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Abstract
Blunt trauma (injury without skin broken) is the major fatal incident among trau-
matic injuries, which accounts for 10 % of global deaths. The torso region (thorax
and abdomen) is a sensitive area where serious blunt trauma can lead to death.
Despite the importance and difficulty of torso blunt trauma diagnosis in the prehos-
pital setting, the only available on scene diagnostic device is ultrasound, which is
operator dependent and requires well trained paramedics. For this reason, microwave
technology has been investigated for detecting torso trauma automatically.

S. Candefjord, N.P. Oveland, and colleagues designed a prototype wearable
microwave detector to do experiments on ten porcine models. Each subject was tested
with four types of torso trauma including hemoperitoneum (abdominal bleeding),
pneumothorax (air in the pleural space), hemothorax (blood in the pleural space), and
polytrauma (both pneumothorax and hemothorax). Based on these already available
data, the main purpose of this master’s thesis was to analyze the difference between
healthy and trauma states as well as to evaluate whether trauma can be differentiated
from baseline (healthy state) using statistical and classification approaches.

There are three main analysis sections in this thesis work. Firstly, for each
subject, the subtraction of baseline (i.e. healthy state) from trauma states was derived
to explore the consistent signal changes caused by trauma among all subjects. The
difference to baseline was interpreted as the mean and standard deviation value
among all subject’s data. Secondly, these changes were further examined with
statistical tests such as the Kruskal–Wallis Test and the Wilcoxon rank-sum Test to
identify the statistically significant difference between healthy and trauma states.
Finally, a linear kernel support vector machine (a machine learning algorithm) was
employed to classify the healthy state and the largest sizes of trauma.

The results showed that for all trauma types, compared to the healthy state,
a drop in the signal magnitude and an increase in the phase were observed. These
trends were typically clear at antennas placed around the midaxillary line, where
ultrasound examination indicated the accumulation of blood or air. Although the
change was relatively consistent among subjects, the detection of trauma was a
challenge due to the large difference in baseline between subjects (compared to the
change caused by traumatic injuries). The statistic tests confirmed the difference
between healthy and trauma states with statistical significance (i.e. p-value < 0.05).
The classification algorithm was capable of detecting the largest size of abdomen
bleeding and thorax trauma at 95 % and 90 % accuracy, respectively. Although these
results are promising, further research is needed. The prototype microwave detector
could be improved to decrease the high variance potentially due to a variation in
antenna-skin contact before performing more experiments. With more data acquired,
the machine learning algorithm has the potential to be developed to improve the
detection accuracy for smaller trauma levels.

Keywords: microwave technology, trauma, hemoperitoneum, pneumothorax,
hemothorax, statistical test, machine learning, support vector machine.
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1
Introduction

Traumatic injury is defined as severe physical injuries caused by sudden onset.
Trauma causes approximately 5.8 million deaths a year around the world, accounting
for 10 % of global deaths [1]. Traumatic injuries can be divided into three main
groups consisting of blunt, penetrating and burn mechanisms. Penetrating trauma
occurs when an object pierces the skin and damages tissues inside the body. This
type of trauma along with burn injuries can be easily recognized by a paramedic. On
the other hand, blunt trauma without skin broken is usually difficult to identify and
requires diagnostic devices to make final conclusions. A 9-year study in Stavanger,
Norway (with 290,000 inhabitants) indicated that fatal trauma incidence was 10 per
100,000 inhabitants and 87 % of this was blunt trauma [2].

There are six body regions in traumatic injuries including head/neck, face,
thorax, abdomen/pelvis, extremities and external [3]. The torso, which is the
central part of the body containing thorax and abdomen, should be considered as
a single unit in traumatic study [4]. Three common injuries in the torso trauma
are hemoperitoneum (abdominal bleeding), pneumothorax (air in the pleural space
between the lung and the chest wall), and hemothorax (blood in the pleural space).

The "Golden hour" or the first 60 minutes after the incident of a major
multi-system trauma is found to be critical in blunt trauma [5]. Another study
indicated that for multiple-injury patients, the main reason of death in the first
twenty-four hours after trauma is often the combination of abdominal trauma and
pelvic injuries [6]. Early recognition of abdominal trauma that requires surgical
intervention is essential to prevent death [7]. For every 3 minutes waiting for
intra-abdominal bleeding, the probability of death increases by 1% [8].

The ultrasound technique and physical examination are the main methods
currently utilized to detect trauma in the prehospital setting. However, these methods
are operator dependent and require well-trained paramedics. There is a need for
complementary methods for objective detection of hemoperitoneum. Recently, some
research indicates the potential of microwave technology for torso and brain trauma
diagnosis [9–11] but there has not been any comprehensive commercial microwave
detector for torso trauma. S.Candefjord, N.P.Oveland and colleagues designed a
prototype wearable microwave detector to conduct experiments on porcine models of
hemoperitoneum, pneumothorax and hemothorax. Based on the already available
data collected from these experiments, the aim of this master’s thesis is to:

1. Study incidence and treatments of trauma in general and trauma to the torso
in particular. Document current state-of-art and promising work for the
detection of traumatic torso injuries, including both measurement setup and
data processing.

1



1. Introduction

2. Analyze the microwave signal characteristics, including the variation between
repeated measurements, coefficient magnitude/phase and the changes in signal
caused by torso trauma.

3. Extract features from the original high dimension data to interpret them in
a proper simple way. This process should reduce the data dimension without
losing the key features that can help differentiate normal and torso trauma
subjects.

4. Assess the difference between baseline (healthy state) and injuries of different
sizes with statistical tests like Wilcoxon rank-sum Test or Kruskal–Wallis Test.

5. Evaluate support vector machine (a classification algorithm) for detecting
hemoperitoneum, pneumothorax and hemothorax.

1.1 Torso trauma
The torso region can be seen as a central part of the body from which neck and limbs
extend. Figure 1.1 shows the torso area, where most of the major organs are. For
complex torso trauma, both thoracic and abdominal injuries should be considered
to ensure that while treating the injuries in one region, the remaining area will not
be overlooked [12]. In the following sections, hemoperitoneum (a crucial type of
abdominal trauma) and two major types of thoracic trauma including pneumothorax
and hemothorax will be explained in detail.

Figure 1.1: The torso region with major organs (source: https://en.wikipedia.
org/wiki/Torso).

2
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1. Introduction

1.1.1 Hemoperitoneum (abdominal bleeding)

Hemoperitoneum is the accumulation of blood in the cavity between the organs in
the abdomen and the inner lining of the abdominal wall (Figure 1.2). With the
ability for distension, the abdominal space can hold more than five liters of blood
or maybe even more than the entire volume of circulating blood. The quick blood
loss in the abdominal area could lead to hemorrhagic shock or death if not treated
properly [13].

Figure 1.2: CT image of hemoperitoneum. The black arrow points to space
where blood accumulates and white arrow indicates injured spleen (source: https:
//step2.medbullets.com/gastrointestinal/120194/hemoperitoneum).

Both blunt and penetrating trauma can be the reason for hemoperitoneum
but blunt abdominal trauma is more frequent in emergency departments [14]. Motor
vehicle collision accounts for 75 % of blunt trauma, and the remaining causes are
falls, assaults, etc [15].

There are three current main diagnostic methods for hemoperitoneum: focused
assessment with sonography for trauma (abbreviated FAST), computed tomography
(abbreviated CT), and diagnostic peritoneal lavage [7]. The two first methods (FAST
and CT) are noninvasive, using the obtained image of the abdomen (Figure 1.2, 1.3).
Meanwhile, diagnostic peritoneal lavage requires a surgical procedure to take fluid
samples from the abdominal cavity. This method is often applied when patients
are unstable or uncooperative [16]. All of these methods require carefully trained
doctors, nurses, physicians or paramedics.

After hemoperitoneum is diagnosed, if the patient gets a hemorrhagic shock,
blood transfusion is required as the first step. Then, surgery may be needed to locate
the source of bleeding. If the spilled blood is not contaminated, it could be reused
for blood transfusion. Depending on the blood loss source, different methods are
applied to stop the bleeding. For example, if blood comes from a broken blood vessel,
the offending vessel will be clamped and ligated. Bleeding from the liver might be
controlled by utilizing hemostatic sponges or thrombin [7].

3
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1. Introduction

Figure 1.3: Ultrasound image of hemoperitoneum. The black stripe indicated by
the red arrows is the space where fluid accumulates (source: https://en.wikipedia.
org/wiki/Focused_assessment_with_sonography_for_trauma).

1.1.2 Pneumothorax
A pneumothorax is a collapsed lung caused by the appearance of air in the pleural
space between the lung and the chest wall. The reasons for pneumothorax can be
lung disease or trauma. In this report, only traumatic pneumothorax is investigated.
Traumatic pneumothorax can be further divided into penetrating trauma and blunt
trauma. As mentioned above, blunt trauma is difficult to detect and can lead to
death that could have been prevented. One example of blunt pneumothorax is when
sudden chest compression occurs (e.g. in car accidents or falls), causing alveolar
rupture. If the visceral pleura is lacerated, air will enter the pleural space [17]
(Figure 1.4)

Figure 1.4: Pneumothorax caused by the appearance of air in the pleural space.
The black arrow indicates the air flow entering the pleural space when the visceral
pleura is lacerated.

4
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1. Introduction

Besides clinical examination, there are three imaging techniques to diagnose
pneumothorax. The first method is chest radiography or chest X-ray which simply
transmits an X-ray beam through the patient to an X-ray film where the two-
dimensional image of the chest is recorded. However, this method requires patients to
be stable, awake, and not in stages of tension [17]. A more sensitive method is chest
CT scanning which generates the chest image by taking a series of X-ray beams around
a patient. This is the gold standard to detect traumatic pneumothorax, especially
with the blunt trauma [17]. However, these two methods are not usually used on the
scene or in the ambulance because of their big size. Bedside ultrasonography is the
last common imaging method. With a compact size, this method could be installed
in the ambulance, but it requires carefully trained paramedics [18].

Pneumothorax treatment depends on the injury size (i.e. how much of the lung
is collapsed). A small pneumothorax can resolve itself or with oxygen administration
and monitoring of the chest with X-ray [17]. If the lung cannot re-expand itself, a
needle may be inserted through the chest wall to remove the air. Another method is
to insert a chest tube with its tip in the intrapleural space and the other tip into
a water seal bottle. This method can prevent the air from re-entering the pleural
cavity. After 72 hours, if none of these methods works, surgery may be required [17].

1.1.3 Hemothorax
Hemothorax happens when there is blood accumulating between the chest wall
and the lung (pleural space). The most common reason of hemothorax is blunt
trauma [19], where the chest suffers from a sudden and intense pressure such as
in a car accident or fall. Hemothorax can also be associated with pneumothorax
when the high pressure from the air in the pleural space causes a part of the lung to
collapse. The appearance of blood can prevent the normal movement of the lung,
causing poor ventilation or abnormal breathing. The amount of blood in the pleural
space may be massive with more than 25 % of the total blood volume or about 1.5 L
in an average adult [7].

The diagnosis tools for hemothorax are the same as pneumothorax with chest
X-ray, CT, and ultrasound. If the patient is stable without any symptom requiring
emergency treatments, chest X-ray is the preferred diagnosis that may reveal the
blood accumulation. CT can detect much smaller blood volume than chest X-ray,
but it is time consuming and normally not the primary method [20]. Meanwhile,
ultrasound is quick but its disadvantage is being operator dependent [18]. To treat
hemothorax, a chest tube is inserted into the pleural space to drain fluid, blood and
air, which is similar to pneumothorax management. This tube could be attached
for a few days until the lung returns to normal state. If the bleeding does not stop,
patients may need surgery [20].

1.2 Prehospital torso trauma diagnosis
As mentioned above, the early diagnosis of severe torso trauma that demands surgical
intervention is crucial to decrease preventable death. At present, CT is the gold
standard to detect traumatic injuries. However, this technique cannot easily be
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1. Introduction

installed in the ambulance for prehospital diagnosis. The common on-scene trauma
assessment is based on clinical parameters and physical examination. However, this
method did not show a high accuracy and reliability for internal bleeding trauma (e.g.
87 % with blunt abdominal trauma [21]). The only current standardized diagnosis
technique that can be applied at the trauma scene is ultrasonography.

An ultrasound examination called focused assessment with sonography in
trauma (abbreviated FAST) is developed for evaluating prehospital abdominal trauma.
The extended focused assessment with sonography in trauma (abbreviated eFast) is
proposed to determine whether a patient has pneumothorax or hemothorax. The
advantage of ultrasound technique is its cheap price, noninvasive nature, safety as
a radiation free method, and most importantly its portability for use at trauma
scenes [22]. However, there are drawbacks that should be considered for the ultrasound
method. The short penetration of sonographic waves by gross obesity and skin
emphysema (air in the skin) could cause an incorrect diagnosis [22]. In addition, this
technique is operator dependent [18]. Physicians and paramedics have to be trained
and certificated to be able to perform an ultrasound examination [22].

Due to the mentioned disadvantages of the current ultrasonography, novel
torso trauma diagnosis techniques using microwave waves are being developed [9,10].
The following section provides more detail about the microwave technique in the
torso bleeding diagnosis.

1.3 Microwave technology in torso injury diagno-
sis

Early research on the application of microwave for pulmonary diagnosis is performed.
Pedersen and his colleagues measure both transmission and reflection coefficient
(see section 2.1 for the details about microwave technology) in the frequency range
from 800 MHz to 950 MHz in a three-layered body model [23]. The results show the
difference in the coefficient magnitude between normal, edema (excess fluid trapped
in body’s tissues) and emphysema (shortness of breath due to over-inflation of air
sacs in the lung) patients. Another study evaluates microwave technique on dogs
and showed that the phase shift in the transmission coefficient is correlated with
changes in the arterial pressure which related to edema [24].

The potential of microwave diagnosis for pneumothorax is indicated by a
current research conducted by Christopoulou and colleagues [25]. This research
implements two planar patch microwave antennas with the size 1.44 × 1.44 cm2

and places them in the vertical direction on the chest surface. The transmission
coefficient between the two antennas is measured. The frequency range 1–4 GHz is
evaluated with three simulated rectangular and anatomical models. The first model
named THORAX is in rectangular shape with muscle thickness, fat thickness and
bone thickness varying in the range 0–25 mm, 0–30 mm and 0–15 mm respectively.
The largest difference in mean coefficient magnitudes between the normal state and
1 cm air pneumothorax is at 1.5–2 GHz with around 18 dB. The other two models
are anatomical models built from the MRI (magnetic resonance imaging) data of
one male and one female volunteer. Pneumothorax in these models are 1.5–2 cm

6



1. Introduction

air thickness. The maximum difference between healthy and pneumothorax signal
magnitude is 7 dB at 2.3 GHz for the male model and 19 dB at 1.7 GHz for the
female model.

Besides the above research, there is a more general research field called
microwave tomography (MWT) [26], which aims to build anatomy images of the
human body based on microwaves. From the microwave imaging, paramedics or
physicians can diagnose torso injuries. However, the diagnosis using biomedical
imaging modality is not the interest of this master’s thesis because it is operator
dependence (similar to ultrasound technique). Therefore, the details about MWT
research are out of scope and only one example of MWT developed by a research team
at Queensland University for detecting thoracic fluid accumulation is provided [10].
The team designs a torso scanner with the outer layer in semi-doughnut chamber
shape and the inner cavity in an elliptical shape. The outer layer, containing two
antenna arrays with twelve antennas in each can scan the upper and lower torso
regions at the same time. The antennas are organized around the chest region and
run in the frequency range 0.5–2 GHz. Before each measurement, the system is
calibrated by operating without patients/phantom inside. The changes of images
due to the presence of fluid are magnified by subtracting the scattering profiles of
upper and lower regions. The system shows the ability to localize fluid volumes as
small as 3 mL in a torso model. However, this method requires the use of healthy
subject data as reference for locating the trauma area.

7



2
Theory

2.1 Microwaves and dielectric properties of mate-
rials

Microwaves are known as one form of electromagnetic waves with the frequency range
from 300 MHz to 300 GHz (i.e. wavelengths in the range 100–0.1 cm). The propa-
gation of microwaves in the material can be expressed by Maxwell’s equations [27]:

∇ ·D = ρ (2.1a)
∇ ·B = 0 (2.1b)

∇× E = −∂B
∂t

(2.1c)

∇×H = J + ∂D

∂t
(2.1d)

Where:
• E [V/m]: electric field.

• H [A/m]: magnetic field.

• B [Wb/m2]: magnetic flux density.

• D [C/m2]: electric flux density.

• J [A/m2]: electric current density.

• ρ [C/m3]: electric charge density.
The magnetic density, electric current and the electric density are the sources of
the electromagnetic field. When the field penetrates in a dielectric material, the
relationship between the electric current density, electric flux density, and electric
field can be expressed as [27]:

J = σE

D = εE = (ε’ − jε”)E
(2.2)

where σ (S/m) is the total conductivity of the material, ε’ (F/m) is the relative
permittivity and ε” is the out-of-phase loss factor which can be calculated as:

ε” = σ

ε0ω
(2.3)

8



2. Theory

where ε0 is the permittivity of free space (8.854−12 F/m) and ω is the angular frequency
of the microwave field. From these equations, the propagation of microwave field
in a media clearly depends on the dielectric properties and the frequency utilized.
Since there are differences in the dielectric properties of biological tissues [28], the
propagation pattern of the microwave electromagnetic field changes according to the
change inside the human body. For instance, the blood appearance in the abdominal
cavity of hemoperitoneum patients may create a difference in the propagation and
attenuation of the microwave signal in comparison with a healthy person.

The common measured microwave data are scattering parameters (symbolized
S-parameters) [27]. S-parameters represent the relationship between the incident
waves on the ports to those reflected from the ports, and can be measured with a
vector network analyzer. For a N-port network, the scattering matrix is defined as:


V −1
V −2
...
V −N

 =


S1,1 S1,2 . . . S1,N
S2,1 S2,2 . . . S2,N
... ... . . . ...

SN,1 SN,2 . . . SN,N



V +

1
V +

2
...
V +
N

 (2.4)

where V −k is the amplitude of the voltage wave reflected from port k, and V +
k is the

amplitude of the voltage wave incident on port k. A particular S-parameter can be
found by:

Sij = V −i
V +
j

∣∣∣∣∣
V +

k
=0 for k 6=j

. (2.5)

Equation 2.5 indicates that Sij is calculated as the division of wave amplitude V −i
coming out of port i by incident wave amplitude V +

j at port j. To avoid reflections,
the incident wave in all ports except the port j should be set to zero when calculating
Sij [27]. Sij can be called reflection coefficient if i equals j or called transmission
coefficient between antenna i and j if i is not equal j. The measured S-parameters
are complex numbers (i.e. a+bi) so they can be analyzed in magnitude (i.e.

√
a2 + b2)

and phase (i.e. arctan(b/a)) separately. The magnitude of S-parameters (e.g. Sij)
can be expressed in raw value (i.e. ||Sij||) or in dB unit, which is calculated by
Equation 2.6.

Sij(dB) = 10 log ||Sij(raw)|| (2.6)

2.2 Statistic examination

Statistic examination is a procedure analyzing the statistical characteristic of col-
lected data. In this master’s thesis, the statistic examination is mainly to test
whether defined classes (e.g. healthy subjects and bleeding subjects) are actually
distinguishable. This procedure is commonly conducted after collecting all data
and before developing classification algorithms. This step may help identify poten-
tial features to be used for classification algorithms, and be a connection between
classification results and signal characteristics.

9



2. Theory

2.2.1 Null hypothesis
The null hypothesis is one type of conjectures utilized in statistic examination to test
conclusions or make decisions based on a set of data. The statement or conclusion
tested in an examination is named the null hypothesis and commonly symbolized
as H0. A statistic test is designed to evaluate evidence against the null hypothesis.
The statement defining the opposite conclusion with the null hypothesis is called the
alternative hypothesis, which usually symbolized as H1. If there is any sample data
which is inconsistent with the null hypothesis, the null hypothesis is rejected and the
alternative hypothesis is accepted. In contrast, if all data cannot show any evidence
against the null hypothesis, then the null hypothesis cannot be rejected.

The statistic tests typically have parameters to measure the extent of apparent
departure from the null hypothesis. One of the most common parameters is p-value
(probability value) which represents the probability of observing a result given that
the null hypothesis is true. A small p-value indicates that the null hypothesis may
not adequately consistent with the observed data. If the p-value is smaller than a
pre-defined level, which is referred to as the level of significance, the null hypothesis
is rejected. The level of significance is commonly 0.05 or 0.01, meaning that there is
less than 5 % or 1 % probability that the alternative hypothesis is true by chance.

2.2.2 Anderson-Darling Test for Normality
Some statistic tests (e.g. analysis of variance test) require input data to have a
normal distribution. If this requirement is fulfilled, these examinations can provide a
strong indication such as to whether the mean values between classes are different or
not.

One of the powerful statistic tests to examine for the normality of input data
is Anderson-Darling Test. This test measures the distance between the hypothesized
distribution and the empirical cumulative distribution function to test the null
hypothesis that the data set follows a specific distribution. For the normality test of
a data set, the procedure is as follows:

1. Arrange all data in ascending order.

2. Calculate the mean and standard deviation of the data set as in Equation 2.7.

µ̂ = 1
n

i=n∑
i=1

Xi, (2.7a)

σ̂2 = 1
n− 1

i=n∑
i=1

(Xi − µ̂2)2, (2.7b)

where Xi, for i = 1,2,..., n is n data points in the sorted order X1<X2<...<Xn.
µ̂ and σ̂ are the estimated mean and standard deviation respectively.

3. Standardize each Xi value to create a new Yi value as follows:

Yi = Xi − µ̂
σ̂

. (2.8)
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4. Calculate the Anderson-Darling parameter A, where A2 is given by:

A2 = −n− 1
n

i=n∑
i=1

(2i− 1)[ln Φ(Yi) + ln(1− Φ(Yn+1−i))], (2.9)

where Φ is the standard normal cumulative distribution function.

If A2 less than a defined threshold at a given significance level, the null hypothesis
of the normal distribution is rejected. The threshold values at different significance
levels (e.g. 0.05) are generally given in a form of a table.

Normality test can be visualized with the Quantile-Quantile plot (abbreviated
Q-Q plot) for the normal distribution. After sorting data in ascending order, the
theoretical quantile value for the ith sample is calculated as:

qi = Φ−1(i− 0.5
n

), (2.10)

where Φ−1 is the standard normal quantile function and n is the number of data
points. The input data are plotted along the y-axis while the theoretical quantile
values appear along the x-axis. If the plot is linear, the data set is likely from a
normal distribution (Figure 2.1).
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Figure 2.1: Q-Q plot for 100 data points (blue cross) generated from a normal
distribution with the mean value being 0 and the standard deviation being 1. The
red straight line represents the theoretical normal distribution.

2.2.3 Wilcoxon rank-sum Test
The Wilcoxon rank-sum Test (also called the Mann–Whitney U test) is a statistical
examination of the null hypothesis H0 that the distributions of two populations (i.e.
classes) are equal. The alternative hypothesis H1 is that the distribution is not equal.
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The advantage of the Wilcoxon rank-sum Test is that it does not require data sample
to have a normal distribution. There are two assumptions of the Wilcoxon rank-sum
Test, including:

1. All the observations from both classes are independent of each other, meaning
that one observation has no effect on the appearance of the others.

2. The responses are ordinal (i.e. data can be sorted).

The independent observation assumption depends on how the study test is designed
or how the researcher believes it is possible to consider the observations are indepen-
dent. If all assumptions are fulfilled, the Wilcoxon rank-sum Test calculates the W
parameter as follows:

1. Combine data from both classes, sort them in the ascending order and give
numeric ranks for them with the smallest rank being 1. If there are tied values,
the mean of rankings (before adjusting) are assigned for these values. For
example, the ranks of data set (3,5,5,5,9) are (1,3,3,3,5).

2. Sum up the ranks for data points from class 1 (symbolized as W1) and class 2
(symbolized as W2) separately.

3. If the sample size is small, select the smaller value of W1 and W2 to get the
p-value from the Wilcoxon rank-sum probability table according to the number
of data points of class 1 and 2.

4. If the sample size is large, W1 and W2 are standardized as follows:

µk = nk(n1 + n2 + 1)
2 , (2.11a)

σk =
√
n1n2(n1 + n2 + 1)

12 , (2.11b)

zk = Wk − µk
σk

, (2.11c)

where k=(1,2); n1, n2 are the number of data points from class 1 and 2
respectively; zk is the standardized parameter which follows the standard
normal distribution.

The p-value is the probability value calculated from the standard normal distribution
according to the zk value. If the p-value less than a level of significance (e.g. 0.05),
the null hypothesis is rejected at that level and the alternative hypothesis is accepted
(i.e. two populations come from different distribution).

2.2.4 Kruskal–Wallis Test
The Kruskal–Wallis Test is the extension of the Wilcoxon rank-sum Test, which can
only examine two classes. It can compare data from two or more groups but often
being used for three or more classes. The Kruskal–Wallis Test with a significant
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result indicates that at least one population stochastically dominates one other (i.e.
there are differences in the mean ranks between the populations). However, this
test cannot identify which population pairs are different. To test the relationship
between each population pair, the Wilcoxon rank-sum Test may be utilized.

The assumptions of the Kruskal–Wallis Test are the same as the Wilcoxon
rank-sum Test, which does not require normality in the data set. The null hypothesis
H0 of the Kruskal–Wallis Test can be given that there is not any difference in the
mean ranks between the classes. The alternative hypothesis H1 is that there are
differences in the mean ranks between the classes.

The procedure to calculate the p-value of Kruskal–Wallis Test is as follows:

1. Combine data from all classes and give numeric ranks for them with the smallest
rank is 1. If there are tied values, the mean of rankings (before adjusting) are
assigned for these values (the same as the first step of the Wilcoxon rank-sum
Test).

2. Calculate the H parameter by:

H = (N − 1)
∑C
i=1 ni(r̄i − r̄)2∑C

i=1
∑ni
j=1(rij − r̄)2 , (2.12)

where:

• N is the total number of data points among all classes
• C is the number of classes to examine
• ni is the number of data points in class i
• rij is the rank of the jth observation from class i
• r̄i is the average rank of class i
• r̄ is the average rank of all class (i.e. average value of all rij)

3. If the sample size is small (e.g. 10 samples for each class), use the calculated
H value to obtain the p-value from a table. Otherwise, the p-value can be
estimated by approximating the distribution of H by a chi-squared distribution
with g − 1 degrees of freedom [29].

If the p-value less than a level of significance (e.g. 0.05), the null hypothesis is rejected
at that level and the alternative hypothesis is accepted (i.e. there are differences in
the mean ranks between the classes). The Wilcoxon rank-sum Test can be used to
further test the differences between each pair.

2.3 Data classification with machine learning
Data classification can be approached with statistical models or machine learning.
While statistical models require specific mathematical proofs or arguments, machine
learning algorithms make predictions without being explicitly programmed. Machine
learning may also be helpful for exploring new features that have the potential to
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differentiate classes. The basic principle of machine learning is to build a mathematical
model based on input sample data (known as training data) and then apply this
model to new input data to make decisions.

There are generally four types of machine learning: supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning. In
supervised learning, there are specifically defined classes (also known as labels) and
each training data belongs to one of these classes. In contrast, unsupervised learning
does not require data being labeled. It associates data with different classes based on
the data structure. Semi-Supervised learning is at the middle of supervised learning
and unsupervised learning, which has a part of data being labeled. Reinforcement
learning is utilized to maximize the performance of a system in a particular situation
such as maximizing the score in a computer game. For a data classification problem
with defined classes, supervised machine learning is applied.

2.3.1 Machine learning training, validation and test scheme
In machine learning, collected data are usually divided into a training set and a
test set. When building the classification model, only training data are utilized.
The model after training is evaluated with the test data. If the number of training
samples is small while the designed model is too complicated, overfitting can happen.
Overfitting is the phenomena that the trained model is too adapted to a particular
set of data, making it fail to predict future observations (i.e. unseen data).

One common method to avoid overfitting is k-fold cross-validation, which
divides the training set into k equal sized subsamples. Of the k subsamples, k − 1
subsamples are for training models while the remaining subset is used to validate
the models. This process is repeated k times, with each of the k subsamples used
once as the validation set. Validation errors are the main factor to select the best
model. When k equals the number of training data points (i.e. only one data point
in each subsample), this method is named leave-one-out cross-validation.

In the testing process of supervised machine learning, the trained model
classifies the test data points into defined classes. The accuracy of a classifier is
defined as the number of correctly classified data points divided by the total number
of test samples. Besides the accuracy, sensitivity and specificity are also widely
utilized factors to evaluate a binary classifier (i.e. classifier of two classes). There are
four cases that could occur when testing a binary classifier including true positive,
false negative, false positive and true negative. For example, for a classifier between
healthy and sick people, these cases are defined as:

• True positive (TP): the classifier correctly detects a true sick person as being
from the sick people class.

• False negative (FN): the classifier incorrectly detects a true sick person as a
healthy person.

• False positive (FP): the classifier incorrectly detects a true healthy subject as
being from the sick people class.
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• True negative (TN): the classifier correctly detects a true healthy person as
being from the healthy people class.

From these four cases, sensitivity and specificity will be calculated as:

Sensitivity = number of true positives
number of true positives + number of false negatives

= TP

TP + FN

(2.13)

Specificity = number of true negatives
number of true negatives + number of false positives

= TN

TN + FP

(2.14)

Sensitivity is utilized to estimate the quality of the classification in detecting sick
subjects while specificity indicates the ability to avoid false detection of healthy
subjects as being sick. From the four cases above, the accuracy can be calculated as:

Accuracy = TN + TP

TN + TP + FN + FP
(2.15)

Some binary classifiers have a discrimination threshold that can vary to adjust
sensitivity and specificity. Normally, when sensitivity increases, specificity will drop
and vice versa. The receiver operating characteristic curve (abbreviated ROC) is a
graph showing the effect of adjusting the threshold with X-axis being specificity and
Y-axis being sensitivity (Figure 2.2). The area under the curve (abbreviated AUC),
which is the yellow shaded area in Figure 2.2, is another factor to asses the quality
of a classifier. A classifier with a higher AUC generally has a better classification
accuracy.

AUC: 0.97
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Figure 2.2: A receiver operating characteristic curve (ROC) with the area under
the curve (AUC) value being 0.97.
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2.3.2 Support vector machine classification
Support vector machine (SVM) is a supervised machine learning technique for data
classification. In this section, only SVM for two classes is described. If the two classes
are already linearly separable, a hard margin SVM can find the optimal boundary
between the two classes. When two classes contain noisy data or mostly separable, a
soft margin SVM is applied. For the last case in which two classes are not linearly
separable, a kernel SVM will be utilized. The following parts provide the details
about these types of SVM.

2.3.2.1 Hard margin support vector machine

The basic principles of SVM may be seen through a simple example of two-dimensional
(abbreviated 2D) data in Figure 2.3. In this example, class 1 and 2 are linearly
separable, and there are many lines that can differentiate them. The margin is the
smallest distance from the closest data points for the two classes to the line. The
problem is to find the separating line which generates the largest margin. Basically,
SVM is a method to find a hyperplane (or a line for 2D data) to separate two classes
with a maximum margin between classes.

Figure 2.3: An example of SVM on two linearly separable classes. The H1 and
H2 lines can separate class 1 and 2 but with a smaller margin than H3, which is
calculated by SVM. H3 is also the line that can assure an equal margin for both
classes.

Assume that the training set is (x1, y1), (x2, y2),..., (xN , yN) where xi ∈ Rd

is the input data with d-dimensional; yi is the label of xi, and N is the total number
of training data points. The sought hyper-plane follows the equation wTx + b = 0,
where w is the d dimension parameter vector and b is the offset. Assume that after
classification, class 1 is on the positive side of the hyper-plane and labeled 1 while
class 2 is on the opposite side and labeled −1. The distance h from one data point
(xn, yn) to the hyper-plane and the margin are calculated as:

h = yn(wTxn + b)
||w||

(2.16)
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margin = min
n

yn(wTxn + b)
||w||

(2.17)

The problem in SVM is to find w and b so that the margin is maximum or mathe-
matically expressed as:

(w, b) = arg max
w,b

{
min
n

yn(wTxn + b)
||w||

}
(2.18)

It is noticeable that when w and b are replaced by kw and kb, the margin is
unchanged. Therefore, we can assume that the closest points to the hyper-plane
fulfill the condition:

yn(wTxn + b) = 1 (2.19)

Two lines wTx+b = ±1 are called the support vectors, which have the same distances
to the the hyper-plane. The line wTx + b = 1 is support vector of class 1 (labeled
1) while wTx + b = −1 is the support vector of the class 2 (labeled −1). With this
condition, for any k value we have:

yk(wTxk + b) ≥ 1 (2.20)

This means that there is no point in the area between two support vectors. The
problem (2.18) becomes

(w, b) = arg max
w,b

1
||w||

Subject to: 1− yn(wTxn + b) ≤ 0,∀n = 1, 2, ..., N
(2.21)

Problem (2.21) can be solved by using the Lagrange function [30], but in this report,
the detailed solution is out of scope and will not be provided. The solution, in this
case, is called hard margin SVM and only works with linearly separable classes. After
finding w and b or the hyperplane, for a new data x, the classification is:

class(x) = sgn(wTx + b+ τ) (2.22)

Sgn is the sign function which returns −1 if its input is negative and 1 if its input
is positive. wTx + b is usually called the score of the test subject with the trained
classifier. τ is the added decision value to balance between the sensitivity and
specificity.

2.3.2.2 Soft margin support vector machine

Soft margin SVM is developed to replace hard margin SVM when input data contains
noise or outliers as on example showed in Figure 2.4a. The line H1 is found by hard
margin SVM, which produces a very small margin between two classes. Meanwhile,
if the noisy data point is sacrificed (excluded when determining the margin), the
separable line H2 derived using soft margin SVM creates a much bigger margin
between two classes. If two classes are only mostly linearly separable as in Figure 2.4b,
hard margin SVM cannot work. However, if some data points that close to the
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(a) Data with noise. (b) Almost linearly separable data.

Figure 2.4: Hard SVM margin does not work well with data including noise (or
outlier) (a) and data that is almost linearly separable (b). The dark solid line (H1)
is found by hard margin SVM method while the dashed dark line is detected by a
new method called soft margin SVM.

margin between two classes are sacrificed, a separable line could be found with a
quite large margin (the dashed dark line in the Figure 2.4b).

The most different characteristic of soft margin SVM compared to hard margin
SVM is the way to balance between the sacrificed points and the margin. With
two selected support vectors, the sacrificed points are defined as the points in the
area between two support vectors (not situated on the support vectors) or in the
wrong class. To solve this problem, a new parameter named ξi is introduced. For
the points not being sacrificed, ξi is 0 while for sacrificed points, ξi is their distance
to the support vector of their true class. Mathematically, ξi = |wTxi + b− yi| with
xi ∈ Rd is the input data with dimension d, yi is its label (−1 or 1 as defined in
the hard margin SVM part), and w, b are parameters of the sought hyper-plane.
Therefore, the level of sacrifice can be represented by the sum of all ξi values, and
the new optimization problem is to find the minimum value of:

||w||+ C
N∑
i=1

ξi (2.23)

Where C is a positive constant utilized to balance between margin and the number
of sacrificed points. The condition also turns in to:

yi(wTxi + b) ≥ 1− ξi ⇔ 1− ξi − yi(wTxi + b) ≤ 0, ∀i = 1, 2, ..., N (2.24)

To sum up, the final problem is:

(w, b, ξ) = arg min
w,b,ξ
||w||+ C

N∑
i=1

ξi

Subject to: 1− ξi − yi(wTxi + b) ≤ 0,∀i = 1, 2, ..., N
ξi ≥ 0,∀i = 1, 2, ..., N

(2.25)

In this report, the detailed solution of soft margin SVM will not be analyzed. However,
it is notable that when C is large, the solution will try to reduce ∑N

i=1 ξi, making less
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sacrifice. In contrast, when C is small, the solution will focus on minimizing ||w|| or
maximizing the margin. As a result, the sacrifice will be larger.

2.3.2.3 Kernel SVM

When the input data is not linearly separated, kernel SVM may be applied. Kernel
SVM utilizes a function Φ to transform input data x into a new dimension where
data become linearly separable or mostly linearly separable. From that, hard or soft
SVM may be utilized to classify the data. Briefly, kernel SVM is the solution for the
following problem:

(w, b, ξ) = arg min
w,b,ξ
||w||+ C

N∑
i=1

ξi

subject to: 1− ξi − yi(wTΦ(xi) + b) ≤ 0,∀i = 1, 2, ..., N
ξi ≥ 0,∀i = 1, 2, ..., N

(2.26)

K(xi, xj) = Φ(xi)TΦ(xj) is called kernel function. There are four basic kernel
functions:

• Linear: K(xi, xj)=xTi xj

• Polynomial: K(xi, xj)=(γxTi xj + r)d, γ > 0

• Radial basis function (RBF): K(xi, xj)=exp(-γ||xi − xj||2), γ > 0

• Sigmoid: K(xi, xj)=tanh(γxTi xj + r)

γ, r, d are kernel parameters which could be adjusted to achieve the best classification
result.
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3.1 Measurement setup
In this experiment, ten porcine models are utilized for testing. A belt with eight
microwave antennas named A1, A2, A3, A4, A5, A6, A7, and A8 is wrapped
around the abdomen/thorax region of the pigs (Figure 3.1). The even numbered
antennas (A2, A4, A6, and A8) are on the left side of the median line while the odd
numbered antennas (A1, A3, A5, and A7) are on the right side. Figure 3.2 depicts
the approximate location of the antennas around the abdomen/thorax.

Figure 3.1: The microwave belt attached around the thorax of the pig.

Figure 3.2: The arrangement of eight antennas around the abdominal region with
the even and odd numbered antennas being on the left and right side respectively.
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Table 3.1 indicates the experiment protocol in chronological order. For
hemoperitoneum, the antenna belt is wrapped around the abdomen region, while
in thorax trauma (i.e. pneumothorax, hemothorax, and polytrauma) experiments,
the antenna belt is around the thorax region. During the experiment of 1000 ml
polytrauma (i.e. state L750L1000), pig 10 is not physiologically stable so the state
L750L1500 is skipped for this pig. Pig 9 also does not tolerate 1500 ml polytrauma
(i.e. state L750L1500) so there are data of only 8 pigs for the state L750L1500.

Table 3.1: Measurement protocol in chronological order.

Type State Definition

Pn
eu
m
ot
ho

ra
x T-BL-BS Healthy subjects without any surgery (T = Thorax; BL =

baseline; BS = before surgery).
R-BL-AS Healthy subjects with a catheter attached into the right

pleural space to inject air. The left lung is kept healthy (R
= right; AS = after surgery).

R50 50 ml air is injected into the pleural cavity through the at-
tached catheter (named 50 ml pneumothorax).

R200 200 ml pneumothorax.
R500 500 ml pneumothorax.
R1000 1000 ml pneumothorax.
R1500 1500 ml pneumothorax.

H
em

ot
ho

ra
x L-BL-AS 1500 ml air from the previous test is kept in the right pleural

space. A catheter is attached into the left pleural space to
inject blood (L = left).

L50 50 ml blood is injected into the left pleural cavity (named
50 ml hemothorax).

L200 200 ml hemothorax.
L500 500 ml hemothorax.
L750 750 ml hemothorax.

Po
ly
tr
au

m
a L750L50 750 ml blood from the previous test is kept in the left pleu-

ral space and 50 ml air is added into the left pleural cavity
(named 50 ml polytrauma).

L750L200 200 ml polytrauma.
L750L500 500 ml polytrauma.
L750L1000 1000 ml polytrauma.
L750L1500 1500 ml polytrauma.

H
em

op
er
ito

ne
um AB-BL-BS Healthy subjects without any surgery (AB = abdominal
bleeding).

BL-AS Healthy subjects with a catheter attached into the abdomi-
nal cavity by surgery to inject porcine blood.

AB500 500 ml blood is injected into the abdominal cavity (named
500 ml hemoperitoneum).

AB1000 1000 ml hemoperitoneum.

After setting up one state (e.g. AB1000) for each pig, the antenna belt
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is wrapped around the abdomen/thorax area. The microwave measurements are
performed with the following procedure:

1. The microwave device automatically chooses one antenna (e.g. A1) to transmit
a wide-band wave with the frequency range from 1.6 MHz to 2.0 GHz. The
remaining antennas measure the received signal. The reflection is also recorded.

2. Another antenna (e.g. A2) is automatically chosen as a transmitter by the
microwave device. The transmitted frequencies are the same as in the step 1.
This step is repeated until all eight antennas are chosen as a transmitter.

3. Manually repeat the step 1 and 2 ten times to obtain information about the
spread (variance) of data.

There are eight antennas, 630 frequency steps (from 1.6 MHz to 2.0 GHz) and 10
repeated measurements (step 3). Therefore, for 10 pigs at one state, the data
dimension is 8× 8× 630× 100, which represents "sending × receiving × frequency
× measurement index". For each frequency f , the S-parameters are calculated and
stated as Sij(f) where i is the transmitting antenna and j is the receiving antenna.
Due to the symmetry of the measurement system, Sij(f) = Sji(f).

3.2 Data analysis
Data of four torso trauma types including hemoperitoneum, pneumothorax, hemoth-
orax and polytrauma are analyzed separately, but the analysis steps are similar.
Firstly, the division and combination of S-parameters are proposed. Secondly, the
variance between repeated measurements is evaluated. Then, the changes in trauma
data compared to the normal state are explored to derive consistent trends. For
each coefficient, statistic tests are applied to test the significant difference between
normal and trauma states. Finally, classification methods are tested with different
S-parameters combinations.

3.2.1 Coefficient division and combination
A further distance between sending and receiving antennas generally yields a lower
magnitude. Therefore, to manage a large number of coefficients, S-parameters can be
divided into different levels based on the distance between transmitting and receiving
antennas in the belt. Based on the antenna arrangement in the belt (Figure 3.2),
there are eight S-parameter levels in total. Level 1 is the first nearby antennas, level
2 being the second nearby antennas and so on. Specific S-parameters of each antenna
level are as follows:

• Level 0: S77, S55, S33, S11, S22, S44, S66 and S88.

• Level 1: S75, S53, S31, S12, S24, S64 and S86.

• Level 2: S73, S51, S32, S14, S26, and S48.

• Level 3: S71, S52, S34, S16, and S28.
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• Level 4: S72, S54, S36, and S18.

• Level 5: S74, S56, and S83.

• Level 6: S76, and S85.

• Level 7: S78.

For hemoperitoneum, the examination by ultrasound shows that in bleeding cases,
blood is usually predominant around either left or right midaxillary line. Therefore,
instead of testing S-parameters on the left and right separately, the average magni-
tude/phase of symmetric S-parameters between the left and right side (e.g. S75 and
S86) are utilized. If Sij and Smn are symmetric S-parameters, the average value of
Sij and Smn is denoted as Sij+mn.The magnitude and phase of Sij+mn are calculated
as follow:

|Sij+mn|(magnitude) = |Sij|+ |Smn|2
∠Sij+mn(phase) = ∠Sij + ∠Smn

2

(3.1)

The remaining number of coefficients after this process are 12 for transmission
coefficients and four for reflection coefficients, including:

• Level 0: S77+88, S55+66, S33+44 and S11+22.

• Level 1: S75+86, S53+64, and S31+42.

• Level 2: S73+84, S51+62, and S32+41.

• Level 3: S71+82, and S52+61.

• Level 4: S72+81, and S54+63.

• Level 5: S74+83.

• Level 6: S76+85.

Regarding pneumothorax and hemothorax, since the trauma occurs in either
the right or left lung, S-parameters are divided into the left and right side. This
process leads to 12 included S-parameters:

• Level 0 right: S77, S55, S33 and S11.

• Level 0 left: S22, S44, S66 and S88.

• Level 1 right: S75, S53, and S31.

• Level 1 left: S24, S64 and S86.

• Level 2 right: S73 and S51.

• Level 2 left: S26 and S48.
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• Level 3 right: S71.

• Level 3 left: S82.

It should be noted that in general, a higher level S-parameters/coefficients refers to
a longer distance between transmitting and receiving antennas in the belt and vice
versa.

3.2.2 The magnitude variance of repeated measurements
As mentioned in the measurement procedure (section 3.1), for one subject, at a
specific state (e.g. BL-AS state), there are ten repeated measurements. By examining
the variance of these repeated measurements, the stability of the measurement
system as well as the effect of pig’s movement, blood circulation and breathing can
be assessed. With limited time for the master’s thesis, we only examine the variance
in magnitude.

The variance in percentage unit can be calculated as standard deviation
divided by the average value:

vij(f) =
√∑10

k=1 || log(|Skij(f)|)− log(Savgij(f))||2
10

100
|| log(Savgij(f))|| (3.2)

where k is the measurement index; i and j are the transmitting and receiving antennas
respectively; f is the frequency; Savgij(f) is the average magnitude of Skij(f) for k
from 1 to 10 (ten repeated measurements). The logarithm scale is applied to avoid
unexpected high variances when Savgij(f) is close to zero, i.e. the received signal is
mostly noise. Only measurements having too high variance (e.g. 30 %) across a large
frequency range (e.g. 1 GHz) are removed from the analysis.

3.2.3 Data pre-processing
To reduce the effect of signal interference and make data interpretation clear, espe-
cially between antenna pairs at a far distance, a smoother developed by Eilers is
applied [31]. This smoother is fast and gives continuous control over smoothness.
In this master’s thesis, the details about this smoother are out of scope. For the
magnitude, although data are interpreted in logarithm unit, the statistical tests and
classification use the raw data. Meanwhile, for the coefficient phase, the raw data in
radian are utilized.

3.2.4 Analysis of the change caused by trauma
The data analysis results indicate that the insertion of a catheter affects the measured
signal. Therefore, only data after the catheter insertion are compared. The analysis
is divided into four separate parts with respect to four types of torso trauma:
hemoperitoneum, pneumothorax, hemothorax, and polytrauma. The normal states
(also called baseline) for four trauma types are different. For pneumothorax and
polytrauma, the baseline (abbreviated BL) is R-BL-AS state (i.e. healthy subjects
after surgery on the right lung). Meanwhile, to examine solely hemothorax, L-BL-AS
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state (i.e. 1500 ml air in the right pleural space along with a catheter attached into
the left pleural space) is considered the baseline for hemothorax. The baseline for
hemoperitoneum is BL-AS state, (i.e. healthy subjects with a catheter attached into
the abdominal cavity).

To explore the trend caused by trauma, baselines are subtracted from trauma
states (data from the same pig, S-parameter and frequency are subtracted). For each
S-parameter, the mean and standard deviation value of 100 measurements (10 pigs
× 10 repeated measurements) are showed. If there is a common trend among ten
pigs, it should appear in the average data. The standard deviation helps indicate
how consistent the trend is.

Transmission and reflection coefficients are analyzed in both phase and mag-
nitude. If there is any similar trend among coefficients, the next step is to test if the
sought trends are consistent within ten pigs for each coefficient. A trend is considered
consistent if it appears in all pigs for a similar frequency range.

3.3 Statistic examination
The statistic tests examine each coefficient and trauma type separately. The mean
magnitude and phase across the frequency range 0.1–2 GHz are calculated for each
coefficient. The reason data at frequency below 0.1 GHz being excluded is shown in
section 4.1.2. For hemoperitoneum, pneumothorax and hemothorax, each class (i.e.
state) has 100 data points (10 pigs × 10 repeated measurements). Meanwhile, for
polytrauma, since pig 10 did not tolerate 1000 ml and 1500 ml air (i.e. L750L1000
and L750L1500 state), only 80 data points are used for these classes.

The first examination is to test the normal distribution for the data of each
class with the Anderson-Darling Test. The level of significance chosen for all statistic
tests in this master’s thesis is 0.05. The second test is the Kruskal–Wallis Test with
the data subtraction of baseline from trauma classes (Table 3.2). With an assumption
that measurements are independent of each other, the Kruskal–Wallis Test can be
utilized (see 2.2.4).

By subtracting baseline, the second test removes the effect of baseline difference
among 10 pigs from the data set. The third statistic test compares classes without
baseline subtraction (Table 3.2). The Kruskal–Wallis Test is first applied for all
classes. Then, coefficients showing statistically significant results are further analyzed
with the Wilcoxon rank-sum Test to examine the difference between baseline and
each trauma size.

3.4 Classification with support vector machine
In this master’s thesis, a linear kernel support vector machine (SVM) is tested to
detect different types of torso trauma. SVM has advantages over other machine
learning methods such as direct geometric interpretation, mathematical tractability
and feasibility for a small number of training data sets without the overfitting
issues [32]. The results from “Data analysis” (section 4.1 and 4.2) indicates that both
the phase and magnitude of reflection coefficients have the potential to differentiate
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Table 3.2: The tested classes for each type of trauma. BL stands for the baseline
of each trauma type and “-BL” symbol indicates the subtraction of baseline.

Trauma type Second test’s classes Third test’s classes

Hemoperitoneum AB500-BL, AB1000-BL BL, AB500,
AB1000

Pneumothorax
R50-BL, R200-BL, BL R50,
R500-BL, R1000-BL, R200, R500,
R1500-BL R1000, R1500

Hemothorax
L50-BL, L200-BL, BL, L50,
L500-BL, L750-BL L200, L500,

L750

Polytrauma
L750L50-BL, L750L200-BL, BL, L750L50,
L750L500-BL, L750L1000-BL, L750L200, L750L500,
L750L1500-BL L750L1000, L750L1500

trauma states and baseline. Therefore, for each reflection coefficient, both phase
and magnitude are utilized as two dimensions of SVM input data. Meanwhile, for
transmission coefficients, only the magnitude is used.

Besides testing each coefficient (see the list of coefficients in section 3.1), other
coefficient combinations are tested (Table 3.3).

Table 3.3: Some data combinations for testing with SVM.

Index Test Definition
1 All coefficients This test utilizes all coefficients as different dimen-

sions of SVM input data.
2 All transmission This test utilizes only transmission coefficients.
3 All reflection Only reflection coefficients are utilized for SVM.
4 Sum coefficients This test calculates the sum of all transmission coef-

ficients and all reflection coefficients separately and
utilizes them as different dimensions of input data.

5 Sum transmission Similar to test 4 but utilize transmission coefficients
only.

6 Sum reflection Similar to test 5 but utilize summation of reflection
coefficients instead. It should be noted that for reflec-
tion coefficients, magnitude and phase are treated as
separate dimensions.

Due to the limited time for the master’s thesis, only the largest size of each
trauma type are tested with SVM. For example, the classification for hemoperitoneum
is between AB1000 and baseline while for polytrauma, classification is between
L750L1500 and baseline. Pig 9 and 10 could not tolerate L750L1500, so L750L1000
of pig 9 and L750L500 of pig 10 (i.e. the largest available trauma size of these pigs)
are utilized. The leave one out (LOO) method is applied to avoid overfitting for the
SVM method. The detailed steps are as below:
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1. Remove one subject (i.e. pig) for testing and build training set:
One out of 10 subjects (e.g. pig 1) is selected to be removed from the SVM
training and saved for testing. All 90 measurements from the nine remaining
subjects are utilized for training.

2. Train the SVM classifier on the training set.

3. Validate the trained SVM on the testing subject:
All 20 measurements (two classes × 10 repeated measurements) from the test
subject are validated with the trained SVM. If one data point (i.e. measurement
data) is correctly classified, its score is 1. In contrast, the incorrect classification
leads to score 0. The average score of 20 classifications is then calculated.

4. Repeat and calculate the final accuracy:
Select another subject (e.g. pig 2) for the testing and repeat three above steps.
Repeat this step until all subjects are selected one time as the testing subject
(the total number of iterations including the first loop is ten). The average
accuracy of 10 iterations is the final accuracy of the designed SVM.

Classification accuracy is utilized to select the best coefficient combination. The
chosen method is further analyzed with the receiver operating characteristic curve
(ROC), which is achieved by adjusting the decision values of the SVM classifier.
From the ROC, the area under the curve (AUC) as well as specificity and sensitivity
are calculated.
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Results

4.1 Data analysis for abdominal data
In this section, the microwave abdominal data characteristics are analyzed. Firstly,
the effect of the smoother on the signal is shown. Then, the stability of the mea-
surement device as well as the variance caused by the pig (e.g. breathing and blood
circulation) are examined by deriving the variation of repeated measurements. The
coefficient magnitude at the normal state is also analyzed. Finally, the difference
between baseline and hemoperitoneum states are explored.

4.1.1 Data pre-processing with the smoother
The applied smoother adjusts the smoothing degree of the output data by changing
a parameter named λ in a way that a bigger λ leads to a higher smooth level [31].
The smoothing effect of different λ values can be seen in Figure 4.1a. Based on
our experience, we believe that λ = 1000 is a good choice for removing much noise
without hiding data that is valuable for our study. The effect of the smoother
can be clearly seen with coefficients of far-distance antenna pairs (i.e. high level
S-parameters) where the signal to noise ratio is large (Figure 4.1b). In this master’s
thesis, the smoother with λ = 1000 is utilized.

0 0.5 1 1.5 2

Frequency/GHz

-75

-70

-65

-60

-55

-50

-45

-40

M
a

g
n

it
u

d
e

/d
B

Original

=10

=100

=1000

(a) S86 (level 1 coefficient).
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(b) S81 (level 4 coefficient).

Figure 4.1: The original coefficient magnitude and the smoothed data with different
λ value for level 1 S-parameter S86(4.1a) and level 4 coefficient S81(4.1b).
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The applied smoother also helps remove abnormal peaks at the frequency
around 0.56 GHz for some coefficients (Figure 4.2). These peaks are considered
abnormal and should be removed because there is a high variance at these peaks
between ten repeated measurements. The variance could be up to 40 dB as shown
in Figure 4.2 between measurement 1 and 4. There is no clear pattern about which
coefficient has this phenomenon so it is likely due to interference from the outside
environment.
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Figure 4.2: S86 magnitude of pig 1 at BL-AS state with ten repeated measurements.
The abnormal large variance is observed at around 0.56 GHz. Some other pigs and
coefficients show the same pattern.

4.1.2 The variance of repeated measurements
There is a high variance (around 20 %) between 10 repeated measurements at the
lower end of the frequency range (Figure 4.3). This phenomenon can be seen in
all S-parameters, so data at frequencies lower than 100 MHz will not be further
analyzed. High variance values are also observed in some other cases. For pig 3 at
the state AB500, S86 shows one measurement being totally different from the other
nine measurements in a large frequency range (Figure 4.4). The same phenomenon
is found for S55 of pig 1 at the AB1000 state. The reason for this is unknown, and
these data should be removed before further analysis.

Besides the two cases above, Table 4.1 indicates the other cases with medium-
high variance (around 10 %) within repeated measurements (Figure 4.5). However,
since this variation occurs for several repeated measurements, these data are kept
for further analysis.

In general, the variance values depend on the magnitude. For low magni-
tudes (around −70 dB) like coefficients between far distance antennas (e.g. S85) or
measurements at low frequencies, the average variance is about 8 %. This could be
understood as for low magnitude signal, the signal to noise ratio is small, causing a
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Figure 4.3: A representative example of the high variance between 10 repeated
measurements at low frequencies. In this example, S75 magnitude of pig 2 at BL-AS
state is shown.
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Figure 4.4: The measurement 1 of S86 of pig 3 at the state AB500 is completely
different from the other repeated measurements.

high variance between repeated measurements. The variance is typically reduced
when the signal magnitude increase. For high magnitude (about −40dB) signal such
as between sequential antenna pairs (e.g. S75), the mean variance is approximately
1 %.

4.1.3 Coefficient magnitude characteristic
Signal magnitude depends on the frequency and the distance between the sending and
receiving antennas. Frequency variation leads to the change in the conductivity of
tissues, which may change the scattering pattern [33]. Meanwhile, a longer distance
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Table 4.1: All the cases found with medium-high variance in the collected data.

S-parameter Frequency Pig State
S12 1.54–1.64 GHz 1 AB500
S12 1–1.3 GHz 7 BL-BS
S12 0.5–1.3 GHz 7 BL-AS
S12 0.5–1.4 GHz 7 AB500
S12 1–1.2 GHz 7 AB1000
S12 0.8–1.4 GHz 9 BL-AS
S12 1–1.3 GHz 10 BL-AS
S46 0.9–1.2 GHz 10 BL-AS
S68 0.4–1.1 GHz 10 BL-AS
S75 0.7–1 GHz 10 BL-AS
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Figure 4.5: One example of medium-high variance among 10 repeated measurements
of pig 10 at the BL-AS state with S86.

between transmitting and receiving antennas may cause higher attenuation on the
received signal.

Regarding the reflection coefficients, the resonance frequency, where the
magnitude is lowest is at 0.75–0.9 GHz. There is a variation in the resonance frequency
among different antennas as indicated in Figure 4.6. In a 500 MHz bandwidth around
the resonance frequency, the magnitude is typically below −6 dB.

For the transmission coefficients, the maximum magnitude is typically at
0.8–1.2 GHz. The trend that further distance leads to lower signal magnitude can be
observed in Figure 4.7. The maximum magnitudes for different coefficient levels (i.e.
different distance between antenna pairs) are shown in Table 4.2. More examples of
other reflection and transmission coefficients can be found in Figure A.1, A.2, A.3,
A.4, and A.5.
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Figure 4.6: A representative example of S11, S22, and S33 of pig 10. The other
reflection coefficients of pig 10 and other pigs show the same shape with the resonance
frequency around 0.8 GHz.

Table 4.2: The maximum magnitude for different coefficient levels (in dB).

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
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Figure 4.7: An example of transmission coefficients from level 1 (S75), 2 (S73), 3
(S71), and 4 (S72) of one pig at BL-AS state.
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4.1.4 Comparison of healthy and hemoperitoneum
In this part, the changes caused by hemoperitoneum (i.e. AB500 and AB1000) in
both phase and magnitude are analyzed for transmission and reflection coefficients
separately.

4.1.4.1 Transmission coefficient

The average (among ten pigs) subtractions of baseline (BL) from hemoperitoneum
states show a trend in all transmission coefficients that at above 0.6 GHz, the magni-
tude is reduced when more blood accumulates in the abdominal region. Magnitude
decrease caused by blood accumulation is more obvious at lower level coefficients
(e.g. S75+86) than higher level coefficients (e.g. S74+83) (Figure 4.8; all coefficients are
showed in Figure A.6 - Appendix). The standard deviation is also typically smaller
at lower level coefficients. The average magnitude differences between BL and AB500
is at about 0.25–0.75 dB and between BL and AB1000 is 1–2.5 dB (Figure 4.9). At
frequencies below 0.6 GHz, although in some cases, magnitude differences are high,
there is not a clear trend about the effect of blood accumulation. The trend for each
pig can be observed through the mean coefficient magnitude across the frequency
range 0.6–2 GHz as shown in Figure A.7 - Appendix.

Figure 4.8: An example of the trend that blood accumulation in the abdominal
region dampens the signal magnitude at frequencies above 0.6 GHz. The solid lines
are the mean among all measurements of 10 pigs while the shaded areas are the
standard deviation. Coefficient combinations of level 1 and 5 are shown in this
example.

For the transmission coefficient phase, there is a large phase shift (up to 2π)
at frequencies below 0.6 GHz. Therefore, to investigate the change in phase, only
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Figure 4.9: The average (across frequencies above 0.6 GHz) magnitude differences
between BL and AB500/AB1000 for all transmission coefficient combinations (showed
in circle and diamond shape). The vertical line at each coefficient indicates the
standard deviation of all measurements. Magnitude drop at trauma states can be
seen for all coefficients.

data at frequencies above 0.6 GHz are analyzed. The results do not show any clear
pattern between coefficient combinations (Figure 4.10).

Figure 4.10: The mean (solid lines) and standard deviation (shaded areas) among
all measurements for some coefficient phases. Large phase shifts along the frequency
range can be seen through the high standard deviation.
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4.1.4.2 Reflection coefficient

The reflection coefficients show common trends in both phase and magnitude when
more blood is injected into the abdominal cavity. For the magnitude, there are
opposite trends between frequencies below and above a frequency threshold (sym-
bolized as fMThreshold, Figure 4.12) around 0.8 GHz. Below fMThreshold, a larger size
of hemoperitoneum has a lower magnitude while above this threshold, magnitude
increases are observed (Figure 4.11a). The highest average magnitude difference
between baseline and 1000 ml hemoperitoneum is about 1.5 dB.

Regarding the phase, at a frequency range around 0.8 GHz (symbolized as
fPRange), a larger size of hemoperitoneum has a higher phase value compared to
the baseline (Figure 4.11b). The highest average increase in phase is with 1000 ml
bleeding at around 0.2 rad. For both phase and magnitude, the standard deviation of
500 ml bleeding is relatively large compared to the mean difference between AB500
and baseline, which may make the classification become a challenge.

Besides fMThreshold and fPRange, two new parameters named fMRange and
fPMax are introduced. fMRange is the frequency range above fMThreshold where
hemoperitoneum at a larger size has a higher magnitude. Meanwhile, fPMax is the
frequency where the difference in phase between hemoperitoneum and baseline reach
the highest value (Figure 4.12). These frequency parameters vary between pigs and
coefficients.

The examination of the above trends for each pig indicates that only S77+88
has the consistent trends (both phase and magnitude) for both AB500 and AB1000
(Figure A.8, A.9). The other coefficients do not clearly follow the trend for some
pigs at AB500 or AB1000 state. Therefore, to estimate the frequency parameters
(i.e. fMThreshold, fMRange, fPRange and fPMax), the mean and standard deviation of
100 measurements of S77+88 are utilized (Figure 4.11). For AB1000, fMThreshold is
0.66–0.88 GHz while the stop frequency of fMRange is 1–2 GHz. Therefore, fMThreshold

can be set at 0.66 GHz and fMRange is 0.88–1 GHz. Regarding the phase for AB1000,
the inner boundary of standard deviation area (i.e. the mean− standard deviation
boundary) can be utilized to calculate fPRange. This value as calculated from
Figure 4.11b is 0.6–88 GHz.

Although the trend is clear, the classification between baseline and hemoperi-
toneum (AB500 and AB1000) classes may be difficult due to a large difference in
the baseline between pigs. An example is illustrated in Figure 4.13 and shows that
for S75+86, the maximum variation in the coefficient magnitudes of ten pigs is about
12 dB, while the largest difference between baseline and AB1000 is only about 4 dB.

4.2 Data analysis for thorax data

In this section, the microwave thorax data (i.e. pneumothorax, hemothorax ,and
poly trauma) characteristics are analyzed. A same smoother as for abdominal data
is applied for all data. The variance of repeated measurements are examined and the
magnitude characteristics are analyzed. The difference between baseline and each
thorax trauma type is explored separately.

35



4. Results

(a) Magnitude.

(b) Phase.

Figure 4.11: The subtraction of baseline from hemoperitoneum states in magnitude
(4.11a) and phase (4.11b) for reflection coefficients. The solid lines and shaded areas
are respectively the mean and standard deviation among all measurements of ten
subjects. Opposite trends for magnitude at below and above fMThreshold, and the
phase increase can be clearly seen.

4.2.1 The variance of repeated measurements

The high variances between repeated measurements are observed at the lower end of
the frequency range, which is similar to the abdominal data (Figure 4.3). Therefore,
data at frequencies lower than 100 MHz will be excluded. Unlike abdominal data
(Figure 4.4), the thorax data do not have any measurement being significantly
different from repeated measurements. Therefore, all measurements are included
for analysis. There are cases with the medium-high variance (around 10 %) within
repeated measurements (similar as in Figure 4.5), but this phenomenon can be caused
by pig’s movement or breathing, so these data should be included.
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Figure 4.12: fMThreshold, fMRange, fPRange and fPMax for the common trends of
reflection coefficients. It should be noted that fMThreshold is the start frequency of
fMRange.
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Figure 4.13: The large difference in magnitude and phase among ten pigs at the
baseline (blue line) and AB1000 state (red line).

4.2.2 Coefficient magnitude characteristic

The magnitude characteristics are analyzed based on all 100 measurements of ten
pigs at T-BL-BS state. Regarding the reflection coefficients, the resonance frequency
(where the magnitude is lowest) is at 0.8–1 GHz, and varies among different coefficients
or pigs (Figure 4.14a). For the transmission coefficients, data at above 0.8 GHz
typically have higher magnitude than at below 0.8 GHz (Figure 4.14b). In addition,
coefficients of lower levels (i.e. shorter direct path between transmitting and receiving
antennas) has higher magnitude (Figure 4.14b). More examples of other reflection
and transmission coefficients can be found in Figure A.10, A.11, A.12, A.13, A.14.
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(a) Reflection coefficients. (b) Transmission coefficients.

Figure 4.14: The mean (solid line) and standard deviation (shaded area) of all
reflection coefficients (4.14a) and transmission coefficients of level 1, 2 and 3 (4.14b).
The resonance frequency is at 0.8–1 GHz and lower level coefficients typically have
higher magnitude.

4.2.3 The change caused by thorax trauma
In this part, the change in data of pneumothorax, hemothorax and polytrauma
compared to the baseline are provided. Transmission and reflection coefficients are
analyzed separately in both phase and magnitude.

4.2.3.1 Transmission coefficient

The mean magnitudes of all measurements show a trend in thorax trauma types that
above 0.6 GHz, thorax trauma at a larger size has a lower magnitude (Figure 4.15;
data for all transmission coefficients are shown in Figure A.15, A.16, A.17 - Appendix).
Although in pneumothorax or hemothorax experiments, only one lung was tested
with traumatic injuries, both left and right coefficients show this trend. It is noted
that the trend is not clear for the level 3 coefficients (i.e. S28 and S17 - Appendix).
In addition, the standard deviation is quite high at some frequencies (e.g. above
1.5 GHz of S86 and S75, pneumothorax), indicating that this trend may substantially
vary among ten pigs.

The average magnitude over the frequency range 0.6–2 GHz showed a similar
trend as mentioned above. For pneumothorax and hemothorax, all examined trans-
mission coefficients have this trend (Figure 4.16a, 4.16b). Meanwhile, for polytrauma,
the mean magnitude of L750L500 is lower than L750L1000 at some S-parameters (e.g.
S57). The average magnitude drop between 1500 ml pneumothorax (i.e. R1500) and
baseline is about 0.25–1.25 dB while this figure between baseline and 750 ml hemoth-
orax (i.e. L750) is 0.25–1.5 dB. The mean magnitude change caused by L750L1500
polytrauma can be up to 5 dB. Regarding the standard deviation, S64 and S62 show
a variation up to 1 dB above the zero line at the largest size of pneumothorax and
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(a) Pneumothorax.

(b) Hemothorax.

(c) Polytrauma.

Figure 4.15: Some examples of the mean (solid line) and standard deviation
(shaded area) of the difference in magnitude between baselines and pneumothorax
state (4.15a), hemothorax state (4.15b) and polytrauma state (4.15c). Magnitude
drop at trauma states can be seen though the mean values.
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hemothorax, meaning that some cases have the magnitude increase in the thorax
trauma. Polytrauma shows a high standard deviation up to 4 dB at L750L1000 or
7 dB at L750L1500. The data for each pig and coefficient are shown in Figure A.18,
A.19, A.19 - Appendix.

(a) Pneumothorax. (b) Hemothorax. (c) Polytrauma.

Figure 4.16: The mean (over the frequency range 0.6–2 GHz) magnitude difference
between healthy state and thorax trauma types. The solid lines are the average of
100 measurements while shaded areas are standard deviation. Magnitude drop at
trauma states and high standard deviation at some coefficients can be observed.

For the transmission coefficient phase, large phase shifts at above 0.6 GHz
are observed as similar to abdominal data (Figure 4.10). Therefore, the phase of
transmission coefficient is not further analyzed.

4.2.3.2 Reflection coefficient

A similar trend as mentioned in the reflection coefficients of abdominal data is
observed in thorax data (Figure 4.17; all data are in Figure A.21, A.22, and A.23 -
Appendix). For pneumothorax and hemothorax, the standard deviation indicates that
only S77 and S88 have consistent frequency parameters (i.e. fMThreshold, fMRange, and
fPRange) among all measurements. The largest change between 1500 ml pneumothorax
and baseline is quite similar between S77 and S88 at about 0.4 dB in magnitude
and 0.06 rad in phase. Meanwhile, for hemothorax, the difference between 750 ml
hemothorax and baseline is higher for the left side (where hemothorax happens)
than the right side. For example, the highest mean differences for S88 (left side) are
0.5 dB in magnitude and 0.08 rad in phase while these figures for S77 (right side) are
0.25 dB and 0.04 rad. Regarding polytrauma, although the mean difference between
L750L1500 and baseline is high, its deviation is also too large that there is not a
consistent frequency range for the trend.

Frequency parameters for the trend of S77 and S88 are estimated based on the
standard deviation range of the subtraction between baseline and the highest level
of pneumothorax/hemothorax (i.e. R1500-BL or L750-BL). The estimation method
is similar to that applied for abdominal data (section 4.1.4.2). For polytrauma, due
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Figure 4.17: An example of the common trend in both magnitude and phase among
ten subjects for S77 and pneumothorax state. The solid lines are the average values
across ten subjects while the shaded areas are the standard deviation.

to the instability of L750L1500 state, these frequency values are derived from the
difference between L750L1000 and baseline. The result indicates that the frequency
parameters are relatively similar between S77 and S88 and there is not much difference
between three thoracic trauma types (Table 4.3). From this table, fMThreshold can be
set to 0.77 GHz; fMRange is 0.88–1 GHz, and fPRange is 0.7–0.95 GHz.

Table 4.3: Frequency parameters (GHz) for three types of thorax trauma.

Trauma fMThreshold fMRange fPRange
S88 S77 S88 S77 S88 S77

Pneumothorax 0.81 0.77 0.87–1 0.86–1 0.72–0.93 0.72–0.93
Hemothorax 0.77 0.77 0.88–1 0.85–1.3 0.7–0.97 0.7–0.95
Combination 0.8 0.77 0.87–1.1 0.85–1.1 0.7–0.96 0.7–0.94

Although some consistent trends are clearly seen in thorax trauma, there is
still the same classification challenge caused by the large baseline variation between
pigs as mentioned in abdominal data. The challenge for thorax data may be
even more difficult than for abdominal data because compared to the baseline, the
magnitude/phase difference is smaller for thorax trauma than for hemoperitoneum.
In addition, for thorax trauma, some pigs do not follow the trend of transmission
coefficients or reflection coefficients at L750L1500 states.

4.3 Statistic examination
In this section, the results of three statistic tests are provided. The first test is to
examine the normality of collected data for each coefficient at one state. The second
examination tests the significant change in magnitude or phase between trauma
states and baseline. The final examination tests whether it is still distinguishable
between baseline and torso trauma when the differences in baseline between subjects
are considered. The input data points are the mean magnitudes/phases over the
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whole examined frequency range (i.e. 0.1–2 GHz). It should be noted that since
transmission coefficient phases do not show any consistent trend as indicated in the
data analysis result section, these data are not analyzed with statistical tests.

4.3.1 Normal distribution test
The Anderson-Darling Test for normality is provided by MATLAB as the function
adtest. This test is applied for the data set of each class (i.e. each state) and each
coefficient separately. The input data size for each test is 100 (corresponding to 100
measurements).

All the test results are statistically significant (i.e. p-value < 0.05), meaning
that the input data do not come from a normal distribution. For this reason, all
statistic tests which require data samples coming from a normal distribution cannot
be applied. One example for Q-Q plot of a data set of S73+84 at AB-BL-AS state is
provided in Figure 4.18, which shows that the data points are not linear and do not
approximate the theoretical red line.
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Figure 4.18: Q-Q plot of data set at AB-BL-AS state of S73+84.

4.3.2 Examination on the subtraction of baseline
In this section, the Kruskal–Wallis Test is utilized to test if the consistent changes
found in the previous section between torso trauma states and baselines are significant.
Hemoperitoneum, pneumothorax, hemothorax and polytrauma are tested separately
and the subtraction of baseline data is utilized in this test.

4.3.2.1 Coefficient magnitude

For the hemoperitoneum cases, the obtained p-values are almost zero for all coefficients
(Figure 4.19a), while for thorax trauma, only S66 of polytrauma does not have
statistically significant result (Figure 4.19b). Therefore, for almost all coefficients,
the null hypothesis is rejected and the alternative hypothesis is true. In other words,
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there are significant changes in the obtained signal of torso trauma compared to the
normal state.
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Figure 4.19: The p-value of Kruskal–Wallis Test for different types of trauma using
coefficient magnitude. The black dashed line is the statistically significant level at
0.05. Almost all coefficients show statistically significant results.

The coefficient having smallest p-value for hemoperitoneum, pneumothorax,
hemothorax and polytrauma are S73+84, S75, S84 and S15 respectively. Figure 4.20
shows the mean and range of data from examined classes for these four coefficients.
For hemoperitoneum, pneumothorax and hemothorax, when the trauma size increases,
magnitude drop can be clearly observed. Meanwhile, for polytrauma, the median
magnitude drop of L50-, L200-, L500- and L1000- is significantly lower than L1500-.
In addition, for L750L1500, the variation of magnitude decrease is also much higher
than the other trauma sizes.

4.3.2.2 Coefficient phase

In this part, only reflection coefficients are examined. The results show that all
tests are statistically significant (Figure 4.21). S11+22 have the smallest p-value for
hemoperitoneum while for thorax trauma, the smallest p-value of each trauma type
is with S11. Some examples of the mean and range of the difference in phase between
baseline and trauma types are shown in Figure B.1.
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Figure 4.20: The magnitude mean (the red line) and range of the difference
between the baselines and four types of trauma. The “-” symbol at the end of some
x-axis labels indicates the subtraction of baseline. It is noted that for the x-axis of
polytrauma, the symbol L750 (represents hemothorax) is skipped for clarity.
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Figure 4.21: The p-value of Kruskal–Wallis Test for different types of trauma using
coefficient phase. The black dashed line is the statistically significant level at 0.05.
All tests are statistically significant.
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4.3.3 Examination on the difference between healthy and
trauma classes

The third statistic test utilizes the Kruskal–Wallis Test and the Wilcoxon rank-sum
Test to examine the difference between healthy and trauma classes without baseline
subtraction.

4.3.3.1 Coefficient magnitude

For hemoperitoneum, the results are statistically significant (i.e. p-value <0.05)
for all coefficients (Figure 4.22a). Therefore, the null hypothesis is rejected or in
other words, there is a significant difference between baseline and hemoperitoneum
classes. For pneumothorax and hemothorax, most of the transmission coefficients
have p-value above 0.05 while many reflection coefficients (e.g. S55) have statistically
significant results (Figure 4.22b). About polytrauma, only S66 has p-value higher
than the significant level. The difference in data mean and range between healthy
and trauma classes from the coefficients generating the smallest p-values can be
observed from Figure B.2.
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Figure 4.22: The p-value of Kruskal–Wallis Test for different types of trauma using
the magnitude of transmission coefficients. The black dashed line is the statistically
significant level at 0.05.
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Figure 4.23: The p-value of Wilcoxon rank-sum Test between baseline and different
trauma sizes. The black dashed line is the statistically significant level at 0.05. For
pneumothorax and hemothorax, p-values of transmission coefficients are not shown
due to their high values as indicated in the Kruskal–Wallis Test.
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All trauma types are further analyzed with the Wilcoxon rank-sum Test to
examine the relationship between baseline and different trauma sizes. For hemoperi-
toneum, between AB500 and BL, only few transmission coefficients (e.g. S73+48) have
statistically significant results while all p-values of reflection coefficients are below
the significant level (Figure 4.23a). All coefficients have significant results for the
test between AB1000 and BL.

For the thorax trauma, the general trend is that larger trauma size has lower
p-values (Figure 4.23b, 4.23c, 4.23d). For pneumothorax, none of S-parameters has
statistically significant result for R50 and R200 level while for R1500, all reflection
coefficients have p-value below the significant level. Regarding hemothorax, the result
for L50 is not statistically significant while only one S-parameter has p-value slightly
smaller than 0.05 for L200. Poly trauma has many coefficients showing p-value below
the significant level even for the lowest trauma level (i.e. L750L50).

4.3.3.2 Coefficient phase

All reflection coefficients have statistically significant results for the Kruskal–Wallis
Test of hemoperitoneum classes (Figure 4.24a). Regarding thorax trauma, many
S-parameters have p-value below the significant level for hemothorax and polytrauma
(Figure 4.24b). Meanwhile, for pneumothorax, only a few coefficients have statistically
significant results. Some examples of the mean and range of the difference in phase
between healthy and trauma types are shown in Figure B.3.
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Figure 4.24: The p-value of the Kruskal–Wallis Test with coefficient phase for
different types of trauma. The black dashed line is the statistically significant level
at 0.05.

The Wilcoxon rank-sum Test is applied to examine the significant difference
between baseline and each trauma size. For hemoperitoneum, all tests have statisti-
cally significant results while only S11 has significant results for all trauma sizes of
pneumothorax (Figure 4.25a, 4.25b). Regarding hemothorax, while all tests for the
largest trauma size (i.e. L750) are statistically significant, none of the S-parameters
has p-value smaller than the significant level for L50 (Figure 4.25c). In contrast,
except S66, all other coefficients have statistically significant results for all trauma
sizes of polytrauma (Figure 4.25d).
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Figure 4.25: The p-value of the Wilcoxon rank-sum Test between healthy state
and different trauma sizes. The black dashed line is 0.05 statistically significant level.
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4.4 Classification with support vector machine
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Figure 4.26: The SVM classification accuracy (in %) between baselines and the
largest trauma sizes of four trauma types. Figure 4.26a is the result for each
coefficient, while 4.26b is for different combinations of all transmission and/or
reflection coefficients.

The fitcsvm function from MATLAB is used for testing support vector ma-
chine (SVM). Regarding the analysis of each coefficient separately, the highest
accuracy is with S77+88 for abdominal bleeding, S11 for pneumothorax and poly-
trauma, and S84/S82 for hemothorax (Figure 4.26a). For the other combination tests
(Figure 4.26b), the use of only transmission coefficients (i.e. “all transmission or “sum
transmission") typically does not generate as high accuracy as reflection coefficients
(i.e. “all reflection" or “sum reflection"). The highest accuracy for hemoperitoneum is
at 95 % for the sum of all reflection combinations. For thorax trauma, the accuracy
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of pneumothorax and hemothorax are quite low at equal or below 70 % while for
polytrauma, the use of all coefficients generates the highest accuracy at 90 %.

The scatter plot of all measurements and the receiver operating characteristic
curve (ROC) of the best SVM model for hemoperitoneum and polytrauma is shown
in Figure 4.27 and 4.28. From Figure 4.27b, the classifier between AB1000 and
BL-AS can achieve 90 % specificity when the sensitivity is kept 100 %, but to get
100 % specificity, sensitivity is only 30 %. About polytrauma (Figure 4.28), to detect
all L750L1500 subjects (i.e. sensitivity = 100 %), none of normal subjects is detected
(i.e. specificity = 0 %). If specificity is kept 100 %, the sensitivity can be 50 %.

From these scatter plots, data of pig 3 at abdominal BL-AS or L750L1500
state are misclassified and have quite a far distance to the other measurements on
the same class. Another misclassification for polytrauma is with pig 7 at BL-AS
state.
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Figure 4.27: Scatter plot (4.27a) and receiver operating characteristic curve (ROC)
(4.27b) of the best SVM classifier between AB1000 and BL-AS.
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Figure 4.28: Scatter plot (4.28a) and receiver operating characteristic curve (ROC)
(4.28b) of the best SVM classifier between L750L1500 and BL-AS.
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Discussion

The main results of the master’s thesis (chapter 4) can be divided into three parts
including the signal change caused by traumatic torso injury, statistic tests for the
difference between baseline and trauma states, and the classification of baselines and
the largest size of each trauma type. Four examined trauma types are hemoperi-
toneum, pneumothorax, hemothorax and polytrauma. Similar signal changes from
baseline are observed among all trauma types, but the trends are different between the
magnitude and phase of reflection and transmission coefficients (see Figure 4.8, 4.11
for hemoperitoneum and Figure 4.15, 4.17 for thorax trauma). For statistic tests,
in general, almost all coefficient magnitude/phase have statistically significant re-
sults for hemoperitoneum and polytrauma while for pneumothorax and hemothorax,
the statistically significant results are most common for reflection coefficients (see
Figure 4.22, 4.24). Regarding the classification with SVM, the largest size of hemoperi-
toneum and polytrauma can be detected with 95 % and 90 % accuracy respectively,
but the accuracy for detecting hemothorax and pneumothorax is quite low (see
Figure 4.26).

5.1 Data analysis

5.1.1 The variance of repeated measurements

In general, the variation between ten repeated measurements is small when the
signal magnitude is above the noise level (approximately −70 dB), meaning that
the measurement system is generally stable. However, there are still several cases
with medium-high variance (see Figure 4.5). The reason for this could be related
to the measurement object, e.g. the pig’s movement, breathing or blood circulation.
It could also be related to the measurement system, e.g. antenna-skin contact can
vary due to the use of antennas not custom designed for torso measurements. The
current device is an experimental prototype, so further developments of the hardware
may make the measurement more precise and stable. High variance is also found at
frequencies below about 0.1 GHz (see Figure 4.3). This problem can be explained
to be due to the capacity coupling between the cables, antennas, and surroundings.
For this reason, the data of frequencies lower than 0.1 GHz are excluded from the
analysis. Only two measurements of two coefficient are removed from the analysis
due to high variations compared to other repeated measurements (see Figure 4.4).
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5.1.2 Signal characteristic and the change caused by trauma
For transmission coefficients, higher level coefficients generally have a lower magnitude
and larger variation between subjects (see Figure 4.14). The reason can be that a
longer distance between transmitting and receiving antennas causes more signal loss,
noise interference, and complex scattering pattern. When comparing baseline and
trauma states, the average data of all measurements show a similar trend among
all coefficients that at above around 0.6 GHz, signal magnitude drops in cases that
involve trauma (see Figure 4.8, 4.15). This trend is more obvious at lower level
coefficients, which may be due to their high signal to noise ratio. The trend for
hemoperitoneum seems more consistent along the frequency than for thorax trauma.
The explanation for this can be that in the thorax region, the variation on the collected
data caused by blood circulation as well as breathing may be more prominent than
in the abdomen region. Another noticeable thing is that although traumatic injury
is tested in either left or right lung for pneumothorax and hemothorax, antennas
on both left and right sides show magnitude drop (see Figure 4.15). Therefore, we
can conclude that air/blood accumulation can be detected by antennas that are not
right on the injury positions.

Regarding reflection coefficients, all coefficients show the resonance frequency
at 0.75–1 GHz (see Figure 4.14a). Although the trends caused by trauma are similar
among reflection coefficients, the standard deviation is different (see Figure 4.11).
The coefficients with the most consistent trend are S77 and S88. This result is
consistent with the ultrasound examination that blood accumulates mostly around
the left or right midaxillary line. The trend in reflection coefficients happens at
a specific frequency range (e.g. fPRange, fMRange) which varies between subjects.
For fPRange, its consistent range (calculated from ten pigs) is around the resonance
frequency while fMThreshold is approximately the resonance frequency (see Table 4.3).
The resonance frequency can be easily calculated as the smallest values of reflection
coefficients, so the relationship between the resonance frequency and the estimated
fPRange, fMRange and fMThreshold may be further analyzed to have a better estimation.

Although the trend is clear, in this master’s thesis work, we are unable to
identify any method to remove or diminish the large baseline difference between pigs
(e.g. Figure 4.13). The subtraction of symmetric coefficients (e.g. S75 - S86) is tried
to remove the baseline with a prediction that the baseline between left and right
symmetric antenna pairs can be similar. However, the results show that the baseline
difference between symmetric coefficients is still larger than the magnitude change
caused by trauma.

5.2 Statistic tests

5.2.1 Kruskal–Wallis Test
For baseline subtraction data, t he Kruskal–Wallis Test has statistically significant
results for almost all coefficients (see Figure 4.19). Without baseline subtraction,
some coefficients do not have statistically significant results (see Figure 4.22). This
is an indication of challenges caused by the baseline difference between pigs.
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For hemothorax and pneumothorax, there are not statistically significant
results for transmission coefficients. This is in agreement with the large standard
deviation among 10 pigs as indicated in the data analysis section (Figure 4.15). Mean-
while, some reflection coefficients have p-values below 0.05, showing that reflection
coefficients may have more potential for detecting hemothorax and pneumothorax
than transmission coefficients.

5.2.2 Wilcoxon rank-sum Test
Further tests between baseline and each size of trauma indicate that when more
blood/air is injected, the p-values are typically smaller (see Figure 4.23). This result
is quite consistent with the trends in “Data analysis” that the deviation from the
baseline is larger for a larger trauma size.

The test between BL and AB500 only has significant results with reflection
coefficients and two transmission coefficients, meaning that even with 500 mL blood
injected, the change from the baseline is not substantial (see Figure 4.23a). This
can be explained by the fact that the abdominal cavity is capable of holding a large
amount of blood (e.g. five liters), making the appearance of 0.5 L blood difficult
to detect. 50–200 mL pneumothorax and hemothorax also have none or only a few
coefficients having statistically significant results. However, the statistic tests utilize
only the average magnitude/phase across the whole frequency range, so these trauma
sizes may still be detected with the use of magnitude/phase at all frequency steps as
indicated in the classification section.

5.3 Classification with support vector machine

5.3.1 SVM with each coefficient combination
In general, the use of each coefficient separately can not generate as high accu-
racy as coefficient combinations of all transmission and/or reflection coefficients
(Figure 4.26a). However, the test for each coefficient may carry information about
the location of traumatic injuries. For hemoperitoneum, S73+84 and S77+88 have
the highest accuracy among coefficients, which is consistent with the ultrasound
examination about the location of blood accumulation. For pneumothorax, although
the accuracy is relatively low overall, the highest accuracy is for S11, which is placed
on the traumatic lung. Meanwhile, the highest accuracy for hemothorax is with S84
and S82, which are placed close to the midaxillary line of the tested lung. Regarding
polytrauma, both left and right antennas can achieve above 70 % accuracy.

5.3.2 SVM with all transmission and/or reflection coeffi-
cients

For six tested coefficient combinations, the use of all/summation of transmission
coefficients typically has lower accuracy than all/summation of reflection coefficients
(see Figure 4.26b). This result is in agreement with the statistic tests where the
reflection coefficients show more statistically significant results compared to the
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5. Discussion

transmission coefficients. Another reason for the low accuracy of transmission
coefficient combinations may be due to the difference in the magnitude range between
coefficient levels (see Figure 4.14b). When taking the summation of all transmission
coefficients, the magnitude of level 1 coefficients can dominate other levels, making
their contribution to the summation minimal. Normalization method, which equalizes
the power (i.e. the magnitude) between coefficients [34], is tested, but it is not
successful. The reason could be due to that the normalization transforms both
baseline and trauma signal to a same magnitude range, reducing the change caused
by trauma.

The highest accuracy for hemoperitoneum is 95 % with the summation of all
reflection coefficients, while for polytrauma, the use of all coefficients has the best
result with 90 % accuracy (see Figure 4.26b). The incorrect classification includes all
measurements of pig 3 at the normal and L750L1500 state, and pig 7 at the normal
state (see Figure 4.27, 4.28). The distance of misclassified measurements to other
measurements of the same class is quite far, which reduced the AUC value. The
data of incorrectly classified subject are investigated, but we have not found any
abnormality on the data.

These promising results indicate the potential of microwave technology for
detecting traumatic injuries. However, for the classification results, the high accuracy
is merely for serious trauma sizes. Therefore, more research is required to further
develop this technology. Further developments of the hardware would likely allow
us to make more sensitive measurements, and could then probably detect smaller
trauma sizes.

5.4 Limitation
Although consistent trends are found and the classification results are promising,
there are some limitations that need to be considered. Firstly, the total number
of training and testing subjects is small for a machine learning algorithm. This
may be one of the reasons for not having high classification accuracy at 1500 ml
pneumothorax and 750 ml hemothorax. To achieve a better detection result with a
small number of training subjects, further investigation on data pre-processing or
feature extraction is needed. Secondly, some repeated measurements show significant
variance as compared to the change caused by trauma. This might be due to the
subject’s movement itself or the variable antenna-skin contact of the prototype
instrument. In addition, in this thesis, the variance and signal characteristics in
phase are not analyzed even though the statistic tests show the potential of the
phase with significant results. Thirdly, the relationship between statistical tests
and classification results seems not being sufficiently explored. Further study about
the connection between p-value and classification results may be helpful. Finally,
although the data analysis section indicates different frequency ranges for different
trends caused by trauma, the statistic tests and SVM only test the use of the whole
frequency range. Finding a best/useful frequency range for torso trauma detection
may require a comprehensive work to avoid being bias.
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6
Conclusion

This pilot study indicated promising results for detecting torso trauma with microwave
technology. By calculating the mean and standard deviation of all data from
ten subjects, consistent trends between healthy and trauma were identified for
both transmission coefficients and reflection coefficients. All examined transmission
coefficients showed magnitude drop in trauma data. Meanwhile, the phase of reflection
coefficients was typically higher for trauma states. The magnitude of the reflection
coefficients had a more complex trend with magnitude decrease at frequencies lower
than a defined frequency threshold (which was close to the resonance frequency)
and magnitude growth above the frequency threshold. The differences between
healthy and trauma states were confirmed with the Kruskal–Wallis Test and The
Wilcoxon rank-sum Test. The tested SVM was also capable of detecting serious
hemoperitoneum and thorax trauma with 95 % and 90 % accuracy, respectively.
However, there were still some limitations to this research such as a small number
of subjects, low detection accuracy for small sizes trauma and significant variance
between repeated measurements.

Torso trauma is a crucial problem and there is a need for new methods
to diagnosis blunt torso trauma. This master’s thesis indicates that microwave
technology is a promising candidate to be used in the prehospital setting.
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7
Future work

Based on the promising results as well as limitations of this thesis work, some
investigations could be conducted to further develop microwave technology for
detecting torso trauma. The first step may be to asses the variability of antenna-skin
contact of the current antenna belt to check if the variance of repeated measurements
can be reduced. Plastic bags used for containing a matching liquid between antennas
and the skin may help to increase signal stability as indicated in the previous work on
microwave technology for detecting brain trauma [34]. When an improved antenna
belt is designed, more experiments are needed to examine the explored results in
this thesis such as the signal magnitude drop at trauma states. More subjects also
help improve the quality of machine learning algorithms.

While waiting for the above long term investigations, some further data
analysis can be tried. Firstly, instead of utilizing the whole frequency range (i.e.
0.1–2 GHz) as in the current statistic tests and classification, different frequency
ranges (bandwidth) may be tested to select the best bandwidth for torso trauma.
Secondly, for now, the coefficient combinations generating the highest classification
accuracy for abdominal bleeding and thorax trauma is not consistent (“sum of
reflection coefficients” for abdominal bleeding and “all coefficients” for thorax trauma).
Therefore, it may be more robust to explore a combination that can apply to both
trauma types. Finally, we can test other coefficient combinations for the classification
algorithms. For example, each level of transmission coefficients can be summed
separately to avoid the domination in magnitude of low level coefficients to high level
coefficients.
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Data analysis

A.1 Abdominal data
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A. Data analysis
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Figure A.1: The raw magnitude of some transmission coefficients of pig 1 in the
hemoperitoneum tests.
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Figure A.2: The raw magnitude of some transmission coefficients of pig 1 in the
hemoperitoneum tests.
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Figure A.3: The raw magnitude of some transmission coefficients of pig 1 in the
hemoperitoneum tests.
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Figure A.4: The raw magnitude of some transmission coefficients of pig 1 in the
hemoperitoneum tests.
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Figure A.5: The raw magnitude of all reflection coefficients of pig 1 in the hemoperi-
toneum tests.
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A. Data analysis

Figure A.6: The mean coefficient magnitude difference (between the baseline and
hemoperitoneum) of all measurements from 10 pigs for all transmission coefficient
combinations. The shaded areas are the standard deviation of 100 measurements.
The magnitude decrease can be clearly seen in hemoperitoneum.
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A. Data analysis
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Figure A.7: The mean coefficient magnitude over the frequency range 0.6–2 GHz
for all pigs and coefficient combinations.
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A. Data analysis

Figure A.8: The magnitude difference (between the baseline and hemoperitoneum)
of 10 pigs for coefficient S77+88. The shaded areas are the standard deviation of 10
repeated measurements.
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A. Data analysis

Figure A.9: The phase difference (between the baseline and hemoperitoneum) of 10
pigs for coefficient combination S77+88. The shaded areas are the standard deviation
of 10 repeated measurements.
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A. Data analysis

A.2 Thorax data

0 0.5 1 1.5 2

-80

-70

-60

-50

-40

M
a

g
n

it
u

d
e

/d
B

S
75

0 0.5 1 1.5 2
-60

-55

-50

-45

-40

S
68

0 0.5 1 1.5 2

-80

-70

-60

-50

-40

M
a

g
n

it
u

d
e

/d
B

S
53

0 0.5 1 1.5 2
-100

-80

-60

-40

S
46

0 0.5 1 1.5 2
-80

-60

-40

-20

M
a

g
n

it
u

d
e

/d
B

S
31

0 0.5 1 1.5 2

Frequency/GHz

-80

-60

-40

-20

S
24

0 0.5 1 1.5 2

Frequency/GHz

-80

-60

-40

-20

M
a

g
n

it
u

d
e

/d
B

S
12

BL

L750L50

L750L200

L750L500

L750L1000

L750L1500

Figure A.10: The raw magnitude of some transmission coefficients of pig 1 in the
polytrauma tests.
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Figure A.11: The raw magnitude of some transmission coefficients of pig 1 in the
polytrauma tests.
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Figure A.12: The raw magnitude of some transmission coefficients of pig 1 in the
polytrauma tests.
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Figure A.13: The raw magnitude of some transmission coefficients of pig 1 in the
polytrauma tests.
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Figure A.14: The raw magnitude of all reflection coefficients of pig 1 in the
polytrauma tests.
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A. Data analysis

Figure A.15: The mean (solid line) and stand deviation (shaded area) of the
difference in magnitude between the baseline and pneumothorax state for all examined
transmission coefficients. The left and right coefficients are plotted on the left and
right side respectively. Data below 0.6 GHz are not shown because there is not a
common trend at these frequencies.
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A. Data analysis

Figure A.16: The mean (solid line) and stand deviation (shaded area) of the
difference in magnitude between the baseline and hemothorax state for all examined
transmission coefficients. The left and right coefficients are plotted on the left and
right side respectively. Data below 0.6 GHz are not shown because there is not a
common trend at these frequencies.
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A. Data analysis

Figure A.17: The mean (solid line) and stand deviation (shaded area) of the
difference in magnitude between the baseline and polytrauma state for all examined
transmission coefficients. The left and right coefficients are plotted on the left and
right side respectively. Data below 0.6 GHz are not shown because there is not a
common trend at these frequencies.
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A. Data analysis
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Figure A.18: The mean over the frequency range 0.6–2 GHz of the magnitude
difference between the baseline and pneumothorax state for all examined transmission
coefficients and pigs. The left and right coefficients are plotted on the left and right
side respectively.
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A. Data analysis
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Figure A.19: The mean over the frequency range 0.6–2 GHz of the magnitude
difference between the baseline and hemothorax state for all examined transmission
coefficients and pigs. The left and right coefficients are plotted on the left and right
side respectively.
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A. Data analysis
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Figure A.20: The mean over the frequency range 0.6–2 GHz of the magnitude
difference between the baseline and polytrauma for all examined transmission coeffi-
cients and pigs. The left and right coefficients are plotted on the left and right side
respectively.
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A. Data analysis

(a) Magnitude.

(b) Phase.

Figure A.21: The mean (solid line) and standard deviation (shaded area) of the
difference between the baseline and pneumothorax in magnitude (A.21a) and phase
(A.21b).
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A. Data analysis

(a) Magnitude.

(b) Phase.

Figure A.22: The mean (solid line) and standard deviation (shaded area) of the
different between the baseline and hemothorax in magnitude (A.22a) and phase
(A.22b).

82



A. Data analysis

(a) Magnitude.

(b) Phase.

Figure A.23: The mean (solid line) and standard deviation (shaded area) of the
different between the baseline and polytrauma in magnitude (A.23a) and phase
(A.23b).
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B
Statistic test
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Figure B.1: The phase mean (the red line) and range of the difference in phase
between the baseline and three types of trauma. The “-” symbol at the end of some
x-axis labels indicates the subtraction of baseline. It is noted that for the combination
of two trauma types, the symbol L750 (represents hemothorax) is skipped for clarity.
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B. Statistic test
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Figure B.2: The magnitude mean (the red line) and range of the baseline and four
types of trauma for some coefficient magnitudes.
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B. Statistic test
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Figure B.3: The phase mean (the red line) and range of the baseline and four types
of trauma for some reflection coefficients.
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