to a cluster of nodes, where the components xi,
i ∈ V , represent the (weighted) participation in the cluster. Components with small
and large values are weakly and strongly associated to the cluster, respectively. An
intuitive interpretation of problem (3.2) then is that it maximizes the cohesiveness
of the cluster – the intra-cluster and inter-cluster edges should have large and small
edge weights, respectively.

Definition 4 (Support). The support of x ∈ ∆ is defined as σ(x) = {i ∈ V : xi >
0}, the nonzero components of x.

Definition 5 (Characteristic vector). A nonempty subset S ⊆ V admits weighted
characteristic vector xS if it has total weight W (S) 6= 0, in which case, we define

xSi =
{

wS(i)
W (S) , if i ∈ S
0, otherwise.

(3.3)

The nonzero components are the normalized node weights from Definition 1.

Theorem 1. If S ⊆ V is a dominant set, then its weighted characteristic vector
xS is a strict local solution of problem (3.2). Conversely, if x∗ is a strict local
solution of problem (3.2), then its support σ = σ(x∗) is a dominant set, provided
that wσ∪{i}(i) 6= 0 for all i 6∈ σ.

Theorem 1 thus establishes a correspondence between dominants sets and local
solutions of StQP (3.2). In other words, by computing a local solution to the op-
timization problem we are also locating a dominant set of the graph corresponding
to the similarity matrix.

6



3. Background

3.1.3 Regularized Objective
Let Aα = A +α(eeT − I), where α ≥ 0 is called the regularization parameter. That
is, α is added to all off-diagonal elements of A. Let fα(x) = xTAαx and define
optimization problem

maximize fα(x)
subject to x ∈ ∆.

(3.4)

For α = 0, this is identical to (3.2).

In [5] it was shown that by increasing the value of α, local solutions to problem
(3.2) with small support are no longer local solutions to problem (3.4). By virtue
of Theorem 1, this means smaller dominant sets (clusters) are ignored. Specifically,
for A = (aij), 0 ≤ aij ≤ 1 and α > m − 1, clusters of size less than or equal to m
are avoided. This is useful to avoid small, unwanted, clusters.

3.1.4 Clustering Strategies
A solution to problem (3.2) corresponds to a single cluster. If this is all that is
needed, for example, separating a coherent region from noise, then it is sufficient to
stop once a solution is obtained. For more complicated problems, different strategies
are needed.

As briefly mentioned in the Chapter 1, clustering algorithms can generally be con-
sidered as partitional or hiearchical [1]. The former splits the data into disjoint
subsets (clusters), while the latter creates a hiearchy of larger clusters at the top
to smaller clusters at the bottom. Hierarchical algorithms either work bottom-up
– called agglomerative mode – or top-down – called divisive mode. In bottom-up,
each object starts as a cluster and then similar ones are successively merged to
form the hierarchy. In top-down, they start with a single large cluster that is then
successively divided into smaller clusters.

In [5] a hierarchical clustering algorithm for dominant sets is proposed using the
regularized objective in the previous section. The method is top-down and starts
with a large value for α and then iteratively decreases it. For each value of α, a
partitioning is generated that forms a level in the hierarchy. It should be noted that
the result is not necessarily a proper hierarchy, meaning a dominant set at one level
might not be a subset of any dominant set extracted at a previous level.

A number of different methods for enumerating dominant sets are summarized in
[3]. In this thesis we restrict our attention to the peeling and multistart strategies.
The peeling strategy is outlined in Algorithm 1. It works by 1) finding a dominant
set, 2) removing corresponding nodes from the graph, and 3) repeating until the
graph is empty or the desired number of clusters have been found. The multistart
strategy initializes an iterative algorithm for a number of different starting points,
with the expectation that they to converge to different local optimas. However, it
is difficult to guarantee that the algorithm converges to different local optimas, and
a post-processing step is therefore required to handle overlapping clusters.

7



3. Background

Algorithm 1 Peeling strategy for partitioning
1: procedure SPLIT(G, K) . Graph G = (V,E,w), maximum number of

clusters K.
2: P := ∅ . Partitions
3: k := 0 . Current number of clusters
4: while V 6= ∅ and k < K do
5: S ← DOMINANT-SET(G)
6: P ← P ∪ {S}
7: V ← V \ S
8: k ← k + 1
9: end while

10: return P
11: end procedure

The procedure DOMINANT-SET computes a local solution to problem (3.2) (or (3.4))
and returns its support.

3.2 Replicator Dynamics
Replicator dynamics (RD) is a common method for solving problem (3.2) [10, 2].
The specific form of replicator dynamics used by DSC to compute it is a discrete-time
dynamical system defined as

xi(t+ 1) = xi(t)
aTi∗x

x(t)TAx(t) , i = 1, ..., n. (3.5)

The numerator is the inner product of the i-th row of A and x. We say that a point
x is stationary if xi(t+ 1) = xi(t), i = 1, ..., n, and it is also asymptotically stable if
every trajectory that starts close to x will converge to x as t→∞. It can be shown
that any trajectory of (3.5) with initial value x(0) ∈ ∆, will converge to a stationary
point in ∆. Furthermore, stationary x ∈ ∆ is asymptotically stable in (3.5) if and
only if it is a strict local solution of (3.2) [10]. This correspondence is why replicator
dynamics can be used to find dominant sets – the asymptotically stable stationary
points are local solutions to problem (3.2).

Some issues with replicator dynamics for computing dominant sets are explained in
[6, 3]. The per-iteration time complexity is O(n2) and the convergence can require
many iterations. Since the convergence can be slow, it is usually necessary to up-
perbound the number of iterations. However, this leads to a second problem – if
the dynamics is stopped before converge, the current iterate x(t) is not an exact
solution. A second parameter is therefore required, called cutoff, which defines a
threshold for the support in Definition 4. That is, only the component values of
x(t) that are greater than or equal to the cutoff are considered part of the support,
as opposed to including all nonzero components. Setting an upperbound on the
number of iterations and a threshold for the cutoff can be difficult, and bad values
might result in splitting a good cluster in the middle.

8



3. Background

3.3 Frank-Wolfe
Let P ⊂ Rn be a finite set of vertices (points) and D = convex(P) its convex
hull (convex polytope). The Frank-Wolfe algorithm, first introduced in [11], is an
iterative method for constrained optimization

max
x∈D

f(x), (3.6)

where f is nonlinear and differentiable. In the original formulation there was the
additional assumption that f was also concave, but more recently this has been
relaxed to only assume it has L-Lipschitz ("well-behaved") gradient [12].

Algorithm 2 outlines the high-level steps of Frank-Wolfe.

Algorithm 2 Frank-Wolfe pseudocode
1: procedure PSEUDO-FW(f , D, T ) . Function f , convex polytope D, and

iterations T .
2: Select x0 ∈ D
3: for t = 0, ..., T − 1 do
4: if xt is stationary then break
5: Compute feasible ascent direction dt at xt
6: Compute step size γt ∈ [0, 1] such that f(xt + γtdt) > f(xt)
7: xt+1 := xt + γtdt
8: end for
9: return xt

10: end procedure

From the definition of D, any point xt ∈ D can be written as a convex combination
of the vertices in P

xt =
∑
v∈P

λ(t)
v v, (3.7)

where the coefficients λ(t)
v ∈ [0, 1] and ∑v∈P λ

(t)
v = 1. Define

St = {v ∈ P : λ(t)
v > 0} (3.8)

as the set of vertices with nonzero coefficients at iterate xt.

Three variants of the Frank-Wolfe algorithm are considered in this thesis: standard
FW, pairwise FW (PFW), and away-steps FW (AFW) – they differ in how the
ascent direction dt is computed.

Let

st ∈ arg max
s∈D
∇f(xt)T s, (3.9)

vt ∈ arg min
v∈St

∇f(xt)Tv. (3.10)

9



3. Background

Since D is a convex polytope, (3.9) is equivalent to maximizing over the vertices P .
That is, (3.9) is the vertex that maximizes the linearization, and (3.10) is the vertex
with nonzero coefficient that minimizes it.

Let xt be the current iterate and define

dAt = xt − vt,
dFWt = st − xt,

dPFWt = st − vt,

dAFWt =

 dFWt , if ∇f(xt)TdFWt ≥ f(xt)TdAt
λ

(t)
vt

1−λ(t)
vt

dAt , otherwise

(3.11)

as the away, FW, pairwise, and away/FW direction, respectively. The FW direction
moves towards a "good" vertex, and the away direction moves away from a "bad"
vertex. The pairwise direction shifts weight from a "bad" vertex to a "good" vertex
[4]. The coefficient for dAt in dAFWt ensures the next iterate remains feasible.

An issue with standard FW, which PFW and AFW attempt to remedy, is the zig-
zagging phenomenon. This occurs when the optimal solution to (3.6) lies on the
boundary of the domain. The name comes from the fact that the iterates starts to
zig-zag between the vertices defining the face the solution lies on, which negatively
impacts the convergence. By adding the possibility of an away step in AFW, or
alternatively, using the pairwise direction, the zig-zagging is attenuated and its
impact is therefore reduced. See figure 1 in [4] for an illustration.

When feasible, the step size γt is computed by line-search

γt ∈ arg max
γ∈[0,1]

f(xt + γdt). (3.12)

Finally, the Frank-Wolfe gap is used to check if an iterate is (close enough to) a
stationary point.

Definition 6. The Frank-Wolfe gap gt of f : D → R at iterate xt is defined as

gt = max
s∈D
∇f(xt)T (s− xt)

⇐⇒
gt = ∇f(xt)TdFWt .

(3.13)

A point xt is stationary if and only if gt = 0, meaning there are no ascent direc-
tions. The Frank-Wolfe gap is thus a reasonable measure of nonstationarity and is
frequently used as a stopping criterion [12]. Specifically, a threshold ε is defined,
and if gt ≤ ε, then we conclude the iterate is sufficiently close to a stationary point
and stop the algorithm.
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3. Background

3.4 Related Work
This section summarizes the most closely related work. Dominant Set Clustering is
introduced in [2] and used replicator dynamics to solve problem (3.2). To fix some
of the shortcomings with replicator dynamics, e.g. quadratic per-iteration time
complexity, the infection and immunization dynamics (InImDyn) is presented in [7]
with linear per-iteration time complexity. An alternative to replicator dynamics is
also presented in [6], which proposes a clustering algorithm based on identifying
sharp changes of the component values in the dynamics (3.5), which correspond to
cuts of the data. The DSC framework is summarized in survey [3] and provides a
good overview.

Standard, pairwise, and away-steps FW for convex objectives are summarized in
[4]. Convergence rate, in terms of the Frank-Wolfe gap, is shown to be O(1/

√
t)

for standard FW with nonconvex objective in [12]. The same convergence rate is
shown for away-steps FW with nonconvex objective and simplex constraint in [13].
Support identification in finite time with pairwise FW and away-steps FW is proved
in [14] for nonconvex objective with simplex constraint.

Our contribution in this context is the analysis of the Frank-Wolfe variants when
applied to problem (3.2), as well as their experimental evaluation when used for
clustering with DSC.

11



4
Frank-Wolfe for StQP

This chapter derives algorithms for the Frank-Wolfe variants when applied to problem
(3.2). Their convergence rates are analyzed at the end of the chapter.

4.1 Simplex Domain
The vertices of the simplex ∆ are the standard basis vectors ei, component i set to
1 and remaining components set to 0. Thus for x ∈ ∆ we have

x =
n∑
i=1

λei
ei,

from (3.7), and λei
= xi. That is, the coefficients in the convex combination cor-

respond to the components of x. The set of vertices with nonzero coefficients at
iterate xt, (3.8), is then equivalent to the support

σt = {i ∈ V : x(t)
i > 0}.

Due to the structure of the simplex ∆, (3.9) is equivalent to
st ∈ ∆
s

(t)
i = 1, where i ∈ arg max

i
∇if(xt)

s
(t)
j = 0, for j 6= i,

(4.1)

and (3.10) is equivalent to
vt ∈ ∆
v

(t)
i = 1, where i ∈ arg min

i∈σt

∇if(xt)

v
(t)
j = 0, for j 6= i.

(4.2)

That is, the max and min value of the linearization are the largest and smallest
components of the gradient, respectively (subject to i ∈ σt in the latter case). Note
∇f(xt) = 2Axt.

12



4. Frank-Wolfe for StQP

4.2 Step Sizes
We compute the optimal step sizes for FW, PFW, and AFW. Iterate subscripts are
omitted for clarity. Define the step size function

ψ(γ) = f(x + γd)
= (x + γd)TA(x + γd)
= xTAx + 2γdTAx + γ2dTAd
= f(x) + γ∇f(xt)Td + γ2dTAd,

(4.3)

where A satisfies (3.2). This is a single variable second degree polynomial in γ. The
function is concave if the coefficient dTAd ≤ 0 – second derivative test – and admits
a global maximum in that case.

In the following it is assumed that s and v satisfy (4.1) and (4.2), and their nonzero
components are i and j, respectively.

(FW direction) Substitute dFW = s− x into dTAd.

dTAd = (s− x)TA(s− x)
= sTAs− 2sTAx + xTAx
= −(2sTAx− xTAx)
= xTAx− 2aTi∗x.

(4.4)

(Pairwise direction) Substitute dPFW = s− v into dTAd.

dTAd = (s− v)TA(s− v)
= sTAs− 2vTAs + vTAv
= −2aij.

(4.5)

(Away direction) Substitute dA = x− v into dTAd.

dTAd = (x− v)TA(x− v)
= xTAx− 2vTAx + vTAv
= xTAx− 2aTj∗x.

(4.6)

Recall A has nonnegative entries and zeros on the main diagonal. Therefore sTAs =
0 and vTAv = 0. From xTAx ≤ sTAx we get that (4.4) is nonpositive, and it is
also immediate that (4.5) is nonpositive. The corresponding step size functions are
therefore always concave. In (4.6) we cannot conclude anything and the sign of
dTAd is dependent on the iterate.

The derivative of ψ(γ) is

dψ

dγ
(γ) = ∇f(x)Td + 2γdTAd.
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4. Frank-Wolfe for StQP

Solve for γ in dψ
dγ

(γ) = 0

∇f(x)Td + 2γdTAd = 0
⇐⇒

γ∗ = −∇f(x)Td
2dTAd

= −xTAd
dTAd

.

(4.7)

Since ∇f(x)Td ≥ 0, we also see here that dTAd < 0 has to hold in order for the
step size to make sense.

Substitute the directions and corresponding dTAd into (4.7).

FW direction and (4.4).

γFW = −xTAd
dTAd

= aTi∗x− xTAx
2aTi∗x− xTAx

. (4.8)

Pairwise direction and (4.5).

γPFW = −xTAd
dTAd

=
aTi∗x− aTj∗x

2aij
. (4.9)

Away direction and (4.6).

γA = −xTAd
dTAd

=
xTAx− aTj∗x
2aTj∗x− xTAx

. (4.10)

4.3 Algorithms
This section combines the results from the previous two sections and arrives at
standard FW, PFW, and AFW algorithms for problem (3.2), following the high-
level structure of Algorithm 2. All variants have O(n) as the per-iteration time
complexity; the linear operations are arg max, arg min, and vector addition.
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4. Frank-Wolfe for StQP

Standard FW

Algorithm 3 FW for StQP
1: procedure FW(A, ε, T )
2: Select x0 ∈ ∆
3: r0 := Ax0
4: f0 := rT0 x0
5: for t = 0, ..., T − 1 do
6: st := ei, where i ∈ arg max

`
r

(t)
`

7: gt := r
(t)
i − ft

8: if gt ≤ ε then break
9: γt := r

(t)
i −ft

2r(t)
i −ft

10: xt+1 := (1− γt)xt + γtst
11: rt+1 := (1− γt)rt + γta∗i
12: ft+1 := (1− γt)2ft + 2γt(1− γt)r(t)

i

13: end for
14: return xt
15: end procedure

Lemma 1. For xt+1 = (1− γt)xt + γtst, lines 11 and 12 in Algorithm 3 satisfy

rt+1 = Axt+1,

ft+1 = xTt+1Axt+1.

Proof. By definition (lines 3 and 4), r0 = Ax0 and f0 = xT0 Ax0. Let x = xt, s = st,
and γ = γt. Assume rt = Ax and ft = xTAx holds. Expand the definition of Axt+1
and proceed by induction.

Axt+1 = A((1− γ)x + γs)
= (1− γ)Ax + γAs
= (1− γ)rt + γa∗i
= rt+1,

xTt+1Axt+1 = ((1− γ)x + γs)TA((1− γ)x + γs)
= (1− γ)2xTAx + 2γ(1− γ)sTAx + γ2sTAs
= (1− γ)2xTAx + 2γ(1− γ)sTAx

= (1− γ)2ft + 2γ(1− γ)r(t)
i

= ft+1.

Note sTAs = 0 from the definition of s and A. �
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Pairwise FW

Algorithm 4 Pairwise FW for StQP
1: procedure PFW(A, ε, T )
2: Select x0 ∈ ∆
3: r0 := Ax0
4: f0 := rT0 x0
5: for t = 0, ..., T − 1 do
6: σt := {i ∈ V : x(t)

i > 0}
7: st := ei, where i ∈ arg max

`
r

(t)
`

8: vt := ej, where j ∈ arg min
`∈σt

r
(t)
`

9: gt := r
(t)
i − ft

10: if gt ≤ ε then break

11: γt := min
(
x

(t)
j ,

r
(t)
i −r

(t)
j

2aij

)
12: xt+1 := xt + γt(st − vt)
13: rt+1 := rt + γt(a∗i − a∗j)
14: ft+1 := ft + 2γt(r(t)

i − r
(t)
j )− 2γ2

t aij
15: end for
16: return xt
17: end procedure

Lemma 2. For xt+1 = xt + γt(st − vt), lines 13 and 14 in Algorithm 4 satisfy

rt+1 = Axt+1,

ft+1 = xTt+1Axt+1.

Proof. Proceed as in proof of Lemma 1. Let x = xt, s = st, v = vt, and γ = γt.

Axt+1 = A(x + γ(s− v))
= Ax + γ(As−Av)
= rt + γ(a∗i − a∗j)
= rt+1,

xTt+1Axt+1 = (x + γ(s− v))TA(x + γ(s− v))
= xTAx + 2γ(s− v)TAx + γ2(s− v)TA(s− v)
= xTAx + 2γ(sTAx− vTAx)− 2γ2aij

= ft + 2γ(r(t)
i − r

(t)
j )− 2γ2aij

= ft+1.

�
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Away-steps FW

Algorithm 5 Away-steps FW for StQP
1: procedure AFW(A, ε, T )
2: Select x0 ∈ ∆
3: r0 := Ax0
4: f0 := rT0 x0
5: for t = 0, ..., T − 1 do
6: σt := {i ∈ V : x(t)

i > 0}
7: st := ei, where i ∈ arg max

`
r

(t)
`

8: vt := ej, where j ∈ arg min
`∈σt

r
(t)
`

9: gt := r
(t)
i − ft

10: if gt ≤ ε then break
11: if (r(t)

i − ft) ≥ (ft − r(t)
j ) then . FW direction

12: γt := r
(t)
i −ft

2r(t)
i −ft

13: xt+1 := (1− γt)xt + γtst
14: rt+1 := (1− γt)rt + γta∗i
15: ft+1 := (1− γt)2ft + 2γt(1− γt)r(t)

i

16: else . Away direction
17: γt := x

(t)
j /(1− x

(t)
j )

18: if (2r(t)
j − ft) > 0 then

19: γt ← min
(
γt,

ft−r(t)
j

2r(t)
j −ft

)
20: end if
21: xt+1 := (1 + γt)xt − γtvt
22: rt+1 := (1 + γt)rt − γta∗j
23: ft+1 := (1 + γt)2ft − 2γt(1 + γt)r(t)

j

24: end if
25: end for
26: return xt
27: end procedure

Lines 12-15 are identical to the updates in Algorithm 3 and are included in Lemma
1. We therefore only show the away direction.

Lemma 3. For xt+1 = (1 + γt)xt − γtvt, lines 22 and 23 in Algorithm 5 satisfy

rt+1 = Axt+1,

ft+1 = xTt+1Axt+1.

17



4. Frank-Wolfe for StQP

Proof. Proceed as in proof of Lemma 1. Let x = xt, v = vt, and γ = γt.

Axt+1 = A((1 + γ)x− γv)
= (1 + γ)Ax− γAv
= (1 + γ)rt − γa∗j
= rt+1,

xTt+1Axt+1 = ((1 + γ)x− γv)TA((1 + γ)x− γv)
= (1 + γ)2xTAx− 2γ(1 + γ)vTAx + γ2vTAv
= (1 + γ)2xTAx− 2γ(1 + γ)vTAx

= (1 + γ)2ft − 2γ(1 + γ)r(t)
j

= ft+1.

�

Algorithm 5 (AFW) is actually equivalent to the infection and immunization dy-
namics (InImDyn) with the pure strategy selection function, introduced in [7] as an
alternative to replicator dynamics. However, InImDyn is derived from the perspec-
tive of evolutionary game theory as opposed to Frank-Wolfe. We summarize this
observation in the following proposition.

Proposition 1. Algorithm 5 (AFW) is equivalent to Algorithm 1 in [7].

4.4 Convergence Rates
In [12] it was shown that the Frank-Wolfe gap for standard FW decreases at rate
O(1/

√
t) for nonconvex objective functions, where t is the number of iterations.

The same convergence rate was shown in [13] for nonconvex AFW over the simplex.
When the objective function is convex, linear convergence rates for PFW and AFW
are shown in [4]. We have not found a proof for the convergence rate in terms of
the Frank-Wolfe gap for nonconvex PFW.

Following the terminology and techniques in [12, 4, 13], in this section we present
a unified framework to analyze convergence rates for Algorithms 3, 4, and 5. The
analysis is split into a number of different cases, where each case handles a unique
search direction and step size combination. For the step sizes, we consider one case
when the optimal step size is used (γt < γmax), and a second case when it has
been truncated (γt = γmax). The former case is referred to as a good step, as in
this case we can provide a lower bound on the progress f(xt+1) − f(xt) in terms
of the Frank-Wolfe gap. The latter case is referred to as a drop step or a swap
step. It is called a drop step when the cardinality of the support is reduced by
one, i.e. |σt+1| = |σt| − 1, and it is called a swap step when it remains unchanged,
i.e. |σt+1| = |σt|. When γt = γmax we cannot provide a bound on the progress
in terms of the Frank-Wolfe gap, and instead we bound the number of drop/swap
steps. Furthermore, this case can only happen for PFW and AFW as the step size
for FW always satisfies γt < γmax. Swap steps can only happen for PFW.
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Let y = xt + γtdt, for some direction dt, r(x) = Ax, and f(x) = xTAx. From (4.3)
we have

f(y) = f(xt) + 2γtr(xt)Tdt + γ2
t dTt Adt. (4.11)

Using

γt = −(xt)TAdt
dtAdt

= −r(xt)Tdt
dTt Adt

from (4.7), we get

f(y) = f(xt)− 2(r(xt)Tdt)2

dTt Adt
+ (r(xt)Tdt)2

dTt Adt

= f(xt)−
(r(xt)Tdt)2

dTt Adt
⇐⇒

(r(xt)Tdt)2 = −dTt Adt (f(y)− f(xt)) .

(4.12)

Let
g̃t = min

0≤`≤t
g`, M = min

i,j:i 6=j
aij, M = max

i,j:i 6=j
aij,

be the smallest Frank-Wolfe gap after t iterations, and the smallest and largest
off-diagonal elements of A.

Let st satisfy (4.1) and vt satisfy (4.2). Denote their nonzero components by i and
j, respectively. Let I be the indexes that take a good step. That is, for t ∈ I we
have γt < γmax.

Lemma 4. The smallest Frank-Wolfe gap for Algorithms 3, 4, and 5 satisfy

g̃t ≤ 2

√√√√β (f(xt)− f(x0))
|I|

, (4.13)

where β = 2M −M for FW and AFW, and β = 2M for PFW.

Proof. We consider the FW, away, and pairwise directions dt with step size γt <
γmax. Note that f(y) = f(xt+1) holds in (4.12) for such directions and step sizes.

Let ht = f(xt+1)− f(xt) and gt = 2(r(xt)i − f(xt)).

(FW direction) Substitute dt = st − xt and (4.4) into (4.12).

(r(xt)i − f(xt))2 = (2r(xt)i − f(xt))ht =⇒ g2
t ≤ 4(2M −M)ht

(Away direction) For this direction with γt < γmax we have

r(xt)i − f(xt) < f(xt)− r(xt)j,
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from line 11 in Algorithm 5. Substitute dt = xt − vt and (4.6) into (4.12).

(f(xt)− r(xt)j)2 = (2r(xt)j − f(xt))ht =⇒ g2
t ≤ 4(2M −M)ht.

(Pairwise direction) Substitute dt = st − vt and (4.5) into (4.12).

(r(xt)i − r(xt)j)2 = 2aijht =⇒ g2
t ≤ 8Mht.

Using previously defined I and β we get

4β (f(xt)− f(x0)) = 4β
t−1∑
`=0

h` ≥ 4β
∑
`∈I

h` ≥
∑
`∈I

g2
t ≥ |I|g̃2

t

=⇒

g̃2
t ≤

4β (f(xt)− f(x0))
|I|

⇐⇒ g̃t ≤ 2

√√√√β (f(xt)− f(x0))
|I|

,

for either direction dt. �

Theorem 2. The smallest Frank-Wolfe gap for Algorithm 3 (FW) satisfies

g̃FWt ≤ 2
√

(2M −M) (f(xt)− f(x0))
t

. (4.14)

Proof. Since standard FW only takes good steps we have |I| = t. The result follows
from Lemma 4. �

Theorem 3. The smallest Frank-Wolfe gap for Algorithm 4 (PFW) satisfies

g̃PFWt ≤ 2
√

6n!M (f(xt)− f(x0))
t

. (4.15)

Proof. When γt = γmax we either have |σt+1| = |σt| − 1 or |σt+1| = |σt|, called drop
and swap step, respectively. We need to upper bound the number of these steps in
order to get a lower bound for |I|.

The following reasoning is from the analysis of PFW with convex objective in [4].

Let n be the dimension of xt, m = |σt|, and dt = st − vt. Since we are performing
line search, we always have f(x`) < f(xt) for all ` < t that are nonstationary. This
means the sequence x0, ...,xt will not have any duplicates. The set of component
values does not change when we perform a swap step:

{x(t)
` : ` = 1, ..., n} ∩ {x(t+1)

` : ` = 1, ..., n} = ∅.

That is, the components are simply permuted after a swap step. The number of
possible unique permutations is κ = n!/(n−m)!. After we have performed κ swap
steps, a drop step can be taken which will change the component values. Thus in
the worst case, κ swap steps followed by a drop step will be performed until m = 1
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before a good step is taken. The number of swap/drop steps between two good steps
is then bounded by

m∑
`=1

n!
(n− `)! ≤ n!

∞∑
`=0

1
`! = n!e ≤ 3n!.

Result (4.15) follows from Lemma 4 and

|I| ≥ t

3n! .

�

Theorem 4. The smallest Frank-Wolfe gap for Algorithm 5 (AFW) satisfies

g̃AFWt ≤ 2

√√√√2(2M −M) (f(xt)− f(x0))
t+ 1− |σ0|

. (4.16)

Proof. When γt = γmax, dt must be the away direction. In this case the support is
reduced by one, i.e. |σt+1| = |σt| − 1. Denote these indexes by D. Let IA ⊆ I be
the indexes that adds to the support, i.e. |σt+1| > |σt| for t ∈ IA. Similar as before,
we need to upper bound |D| in order to get a lower bound for |I|.

We have |IA| + |D| ≤ t and |σt| = |σ0| + |IA| − |D]. Combining the inequalities we
get

1 ≤ |σt| ≤ |σ0|+ t− 2|D| =⇒ |D| ≤ |σ0| − 1 + t

2 .

Result (4.16) then follows from Lemma 4 and

|I| = t− |D| ≥ t− (|σ0| − 1 + t)
2 = t+ 1− |σ0|

2 .

�

Corollary 1. The smallest Frank-Wolfe gap for Algorithms 3, 4, and 5 decrease at
rate O(1/

√
t).
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5
Experiments

This chapter presents implementation details, methodology, and experimental results
for RD, FW, PFW, and AFW on different datasets

5.1 Method
The replicator dynamics equation (3.5) and Algorithms 3, 4, and 5 are straightfor-
ward to implement in any high-level language with support for numerical computa-
tion. We have used vectorized implementations in Python and NumPy [15] for the
experiments.

Let δ be the cutoff parameter and x∗ a solution from one of the solvers. The support
(cluster) is then defined as the set {i ∈ V : x∗i > δ}. The cutoff is set to δ = 2 ·10−12

unless stated otherwise. Denote the regularization parameter from Section 3.1.3
by α, the number of objects by n, the number of clusters in the dataset by k, the
maximum number of clusters to extract by K, and the number of iterations by t.

The Frank-Wolfe gap (Definition 6) and the distance between two consecutive it-
erates will be used as the stopping criterion for the FW variants and RD, re-
spectively. Specifically, let ε be the threshold, then the respective algorithm is
stopped if gt ≤ ε or if ||xt+1 − xt|| ≤ ε. In the experiments we have set ε to
np.sys.float_info.epsilon, which is ε ≈ 2.2 · 10−16.

The experiments are divided into two groups. The first group uses the peeling
strategy in Algorithm 1, where the DOMINANT-SET procedure refers to either RD,
FW, PFW, or AFW. The second group uses a combination of the multistart and
peeling strategies.

5.1.1 Clustering Metrics
The objective of clustering is to assign objects to groups. For a problem with n
objects, the clustering assignment is represented by a discrete n-dimensional vector
c. Specifically, ci ∈ {0, 1, ..., K − 1, K}, for i = 1, ..., n. If ci = cj, then objects
i and j are in the same cluster/group. The discrete values 0, 1, ..., K − 1, K are
called labels and represent the different clusters. Label 0 is designated to represent
"no cluster" – an object is either assigned to a unique cluster or left unassigned. If
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ci = 0, then object i is unassigned and otherwise it is assigned to the cluster with
corresponding label ci. The predicted and ground truth clustering assignment are
denoted by cP and cGT , respectively.

To evaluate the clustering quality of the algorithms we will compare the predicted
cluster assignments to the ground truth. One difficulty with this is that we are not
interested in the specific labels in cP and cGT , but rather if they represent the same
partitioning of the data. For example, we might have cPi 6= cGTi and

{j : cPj = cPi } ∩ {j : cGTj = cGTi } = ∅,

meaning their labels are different but object i is in the same cluster in both assign-
ments.

Define

CP = {i ∈ V : cPi 6= 0},
CGT = {i ∈ V : cGTi 6= 0}.

The sets of predicted objects assigned to a cluster and objects actually assigned
to a cluster, respectively. Let C = CP ∩ CGT be their intersection. Denote their
respective complement by Cc

P , Cc
GT , and Cc.

Evaluation of the clustering quality is split into two types of metrics. Assignment
rate considers the accuracy in predicting whether an object is unassigned or assigned
to any cluster. Adjusted rand score and V-measure are two different metrics for the
similarity between cP and cGT ; in our experiments their similarity comparison will
be limited to the objects in C. The perfect score is 1 for all metrics.

Assignment Rate (AR)

The assignment rate is defined as

AR = 1− |C
c| − |Cc

P ∩ Cc
GT |

n
. (5.1)

The fraction is the ratio of the number of objects wrongly predicted as assigned /
unassigned, which is then subtracted from 1. The assignment rate is in [0, 1].

Adjusted Rand Index (ARI)

The adjusted rand index [16] is the rand index adjusted for chance. The rand index
is the ratio of object pairs that are either in the same cluster, or in different clusters,
in both the predicted and ground truth assignments. This is then adjusted for
chance such that random assignments of the objects results in a value close to 0.
The adjusted rand index is in [−1, 1].

V-Measure

The V-measure [17] is the harmonic mean of the homogeneity and completeness
scores. Homogeneity is satisfied if each predicted cluster only contains objects from

23



5. Experiments

the same ground truth cluster, and completeness holds if all objects from the same
ground truth cluster have been assigned to the same predicted cluster. The V-
measure is in [0, 1].

5.1.2 Similarity Matrix
Each experiment specifies the pairwise similarity measure used, and the final matrix
is then constructed from Algorithm 6.

Algorithm 6 Canonicalize the similarity matrix by scaling, regularization, and
zeroing the main diagonal.

1: procedure CANONICALIZE(A, α) . Pairwise similarities A, regularization
parameter α ≥ 0.

2: Set the main diagonal of A to 0
3: Let M := max

i,j
aij

4: Divide the elements in A by M
5: Add α to all off-diagonal elements in A
6: return A
7: end procedure

Line 2 ensures the requirements in Definition 3 are satisfied. Note that solutions to
(3.2) are invariant to scaling of the objective function by a positive factor, and line
3 does therefore not change the solutions. The regularization parameter α is used
to control the cluster sizes, as explained in Section 3.1.3.

5.2 Peeling
All algorithms need to be initiated with a starting point x0, and how it is selected
will likely determine the local optima the algorithms converge to. Let x̄B = 1

n
e be

the barycenter of the simplex, where eT = (1, 1, ..., 1), and
x̄V ∈ ∆
x̄Vi = 1, where i ∈ arg max

i
∇if(x̄B)

x̄Vj = 0, for j 6= i.

(5.2)

B for barycenter and V for vertex. The first point x̄B avoids initial bias to a
particular solution as the weights are uniform. Since ∇f(x̄B) = 2Ax̄B, the nonzero
component of x̄V corresponds to the row of A with largest total sum – that is, it is
heavily biased to a node that is highly similar to a lot of other nodes.

The starting point for RD is x̄RD = x̄B, as was done in [10]. Note that if a component
of x̄RD starts at zero it will remain at zero for the entire duration of the dynamics
according to equation (3.5). Furthermore, (x̄V )TAx̄V = 0 since A has zeros on the
main diagonal, and the denominator in (3.5) is thus zero for this point. Therefore
x̄V is not a viable starting point for RD.
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The starting point for standard FW is x̄FW = x̄V , and was found experimentally to
work well. As was shown in Section 4.4, FW never performs any drop steps since
the step size always satisfies γt < γmax, and using x̄B as starting point will therefore
lead to a solution that has full support; this was found experimentally to hold true
as well. Experiment results for PFW and AFW are reported using both x̄B and
x̄V as starting points. The PFW and AFW variants will be denoted by PFW-B,
PFW-V, AFW-B, and AFW-V, respectively, depending on the starting point.

5.2.1 Synthetic Dataset
Here we use a generative approach to examine the clustering quality relative to noise
in the dataset. We fix K = k = 5, and for a specified n, the objects are uniformly
assigned to one of the k clusters.

Let µ ∼ U(0, 1) be uniformly distributed and{
z = 0, with probability p
z = 1, with probability 1− p,

where p is the noise ratio. The similarity matrix A = (aij) is then constructed as
follows: {

aij = aji = zµ, if i and j are in the same cluster
aij = 0, otherwise,

The regularization parameter is set to α = 4. For each parameter configuration, a
similarity matrix is generated and clustered 5 times and the result is then averaged.

In Figure 5.1 it is evident how sensitive RD is to correct values of the number of it-
erations t and cutoff δ. The performance of all FW variants is consistent throughout
the different parameter configurations, while it varies greatly for RD.
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Figure 5.1: Synthetic dataset results for RD, FW, PFW, and AFW. PFW-B and
AFW-B have squares; PFW-V and AFW-V have crosses. (a)-(i) n = 200. (a,d,g)
t = 400, δ = 2 · 10−12. (b,e,h) t = 400, δ = 2 · 10−3. (c,f,i) t = 4000, δ = 2 · 10−12.

5.2.2 Newsgroups Dataset
In this section we study the clustering quality on the newsgroups dataset1 from
scikit-learn [18], similar as [6, 19]. The dataset consists of 18000 newsgroups posts on
20 categories split into subsets for training and test. The test subset was used for our
experiments, and it was further split into 4 smaller datasets based on randomizing
the categories.

• newsgroups1: soc.religion.christian, comp.os.ms-windows.misc,
talk.politics.guns, alt.atheism, talk.politics.misc.

• newsgroups2: comp.windows.x, sci.med, rec.autos, talk.religion.misc,
sci.crypt.

• newsgroups3: misc.forsale, comp.sys.mac.hardware, talk.politics.mideast,
sci.electronics, rec.motorcycles.

1newsgroups dataset
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• newsgroups4: comp.sys.ibm.pc.hardware, comp.graphics, rec.sport.hockey,
rec.sport.baseball, sci.space.

The text posts are converted to tf-idf2 vectors and then further reduced in dimension
using PCA3 with 20 components. The similarity matrix A is constructed using the
cosine similarity4 and then the off-diagonal elements are shifted by 1 to ensure
nonnegative entries.

Each of the datasets in the list have k = 5 clusters and 1700 ≤ n ≤ 2000 posts, and
K = 5 is also used for peeling.

The regularization parameter was set to α = 15, and appeared to be a reasonable
compromise between the two methods. Using smaller or larger α resulted in too
small clusters or too slow convergence, respectively, for replicator dynamics.

Tables 5.1, 5.3, 5.5, and 5.7 show the results for the different datasets. Since all
objects in the ground truth dataset are assigned to a cluster, the assignment rate
is the ratio of objects that were selected during the clustering. High AR and low
ARI/V-measure in this context means that many objects have been assigned to the
same cluster. This is what happens for RD with t = 1000 – the progress is insufficient
and all objects are therefore considered part of the same support/cluster. The results
are fairly consistent with the synthetic dataset results: the FW variants are mostly
similar across the different number of iterations while there is more variance for RD.
For t = 8000 we also see a significant speed difference; see [7] for additional speed
comparisons between RD and AFW/InImDyn.

Tables 5.2, 5.4, 5.6, and 5.8 show corresponding results after a post-processing step.
The post-processing step assigns each unassigned object to the cluster which it has
highest average similarity with. Specifically, let C0 ⊆ V be the unassigned objects
and Ci ⊆ V , 1 ≤ i ≤ K, the predicted clusters. Object j ∈ C0 is then assigned to
cluster Ci that satisfies

i ∈ arg max
`≥1

1
|C`|

∑
p∈C`

ajp.

The assignment rate is always 1 after the post-processing step since all objects have
now been assigned to a cluster. From the tables we see that ARI and V-measure
are mostly similar as before and after the post-processing, but there is a complete
partitioning of the data in the latter case.

2term-frequency times inverse document-frequency
3principal component analysis
4cosine similarity
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t Duration AR ARI V-Measure

FW
1000 0.36s 0.6325 0.4695 0.5388
4000 1.35s 0.6885 0.4593 0.5224
8000 2.41s 0.6969 0.4673 0.5325

PFW-B
1000 0.43s 0.7429 0.1944 0.4289
4000 1.86s 0.6605 0.467 0.5327
8000 2.62s 0.642 0.471 0.5335

PFW-V
1000 0.52s 0.6471 0.5178 0.5745
4000 1.6s 0.6487 0.4565 0.5237
8000 2.47s 0.642 0.471 0.5335

AFW-B
1000 0.35s 0.8527 0.076 0.2854
4000 1.69s 0.6258 0.3887 0.5316
8000 2.93s 0.6599 0.4676 0.5328

AFW-V
1000 0.46s 0.6415 0.5184 0.5736
4000 1.38s 0.6482 0.518 0.5754
8000 2.75s 0.6476 0.4618 0.5257

RD
1000 1.06s 1.0 0.0 0.0
4000 4.56s 0.9081 0.1852 0.3003
8000 11.4s 0.6997 0.4121 0.5384

Table 5.1: Dataset newsgroups1 results.

AR ARI V-Measure

FW
1.0 0.4068 0.4969
1.0 0.4639 0.5225
1.0 0.4766 0.5351

PFW-B
1.0 0.2063 0.3919
1.0 0.4623 0.5324
1.0 0.4356 0.5219

PFW-V
1.0 0.5091 0.5763
1.0 0.4298 0.5149
1.0 0.4356 0.5219

AFW-B
1.0 0.0966 0.2751
1.0 0.3162 0.4806
1.0 0.4615 0.5319

AFW-V
1.0 0.5066 0.5744
1.0 0.5047 0.5719
1.0 0.4308 0.5148

RD
1.0 0.0 0.0
1.0 0.1892 0.3042
1.0 0.3659 0.4937

Table 5.2: Dataset newsgroups1 results after post-processing.
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t Duration AR ARI V-Measure

FW
1000 0.37s 0.6587 0.5594 0.5929
4000 1.38s 0.6674 0.5479 0.5866
8000 2.6s 0.6679 0.5473 0.5864

PFW-B
1000 0.45s 0.7508 0.135 0.3555
4000 1.57s 0.6172 0.6257 0.6364
8000 2.06s 0.6172 0.6257 0.6364

PFW-V
1000 0.59s 0.6281 0.6095 0.6241
4000 1.85s 0.6172 0.6257 0.6364
8000 3.1s 0.6172 0.6257 0.6364

AFW-B
1000 0.41s 0.8653 0.0979 0.316
4000 1.9s 0.6172 0.6257 0.6364
8000 3.39s 0.6172 0.6257 0.6364

AFW-V
1000 0.48s 0.663 0.5548 0.5907
4000 1.75s 0.6172 0.6257 0.6364
8000 3.38s 0.6172 0.6257 0.6364

RD
1000 0.76s 1.0 0.0 0.0
4000 4.67s 1.0 0.1795 0.333
8000 13.52s 0.7585 0.4391 0.5161

Table 5.3: Dataset newsgroups2 results.

AR ARI V-Measure

FW
1.0 0.5158 0.5733
1.0 0.5084 0.5699
1.0 0.5084 0.5699

PFW-B
1.0 0.178 0.3814
1.0 0.5332 0.5834
1.0 0.5332 0.5834

PFW-V
1.0 0.5331 0.5824
1.0 0.5332 0.5834
1.0 0.5332 0.5834

AFW-B
1.0 0.131 0.344
1.0 0.5332 0.5834
1.0 0.5332 0.5834

AFW-V
1.0 0.5099 0.5699
1.0 0.5332 0.5834
1.0 0.5332 0.5834

RD
1.0 0.0 0.0
1.0 0.1795 0.333
1.0 0.4123 0.5065

Table 5.4: Dataset newsgroups2 results after post-processing.
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t Duration AR ARI V-Measure

FW
1000 0.41s 0.6756 0.5206 0.5879
4000 1.35s 0.6468 0.5309 0.5975
8000 2.63s 0.6473 0.5314 0.5978

PFW-B
1000 0.49s 0.758 0.217 0.4617
4000 1.79s 0.6468 0.5317 0.6004
8000 2.88s 0.6468 0.5317 0.6004

PFW-V
1000 0.56s 0.6468 0.5317 0.6004
4000 1.96s 0.6468 0.5317 0.6004
8000 3.71s 0.6468 0.5317 0.6004

AFW-B
1000 0.37s 0.8373 0.1381 0.3594
4000 1.83s 0.6462 0.5316 0.6003
8000 3.19s 0.6468 0.5317 0.6004

AFW-V
1000 0.49s 0.6468 0.5322 0.5993
4000 1.63s 0.6468 0.5317 0.6004
8000 2.99s 0.6468 0.5317 0.6004

RD
1000 0.86s 1.0 0.0 0.0
4000 4.69s 0.9089 0.2212 0.3465
8000 12.9s 0.8012 0.3526 0.4556

Table 5.5: Dataset newsgroups3 results.

AR ARI V-Measure

FW
1.0 0.5751 0.595
1.0 0.572 0.5962
1.0 0.5729 0.5972

PFW-B
1.0 0.2764 0.4859
1.0 0.5734 0.5992
1.0 0.5734 0.5992

PFW-V
1.0 0.5734 0.5992
1.0 0.5734 0.5992
1.0 0.5734 0.5992

AFW-B
1.0 0.1782 0.3967
1.0 0.5734 0.5992
1.0 0.5734 0.5992

AFW-V
1.0 0.5741 0.5983
1.0 0.5734 0.5992
1.0 0.5734 0.5992

RD
1.0 0.0 0.0
1.0 0.2394 0.3575
1.0 0.4227 0.4973

Table 5.6: Dataset newsgroups3 results after post-processing.
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t Duration AR ARI V-Measure

FW
1000 0.42s 0.653 0.5097 0.5706
4000 1.38s 0.6169 0.4672 0.5437
8000 2.6s 0.7002 0.5014 0.5514

PFW-B
1000 0.43s 0.8092 0.2247 0.4483
4000 1.82s 0.6697 0.6211 0.6484
8000 3.04s 0.6697 0.6211 0.6484

PFW-V
1000 0.58s 0.6591 0.6446 0.6717
4000 2.02s 0.6565 0.6462 0.675
8000 2.74s 0.6565 0.6462 0.675

AFW-B
1000 0.35s 0.9041 0.1109 0.3361
4000 1.87s 0.6687 0.6191 0.6463
8000 3.55s 0.6697 0.6211 0.6484

AFW-V
1000 0.5s 0.6525 0.5071 0.5651
4000 1.84s 0.6565 0.6462 0.675
8000 3.6s 0.6565 0.6462 0.675

RD
1000 0.93s 1.0 0.0 0.0
4000 5.46s 1.0 0.3197 0.4112
8000 14.52s 0.8559 0.4528 0.5328

Table 5.7: Dataset newsgroups4 results.

AR ARI V-Measure

FW
1.0 0.4663 0.5252
1.0 0.4409 0.5084
1.0 0.4973 0.5396

PFW-B
1.0 0.288 0.4878
1.0 0.587 0.6094
1.0 0.587 0.6094

PFW-V
1.0 0.605 0.6226
1.0 0.6072 0.6268
1.0 0.6072 0.6268

AFW-B
1.0 0.1313 0.3577
1.0 0.588 0.6097
1.0 0.587 0.6094

AFW-V
1.0 0.4592 0.5183
1.0 0.6072 0.6268
1.0 0.6072 0.6268

RD
1.0 0.0 0.0
1.0 0.3197 0.4112
1.0 0.4858 0.5556

Table 5.8: Dataset newsgroups4 results after post-processing.
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Figure 5.2: Original image with dimensions 120× 80.

5.2.3 Image Segmentation
We consider segmentation of colored images in HSV space. Define feature vector
f(i) = [v, vs sin(h), vs cos(h)]T as in [2], where h, s, and v are the HSV values of
pixel i. The similarity matrix A is then defined as follows:

1. Compute ||f(i)− f(j)||, for every pair of pixels i, j, into matrix DL2.
2. Compute path-based distances [20, 21] from matrix DL2 into matrix DP .
3. Finally, A = max(DP )−DP , where max is over the elements in DP .

Figures 5.3, 5.4, and 5.5 show segmentation results of the airplane in Figure 5.2.
An image with dimensions 120 × 80 results in an clustering problem with n =
120 · 80 = 9600. The experiments extracted max K = 3 clusters. All FW variants
used α = 1500 and RD used α = 0. Other α values for RD resulted in too slow
progress.

When starting the FW variants with point 5.2, at least t = ` iterations are needed
in order to extract a cluster with size `. This explains the poor results for t = 2000
when using this starting point. The barycenter starting point for PFW and AFW is
therefore better in this case, as it is more efficient to remove components from the
support instead of adding to it. Furthermore, while the results looks reasonable in
Figure 5.3c with t = 50 iterations, RD has not actually converged as can be seen
in Figure 5.3d with t = 250 iterations. The results deteriorate due to the small
value of α – the clusters are too small and can therefore not represent the complete
airplane/background. Also note that running RD for 50 iterations takes about the
same time as running the FW variants for 10000 iterations, due to n = 9600 and
their quadratic and linear per-iteration time complexities.
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(a) FW. t = 2000. (b) FW. t = 10000.

(c) RD. t = 50. (d) RD. t = 250.

Figure 5.3: Image segmentation results for standard FW and RD.
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(a) PFW-B. t = 2000. (b) PFW-B. t = 10000.

(c) PFW-V. t = 2000. (d) PFW-V. t = 10000.

Figure 5.4: Image segmentation results for PFW.
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(a) AFW-B. t = 2000. (b) AFW-B. t = 10000.

(c) AFW-V. t = 2000. (d) AFW-V. t = 10000.

Figure 5.5: Image segmentation results for AFW.
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5.3 Multistart
This experiment considers a combination of multistart with peeling, and it works as
follows:

1. Sample a subset of objects, and based on them, construct a number of starting
points for the same similarity matrix.

2. Given a solver, run it for each starting point.
3. Identify the nonoverlapping clusters from the solutions and remove correspond-

ing objects from the similarity matrix as in peeling.
4. Repeat until no objects are left or sufficient number of clusters have been

found.

This is interesting to investigate because the solver can be run parallel and in isola-
tion with different starting points. However, if they all converge to the same cluster,
then there is no benefit and it is usually worse than normal peeling due to the extra
overhead from the setup. Though this experiment will not consider speed per se
since Python is not very efficient when it comes to multiprocessing. Instead we will
consider the number of passes through the data, where a pass is one run through
the items in the list above.

After the solutions have been computed, they are sorted based on the function
value f(x). The sorted solutions are then traversed in a decreasing order, and if
the support of the current solution overlaps more than ten percent with the support
of previous solutions, it is discarded. Each pass will therefore extract at least one
cluster, and if K is the maximum number of clusters to extract, there will be at
most K passes. Thus in order for the method to be useful, less than K passes should
be performed.

Figure 5.6 shows the type of dataset that is used. Each cluster is a 2D Gaussian
with fixed mean and standard deviation 1 – see Figure 5.6a. Parameter p controls
the noise ratio, and we fix n = 1000 and K = k = 4. Using n1 = pn and n2 = n−n1,
a dataset is generated by sampling 0.1 · n2, 0.2 · n2, 0.3 · n3, and 0.4 · n2 points from
the respective Gaussian, and n1 points from a uniform distribution (the clutter in
Figure 5.6c).

Let D be the matrix with pairwise Euclidean distances between all points in the
dataset. The similarity matrix is then defined as A = max(D)−D, similar as in the
image segmentation problem but with different distance measure. The regularization
parameter is set to α = 15.

To determine the starting points we sample 4 components from {1, ..., n}, denote
them by i1, i2, i3, i4. The number 4 was chosen since it matches the number of
CPUs on our system. Using similar notation as in Section 5.2, for given component
i ∈ {i1, i2, i3, i4}, the starting points are defined as{

x̄Vi = 1
x̄Vj = 0, for j 6= i
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and {
x̄Bi = 0.5
x̄Bj = 0.5/(n− 1), for j 6= i.

FW uses only x̄V while PFW and AFW use both x̄V and x̄B.

The last thing remaining is the sampling methods for the components. For this we
consider uniform sampling and Determinantal Point Processes [22], denoted UNI
and DPP, respectively.

Uniform Sampling
Let ` be the number of components to sample and ai∗ = ∑n

j=1 aij, the sum of the
elements in row i of A. Sort ai∗ in decreasing order, divide them into blocks of size
n/`, and sample one component i uniformly from each block.

Determinantal Point Processes
A discrete DPP is a probability measure on subsets of a discrete set V , that is, on
the power set 2V . We consider a variant of DPP called L-ensemble. If PL is an
L-ensemble and Y ⊆ V , the probability of sampling it according to PL then is

PL(Y ) ∝ det(LY ),

where L is real, symmetric, and positive semidefinite, called the likelihood matrix.
The submatrix LY are the rows and columns of L indexed by Y [22]. If L is a
similarity matrix, then subsets with diverse objects (low similarities between them)
are more likely to be sampled. For example, if Y = {i, j}, then

PL(Y ) ∝ det(LY ) = `ii`jj − `ij`ji. (5.3)

DPP is thus a reasonable sampling method for our purposes. Using the similarity
matrix A as the DPP likelihood matrix, we are more likely to sample objects that
are diverse, and therefore less likely to belong in the same cluster.

The similarity matrix A – or submatrices thereof – are real and symmetric, but
not positive semidefinite since they have zeros on the main diagonal. However, any
symmetric matrix can be transformed to be positive semidefinite by ensuring it is
diagonally dominant – every diagonal element is larger than the sum of the absolute
elements on the corresponding row.

In order to sample from a DPP with given likelihood matrix, we need to compute
its eigendecomposition which is an O(n3) operation. The sampling is therefore done
in two steps. The first step is similar to the uniform sampling method: sort the
components based on ai∗, split them into blocks of size n/10, and then uniformly
sample n2/3/10 objects from each block. In the second step we sample with DPP
using as likelihood matrix the submatrix of A indexed by the n2/3 objects from the
first step. Note we ensure the submatrix of A is diagonally dominant instead of A.
In our experiment we used the Python library DPPy [23] to sample from a k-DPP,
which ensures that the sampled set has k components (` in our case).

38



5. Experiments

(a) Dataset without noise. (b) AR 0.94, ARI 1.0, and V-measure
1.0.

(c) Dataset with noise p = 0.4. (d) AR 0.74, ARI 1.0, and V-measure
1.0.

Figure 5.6: Sample datasets. (b) and (d) show clustering results from FW with
peeling; PFW and AFW produce similar results.

Results
Figure 5.7 shows the experiment results for the different types of sampling methods
and starting points. For a given dataset, sampling method, and solver, we generate
starting points and run the experiment 10 times and report the average results.
Each solver is run for t = 1000 iterations. For this type of dataset we do not see any
significant difference between either FW, PFW, or AFW when using either DPP or
UNI. The most noticeable effect is that AFW with x̄B as starting point seems to
perform slightly worse.
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Figure 5.7: Multistart dataset results for FW, PFW, and AFW. PFW-B and
AFW-B have squares; PFW-V and AFW-V have crosses. Left column (a,c,e,g)
DPP and right column (b,d,f,h) UNI.
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Conclusion

6.1 Discussion
In section 4.4 we have shown that all three Frank-Wolfe variants converge at rate
O(1/

√
t) in terms of the Frank-Wolfe gap. The bounds are tight for standard FW

and AFW, while it is looser for PFW due to the unfortunate factorial in the nu-
merator. In practice, however, they all appear to exhibit similar convergence, based
on the experiment results in the previous chapter. An advantage with PFW and
AFW over standard FW is that they can also use the barycenter as starting point.
This was seen to be useful in the image segmentation experiment, as it took 2000
iterations to achieve the same result as standard FW did for 10000 iterations.

We reaffirm the conclusions from [6, 3] regarding replicator dynamics. That is, it
is very sensitive to the number of iterations and the cutoff parameter, as can be
seen in all results from the peeling experiments. The FW variants are more stable
with respect to the cutoff parameter, and generally less sensitive to the number of
iterations; a special case is when using a vertex as starting point – the FW variants
need to run at least ` iterations in order to extract a cluster of size `.

A general observation related to Dominant Set Clustering, which has not been em-
phasized in prior works, is the difficulty in constructing the similarity matrix for a
given problem. As can be seen in the newsgroups experiment, the assignment rate
is below 1 by a significant margin. The ground truth have all objects assigned to a
cluster, but the predicted clusters contain fewer objects and some are therefore left
unassigned. In other words, the occurrence of small dominant sets that do not en-
compass the complete cluster cause the reduced assignment rate. This is the type of
problem the regularization parameter is made to solve – remove too small dominant
sets so that bigger appear – but it is difficult to predict their size, and therefore the
regularization parameter.

In addition to the regularization parameter, the post-processing step used in the
newsgroups experiment is an easy and efficient heuristic that enlarges the clusters
such that they cover the complete dataset. However, if the dataset includes objects
that do not belong to a cluster, e.g. noise, then additional care has to be taken such
that they are still left unassigned after the post-processing.

Finally, the multistart experiment showed some interesting results. DPP has a lot
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more overhead compared to uniform sampling, but did not provide any noticeable
benefit in the number of passes needed. One explanation for this could be that the
diagonal elements are a lot larger compared to the off-diagonal elements, due to
ensuring the similarity matrix is diagonally dominant. This potentially eliminates a
lot of the benefits of DPP as less emphasis is put on the off-diagonal elements, see
Equation 5.3. It would be interesting to investigate other ways to ensure positive
semidefiniteness of the similarity matrix, as well as further experiments with mul-
tistart and an efficient parallel implementation to investigate speedups relative to
traditional peeling.

6.2 Ethical Considerations
The datasets used in the experiments are either synthetic or publicly available. This
means there are no immediate privacy concerns or sensitive information that need to
be accounted for. However, this may not be the case more generally and is therefore
important to consider. A second point to consider is that the clusters are completely
determined by how the similarity matrix is defined. If there are biases in the dataset
that are reflected by the similarity matrix, the final clustering result is then likely
to also be biased. One should thus be conscious of the type of data being analyzed.

6.3 Conclusion
We have studied variants of the Frank-Wolfe algorithm – standard FW, pairwise
FW, and away-steps FW – in the context of the StQP defined by Dominant Set
Clustering. AFW is equivalent to the infection and immunization dynamics, which
has previously been applied to DSC as an alternative to replicator dynamics. We
find that all FW variants yield solutions with similar quality, and on par or better
than RD. The linear vs quadratic per-iteration time complexity for the FW variants
and RD, respectively, is also an immediate advantage. Finally, PFW and AFW
have the benefit over standard FW in that they are able to be started from the
barycenter, which can be useful for problems with large clusters.
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