
A Front-End for Daison

Development of an Interactive Haskell Environment
Using the Glasgow Haskell Compiler as a Library

Bachelor’s Thesis in Computer Science and Engineering

CHRISTOFFER KALTENBRUNNER
ALEXANDER NELDEFORS
HUGO STEGRELL
PHILIP VEDIN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Bachelor’s Thesis 2021

A Front-End for Daison

Development of an Interactive Haskell Environment
Using the Glasgow Haskell Compiler as a Library

CHRISTOFFER KALTENBRUNNER
ALEXANDER NELDEFORS

HUGO STEGRELL
PHILIP VEDIN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

A Front-End for Daison
Development of an Interactive Haskell Environment Using the Glasgow Haskell Com-
piler as a Library
CHRISTOFFER KALTENBRUNNER
ALEXANDER NELDEFORS
HUGO STEGRELL
PHILIP VEDIN

© CHRISTOFFER KALTENBRUNNER, 2021.
© ALEXANDER NELDEFORS, 2021.
© HUGO STEGRELL, 2021.
© PHILIP VEDIN, 2021.

Supervisor: Krasimir Angelov, Department of Computer Science and Engineering
Examiner: Mary Sheeran, Department of Computer Science and Engineering

Bachelor’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

A Front-End for Daison
Development of an Interactive Haskell Environment Using the Glasgow Haskell Com-
piler as a Library
CHRISTOFFER KALTENBRUNNER
ALEXANDER NELDEFORS
HUGO STEGRELL
PHILIP VEDIN

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Daison is a database written in the functional programming language Haskell. It
has no built-in visual representation of data and using it in an interactive Haskell
environment such as GHCi is inconvenient since it requires boilerplate code. Our
work presents an application that provides an alternative interactive environment
that both removes the boilerplate code the user currently needs to write and dis-
plays query results in a table format. The application aims to be user-friendly
and provide an experience similar to GHCi. It is written in Haskell and uses the
Glasgow Haskell Compiler as a library. Automated tests are in place for ease of
maintainability, though in a limited capacity. Manual testing was used to verify
that requirements were fulfilled. Findings from usability testing, carried out in two
iterations with a total of nine participants, suggest the application was well received.
While fully supporting functionality provided by Daison, there remain a range of
improvements that can further enhance the user experience. Examples of such im-
provements include better table formatting and the addition of a graphical user
interface.

Keywords: Daison, Database, Glasgow Haskell Compiler, Haskell

v

vi

Sammandrag
Daison är en databas skriven i det funktionella programmeringsspråket Haskell. Den
har ingen inbyggd visuell representation av data och att använda den i en interaktiv
Haskell-miljö som GHCi är opraktiskt eftersom det kräver mycket boilerplate-kod.
Vårt arbete introducerar en applikation som erbjuder en alternativ interaktiv miljö
som både tar bort boilerplate-kod som användaren behöver skriva samt visar re-
sultatet från databasfrågorna i en formaterad tabell. Applikationen avser att vara
användarvänlig och erbjuda en liknande upplevelse som GHCi. Den är skriven i
Haskell och använder Glasgow Haskell Compiler som ett bibliotek. Automatiska
tester finns för att underlätta underhållningen av mjukvaran, dock i begränsad om-
fattning. Manuella tester genomfördes för att verifiera att alla kraven var uppfyllda.
Användarvänlighetstester, vilka genomfördes i två omgångar med totalt nio delta-
gare, antydde att applikationen är lättanvänd. Applikationen har fullt stöd för Dai-
son, men det finns ytterligare förbättringar för att optimera användarupplevelsen.
Exempel på sådana förbättringar inkluderar bättre formaterade tabeller samt ett
grafiskt användargränssnitt.

Nyckelord: Daison, Databas, Glasgow Haskell Compiler, Haskell

vii

viii

Acknowledgements
We are grateful to our supervisor, Krasimir Angelov, who has given us feedback
and helped us in all stages of the project, from the planning all the way to the
final presentation. We also thank Mary Sheeran, our examiner. She has provided
good answers when asked questions. We are thankful for all the volunteers who
participated in the usability tests.

The Authors, Gothenburg, May 2021

ix

x

Contents

1 Introduction 1
1.1 Purpose . 2
1.2 Delimitations . 2

2 Theory 3
2.1 General Knowledge of Haskell . 3

2.1.1 Functions and Types . 3
2.1.2 List Comprehensions . 4
2.1.3 Type Classes . 4
2.1.4 Monads . 6

2.2 An Introduction to Daison . 8
2.2.1 Creating Tables . 9
2.2.2 Inserting into a Table . 10
2.2.3 Selecting from a Table . 10
2.2.4 Updating an Entry . 10
2.2.5 Deleting from a Table . 11
2.2.6 Indices in a Table . 11

2.3 The Glasgow Haskell Compiler . 12

3 Methods 15
3.1 Software Development . 15

3.1.1 Version Control and Continuous Integration 15
3.2 Testing and Verification . 16

3.2.1 Unit Tests . 16
3.2.2 Functional Tests . 16
3.2.3 Usability Tests . 18

4 Results 21
4.1 An Overview of the Application . 21
4.2 Handling Databases . 24
4.3 Running Queries . 24

4.3.1 Parsing Queries . 24
4.3.2 Type-Checking Queries . 24
4.3.3 Executing Queries . 25

4.4 Displaying Query Results . 25
4.4.1 Formatting a Table . 25

xi

Contents

4.4.2 Choosing Display Method . 26
4.5 Loading Files and Modules . 26

4.5.1 Loading Modules . 26
4.5.2 Loading Haskell Files . 27

4.6 Software Architecture . 27
4.6.1 The DaisonI Monad . 28

4.7 Requirement Changes . 29
4.8 Test Results . 29

4.8.1 Manual Tests . 29
4.8.2 Automated Tests . 30
4.8.3 Usability Tests . 30

5 Discussion 35
5.1 Understanding the Glasgow Haskell Compiler 35
5.2 Usage of Test Methods . 35

5.2.1 Unit Testing . 36
5.2.2 Property-Based Testing . 36
5.2.3 Test Automation . 36
5.2.4 Further Testing . 36

5.3 Ethical Considerations . 37
5.4 Future Work . 38

5.4.1 Table Formatting . 38
5.4.2 Security of User Data . 40
5.4.3 Input Interface . 40
5.4.4 Supporting Multiple Back-Ends 41
5.4.5 A Graphical User Interface . 41

6 Conclusions 43

Bibliography 45

A Test Case Specifications I
A.1 Functional Test #1 . I
A.2 Functional Test #2 . IV
A.3 Functional Test #3 . V
A.4 Functional Test #4 . VI
A.5 Functional Test #5 . VII
A.6 Functional Test #6 . VIII
A.7 Functional Test #7 . IX
A.8 Functional Test #8 . X
A.9 Functional Test #9 . XII
A.10 Functional Test #10 . XIII
A.11 Functional Test #11 . XIV
A.12 Functional Test #12 . XV
A.13 Functional Test #13 . XVII

B Tasks for Evaluating the Usability XIX

xii

Contents

B.1 Task 1: Loading Modules . XIX
B.2 Task 2: Changing Working Directory XIX
B.3 Task 3: Opening a Database and Creating a Table XIX
B.4 Task 4: Creating an Entry . XX
B.5 Task 5: Reading an Entry . XX
B.6 Task 6: Updating an Entry . XX
B.7 Task 7: Deleting an Entry . XX
B.8 Task 8: Changing Database and Creating a Table XXI
B.9 Task 9: Navigating Output . XXI

C Quick Reference Used During the Usability Tests XXIII

D Usability Test Results XXV

xiii

Contents

xiv

1
Introduction

Very few modern applications are created without a database back-end. Although
using a ready-made database instead of a custom-made storage gives a lot for free,
it comes at a cost. Many database concepts are fundamentally different from those
used in general-purpose programming languages, such as C, Java and Haskell, re-
sulting in an impedance mismatch between the application and database layers. The
impedance mismatch in turn leads to programs that are hard to maintain. Addi-
tionally, many databases come with their own programming language requiring the
developer to use multiple languages for the application.

A common solution is to use an embedded language as a high-level interface in
which programmers can describe the database queries. Thus, the queries can be
written at a higher level of abstraction, are statically safe and can be type-checked
at compile time. This approach is supported by many programming languages,
including Language Integrated Query (LINQ) for C# [1], ScalaQL for Scala [2], and
Selda for Haskell [3].

One can also bypass the impedance mismatch by storing data as native data types
of the application language. For Haskell programmers, this can be done by using
Daison (a word play on DAta lISt comprehensiON) developed by Angelov [4], the
database which is the topic for this project. Daison is a NoSQL database which
replaces the traditional Structured Query Language (SQL) with a Haskell Applica-
tion Programming Interface (API). It stores ordinary Haskell values and uses Haskell
data types for table definitions.

However, there is no front-end available by Daison’s original developer. This means
that in order to modify a database, the programmer has to either write Haskell
code and compile it, or modify the database directly in the interactive Haskell en-
vironment GHCi (Glasgow Haskell Compiler interactive). The former is not very
convenient if the user wants to load test data. The latter is not user-friendly either,
since the user must explicitly start a transaction every time and pass a reference to
the database for each query. Furthermore, the output is not printed in a readable
way.

1

1. Introduction

1.1 Purpose
The purpose of the project is to build a user-friendly and well-documented front-end
for Daison by using the Haskell Glasgow Compiler (GHC) as a library. The front-end
should be a command line program that interprets and executes Daison functions
in the same interactive way that GHCi interprets and executes Haskell code. The
target group for the application is programmers with experience in Haskell.

Table 1.1 shows the purpose broken down into a requirement specification for the
project. Requirements one through eight were specified in the beginning of the
project and requirements nine through twelve were added during the project.

Table 1.1: Requirements for the application.

ID Description
R1 The Daison library should be loaded by default.
R2 A transaction should be started automatically for every database query.
R3 It should be possible to write queries interactively at the prompt.
R4 It should be possible to write Haskell code interactively at the prompt.
R5 The front-end should accept the Daison monad.
R6 The output from queries should be printed as a formatted table.
R7 It should be possible to navigate the printed output (up/down).
R8 The front-end should accept the IO monad.
R9 It should be possible to navigate the file system at the prompt.
R10 It should be possible to load Haskell modules at runtime and startup.
R11 It should be possible to set flags at runtime and startup.
R12 It should be possible for the user to open and close databases at runtime.

Databases should also be possible to set at startup.

1.2 Delimitations
As stated above, this project aims to build a front-end which interactively interprets
and executes Daison queries in a GHCi-like manner by using GHC as a library. We
will not expand upon the set of queries that are currently supported by Daison nor
will we implement an embedded language for database interaction as this is beyond
the scope of the project.

2

2
Theory

Haskell is a general-purpose, statically typed, purely functional programming lan-
guage developed to be suitable for teaching, research and industrial applications. It
is specified in the Haskell Language Report [5] and the most popular and widely
used implementation of Haskell is the Glasgow Haskell Compiler (GHC).

In this chapter, we begin by giving a short introduction to Haskell, presenting some
core concepts as well as more advanced concepts. The experienced Haskell pro-
grammer might want to skip this section. Next, we introduce Daison, the database
which is the topic of this project. This is followed by an overview of GHC and its
Application Programming Interface (API).

2.1 General Knowledge of Haskell
The Haskell language has many features, for example pure functions, lazy evaluation,
pattern matching, list comprehensions, type classes and type polymorphism. In this
section we will explain the language features that are particularly important for this
project.

2.1.1 Functions and Types
A Haskell program consists of pure functions; that is, functions which do not have
any side-effects. A function in Haskell will always return the same value given the
same input, whenever it is being evaluated in the program. One of the benefits with
this approach is that functions are easy to test for correctness. For those not familiar
with functional programming, a pure function can be compared to a mathematical
function. For instance, consider a function, f : Z→ Z, which increments any integer
by one,

f(n) = n + 1.

For any n ∈ Z the function f(n) will always return the same value. In Haskell, this
function could be written as:

inc :: Int -> Int
inc n = n + 1

3

2. Theory

where the first line is a type declaration and the second line is the implementation
of the function. Looking at the type declaration, one can see that inc is a function
that takes something of type Int as an argument and evaluates to something of the
same type.

Because of Haskell’s strong static type system, trivial errors like "Hello, world" +
12 is found at compile-time. Haskell has predefined types for truth values (Bool),
integers (Int and Integer), floating-point numbers (Float and Double), characters
(Char), and strings (String). But, we can also make our own types. For instance,
we could represent a person which has a name of type String and an age of type
Int as data Person = Person String Int. However, if we would like to get a
person’s name or age, we would need to define functions that return them. Since
this is a common use case, we can simply use record syntax instead:

data Person = Person {name :: String, age :: Int}

By using record syntax, Haskell automatically creates the functions name :: Person
-> String and age :: Person -> Int. Thus, if we now define a person p =
Person "Alice" 25, we could get her name and age:

nameOfPerson = name p -- "Alice"
ageOfPerson = age p -- 25

2.1.2 List Comprehensions
Lists in Haskell are similar to sets in mathematics, except that lists can contain
duplicate values and can only contain one type. They can be written as a com-
prehension of the form [e | q1, ..., qn], n ≥ 1, where each q is either a
generator, a local declaration or a boolean condition [5, Ch. 5]. For instance, the
set of even positive integers less than or equal to 100 could in Haskell be expressed
as [2*x | x <- [1..50]] where [1..50] is the list of integers from one to fifty.

Consider another example: We would like to calculate all positive integers less than
or equal to 250 that are divisible by three and seventeen. With a list comprehension
we could express this set concisely:

[x | x <- [1..250], x `mod` 3 == 0, x `mod` 17 == 0]

2.1.3 Type Classes
Let us begin with a simple example of a type class. Below is the definition of the
Num class from the base package [5, Ch. 6]:

class Num a where
(+), (*), (-) :: a -> a -> a
negate, abs, signum :: a -> a
fromInteger :: Integer -> a

4

2. Theory

The class defines the type signatures for a set of functions. It is possible to define
default implementations, but often there are only type signatures in a class. This
feature is similar to interfaces in Java or traits in Scala, although there are small
differences between the languages.

A class can be derived in Haskell by specifying that a type is an instance of that
class. Since there are no implementations in the Num class, any type that derives
Num must implement these functions, which are often called the minimal complete
definition.

Aside from the minimal complete definition, type classes can also have laws that the
implementations need to follow. An example of a type class that has laws is the Num
type class which was just presented. As specified in the Haskell Language Report
[5, Ch. 6.4], any number must have a magnitude, a sign and should follow the law
that the absolute value multiplied by the sign is equal to the original number. The
report even gives the implementation for real numbers:

abs x | x >= 0 = x
| x < 0 = -x

signum x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

These functions use pattern matching with Haskell guards. The guards are indicated
by pipes and decide how the function should evaluate. If a guard is evaluated to
true, the body to the right will be used. Otherwise it moves on to the next guard
until a match has been found.

Classes are sometimes expected to have certain properties, which are often described
in mathematical terms. The documentation of the Num class states properties such
as associativity, commutativity and distributivity that the functions should follow.

The benefit of type classes is to guarantee the compiler and the programmer that a
set of functions are defined for a data type. They can then safely be used for ad-hoc
polymorphism, which is similar to overloading in object-oriented languages.

Two standard Haskell types, Integer and Double are instances of Num [5, Ch. 6].
Without type classes every type that is an instance of Num would need a separate
function for (+), (∗), (−), etc. It could be written like this:

5

2. Theory

addDouble :: Double -> Double -> Double
mulDouble :: Double -> Double -> Double
subDouble :: Double -> Double -> Double
-- etc.

addInteger :: Integer -> Integer -> Integer
mulInteger :: Integer -> Integer -> Integer
subInteger :: Integer -> Integer -> Integer
-- etc.

But with type classes they only need to implement the functions

(+) :: Num a => a -> a -> a
(*) :: Num a => a -> a -> a
(-) :: Num a => a -> a -> a
-- etc.

which is much simpler to write and easier to maintain.

2.1.4 Monads
Haskell is a purely functional language and pure functions can not have side-effects.
But without side-effects, a program is almost useless. Common side-effects include
input and output actions such as reading and printing. Haskell’s solutions to safely
provide effect-based computations are monads and monadic actions.

Monads are data types which are instances of the Monad type class. The type class
has the following explicit definitions [5, Ch. 13]:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a

The (>>=) function, often referred to as bind, takes two parameters. They are
composed and the value produced by the first is passed to the second, which in turn
evaluates to a new monadic computation (m b). The (>>) function also composes
two actions, but discards the value produced by the first action. Lastly, the return
function takes a pure value and wraps it inside the monad.

Every Haskell program is run within the IO monad so as to allow input and output
operations during the program’s execution [5, Ch. 5]. To ease the implementation
of other monads that permit the execution of IO actions, there is a type class called
MonadIO. This type class requires an implementation of liftIO :: IO a -> m a
which allows any IO action to be performed in any monad that is an instance of
MonadIO [6].

A monad highly important for this project is the Daison monad defined in the

6

2. Theory

Daison library. It uses IO internally but is not an instance of MonadIO in order to
keep the database operations pure. Furthermore, it maintains a database state and
is what the Daison back-end is largely based on to perform database computations
[4].

Haskell has a syntactic sugar called do-notation. The notation allows monadic ac-
tions to be written in a style which is similar to programs in imperative languages,
with each row containing a single statement. An example of chaining multiple
monadic actions and the difference between using do-notation or not is the follow-
ing:

-- Without do-notation
f >>= (\result -> g result)

-- With do-notation
do

result <- f
g result

As seen in the example, <- is used to inspect the result of a monadic computation,
allowing the unwrapped value to be used for the next computation. A way to
visualise it is by seeing f as a box, which the value is taken out of, and then put in
a new box, g. It can be translated to the bind syntax (>>=) and the effect will be
the same.

The State monad is used to replicate a mutable state such as objects in object
oriented languages [7]. Even though Haskell does not keep track of states like an
imperative language does, it is possible to get similar behaviour while keeping the
code functionally pure. The first intuition might be to pass the information along
each function, so that the current state is always accessible and can be altered in
each function. This however creates a large overhead. With the use of a state monad
the process becomes simpler and more clear.

The MonadState class in Control.Monad.State is defined in the following way [8]:

class Monad m => MonadState s m | m -> s where
get :: m s
put :: s -> m ()
state :: (s -> (a, s)) -> m a

The type class provides a useful function called modify. This function allows for
modification of the state by giving it a function that specifies how the state should
be modified.

One data type that is an instance of the MonadState type class is the type State.
Because Haskell is immutable, the most intuitive way to implement stateful compu-
tations would be a function that takes a state and then returns a tuple with the result
of the computation and the modified state (state -> (result, modifiedState)).

7

2. Theory

With such an implementation the state returned from the function can be used as
an argument to the next function, replicating stateful computation. This is in fact
how the State type is implemented [8].

In theory, the State data type does not need to be a monad to replicate the actions
of stateful computations as specified in the MonadState type class. Being a monad
however gives access to the do-notation which we saw before and removes much
boilerplate code.

2.2 An Introduction to Daison

Daison (a word play on DAta lISt comprehensiON) is a NoSQL database for stor-
ing ordinary Haskell values [4]. It uses a stripped version of SQLite to store data
[9], and the Structured Query Language (SQL) is replaced by a Haskell Applica-
tion Programming Interface (API) which allows database queries to be written in
Haskell. Daison can be installed as a Haskell package and then be used in any
Haskell program.

Since not many readers are assumed to have experience with Daison we will present
some SQL queries and how they can be expressed in Daison. As in most database
languages, Daison requires queries to run within a transaction. They can be ini-
tialised with runDaison :: Database -> AccessMode -> Daison a -> IO a, and
if there were no exceptions the transaction will be commited, otherwise the trans-
action will be rolled back. With this format a transaction could be written as:

do
-- Open the database
db <- openDB "myDatabase.db"

-- Create a transaction and execute the database queries
runDaison db ReadWriteMode (do

-- Database queries are put inside this do-block
)
-- Close the database
closeDB db

Following this we will only present the actual queries which are supposed to replace
the comment in the inner do-block, so as to not repeat the transaction setup for
each query.

Table 2.1 provides an overview of the most important Daison functions. Some of
Daison’s functionality will be explained in the following sections but if the reader
wishes to learn more about Daison there is a tutorial in its GitHub repository [10]
which goes into more detail.

8

2. Theory

Table 2.1: Overview of Daison functions.

Function Description
createTable Add a table to the database.
tryCreateTable Safe version of createTable.
dropTable Remove a table from the database.
tryDropTable Safe version of dropTable.
insert Add entries to a database table.
select Extracts data from a database given a Query argument.
from Can be used to create Query values.
update Change an existing table entry.
store Can act as either insert or update.
delete Remove entries from a database table.

2.2.1 Creating Tables

In SQL a simple table for storing people can be created with the following code:

CREATE TABLE People (
id INT PRIMARY KEY,
name TEXT,
age INT

);

In Daison a table is created by using createTable :: Table a -> Daison () or
tryCreateTable :: Table a -> Daison (). The former version will fail if a table
already exists with the name that is passed to the function while the latter version
can be used to safely create a table only if it does not already exist in the database.
As we see, both createTable and tryCreateTable take a parameter of type Table
a which in turn could be produced by the function table :: String -> Table a.
In addition, the data type for the rows has to be defined, all in all resulting in the
following:

-- Data type for rows
data Person = Person

{ name :: String
, age :: Int
} deriving (Data, Show)

-- Table definition
people :: Table Person
people = table "people"

We can now create a table by running createTable people in a transaction.

9

2. Theory

2.2.2 Inserting into a Table
Consider the following scenario: We would like to insert a 25 year old person named
Alice into a table. A SQL insertion could be written as:

INSERT INTO people VALUES (1,'Alice',25);

In Daison, the same insertion could be written:

insert people (return (Person "Alice" 25))

2.2.3 Selecting from a Table
A simple selection in SQL is the following:

SELECT name FROM people WHERE id=1;

In Daison the query can be expressed as:

select [name p | p <- from people (at 1)]

The keyword at is used to specify the primary key of the row that we want to search
for. Since we defined the Person data type in record syntax, names can easily be
accessed by the function name :: Person -> String.

A common select statement often returns all columns with some restriction, as in
the following example:

SELECT * FROM people WHERE name='Alice';

Select statements in Daison can use ordinary guards as well as zero or more of the
(^<), (^<=), (^>), and (^>=) operators, which adjusts the everything restriction.
To write a query that returns all columns, with the restriction that the name is
Alice, could in Daison be written as:

select [person | (pkey,person) <- from people everything, name
person == "Alice"]↪→

As seen in the query, from combined with everything returns both the primary key
and the entry, which is useful if the user does not already know the key.

2.2.4 Updating an Entry
Updating an already existing entry is done with the update statement. Setting the
age to 26 for the person at index one can in SQL be written in the following way:

UPDATE people SET age=26 WHERE id=1;

Updates in Daison use key-value pairs, therefore the list comprehension needs to
return the primary keys of the rows that should be updated. The SQL query above

10

2. Theory

is then written in the following manner in Daison:

update people [(1,person{age=26}) | person <- from people (at 1)]

2.2.5 Deleting from a Table

In SQL, deleting the row with index one from the table people is written as:

DELETE FROM people WHERE id=1;

Deletions in Daison take a query argument which returns the keys to the rows which
are to be deleted. Thus, the SQL query written above could in Daison be expressed
as:

delete people (return 1)

2.2.6 Indices in a Table

Table indices can be specified in Daison to allow queries directly on something other
than the primary key. The withIndex primitive produces a table containing the
index.

In Daison, there are three functions that produce indices:

• index which takes a table, a string and an arbitrary function which decides
how the value of the rows should be indexed,

• listIndex which takes the same arguments except that the function uses
every value in the list to produce the indices, and

• maybeIndex which can be used to produce Nothing and skip those rows, sim-
ilar to nullable columns in SQL.

An easier way to create a select statement can then be to use an Index and some
operators. A query which returns all people who has reached the age of majority in
Sweden could then be expressed in the following way:

peopleAge :: Index Person Int
peopleAge = index people "age" age

people :: Table Person -- Table definition
people = table "people"

`withIndex` peopleAge

select [row | (id,row,age) <- fromIndex peopleAge (everything ^>=
18)]↪→

11

2. Theory

2.3 The Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC) is open-source software that can be used
as both a standalone tool and as a library for compiling Haskell source code. It
supports the entire Haskell 2010 language, has good support for concurrency and
parallelism, and the compiled code is generally fast [11].

The first step GHC performs when compiling Haskell code is parsing the source
code [12]. The Parser produces abstract syntax which is passed to the Renamer.
The main job of the Renamer is to resolve all of the identifiers in the Haskell source
code into names, that is, a reference to a particular entity. The next step is type-
checking, the process of verifying that the Haskell program is type-correct. All of
these three parts of the compiler pipeline can discover and report programmer errors.
Once the program is type-checked, it gets passed to the Desugarer which removes
all syntactic sugar and translates the Haskell syntax into a smaller language called
Core. It is then passed to the Simplifier which applies a number of different local
optimizations to the program. At this stage, the optimized Core program is passed
to the back-end which converts it to C--. Finally, depending on what the target
is, GHC will generate pretty-printed C code, machine code, or Low Level Virtual
Machine (LLVM) code.

One of the advantages of the GHC architecture is that it is built as a library rather
than a monolithic program. On top of this, the GHC team built an API that exposes
GHC’s functionality. The API has been used for building GHCi, a command-line
application which makes it possible to interactively evaluate Haskell expressions and
interpret Haskell programs.

GHC functionality provided by the API can be run from any monad with a GhcMonad
instance. To further ease access for programmers, the API exposes a minimal im-
plementation in a monad called Ghc [13]. A subset of the functions exposed by the
API can be seen in Table 2.2, together with short descriptions. These have been
selected as they are highly relevant for this project.

Table 2.2: A subset of the functions exposed by the GHC API [13].

Function Description
execStmt Run a statement in the current interactive context.
exprType Get the type of an expression.
runGhc Initialises a new GHC session each time it is called.
reflectGhc Takes an action done in the Ghc monad and returns an

IO action instead.
getContext Get the modules in scope in the current session.
setContext Set the current context of the session.
getSessionDynFlags Get the current flags in use.
setSessionDynFlags Set the current flags in use.

12

2. Theory

The Ghc monad manages the state of the current session through the Session data
type. Session maintains the current compiler flags and loaded modules. It also
provides functionality to compile and load modules directly from files containing
Haskell source code.

13

2. Theory

14

3
Methods

This chapter provides an overview of the processes used during the project, including
the general approach for the code development and verification that the requirements
have been fulfilled.

3.1 Software Development
The first step was to study how the Glasgow Haskell Compiler (GHC) could be used
as a library. Therefore, we studied the documentation and tutorials on the official
Haskell website. However, since GHC is always evolving, new updates bring code
restructuring as well as additions and deletions of code. Unfortunately, the tutorials
on the official Haskell website has not been updated together with the updates of
GHC. The GHC API, however, is documented and updated regularly, but it is not
sufficient for newcomers trying to work with GHC for the first time. Therefore, we
decided to study the source code of GHCi, trying to understand how the GHC team
uses GHC as a library and then do something similar on our own. Additionally, we
studied the library hint [14], which is a simple wrapper around a huge subset of the
GHC API which helped us understand how GHC could be used as a library.

Once it was understood how to use GHC as a library, we began to implement the
requirements. First, we implemented the requirements for loading the Daison library
by default and making it possible to write Haskell code at the prompt. Second, we
implemented the requirement for displaying the output from queries in a formatted
table. Finally, we implemented the requirements for navigating the file system,
loading Haskell modules, and setting GHC flags.

3.1.1 Version Control and Continuous Integration
Version control was handled through Git, and the code was hosted in a GitHub
repository [15]. The code was maintained according to Gitflow [16]; in short, this
means new features were developed in their own temporary branches before being
merged into a develop branch, while the master branch only contained fully tested
and functional code. Pull requests to master were reviewed and approved by at
least one other project member before being accepted and merged. Bugs or other
issues were reported by creating GitHub Issues, which were later discussed during

15

3. Methods

meetings if the problem or solution was unclear.

During the project we used Continuous Integration, a software development method
where developers – as the name suggests – integrate their code continuously to
the main code repository. Since we pushed code as often as possible to the main
repository, we avoided costly code merges by addressing merge conflicts early. Ad-
ditionally, with GitHub Actions we enabled automated testing. The workflow we
set up automatically built the project and ran the test suites which contained all
automated tests (see Section 3.2.1 and Section 3.2.2). As a result, if one of the group
members pushed code which meant the project could not be built or the automated
tests failed, GitHub would alert us that the workflow had failed.

3.2 Testing and Verification
A number of different testing methods were used to evaluate the software. Unit tests
were used to evaluate parts of the code, functional tests were used to evaluate the
functionality of the application with respect to the requirements specification given
in Table 1.1, and usability tests were used to evaluate the overall usability of the
application.

3.2.1 Unit Tests
Unit tests were used to test specific parts of the code, to ensure that the functions
work exactly as expected. We used a package called HUnit, which is inspired by
the JUnit framework for Java [17]. The package enabled us to easily create test
cases in the form of assertions such as assertEqual "Label describing test"
<expected_value> <function_call>. It should be noted that unit tests do not
cover much of the code base. The problems which were encountered while creating
them are discussed in Section 5.2.1.

3.2.2 Functional Tests
We created at least one functional test for each requirement, depending on the scope
of the requirement. A functional test is a type of black-box test which tests a software
component based on its specification [18]. In this case, we tested a function of the
application (not to be confused with functions in Haskell) based on its requirement
specification. Each test case specification included a description of what the test
was supposed to validate, the steps the tester should follow and the expected result
(see Appendix A). The functional tests were executed manually, but most of them
could be automated.

The big advantage of using this testing approach is that the software were tested
at a high level with respect to the software specification given by the requirements.
As seen in Table 3.1, there was a full requirement coverage for the application, and
therefore, we could conclude that all requirements were fulfilled if all functional
tests were executed successfully. Although this approach does not necessarily lead

16

3. Methods

to error-free code, any remaining errors should be of minor character.

Table 3.1: Overview of the functional tests for validating the correctness of the final
version of the application. Each test case is mapped to one or more requirements,
except for F7 which is independent.

Test Case ID Requirement ID Purpose
F1 R1 Verify that the Daison library is loaded at

startup.
F2 R2, R3 and R5 Verify that it is possible to write queries

at the prompt and that a transaction is
started automatically.

F3 R4 Verify that it is possible to interactively
write Haskell code at the prompt.

F4 R9 Verify that it is possible to navigate the
file system at the prompt.

F5 R10 Verify that it is possible to load Haskell
modules at runtime.

F6 R11 Verify that it is possible to set flags at run-
time.

F7 - Verify that an unknown command shows
an error message.

F8 R6 and R7 Verify that non-small query results are dis-
played to the user as a formatted, naviga-
ble table.

F9 R11 Verify that it is possible to set flags at
startup.

F10 R10 Verify that it is possible to load Haskell
files at runtime.

F11 R8 Verify that IO expressions are accepted at
the prompt.

F12 R12 Verify that databases can be opened and
closed.

F13 R10 Verify that it is possible to load Haskell
files at startup.

In addition to the functional tests in Table 3.1, we made automated tests for validat-
ing requirements one through five using the package QuickCheck [19]. The package
enables automated tests with randomly generated data. Data of the types Person
(see Section 2.2.1), [Double], (Bool, Int) and Char were generated and then writ-
ten to and read from a database using both the front-end and the back-end.

17

3. Methods

3.2.3 Usability Tests

Any front-end application should reasonably have usability testing for improving
the user experience (UX). Nielsen and Landauer have estimated that for a medium-
sized software project the maximum benefit/cost ratio for usability evaluation is at
four evaluations [20], after which the marginal value that another evaluation would
provide is smaller than the cost. Therefore, we decided to use an iterative design
process where we performed two usability studies with four and five participants
respectively. Before the second usability study, we fixed the issues that arose in the
first one. By using this approach we could quickly find the biggest problems in the
design of the application, implement a solution, and verify that our solution solved
the problem.

Since the target group for our application is programmers with experience in Haskell,
the participants should have taken a course in functional programming at university
level or equivalent. However, since we used a small sample, the results of the usability
studies should not be seen as absolute truths but rather as guidelines for what works
in the design and what does not.

The usability studies were designed to have as efficient tests as possible, instead
of a large amount of tests. The studies were conducted remotely by using video-
conferencing software and the spoken language was Swedish since this would allow
the participants to express themselves more naturally. Each session was led by a
moderator who gave the participant a number of tasks to complete while a note-
taker recorded how the participant interacted with the application. The participant
was encouraged to think out loud during the completion of the tasks (the so-called
Think-aloud Protocol [21]). By explicitly stating their thoughts we received a better
understanding of how the participant experienced the design of the application. To
ensure that all tests were performed as similarly as possible, the moderator followed
a script.

The purpose of the studies was to validate the product’s overall usability. Before
carrying out the usability tests, we made the following hypothesis: the application
is easy to use, but there need to be improvements to the user feedback messages.
Additionally, we formulated the following questions that the study should provide
answers to:

1. Is the application easy to use?

2. Is the visual feedback provided by the application enough for the user to
understand the program?

3. Does the consequence of any interaction with the application match the user’s
expectations?

The participants were asked to perform the following tasks: loading external mod-
ules, changing the working directory, creating a database, changing the active data-
base, creating, reading, updating and deleting entries, as well as navigating the

18

3. Methods

output (see Appendix B). To make sure that we tested the UX of the actual front-
end rather than the UX of the Daison back-end, we provided the participants with
a predefined definition for the database table as well as a list with a subset of the
available Daison functions that could be used for solving the tasks (see Appendix C).
For every task performed, the participants were asked to rate the difficulty of the
task on a scale from one to five (where one is equivalent to very easy and five is
equivalent to very difficult) and provide a motivation. Finally, we asked the par-
ticipants to rate the overall usability of the product. It should be noted that the
participants did not study the Daison library nor the application beforehand.

19

3. Methods

20

4
Results

This chapter presents the results of the project. We begin by going into detail of
how the application works as well as discussing the software architecture. Next, we
address requirement changes. Finally, we present the test results.

4.1 An Overview of the Application
As shown in Figure 4.1, once the program launches, it initialises a GHC session
with runGhc within which the Daison library is loaded along with a few other useful
libraries such as Prelude and Data.Data, where the latter is included since Daison
requires custom data types to have instances for the Data type class. The first steps
are setting flags and extensions that are needed for the Daison library. To fix a
bug that occurs for Unix users when the program is run from GHCi rather than
from an executable file, the signal handler for the UserInterrupt signal also needs
to be overridden in order to prevent the program from getting stuck in a seemingly
half-active state after CTRL+C is pressed after the first iteration of the main loop;
that is, the prompt alternates between GHCi’s and Daison’s as the user presses the
Enter key.

After initialisation is completed, the program prints a welcome message which shows
the version of the program and that there is a help command. Then the program
starts the loop and waits for the users input. Once the user has sent some input,
it is first checked against the defined commands listed in Table 4.1 and if the input
matches any of them the program executes the corresponding commands. If there
is no match the program attempts to run the input as an expression, which could
either be a database query or a normal Haskell expression. As in the usual GHCi
environment, errors are printed if there are any. Finally, upon exiting the program,
all the open connections to databases will be closed.

21

4. Results

Figure 4.1: An overview of the read-eval-print loop of the program.

22

4. Results

Table 4.1: Custom commands defined in the front-end.

Command Description
:help, :? Prints a help message containing the list of commands

and their descriptions.
:log path Display the log file’s path.
:log show Display the log file’s contents.
:log toggle Enable/disable logging.
:log wipe Attempt to wipe the log file’s contents.
:type <expr> Print the type of the expression.
:! <cmd> Run the command in the user’s shell environment.
:quit Exit the program.
:dbs Print the list of databases that are open.
:open <name> Open a database with the specified name. Creates a new

database with said name if it does not already exist.
:close <name> Close the connection to a database with the specified

name.
:mode [mode] Set access mode (ReadWrite or ReadOnly). Displays the

current access mode if no argument is given.
:cd <dir> Change current directory.
:module <module> Import a module to the session.
:load <filepath> Load modules from a Haskell file on the file system.
:set <option> Set a GHC option for the session.

23

4. Results

4.2 Handling Databases
There is support for using multiple databases during a session of the program. The
user can switch the database against which queries will be run at any time using the
:open <name> command. Closing a connection can be done by using the :close
<name> command. A list of the current open databases can be seen by calling the
command :dbs. The application also parses any arguments ending with ”.db” as
databases and runs the :open command on those during startup, setting the last
given database argument as the active one.

In order to allow for multiple databases to be opened simultaneously, these need
to be kept track of both within and outside of the GHC session. Within the GHC
session, this is done by storing the results from Daison’s openDB function in a list
of tuples of type (String, Database); outside, this is done by storing the names
of the opened databases in the loop’s state (see Section 4.6.1). The currently active
database also needs to be stored on both sides, with its name stored in the loop’s
state and the corresponding Database within the session. To avoid collision with
user-defined variables, the within-session variables are prepended with underscores,
for example _openDBs. When a user opens or closes a database using a front-
end command, statements that interact with the variables in the GHC session are
generated as strings and run as if they were user input.

4.3 Running Queries
Executing queries can be done directly in the program. There is no need to load
pre-written Haskell files to manage the session and execute queries, requiring reloads
for each new query. This is all handled within the application.

4.3.1 Parsing Queries
The first step of the program is to parse the query. We used the same method as
GHC, where we accept most input and filter it depending on errors further down the
line. At this stage, we check if the input is a command defined by the application
or a command to be executed.

4.3.2 Type-Checking Queries
When the user enters an input which is considered an expression the application
checks whether it is a Daison query or not. In the first case, it runs it in a database
transaction and in the second case it runs the expression as either a statement or
a declaration. While most Haskell expressions are statements, expressions starting
with terms such as data, type and instance, as well as expressions of the form a =
b that do not start with let, are referred to as declarations [5, Ch. 4] and need to
be executed using a different GHC API function than is used to execute statements.
An expression is considered to be a Daison query if it either belongs to the Daison
monad or if it can be run in any monad m, disregarding type constraints.

24

4. Results

4.3.3 Executing Queries
Once the program has checked that the query is indeed in the Daison monad, the
query can be executed. This is done by the Eval.runStmt function which makes
required initiations and calls GHC.execStmt.

In order to execute the query, it needs to be given as an argument to the func-
tion runDaison (see Section 2.2). Furthermore, the query results need to be ac-
cessible to the user; this is achieved by binding them to the variable it, which
the GHC API uses to store output from the most recent statement evaluation
that was not a variable assignment. If the query dropTable testScores is en-
tered, the code executed by runStmt is it <- runDaison _activeDB accessMode
(dropTable testScores), where _activeDB is a variable stored within the GHC
session (see Section 4.2) and accessMode is a variable denoting if write access is
desired, whose value was retrieved from the current state (see Table 4.2).

4.4 Displaying Query Results
Results from queries are shown as two-dimensional tables when appropriate. The
formatted results are sent to the Unix program less in order to provide features such
as arrow key navigation, search functionality and the ability to save the output as
a text file. Figure 4.2 shows the output of a query that returns every value from a
small table.

Figure 4.2: Output from a select query, viewed through the Unix program less.
The list comprehension collects all key-value pairs in the table testScores and returns
the values, which are 4-tuples.

4.4.1 Formatting a Table
The result, typically a list of tuples, is extracted from the GHC session as a string.
This string is then split into rows and columns based on the presence of commas and
their surrounding context. Context in this case refers to the purpose of a comma
and how deeply nested the expression containing it is; in other words, whether the
comma is part of a string or used to separate values in a list or tuple, as well as
how many round and square brackets it is enclosed by. At present, the number of
columns in the resulting table varies only if the stored value is a tuple, in which case
the number grows linearly to the tuple size.

25

4. Results

If the result is found to only contain a single row, then no formatting is applied.
Otherwise, a header row is added that displays the types of the values in each
column. Additionally, an extra column denoting the index that can be used to
access the row using the it variable is added to the start of every row: entering
it !! 2 in the prompt after exiting from less in Figure 4.2 returns the 4-tuple
containing the string "Carl". The lengths of each table cell are then checked and
additional spaces appended such that every cell in a column occupies the same
amount of space. Lastly, horizontal and vertical separator lines are inserted before
joining the resulting rows and columns together using the Pretty library included in
the GHC API [22].

4.4.2 Choosing Display Method
The application uses two different methods for displaying output: by directly print-
ing it to the terminal and by sending it to less. However, while the latter method
makes the output more readable – especially if it is large – it can be inconvenient
when making multiple smaller queries such as insert as the user needs to exit less
before inputting another query. Therefore, smaller output – currently defined to be
less than 80 characters in length – is printed to the terminal rather than sent to less.

In the event that the application fails to send the output to less, for example if
the application is run from the Windows command line on a standard machine, the
output is printed to the terminal instead.

4.5 Loading Files and Modules
When working with databases there will always be a need to create custom tables to
fit the domain. Also there might be a need to sort and handle the results of database
queries. A good way of representing data in Haskell is by using data types. Defining
data types directly at the prompt is not very efficient and very time consuming,
especially if there is a need to define helper functions to manipulate the data type
in various ways. That is why the application allows the user to load custom Haskell
files where all this can be implemented. Outside of that there might be a need to use
functions in existing libraries. Because the result of the queries are lists, a library for
list manipulation might be useful. In Haskell there is a library called Data.List that
has various functions that are useful for handling lists. This is why the application
also allows the user to load existing Haskell modules.

4.5.1 Loading Modules
The way to load modules in the Daison front-end is the same way it is done in GHCi,
by using the module command. Running :module <name> will attempt to import
an existing Haskell module with the specified name. This is done is by getting the
existing list of modules from the DaisonI state, then adding the new module to the
list. The way modules are set is by setting the context in the current GHC Session
and giving the setContext function the list of modules as argument.

26

4. Results

4.5.2 Loading Haskell Files
The way to load Haskell files in the application is the same way it is done in GHCi,
by using the :load <path> command. This is done in a similar way to loading
modules, but with one extra step. The GHC API gives the ability to load a target
(the path to the file) which then compiles the file (as ghc --make does). The next
step is to get the module name from the Haskell file and load it as done with regular
Haskell modules.

4.6 Software Architecture
The architecture of the software relies on modularisation. The different modules
and how they interact with each other are illustrated in Figure 4.3.

Figure 4.3: An overview of the relations between the front-end’s modules. Modules
that are depended upon by more than one other module have their export lines
colored.

27

4. Results

The module GHCInterface is, as the name implies, an interface towards the GHC
library. Imports from GHC should be made in this module only. It should in turn
be imported as qualified with the alias GHC. This means that whenever a function
from the GHC library is used it must be denoted by GHC.functionName. The big
advantage is that it is clear which functions come from GHC and which functions
do not. The Base module defines the DaisonI monad and the DaisonState.

Context management should be handled in the Context module. This includes
loading modules and setting language extensions. Type checking is handled in the
Typecheck module and evaluation of statements in the Eval module. Finally, the
program is located in the Run module, with theMain module containing the function
used to create a line-reading application.

4.6.1 The DaisonI Monad
The DaisonI monad is used to replicate the behaviour of a state transformer monad
for the DaisonState, by also wrapping and transforming GhcMonad.Ghc we get a
minimal implementation. The state contains nine different values, listed in Table 4.2.

Table 4.2: Fields defined in DaisonState.

Field Type Description
mode AccessMode Mode for accessing the database.

Can either be ReadWriteMode or
ReadOnlyMode.

activeDB Maybe String Current active database.
openDBs [String] List of databases that are cur-

rently open.
modules [InteractiveImport] List of imported modules.
flags Maybe DynFlags Extra GHC flags.
input Bool -> String ->

IO (Maybe String)
Function used to receive user in-
put, where the boolean value indi-
cates if the input should be logged
and the string gives the prompt
message.

logInput Bool Log input to allow arrow key nav-
igation.

logPath Maybe FilePath Path to log file.
currentDirectory String Current working directory.

A transformer monad is used to encapsulate functionalities of other monads into
the current monad [23]. Common usages would be to handle IO actions and error
handling within other monads. Because the GHC API is essential to the project
the ability to work and handle computations in the Ghc monad is essential as well.
With the replication of the state transformer, replication of state manipulation and

28

4. Results

the ability to perform GHC computations in the same monad is now possible, which
allows the ability to keep track of the DaisonState while using the GHC API.

Using the already existing state transformer monad is not sufficient since the ability
to perform IO computations is necessary. Being able to use GHC computations in
the DaisonI monad allows the ability to lift IO computations in the Ghc monad and
thereby making it possible to lift IO computations in the DaisonI monad since the
GHC monad is an instance of MonadIO [6], [13]. These IO computations are required
for reading user input and to print results of queries.

4.7 Requirement Changes
As work on the project progressed, it became apparent that some of the requirements
initially created needed rephrasing. The fifth requirement used to state that the
front-end was to accept the Daison monad only; this would render the application
nigh unusable as it implied users would not be able to for instance store data in
variables for later use. Requirement eight was considered optional for some time, but
was implemented together with requirement four. Furthermore, some requirements
were ambiguous and have been revised to more clearly specify their intent: this
includes the second, third, fourth and sixth requirements.

Some additional features were found to be necessary to provide a better user ex-
perience and were added after the initial eight requirements. These include being
able to navigate the file system, similar to the :cd command in Windows and Unix
command prompts; to load external modules as can be done through :load and
:module in GHCi; to set GHC options at runtime and startup; to open databases
at runtime and startup as well as closing them at runtime.

4.8 Test Results
As mentioned in Section 3.2, three types of tests were carried out: functional tests,
unit tests and usability tests. Manual functional tests were carried out in order to
verify whether the application fulfils the requirements, while unit tests and auto-
mated functional tests were used during development to lower the risk of bugs being
introduced by new changes. Usability tests aimed to investigate the application’s
ease of use from a user perspective.

4.8.1 Manual Tests
Thirteen functional test case specifications were made to check whether the re-
quirements were fulfilled. Table 3.1 provides a brief description of each test while
Appendix A contains the specifications in their entirety. All manual tests passed in
the most recent version of the software. Since we have full requirements coverage,
we come to the conclusion that all requirements are fulfilled. Many of the functional
tests could potentially be automated; however, this was not attempted due to time

29

4. Results

constraints.

4.8.2 Automated Tests
Unit tests comprise the majority of the currently automated tests; the exception
being two functional tests. Tests of the former type primarily focus on ensuring
that the functions for categorising Haskell code and executing it work as expected,
while tests of the latter type simulate user input to validate certain functionality.
All automated tests pass in the most recent version of the software.

The current unit tests fall into four categories: code execution, expression categori-
sation, type checking and query detection. Requirement four is addressed by the
first two categories: tests in the former category verify that the GHC API functions
used to execute code work as expected, while tests in the latter category check that
input code is correctly identified as being either a statement or a declaration so that
it can be sent to the correct GHC API function. The third and fourth categories ex-
amine requirement three: tests in the third category verify that GHC’s type checker
works as expected, which is a precondition for the tests in the fourth category to
work as they check that Daison queries are correctly identified as such.

Automated functional tests – of which there are currently only two – use a different
input method which allows input to be read sequentially from a list of strings rather
than from standard input, thereby removing the need for manual input. The cur-
rently defined tests check requirements one through five by checking whether data
read from the front-end’s interface matches what is written through the back-end’s
interface and vice versa. Requirements one through three as well as requirement
five are tested through select and insert queries, while requirement four is tested
through the input method used. Passed tests suggest that the tested functionality
works as expected even with random inputs.

4.8.3 Usability Tests
The usability of the application was evaluated by two groups of four and five partici-
pants each. All participants were students at either Chalmers University of Technol-
ogy or the University of Gothenburg. They had either taken at least one course in
functional programming or were doing their Bachelor’s thesis project in a functional
language. Six out of the nine participants had previous experience working with
databases, and all participants except one said they were comfortable working in a
command line.

Each session contained nine tasks for the participants to complete. After the com-
pletion of each task, the participant was asked to rate the difficulty of the task from
one to five, where one corresponds to very easy and five corresponds to very difficult.
The rating is summarised in Table 4.3, whilst Appendix D shows the numerical val-
ues in their entirety. However, since the participants correspond to a relatively small
sample, we can not draw any general conclusions from their rating of the difficulty
of the tasks. It is worth mentioning that some participants found a task difficult if

30

4. Results

they could not solve it right away. This does not necessarily mean that the usability
of the application has shortcomings. Part of good usability is that the system gives
appropriate feedback once an error occurs to help the user recover and complete the
task. It should be noted that all participants managed to solve all tasks in the end.
Overall, the participants rated the usability of the application as good or excellent,
as shown in Table 4.4.

Table 4.3: The difficulty of the tasks in the usability test according to the partic-
ipants. The mean and median ratings include all nine participants. Ratings were
between one and five, with one meaning the task was very easy and five being very
difficult.

Task Mean Median
1 1.9 1
2 1.9 1.5
3 2.9 3
4 2.2 2
5 1.2 1
6 1.9 2
7 1.0 1
8 1.2 1
9 2.0 2

Table 4.4: Overall impression of the usability of the application. The possible
ratings were Worst-imaginable, Awful, Poor, OK, Good, Excellent and Best imag-
inable.

Participant Overall Impression
1 Excellent
2 Good/Excellent
3 Good
4 Good/Excellent
5 Excellent
6 Good
7 Excellent
8 Excellent
9 Excellent

31

4. Results

During the first four evaluations of the application we observed the following design
problems:

• The description of the :open command was confusing. It was not clear that
the command will create a new database if the database does not already exist.

• The message shown when trying to interact with a database when no database
is open did not tell the user how to recover from the error.

• The success message from the :cd command was confusing. It was not clear
whether the directory change was successful or not.

To fix the first issue, we simply rephrased the description of the :open command.
The second issue was solved by changing the error message to No open database
found. Try :open <name>. and the third issue was solved by changing the success
message of the :cd command to Working directory set to <path>.

After fixing the issues we did another five evaluations of the application to validate
that our solutions solved the problems. After the second round of usability tests we
observed that the issues found in the first round was solved. However, we found the
following issues:

• Having two different commands (:open and :db) for the same operation is
confusing.

• Having a command for showing the contents of the current directory would be
helpful.

• Entering a command without passing any parameters gives the error message
Unknown command even though the command exists.

• It is not clear that the :set command sets GHC flags.

In the final version of the application we removed the :db command, added a com-
mand that allows the user to run normal shell commands (:! <cmd>), fixed the bug
when not passing any parameters to valid commands, and specified that the :set
command sets GHC flags. We are confident that these changes solves the problems,
even though we did not validate it with a third group of users.

Additionally, during the usability evaluations we found that the available commands
of our application are similar to the commands of GHCi which is helpful for Haskell
programmers. Because of this, programmers with experience with GHCi could easily
get started using our application.

As mentioned in Section 3.2.3, we formulated three questions that we would like the
usability study to provide answers to:

1. Is the application easy to use?

32

4. Results

2. Is the visual feedback provided by the application enough for the user to
understand the program?

3. Does the consequence of any interaction with the application match the user’s
expectations?

Based on the overall rating by the participants and the fact that the participants
managed to solve all tasks we gave them, we come to the conclusions that the
application is easy to use and the visual feedback is enough for the user to fully un-
derstand the program. Additionally, we found no situations where the consequence
of interaction did not match the user’s expectations.

33

4. Results

34

5
Discussion

This chapter discusses problems that arose during implementation and their solu-
tions. It also comments on some of the reasoning behind the results. First, we
address how newcomers can understand the GHC API. Second, we discuss the test-
ing methods used. Third, we present ethics that have to be considered. Finally, we
present new features and functionality, which we believe are the most beneficial to
the application.

5.1 Understanding the Glasgow Haskell Compiler

As mentioned in Section 3.1, the official documentation and tutorials on using GHC
as a library were outdated and not as helpful as expected. This lead to the first
task, getting the GHC API into scope, taking more resources than expected. The
API is updated regularly, and together with the updates, the source code comments
are updated. Unfortunately, these do not transition over to the tutorials. Only the
code comments are not simple enough for newcomers to understand. The source code
comments and code from other packages were eventually pieced together until a good
enough understanding was found. Having to study the source code of other packages
to see how they implement the API, instead of following the documentation, should
not be necessary for programmers using the API for the first time.

5.2 Usage of Test Methods

In hindsight, we are uncertain whether we focused on the correct testing methods.
Perhaps an excessive amount of time was spent creating unit tests and manual
functional testing compared to automated property-based testing and automated
functional testing. We are nonetheless confident that a high focus on usability tests
was worthwhile. It gave a substantial amount of suggestions on issues, which may
have gone unnoticed if there were no external testers. The usability testing did not
reveal any broken features, but it became apparent where the user got confused and
needed more guidance from the application.

35

5. Discussion

5.2.1 Unit Testing
As much of the initial codebase was related to altering the DaisonState, creating
unit tests for these functions was not trivial. For example, we wanted to test that the
addImport function correctly adds a module to the session. The first idea that came
to mind was to use the function and see whether the InteractiveImport was in
the resulting list from GHC.getContext. There is however no easy way to check the
contents of the list because the data type InteractiveImport does not implement
the Eq type class. The same argument follows for much of the code tightly related
to the GHC API and state management.

Running expressions and declarations within DaisonI, as well as type-checking, was
more easily testable. We created a function that runs an action within DaisonI and
then returns the result as a string. This way we could compare that the output was
equal to the result from running the expression in a normal GHC context.

5.2.2 Property-Based Testing
Creating property-based tests for specific functionality would encounter the same
problems as unit tests when testing single functions. On the other hand, QuickCheck
can generate large sample sizes of inputs; which as a result would cover most edge
cases that can be hard and tedious to catch by hand.

Since Daison can store any Haskell data type, even types that the user define them-
selves, testing all possible inputs would become an infinite task. The current tests
thus only test a few specific data types which we have defined. The entries are still
randomly generated by the library, which is better than manual definitions.

5.2.3 Test Automation
Automated testing is currently employed to a smaller extent than initially planned;
writing these tests proved to be more difficult and time-consuming than expected. As
the project ran during a limited time period prioritisation had to be put elsewhere.

Expanding the suite of automated tests – both unit tests and functional tests –
would have a positive impact on the application as a whole. From a developer’s
perspective, the code would become easier to maintain as they would need to spend
less effort on manually verifying that a change to the code does not have unintended
consequences on already established functionality. From a user’s perspective, the
Continuous Integration status badge shown in the GitHub repository’s README
file would provide better and more comprehensive assurance of quality.

5.2.4 Further Testing
In addition to automating the manual tests – possibly excluding F8 as it checks
whether tables are correctly formatted – it would be beneficial to include tests that
do not necessarily relate directly to specific requirements. For example, tests that

36

5. Discussion

validate the functionality of front-end commands such as :dbs and :log; while these
cannot be linked to any requirements, they are nevertheless useful features.

5.3 Ethical Considerations
In order to allow the user to navigate through and reuse previous input, a local
log of recent input needs to be kept, which the user is informed of at startup.
This log is called .daison_history and is stored in %APPDATA%/Daison-Frontend/
on Windows systems and ∼/.Daison-Frontend/ on Unix systems. If the user for
example uses the insert query to insert sensitive data into a table, the log will
contain this query. To address this potential source for data leaks, a :log command
is included with which the user can clear the log and/or temporarily stop the front-
end from writing to it. While the command makes an attempt to render the erased
contents unrecoverable by first overwriting it, this may not be effective depending
on the storage medium used [24].

An important consideration is that our application does not take extra steps to
ensure the confidentiality of the contents of the database. Since encryption is not
supported by the base SQLite library used to implement Daison [25], database files
are not currently encrypted. However, we argue that it is the responsibility of the
back-end to store data securely. Therefore, we do not find this to be a vulnerability
of our application.

One could argue that since the application is used for interacting with a database,
all ethical questions regarding databases have to be considered as well. Let us
discuss the ethical aspects by using three ethical frameworks: the Consequentialist
Framework, the Duty Framework, and the Virtue Framework. According to the
Consequentialist Framework, it is only the consequences of an action that determine
if the action is morally right. We do not see any negative consequences of developing
a tool for database interaction. However, we see some negative consequences if the
tool is used to do harm, for instance, if someone uses the application to store personal
information without consent. This raises an important question: Do programmers
have to take moral responsibility for how other people use their software? If that
is the case, we find the Consequential Framework to not be helpful for developers
seeking guidance on how to act morally correct since one cannot know the actual
consequences of an action in advance. The Duty Framework, on the other hand,
determines whether an action is morally right or wrong based on a set of rules.
Based on the assumption that the rules we should follow is the Swedish law, we
find that we have acted morally correct since the development of this application
does not violate any Swedish laws. In addition, the framework states that each
individual is responsible only for his or her own actions, and thus, developers do
not have any moral responsibility for how other people use their software. Finally,
the Virtue Framework states that moral virtues, i.e. qualities that are deemed to
be morally good, are central to ethics. Since our intent with the application is to
make it easier for Haskell developers to use Daison, we find that we have acted
virtuously. In addition, similar to the Duty Framework, the Virtue Framework

37

5. Discussion

states that individuals are responsible only for his or her own actions.

In conclusion, after considering the ethical aspects of developing an application
for database interaction, we find that there are no ethical issues of developing the
application. Additionally, since we have informed the user that a log is kept for
arrow key navigation and has given the ability to turn it off, we find that there are
no ethical issues regarding the application itself either.

5.4 Future Work
The application has the potential to be improved by adding new functionalities. We
believe that the parts presented in this section are the ones that would provide the
most benefit to a user.

5.4.1 Table Formatting
One important feature of the front-end is to present output from Daison queries
in a more readable manner. It might be worthwhile exploring how this could be
done more effectively for a larger variety of data types. Furthermore, as there may
be multiple ways to display the same data – for example, different column labels
– adding a command that lets the user manage their preferences regarding output
formatting may improve the user experience.

While all query results except for single-row entries are displayed as tables, the
number of columns in a table only changes if the rows contain tuples. Tables are
generated with two columns in all other cases, with the second column containing
the data with minimal additional formatting. This may suffice for many smaller
data types; however, there are at least two types where separating data would likely
improve readability: lists and data types with a single constructor. In both of these
cases, introducing an additional header row may enhance readability.

For tables containing lists, assigning a column for every element would make it easier
for the user to distinguish between different values and determine the index for a
particular element. However, this will in most cases lead to rows with different
numbers of columns. One solution could be to pad smaller rows with additional
columns, but whether this padding will distract from the data might depend on
the user; therefore, multiple different formats may be desired. Figure 5.1 displays a
comparison between the current implementation and possible improvements.

For tables containing data types with a single constructor, it might be desirable to
have sub-columns for each record, with each sub-column containing one field. A
header for each sub-column could indicate the type signature of the field, the name
of the function used to access it, or both. Figure 5.2 shows a comparison between the
current implementation and possible improvements. However, these improvements
will not be enough for data types with multiple constructors. Although an addi-
tional sub-column showing the constructor can solve the case where all constructor

38

5. Discussion

arguments have the same types, a separate way of formatting would be needed for
the case where they do not. This is because a column could otherwise contain values
of different types than is indicated by the second header row.

Figure 5.1: The contents of a table shown through less, where a) shows the current
table formatting and b) through d) show possible improvements. b) and c) adds
sub-columns, while c) furthermore adds another header row, uses double vertical
lines to separate columns with sub-columns, uses centred text alignment and fills in
missing sub-column separators. d) is similar to c) but omits the double exclamation
marks from the second header row and shades empty sub-cells.

Figure 5.2: The contents of a table shown through less, where a) shows the current
table formatting while b) and c) show possible improvements. Both format single-
constructor data types similarly to Figure 5.1.c), with c) replacing the types in the
second header row with functions created using the record syntax (or otherwise),
assuming the GHC API can be used to detect these.

39

5. Discussion

5.4.2 Security of User Data
The Daison back-end could provide built-in methods for hashing, encrypting and
decrypting using the latest algorithms, which the user can use at demand. An
extension to make the logging safer and not risk exposing data is encrypting the
logs. One potential problem is that consistently encrypting and decrypting the log
file might worsen the performance of the application. Therefore an option to toggle
encryption on and off would be helpful, giving the user the option to add security
but lower performance.

5.4.3 Input Interface
The function used to obtain user input is provided by the library Haskeline [26].
It provides customisation options such as whether a history file should be used,
whether user input should be added to said file automatically and what function
should be used to provide tab completion. Out of the options mentioned, the tab
completion function is the only one kept at default; this function fills in file names
based on files in the directory the user launched the application from. Substituting
the default function for a custom one would likely improve the user experience.

A custom tab completion function could have several improvements compared to
the default implementation that would make it more suitable for the application’s
interface. Changing directory using the :cd command does currently not change
which file names can be autocompleted; a function for which this is the case would
make the interface more intuitive to the user. Tab completion for the commands
provided by the application would also make it more user-friendly: pressing TAB
after entering : would display all available commands; :log p would autocomplete
to :log path. The command completion feature could also be used to avoid the
need to explicitly define short-hand commands such as :m for :module.

Additional commands, such as GHCi’s multiline command could also be imple-
mented. The command allows for user input to span across multiple lines similarly
to when writing compiled code. This would make defining tables with accompanying
indices through the application more convenient, as shown in Figure 5.3.

40

5. Discussion

Figure 5.3: A definition of a table that stores (String, Int) tuples along with
indices for each element. a) writes this definition in the application using a single
line, while b) uses the GHCi multiline command.

5.4.4 Supporting Multiple Back-Ends
The front-end is only compatible with Daison as a back-end to communicate with
databases. A developer who does not think Daison suits the style of database
management which they need would therefore find it irrelevant. This can be solved
by producing a more generic front-end, which works with multiple back-ends that
handle databases in Haskell.

We suggest a solution where the front-end defines a type class, which database
handling monads (such as the Daison monad) could be an instance of, to mark
their compatibility with the front-end. The front-end would then use the type class
throughout the application instead, making it modular and less coupled to a specific
library. This would in turn yield a product that any developer who is producing a
database manager in Haskell could use for more convenience.

5.4.5 A Graphical User Interface
A Graphical User Interface (GUI) as an extension of the front-end would improve the
user experience and make the front-end accessible to programmers outside of Haskell
since it could remove the need to write Haskell code completely. Even though the
command line interface presented here has removed much boilerplate code and the
need to keep track of a database reference there is still some inconvenience. For
instance, to see all open database connections the user currently need to use the
:dbs command every time. A GUI could display a list of all known connections,
which would be more convenient. Clicking on a database in the list could then
provide options to open, close or switch the active database to the selected one.
Double-clicking on a connection in the list could also take the user to a screen
showing more detailed information like existing tables and their data. Finally, it
could add a query builder where the user can build queries with buttons instead of
writing Haskell code.

41

5. Discussion

42

6
Conclusions

Using Daison interactively in its current state was inconvenient. Interactively writing
queries required the user to explicitly bind a database reference and keep track of
the bound variable. The user also needed to write wrapping boilerplate code to run
single queries. Our front-end manages these parts using the GHC API and provides
easy access to databases using the Daison library.

The purpose of the project was to build a front-end for Daison by using GHC as a
library. This purpose was broken down into requirements, all of which have been
fulfilled to a satisfactory degree. Thus, we deem the project successful.

The base of the front-end uses a state where it keeps track of open databases and
settings which the user has set. Most of this functionality is either related to the
GHC API or the Daison back-end. By keeping this information and evaluating
statements entered in the prompt, the usability of Daison has increased. As the
front-end also formats output, the readability of query results is greatly improved.

As mentioned previously, the application improves the usability of Daison substan-
tially. Further additions can improve it a great deal more and make the program
usable for people who do not have experience in Haskell.

43

6. Conclusions

44

Bibliography

[1] E. Meijer, B. Beckman, and G. Bierman, “LINQ: Reconciling Object, Relations
and XML in the .NET Framework,” in Proceedings of the 2006 ACM SIG-
MOD International Conference on Management of Data, ser. SIGMOD ’06,
Chicago, IL, USA: Association for Computing Machinery, 2006, p. 706, isbn:
1595934340. doi: 10.1145/1142473.1142552. [Online]. Available: https:
//doi.org/10.1145/1142473.1142552.

[2] D. Spiewak and T. Zhao, “ScalaQL: Language-Integrated Database Queries for
Scala,” in Software Language Engineering, M. van den Brand, D. Gašević, and
J. Gray, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 154–
163, isbn: 978-3-642-12107-4.

[3] A. Ekblad, “Scoping monadic relational database queries,” in Proceedings of
the 12th ACM SIGPLAN International Symposium on Haskell, ser. Haskell
2019, Berlin, Germany: Association for Computing Machinery, 2019, pp. 114–
124, isbn: 9781450368131. doi: 10.1145/3331545.3342598. [Online]. Avail-
able: https://doi.org/10.1145/3331545.3342598.

[4] K. Angelov. (Mar. 12, 2021). “A NoSQL database in Haskell.” Commit: 57849f9,
[Online]. Available: https://github.com/krangelov/daison (visited on
Apr. 18, 2021).

[5] S. Marlow. (Apr. 2010). “Haskell 2010 Language Report,” [Online]. Available:
https : / / www . haskell . org / definition / haskell2010 . pdf (visited on
Apr. 2, 2021).

[6] The GHC Team. (2021). “MonadUtils,” [Online]. Available: https://hackage.
haskell.org/package/ghc-8.10.2/docs/MonadUtils.html#t:MonadIO
(visited on Apr. 2, 2021).

[7] J. Launchbury and S. L. Peyton Jones, “State in Haskell,” LISP and Symbolic
Computation, vol. 8, no. 4, pp. 293–341, Dec. 1995, issn: 1573-0557. doi:
10.1007/BF01018827. [Online]. Available: https://doi.org/10.1007/
BF01018827.

[8] A. Gill. (2001). “Control.Monad.State.Lazy,” [Online]. Available: https://
hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-
Lazy.html (visited on Apr. 2, 2021).

[9] (2021). “SQLite Home Page,” [Online]. Available: https://www.sqlite.org/
(visited on May 13, 2021).

45

https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/3331545.3342598
https://doi.org/10.1145/3331545.3342598
https://github.com/krangelov/daison
https://www.haskell.org/definition/haskell2010.pdf
https://hackage.haskell.org/package/ghc-8.10.2/docs/MonadUtils.html#t:MonadIO
https://hackage.haskell.org/package/ghc-8.10.2/docs/MonadUtils.html#t:MonadIO
https://doi.org/10.1007/BF01018827
https://doi.org/10.1007/BF01018827
https://doi.org/10.1007/BF01018827
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html
https://www.sqlite.org/

Bibliography

[10] K. Angelov. (Mar. 12, 2021). “daison/tutorial.md at master · krangelov/daison.”
Commit: 57849f9, [Online]. Available: https://github.com/krangelov/
daison/blob/master/doc/tutorial.md (visited on Apr. 18, 2021).

[11] B. Gamari. (2021). “Home — The Glasgow Haskell Compiler,” [Online]. Avail-
able: https://www.haskell.org/ghc/ (visited on Apr. 8, 2021).

[12] S. Marlow and S. Peyton Jones, “The Glasgow Haskell Compiler,” in The
Architecture of Open Source Applications, Volume 2, The Architecture of Open
Source Applications, Volume 2. Lulu, Jan. 2012. [Online]. Available: https:
//www.microsoft.com/en- us/research/publication/the- glasgow-
haskell-compiler/.

[13] The GHC Team. (2021). “GHC,” [Online]. Available: https : / / hackage .
haskell.org/package/ghc-8.10.2/docs/GHC.html (visited on Apr. 2,
2021).

[14] The Hint Authors. (2021). “hint,” [Online]. Available: http : / / hackage .
haskell.org/package/hint (visited on Apr. 2, 2021).

[15] C. Kaltenbrunner, A. Neldefors, H. Stegrell, and P. Vedin. (May 7, 2021).
“Daison Frontend.” Commit: c2b4d0a, [Online]. Available: https://github.
com/PUGzera/DATX02-DIT561 (visited on May 8, 2021).

[16] Atlassian. (2021). “Gitflow Workflow | Atlassian Git Tutorial,” [Online]. Avail-
able: https://www.atlassian.com/git/tutorials/comparing-workflows/
gitflow-workflow (visited on Jan. 25, 2021).

[17] D. Herington. (Jan. 2021). “HUnit: A unit testing framework for Haskell,”
[Online]. Available: https://hackage.haskell.org/package/HUnit (visited
on Apr. 11, 2021).

[18] “ISO/IEC/IEEE International Standard - Systems and software engineering–
Vocabulary,” ISO/IEC/IEEE 24765:2017(E), pp. 1–541, Sep. 28, 2017. doi:
10.1109/IEEESTD.2017.8016712. (visited on May 8, 2021).

[19] N. Smallbone. (Jan. 2020). “QuickCheck: Automatic testing of Haskell pro-
grams,” [Online]. Available: https : / / hackage . haskell . org / package /
QuickCheck (visited on Apr. 11, 2021).

[20] J. Nielsen and T. K. Landauer, “A mathematical model of the finding of
usability problems,” in Proceedings of the INTERACT ’93 and CHI ’93 Con-
ference on Human Factors in Computing Systems, ser. CHI ’93, Amsterdam,
The Netherlands: Association for Computing Machinery, 1993, pp. 206–213,
isbn: 0897915755. doi: 10.1145/169059.169166. [Online]. Available: https:
//doi.org/10.1145/169059.169166.

[21] B. Hanington and B. Martin, Universal Methods of Design: 100 Ways to Re-
search Complex Problems, Develop Innovative Ideas, and Design Effective So-
lutions. Rockport Publishers, 2012, isbn: 9781610581998.

[22] (2021). “Pretty,” [Online]. Available: https : / / hackage . haskell . org /
package/ghc-8.10.2/docs/Pretty.html (visited on Apr. 15, 2021).

[23] S. Liang, P. Hudak, and M. Jones, “Monad transformers and modular inter-
preters,” in Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’95, San Francisco, Cali-
fornia, USA: Association for Computing Machinery, 1995, pp. 333–343, isbn:

46

https://github.com/krangelov/daison/blob/master/doc/tutorial.md
https://github.com/krangelov/daison/blob/master/doc/tutorial.md
https://www.haskell.org/ghc/
https://www.microsoft.com/en-us/research/publication/the-glasgow-haskell-compiler/
https://www.microsoft.com/en-us/research/publication/the-glasgow-haskell-compiler/
https://www.microsoft.com/en-us/research/publication/the-glasgow-haskell-compiler/
https://hackage.haskell.org/package/ghc-8.10.2/docs/GHC.html
https://hackage.haskell.org/package/ghc-8.10.2/docs/GHC.html
http://hackage.haskell.org/package/hint
http://hackage.haskell.org/package/hint
https://github.com/PUGzera/DATX02-DIT561
https://github.com/PUGzera/DATX02-DIT561
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://hackage.haskell.org/package/HUnit
https://doi.org/10.1109/IEEESTD.2017.8016712
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/169059.169166
https://hackage.haskell.org/package/ghc-8.10.2/docs/Pretty.html
https://hackage.haskell.org/package/ghc-8.10.2/docs/Pretty.html

Bibliography

0897916921. doi: 10.1145/199448.199528. [Online]. Available: https://
doi.org/10.1145/199448.199528.

[24] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, “Reliably Erasing Data
from Flash-Based Solid State Drives,” in Proceedings of the 9th USENIX Con-
ference on File and Storage Technologies, ser. FAST’11, San Jose, Califor-
nia: USENIX Association, 2011, p. 7, isbn: 9781931971829. doi: 10.5555/
1960475.1960483. [Online]. Available: https://dl.acm.org/doi/10.5555/
1960475.1960483.

[25] (2021). “How to Compile and Use SEE,” [Online]. Available: https://www.
sqlite.org/see/doc/release/www/readme.wiki (visited on May 3, 2021).

[26] J. Jacobson. (2021). “haskeline: A command-line interface for user input,
written in Haskell.,” [Online]. Available: https://hackage.haskell.org/
package/haskeline (visited on May 6, 2021).

47

https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.5555/1960475.1960483
https://doi.org/10.5555/1960475.1960483
https://dl.acm.org/doi/10.5555/1960475.1960483
https://dl.acm.org/doi/10.5555/1960475.1960483
https://www.sqlite.org/see/doc/release/www/readme.wiki
https://www.sqlite.org/see/doc/release/www/readme.wiki
https://hackage.haskell.org/package/haskeline
https://hackage.haskell.org/package/haskeline

Bibliography

48

A
Test Case Specifications

This appendix contains the test case specifications that were carried out manually
in order to verify that the application fulfilled the requirements.

A.1 Functional Test #1

ID
F1

Version
2021-04-01

Description
Requirement: R1

Purpose: The purpose of the test is to verify that the Daison library is loaded at
startup.

Preconditions
None

Test Steps
1. Start the program

2. Verify that the following Daison functions are in scope by looking up their
types (:t <command>):

• createTable

• tryCreateTable

I

A. Test Case Specifications

• dropTable

• tryDropTable

• insert

• insert_

• select

• from

• update

• update_

• store

• delete

• delete_

Expected Result
The Daison functions should be in scope.

• createTable :: Table a -> Daison ()

• tryCreateTable :: Table a -> Daison ()

• dropTable :: Table a -> Daison ()

• tryDropTable :: Table a -> Daison ()

• insert :: Data a => Table a -> Query a -> Daison (Key a, Key a)

• insert_ :: Data a => Table a -> a -> Daison (Key a)

• select :: QueryMonad m => Query a -> m [a]

• from :: From s r => s -> r (K s) -> Query (V s r)

• update :: Data a => Table a -> Query (Key a, a) -> Daison [(Key a,
a)]

• update_ :: Data a => Table a -> Query (Key a, a) -> Daison ()

• store :: Data a => Table a -> Maybe (Key a) -> a -> Daison (Key a)

• delete :: Data a => Table a -> Query (Key a) -> Daison [Key a]

II

A. Test Case Specifications

• delete_ :: Data a => Table a -> Query (Key a) -> Daison ()

III

A. Test Case Specifications

A.2 Functional Test #2

ID
F2

Version
2021-05-14

Description
Requirements: R2, R3 and R5

Purpose: The purpose of the test is to verify that it is possible to write queries at
the prompt, a transaction is started automatically and that the front-end accepts
the Daison monad.

Preconditions
A database connection should be open and a table should be created.

Table definition example:

data People = People { name :: String, age :: Int } deriving Data

let (people, people_name, people_age) = (table "people"
`withIndex` people_name `withIndex` people_age :: Table
People, index people "name" name :: Index People String,
index people "age" age :: Index People Int)

↪→

↪→

↪→

Test Steps
1. Execute Daison queries

Example Daison queries:

tryCreateTable people

insert people (return (People "Alice" 23))
insert people (return (People "Bob" 25))

select [name x | x <- from people (at 1)]

Expected Result
The Daison queries should be executed successfully. Example queries should yield
result ["Alice"].

IV

A. Test Case Specifications

A.3 Functional Test #3

ID
F3

Version
2021-03-26

Description
Requirement: R4

Purpose: The purpose of the test is to verify that it’s possible to interactively write
Haskell code at the prompt.

Preconditions
None

Test Steps
1. Write Haskell code at the prompt.

2. Verify that the code works as expected.

Expected Result
The code should be working as expected.

V

A. Test Case Specifications

A.4 Functional Test #4

ID
F4

Version
2021-05-13

Description
Requirement: R9

Purpose: The purpose of the test is to verify that it is possible to navigate the file
system at the prompt.

Preconditions
None

Test Steps
1. Navigate to a new directory using the :cd command.

2. Open a database using the :open command.

3. Check that the database is created in the current working directory.

Expected Result
The navigation of the filesystem is successful with a database in the current directory.

VI

A. Test Case Specifications

A.5 Functional Test #5

ID
F5

Version
2021-03-26

Description
Requirement: R10

Purpose: The purpose of the test is to verify that it is possible to load Haskell
modules at runtime.

Preconditions
A Haskell module should be created.

Test Steps
1. Import the Haskell module using the :module command.

2. Verify that the module is loaded properly by calling its functions.

Expected Result
The module should be loaded successfully.

VII

A. Test Case Specifications

A.6 Functional Test #6

ID
F6

Version
2021-04-15

Description
Requirement: R11

Purpose: The purpose of the test is to verify that it is possible to set flags at
runtime.

Preconditions
None

Test Steps
1. Set a flag at runtime using the :set command.

2. Verify that the flag is set successfully.

Example input:

[(x+y) | x <- [1..10] | y <- [11..20]] -- Should not work
:set -XParallelListComp
[(x+y) | x <- [1..10] | y <- [11..20]] -- Should work

Expected Result
Flags should be set successfully.

VIII

A. Test Case Specifications

A.7 Functional Test #7

ID
F7

Version
2021-04-08

Description
Requirement: None

Purpose: The purpose of the test is to verify that an unknown command shows an
error message.

Preconditions
None

Test Steps
1. Enter an invalid command at the prompt, for instance :hej "hejhej".

2. Verify that an error message is shown.

Expected Result
An error message should be shown successfully.

IX

A. Test Case Specifications

A.8 Functional Test #8

ID
F8

Version
2021-04-15

Description
Requirements: R6 and R7

Purpose: The purpose of the test is to verify that non-small query results are
displayed to the user as a formatted, navigable table.

Preconditions
1. The test database test.db and its table definitions TestDefs.hs.

2. A terminal that supports the command echo string | less, i.e. supports
the programs echo and less, as well as the pipe symbol | to transfer the output
of echo to less.

Test Steps
1. Load the test database and its table definitions.

2. Enter the query select [x | x <- from TABLE everything] for any table
in TestDefs except for emptyTuple and empty.

3. Verify that it is formatted in a table with three columns.

4. Enter the query select [snd x | x <- from TABLE everything] for the
tables either3I, emptyTuples, ssfb, tupleInTuple and listOfNumbers.

5. Verify that output from all queries are formatted in tables with appropriate
numbers of columns.

6. Enter the query select [snd x | x <- from TABLE everything] for the
table numbers.

7. Verify that the arrow keys can be used to navigate in all cardinal directions.

8. Enter the query select [snd x | x <- from TABLE everything] for the
tables empty and emptyTuple.

9. Insert a value into any table, and then remove it.

X

A. Test Case Specifications

10. Verify that the outputs in steps 8 and 9 were printed directly to the terminal
rather than as a formatted table.

Expected Result
The table in step 2 should have three columns: element index, key, data.

The tables in step 4 should have numbers of columns equal to one plus the number
of elements in the top-level tuple as shown in the type signature for it, and two
columns if it is not a list of tuples.

Below are examples of the correct number of columns given the type signature for
it:

• [(String, String, Float, Bool)] => 5 columns

• [String] => 2 columns

• [[Bool]] => 2 columns

• [(Int, (Int, Float, Bool))] => 3 columns

• [Maybe (Int, Int, Int)] => 2 columns

Large tables should be navigable using the arrow keys.

Queries that produce small output (e.g. insert, delete, createTable, dropTable,
select on a table that outputs at most one small row) should be printed directly
to the terminal, unformatted (i.e. not as a table). The output for insert should be
a 2-tuple of Keys and the output for a successful delete should be a list containing
a single Key.

XI

A. Test Case Specifications

A.9 Functional Test #9

ID
F9

Version
2021-04-15

Description
Requirement: R11

Purpose: The purpose of the test is to verify that it’s possible to set flags at startup

Preconditions
None

Test Steps
1. Set a flag at startup using ghc-options.

2. Verify that the flag is set successfully.

Example commands:

foo@bar:~$ daison-frontend -XNumericUnderscores
Daison> let x = 5_12

Expected Result
Flags should be set successfully.

XII

A. Test Case Specifications

A.10 Functional Test #10

ID
F10

Version
2021-04-15

Description
Requirement: R10

Purpose: The purpose of the test is to verify that it is possible to load Haskell files
at runtime.

Preconditions
There should be a Haskell module with at least one function. For example:

module F10Example(
exampleFunction

) where

exampleFunction :: Int -> Int -> Int
exampleFunction a b = a*b

Test Steps
1. Load the Haskell module at runtime using the load command.

2. Verify that the module is loaded properly by calling its functions.

Expected Result
The module should be loaded successfully.

XIII

A. Test Case Specifications

A.11 Functional Test #11

ID
F11

Version
2021-04-29

Description
Requirement: R8

Purpose: The purpose of the test is to verify that IO expressions are accepted at
the prompt.

Preconditions
None

Test Steps
1. Use print, or any other function that returns an IO expression, at the prompt.

Expected Result
If print is used, the argument should be printed to the console if it has a Show in-
stance. In particular, strings should be surrounded with double-quotes: print "test"
should print "test" rather than test.

If a different function is used, it should work as expected.

XIV

A. Test Case Specifications

A.12 Functional Test #12

ID
F12

Version
2021-05-10

Description
Requirement: R12

Purpose: The purpose of the test is to verify that databases can be opened and
closed. Databases should also be possible to supply as an argument to the program
which should then be set on start-up.

Preconditions
None

Test Steps
1. Start the program with multiple databases as arguments.

2. Check the list of open databases with :dbs

3. Close the currently active database (marked at the prompt message)

4. Open a new database

5. Check the list of open databases again

Example commands:

foo@bar:~$ daison-frontend firstDb.db secondDb.db
Daison (secondDb.db)> :dbs
Daison (secondDb.db)> :close secondDb.db
Daison (firstDb.db)> :open thirdDb.db
Daison (thirdDb.db)> :dbs

Expected Result
1. Upon launching the program it should respond that the arguments have been

handled.

2. It should print the supplied database arguments.

XV

A. Test Case Specifications

3. The active database should be closed and the second-last database argument
should be set to the active.

4. The active database should be set to thirdDb.db.

5. It should print the open databases, the one that was closed in step 3 should
not be in the list.

XVI

A. Test Case Specifications

A.13 Functional Test #13

ID
F13

Version
2021-05-27

Description
Requirement: R10

Purpose: The purpose of the test is to verify that it is possible to load Haskell files
at startup

Preconditions
There should be a Haskell file with at least one function. For example:

module F13Example(
exampleFunction

) where

exampleFunction :: Int -> Int -> Int
exampleFunction a b = a*b

Test Steps
1. Supply the path to a Haskell file at startup as an argument.

2. Verify that the file is loaded properly by calling its functions.

Example commands:

foo@bar:~$ daison-frontend F13Example.hs
Daison> exampleFunction 3 5

Expected Result
The file should be loaded successfully.

Example commands should result in 15 being printed.

XVII

A. Test Case Specifications

XVIII

B
Tasks for Evaluating the Usability

This appendix contains the tasks that were carried out in the usability tests. It
should be noted that the usability study was conducted in Swedish and the tasks in
this appendix have been translated to English.

B.1 Task 1: Loading Modules
Scenario: Assume that you would like to create a database for storing people.
Because of Daison’s use of Haskell datatypes for defining rows you have defined
these in a Haskell module named People.hs in your current working directory.

Task: Try to load the Haskell module.

What we expect them to do: Use the :load command for loading a Haskell
module.

B.2 Task 2: Changing Working Directory
Scenario: Assume that you would like to create a new database. Therefore, you
would like to change working directory.

Task: Try to change working directory to an already created directory called
workspace.

What we expect them to do: Use the :cd command for navigating the file
system.

B.3 Task 3: Opening a Database and Creating a
Table

Scenario: Assume that you would like to create a database for storing people. You
have loaded the table definition as a variable called people.

Task: Try to create a database and the table people.

XIX

B. Tasks for Evaluating the Usability

What we expect them to do: Use the :open command for creating a database
and tryCreateTable people for creating the table.

B.4 Task 4: Creating an Entry

Scenario: Assume that you would like to create a database for storing peope. You
have created a table people.

Task: Try to insert a person into the table.

What we expect them to do: Use insert people (return (People <Name>
<Age>)) to insert a person.

B.5 Task 5: Reading an Entry

Scenario: Assume that you have a database with a table for storing people and
you would like to know the people which are added to the table.

Task: Try to read what people are added to the table.

What we expect them to do: Use select [x | x <- from people everything]
to select all people.

B.6 Task 6: Updating an Entry

Scenario: Assume that you have a database with a table for storing people and
you would like to update the age of the person at index one.

Task: Try to update the age of the person at index one.

What we expect them to do: Use update people $ return (1, People {
name=<Name>, age=<New Age> }) to update the entry.

B.7 Task 7: Deleting an Entry

Scenario: Assume that you have a database with a table for storing people and
you would like to remove the person at index one.

Task: Try to remove the person at index one.

What we expect them to do: Use delete people (return 1) to delete the
entry.

XX

B. Tasks for Evaluating the Usability

B.8 Task 8: Changing Database and Creating a
Table

Scenario: Assume that you would like to create a new database for storing people.

Task: Try to create a new database and create the table people.

What we expect them to do: Use the :open command to change database and
tryCreateTable people to create the table.

B.9 Task 9: Navigating Output
Scenario: Assume that you add more entries than could be displayed in the console.

Task: Add about 25 entries to the table (it could be the same person). Verify that
all entries where added correctly.

What we expect them to do: Use insert to insert entries and select everything
to print the contents of the table.

XXI

B. Tasks for Evaluating the Usability

XXII

C
Quick Reference Used During the

Usability Tests

This appendix includes the source code of a module for representing people as well
as a Quick Reference for Daison used by the participants during the usability tests.

Source Code of People.hs
module People where

import Database.Daison
import Data.Data

data People = People { name :: String, age :: Int } deriving Data

people_name :: Index People String
people_name = index people "name" name

people_age :: Index People Int
people_age = index people "age" age

people :: Table People
people = table "people"

`withIndex` people_name
`withIndex` people_age

XXIII

C. Quick Reference Used During the Usability Tests

Daison Quick Reference

Create Table in Database
tryCreateTable <table_name>

Insert a Person into a Table
insert <table_name> (return (People <person_name> <person_age>))

Select All Rows from a Table
select [x | x <- from <table_name> everything]

Update Row in a Table
update <table_name> (return (<index_of_row>, People {name=<person_name>,
age=<person_age>}))

Delete Row in a Table
delete <table_name> (return <index_of_row>)

XXIV

D
Usability Test Results

This appendix contains the raw numerical results from the usability testing of the
application.

Table D.1: The difficulty of the tasks in the usability test according to the partic-
ipants.

Task\Participant 1 2 3 4 5 6 7 8 9
Task 1 2 1 1 1 2 1 4 4 1
Task 2 3 1 3 3 1.5 3 1 1 1
Task 3 4 2.5 4 2 1 4 3 3 3
Task 4 1 2 4 2 1 4 1 4 1
Task 5 1 1 1 1 1 2 2 1 1
Task 6 1 3 2 2 1 3 1 2 2
Task 7 1 1 1 1 1 1 1 1 1
Task 8 1 2 1 1 1 1 1 2 1
Task 9 1 2 3 1 3 3 2 2 1

XXV

	Table of Contents
	Introduction
	Purpose
	Delimitations

	Theory
	General Knowledge of Haskell
	Functions and Types
	List Comprehensions
	Type Classes
	Monads

	An Introduction to Daison
	Creating Tables
	Inserting into a Table
	Selecting from a Table
	Updating an Entry
	Deleting from a Table
	Indices in a Table

	The Glasgow Haskell Compiler

	Methods
	Software Development
	Version Control and Continuous Integration

	Testing and Verification
	Unit Tests
	Functional Tests
	Usability Tests

	Results
	An Overview of the Application
	Handling Databases
	Running Queries
	Parsing Queries
	Type-Checking Queries
	Executing Queries

	Displaying Query Results
	Formatting a Table
	Choosing Display Method

	Loading Files and Modules
	Loading Modules
	Loading Haskell Files

	Software Architecture
	The DaisonI Monad

	Requirement Changes
	Test Results
	Manual Tests
	Automated Tests
	Usability Tests

	Discussion
	Understanding the Glasgow Haskell Compiler
	Usage of Test Methods
	Unit Testing
	Property-Based Testing
	Test Automation
	Further Testing

	Ethical Considerations
	Future Work
	Table Formatting
	Security of User Data
	Input Interface
	Supporting Multiple Back-Ends
	A Graphical User Interface

	Conclusions
	Bibliography
	Test Case Specifications
	Functional Test #1
	Functional Test #2
	Functional Test #3
	Functional Test #4
	Functional Test #5
	Functional Test #6
	Functional Test #7
	Functional Test #8
	Functional Test #9
	Functional Test #10
	Functional Test #11
	Functional Test #12
	Functional Test #13

	Tasks for Evaluating the Usability
	Task 1: Loading Modules
	Task 2: Changing Working Directory
	Task 3: Opening a Database and Creating a Table
	Task 4: Creating an Entry
	Task 5: Reading an Entry
	Task 6: Updating an Entry
	Task 7: Deleting an Entry
	Task 8: Changing Database and Creating a Table
	Task 9: Navigating Output

	Quick Reference Used During the Usability Tests
	Usability Test Results

