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Abstract
Recent advancements on robotic technology expect a strong collaboration between
humans and robots in the near future. Such collaboration relies on natural inter-
action between human and robot, demanding human-like behavior of the robot. A
common scenario of human-robot collaboration is a human-robot handover. For
this to be done seamlessly and in a human fashion, the robot has to anticipate the
human agent’s motion by predicting place and time of the handover on-line as soon
as the human initiates the handover process. We consider the prediction problem as
a model-based estimation problem where the point attractor and the timescale con-
stant of the system are estimated on-line. Using Dynamic Movement Primitives as
a parameterization of human motion, point attractor and timescale are successfully
estimated on-line using different estimation laws based on adaptive control meth-
ods. Their stability is shown and their performance is evaluated using experimental
data of human-human handovers. Thanks to the good prediction of the handover
place, the presented algorithms are found to be applicable to improve human-robot
collaboration.

Keywords: Dynamic movement primitive, parameter estimation, handover, human-
robot collaboration.
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1
Introduction

1.1 Context
In recent years, robots have come to provide an essential contribution to produc-
tivity in industrial settings. Usually, humans and robots working in production are
separated by cages, leading to almost no collaboration between the two. Recent
advancements on robotic technologies, however, foresee a strong collaboration be-
tween humans and robots in the near future. Higher efficiency in both industrial and
domestic tasks is expected for humans and robots that work together. According
to the European Strategic Agenda for Robotics, such collaboration relies on natural
interaction between human and robot. Consequently a human-like behavior of the
robot is desired in order for the collaboration to be efficient.

One basic scenario of human-robot collaboration is that of a human handing
over an object to a robot. More specifically, this entails a human hand holding an
object while reaching towards a robot to hand over that object to the end effector of
a robot. A handover can be divided into a reaching phase, during which the human
hand carries an object towards the handover point, and the phase where control
of the object is transferred from the human hand to the robotic hand. In human-
human handovers, the agents can anticipate each other’s actions to some extend.
This allows the receiving agent to already move towards an anticipated handover
place while the giving agent reaches for that point.

For a human-robot handover to be done as seamlessly as between humans, the
robot has to predict where and when the handover will take place and reach that
point with its end effector sufficiently fast to receive the object in a human fashion.
In order to make such a prediction, it needs to have some form of prior knowledge on
how humans move during a handover. An approach is to use a dynamic movement
primitive as a representation of possible and likely human trajectories and learn it
from demonstration. The parameters of this nonlinear dynamical system describing
handover place and time can then be estimated on-line. The estimation of these
parameters allows the design of an adaptive controller controlling the robot in a
human-robot handover.

1.2 Related Work
There exists a considerable array of research work in fields related to human-robot
collaboration. Human-robot handovers as complex collaborations have been inves-
tigated by Strabala et al. [1]. They identify two processes that constitute the

1



1. Introduction

coordination of two actors handing over an object to one another: A physical pro-
cess of moving and a cognitive process of exchanging information. In [2], Huber
et al. focus on the physical process of a robot-human handover by analyzing the
importance of human-like motion. Interaction was found to be smoother when
the robot was following minimum-jerk trajectories. Work from Flash and Hogan
confirms that human point-to-point motions, being an essential part of handovers,
exhibit high smoothness originating from their minimum-jerk properties [3]. While
the above works focus on the motion involved in handovers, Kim et al. consider
grasp planning of the robot for handover operations between human and robot [4].
Taking into account several constraints like object shapes, functions, safety and so-
cial constraints, they propose an algorithm coping with different handover scenarios
ranging from one-handed to two-handed handovers. Edsinger and Kemp have con-
ducted experiments with robots and humans handing objects to one another from
a more high-level perspective [5]. They show that both the human’s as well as the
robot’s skills complement each other advantageously. While the human solves po-
tentially difficult grasping problems for the robot by directly placing objects into its
end effector in a favorable configuration, the robot simplifies the transfer by reaching
towards the human.

To control a robot during a handover scenario, human motion has to be consid-
ered in the control design. The minimum-jerk properties observed in several papers
can be exploited to find a parameterization of human motion. Different approaches
to parameterize trajectories exist. Khansari-Zadeh and Billard present a method
to learn point-to-point motions from a set of demonstrations. They use a nonlin-
ear autonomous dynamical system to describe a movement and provide sufficient
conditions to ensure global asymptotic stability at the endpoint of the movement
trajectory [6]. The parameters of the nonlinear system are learned via a so called
Stable Estimator of Dynamical Systems (SEDS), thus allowing for the dynamical
system to be used for programming a robot to perform point-to-point motion and
to respond to perturbations immediately and appropriately.

While SEDS rely on multiple demonstrations to learn system parameters to
parameterize motion, a different concept only relying on one demonstration is the
dynamic movement primitive (DMP) introduced by Schaal et al. [7]. Using a com-
bination of linear and nonlinear autonomous differential equations, this formulation
of movement primitives creates smooth motion of a shape that resembles that of a
demonstration motion. They also suggest using DMPs with added coupling terms to
do flexible and reactive motion planning and execution, e.g. for robot end effectors.
Thanks to the linear parameterization of DMPs and certain invariance properties,
DMPs can be learned from one demonstration via supervised learning and can also
be used for movement recognition. Ijspeert et al. use DMPs to model attractor be-
haviors of autonomous nonlinear dynamical systems, which makes DMPs a param-
eterization of trajectories [8, 9]. Instead of a time-dependent function, a trajectory
is then described by a dynamical system. Hoffmann et al. investigate a biologically
inspired modification of the original DMP framework, extending a DMP to let a
robot avoid obstacles in a human way. They also render this modified DMP more
versatile as compared to the original DMP by solving scaling issues of the original
DMP. DMPs have also been applied by Prada et al. to control a robot to perform

2



1. Introduction

a human-robot handover by directly feeding a measurement of the human hand po-
sition into a DMP as the current goal [10, 11]. The DMP is used as a control law
to define a trajectory to a previously unknown handover trajectory. While the sim-
plicity of the DMP based control law allows for relatively easy realization of their
algorithm, the resulting robot trajectories clearly differ from human trajectories due
to the constantly changing current position of the human hand that is being used
as a goal of the DMP.

A different approach is to estimate unknown high-level parameters of a pa-
rameterization of human motion on-line to predict where and when a human-robot
handover will take place and control the robot based on this prediction. This leads
to the common combination of a parameter estimator and a control law, depending
on the estimated parameters, used in adaptive control. Extensive theory on adaptive
control and on-line estimation of mostly constant or slowly time-varying parameters
was presented by Ioannou and Sun [12], Slotine [13] as well as Sastry and Bodson
[14]. A robust adaptive observer design method for a class of uncertain nonlinear
systems with time-varying unknown parameters and non-vanishing disturbances was
presented by Stepanyan and Hovakimyan [15]. They use radial basis function neural
networks and an adaptive bounding technique to achieve asymptotic convergence of
the state estimation error to zero. However, only boundedness of parameter errors
and not convergence to true parameters is guaranteed. While most adaptive control-
based on-line parameter estimation algorithms can only be applied to systems linear
in the unknown parameters, Tyukin et al. design adaptive observers and parameter
estimators for systems that are nonlinear in the parameters [16]. Through combin-
ing an asymptotically converging observer with an exhaustive search algorithm, a
method which is at least as good as general exhaustive search is obtained.

While their exhaustive search-based approach allows for global convergence,
the slow convergence speed prevents its use for on-line parameter estimation. In
contrast, extended Kalman filters (EKFs) are often used as nonlinear on-line state
or parameter estimators with fast local convergence [17, 18]. The stability of the
EKF has been investigated in numerous publications. Bonnabel and Slotine analyze
the contraction properties of the EKF as a nonlinear observer and prove exponential
convergence of the state estimation error under some conditions concerning the
detectability and nonlinearity of the plant [19]. Ni and Zhang prove stability of the
Kalman filter for output error systems [20], which implies no need for artificially
introduced process noise in the filter design. Another modification of the EKF
allowed Reif et al. to improve the speed and the domain of convergence of the
estimation error for nonlinear systems with the help of a term of instability added
to the classical EKF [21].

The states and parameters of a nonlinear system can also be estimated using
moving horizon estimation (MHE) [22]. The relation between the EKF and MHE as
well as a comparison of their performances was presented by Haseltine and Rawlings
in [23].

Using a discrete-time recursive nonlinear least-squares algorithm closely related
to an MHE, and a time-variant representation of a minimum-jerk trajectory to
estimate the motion of a human hand, Maeda et al. conducted research on how to
predict human motion during human-robot handover tasks [24]. While good results
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are obtained, their method is restricted to minimum-jerk like movements of the
human agent during a handover. On the contrary, DMPs, being a parameterization
of motion learned from a demonstration trajectory, can represent almost any form
of point-to-point motion.

1.3 Approach and Structure
In the present thesis, we formulate the prediction of place and time of a human-robot
handover as an on-line parameter estimation problem. Using DMPs, a parameter-
ization of human motion is obtained via off-line learning by demonstration with
one human training trajectory. Based on this learned parameterization, adaptive
estimation laws, allowing for on-line estimation of the parameters of a DMP, are
designed. Through estimating the parameters of the DMP on-line, prediction of
place and time of a human-handover is achieved. In contrast to previous work, this
poses a very versatile approach to predict human motion. It is not restricted to
minimum-jerk trajectories or handover tasks, since DMPs can be fitted to trajecto-
ries of many different kinds. Additionally, by providing the high-level parameters
of place and time of a handover, it facilitates sophisticated path planning, such as
planning human-like trajectories for the robot end effector.

To present the conducted research, the following structure is used: In Chap-
ter 2 we briefly introduce the theoretical background relevant for this thesis. The
prediction problem and the parameterization approaches are formulated in Chap-
ter 3. Subsequently, parameter estimation based on the original DMP is described
in Chapter 4. In addition to this, parameter estimation based on a new, specialized
DMP exploiting prior knowledge on human motion is presented in Chapter 5. The
obtained estimation laws are compared and evaluated experimentally in Chapter 6.
Conclusions are drawn and suggestions for future work are given in Chapter 7.
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2
Background

In this section, we briefly introduce the theoretical background relevant for the
algorithms presented in this thesis.

2.1 Notation Conventions
A number of notation conventions are shown in Table 2.1. Additionally, time-
dependencies are generally dropped throughout the thesis whenever this enhances
readability.

Symbol Description
R≥0 {x : x ∈ R ∧ x ≥ 0}
‖·‖∗ Tensor norm induced by the Euclidean norm on vectors
‖x‖W W-norm: ‖x‖W = x>Wx with x a column vector
diag(A) If A ∈ Rn×n then diag(A) ∈ Rn is the vector of diagonal

entries of A.
If A ∈ Rn, then diag(A) ∈ Rn×n is a diagonal matrix with the
elements of A as diagonal entries.

L2 The space of functions u for which ‖u‖L2 =
√∫∞

0 u>(t)u(t)dt <∞
L∞ The space of functions u for which ‖u‖L∞ = sup

t≥0
‖u(t)‖ <∞

`2 The space of sequences v for which ‖v‖`2 =
√∑

n ‖vn‖2 <∞
`∞ The space of sequences v for which ‖v‖`∞ = sup

n
‖vn‖ <∞

Table 2.1: Notation conventions

2.2 Dynamic Movement Primitives
The concept of DMPs can be used to parameterize possible and likely trajectories of
the human hand during a handover process [9, 7]. A DMP is a nonlinear dynamical
system that can represent the attractor dynamics of an observed behavior. The
essential idea is to transform a well-understood attractor system into an attractor
system that exhibits a desired behavior by using a nonlinear forcing term that can be
learned. With a DMP learned from a demonstrated trajectory, similar trajectories
to the demonstrated one can then be generated.
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2. Background

2.2.1 Attractor System
Handover tasks mainly involve point-to-point trajectories, in literature also referred
to as discrete trajectories [9]. Such trajectories can be produced by a dynamical
system with a point attractor.

To begin with, a simple and well-understood attractor system with desirable
stability properties is chosen as a so called transformation system. Following [9],
one of the simplest systems having these properties is a linear spring-damper model.
With an added forcing term f , this system is described by

τ 2ÿ = G(g, y, ẏ) + f = αz(βz(g − y)− τ ẏ) + f. (2.1)

In first-order notation, we have

τ ẏ = z, (2.2a)
τ ż = αz(βz(g − y)− z) + f, (2.2b)

where τ is a positive time constant and αz, βz are positive constants of the trans-
formation system. In the course of this thesis, DMPs are used to represent motion
of a human hand. The human hand can be modeled as a point mass whose dy-
namics are usually described by a second-order dynamical system. Hence, a second
order system is a reasonable choice to represent the attractor dynamics of human
hand motion. To obtain exponential, non-oscillatory convergence towards a unique
attractor point, the transformation system (2.1) can be rendered critically damped
by choosing βz = αz/4. For a vanishing forcing term f = 0, the system then has
a globally asymptotically stable equilibrium at (y, z) = (g, 0), which means, it has
a unique point attractor at (g, 0). Through the forcing term f , the transformation
system (2.2) is enriched to exhibit a desired behavior. To achieve this enrichment,
Ijspeert et al. introduce a so called canonical system

τ ẋ = −αxx, (2.3)

where αx is a positive constant [9]. For some arbitrary initial state x0, the state
x converges monotonically to x = 0. Hence, x can be viewed as a phase variable
that modulates the temporal evolution of a dynamical system without rendering it
non-autonomous. This allows to simply guarantee some useful invariance properties
of the DMP presented later on. Using x, a nonlinear forcing term f(x) dependent
on x can be formulated as

f(x) = f̃(x)(g − y0), (2.4)

with

f̃(x) =
∑N
i=1 Ψi(x)wi∑N
i=1 Ψi(x)

x, (2.5)

where each of the N exponential basis functions Ψi is weighted with a wi and the
initial state is denoted by y0 = y(t = 0). The basis functions can be chosen as
follows:

Ψi(x) = exp
(
−hi(x− ci)2

)
, (2.6)
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2. Background

with hi > 0 and ci being constants determining their widths and centers. The
dynamical system described by the equations (2.2) and (2.3) forms a DMP for one
degree of freedom (DOF).

2.2.2 Multiple DOF
To capture a multi-dimensional behavior with DMPs, Ijspeert et al. propose sharing
one canonical system describing the evolution of a common phase variable x among
all DOF [9], while using separate transformation systems for every DOF. As depicted
in Figure 2.1, each DOF is assigned a transformation system of the form

τ 2ÿi = Gi(gi, yi, ẏi) + fi(x), with i ∈ {1, 2, .., N},

where yi and its derivative ẏi constitute the state variable of the i-th DOF while Gi

and the forcing term fi compose the dynamics of the i-th transformation system.
This is relevant when capturing human trajectories of reaching motion of the hand
since up to three translational degrees of freedom can be considered when repre-
senting the position of a human hand during handover processes. The trajectories
generated for the different DOFs of the human hand are temporally coupled, hence,
one shared canonical system describing the temporal evolution of all the subsystems
for each DOF as depicted in Figure 2.1, are a natural choice.

τ ẋ = −αxx
Canonical
system

τ 2ÿ1 = G1 + f1
Transformation
system 1

τ 2ÿ2 = G2 + f2
Transformation
system 2

τ 2ÿn = Gn + fn
Transformation
system n

. . .

Figure 2.1: Structure of the DMP representation of an n-DOF system with shared
canonical system.

2.2.3 Stability and Invariance
The transformation systems are asymptotically stable by design. Therefore, bounded-
input, bounded-output (BIBO) stability [25], of a 1-DOF DMP can easily be estab-
lished by considering an input comprising the forcing term f from (2.4) and the
goal g. For any finite goal g, bounded basis functions Ψi and bounded weights wi
in (2.6), BIBO stability of (2.1) can be proven. Consequently, the dynamical sys-
tem (2.2), (2.3) is L∞ stable [25]. Stability of the system of differential equations
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2. Background

composing the DMP can also be shown using contraction theory [26]. According
to it, any parallel or serial arrangement of contraction stable systems is contraction
stable, which can be applied to DMPs. Following the same reasoning, contraction
stability of the n-DOF DMP representation can be shown.

In addition to convenient stability properties, DMPs exhibit invariance prop-
erties. Ijspeert et al. show in [9] that DMPs are topologically equivalent. Hence,
if the weights wi are kept constant, both the timescale parameter τ and the goal
parameter g can be changed without altering the attractor landscape of the DMP
qualitatively. This qualifies DMPs as a model of a family of similar behaviors and
thus poses a way to parameterize human motion. The invariance properties are illus-
trated in Figure 2.2, where a DMP was fitted to a minimum-jerk trajectory. Clearly,
the qualitative behavior of the DMP does not change both for different timescales
τ , shown in Figure 2.2b, and for different goals g, depicted in Figure 2.2a.
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(a) Variation of g
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(b) Variation of τ

Figure 2.2: Trajectories produced with a DMP fitted to a minimum-jerk trajectory
for different parameter values of timescale τ and goal g.

2.2.4 Off-line Learning of Attractor Dynamics

To obtain a DMP that exhibits a demonstrated behavior given in terms of P data
triples (ydemo,k, ẏdemo,k, ÿdemo,k) obtained at times tk, with k ∈ [1, ..., P ], its free
parameters are calculated in two steps. First, the high-level parameters τ , y0 and
g are extracted. Second, the weights wi of the basis functions (2.6) in the forcing
term (2.4) are learned.

The parameter τ is set to the duration of the demonstrated movement, the
initial value y0 is set as y0 = ydemo,1 and the goal is set to g = ydemo,P . With the
high-level parameters set, the weights wi of the forcing term (2.4) can be determined
using a supervised learning method. A function approximation problem can be
formulated by rearranging (2.1) to

τ 2ÿ + ταzẏ − αzβz(g − y) = f. (2.7)
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For a demonstrated behavior, (2.7) yields

ftarget,k = τ 2ÿdemo,k + ταzẏdemo,k − αzβz(g − ydemo,k), (2.8)

which gives a target function value for each k ∈ [1, ..., P ]. By introducing the vector
of target function values

f target =
[
ftarget,1 ftarget,2 . . . ftarget,P

]>
, (2.9)

and the vector of weights

w =
[
w1 w2 . . . wN

]>
,

a linear regression problem, fitting the forcing term (2.4) to the target function
ftarget from (2.8) in a least-squares sense, can be formulated as in [27]. The function
approximation problem with the parameterization of the forcing term (2.4) can be
formulated in matrix form as

Xw = f ,

with

X =


Ψ1(x1)∑N

i=1 Ψi(x1)
x1 . . . ΨN (x1)∑N

i=1 Ψi(x1)
x1

... ...
Ψ1(xP )∑N

i=1 Ψi(xP )
xP . . . ΨN (xP )∑N

i=1 Ψi(xP )
xP

 (g − y0), (2.10)

and the basis functions from (2.6). The values x1, x2, ..., xP of the phase variable
can be obtained using the solution of the canonical system (2.3),

x(t) = exp
(
−αx
τ
t
)
.

The initial condition can be chosen as x1 = 1 for the phase variable x to evolve
from x(t1) = x1 = 1 to x(tP ) = 0. Thus, we obtain xk = exp(−αx

τ
tk). The solution

minimizing the cost function

J(w) = (f target − f)>(f target − f)
= (f target −Xw)>(f target −Xw)

is then given by

w = (X>X)−1X>f . (2.11)

Consequently, one single demonstration is enough to learn a DMP represen-
tation of the demonstrated behavior. Multiple demonstrations of a trajectory can
easily be included in the least-squares approach by averaging over the ftarget in-
formation obtained from the different data sets as suggested by Ijspeert et al. [8].
These demonstrations can even be of different spatial and temporal scales thanks
to the invariance properties of the DMP. Note, that for goals g close to y0, large
weights wi can result from the above described learning method. This issue has
been addressed by Hoffmann et al. and can be eliminated by using an alternative
DMP formulation [28].

9



2. Background

2.2.5 Alternative Formulations
In literature, alternative DMP formulations exist. In [9] the formulation

τ ÿ = αz(βz(g − y)− ẏ) + f(x),
τ ẋ = −αxx,

is used to describe a DMP. It slightly differs from (2.7) and does not exhibit the
above mentioned invariance properties.

Another formulation with better properties for goals g that are close to the
initial state y0 of the DMP has been proposed by Hoffmann et al. [28]. They
introduce a bio-inspired model based on evidence obtained from studies on frogs. It
reads

τ ż = xK

(
f̃(x)
x

+ y0 − y
)

+ (1− x)K(g − y)−Dz,

τ ẏ = z,

τ ẋ = −αxx

with the nonlinearity f̃ given by (2.5), spring constant K > 0 and damping constant
D > 0.

Following a decoupling approach, Prada and Remazeilles introduce functions
fw(x) and wg(x) to weight different terms of the transformation system (2.12), (2.13)
independently, thus allowing for tuning of the transition between shape and goal
attractor dynamics [10]. The resulting DMP is described by

τ ż = (1− wg(x))(fw(x) + y0 − y) + wg(x)K(g − y)−Dz, (2.12)
τ ẏ = z, (2.13)
τ ẋ = −αxx,

and is intended to be used with a time-varying goal g.

2.3 On-line Parameter Estimation
To estimate the trajectory of a human hand during a handover process, the pa-
rameters of an obtained parameterization of human motion have to be estimated
on-line.

Following [12], a linear parametric representation of a plant can be given by

z = W (s)θ>ψ, (2.14)

where z is the scalar filtered output of the plant, W (s) is a proper transfer function
with stable poles, θ ∈ Rn is the vector of true parameters of the plant and ψ ∈ Rn

is the unfiltered information vector, containing known input and output signals of
the plant. Taking into account that θ is constant, the linear parametric model (2.14)
can be written in the simple form

z = θ>φ, (2.15)
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where φ = W (s)ψ is the filtered information vector. According to [13], it is a
common approach to substitute unmeasured derivatives in the unfiltered information
vector ψ via a filtering operation. For an estimate θ̂(t) of the true parameter vector
θ at time t, an estimated filtered output ẑ is obtained by using (2.15) to obtain

ẑ = θ̂
>
φ. (2.16)

The output error ε can be formulated as

ε = z − ẑ
m2 , (2.17)

where m2 = n2
s + 1 is used to ensure

φ

m
∈ L∞

by choosing n2
s = αφ>φ with α > 0 [12]. Through introducing the parameter error

θ̃ = θ̂ − θ and substituting z and ẑ in (2.17) with (2.15) and (2.16),

ε = − θ̃
>
φ

m2 (2.18)

is obtained. Equation (2.18) relates the output error ε to the parameter error θ̃ and
qualifies the signal

εm = −θ̃>φ
m

as a measure of the parameter error θ̃ [12]. For any piecewise continuous signal vector
φ, εm has a high value if θ̃ is high. This property allows for different adaptive laws
designed using the gradient algorithm from [12] to minimize cost functions of ε with
respect to θ̂.

2.3.1 Integral Adaptive Law
The integral adaptive law uses a cost function of the form

J(θ̂) = 1
2

∫ t

0
e−β(t−τ)ε2(t, τ)m2(τ)dτ, (2.19)

with the normalized estimation error

ε(t, τ) = z(τ)− θ̂>(t)φ(τ)
m2(τ) , ε(t, t) = ε

at time τ based on the parameter estimate θ̂(t) of θ at time t ≥ τ . The cost
function (2.19) penalizes the integral square of the estimation error over all past
data. The forgetting factor β > 0 is used to discount past estimation error squares
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exponentially. As deduced in [12], J(θ̂) is convex, hence, the gradient method can
be applied to minimize J(θ̂) with respect to θ̂. The adaptive law

˙̂
θ = −Γ∇J = Γ

∫ t

0
e−β(t−τ) z(τ)− θ̂>(t)φ(τ)

m2(τ) φ(τ)dτ (2.20)

with the scaling matrix Γ = Γ> > 0 is obtained. It is implemented as

˙̂
θ = −Γ(R(t)θ̂ +Q(t)), (2.21a)

Ṙ = −βR+ φφ>

m2 , R(0) = 0, (2.21b)

Q̇ = −βQ− zφ

m2 , Q(0) = 0, (2.21c)

where R ∈ Rn×n and Q ∈ Rn. Both (2.20) and (2.21) are called the integral
adaptive law [12].

As shown in [12], the integral adaptive law guarantees that
(i) ε, εns, θ̂, ˙̂

θ ∈ L∞
(ii) ε, εns, ˙̂

θ ∈ L2

(iii) limt→∞ ‖ ˙̂
θ(t)‖ = 0

(iv) if ns,φ ∈ L∞ and φ is persistently excited (PE), then θ̂(t) converges to θ
exponentially. Additionally, the rate of convergence can be made arbitrarily
large by increasing γ for Γ = γI.

2.3.2 Least-Squares Adaptive Law
The cost function

J(θ̂) = 1
2

∫ t

0
e−β(t−τ) [z(τ)− θ̂>(t)φ(τ)]2

m2(τ) dτ + 1
2e
−βt(θ̂ − θ̂0)>Q0(θ̂ − θ̂0),(2.22)

where Q0 = Q>0 > 0, β ≥ 0, θ̂0 = θ̂(0), is an extension of the integral cost function
(2.19) by a penalty on the initial parameter error θ̂− θ̂0 as given in [12, 13]. It can
be shown that the so-called continuous-time recursive least-squares algorithm with
forgetting factor, minimizing J(θ̂) from (2.22), is given by the differential equations

˙̂
θ = P εφ, (2.23a)

Ṗ = βP − P φφ
>

m2 P , P (0) = P 0 = Q−1
0 . (2.23b)

Given that ns,φ ∈ L∞ and φ is PE, the recursive least-squares algorithm (2.23)
with forgetting factor β > 0 guarantees
(i) P ,P−1 ∈ L∞
(ii) exponential convergence of θ̂(t) to θ

for an output error ε from (2.17) [12]. If β = 0 is chosen, (2.23) becomes the pure
least-squares adaptive law [12]. If ns,φ ∈ L∞ and φ is PE, the pure least-squares
adaptive law guarantees asymptotic convergence of θ̂(t) to θ.
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2.3.3 Persistence of Excitation and Parameter Identification
The notion of persistence of excitation plays a key role in the convergence of the
parameter vector θ̂ to its true value θ. In [12] a piecewise continuous signal vector
φ : R≥0 7→ Rn is defined to be persistently excited in Rn with excitation level
α0 > 0 if there exist constants α1, T0 > 0, such that

α1I ≥
1
T0

∫ t+T0

t
φ(τ)φ(τ)>dτ ≥ α0I, ∀t ≥ 0. (2.24)

In other words, (2.24) requires the signal vector φ(t) to vary in such a way that
the integral of the matrix φ(τ)φ(τ)> is uniformly positive definite over any time
interval [t, t+ T0].

If the estimates of a parameter vector θ converge to the true parameter values,
identification of the parameters is performed. True parameters can only be identified
using one of the above adaptive laws (2.21) and (2.23) if boundedness of ns and φ
is ensured and the PE property (2.24) is satisfied for φ.

2.3.4 Hybrid Adaptive Law
In addition to the adaptive laws presented above, Ioannou and Sun introduce hybrid
adaptive laws to perform on-line parameter estimation [12]. Instead of computing
a new parameter estimate θ̂(t) for every time instance t, a hybrid adaptive law can
improve robustness and reduce computational cost by only updating the parameter
estimate at specific instances of time tk. Setting tk = kTs with sampling time Ts
and θ̂k = θ̂(tk), we have the update law

θ̂k+1 = θ̂k + Γ
∫ tk+1

tk

ε(τ)φ(τ)dτ, (2.25)

with θ̂(0) = θ0, k = 0, 1, 2, . . . and the output error

ε(t) = z(t)− ẑ(t)
m2(t) = z(t)− θ̂>k φ(t)

m2(t) ∀t ∈ [tk, tk+1]. (2.26)

The following stability properties of the hybrid adaptive law consisting of (2.25)
and (2.26) can be established [12]. Assume m,Ts,Γ can be chosen such that
(a) φ

>φ
m2 ≤ 1, m ≥ 1

(b) 2− Tsλm ≥ γ for some γ > 0
and λm = λmax(Γ). Then the hybrid adaptive law guarantees:
(i) θ̂k ∈ l∞
(ii) ∆θ̂k = θ̂k+1 − θ̂k ∈ l2 εm ∈ L∞

⋂L2
(iii) If m,φ ∈ L∞ and φ is PE, then θ̂k → θ as k →∞ exponentially fast.

2.4 The Continuous Extended Kalman filter
While on-line parameter estimators only estimate the unknown parameters of a
plant, observers estimate the whole state of a plant. Unknown parameters can be
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viewed as part of this state. Consequently, estimation of unknown parameters of a
plant can be treated as a state estimation problem. For nonlinear plants, nonlinear
observers are often required to solve the state estimation problem.

The extended Kalman filter (EKF) is a commonly used nonlinear observer,
which belongs to the class of empirical observers [17]. Empirical observers are based
on approximations of nonlinearities and therefore often require sufficiently good
initial estimates to converge. The EKF estimates the states of a nonlinear system
by linearization and is therefore only a locally converging observer. Originating
from the Kalman filter, which is a globally converging linear optimal observer with
respect to a quadratic cost function, the EKF is almost optimal. In the following
we first introduce the classical EKF and then present a modified version of it.

2.4.1 Classical Extended Kalman Filter

Definition

Consider a nonlinear system represented by

ẋ = f(x, t), (2.27)
y = h(x, t), (2.28)

where x ∈ Rn is the state vector, t ≥ t0 ∈ R≥0 the time and y ∈ Rp the measured
output. We assume that both the nonlinear functions f and h are C1-functions. As
presented in [17, 19], an observer for the nonlinear system (2.27), (2.28) is given by

˙̂x = f(x̂, t) +K(t)(y − h(x̂, t)), (2.29)

with x̂ ∈ Rn being the estimated state with initial estimate x̂(0) = x̂0 and K(t) ∈
Rn×p being the time-variant observer gain. In the classical setup of the EKF [17, 19],
the observer gain K(t) is calculated through

K(t) = P (t)C(x̂, t)>R−1, (2.30)

where P (t) ∈ Rn×n is obtained by solving the Riccati differential equation

Ṗ (t) =A(x̂, t)P (t) + P (t)A(x̂, t)> +Q
− P (t)C(x̂, t)>R−1C(x̂, t)P (t), (2.31)

with initial condition P (0) = P 0. The equations

A(x̂, t) = ∂f

∂x
(x, t)

∣∣∣∣∣
x=x̂

(2.32)

and

C(x̂, t) = ∂h

∂x
(x, t)

∣∣∣∣∣
x=x̂

, (2.33)

form the linearization of (2.27), (2.28) around the current state estimate x̂. While
from a stochastic point of view, the positive definite matrices Q and R represent
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the covariances of process noise and measurement noise respectively, Bonnabel and
Slotine suggest they can be seen as design parameters in the deterministic and
nonlinear setting that we have introduced above [19]. Confidence in the model
(2.27) can be set by Q−1, whereas R−1 can be interpreted as the confidence in the
measurements from (2.28).

Stability

In order for the state estimate x̂ provided by the EKF to converge to the true state x
for sufficiently good initial estimates x̂0, as presented in [19], two main assumptions
have to hold in the classical setup.
Assumption 1. There exist p

c
, pc > 0 such that

p
c
I ≤ P (t) ≤ pcI, ∀t ∈ R≥0. (2.34)

This is verified when the linearized system

ξ̇c = A(x̂, t)ξc
η = C(x̂, t)ξc

is uniformly detectable.
Assumption 2. The matrices, ∂f/∂x and ∂h/∂x satisfy Lipschitz properties, i.e.,
positive numbers κz, κA and κC exist, such that for all x satisfying ‖x̂ − x‖ ≤ κz
and all t ≥ 0 the following inequalities hold:∥∥∥∥∥∂2f

∂2x
(x, t)

∥∥∥∥∥
∗
≤ κA, (2.35)∥∥∥∥∥∂2h

∂2x
(x, t)

∥∥∥∥∥
∗
≤ κC . (2.36)

2.4.2 Modified Extended Kalman Filter with prescribed De-
gree of Stability

In [21] a modified version of the EKF, having a prescribed degree of stability, is
investigated.

Definition

The methodology of the modified extended Kalman filter from [21] can be based on
the general nonlinear system

ẋ = f(x, t), (2.37)
y = h(x, t), (2.38)

where, as before, x ∈ Rn is the state vector, t ≥ t0 ∈ R≥0 the time and y ∈ Rp the
measured output.
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We assume that both the nonlinear functions f and h are C1-functions. As
presented in [21], an observer for the nonlinear system (2.37), (2.38) is given by

˙̂x = f(x̂, t) +K(t)(y − h(x̂, t)), (2.39)

with x̂ ∈ Rn being the time-dependent estimated state with initial estimate x̂(0) =
x̂0 and the time-variant observer gain K(t) ∈ Rn×p. Clearly, the structure of
the differential equation producing the estimate has not changed compared to the
classical EKF in (2.29).

However, to calculate the observation gain K(t) in (2.29), we use the slightly
different Riccati equation

Ṗ (t) = (A(x̂, t) + αI)P (t) + P (t)(A(x̂, t)> + αI) +Q
−P (t)C(x̂, t)>R−1C(x̂, t)P (t), (2.40)

with P (0) = P 0 where α > 0 and Q and R are positive definite matrices. The
matrices A(x̂, t) and C(x̂, t) are obtained using (2.32) and (2.33). The observer
gain is then calculated using (2.30) as in the classical case.

Stability

In order to guarantee local convergence of the estimate obtained using the modified
extended Kalman filter, a number of assumptions, given in [21], have to hold.

Firstly, extension of the nonlinearities into power series yields

f(x, t)− f(x̂, t) = A(x̂, t)(x− x̂) + Φ(x, x̂),
h(x, t)− h(x̂, t) = C(x̂, t)(x− x̂) + Ψ(x, x̂),

where Φ and Ψ are the terms of second and higher order. To ensure stability of the
dynamics of the estimation error ξm = x− x̂,

ξ̇m = (A(x̂, t)−K(t)C(x̂, t))ξm + Φ(x, x̂)−K(t)Ψ(x, x̂),

for sufficiently good initial estimates x̂0, the following assumptions have to hold in
addition to Assumption 1:
Assumption 3. There exist κΦ, κΨ, εΦ, εΨ > 0, such that the nonlinearities Φ, Ψ
are bounded via

‖Φ(x, x̂)‖ ≤ κΦ‖x− x̂‖2, (2.41)
‖Ψ(x, x̂)‖ ≤ κΨ‖x− x̂‖2, (2.42)

for ‖x− x̂‖ ≤ εΦ, ‖x− x̂‖ ≤ εΨ respectively.
Assumption 4. The time-varying matrix C(x̂, t) is bounded by

‖C(x̂, t)‖ ≤ c, (2.43)

for all t ≥ t0 for a c ∈ R>0.
Under Assumptions 1, 3 and 4, the observer given by (2.39), (2.30) and the

Riccati equation (2.40) is an exponential observer for the nonlinear system (2.27),
(2.28) and the estimation error ξm decays exponentially with a time constant τξ > α
[21].
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2.4.3 Adaptive Laws as EKFs
The adaptive control framework is closely connected to extended Kalman filters.
While the parameter estimators from Section 2.3 were all presented in an adaptive
control context, it is possible to show that the least-squares adaptive law is actually
a continuous extended Kalman filter.

For the linear parametric model (2.15) we can introduce the parameter vector
θ and derive the state space representation

θ̇ = 0, (2.44)
z = θ>φ, (2.45)

with a random-walk process model and the linear parametric measurement model
from (2.15). For the system (2.44), (2.45) we can design an EKF as described in
Section 2.4. The update law of the extended Kalman filter is given by

˙̂
θ = K(z − θ̂>φ). (2.46)

Since (2.44) is a random-walk process model, the prediction term in (2.46) is zero.
The update law (2.46) thus only contains a correction term dependent on the ob-
server gain K and the output error

eo = z − θ̂
>
φ.

In the Kalman filter framework, the observer gain is calculated as

K = PφR−1, (2.47)

where P is the solution of the Riccati equation

Ṗ = Q− PφR−1φ>P + 2αrP .

Plugging (2.47) into (2.46) and setting the measurement noise covariance matrix to
R = I and the process noise covariance to Q = 0 yields,

˙̂
θ = Pφ(z − θ̂>φ), (2.48)
Ṗ = 2αrP − Pφφ>P . (2.49)

When choosing β = 2αr the EKF given by (2.48) and (2.49) is identical to the
least-squares adaptive law from (2.23). Note that for α = 0 we have a classical
EKF which consequently is the same as a least-squares adaptive law with forgetting
factor β = 0. For α > 0, (2.48) and (2.49) form a modified EKF, coinciding with a
least-squares adaptive law with forgetting factor.
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3
Problem Description

Generally, many ways to control a robot in a human-robot handover exist. A chal-
lenge is to move the robot towards the handover point in a way that allows for a
seamless human-robot handover. In view of this, it is essential to know where the
handover point is and when the human hand will be there to hand over an object as
soon as possible. In this chapter we introduce the overall structure of the predictor
used to predict handover place and time. After limiting the scope of the consid-
ered prediction problem, two different approaches to parameterize human motion
are considered.

3.1 Problem Formulation: Predictor Structure

A human-robot handover can be viewed as consisting of different phases. It starts
with the human hand holding an object and beginning to move towards the handover
place. This can be considered as the reaching phase. At the end of the reaching
phase, the human and the robot hand meet at the handover place and the control
of the object is transferred from the human to the robot, resulting in a completed
handover. Our main objective is to predict the place g and time τ of an upcoming
human-robot handover during the reaching phase.

Focusing on the reaching phase of the handover, the handover place can be
viewed as the endpoint of the reaching trajectory of the human hand. Similarly, the
handover time can be seen as the duration of the reaching trajectory. Observations
of the reaching trajectory can be obtained using measurements of the position y,
the velocity ẏ and, if necessary, the acceleration ÿ of the human hand. Generally,
it is advantageous to rely on as little measurements as possible to limit the number
of necessary sensors and thus broaden the scope of possible applications. Obtaining
the required measurements of the human hand is possible, e.g. by using vision
based measurements that could be supplemented with velocity and acceleration
measurements obtained by the human wearing a special glove with sensors.

To solve the prediction problem, we can use prior knowledge on human motion
to parameterize human motion with a DMP that is learned off-line by demonstration.
This DMP has a point attractor at the goal g, representing the handover place, and a
certain timescale τ , representing the handover time. Treating these two parameters
as unknown, an on-line estimation scheme can be designed to estimate the point
attractor g and the timescale τ of a DMP using the available measurements. Hence,
the prediction of handover place and time can be reduced to parameter estimation of
the goal and timescale of a DMP. The structure of the resulting predictor, consisting
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3. Problem Description

of a mathematical model parameterizing human motion, and an estimator estimating
its parameters on-line based on measurements of the human hand, is illustrated in
Figure 3.1.

Predictor

Model

Estimator

Measurements of
human hand
y, ẏ, (ÿ)

Estimated
handover place ĝ

and time τ̂

Figure 3.1: Overall structure of the proposed predictor.

3.2 Limitations
For simplicity, we only consider the motion of the human hand in one dimension.
Once goal and timescale of a one-dimensional human motion can be predicted,
extension to multiple dimensions is straight forward, e.g. by extending the state
vectors of the EKFs with the additional positions, velocities and parameters of
other dimensions. Furthermore, we do not take the orientation of the human hand
during the handover process into account. Note also that any parameterization of
human motion during a handover is probably restricted to a certain phase of the
handover process. Therefore, decision-making is necessary to determine when this
phase begins in order to conduct the model-based estimation of the handover place
and time while the parameterization of the human motion is valid. In this thesis, we
assume to know this by only considering the phase for which our parameterization
is valid.

3.3 Parameterization of Human Motion Using a
DMP

One way to parameterize human motion is to use the original methodology of DMPs
presented in Section 2.2. An advantage of DMPs is that only one human trajectory,
a so called training trajectory, is necessary to obtain a DMP via demonstration
learning. Thanks to the invariance properties of DMPs explained in Section 2.2.3,
this learned DMP embodies a dynamical system that can produce trajectories of
different timescales and endpoints, all being of the same shape as the demonstrated
training trajectory. In the DMP framework, endpoints of trajectories are referred
to as goals. At what time a human-robot handover takes place is described by
the timescale of the DMP representation of the human motion. Both timescale and

20



3. Problem Description

goal appear as high-level parameters of the learned DMP. Our approach is to learn a
DMP as a parameterization of human motion during human-robot handovers with a
training trajectory. Subsequently, the two high-level parameters, goal and timescale,
are treated as unknown and we try to estimate their values for different handovers
using measurements of the human motion. In the course of this thesis, we focus on
the motion of the human hand since it is the most relevant body part during the
handover of an object.

Applying a DMP as parameterization of human motion, we have the nonlinear
forcing term introduced in Section 2.2,

f(x, g) = (g − y0)f̃(x), (3.1)

with

f̃(x) =
∑N
i=1 Ψi(x)wi∑N
i=1 Ψi(x)

x, (3.2)

where the dependency of f on the goal g was added, since the goal, representing the
handover place, is now considered as unknown. As part of the DMP representation,
we have the second order transformation system (2.7), which can be reordered to

ÿ = 1
τ 2 (−αzβzy − αzτ ẏ + αzβzg + f(x, g)) (3.3)

and with (3.1), we obtain

ÿ = 1
τ 2 (−αzβzy − y0f̃(x))− αz

τ
ẏ + g

τ 2 (αzβz + f̃(x)). (3.4)

The parameters αz, βz, αx are chosen to obtain a critically damped transformation
system, as done in [9] and given in Table 3.1. Following Section 2.2.4, the attractor
dynamics of the DMP are learned off-line via learning from demonstration. Results

Parameter Value
αz 25
βz αz/4
αx αz/3

Table 3.1: Parameters of the transformation system of the original DMP.

presented in [3] suggest human point-to-point motion can be described by minimum-
jerk trajectories. The process of a human-robot handover typically involves a human
point-to-point motion, whose endpoint and transition time are to be estimated by
the robot. Consequently, we use the minimum-jerk trajectory

y(t) = y0 + (g − y0)
(

10
(
t

τ

)3
− 15

(
t

τ

)4
+ 6

(
t

τ

)5)
(3.5)

and its first two time derivatives with starting point y0 = 0 m, endpoint g = 2 m and
transition time τ = 10 s to learn a DMP which represents human motion in form of
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Figure 3.2: Minimum jerk trajectory representing point-to-point motion of a hu-
man hand with position y, velocity ẏ and acceleration ÿ in one dimension.

a dynamical system. The trajectories of y, ẏ and ÿ are shown in Figure 3.2.

Using (2.8), (2.9), (2.10) and (2.11) for the off-line learning, N = 30 basis
functions are chosen. As the phase variable x exhibits an exponential decay from
one to zero, an exponential distribution of the centers ci, i = 1, . . . , N of the basis
functions (2.6) results in a uniform spacing in time [9]. For a spacing

∆t = τ

N − 1 (3.6)

of the basis functions in time, the centers are set to

ci = exp
(
−αx
τ

∆t(i− 1)
)
x0. (3.7)

Similarly, the widths are set via hi to

hi = 10 exp
(
αx
τ

∆t

)2
x0. (3.8)

The distribution of the basis functions (2.6),

Ψi(x) = exp
(
−hi(x− ci)2

)
,

resulting from (3.7) and (3.8) is shown in Figure 3.3. Clearly, the centers of the basis
functions are uniformly distributed over time thanks to the exponential spacing of
the ci in x. However, due to the exponential relation between t and x, the shape of
the basis functions in the time space is that of a distorted Gaussian.
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Figure 3.3: Distribution of the basis functions Ψi over time t.

Based on the Ψi, the weights are calculated as in (2.11),

w = (X>X)−1X>f .

The weights and their associated basis function centers ci are illustrated in Fig-
ure 3.4. While the absolute values of the weights for small basis function center
values ci are large, they decrease with increasing ci values. Considering that the
basis functions are functions of the phase variable x, which modulates the temporal
evolution of the forcing term, we can observe the following relation: Basis functions
with a large ci influence the forcing term in the beginning of motion of the human
hand, whereas small ci belong to basis functions influencing the forcing term towards
the end of motion. Correspondingly, Figure 3.4 shows rather high weights for small
ci which effectively means large weights towards the end of motion.

10
-4

10
-3

10
-2

10
-1

10
0

ci

-8

-6

-4

-2

0

2

4

w
i

×10
3

Figure 3.4: Weights wi resulting from off-line learning.
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3.4 Parameterization of Human Motion Using a
Specialized DMP

The phase variable x of the original DMP formulation is a result of the canonical
system (2.3) describing the temporal evolution of the nonlinear forcing term (2.4)
and therefore the temporal evolution of the DMP. For a known timescale τ , the
explicit solution of the canonical system (2.3),

x(t, τ) = exp
(
−αx
τ
t
)
, (3.9)

is a bijective mapping x : Dt → Dx for t ∈ Dt = [0, τ ] and x ∈ Dx = [0, 1]. In
the following, we suggest a new way of describing the temporal evolution of the
nonlinearity by exploiting prior knowledge on human motion. As justified by the
findings of Flash and Hogan [3], we consider minimum-jerk trajectories to represent
human point-to-point motion. The functional representation y : Dt → Dy with
Dy = [y0, g] of the minimum-jerk trajectory from (3.5) is also bijective for a known
goal g 6= y0 and timescale τ > 0. Consequently, it is possible to substitute x in (2.4)
with the bijective relation,

x(t, g) = 1− y(t)− y0

g − y0
, (3.10)

for t ≥ 0 and a known, fixed g > 0. This replacement of the phase variable x is
shown in Figure 3.5b. Clearly, it goes from one to zero monotonically within the
time τ , as does the phase variable of the original DMP from Figure 3.5a, while also
assigning each t ∈ Dt exactly one unique x ∈ Dx. Note that it is possible to use the
specialized DMP to represent any point-to-point trajectory that is monotone since
this will always yield a feasible phase variable replacement.

0 0.2 0.4 0.6 0.8 1

t/τ

0

0.2

0.4

0.6

0.8

1

x

(a) Original DMP

0 0.2 0.4 0.6 0.8 1

t/τ

0

0.2

0.4

0.6

0.8

1

1
−
(y

−
y 0
)/
(g

−
y 0
)

(b) Specialized DMP

Figure 3.5: Phase variable and phase variable replacement of original and special-
ized DMP respectively.

While the nonlinear forcing term f(x, g) given by (3.1) used to be a function
of the phase variable x and the goal g in the original DMP framework, for the
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specialized DMP it now reads

f(y, g) = f̃s(y, g)(g − y0), (3.11)

with

f̃s(y, g) =
∑N
i=1 Ψs,i(y, g)wi∑N
i=1 Ψs,i(y, g)︸ ︷︷ ︸

g̃(y,g)

(
1− y − y0

g − y0

)
, (3.12)

and it is therefore no longer dependent on x. Plugging (3.9) into (2.6) yields the
new basis functions for the specialized DMP,

Ψs,i(y, g) = exp
(
−hs,i

(
1− y − y0

g − y0

)
− cs,i

)2

,

with width parameters hs,i and centers cs,i. The second order representation of the
specialized DMP is then given by

τ 2ÿ = αz (βz (g − y)− τ ẏ) + f(y, g). (3.13)

In contrast to the original DMP formulation from Ijspeert et al., this specialized
DMP does not need a phase variable and therefore no canonical system.

One of the greatest advantages of using the original DMP formulation are the
invariance properties, which allow parameterization of minimum-jerk trajectories
of different timescales and goals, since a change of τ and g does not qualitatively
change the attractor landscape of the original DMP. For this specialized DMP to
be applicable to the presented human-robot handover scenario, these invariance
properties have to be ensured as well.

To show spatial invariance, we can apply the concept of topological equiv-
alence [29]. Two dynamical systems ẋ = f o(x) and ẏ = go(y) are considered
topologically invariant, if there exists an orientation preserving homeomorphism
ho : [x, ẋ] → [y, ẏ] with inverse h−1

o : [y, ẏ] → [x, ẋ], mapping the state spaces of
the two dynamical systems into each other [9]. We now consider an unscaled and
a scaled version of the specialized DMP (3.13) as the two dynamical systems which
we want to be topologically equivalent. We denote the states of the scaled DMP
with ỹ, ˙̃y, ¨̃y and the initial value of ỹ by ỹ(0) = ỹ0. Scaling the movement amplitude
with (g − ỹ0)→ ks(g − ỹ0) for a ks > 0 yields the scaled DMP

τ 2 ¨̃y = αz
(
βz (ks(g − ỹ0) + ỹ0 − ỹ)− τ ˙̃y

)
+ fscaled(ỹ, g) (3.14)

where we used g = g − ỹ0 + ỹ0. With the scaled nonlinear forcing term

fscaled(ỹ, g) =
∑N
i=1 Ψscaled,i(ỹ, g)wi∑N
i=1 Ψscaled,i(ỹ, g)

(
1− ỹ − ỹ0

ks(g − ỹ0)

)
ks(g − ỹ0), (3.15)

and the scaled basis functions

Ψscaled,i(ỹ, g) = exp
(
−hs,i

(
1− (ỹ − ỹ0)

ks(g − ỹ0)

)
− cs,i

)2

. (3.16)
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Since the bijection ỹ − ỹ0
˙̃y
¨̃y

 = hg(y, ẏ, ÿ) =

ks(y − y0)
ksẏ
ksÿ

 (3.17)

and its inverse h−1
g are continuous thanks to their linearity, hg is a homeomorphism.

It is also orientation preserving as the determinant of its Jacobian is positive for
ks > 0. Plugging (3.17) into the scaled system (3.14), (3.15), (3.16) yields the
unscaled specialized DMP from (3.13), showing that the unscaled and the scaled
system are topologically equivalent. Consequently, the specialized DMP is spatially
invariant.

Similarly, the temporal invariance of the specialized DMP can be shown via the
orientation preserving homeomorphismỹ˙̃y

¨̃y

 = hτ (y, ẏ, ÿ) =

 y
ksẏ
k2
s ÿ

 ,
using the same reasoning as for spatial invariance.

To achieve a uniform spacing of the N basis functions, we use the minimum-jerk
representation (3.5) and choose centers

cs,i = 1−
10

(
∆t(i− 1)

τ

)3

− 15
(

∆t(i− 1)
τ

)4

+ 6
(

∆t(i− 1)
τ

)5
 , (3.18)

for i = 1, . . . , N with time steps (3.6),

∆t = τ

N − 1 ,

and transition time τ . Due to the shape of the minimum-jerk trajectory, the re-
placement of the phase variable (3.10) only exhibits a slow change in value at the
beginning and at the end of motion. This can also be observed in Figure 3.5b. To
account for this, the basis function width parameters hs,i are chosen to be

hs,i = 10 + 10
(

∆t(i− 1)− τ

2

)4
(3.19)

for i = 1, . . . , N . The distribution of the basis functions for the specialized DMP
with N = 30 are depicted in Figure 3.6. While the centers are uniformly spaced
over t, the widths of the kernels still become larger towards the beginning and the
end of motion despite the larger values of the hs,i in (3.19) at the beginning and the
end of motion.

Using training data generated by (3.5) with τ = 1 and g = 1, a specialized DMP
is learned to represent the minimum-jerk trajectory. Using this specialized DMP,
minimum-jerk trajectories for different timescales τ and goals g are illustrated in
Figure 3.7. The invariance properties shown above are verified, as the trajectories
do not appear to change qualitatively. However, in Figure 3.7a it can be observed
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Figure 3.6: Distribution of the basis functions Ψs,i of the specialized DMP over
t/τ .
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Figure 3.7: Trajectories produced with the specialized DMP fitted to a minimum-
jerk trajectory for different parameter values of goal g and timescale τ .

that there is a slight overshoot at the end of some minimum-jerk trajectories. This
can be explained by investigating the fitting error εfit(tk) = ftarget,k − f(y(tk), g)
which is obtained using (2.8) at time instances tk with k = 1, . . . , P , as defined in
Section 2.2.4. For very large P , we can consider εfit(t). Figure 3.8 shows the fitting
error εfit(t). Relatively large fitting errors in the beginning and end of the motion
occur. Given the large widths of the basis functions in these regions of t, we can
observe that the fitting of the nonlinear forcing term f(y, g) is difficult when using
the specialized DMP, since the shape of the replacement of the phase variable (3.10)
makes a proper choice of basis function width parameters hs,i difficult.

It can be concluded, that while the specialized DMP allows for elimination of
the phase variable x as compared to the original DMP, thus having a lower number of
DMP states, it becomes harder to fit the specialized DMP to given trajectories. Note
that the positions y(t) produced by the learned specialized DMP in Figure 3.7 are
still very close to the demonstrated positions since the fitting error from Figure 3.8
only affects the acceleration ÿ. Also, increasing the number of basis functions N for
the fitting of the specialized DMP allows to somewhat compensate for the bad fitting
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Figure 3.8: Fitting error for a minimum-jerk trajectory with τ = 1 s using N = 30
basis functions and a specialized DMP.

properties of the specialized DMP. Hence, it is of interest to use the specialized DMP
as a parameterization of human motion and estimate time and place of a human-
robot handover based on it.
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DMPs

By using a DMP as a parameterization for human motion, the problem of predicting
place and time of a human-robot handover can be formulated as a parameter estima-
tion problem. Different parameter estimation schemes can be designed to estimate
goal and timescale of the DMP.

4.1 Adaptive Law-Based Parameter Estimation of
DMPs

Assuming both position y and speed ẏ of the human hand can be measured, we filter
both sides of (3.4) with

H(s) = 1
Λ(s) = 1

(s+ λf )
(4.1)

to eliminate ÿ [13]. Consequently, (3.4) can be written as the linear parametric
model from (2.15),

z = s

Λ(s) ẏ =
[

1
τ2

1
τ

g
τ2

]
︸ ︷︷ ︸

θ>


(−αzβzy − y0f̃(x)) 1

Λ(s)
−αzẏ 1

Λ(s)
(αzβz + f̃(x)) 1

Λ(s)


︸ ︷︷ ︸

φ

, (4.2)

where z is the filtered system output and the timescale τ and the goal g are treated
as unknown parameters. Note that different linear parameterizations for the given
DMP can be chosen dependent on the available measurements. As fast parameter
convergence is desired, a filter of the lowest order possible is advantageous. The pole
−λf of the filter from (4.1) also affects the convergence rate. A trade-off between
desirable differentiating behavior for large λf and measurement noise suppression
through a low-pass property for small λf has to be done.

Based on the linear parametric representation (4.2) of the DMP, an attempt to
estimate goal and timescale of the DMP, representing place and time of a human-
robot handover can be made. A common approach is to use adaptive laws to estimate
these parameters on-line [12]. As opposed to the usual case in the adaptive control
framework presented in Section 2.3, in (4.2) the information vector φ is dependent
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on the signals y, ẏ and x. While y and ẏ are available measurements and thus known
signals, the phase variable x constitutes an auxiliary state modulating the temporal
evolution of the nonlinear forcing term f of the DMP and cannot be measured. To
be able to use established adaptive laws from Section 2.3, different approaches to
substitute x with a known signal in the information vector φ are possible.

4.1.1 Continuous Goal Estimation for Known Timescales
As a first step, we consider a case where the timescale τ of the human motion is
known in advance. This allows to use the explicit solution of the canonical system
(2.3),

x(t) = exp
(
−αx
τ
t
)
, (4.3)

with initial condition x(0) = x0 = 1, as is part of the DMP formulation from
Section 2.2, to substitute x in φ. This yields a fully known information vector φ in
(4.2). Using a rather slow filter (4.1) with λf = 3, position and speed measurements
of the human hand are obtained and fed into the adaptive laws from Section 2.3.

Since we consider human point-to-point motion, both position y and velocity
ẏ of the human hand are bounded functions of time. Furthermore, f̃ is bounded
thanks to the boundedness of the basis functions Ψi and weights wi. Hence, no
normalization is needed to guarantee φ ∈ L∞, which is the first requirement for
stability of the adaptive laws from Section 2.3.

For convergence of the adaptive laws, it remains to show that φ is PE. We can
relate

φ = H(s)y

by using y0 = 0, eliminating ẏ with a filtering operation and pulling y out of φ
in (4.2). The vector H(s) is a proper stable transfer matrix with φ ∈ R3 and y
being the position measurement signal. According to Ioannou and Sun [12], the
information vector φ is PE if, and only if, y is stationary, sufficiently rich of order
n with θ ∈ Rn and if there exist n different frequencies ω1, . . . , ωn ∈ R such that
H(jω1), . . . ,H(jωn) are linearly independent on Cn.

If y is stationary, then it is sufficiently rich of order n if the support of the
spectral measure Sy(ω) of y contains at least n points [12]. The spectral measure is
given by

Sy(ω) =
∫ ∞
−∞

e−jωτRy(τ)dτ,

which is the Fourier transform of the auto-covariance Ry(t) ∈ R. For a minimum-
jerk trajectory with τ = 10, y0 = 0 and g = 2 the spectral measure is shown in
Figure 4.1. The support of Sy(ω) clearly contains more than n = 3 points. Since
the auto-covariance Ry(t) exists and is finite uniformly in t and the minimum-jerk
trajectory y(t) from (3.5) always has the same shape, y is stationary. Consequently,
y is also sufficiently rich of order 3. As we can find at least three different frequencies
ω1, . . . , ω3 ∈ R such that H(jω1), . . . ,H(jω3) are linearly independent on Cn, and
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because y is sufficiently rich of order 3, φ is PE [12]. Since the spectral measure
will not change qualitatively for different transition times τ of the minimum-jerk
trajectory, φ is PE for all minimum-jerk trajectories with g 6= y0.
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Figure 4.1: Spectral measure Sy(ω) of a minimum-jerk trajectory with τ = 10,
y0 = 0 and g = 2.

Least-Squares Adaptive Law

First, we use the least-squares adaptive law from (2.23),

˙̂
θ = P εφ,

Ṗ = βP − Pφφ>P , P (0) = P 0,lsq,

with the output error ε from (2.17) and an empirically obtained initial gain of

P 0,lsq = diag(100, 5000, 100). (4.5)

As no normalization is needed, we set m = 1. The elements of the true parameter
vector θ from (4.2) only depend on the timescale τ and the goal g. We already know
the constant timescale τ and assume the goal g is constant for one specific motion of
the human hand. Consequently, θ is a constant vector as well. As discussed in [12],
this allows for a small forgetting factor of β = 0.1, meaning that measurement data
collected in the past is only slightly discounted and used to obtain an estimate θ̂.
Figure 4.2 shows how the estimated goal ĝ, obtained by the presented least-squares
based adaptive law, converges to the true g. The simulation is conducted using the
initial guess ĝ0 = 1 while the true goal is g = 2. Obviously, the goal estimate ĝ
converges to the true value g. After one second, the parameter error is already less
than 0.1 m.
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Figure 4.2: Estimation of goal g for a known timescale of τ = 10 s using a least-
squares adaptive law with forgetting factor β = 0.1, initial gain P 0,lsq and initial
goal ĝ0 = 1 m.

Integral Adaptive Law

The integral adaptive law introduced in Section 2.3 poses another possible approach
to estimate the parameters of a DMP. Choosing a forgetting factor β = 0.1, the
general version of the integral adaptive law (2.21) simplifies to

˙̂
θ = −Γ(R(t)θ̂ +Q(t)),
Ṙ = −βR+ φφ>,
Q̇ = −βQ− zφ,

with the initial values R(0) = 0, Q(0) = 0 and θ̂(0) = θ̂0 and the filtered output
z from (4.2). For comparability we use (4.5) and choose Γ = P 0,lsq. Simulation
is conducted using initial guesses ĝ0 = 1 m and τ̂0 = 10 s while the true values are
g = 2 m and τ = 10 s. Figure 4.3 shows the fast convergence of the goal estimate.
Reasonable estimates are already available after about a second. By comparing
Figure 4.3 to Figure 4.2, it can be seen that the integral adaptive law gives slightly
faster convergence speed. The reason for this observation is, that it allows for tuning
of the rate of exponential convergence through the gain Γ, whereas the least-squares
adaptive law only guarantees exponential convergence. However, through tuning of
P (0) of the least-squares based adaptive law, similar performance of both adaptive
laws could be achieved.

We can see that classically designed adaptive laws can be applied to estimate
the goal of human point-to-point motion. A clear weakness of the presented least-
squares and integral cost estimation laws from this section is the fact, that the known
timescale τ also appears in the parameter vector θ of the used parameterization
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Figure 4.3: Estimation of g for known τ using an integral adaptive law with
forgetting factor β = 0.1, R0 = 0, Q0 = 0 and Γ = P 0,lsq. The initial guess is
ĝ0 = 1 m.

(4.2). Due to a lower dimension of the parameter vector, faster convergence might
be achieved for a linear parametric parameterization of the DMP where only the
goal g appears in the parameter vector, as the PE property (2.24) is satisfied more
easily for a smaller parameter vector.

A disadvantage of continuous goal estimation based on a known timescale τ is
the fact, that in a realistic scenario, it is unlikely that a robot would initially know
the duration of a human handover motion. Therefore, it is sensible to treat the
timescale τ as an unknown parameter and to try to estimate it alongside the goal g.

4.1.2 Continuous Goal and Timescale Estimation
Treating both goal g and timescale τ as unknown implies that the phase variable x
can no longer be produced using the explicit solution (4.3) of the canonical system
(2.3). For simplicity, we assume position, velocity and acceleration measurements of
the human hand are available in the following. Hence, the linear parametric model
from (2.14) simplifies to the unfiltered version

z = ÿ = θ>φ(x) (4.6)

=
[

1
τ2

1
τ

g
τ2

]
︸ ︷︷ ︸

θ>

−αzβzy − y0f̃(x)
−αzẏ

αzβz + f̃(x)


︸ ︷︷ ︸

φ

,

where the information vector φ is now dependent on the unknown phase variable x.
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Dynamical Approximation of the Phase Variable

One approach to estimate the true parameter vector θ is to combine an adaptive law
designed based on the model (4.6) with a simple dynamical system approximating
x. Being a simple approach to parameter estimation, the least-squares adaptive law
from (2.23) is implemented using a forgetting factor of β = 0.1. As in Section 4.1.1,
we can establish φ ∈ L∞ and thus choose m = 1. Consequently, the least-squares
adaptive law simplifies to

˙̂
θ = P εφ, (4.7)
Ṗ = βP − Pφφ>P , (4.8)

where

ε = z − ẑ = ÿ − θ̂
>
φ (4.9)

is the output error and the initial conditions are P (0) = P 0,da and θ̂(0) = θ̂0.
A key property of the nonlinear forcing term (2.4) of the DMP formulation from

[9] is that it vanishes with time. Hence, the influence of x on the DMP vanishes
with time as well. This motivates using a simple and rather rough approximation x̂
of x, which can be obtained using the dynamical system

˙̂x = −αx
τ̂
x̂ (4.10)

with the known initial condition x̂(0) = x(0) = 1. System (4.10) can be found
by replacing all unknowns in the canonical system (2.3) with their estimates. The
estimated timescale τ̂ of the DMP is extracted from the first component θ̂1 of the
current estimate of the parameter vector θ̂ = [θ̂1, θ̂2, θ̂3]> from (4.6) through

τ̂ = 1√
θ̂1

.

Due to the redundancy of τ̂ information in θ̂, both θ̂1 and θ̂2 can be used to extract
a current estimate of the timescale. Simulations have proven θ̂1 to converge faster,
which makes it better suited for use in (4.10). Note that many ways to exploit this
redundancy exist, of which the one chosen here is just a simple one. The approx-
imation x̂ of x obtained by (4.10) is fed into the adaptive law (4.7), (4.8) through
the information vector φ, whose dependency on x̂ is depicted as φ(x̂). The overall
dynamical system estimating the parameters θ is therefore given by (4.10) and the
adaptive law from (4.7) and (4.8), with the dependency on the approximation x̂ of
the phase variable reading,

˙̂
θ = P εφ(x̂),
Ṗ = βP − Pφ(x̂)φ(x̂)>P ,

with the output error ε given by (4.9) and initial conditions P (0) = P 0,da and

θ̂(0) = θ̂0 =
[

1
τ̂2

0

1
τ̂0

ĝ0
τ̂2

0

]
.
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The least-squares adaptive law is simulated using P 0,da = diag([1, 50, 10]),
β = 0.1 and initial parameter values ĝ0 = 1 m and τ̂0 = 9 s, where the measurements
y, ẏ and ÿ are generated using the training minimum-jerk trajectory (3.5) with true
timescale τ = 10 s, goal g = 2 m and starting point y0 = 0 m. The goal and timescale
estimates are extracted from the estimated parameter vector θ̂ = [θ̂1, θ̂2, θ̂3]> via

τ̂1 = 1√
θ̂1

, τ̂2 = 1
θ̂2
, and ĝ = θ̂3

θ̂2
2
.

The trajectories of the estimates ĝ and τ̂1, τ̂2 are depicted in Figure 4.4. Clearly,
neither of the estimates converges to a constant value. However, while ĝ stays within
0.2 m of the true value g after about 4 seconds, τ̂1, τ̂2 do not provide a useful estimate
of the timescale of the human motion.
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Figure 4.4: On-line estimation of handover position ĝ and handover time τ̂ with
true values g = 2 m and τ = 10 s and initial parameter values ĝ0 = 1 m and τ̂0 = 9 s.

A reason for the observed unsatisfying performance is the fact that the infor-
mation vector φ(x̂) depends on a possibly erroneous estimate x̂. The adaptive law
then updates the parameter vector θ̂ in a way that minimizes the estimation error
based on a wrong information vector. Hence it is not well-suited for large errors in
the estimate x̂.

As mentioned above, dynamical approximation is a rather rough estimation of
the phase variable x. The main cause for this is the fact that, while a dynami-
cal approximation provides relatively smooth estimates x̂, errors in the estimated
timescale τ̂ accumulate over time due to the dynamical approximation.

Explicit Estimation of the Phase Variable

Another approach to deal with the dependency of the information vector φ on x is
to use the explicit solution of the canonical system (4.3) and by using the current
estimate τ̂ , produce an estimate x̂ through

x̂(t) = e−
αx
τ̂
t. (4.12)
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The benefit of this approach, as opposed to the dynamical approximation, is that a
correct estimate τ̂ would yield a correct estimate of the phase variable x̂ since (4.12)
is an algebraic relation between x̂ and τ̂ . Hence, past errors in τ̂ do not affect the
current estimate x̂.

Substituting x with its estimate x̂ and θ with its estimate θ̂ in (4.6) yields

ẑ = θ̂
>
φ(x̂)

=
[

1
τ̂2

1
τ̂

ĝ
τ̂2

] −αzβzy − y0f̃(x̂)
−αzẏ

αzβz + f̃(x̂)

 . (4.13)

Plugging relation (4.12) into (4.13) yields the measurement model producing the
estimated output

ẑ(t) = θ̂
>
φ(t, θ̂).

Clearly, this measurement model is nonlinear in the parameters. A quite simple
and straightforward approach to change (4.13) in a way that renders it linear in
the parameters is to neglect the dependency of φ on the parameter estimate θ̂.
Even though this clearly is a very rough approximation, the forcing term f vanishes
with time and hence the dependency of φ on θ̂ recedes with time as well. While
estimates will probably be bad in the beginning, convergence to the true parameters
is expected over time.

We apply the least-squares based adaptive law from (2.23) designed for a linear
parametric model using β = 0.1, initial gain P 0,ee = diag([100, 5000, 1000]), true
values g = 2 m, τ = 10 s and initial parameter values ĝ0 = 1 m, τ̂0 = 9 s as be-
fore. The resulting trajectories are shown in Figure 4.5. The parameter estimates
clearly do not converge at all. Neglecting the dependency of φ on θ̂ proofs to be
a heavy assumption. As before, the vanishing influence of the forcing term is not
enough to obtain a converging parameter estimation scheme through the presented
simplifications of the model.

The adaptive laws presented in this section clearly have not proven to be able to
cope with the nonlinearities in the parameters. Instead of neglecting the dependency
of the information vector on the parameters, a different approach is to linearize the
nonlinearities around the current estimate, as it is done in extended Kalman filters.

4.2 EKF-Based Parameter Estimation of DMPs
The estimation of the parameters of a DMP can be put into a state estimation con-
text by simply including the unknown parameters in the state vector of an observer.
In the presence of nonlinear models, a common approach for state estimation is
to use EKFs. EKFs are popular due to their relatively easy implementation, their
optimality for linear systems and their efficiency in a lot of practical problems [17].
Different versions of EKFs can be found in literature. In this thesis we present the
application of both the classical EKF and a modified EKF with enhanced conver-
gence speed.
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ĝ

g

(a)

0 2 4 6 8 10

t [s]

0

10

20

30

40

50

[s
]

τ̂1

τ̂2

τ

(b)

Figure 4.5: On-line estimation of handover position ĝ and handover time τ̂ with
true values g = 2 m, τ = 10 s and initial parameter estimates ĝ0 = 1 m, τ̂0 = 9 s
using explicit estimation of x and a least-squares adaptive law with β = 0.1 and
P 0,ee = diag([100, 5000, 1000]).

4.2.1 Classical EKF-Based State Estimation
Initially, we use a classical EKF state estimation approach to estimate the unknown
parameters of the DMP.

Observer Formulation

To estimate the unknown goal g and timescale τ of the DMP formulation (3.3) and
deal with the nonlinearities in the parameters g and τ , we introduce the state vector

x =
[
x y z g τ

]>
(4.14)

and write the nonlinear system consisting of the DMP dynamics and the parameter
dynamics as

ẋ = f(x)

⇔


ẋ
ẏ
ż
ġ
τ̇

 =


−αx

τ
x

z

αz
(
βz
τ2 (g − y)− z

τ

)
+ f(x,g)

τ2

0
0

 . (4.15)

Assuming position y and velocity ẏ are measurable, we obtain the linear measure-
ment model

y = h(x) = Cx, (4.16)

with

C =
[
0 1 0 0 0
0 0 1 0 0

]
. (4.17)
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Plugging the process model (4.15) and the measurement model (4.16) into the update
law (2.29) from the EKF formulation yields the update equation

˙̂x = f(x̂) +K(t)(y −Cx), (4.18)

where

x̂ =
[
x̂ ŷ ẑ ĝ τ̂

]>
(4.19)

is the estimate of the state vector x. The initial condition x(0) = 1 is known
by construction of the DMP. As we consider human point-to-point motion, the
trajectories of the human hand can be assumed to start at y(0) = y0 = 0 with zero
velocity z(0) = 0. Consequently, the initial estimate is set to

x̂(0) =
[
x(0) y(0) z(0) ĝ(0) τ̂(0)

]>
=
[
1 0 0 ĝ0 τ̂0

]>
, (4.20)

where ĝ0 and τ̂0 are initial estimates for goal g and timescale τ . In the classical
EKF, the time-variant Kalman gain is set to

K(t) = P (t)C>R−1, (4.21)

where P (t) is the solution of the Riccati differential equation

Ṗ (t) = A(x̂)P (t) + P (t)A(x̂)> +Q− P (t)C>R−1CP (t), (4.22)

with positive definite covariance matrices Q and R for process and measurement
noise respectively. The initial condition of the Riccati differential equation (4.22) is
set to P (0) = P 0, with P 0 being a positive definite matrix ensuring (2.34). The
linearized system matrix A(x̂) is obtained through linearization of f around the
current estimate x̂,

A(x̂) = ∂f(x)
∂x

∣∣∣∣∣
x=x̂

(4.23)

=


−αx

τ
0 0 0 αx

τ2 x
0 0 1 0 0

1
τ2

∂f(x,g)
∂x

−αzβz
τ2 −αz

τ
1
τ2 (αzβz + ∂f(x,g)

∂g
) A35

0 0 0 0 0
0 0 0 0 0



∣∣∣∣∣∣∣∣∣∣∣∣
x=x̂

,

with

A35 = αzz

τ 2 −
2
τ 3 (αzβz(g − y) + f(x, g)) ,

where for y0 = 0 from (4.20), by using (3.2) we obtain

∂f

∂g
(x, g) = f̃(x) =

∑N
i=1 Ψi(x)wi∑N
i=1 Ψi(x)

x
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and
∂f

∂x
(x, g) = gf̃ ′(x) (4.24)

with

f̃ ′(x) =
∑N
i=1 Ψi(x)wi∑N
i=1 Ψi(x)

+x

(∑N
i=1 Ψ′i(x)wi

) (∑N
i=1 Ψi(x)

)
−
(∑N

i=1 Ψi(x)wi
) (∑N

i=1 Ψ′i(x)
)

(∑N
i=1 Ψi(x)

)2 , (4.25)

and

Ψ′i(x) = −2hi(x− ci)Ψi(x),

where ci are the centers (3.7) and hi set the widths (3.8) of the basis functions Ψi.

Stability

To ensure convergence, a number of assumptions for the stability of the classical EKF
have to hold. For simplicity we initially assume that Assumption 1 holds. Addition-
ally, the nonlinearities have to satisfy the Lipschitz properties from Assumption 2.
As the measurement model (4.16) is linear, the inequality (2.36),∥∥∥∥∥∂2h

∂2x
(x, t)

∥∥∥∥∥
∗
≤ κC ,

with ‖x̂− x‖ ≤ κz, holds for arbitrary κz > 0 and κC = 0 for all t ≥ 0.
For the right-hand side f(x) of the nonlinear DMP model (4.15), inequality

(2.35), ∥∥∥∥∥∂2f

∂2x
(x, t)

∥∥∥∥∥
∗
≤ κA, (4.26)

has to hold for some positive κz, κA with ‖x̂ − x‖ ≤ κz. Inequality (4.26) holds
locally if all elements of ∂f/∂x = A(x) are locally Lipschitz continuous. Clearly,
all linear terms in (4.23) are Lipschitz. It remains to check the appearing nonlinear
terms f , ∂f/∂x and ∂f/∂g for local Lipschitz continuity. According to Lemma 3.1
from [25], a function f : [a, b] × D → Rm, with D ⊂ Rm, whose derivative ∂f/∂x
exists and is continuous on [a, b]×D is locally Lipschitz on I = [a, b]×W whereW is
a convex subset of D, if its derivative ∂f/∂x is bounded by some Lipschitz constant
L ≥ 0 on I. To check Lipschitz continuity of ∂f/∂x, using (4.24), we calculate

∂

∂x

(
∂f

∂x

)
=
[
gf̃ ′′ 0 0 f̃ ′ 0

]
. (4.27)

The basis functions Ψi from (2.6) are Gaussians and thus bounded functions for
all x. In other words Ψi ∈ L∞. Additionally, the weights wi are also bounded by
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construction. Moreover, as Ψi are Gaussians, the derivatives Ψ′i and Ψ′′i exist, are
continuous and it is also Ψ′i,Ψ′′i ∈ L∞. Hence, we have(

N∑
i=1

Ψ(nd)
i wi

)
∈ L∞, (4.28)

(
N∑
i=1

Ψ(nd)
i

)
∈ L∞ for nd = 0, 1, 2. (4.29)

Consequently, the numerators in (4.25) are all bounded. To ensure boundedness of
f̃ ′, it remains to show that the denominators are lower bounded by some constant.
As x is the phase variable and it is x ∈ [0, 1] = Ix, we can ensure a lower bound
κΨ > 0 for

N∑
i=1

Ψi(x̂) ≥ κΨ (4.30)

on a convex set Ilb with Ix ⊆ Ilb for estimates x̂ close to x by choosing a sufficiently
large number of basis functions N as well as basis function parameters hi and ci
that ensure overlap between the basis functions and a large enough Ilb.

To illustrate this argumentation, the boundedness properties are shown in Fig-
ure 4.6 for N = 30 basis functions, width settings hi from (3.8) and centers ci from
(3.7). We see that for the presented case, we can choose κΨ = 0.5 and Ilb = [0, 1.1]
such that (4.30) is satisfied. Therefore, we can conclude local boundedness of f̃ ′. To
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Figure 4.6: Illustration of the boundedness of the basis functions Ψi and their
sum ∑N

i=1 Ψ(x) for N = 30 basis functions, width parameters hi and exponentially
spaced centers ci.

show that ∂/∂x (∂f/∂x) given by (4.27) is bounded, we continue by computing

f̃ ′′(x) = h̃(x) + xg̃(x), (4.31)

where the lengthy expressions h̃(x) and g̃(x) are given Section A.1. Again, we can
use (4.28), (4.29) and (4.30) to establish local boundedness of h̃ and g̃ and thus
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conclude local boundedness of f̃ ′′ via (4.31). With that and (4.27), it is∥∥∥∥∥ ∂∂x
(
∂f

∂x

)∥∥∥∥∥ =
∥∥∥[gf̃ ′′ 0 0 f̃ ′ 0

]∥∥∥ ≤ Lx

for some Lx > 0 in a neighborhood of x. Thus, ∂f/∂x is locally Lipschitz, which
also implies that f is locally Lipschitz.

Similarly, thanks to the local boundedness of f̃ ′ shown above, we get∥∥∥∥∥ ∂∂x
(
∂f

∂g

)∥∥∥∥∥ =
∥∥∥[f̃ ′ 0 0 0 0

]∥∥∥ ≤ Lg

for some Lg > 0 in a neighborhood of x. Consequently, ∂f/∂g is locally Lipschitz as
well, which means that Assumption 2 holds. Hence the assumptions ensuring local
stability of the EKF are satisfied.

Implementation

The EKF consisting of (4.18), (4.21) and (4.22) is implemented using the initial
guess (4.20) with ĝ0 = 1 m and τ̂0 = 9 s for the true values g = 2 m and τ =
10 s. Choosing an initial covariance of P 0 = 106I as well as matrices R = I and
Q = diag([0.1, 0.1, 0.1, 104, 104]) yields the convergence results shown in Figure 4.7.
The measurements y and ẏ are produced using the minimum-jerk trajectory (3.5)
and its first derivative.
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ĝ

g

(a)

0 2 4 6 8 10

t [s]

8.5

9

9.5

10

10.5

[s
]

τ̂

τ

(b)

Figure 4.7: On-line estimation of handover position ĝ and handover time τ̂ with
true values g = 2 m and τ = 10 s and initial parameter estimates ĝ0 = 1 m and
τ̂0 = 9 s using a classical EKF.

We observe, that while the estimate ĝ slowly converges to the true g, the es-
timated timescale τ̂ does not completely converge to the true τ . This error can
be decreased by increasing P 0 even more. Since we use the same minimum-jerk
trajectory as in Section 4.1, the measurements still have the same level of excitation
as before. However, we now estimate a five-dimensional state vector, as opposed
to the three-dimensional parameter vector from (4.6) in Section 4.1. Consequently,
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4. Parameter Estimation Based on DMPs

the observed slow convergence is expected for larger estimation problems since more
unknowns have to be estimated using the same amount of information. Generally,
it can be observed that the estimates mostly improve towards the end of the motion
as the effect of the nonlinearity vanishes. In Figure 4.8 the remaining elements of x̂
can be seen. As y and z = ẏ are measured, their estimates ŷ and ẑ coincide. The
estimate of the phase variable, however, deviates from the true value x during the
first few seconds of motion.
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Figure 4.8: Estimated DMP states using a classical EKF.

Following the recommendation from [19], the lower and upper bounds p
c
and

pc of P (t) are illustrated in Figure 4.9. Clearly, Assumption 1 holds for the time
interval of the present case, meaning stability of the EKF was ensured for this case.
While it might seem inconvenient to not be able to ensure the detectability-related
Assumption 1 in advance, it is at least possible to use the bounds p

c
and pc as

a measure of how reliable the estimations of goal and timescale are at time t. If
the bounds ensure that Assumption 1 holds, the robot can treat the estimations as
reliable.

In order to allow a robot to receive an object in a human-like manner, it is
important that the estimation of the handover place and time converge fast enough
to make sure there is enough time left for the robot to move to the estimated
handover position. The estimation scheme based on a classical EKF presented in this
section however is rather slow to converge for the convergence parameters chosen.
For faster convergence either a higher initial covariance P 0 or a different observer
design has to be chosen.

4.2.2 Modified EKF-Based State Estimation
A modified version of the EKF was presented by [21]. It allows to design an EKF
with prescribed degree of stability, meaning that the convergence speed can be tuned
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Figure 4.9: Lower bound p
c
(t) and upper bound pc(t) of P (t) using a classical

EKF to estimate the states of an original DMP.

via a special parameter.

Observer Formulation

Similar to the classical EKF above, we use the estimated state vector (4.19) and the
DMP model (4.15) with the measurement model (4.16). Following [21], the modified
EKF is given by the update law (4.18), the Kalman gain (4.21) and the modified
Riccati equation

Ṗ (t) = (A(x̂) + αI)P (t) + P (t)(A(x̂)> + αI) +Q
−P (t)C>R−1CP (t), (4.32)

which is obtained by plugging (4.17) and (4.23) into (2.40). Compared to the Riccati
equation (4.22) of the classical EKF, equation (4.32) features the added term of
instability αI. It is α > 0, and Q, R are positive definite matrices, as explained
in Section 2.4.2. Again the linearization A(x̂) around the current estimate (4.23)
is used. As in the classical case, we use (4.20) as an initial estimate and the initial
condition P (0) = P 0 for the Riccati equation (4.32).

Stability

For the modified version of the EKF to be stable, we initially assume that Assump-
tion 1, related to uniform detectability properties of the system, holds.

It can easily be seen that the output matrix C from (4.17) satisfies the bound-
edness condition (2.43) since C is constant. Consequently, Assumption 4 holds.

The nonlinearities

Φ(x, x̂) = f(x)− f(x̂)−A(x̂)(x− x̂), (4.33)
Ψ(x, x̂) = h(x)− h(x̂)−C(x− x̂) = 0, (4.34)
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4. Parameter Estimation Based on DMPs

have to satisfy Assumption 3. As the measurement model (4.16) is linear, (4.34) is
zero and thus,

‖Ψ(x, x̂)‖ ≤ κΨ‖x− x̂‖2,

from (2.41) holds for all εΨ > 0 with ‖x− x̂‖ ≤ εΨ. To show that (4.33) satisfies

‖Φ(x, x̂)‖ ≤ κΦ‖x− x̂‖2,

from (2.41) for some εΦ > 0 and ‖x− x̂‖ ≤ εΦ, we simply use the fact that ∂f/∂x
is locally Lipschitz as shown in Section 4.2.1. Reordering (4.33) yields

f(x) = f(x̂) +A(x̂)(x− x̂) + Φ(x, x̂). (4.35)

Considering the norm of the second derivative of (4.35) with respect to x, we use
(4.26) and obtain ∥∥∥∥∥ ∂2

∂x2f(x)
∥∥∥∥∥ =

∥∥∥∥∥ ∂2

∂x2 Φ(x, x̂)
∥∥∥∥∥ ≤ κA. (4.36)

Thus, using the monotony of the integral, integration of (4.36) yields

‖Φ(x, x̂)‖ ≤ κA‖x− x̂‖2

for some εΦ > 0 and ‖x− x̂‖ ≤ εΦ and consequently Assumption 3 is satisfied.

Implementation

Implementation of the modified EKF is similar to the classical version of the EKF.
As before, the EKF consists of the update law (4.18) and the gain (4.21). However,
now the matrix P (t) is the solution of the modified Riccati differential equation
(4.32).

As with the classical EKF from above, we use ĝ0 = 1 m, τ̂0 = 9 s and g = 2 m,
τ = 10 s. Simulation results using α = 0.5, an initial covariance of P 0 = 106I as well
as matrices R = I and Q = diag([0.1, 0.1, 0.1, 104, 104]) are plotted in Figure 4.10.
As before, the measurements y and ẏ are obtained from (3.5) and its first derivative,
which can be seen in Figure 3.2. Convergence to the true values after about 5 s
can be observed. While the goal estimate ĝ reaches the true value very precisely
as seen in Figure 4.10a, the timescale estimate τ̂ in Figure 4.10b exhibits some
small deviation from the true τ . Figure 4.11 depicts the remaining elements of the
state estimate x̂. While the measured signals y and z coincide with their respective
estimates ŷ and ẑ, there is a vanishing estimation error for x̂ present for the first 4
seconds.

Similar to the classical EKF case, the lower and upper bounds p
c
and pc of P (t)

are illustrated in Figure A.1. Clearly, Assumption 1 holds for the time-instances of
the present case, meaning stability of the EKF was ensured.

The obtained simulation results verify that the presented modified EKF is able
to provide good estimates for the goal g and the timescale τ . After slightly more
than half the duration of motion, ĝ and τ̂ are close enough to their true values for
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Figure 4.10: On-line estimation of handover position ĝ and handover time τ̂ with
true values g = 2 m and τ = 10 s and initial parameter values ĝ0 = 1 m and τ̂0 = 9 s
using a modified EKF with α = 0.5.

the robot to start moving towards the predicted handover position at a speed fitting
the predicted handover time. Faster convergence can be obtained by choosing larger
α and P 0. However, it is important to note that excessively large values of α can
introduce significant oscillation to the system, possibly resulting in poor accuracy
of the estimates. Similar behaviors have also been observed by [21].

4.2.3 Modified EKF-Based Parameter Estimation
As the main objective is to estimate place and time of a human-robot handover
action, we are actually only interested in estimating the goal g and the timescale τ .
To deal with the nonlinearity in the DMP model, it is possible to obtain an EKF-
based adaptive law similar to those presented in [12] by using the methodology of
the modified EKF from [21].

Unfiltered Adaptive Law

To begin with, we assume y, ẏ, ÿ are measurable. Plugging the explicit solution of
the canonical system (2.3),

x(t) = e−
αx
τ
t, (4.37)

into the DMP representation (3.3), we obtain

ÿ(t) = h(θ, y(t), ẏ(t), t)

= 1
τ 2 (−αzβzy(t)− αzτ ẏ(t) + αzβzg + ft(g, τ, t)), (4.38)

where ft is an expression of the nonlinear forcing term that explicitly depends on
time rather than the phase variable x and is obtained by plugging (4.37) into the
nonlinear forcing term (2.4). We introduce the state vector

θ =
[
g τ

]>
,
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Figure 4.11: Estimated DMP states using a modified EKF.

which only consists of desired parameters and is thus smaller than in (4.14) where
all states of the DMP are estimated. As both g and τ can be assumed constant, we
can design a modified EKF for the random-walk process model

θ̇ = 0 (4.39)

and (4.38) as a nonlinear measurement model. Following Section 2.4 and using the
estimate

θ̂ =
[
ĝ τ̂

]
we therefore get

A(θ̂) = 0

and

C(θ̂, t) = ∂h

∂θ
(θ, t)

∣∣∣∣∣
θ=θ̂

(4.40)

=
[
∂h
∂g

∂h
∂τ

]∣∣∣
θ=θ̂

,

where the partial derivatives are

∂h

∂g
= αzβz

τ 2 + 1
τ 2
∂ft(g, τ, t)

∂g
(4.41)

and

∂h

∂τ
= − 2

τ 3 (αz (βz(g − y)) + ft(g, τ, t)) + 1
τ 2

(
ẏ + ∂ft(g, τ, t)

∂τ

)
, (4.42)
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with the partial derivatives of the forcing term

∂ft(g, τ, t)
∂g

= f̃t(τ, t) = g̃t(τ, t)e−
αx
τ
t

and

∂ft(g, τ, t)
∂τ

= g̃t(τ, t)
αx
τ 2 te

−αx
τ
t + ∂g̃t(τ, t)

∂τ
e−

αx
τ
t,

where

g̃t(τ, t) =
∑N
i=1 Ψi(τ, t)wi∑N
i=1 Ψi(τ, t)

,

∂g̃t(τ, t)
∂τ

=

(∑N
i=1 ∂τΨi(τ, t)wi

) (∑N
i=1 Ψi(τ, t)

)
−
(∑N

i=1 Ψi(τ, t)wi
) (∑N

i=1 ∂τΨi(τ, t)
)

(∑N
i=1 Ψi(τ, t)

)2 .

The basis functions are

Ψi(τ, t) = exp
(
−hi(e−

αx
τ
t − ci)2

)
,

and their partial derivatives read

∂τΨi(τ, t) = ∂Ψi(τ, t)
∂τ

= Ψi(τ, t)(−2hi)
(
e−

αx
τ
t − ci

)
e−

αx
τ
tαx
τ 2 t.

Using (2.39) and (2.40) the parameter estimator is then given by

˙̂
θ = PC(θ̂, t)εufR−1, (4.43)
Ṗ = Q− PC(θ̂, t)>R−1C(θ̂, t)P + 2αP , (4.44)

with the unfiltered scalar output error

εuf =
(
ÿ − h(θ̂, y(t), ẏ(t), t)

)
, (4.45)

initial guess

θ̂(0) =
[
g0 τ0

]>
, (4.46)

measurement and process noise covariance matrices R,Q > 0 and initial covariance
matrix

P (0) = P 0. (4.47)

To guarantee stability, the assumptions made in the modified EKF case from
Section 2.4.2 have to hold. Firstly, we assume that Assumption 1 concerning the
detectability of the plant holds.
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Again Assumption 3 ensuring Lipschitz properties has to hold. As (4.39) is
linear, (2.41) is satisfied. Similar to the state estimation case, (2.42) holds if ∂h/∂θ
is locally Lipschitz. As before, ∂h/∂θ is locally Lipschitz if all appearing nonlin-
ear terms ft, ∂ft/∂g, ∂ft/∂τ in (4.40), (4.41) and (4.42) are locally Lipschitz. In
Section 4.2.1 we showed that f , ∂f/∂g, ∂f/∂x are locally Lipschitz. According to
[30], the composition of locally Lipschitz functions is also locally Lipschitz. Since
the explicit solution x(t, τ) given by (4.37) is continuously differentiable, it is locally
Lipschitz and hence, ft, ∂ft/∂g, ∂ft/∂τ , being compositions of locally Lipschitz
(4.37) and f , ∂f/∂g, ∂f/∂x, are also locally Lipschitz. Consequently, ∂h/∂θ is
locally Lipschitz and inequality (2.42) and with that Assumption 1 holds.

In addition to the Lipschitz properties of the model, following Assumption 4,
C(θ̂, t) given by (4.40) has to be bounded. If h from (4.38) is locally Lipschitz,
then ∂h/∂θ and hence C(θ̂, t), are locally bounded. Because ft is locally Lipschitz,
h is locally Lipschitz if the measurement signals y(t) and ẏ(t) are Lipschitz on
a sufficiently large domain. For measurements produced using the minimum-jerk
trajectory this is satisfied, as can directly be seen in Figure 3.2. Hence, Assumption 4
is satisfied, if all Lipschitz properties hold for a large enough domain which contains
all appearing estimates θ̂. Roughly speaking, this is the case if the estimates θ̂ are
close to the real parameter vector θ.

Note, that the modified EKF given by (4.43), (4.44) and (4.45) can also be
viewed as nonlinear version of the least-squares adaptive law (2.23) from [12], where
Q = 0 and R = I.

We implement the parameter estimator given by (4.43), (4.44) and (4.45) and
use P 0 = 102I, R = I, Q = 10I and α = 1. With initial guess (4.46) of ĝ0 = 1 m
and τ̂0 = 9 s and true values g = 2 m and τ = 10 s simulation shows the convergence
of the estimates to the true values in Figure 4.12. Clearly, the estimates ĝ and τ̂
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Figure 4.12: On-line estimation of handover position and time with true values
g = 2 m and τ = 10 s and initial guesses ĝ0 = 1 m and τ̂0 = 9 s using an unfiltered
modified EKF-based adaptive law.

converge to their true values g and τ . The qualitative behavior of the presented
modified EKF-based adaptive law (4.43), (4.44) which only estimates the unknown
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parameters, resembles that of the modified EKF presented in Section 4.2.2, that
estimates both unknown parameters as well as states of the DMP. In contrast to the
rather large initial covariance in the state estimation case of Figure 4.10, P 0 and
Q were chosen relatively small in the parameter estimation case from Figure 4.12,
whereas the convergence parameter α was set to values of similar scale.

The lower and upper bounds p
m

and pm of P (t) are illustrated in Figure A.3.
Clearly, Assumption 1 holds for the time-instances of the present case, meaning
stability of the EKF was ensured.

Since we are only interested in goal g and timescale τ for the considered human-
robot handover, the modified EKF-based adaptive law presented in this section poses
a solution to predict human motion. Additionally, as can be seen in Figure 4.12,
relatively conservative values for the tuning parameters P 0, Q and α already allow
estimation of both place and time of the human-robot object handover within about
seven seconds.

A disadvantage of the modified EKF-based adaptive law presented in this sec-
tion is the fact, that in addition to position and velocity measurements also needed
for the modified EKF-based state estimation, an acceleration measurement ÿ is re-
quired to estimate the unknown parameters.

Filtered Adaptive Law

A common approach to eliminate signals that cannot be measured in a parameter
estimator, is to perform a filtering operation. Multiplying both sides of the mea-
surement model (4.38) with a normalized first order filter with pole −λf yields the
filtered estimated output

ẑ = λf
Λ(s)h(θ̂, y(t), ẏ(t), t) (4.48)

and the filtered, measured output

z = λfs

Λ(s) ẏ, (4.49)

where Λ(s) = s+λf . The purpose of using a normalized filter is to prevent λf from
affecting the gain of the adaptive law and to thereby simplify tuning of the filtered
adaptive law. Introducing the filtered output error

εf = z − ẑ (4.50)

and replacing the unfiltered output error in the parameter estimator from (4.43),
(4.44) with the filtered output error from (4.50), we have the filtered adaptive law

˙̂
θ = PC(θ̂, t)R−1εf ,

Ṗ = Q− PC(θ̂, t)>R−1C(θ̂, t)P + 2αP ,

with the initial conditions (4.46) and (4.47) from the unfiltered case.
Viewing the filters as part of the obtained measurements, it is sensible to as-

sume that the stability of the filtered EKF-based adaptive law is not affected for
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sufficiently large λf . We therefore again assume Assumption 1 holds. Apart from
that, the filtering operations do not change the fact that Assumptions 3 and 4 hold.

As in the unfiltered case, we use P 0 = 102I, R = I, Q = 10I and α = 1. With
an initial guess (4.46) of ĝ0 = 1 m and τ̂0 = 9 s and true values g = 2 m and τ = 10 s
we simulate the parameter estimation performance of the filtered adaptive law. The
results for a first order filter with λf = 5 are plotted in Figure 4.13. Convergence to
the true values can be observed for both goal and timescale estimate. The speed of
convergence seems similar to the unfiltered case from Figure 4.12 even though the
filtered adaptive law no longer requires measurements of the accelerations ÿ.
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Figure 4.13: On-line estimation of handover position and time with true values
g = 2 m and τ = 10 s and initial parameter values ĝ0 = 1 m and τ̂0 = 9 s using a
modified EKF-based filtered adaptive law with filter parameter λf = 5.

Convergence can also be observed because detectability Assumption 1 can be
ensured during the human motion as the bounds p

m
(t) and pm(t) from Figure A.3

satisfy inequality (2.34).
It was found that the tuning of the filtering parameter λf plays a key role in the

performance of the filtered adaptive law presented in this section. In Figure 4.14 the
convergence behavior of the presented adaptive law is depicted for different values
of λf . The reason for the different performances of the adaptive law for different
values of λf is that the speed of convergence depends on the amount of information
obtained by the measurements. For convergence of the estimates to their true values,
sufficiently rich measurements, meaning signals containing sufficiently many differ-
ent frequencies, and thus enough information, are needed. For large λf , the filter
λfs/Λ(s) for the system output (4.49) is the causal version of a differentiator. As can
be seen in Figure 4.14, values of λf = 3 or larger already allow for good convergence
of the estimates for minimum-jerk trajectories. The larger λf is chosen, the closer
the trajectories resemble the ones from the unfiltered adaptive law in Figure 4.12
since more frequencies and thus more information passes the filter from (4.48) and
the filter λfs/Λ(s) for the system output (4.49) tends towards a differentiator. Note
that, in this case, the measurement signals are not subject to noise. Otherwise, the
numerical differentiation with λfs/Λ(s) would lead to estimation errors for large λf
in case the measurements are subject to noise.
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Figure 4.14: On-line estimation of handover position time with true values g = 2 m,
τ = 10 s and initial parameter values ĝ0 = 1 m, τ̂0 = 9 s using a modified EKF-based
filtered adaptive law with different filter parameters λf .
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5
Parameter Estimation Based on

Specialized DMPs

When using the original DMP as a parameterization of human motion, the canon-
ical system adds an unmeasurable phase variable to the plant model, consequently
making the estimation of goal and timescale harder or often at least slow to con-
verge. An attempt to simplify and thereby improve estimation performance is to use
a specialized DMP incorporating prior knowledge on the considered human motion.

5.1 Adaptive Law-Based Parameter Estimation of
Specialized DMPs

Assuming that position y, velocity ẏ and acceleration ÿ of the human hand are
measurable, the specialized DMP from (3.13) can be written as

ÿ = θ>φ(θ) (5.1)

=
[

1
τ2

1
τ

g
τ2

]
︸ ︷︷ ︸

θ>

−αzβzy − y0f̃s(y, g)
−αzẏ

αzβz + f̃s(y, g)


︸ ︷︷ ︸

φ

,

with f̃s from (3.12). This system is clearly nonlinear in the parameters. In order to
be able to design an adaptive law from Section 2.3 and [12], we again neglect the
dependence of φ on θ and thereby render (5.1) linear parametric. The least-squares
adaptive law from (2.23) is implemented using a forgetting factor of β = 0. Since
we consider human point-to-point motion, y, ẏ and ÿ are bounded functions of time.
Furthermore, f̃s(y, g) is bounded thanks to the boundedness of basis functions Ψs,i

and weights wi. Hence, no normalization is needed to guarantee φ ∈ L∞ for a
constant θ and m = 1 can be chosen. The least-squares adaptive law reads

˙̂
θ = P εφ(θ̂), (5.2)
Ṗ = −Pφ(θ̂)φ>(θ̂)P , (5.3)

where

θ̂ =
[
θ̂1 θ̂2 θ̂3

]>
=
[

1
τ̂2

1
τ̂

ĝ
τ̂2

]>
(5.4)
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is the estimated parameter vector and

ε = z − ẑ = ÿ − θ̂
>
φ(θ̂)

is the output error. The initial conditions are P (0) = P 0 and

θ̂(0) = θ̂0 =
[

1
τ̂0

2
1
τ̂0

ĝ0
τ̂0

2

]>
.

In the case for a known timescale τ and an original DMP from Section 4.1.1, the
PE property was shown for φ. As our approach here is to neglect the dependency
of φ on θ, we have PE as before and thus expect convergence of the estimate if the
modeling error resulting from neglecting the nonlinearity in the parameters is small
enough.

Simulation for P 0 = 106diag([1, 50, 10]) and initial estimates ĝ0 = 1 m and
τ̂0 = 9 s for true parameters g = 2 m and τ = 10 s yields the trajectories depicted in
Figure 5.1. Since we are interested in the estimated timescale τ̂ and the estimated
goal ĝ of the human motion, these two parameters are extracted from the parameter
vector (5.4) via

τ̂1 = 1√
θ̂1

, τ̂2 = 1
θ̂2
, and ĝ = θ̂3

θ̂2
2
.
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Figure 5.1: On-line estimation of handover position and time with true values
g = 2 m, τ = 10 s and initial parameter values ĝ0 = 1 m, τ̂0 = 9 s using a least-
squares adaptive law with β = 0 and P 0 = 106diag([1, 50, 10]) for a specialized
DMP.

It can be observed, that both the timescale estimates and the goal estimate
rapidly converge to their true values thanks to the very high values for P 0. How-
ever, after slightly more than six seconds, the estimates become erroneous. The
rather large fitting error from Figure 3.8 towards the end of motion gives rise to an
oscillating and hence highly nonlinear forcing term. Consequently, the fact that the
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nonlinearity f̃s is vanishing is not sufficient to just neglect the dependency of the
information vector φ on the parameter estimate θ̂.

In the considered case, the measurement data was generated using the spe-
cialized DMP fitted to a minimum-jerk trajectory. The large P 0 introduces high
stiffness to the system comprising the specialized DMP (3.13) as a plant and the
high-gain adaptive law (5.2), (5.3) as a parameter estimator. For the large P 0 suc-
cessfully used to estimate parameters in Figure 5.1 with measurements generated by
the specialized DMP, numerical simulations became unstable when generating mea-
surement data using the functional representation of the minimum-jerk trajectory
from (3.5). For lower values of P 0, no convergence to the true timescale and goal
could be observed for both the case where measurement data was generated using a
specialized DMP and when using the functional representation of a minimum-jerk
trajectory (3.5) to generate measurement data.

5.2 EKF-Based Parameter Estimation for Special-
ized DMPs

Estimating the unknown parameters of the specialized DMP is also possible by
applying an EKF. For the original DMP this approach has worked well, hence, it is
expected that good performance in face of the nonlinearities (5.1) can be achieved
when using the specialized DMP as well. We consider both classical and modified
versions of the EKF to perform state estimation of a state containing the unknown
parameters of timescale and goal.

5.2.1 Classical EKF-Based State Estimation
To perform state estimation for the specialized DMP, an EKF can be designed as a
nonlinear observer.

Observer Formulation

In a state estimation context, the states of the specialized DMP (3.13) and the
unknown parameters can be viewed as elements of the state vector

xs =
[
y z g τ

]>
with z = ẏ. Following the definition of the classical EKF from Section 2.4, the
state space representation of the nonlinear plant, describing human motion via a
specialized DMP, is thus given by

ẋs = f(xs)

⇔


ẏ
ż
ġ
τ̇

 =


z

1
τ2 (αz (βz (g − y)− τ ẏ) + f(y, g))

0
0

 . (5.6)
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Since the parameters g and τ represent goal and timescale of a specific human
motion, it is sensible to assume they are constants and therefore use a random walk
model as their process model. Assuming both position y and velocity ẏ = z of the
human hand are measurable, we have the linear measurement model

y = hs(xs) = Cxs (5.7)

with C from (4.17). Using the estimated state vector

x̂s =
[
ŷ ẑ ĝ τ̂

]>
(5.8)

we can calculate the linearization of the nonlinear parameterization f around the
current estimate x̂s,

A(x̂s) = ∂f(xs)
∂x

∣∣∣∣∣
xs=x̂s

(5.9)

=


0 1 0 0

−αzβz
τ2 + 1

τ2
∂f(y,g)
∂y

−αz
τ

A23
1
τ2

(
αzβz + ∂f(y,g)

∂g

)
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣∣∣
xs=x̂s

,

with

A23 = − 2
τ 3 (αzβz(g − y) + f(y, g)) + αz

τ 2 z,

where the partial derivative of the nonlinear forcing term with respect to y is given
by

∂f(y, g)
∂y

= (g − y0)∂f̃s(y, g)
∂y

,

using (3.12) as well as

∂f̃s(y, g)
∂y

= ∂g̃(y, g)
∂y

(
1− y − y0

g − y0

)
− 1
g − y0

g̃(y, g),

∂g̃(y, g)
∂y

=

(∑N
i=1

∂Ψs,i
∂y

wi
) (∑N

i=1 Ψs,i

)
−
(∑N

i=1 Ψs,iwi
) (∑N

i=1
∂Ψs,i
∂y

)
(∑N

i=1 Ψs,i

)2 ,

and

∂Ψs,i

∂y
= 2hs,iΨs,i(y, g)

(
1− y − y0

g − y0
− cs,i

)
1

g − y0
.

The partial derivative of f with respect to g reads

∂f(y, g)
∂g

= ∂f̃s(y, g)
∂g

(g − y0) + f̃s(y, g),
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with

∂f̃(y, g)
∂g

= ∂g̃(y, g)
∂g

(
1− y − y0

g − y0

)
+ g̃(y, g) y − y0

(g − y0)2 ,

∂g̃(y, g)
∂g

=

(∑N
i=1

∂Ψs,i
∂g

wi
) (∑N

i=1 Ψs,i

)
−
(∑N

i=1 Ψs,iwi
) (∑N

i=1
∂Ψs,i
∂g

)
(∑N

i=1 Ψs,i

)2 ,

and

∂Ψs,i

∂g
= −2hs,iΨs,i(y, g)

(
1− y − y0

(g − y0)2 − cs,i
)

y − y0

(g − y0)2 .

Together with the initial estimate

x̂s(0) =
[
y(0) z(0) ĝ(0) τ̂(0)

]>
=
[
0 0 ĝ0 τ̂0

]>
(5.10)

the classical EKF given by (2.29), (2.30) and (2.31) can be formulated for the spe-
cialized DMP as,

˙̂xs = f(x̂s) +K(t)(y −Cx̂s), (5.11)

K(t) = P (t)C>R−1, (5.12)

where P (t) is the obtained by solving the Riccati differential equation

Ṗ (t) = A(x̂s)P (t) + P (t)A(x̂s)> +Q− P (t)C>R−1CP (t), (5.13)

with initial condition P (0) = P 0 and positive definite matrices Q, R.

Stability

Convergence of the estimates x̂s to xs is ensured if the respective assumptions
from Section 2.4 hold. Given that Assumption 1 holds for the duration of human
motion, i.e., the plant (5.6) is uniformly detectable, it remains to ensure that the
nonlinearities satisfy the necessary Lipschitz properties from Assumption 2. The
argumentation is almost identical to the original DMP case in Section 4.2.1. Since
the centers cs,i and width parameters hs,i can be chosen such that all required
boundedness conditions are satisfied locally, Assumption 2 holds.

57



5. Parameter Estimation Based on Specialized DMPs

0 2 4 6 8 10

t [s]

0.5

1

1.5

2

2.5

[m
]

ĝ
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Figure 5.2: On-line estimation of handover position and time with true values
g = 2 m, τ = 10 s and initial parameter estimates ĝ0 = 1 m, τ̂0 = 9 s using a classical
EKF with P 0 = 100I and a specialized DMP.

Implementation

The EKF given by (5.11)-(5.13) is implemented using the initial estimate from (5.10)
with ĝ0 = 1 m and τ̂0 = 9 s for the true values g = 2 m and τ = 10 s. Choosing
P 0 = 100I and matrices R = I, Q = 10I yields the convergence results shown
in Figure 5.2. The measurements y and ẏ are produced using the minimum-jerk
trajectory (3.5) shown Figure 3.2. The remaining states ŷ and ẑ of (5.8) are plotted
in Figure A.4. While the estimated position of the human hand ŷ coincides with the
measured y, the estimated speed of the hand ẑ clearly deviates from the measured z.
Verification yields, that Assumption 1 can be ensured on the time interval of human
motion, as the bounds p

c
(t) and pc(t) from Figure 5.3 satisfy inequality (2.34).

Our observations are very similar to the case where a classical EKF is designed
for the original DMP in Figure 4.7. While the estimated goal ĝ slowly converges to
the true g, the timescale estimate τ̂ does not converge to the true τ . By choosing a
larger P 0 = 105I, Figure 5.3 shows that faster convergence for ĝ to the true goal g
and convergence for τ̂ to some constant, which, however, is still subject to a lasting
error, can be achieved. The states ŷ and ẑ of (5.8) are plotted in Figure A.5 and
now coincide with the measured y and z everywhere except for t > τ . As before,
the bounds on P (t) from Assumption 1 can be confirmed via Figure A.7.

The observed steady state errors in the estimated timescale for different values
of P 0 motivate the use of a modified EKF with faster convergence, suggested by
Reif et al. [21].

5.2.2 Modified EKF-Based State Estimation

Again, a nonlinear observer using a modified EKF is designed to perform state
estimation for the specialized DMP.
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Figure 5.3: On-line estimation of handover position and time with true values
g = 2 m, τ = 10 s and initial parameter estimates ĝ0 = 1 m, τ̂0 = 9 s using a classical
EKF with P 0 = 105I and a specialized DMP.

Observer Formulation

We use the same estimated state vector (5.8) and the plant (5.6) consisting of the
specialized DMP dynamics and a random walk model for the unknown timescale and
goal, as well as the measurement model (5.7) to design the modified EKF. Following
[21], the modified EKF is given by the update law (5.11), the Kalman gain (5.12)
and the modified Riccati equation

Ṗ (t) = (A(x̂s) + αsI)P (t) + P (t)(A(x̂s)> + αsI) +Q
−P (t)C>R−1CP (t), (5.14)

with P (0) = P 0, where A(x̂s) from (5.9) is the linearization of the process model
(5.6) around the current estimate and Q and R are positive definite matrices. The
convergence can be tuned via αs > 0.

Stability

The stability analysis for the modified EKF follows similar arguments as in the origi-
nal DMP case from Section 4.2.2. For simplicity, we again assume that Assumption 1
holds for the plant (5.6) for all times of the time interval of human motion. Thanks
to the linearity of the measurement model (5.7), we can conclude that Assumption 4
on the boundedness of C holds. Additionally, since the centers cs,i and widths ws,i
can be chosen such that all required boundedness conditions are satisfied, Lipschitz
properties of the nonlinearities of (5.6) can be established in a similar manner as in
Section 4.2.2. Using the monotony of the integral there exists an εΦ > 0 such that
Assumption 3 holds as well.

Implementation

The modified EKF consisting of (5.11), (5.12) and (5.14) is implemented using the
initial estimate from (5.10) with ĝ0 = 1 m and τ̂0 = 9 s for the true values g = 2 m
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and τ = 10 s. Choosing αs = 0.5, P 0 = 100I and matrices R = I and Q = 10I
yields the convergence results shown in Figure 5.4. The measurements y and ẏ are
produced using (3.5).

Convergence of ĝ to g can be observed. Assumption 1 can be confirmed with
the obtained bounds of P (t) from Figure A.9. The timescale estimate τ̂ does not
converge to a constant value within the duration of motion but rather oscillates
around the true τ in the final stages of motion, however, due to the small amplitude
it still provides a reasonable good estimate of the timescale. The remaining states
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Figure 5.4: On-line estimation of handover position ĝ and handover time τ̂ with
true values g = 2 m and τ = 10 s and initial parameter values ĝ0 = 1 m and τ̂0 = 9 s
using a modified EKF with P 0 = 100I, convergence parameter αs = 0.5 and a
specialized DMP.

ŷ and ẑ of (5.8) are depicted in Figure A.8 and coincide with the measured y and z.
We conclude, that EKF-based parameter estimation of specialized DMPs poses

a working solution to estimate place and time of a human-robot handover process
on-line. While the adaptive law-based on-line estimation scheme only works in a
very limited and thus unrealistic environment, the proposed EKF-based estimation
schemes were found to be applicable using reasonable gains and are thus expected to
also work in a more realistic scenario. The adaptive law-based parameter estimator
relies on a high gain to deal with the nonlinear model whereas the EKF-based
observers use linearization around current estimates. Both approaches, however,
only guarantee convergence to true values for sufficiently good initial guesses of the
parameters, which is a typical limitation in nonlinear estimation problems [17, 19,
21].

5.3 Discrete-Time Nonlinear Least-Squares Adap-
tive Law

It has clearly shown that the estimation performance heavily depends on how non-
linearities are taken into account during the estimator design. As the estimation
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schemes suggested above all rely on neglecting or linearizing nonlinearities, it is of
interest to investigate a nonlinear estimation scheme that directly incorporates the
known nonlinearities. In adaptive control, adaptive laws to estimate parameters on-
line are derived using a gradient algorithm to minimize a cost function penalizing
output error squares [12]. While for systems that are linear in the unknown pa-
rameters this is a convex cost function, systems that are nonlinear in the unknown
parameters render such a cost function non-convex. The DMPs used in this thesis
pose systems nonlinear in the unknown parameters. In view of this nonlinear opti-
mization problem, a discrete-time approach similar to hybrid adaptive laws allows
for designing an on-line nonlinear gradient descent based on well-known nonlinear
optimization techniques such as the Levenberg-Marquardt algorithm. For simplic-
ity, we assume that position y, velocity ẏ and acceleration ÿ of the human hand are
measurable during a handover process.

5.3.1 Optimal Control Formulation
Given a non-convex cost function

K(θ̂) =
M∑
i=0

γi
[
ÿi − h

(
θ̂, y(ti), ẏ(ti)

)]2
, (5.15)

penalizing the output error

eo = ÿi − h
(
θ̂, y(ti), ẏ(ti)

)
(5.16)

in a quadratic sense, ti = iTm denotes a time-instance and Tm is the sampling
rate with which measurements are obtained. Moreover, the optimization horizon M
obeys the relation t = MTm, meaning that it increases with time t as more measure-
ment data becomes available. The output error (5.16) at time ti is weighted by γi.
In this setup, the optimal value θ̂∗ minimizing (5.15) at time tM is searched as an es-
timate of the true parameter vector θ. Using the specialized DMP parameterization
(3.13) from Section 3.4,

ÿ = hs(θ, y(t), ẏ(t)) = 1
τ 2 (αz(βz(g − y)− τ ẏ) + f(g, y)),

and the parameter vector θ = [g, τ ]> ∈ Rn with n = 2, we can design an update
law minimizing (5.15) in a least-squares sense. With the vector of acceleration
measurements

ÿ =
[
ÿ0 . . . ÿM

]>
, (5.17)

the vector of expected accelerations

hs(θ̂) =


hs
(
θ̂, y(t0), ẏ(t0)

)
hs
(
θ̂, y(t1), ẏ(t1)

)
...

hs
(
θ̂, y(tM), ẏ(tM)

)

 ∈ R
M+1, (5.18)
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and the Jacobian

Jh(θ̂) = ∂hs(θ̂)
∂θ̂

∈ R(M+1)×n (5.19)

=


∂θ̂hs

(
θ̂, y(t0), ẏ(t0)

)
∂θ̂hs

(
θ̂, y(t1), ẏ(t1)

)
...

∂θ̂hs
(
θ̂, y(tM), ẏ(tM)

)

 ,

with

∂θ̂hs
(
θ̂, y(ti), ẏ(ti)

)
=
∂hs

(
θ̂, y(ti), ẏ(ti)

)
∂θ̂

(5.20)

=
[

1
τ̂2

(
αzβz + ∂f(y(ti),ĝ)

∂ĝ

)
− 2
τ̂3 (αzβz(ĝ − y(ti)) + f(y(ti), ĝ)) + αz

τ̂2 ẏ(ti)

]>
,

for i = 1, . . . ,M , we follow [31] and approximate

hs
(
θ̂ + δθ̂, y(ti), ẏ(ti)

)
≈ hs

(
θ̂, y(ti), ẏ(ti)

)
+ ∂hs

∂θ̂

(
θ̂, y(ti), ẏ(ti)

)
δθ̂. (5.21)

By plugging (5.21) into (5.15), we obtain the approximated cost function

K̃(θ̂ + δθ̂) =
M∑
i=0

γi

[
ÿi − hs(θ̂, y(ti), ẏ(ti))−

∂hs

∂θ̂

(
θ̂, y(ti), ẏ(ti)

)
δθ̂

]2

. (5.22)

Setting γi = γM−i with forgetting factor γ > 0, the matrix of weights

W =



γM

γM−1

. . .
γ1

1

 ∈ R
(M+1)×(M+1), (5.23)

is introduced to rewrite (5.22) in vector notation,

K̃(θ̂ + δθ̂) =
∥∥∥ÿ − hs(θ̂)− Jh(θ̂)δθ̂

∥∥∥2

W

=
(
ÿ − hs(θ̂)− Jh(θ̂)δθ̂

)>
W

(
ÿ − hs(θ̂)− Jh(θ̂)δθ̂

)
. (5.24)

As done in the derivation of the Levenberg-Marquardt algorithm from Marquardt
[31], the gradient of (5.24) with respect to δθ̂ is set to zero and then solved for δθ̂.
Hence, we have

∂K̃
(
θ̂ + δθ̂

)
∂δθ̂

= −2
(
ÿ − hs(θ̂)− Jh(θ̂)δθ̂

)>
WJh(θ̂) != 0

⇔
(
Jh(θ̂)>WJh(θ̂)

)
δθ̂ = Jh(θ̂)>W

[
ÿ − hs(θ̂)

]
.
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Introducing a damping term with a damping parameter λLM ≥ 0, the Levenberg-
Marquardt step [31] is thus calculated via

δθ̂ = (J>hWJh + λLMdiag(J>hWJh))−1J>hW (ÿ − hs(θ̂)). (5.25)

Note that a small damping parameter λLM results into (5.25) behaving similarly to a
Gauss-Newton step, meaning that it attempts to directly step to the minimum. This
gives fast convergence for objective functions which are close to quadratic. Larger
values of λLM let (5.25) behave more like a gradient descent, taking smaller steps
towards the minimum to account for non-quadratic terms in the objective function.
As in normal optimization and fitting problems, the optimal value θ̂∗ is obtained by
iteratively computing (5.25) and updating

θ̂k+1 = θ̂k + δθ, (5.26)

starting with an initial value θ̂0 until some terminal condition ensuring θ̂ ≈ θ̂
∗

is satisfied. In hybrid adaptive control, as presented in Section 2.3.4, parameter
updates are conducted at discrete time instances. To obtain a discrete adaptive law
for on-line estimation of θ, we propose to use one Levenberg-Marquardt step (5.25)
at each update time tk to design a discrete version of the gradient algorithm from [12]
and update the estimated parameter vector θ̂ with a sampling time of Tc > Tm. This
proposed algorithm is closely related to moving horizon estimation, as we basically
increase the optimization horizon M over time and solve an optimization problem
at each update time-instant tk on-line [22].

5.3.2 Implementation

The discrete adaptive law is given by the update law (5.26) based on the Levenberg-
Marquardt step (5.25). It uses the vector of measurements (5.17), the vector of
expected accelerations (5.18), the Jacobian (5.19), (5.20) and the matrix of weights
(5.23), which are all obtained for the specialized DMP representation of human
motion from Section 3.4 with N = 100 basis functions. We choose a rather small
damping parameter λ = 1 · 10−8 as we would ideally like to directly step into the
optimum at each parameter update based on the quadratically approximated cost
function (5.22). For simulation we choose a realistic measurement sampling time
of Tm = 0.01 s and, to obtain a considerable amount of information and to not
make the update law sensitive to measurement noise, we choose a considerably
slower controller sampling time of Ts = 0.5 s to update the parameter estimates.
The measurements y, ẏ and ÿ are simulated using the functional minimum-jerk
representation (3.5) and its derivatives. The estimated parameter vector is set to

θ̂ =
[
ĝ τ̂

]
,

and the initial value of θ̂0 = [ĝ0, τ̂0]> with ĝ0 = 1 m and τ̂0 = 9 s for the true values
g = 2 m and τ = 10 s is chosen.
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Nonlinear Least-Squares without Forgetting

Initially, the pure version of the presented nonlinear least-squares algorithm is im-
plemented by setting the forgetting factor to γ = 1, which results in equal weighting
of all collected measurements and thus no forgetting. Simulation results are plot-
ted in Figure 5.5. Convergence of the estimates to their true values for both the
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Figure 5.5: On-line estimation of handover position and time with true values
g = 2 m, τ = 10 s and initial parameter values ĝ0 = 1 m, τ̂0 = 9 s using a discrete-
time nonlinear least-squares adaptive law without forgetting with Tc = 0.5 s and
Tm = 0.01 s for a specialized DMP.

goal estimate ĝ and the timescale estimate τ̂ can be observed. The true values are
reached after about 5 s which is half the transition time of the simulated motion of
the human hand. The prominent estimation error in the initial phase of the mo-
tion can be attributed to the already discussed relatively large fitting errors of the
specialized DMP during that phase of the motion. This requires a sufficiently close
initial guess of the parameters to obtain convergence to true values. It was found
that smoothness and fitting of the nonlinear forcing term (3.11) of the specialized
DMP play a key role in the performance obtained using the discrete nonlinear least-
squares-based parameter estimation scheme. These properties heavily depend on
the number of basis functions N , the spacing of centers (3.18) and widths (3.19) of
the basis functions.

Nonlinear Least-Squares with Forgetting

Now using a forgetting factor of γ = 0.8, the discrete-time nonlinear least-squares
adaptive law with the update step (5.26) based on (5.25) is implemented. Simulation
results are depicted in Figure 5.6. While faster convergence in combination with
some oscillation around the true values was expected, convergence of the estimated
goal ĝ became slower with slight oscillation around the true g. The estimated
timescale τ̂ exhibits large deviations from the true τ . Interestingly, in Figure 5.6b
τ̂ seems to converge towards τ during the middle stage of the human motion. This
is also the stage in which the specialized DMP fits the minimum-jerk profile best.
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An explanation for the observed bad behavior of the nonlinear least-squares with
forgetting can therefore be found based on the fitting error from Figure 3.8 of the
specialized DMP. Forgetting causes past measurements to be ’forgotten’ after some
time. Hence, the current measurement has a greater impact on the estimate than
past measurements. In Figure 5.6b, past measurements are forgotten towards the
end and good estimates τ̂ from around t = 6 s are changed to wrong estimates based
on a badly fitted model in the final stage of the observed human motion.
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Figure 5.6: On-line estimation of handover position and time with true values
g = 2 m, τ = 10 s and initial parameter values ĝ0 = 1 m, τ̂0 = 9 s using discrete-time
nonlinear least-squares adaptive law with forgetting factor γ = 0.8, Tc = 0.5 s and
Tm = 0.01 s for a specialized DMP.

To conclude, the suggested discrete-time nonlinear least-squares based adaptive
law poses a promising alternative to the high-gain or linearization based parameter
estimation laws investigated in this section. Using the algorithm without forgetting
seems to allow for fast convergence for the specialized DMP. Several approaches
to improve the proposed discrete-time parameter estimation law exist. Instead
of updating the parameter estimate with one Levenberg-Marquardt step, several
iterations can be done to obtain solutions that are closer to the optimal values.
Additionally, constraints on the parameters can be added to only produce feasible
estimates and also possibly speed up convergence. Many of these approaches are
common features and problems of moving horizon estimation, which highlights that
the presented nonlinear least-squares based parameter estimator can be considered
a moving horizon estimator.

65



5. Parameter Estimation Based on Specialized DMPs

66



6
Results

Evaluation of the predictors consisting of the different presented DMPs as parame-
terizations and estimators is conducted to ensure applicability for the prediction of
handover place and time in a realistic scenario.

6.1 Evaluation of the Parameterizations
To compare the two different DMP representations, we conduct off-line learning
of both the original DMP and the specialized DMP based on the minimum-jerk
trajectory from (3.5) with starting point y0 = 0 m, endpoint g = 2 m and duration
τ = 1 s. The DMP parameters are set to αz = 25, βz = αz/4 and αx = αz/3 as
suggested in [9] to ensure a critically damped transformation system. The fitting
error εfit(tk) = ftarget,k − f(y(tk), g) which is obtained using (2.8) at time instances
tk with k = 1, . . . , P as defined in Section 2.2.4, is illustrated both for the original
DMP as well as the specialized DMP in Figure 6.1a. Figure 6.1b depicts the squared
fitting error ε2fit(tk). Clearly, the fitting errors and their squares are much lower for
the original DMP than for the specialized DMP. Albeit absolute values of the fitting
error are significantly lower for the original DMP, both DMP versions have larger
fitting errors in the beginning and in the end of the learned minimum-jerk motion
compared to the errors during the middle stage of motion. Since off-line learning of
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Figure 6.1: Fitting errors εfit and squared fitting errors ε2fit for original and spe-
cialized DMP for a minimum-jerk trajectory with starting point y0 = 0 m, endpoint
g = 2 m and duration τ = 1 s.
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a DMP is done through fitting the nonlinear forcing term f with (2.8), large and
oscillating fitting errors, as observed for the specialized DMP in Figure 6.1, affect
the smoothness of the nonlinear forcing term, which in turn can make the design of
an appropriate observer or parameter estimator more difficult. The poor fitting of
the specialized DMP originates in the chosen widths of the basis functions. They
are set via (3.8) and do not achieve equally sized Gaussians in time, as could already
be seen in Figure 3.6. A different choice of hs,i, allowing for equally sized Gaussians,
would allow for low fitting errors similar to those of the original DMP since the basis
functions of the original DMP resemble slightly distorted, equally spaced and sized
Gaussians in time, as shown in Figure 4.6a.

The advantage of the specialized DMP is that by exploiting the consideration of
monotone point-to-point motion, it does not require the use of a canonical system.
As a consequence it has less states than the original DMP, which can simplify DMP-
based state and parameter estimation. Additionally, in our context, DMPs are used
to represent human motion. Without a canonical system, all appearing DMP states
originating in the second-order transformation system have a physical meaning and
can therefore be measured if required. In the present case of human motion, the
specialized DMP states represent position and velocity of the human hand, which
are signals that can be measured with appropriate sensors. However, bearing in
mind that the specialized DMP can only be applied to monotone point-to-point
motion and considering the original DMP’s superior fitting performance, using the
original DMP as a parameterization of human motion is beneficial.

6.2 Parameter Estimation Performance
In a realistic human-robot handover process, both place and time of the handover
are initially unknown. As discussed before, it is therefore necessary to treat both the
goal g, describing the handover place, and the timescale τ , describing the handover
time, as unknown. We introduce the estimation errors

g̃ = g − ĝ,
τ̃ = τ − τ̂ ,

to evaluate the performance of the parameter estimation schemes presented in this
thesis.

6.2.1 Original DMP
Since the classical least-squares and integral adaptive laws from [12] do not give
promising performance for the nonlinear DMP, we only evaluate the performance of
the EKF-based estimation laws from Section 4.2. Using a minimum-jerk trajectory
with parameters from Table 6.1 to fit the DMP with N = 100 basis functions and
to generate measurements, we compare EKF-based state and parameter estimation
for the original DMP. Using position y and velocity ẏ measurements with the for-
mulations from Section 4.2 with P 0 = 100I, R = I, Q = 10I and α = 2 for both
state and parameter estimation cases, we obtain the trajectories from Figure 6.2.
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The filter parameter of the EKF-based parameter estimator is set to λf = 5. Both
estimation laws yield estimates very close to the true parameters after about 3 sec-
onds. This would allow a robot to reach the handover place in time for the handover
taking place after τ = 5 s. We note, that the EKF-based parameter estimation law,
having a state vector with a lower dimension than that of the state estimation case,
shows slightly faster convergence. Apart from that, the EKF-based state estimation
shows some oscillation of the timescale estimation error τ̃se just before the end of
motion at t = 5 s and a small lasting error τ̃se after the end of motion.

Parameter Value Description
τ 5 s Timescale
y0 0 m Starting point
g 2m Endpoint/Goal

Table 6.1: Parameters of the minimum-jerk trajectory used to generate measure-
ments.
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Figure 6.2: Estimation errors g̃se, τ̃se using EKF-based state estimation and g̃pe,
τ̃pe using EKF-based parameter estimation with initial guesses ĝ0 = 1 m, τ̂0 = 4 s
for true values g = 2 m, τ = 5 s.

6.2.2 Specialized DMP
Using a minimum-jerk trajectory with the parameters from Table 6.1 to generate
measurements, we compare the parameter estimation laws that are designed based
on a specialized DMP. As done in Section 3.4 we choose N = 100 basis functions
to get a sufficiently good fitting to the minimum-jerk trajectory from Table 6.1
for the algorithms designed for specialized DMPs to work. Setting the parameters
of the EKF from Section 5.2.2 to R = I, P 0 = 100I, Q = 10I and α = 2
and implementing the discrete-time nonlinear least-squares based update law from
Section 5.3 with forgetting factor γ = 1, damping parameter λ = 1 · 10−8 and
sampling times Tm = 0.01 s and Tc = 0.5 s, we obtain the trajectories from Figure 6.3.
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Clearly both parameter sets of EKF and discrete-time adaptive law pose reasonable
and realizable choices since none of the used tuning parameter values are excessively
large. As can be seen, both estimation laws provide a working means to predict place
and time of a human-robot handover through providing good estimates of goal and
timescale after slightly more than half of the chosen duration τ = 5 s of human
motion. The EKF-based estimations exhibit an overshoot and an oscillation just
before the end of motion at t = 5 s. A small lasting error of the timescale estimate
after the motion is finished at t = 5 s, as shown in Figure 6.3b, is expected to be
due to the fact, that modeling errors, causing estimation errors, are also present as
a result of the erroneous fitting of the specialized DMP.

In total, the discrete-time nonlinear least-squares adaptive law seems slightly
superior from a precision point of view. However, its low damping parameter λ and
therefore relatively large optimization based update step, make it sensitive to fitting
errors, which is why a good fitting has to be ensured via a high number of basis
functions for it to work. Choosing a larger λ would reduce this sensitivity at the
cost of slower convergence.
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Figure 6.3: Estimation errors g̃ekf , τ̃ekf using EKF-based state estimation and
g̃nlsq, τ̃nlsq using discrete-time nonlinear least-squares-based parameter estimation
with initial guesses ĝ0 = 1 m, τ̂0 = 4 s for true values g = 2 m, τ = 5 s of a specialized
DMP.

6.3 Parameter Estimation Performance Using Ex-
perimental Data

Using a motion capture system, a series of human-human handovers was conducted
and the corresponding position trajectories were measured. 1 They are shown in
Figure 6.4a. Clearly, a small variation of timescale and goal can be observed, while
their shapes appear relatively similar in Figure 6.4b.

1The handover trajectories were captured by Axel Demborg and Elon Såndberg in a motion
capture lab at KTH as part of their Bachelor’s thesis [32].
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6.3.1 Qualitative Evaluation of the Parameter Estimators
Considering the modified EKFs based on original DMPs with parameters from Ta-
ble 6.2 for the state estimation EKF and parameters from Table 6.3 for the parameter
estimation EKF, we first fit an original DMP to a captured handover trajectory via
demonstration learning. This training trajectory is shown in Figure 6.4 and has
goal g = −0.8920 m and timescale τ = 1.5667 s. Since the estimation schemes pre-
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Figure 6.4: Captured trajectories of the human hand during a human-human
handover.

Parameter Value
P 0 100I
R 0.001I
Q 10I
α 5

Table 6.2: Parameters of the modified EKF used for state estimation.

Parameter Value
P 0 100I
R 1
Q 10I
α 5
λf 10

Table 6.3: Parameters of the modified EKF used for parameter estimation.

sented in this thesis also rely on measurements of the velocities, we produce them
via numerical differentiation. Choosing initial guesses ĝ0 = −1.5 m and τ̂0 = 2 s,
estimation with the two EKFs based on the original DMP is performed. We use
the measurements captured for the training trajectory and the corresponding ve-
locity measurements produced via numeric differentiation. Results are shown in
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Figure 6.5. Despite the relatively fast true timescale, the estimation errors converge
to zero within the first 0.7 seconds for the state estimation EKF and with 0.4 seconds
even faster for the parameter estimation EKF. Towards the end of motion, the state
estimation EKF shows a small error in the timescale as has already been observed
for minimum-jerk trajectories in Chapter 4. A possible explanation could be fitting
errors that cause the nonlinear forcing term to be highly nonlinear, thus resulting in
bad performance due to the linearization used by the EKF. From a practical point
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Figure 6.5: Estimation errors g̃se, τ̃se using EKF-based state estimation and estima-
tion errors g̃pe, τ̃pe using EKF-based parameter estimation with initial guesses ĝ0 =
−1.5 m, τ̂0 = 2 s for a captured human handover with true values g = −0.8920 m,
τ = 1.5667 s which was also used as training data.

of view the estimates from Figure 6.5 are all useful, as the goal estimates are very
precise and the errors in the timescale relatively small. Also, bad estimates in the
end could be neglected by using a special control policy to guide the robot hand
towards the handover place during the final stage of motion.

When applying the same EKFs to another captured human handover trajec-
tory with goal g = −0.9451 m and timescale τ = 1.5250 s, the estimates shown in
Figure 6.6 are obtained. While the goal estimate converges after slightly over 0.5
seconds, the timescale estimate is erroneous. The estimation error τ̃se obtained by
the state estimation EKF is quite large, whereas τ̃pe is vanishing towards the end of
motion. Similar to previous simulations, we observe that the timescale estimate is
more prone to errors in the presence of model errors than the goal estimate. In the
scenario considered here, a slight difference in shape between the training trajectory
and the tested one could cause these estimation errors.

Testing the estimation laws designed for the specialized DMP with N = 100
basis functions, we again use the captured training trajectory from Figure 6.4a with
goal g = −0.8920 m and timescale τ = 1.5667 s. As it is strictly monotonically
decreasing, a specialized DMP representing it can be learned. The parameters of
the modified EKF from Section 5.2.2 are shown in Table 6.4 and those of the discrete-
time nonlinear least-squares adaptive law are shown in Table 6.5. Using the training
trajectory and its derivatives as measurements and initial guesses ĝ0 = −1.5 m,
τ̂0 = 2 s, we obtain the estimates from Figure 6.7. While the goal estimates from
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Figure 6.6: Estimation errors g̃se, τ̃se using EKF-based state estimation and g̃pe,
τ̃pe using EKF-based parameter estimation with initial guesses ĝ0 = −1.5 m, τ̂0 = 2 s
for a captured human handover with true values g = −0.9451 m, τ = 1.5250 s.

Parameter Value
P 0 100I
R 1I
Q 10I
α 5

Table 6.4: Parameters of the modified EKF designed for a specialized DMP used
for state estimation.

Figure 6.7a converge to the true value, there are significant errors in the timescale
estimate.

The same estimation laws designed for a specialized DMP are now used for a
different handover trajectory with goal g = −0.9451 m and timescale τ = 1.5250 s.
The resulting estimates are plotted in Figure 6.8. Again, the goal estimates con-
verge, especially for the EKF, while the timescale estimates exhibit considerable
errors. Performance of the specialized DMP based laws could be improved using
more aggressively tuned estimation laws, however, the relatively bad fitting of the
specialized DMP has been found to be a challenge when it comes to numerically
stable simulations.

Generally, performance on the testing trajectory is worse than on the training
data due to the difference in shape between the trajectories and the thus present

Parameter Value
λ 5 · 10−2

γ 1
Tm 0.01 s
Tc 0.5 s

Table 6.5: Parameters of the discrete adaptive law designed for a specialized DMP.
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Figure 6.7: Estimation errors g̃ekf , τ̃ekf using EKF-based state estimation for
a specialized DMP and estimation errors g̃nlsq, τ̃nlsq using EKF-based parameter
estimation for a specialized DMP. Initial guesses are ĝ0 = −1.5 m, τ̂0 = 2 s for the
training trajectory with true values g = −0.8920 m, τ = 1.5667 s.

modeling errors of the DMP. However, in all the presented cases good performance
of the goal estimation could be observed. Even in case the timescale estimation does
not perform well, sufficiently fast goal estimation allows a robot to move towards the
thereby predicted handover place fast to ensure the robot hand is there to receive
an object even before the human hand reaches the handover place.

6.3.2 Quantitative Evaluation of the EKF-Based Parameter
Estimator Using a DMP

After these illustrative evaluations, we now pick the predictor consisting of the modi-
fied EKF-based filtered parameter estimator for the original DMP from Section 4.2.3
to conduct a more thorough testing of the parameter estimation performance on all
human-human handover trajectories available from experiments.

The parameters of the filtered EKF-based parameter estimator using measure-
ments of position y and velocity ẏ are set to those from Table 6.6.

Parameter Value
P 0 104I
R 1
Q I
α 2
λf 20

Table 6.6: Parameters of the filtered EKF-based parameter estimator using a DMP
for the prediction of real human-human handovers.

74



6. Results

0 0.5 1 1.5

t [s]

0

0.5

1

[m
]

g̃ekf
g̃nlsq

(a)

0 0.5 1 1.5

t [s]

-2.5

-2

-1.5

-1

-0.5

0

[s
]

τ̃ekf

τ̃nlsq

(b)

Figure 6.8: Estimation errors g̃ekf , τ̃ekf using a state estimation EKF for a spe-
cialized DMP and estimation errors g̃nlsq, τ̃nlsq using a parameter estimation EKF
for a specialized DMP with initial guesses ĝ0 = −1.5 m, τ̂0 = 2 s for the training
trajectory with true values g = −0.9451 m, τ = 1.5250 s.

Basic Handover Trajectory

We fit an original DMP to the simple captured training trajectory with goal g =
−0.8920 m and timescale τ = 1.5667 s from Figure 6.4 via demonstration learning.

Choosing initial guesses ĝ0 = −1.5 m and τ̂0 = 2 s, estimation using the filtered
EKF-based parameter estimation on the original DMP is performed for all captured
human-human handover trajectories. The velocity measurements ẏ required in addi-
tion to the shown position measurements y are produced via numeric differentiation.

Obtained estimation errors g̃ of the goals are shown in Figure 6.9. While the
estimation error g̃training obtained for the training trajectory clearly converges to
zero fastest, goal estimates get close to zero for all captured trajectories after slightly
more than half the duration τ of the human motion. Figure 6.10 shows a close-up
of the goal estimation errors g̃ from Figure 6.9. We observe that the goal estimation
errors are less than 0.2 m, resulting in a relative error of less than 22% after 0.6τ
for all test trajectories. At t = τ most of the goal estimates exhibit an error of
approximately 10% or less.

The timescale estimation errors τ̃ from Figure 6.11 are generally larger than
those for the goals. They do converge, albeit to non-zero values. We observe that
the timescale estimation errors are within 1 s after 0.6τ , which means large relative
errors of up to 66%. Even at the end of the human motion at t = τ , the timescale
estimation errors are of similar scope for many of the test trajectories of Figure 6.4.

Estimation errors appear due to modeling errors as a result of differences in
shapes between training and test trajectories. The estimation of place and time of
the handover hence works well for test trajectories exhibiting shapes close to that
of the training trajectory in Figure 6.4b. Note, that it seems sensible to simply
use goal and timescale of the training trajectory as initial values for the parameter
estimation with test trajectories in reality. However, due to the small differences in
goals and timescales of the present captured handover trajectories, initial conditions
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Figure 6.9: Obtained goal estimation errors g̃ for the captured basic handover
trajectories.

were deliberately chosen to be rather far from the true parameter values to obtain
more illustrative results.

Generally, we observe that timescale estimates are more prone to modeling
errors than goal estimates. This was observed in several simulations throughout
this thesis. As discussed before, poor timescale estimates can be dealt with by
simply moving to the more reliably estimated handover place fast enough to reach it
before the human hand does. Reliable goal estimates and thus precise handover place
predictions, however, are crucial to achieve seamless handovers since the transfer of
an object can only be performed when human and robot hand meet at the same
place.

We conclude that the prediction of place and time of a human-robot handover
by using an EKF-based parameter estimator and a DMP to parameterize human
motion works better, the closer training and test trajectory are in terms of shape,
since in that case, the DMP is a good representation of the motion of the human
hand.

Extended Handover Trajectory

Thanks to the versatility of using a DMP as a parameterization of human motion,
it is also possible to consider an extended version of a human handover trajectory
which not only includes the reaching of the human hand towards the robot, but also
the part where the human picks up an object before reaching towards the robot.
Figure 6.12 shows these extended handover trajectories captured in human-human
handovers. They vary in timescale and goal while also exhibiting shapes that are
not entirely similar to each other.
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Figure 6.10: Close-up of the obtained estimation errors g̃ for the captured basic
handover trajectories.

Using the training trajectory from Figure 6.12 with goal g = −0.3542 m and
timescale τ = 2.1833 s, an original DMP is learned via demonstration. As before,
the modified EKF-based filtered parameter estimator from Section 4.2.3 with pa-
rameters from Table 6.6 is used to predict handover place and time by estimating
the parameters of the learned DMP on-line. With initial guesses ĝ0 = −1 m and
τ̂0 = 2 s, the estimation errors from Figure 6.13 are obtained.

Again, convergence of the estimates is fastest for the training trajectory. After
0.6τ , the goal estimates are within 0.2 m of the true goals for all trajectories. In this
case, we have a relative goal estimation error of less than 55% for all trajectories.
This large relative error originates in the large differences in shapes for some of the
extended handover trajectories. Many of the closer test trajectories yield relative
errors of less than about 29%. The final goal estimates are within 0.02 m of the true
value, resulting in a final relative estimation error of around 6% . The timescale
estimates for the extended handover trajectory are within 0.2 s after 0.6τ , implying
a relative error of less than 10% for the different trajectories. The final relative
timescale estimation error is less than 2%.

Generally, the final estimation errors are lower than those obtained with the
basic handover trajectories from above. The more sophisticated shapes of the cap-
tured extended handover trajectories are expected to facilitate parameter estimation
as they contain more information, or as is often used in adaptive control, they have
a higher level of excitation. Considering the low relative errors of the timescale esti-
mates, this seems to especially improve the estimation of the timescale. Relatively
clear differences in the shapes of the extended handover trajectories from Figure 6.12
explain the erroneous goal estimates in the earlier stages of the motion.
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Figure 6.11: Obtained estimation errors τ̃ for the captured basic handover trajec-
tories.

On the whole, good performance for the extended handovers can be observed.
The higher level of excitation allows for good estimates for both goal and timescale
even in the face of significant differences in shape. For trajectories with shapes
similar to the training trajectory, very good convergence is observed. Clearly, place
and time of a handover can be predicted in the case of extended handovers. Thanks
to the higher level of excitation, it is therefore beneficial to consider the extended
handover instead of the basic handover.
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Figure 6.12: Captured extended trajectories of the human hand during a human-
human handover.

0 0.2 0.4 0.6 0.8 1

t/τ

-1

-0.5

0

0.5

g̃
[m

]

g̃training

(a)

0 0.2 0.4 0.6 0.8 1

t/τ

-2

-1.5

-1

-0.5

0

0.5

τ̃
[s
]

τ̃training

(b)

Figure 6.13: Estimation errors g̃ and τ̃ for the captured extended handover tra-
jectories.
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7
Conclusions and Future Work

Seamless human-robot handover as a scenario of human-robot collaboration is aimed
for in this thesis. To allow for natural interaction, we proposed a predictor enabling
the robot agent to predict place and time of a handover while the human hand is
reaching towards the robot. After having formulated the prediction problem as a
model-based parameter estimation problem, we used dynamic movement primitives
(DMPs) to parameterize human motion and employed parameter estimation strate-
gies originating from adaptive control to estimate point attractor and timescale of
the DMP. Using the fact that the point attractor and the timescale of a DMP can
represent place and time of a handover, we were able to predict these characteristic
parameters of a handover.

Human motion was parameterized with two versions of the off-line learnable
DMP. The original DMP from Schaal et al., consisting of a transformation system
and a canonical system, showed low fitting errors. Exploiting the fact that human
trajectories in handovers can be considered as point-to-point motions, a specialized
DMP without a canonical system was presented. While fitting errors became larger,
all states of the specialized DMP have a physical interpretation and can theoretically
be measured.

Both adaptive laws and estimators designed based on the extended Kalman
filter were used to estimate the parameters of the original DMP. While the adaptive
laws failed to cope with the nonlinearity in the parameters of the DMP, convergence
of the EKF-based estimators, using a linearization of the DMP with respect to the
parameters, could be shown. A low number of unknown parameters was found to
be beneficial for convergence speed as less information was required to obtain good
parameter estimates.

Similarly, adaptive laws and EKF-based estimators were designed to estimate
parameters of a specialized DMP. Again, convergence for the EKF-based estima-
tors could be shown. An adaptive law with a high gain also achieved convergence
in one unrealistic scenario. This motivated the proposition of a discrete-time non-
linear least-squares based adaptive law originating in the gradient algorithm com-
monly used to derive adaptive laws for linear parametric models. Convergence of
the parameter estimates could be observed for some cases. A disadvantage of the
presented parameter estimators based on the specialized DMP is their reliance on
measurements of position, velocity and acceleration of the human hand. Contrast-
ingly, estimation schemes based on the original DMP require position and speed
measurements of the human hand only.

Evaluation of the promising predictors consisting of the different parameter-
izations and estimators was performed based on human handover trajectories ar-
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tificially generated as minimum-jerk trajectories and on data captured from real
human-human handover experiments. Equal performance for the EKF-based esti-
mators designed for the original DMP as well as the EKF-based estimator and the
discrete-time nonlinear least-squares adaptive law designed for the specialized DMP
was observed for the generated minimum-jerk trajectories. For the data captured
from a real human-human handover, the estimators using an original DMP per-
formed better than those using a specialized DMP. Differences in the shapes of the
captured handover trajectories gave rise to estimation errors with magnitude pro-
portional to modeling errors. Modeling errors arise due to the difference in shape
between the test trajectories and the training trajectory used to learn the DMP.

In conclusion, the proposed predictor structure consisting of a DMP, parame-
terizing human motion, and a parameter estimator, which estimates the parameters
of the DMP describing place and time of a handover, has shown promising results.
The combination of an original DMP with an EKF-based parameter estimator al-
lowed prediction of the handover place for all captured handover trajectories with
around 22% accuracy after slightly more than half the duration of human motion
and around 10% accuracy at the end of motion. The handover time predictions
were found to be more sensitive to modeling errors. The more similar the shape
of handover trajectories were to the training trajectory, the better the prediction
of handover place and time worked. Extended handover trajectories including the
fetching of the object allowed for good prediction of both place and time of the
handover due to their higher level of excitation. Significant differences in the shapes
of the extended trajectories led to a higher relative error for the predicted handover
place in the early stages of human motion. In the final stages of the human motion,
the predictions of both handover place and time were quite precise and allowed for
smooth handovers.

Seamless handovers may even be achieved by controlling the robot agent to
reach the estimated handover place sufficiently fast to be able to receive an object
once the human hand reaches the handover place without using the estimated han-
dover time. It can thus be said that the proposed EKF-based parameter estimator
allows for more efficient collaboration between human and robot in handover tasks
both when considering basic and when considering extended handover trajectories.
Furthermore, the proposed combination of DMP and EKF-based parameter esti-
mator was found to be very versatile as different point-to-point trajectories can be
represented by a DMP and their timescale and point attractor can be estimated
on-line with the presented EKF-based parameter estimator.

The proposed method to predict handover place and time has only been ap-
plied to one-dimensional motion in this thesis. Future work can extend the predictor
structure to cope with multidimensional trajectories. It is even possible to exploit
the temporal couplings of the separate dimensions of human motion in the DMP
framework: One joint canonical system can be used to modulate the temporal evolu-
tion of human motion in all dimensions, while measurements of position and velocity
in the different dimensions increase the number of measurable outputs of the corre-
sponding system. Thus, the additional information available in a multi-dimensional
case might be used to improve the precision of the predictions of handover place and
time.
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For the presented predictor to work in a realistic scenario, it is essential to
detect when the DMP presentation becomes valid and measurements can be used
to predict handover place and time. Since we learn our DMP from a demonstrated
handover trajectory, the robot would have to be able to decide when the human
starts a handover by reaching towards the robot. What is more, a human might
change their behavior when interacting with a robot and thereby render the learned
DMP an erroneous model. Given this, a learning strategy repeatedly updating the
learned DMP might produce better results than the supervised learning used in this
thesis.

Since a handover is an example of two agents synchronizing with each other,
it also seems possible to generalize the method proposed in this thesis to achieve
synchronization of multiple systems without resorting to explicit communication. In
this context, a rigorous proof, possibly using the notion of persistence of excitation,
showing convergence of the goal and timescale estimates of a DMP obtained using
an EKF is yet to be done as well.
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A
Appendix

A.1 Derivations of Lipschitz Continuity for the
EKF

The components of (4.31) are

h̃(x) = 2
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A. Appendix

A.2 Additional Plots

A.2.1 EKFs for the original DMP
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Figure A.1: Lower bound p
m

(t) and upper bound pm(t) of P (t) using a modified
EKF to estimate the states of an original DMP.

0 2 4 6 8 10

t [s]

0

50

100

150

200

250

p
m

(a)

0 2 4 6 8 10

t [s]

0

1

2

3

4

p
m

×10
4

(b)

Figure A.2: Lower bound p
m

(t) and upper bound pm(t) of P (t) using a modified
EKF to estimate the parameters of an original DMP.
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Figure A.3: Lower bound p
m

(t) and upper bound pm(t) of P (t) using a filtered
version of the modified EKF to estimate the parameters of an original DMP.

A.2.2 EKFs for the Specialized DMP

Classical EKFs
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Figure A.4: Estimates ŷ and ẑ using a classical EKF with P 0,s = 100I and a
specialized DMP.
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Figure A.5: Estimates ŷ and ẑ using a classical EKF with P 0,s = 105I and a
specialized DMP.
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Figure A.6: Lower bound p
c
(t) and upper bound pc(t) of P (t) using a classical

EKF with P 0 = 100I to estimate the states of a specialized DMP.

IV



A. Appendix

0 2 4 6 8 10

t [s]

0

1

2

3

4
p
c

(a)

0 2 4 6 8 10

t [s]

0

2

4

6

8

10

p
c

×10
4

(b)

Figure A.7: Lower bound p
c
(t) and upper bound pc(t) of P (t) using a classical

EKF with P 0 = 105I to estimate the states of a specialized DMP.
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Figure A.8: Estimates ŷ and ẑ using a modified EKF with P 0,s = 100I, conver-
gence parameter αs = 0.5 and a specialized DMP.
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Figure A.9: Lower bound p
m

(t) and upper bound pm(t) of P (t) using a modified
EKF to estimate the states of a specialized DMP.
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