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Detection of Rail Squats from Axle Box Accelerations
Frida Carlvik
Department of Architecture and Civil Engineering
Division of Applied Acoustics
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Abstract
The detection of rail surface defects, such as squats, is vital to maintaining the struc-
tural health of railway tracks. Squats are a type of rail surface defect which results
in large contact forces between the wheel and rail. Squats are self-sustaining; the
increase in impact forces results in further rail deterioration. Squats are currently
detected through various methods such as ultrasonic measurements, eddy currents,
and human inspection. A promising alternative method of squat detection is the use
of axle box acceleration (ABA) measurements. Even light squats are visible in the
acceleration signal. The application of ABA data to automatically detect squats is
an area of current research.

Using data and knowledge from a previous study of acoustic squat detection on the
German railway, the thesis aimed to optimize a squat detection algorithm based on
machine learning. Measured and simulated axle-box acceleration data were supplied
from the previous research. The thesis investigated different methods of preprocess-
ing acceleration data to improve the machine learning algorithm. Two algorithms
were used- logistic regression and neural networks. The different methods of pre-
processing data were spectrogram images, scalogram images, time-averaged wavelet
power, and scale-averaged wavelet power.

To test the results, the data was divided into a training and a testing set. Further-
more, leave-one-out validation was conducted for the measured squats. Finally, the
trained algorithm was tested on two 250 m test sequences of railway track. Issues
were found with distinguishing insulated rail joints from squats. Furthermore, a
higher success rate often led to a higher rate of false alarms. In these cases, the
algorithm failed to generalize to new data. The final algorithm and method of
preprocessing with scalogram images found 100% classification of medium to large
squats and 87% classification of small squats. The algorithm found a total of 4 false
alarms on the two test sequences, one of which was an insulated rail joint.

Although the final optimization did not find increased success in identifying small
squats in comparison to the previous study, the use of ABA to identify squats was
consolidated. Areas of further research are training the algorithm on tracks with
varying track dynamics as well as testing other algorithms such as convolutional
neural networks.

Keywords: rail surface defects, squats, axle box acceleration, machine learning,
wavelet transform, scalogram, logistic regression, neural network
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1
Introduction

1.1 Background
Detection of surface defects is vital to maintaining the health of railway tracks and
the safety of users of the railway. Squats are a type of surface defect which results
in large contact forces between the wheel and rail. These impact forces may result
in further rail deterioration [1]. Currently, some methods of detecting squats are
through ultrasonic measurements, eddy currents, and using axle-box acceleration
measurements [2]. Human inspection is a labor-intensive and possibly inefficient
method of detection [3].

In a joint research project between Chalmers and DB Systemtechnik GmbH, AMON-
TRACK, conducted in 2018/2019, an algorithm was developed to detect squats using
axle-box acceleration [1]. The results were promising and this thesis aims to further
develop and optimize the findings of the previous project.

Three central topics are investigated and act as pillars for the development of the
thesis. First, railway noise and vibrations are studied. Second, wavelet analysis
is studied, and a comparative study is made between wavelet analysis and other
types of signal processing tools. Finally, machine learning is used for building the
detection software.

1.2 Problem Statement and Purpose
The automatic detection of surface defects has been investigated in several parallel
studies [1][3][4]. Input data has been both acoustic (axle-box acceleration, ABA)
and visual (photograph and ultrasound). In the studies by Pieringer et. al [1]
and Jamshidi et. al [4], machine learning was used to detect squats. By detecting
surface defects through measurement cars with axle-box acceleration measurements,
rail faults may be detected earlier compared to other methods such as ultrasound.
Early detection results in higher safety and possibly lower maintenance costs.

A common method of automatic detection, ultrasound, can detect squats by finding
cracks between 5 mm to 7 mm deep; such a squat is often too large to grind [2].
Furthermore, automatic detection minimizes the need for ocular inspection, resulting
in lower labor costs and less risk due to personnel on the tracks. As even small squats
lead to large forces on the wheel, ABA is a promising method of early detection.
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1. Introduction

The thesis aims to optimize a machine learning algorithm to detect squats using
knowledge and resources from a previous study by A. Pieringer et. al [1]. The
effect of different rail surfaces on the axle-box acceleration is studied. Different
methods of preprocessing acoustic data are investigated. Furthermore, it is tested
whether the machine learning algorithm itself can be modified to increase successful
classification.

To optimize the machine learning algorithm, the impact of different input parame-
ters as well as different machine learning methods were investigated. This includes
investigating different methods of preprocessing acceleration data. Previously, some
deteriorated insulated rail joints were falsely classified as squats by the trained al-
gorithm. As insulated rail joints in good condition are not a hazard, it is interesting
to attempt to distinguish insulated rail joints from squats.

1.3 Limitations
The data used in the thesis, consisting of both measured ans simulated data, was
gathered in a previous study [1]. Gathering and simulating data is outside the scope
of the thesis. The few examples of measured squats may be limiting on the success of
the algorithm, however with the simulated data, the data was sufficient to train the
algorithms. The data gathered regards the railway on the German rail network and
using a special monitoring car. The applicability of the findings in other countries
is not investigated. However, the general methodology applies to all railway though
the algorithm may need to be trained on new data relevant for the new case.

1.4 Placement in Research
The use of both axle-box acceleration and machine learning to detect algorithms
has previously been a topic of research. The contribution of this thesis to research is
the further investigation of different preprocessing methods to differentiate surface
defects from healthy rails. Different machine learning algorithms are used as tools
and their relevance for this type of pattern recognition were evaluated. Finally,
by comparing the measured data with data from other papers on the subject, a
difference in the spectral content of the measured ABA was found - perhaps this
depends on the variation in track properties in different countries.

1.5 Ethical Aspects
The purpose of detecting surface defects through machine learning is to develop
methods of early detection as well as to minimize the need for manual inspection.
Squats lead to large forces on the wheel, cracks underneath the surface, and in the
worst-case rail failure. As such, the detection and repair of squats is a question
of ethics. Early detection may more be a question of economics as the repair of
smaller squats is less invasive. Safety is central to the purpose of the thesis; the
ethical substance of the research is clear.

2



2
Theory

The thesis covers three central topics - railway noise and vibration, signal processing,
and machine learning. The goal of the theory section is to explain how the coupled
system between axle-box, wheel, and rail is impacted by rail squats and other surface
defects. Furthermore, it is of interest how this data can be processed and used for
machine learning. A literature study of previous research on the topic of automatic
detection of squats is presented in the section.

2.1 Railway Noise, Vibration and Defects
This section aims to investigate the correlation between surface defects of rails and
the noise and vibration caused at the axle-box. To do so, knowledge of track geom-
etry and physics is needed. The interaction between wheel and rail is investigated
concerning the generation of noise and vibration. By correlating the wheel-rail con-
tact forces with vibrations, squat detection through acceleration measurements can
be investigated.

2.1.1 Railway Components and Definitions
The components of the railway can be organized as those regarding the track and
those regarding the car. The track components, shown in Figure 2.1, are rail, fas-
tening, sleepers, and ballast. The purpose of the track is to transfer the load of the
passing vehicle uniformly to the ground. Relative to the noise of the railway, the
rail pad is an important part of the track. The rail pad is located between the foot
of the rail and the sleeper, serving the purpose of protecting the sleeper from high
impact loads [5].

2.1.1.1 Contact Patch

The wheel-rail contact patch is the area of contact of the rolling wheel along the sur-
face of the rail. The small contact patch between the hard surfaces of rail and wheel
results in low losses, making rail transport an energy-efficient mode of transporta-
tion, according to R. Lewis and U. Olofsson in ’Wheel-Rail Interface Handbook’ [7].
The small contact area leads to large contact forces and stresses on both the wheel
and the rail. This may lead both to material yielding and fatigue. The contact

3



2. Theory

Figure 2.1: Main components of the rail track
source: adapted from [6]

patch is approximately 18 mm longitudinally and 11 mm laterally [7]; a damaged
rail or wheel leads to a more circular patch.

The friction in the contact patch affects both energy consumption and wear of the
rail and wheel. Friction coefficients vary largely between 0.08 and 0.5 [7]. A low
friction coefficient may result in sliding wheels and wheel flats, whereas a large
friction coefficient value may result in large energy consumption and excessive wear
of the components.

Friction combined with the high rolling contact forces leads to an increase in the
wear of the materials [7]. Furthermore, traction and braking may result in wheel
sliding, which in turn can lead to rail burns and wheel flats. The result of these
unfavorable consequences increases irregularities on the contact patch as well as
worn profile geometries. This in turn leads to poor vehicle dynamics, an increase in
contact forces, and an increase in noise and vibrations. In the worst-case scenario,
fracture of either of the components or wheel flange climbing can lead to derailment.

As the contact patch determines the transfer of forces between wheel and rail, only
the surface defects which are within the contact patch of the passing wheel will be
detected by axle-box acceleration.

2.1.2 Noise and Vibration of the Wheel Rail Interface
Wheel-rail interface theory was pioneered by Heinrich Hertz in the 1880s, through
studies of the elastic contacts which were applied to railway engineering [7]. Rolling
noise is due to noise from the rail, the wheel, and the interaction of the two. An
understanding of the excitation at the axle-box due to forces between the wheel and
rail can increase the identification of squats and other rolling contact fatigue.

The track can be seen as an essentially infinite structure that acts as a waveguide.
This allows for one or more structural waves to propagate along the rail. In an ex-
periment presented by David Thompson [5], the frequency response of the rail was

4



2. Theory

found by exciting the rail with an impact hammer and measuring with accelerom-
eters. The result of this experiment found differences in the response depending
on if the acceleration was measured on top of a sleeper or between sleepers. When
measuring between sleepers, a peak was found around 1 kHz, with a dependency
on the spacing of the sleepers. This mode is called the pinned-pinned mode. The
resonance of the rail mass on the rail pad stiffness results in another peak in the
frequency response function. A lower rail pad stiffness results in a lower resonance
frequency; the rail pad has considerable influence on the overall rail frequency re-
sponse function. Finally, in the frequency response functions, a resonance at 100 Hz
corresponds to the oscillation between the total mass and the ballast stiffness.

Damping of the rail is due to losses in fastening systems and the transfer of energy
into the sleepers and the ground. By altering the rail pad stiffness, the dampening
is effected. Softer rail pads result in isolation of the sleepers, but the rail itself
is less damped, allowing the rail to vibrate longer. Stiffer rail pads result in the
vibration of the sleepers, but the rail is more damped. The damping of the rail
results in an exponential decay of the vibration amplitude; the track decay rate
is usually presented in dB/m [5]. The track decay rate is frequency-dependent;
generally higher frequencies around 1 kHz-2 kHz have a slower decay rate.

Railway wheels typically have little damping and therefore the vibration is strongly
defined by the resonances. For approximating mode shapes, the wheel can be com-
pared to a flat disc. The mode shapes of a flat disc can be axial or radial. The
axial modes are defined in number by the number of nodal circles and the number
of nodal diameters. The wheel differs from a flat disc as the shape is not symmetric.
This asymmetry is primarily due to the wheel flange, a part of the wheel which acts
as a safety measure against derailment. Furthermore, the wheel web may be curved.
The lack of symmetry results in the coupling of different modes.

The frequency response for a free wheel can be calculated with knowledge of the
modes of the wheel and the damping. The mode shapes and amplitudes can be
calculated with FE software, but the damping is either measured or estimated. A
typical wheel is the UIC 920 mm wheel, for which the frequency response function
of the wheelset was found by Thompson [5]. The radial mobility showed resonances
around 300 Hz and 1150 Hz with an anti-resonance around 500 Hz. Above 1 kHz the
wheelset had a higher modal density. The axial mobility showed more resonances.
The half-power bandwidth of the wheel modes was found to be only a few Hz, which
is related to the undamped characteristic of the wheel. The rotation of the wheel
results in the eigenfrequencies splitting into pairs.

The primary source of rolling noise at the wheel-rail interface is roughness, which
causes relative motion between the wheel and rail [5]. Small size micro-roughness is
necessary for adhesion, leading to better traction and braking. However, the larger
sized, macro-roughness contributes to noise. Unevenness on the rail or wheel results
in noise, the frequency can be determined by:

f = V

λ
(2.1)

5



2. Theory

Figure 2.2: Definition of the two spans ’half sleeper span’ centered on or centered
between sleepers

where V is the velocity of the train and λ is the wavelength of the surface wave
(unevenness) on the track or rail [5]. The wavelength can vary in size from a few
millimeters to several meters. The longer wavelength can correspond to variations
in the rail bed or straightness of the rail. Shorter, semi-periodic roughness with
wavelength in order of magnitude of about 50 mm may be due to corrugation.

2.1.3 Rolling Contact Fatigue and Squats
The primary focus of the thesis is the detection of a type of rolling contact fatigue
of the rail profile, squats. Squats are characterized visually as a local visible surface
deformation and characterized in the wheel-rail interaction by an increase in dy-
namic force. The force itself may effect the continued growth of the deformation [2].
Squats are a class of rolling contact fatigue defects that develop from small surface
irregularities. If the surface defect grows beyond a critical size the irregularity may
risk growing into a squat. On Dutch railways, this critical size has been assessed
as between 6 mm to 8 mm both for rolling and traverse directions [3]. If detected
early, squats can be easily treated. However, as squats develop in size crack growth
beneath the surface may occur. Squats were identified as a distinct type of failure
in the 1970s, and in 2009 there was still limited research in the subject [2].

Squat occurrence is characterized by large local plastic deformation. The increase
in dynamic wheel-rail contact force upon an existing squat causes rapid local track
deterioration [2]. The occurrence of squats is often isolated. As no consensus in the
cause of squats and how they therefore can be localized preemptively has been found,
the occurrence of squats is often seemingly random. Predicting and preventing
squats is therefore a difficult practice and an area of active research.

Research in correlating occurrence of squats with their track parameters has been
conducted to increase the possibilities of preventative actions through prediction.
On the Dutch railway, it was found that approximately 74% of the squats were
found on the ½ of the rails centered on the sleepers (Fig 2.2), which implies that
stiffness and damping characteristics of the track may play a role in the emergence
of squats [2]. Furthermore, short pitch corrugation, i.e. variation of rail surface with
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a short wavelength [8], was found near 72% of the squats. These corrugations had
a wavelength between 2 cm and 6 cm.

The squats themselves shared characteristics with the short pitch corrugation, in
terms of the wave pattern. Furthermore, a study in the UK found that 75% of
squats were related to either corrugation, welds, or periodic indentations in the rail
running surface [2]. Other correlations found with the occurrence of squats were
welds (10-15%), indentations from hard alien objects into the wheel or between the
wheels and rail, vertical misalignment of rail, non-uniform wear, and non-uniform
plastic deformation, skidding and sliding during traction and braking. Wheel burns,
caused by braking, can also be seen as an initiation source of squats.

Counter-measures to squats are presented by Z. Li in the ’Wheel-Rail Interface
Handbook’ [2]. Small squats can often be removed by grinding, whereas larger
squats require replacement of the affected rail. Replacing the rail results in two
new welds. Welds themselves may be sensitive to squat formation due to the heat-
affected zone. To conclude, there is a clear advantage in detecting squats early.

2.1.3.1 Impact Noise Due to Insulated Rail Joints

Rail joints result in impact noise due to a discontinuity for the passing wheel. The
rail joint can be defined geometrically by a gap width, a step height, and a dip angle
[5]. The dip angle and the step height were found to be determining in the impact
noise, and the gap width is negligible.

2.2 Signal Processing Methods
Signal processing and analysis serves the purpose of identifying relevant information
from a signal. This can be done with transformations between different domains,
such as time- and frequency domain. For the sake of preparing measurement data
for teaching a machine learning algorithm, the information should represent the
relevant properties of the signal. For efficiency in the machine learning algorithm,
a second goal in signal processing is to reduce the size of the data.

The Fourier transform is a method of obtaining the frequency content of a signal from
the time-domain data. The concept behind the Fourier transform is the idea that
any continuous signal can be interpreted as the sum of infinite oscillations [9], or sine
waves, with varying amplitude and frequency. As such, two domains are evaluated
- the time domain and the frequency domain. In the frequency domain, there is no
localization in time, and vice-versa. The Fourier transform can be expressed as:

f(t) = 1
2π

∫ ∞
−∞

F (ω)ejωtdω (2.2a)

F (ω) =
∫ ∞
−∞

f(t)e−jωtdt (2.2b)

where F (ω) is the signal in the frequency domain, f(t) is the signal in time domain,
and e−jωt represents harmonic oscillation given an angular frequency ω and time t.
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2.2.1 Representation of a Signal Simultaneously in Time
and Frequency Domain

For transient signals, it is interesting to know information of how the frequency
content of a signal is located in time. The Fourier transform proves insufficient in
such a case. Furthermore, the simultaneous representation of time and frequency is
limited by the Heisenberg uncertainty principle, which states that a particle cannot
be described by its position and momentum with simultaneous, arbitrarily small
resolution [10]. Although the uncertainty principle refers to quantum mechanics,
the principle remains true for discrete signals; the increased resolution in the time
domain is limited by the decreased resolution in the frequency domain.

A method of representing information in both time and frequency domain is the
short-time Fourier transform, STFT. The localization in time is found by isolating
portions of a signal with a window [9]. Performing a short-time Fourier transform
results in a spectrogram which shows the magnitude as a function of frequency and
window location.

The short-time Fourier transform can be expressed as:

F (ω, t) =
∫ ∞
−∞

f(t)w(t− u)e−jωtdt (2.3)

where the function f(t) is the signal in the time domain, w is the window function
which is shifted in time by u and e−jωt is a harmonic oscillation as a function of time
t and frequency ω. A smaller window results in better time localization. However,
the width of the spectral peak broadens, resulting in a lower frequency localization.

Windowing a signal before performing the Fourier transform results in a main lobe
around the frequency of interest and side lobes [11]. The window determines how
each segment of the signal is cut; a smoother window leads to a wider main lobe
and therefore losses in spectral resolution, whereas a very sharp window results in
a higher noise floor of the side lobes but a sharper main lobe. The window can be
shaped in many different ways which varies the shape of both the main and side
lobes.

If the shape of the window is decaying toward the edges of the window, information
at the edges of each segment is under-represented. Overlapping the segments of the
signal assures that information at the edges of each segment not being lost. However,
the overlapping also leads to a smoothing of the analysis process, which may decrease
resolution. In implementing a short-time Fourier transform, the parameters that
must be chosen are the window shape, the window size, and the overlap.

Wavelet decomposition is a method of analyzing a signal which, compared to Fourier
decomposition, presents some localization in time with the price of a less defined
frequency representation [12]. Rather than assuming that the signal is composed
of infinitely many sine waves with different frequencies and phases, each wavelet
belongs mainly to a frequency band and has a localization in time. The wavelet
decomposition is defined by a mother wavelet, which determines the shape of the
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function. The mother wavelet is scaled and shifted into several basis functions. Each
basis function is convolved with the signal, resulting in time and frequency-specific
magnitudes.

The continuous wavelet transform, CWT, is given by Equation 2.4 [13].

Wx(s, τ) = 1√
s

∫ ∞
−∞

x(t)ψ∗
(t− τ

s

)
dt (2.4)

where the signal x(t) is multiplied by the complex conjugate of the mother wavelet
ψ(t) which is scaled by s > 0 and shifted in time by the continuous variable τ .
The result is a continuous variable Wx(s, τ) which are the wavelet coefficients. The
function ψ(t) has some localization in time and frequency, and has the total energy
equal to zero, as shown in Equation 2.5.

∫
ψ(t)dt = 0 (2.5)

Compared to the short-time Fourier transform, where the window size is kept con-
stant and the number of oscillations within the window increases to capture higher
frequencies, the wavelet has a constant number of oscillations regardless of frequency.
Instead, the width of the wavelet is skewed, resulting in a broader or more narrow
window [10]. The result is a varying resolution depending on the scale of the wavelet.

Figure 2.3: Example of resolution in time and frequency domain of the short-time
Fourier transform (left) and the continuous wavelet transform (right)

Two common mother wavelets are the Haar Wavelet and the sinc wavelet. The
former results in very fine time localization by accepting poor frequency resolution
and the latter gives up time localization to achieve a finer frequency resolution [14].
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The Morse wavelet is an analytical wavelet which is available in many libraries on
Matlab [15].

An example of the resolution in time and frequency domain of the two transforms
can be seen in Figure 2.3. The resolution for the short-time Fourier transform is
consistent throughout both time and frequency. For the wavelet transform, however,
the frequency resolution decreases as the frequency increases. Instead, the time
resolution increases at higher frequencies. For both transforms, if the resolution in
the frequency domain is increased, the resolution in time must be proportionately
decreased.

2.2.1.1 Time Averaged Wavelet Power

A method of minimizing the number of samples representing the data is to average
the wavelet transform for each scale. This results in average levels at each scale
over a given segment of time. The justification behind averaging over time is that
the signals analyzed are segments that are just long enough to represent passing
a squat. Although the ABA when passing a squat is highly transient, the short
segment shows clear prominence in certain frequencies.

The time averaged wavelet spectrum can be calculated according to equation 2.6
[16].

W̄n
2(s) = 1

na

n2∑
n=n1

|Wn(s)|2 (2.6)

where na is the number of points averaged over, defined by na = n2 − n1 + 1 and
Wn(s) is the wavelet transform at a given sample n and scale s.

2.2.1.2 Scale Averaged Wavelet Power

The average energy over a given number of scales (frequency ranges) in a signal can
be found through the scale averaged wavelet power. This is summarized by equation
2.7 [17].

SAP 2(n) = 1
M

M∑
i=1
|Ws(n)|2 (2.7)

given the scales chosen are i = 1, 2, ...,M . The function Ws(n) is the continuous
wavelet transform. The averaging may be performed across all scales of the wavelet
transform or of specific scales of interest.

2.3 Machine Learning and Neural Networks
Machine learning is a method of teaching a program, or a computer, to recognize
patterns and solve tasks. Machine learning can be either supervised, where a set of
features is given along with a correct identification of the features, or unsupervised
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where only the set of features is given. In unsupervised learning, the machine
performs other tasks such as clustering data into different groups. In the case of
detecting rail squats and other irregularities, classification problems are of use. The
classification problem asks the question if a certain case, or set of variables, belongs
to a class. In the case of rail squats, the question could be "is there a squat on
this piece of rail track?". With knowledge of squat locations, supervised learning is
possible.

A classification problem can either have single or multiple classes. In the case of a
single class, there is a negative class represented by a 0 and a positive class repre-
sented by a 1. If there are three or more possible outcomes, multiclass classification
is used, where each outcome is either 1 if true for that outcome or 0 if false.

2.3.1 Logistic Regression
Regression is a technique for solving many types of machine learning problems,
among them classification problems. The regression model can either be linear or
logistic. Logistic regression aims to predict the probability that a set of features
belong to a certain class. To do so, the relationship between the input parameters
and the given outcome must be expressed. This can be done as following [18]:

y = Θ0 + Θ1x1 + Θ2x2 + ...+ Θn−1xn−1 + Θnxn (2.8)

where y is the outcome to be predicted, x is the set of input features related to the
output y, and Θ is a coefficient relating the contribution of xi to y. However, as
the values of xi and Θi vary, the output y can take on any value. This is useful for
linear regression. For classification problems the question is whether y = 1 or y = 0.
The predicted outcome should be expressed as the probability of the input features
belonging to y = 0 or y = 1. This can be expressed with the hypothesis defined as
hΘ = g(ΘTx) given a function g that satisfies 0 ≤ hΘ ≤ 1.

One function which satisfies the previous equality is the sigmoid function, given by
Equation 2.9:

g(z) = 1
1 + e−z

(2.9)

To determine whether an input belongs to a certain class, a threshold classifier is
used. For each possible classification, Equation 2.10 is evaluated:

y =

1 if hΘ(x) ≥ 0.5
0 if hΘ(x) < 0.5

(2.10)

By adjusting Θ to our data, we have the classification hypothesis:

hΘ(x) = p(y = 1|x; Θ) (2.11)
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Equation 2.11 can be read as the probability that y = 1 given x parameterized by
Θ. For multi-class classification, this is repeated for all classes, with coefficients Θ
belonging to that class. The classification is given by the classifier which results in
the maximum value of hiΘ(x) as this is the classification with the highest probability.
This method is called one vs. all classification [19].

2.3.1.1 Cost Function

Given a set of values of Θ, it is of interest to estimate how well Equation 2.11
classifies a set of data. This is determined by the cost function. The cost function
finds the difference between the estimated value of hΘ(x) and the true value of y for
all sets of data. For logistic regression, the cost can be expressed by Equation 2.12

Cost(h(x), y) =

− log(hΘ(x)) if y = 1
− log(1− hΘ(x)) if y = 0

(2.12)

As the true value of y only can take on the values 0 or 1, Equation 2.12 can be
simplified by:

Cost(h(x), y) = −y log(hΘ(x))− (1− y) log(1− hΘ(x)) (2.13)

The total cost, J(Θ), for all data sets is given by:

J(Θ) = − 1
m

 m∑
i=1

y(i) log
(
hΘ(x(i))

)
+ (1− y(i)) log

(
1− hΘ(x(i))

) (2.14)

where m is the number of training examples in the data and i is the index of each
example in the data. The goal of training the machine learning algorithm is to
minimize the cost, as this means that the difference between the guessed value and
the true value is small. This is done by fitting the parameters, Θ. One method of
minimizing the cost function is through gradient descent, that is, finding the slope of
the cost function and following the path of descent iteratively. The gradient descent
function is given in Equation 2.15.

Θj := Θj − α
δ

δΘj

J(Θ) (2.15)

which is updated for each iteration j, and α is called the step-size, which determines
the rate of change of the Θ values after each iteration. As the step-size is a coefficient
belonging to the derivative, the rate of change naturally decreases as the slope
decreases.

Although the gradient descent is easily implemented into mathematical program-
ming software such as Matlab, there are many advanced optimization algorithms
which are often faster than gradient descent. Another advantage of using a library
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available algorithm is that it usually cuts out the need to choose an appropriate
value for α.

2.3.2 Neural Networks
Neural networks are a method of machine learning which has similarity with the
network of neurons in the brain. A network of parameters is organized into layers
where each parameter from one layer is connected to every parameter in a neighbor-
ing layer with some amount of weighting. The first layer is called the input layer, the
final layer named the output layer, and each layer in between the two is considered
a hidden layer.

Figure 2.4: Visual representation of a neural network with 6 features, a hidden
layer with size 4 and 3 possible outcomes

For neural networks, the same task of minimizing a cost function is primary. The
cost of each layer is found by first calculating the error in the output layer and
propagating backward to find the error of each preceding layer.

The method of creating and training a neural network can be summarized as follows,
according to lecture notes from an online Coursera course in Machine Learning from
Stanford University [19]. The first step is choosing a suitable architecture, which
is the number of input features, number of classes, and the sizes and number of
hidden layers. The number of hidden layers increases computation; as a rule of
thumb one hidden layer is used. The second step is to randomly initialize weights
between a given range, e.g. −0.5 ≤ Θ1 ≤ 0.5. Forward propagation is implemented
to compute the cost function J(Θ) and backpropagation is used to compute the
partial derivatives δJ/δΘj. To check that the algorithm is functioning correctly,
gradient checking is done for a few numerical estimates. Finally, gradient descent or
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another optimization algorithm is used to minimize J(Θ) until a satisfactory error
level is found.

2.3.3 Troubleshooting Machine Learning Issues
The machine learning theory presented is based on curve fitting and statistics; the
assumption made is that the cost function can be minimized and that the minimum
value can be found. However, this is not always true. For example, local minima in
the cost function may result in the algorithm failing to update to better values.

The number of features, which directly corresponds to the number of coefficients
Θ, needs to be sufficient to properly describe the correct classification. If too few
features are available to describe the problem, there is a problem of underfitting and
the algorithm has a high bias. The converse, too many features, may instead lead to
high variance. Although many features may lead to very little cost, the algorithm
may fail when generalizing new data. To survey overfitting, data may be divided
into a training set and a test set. The training set is used to train the algorithm
and the test set is used to assess the ability of the algorithm to generalize to new
examples.

The problem of overfitting has some solutions. One method is simply to reduce the
number of features. This can be done manually or by a model selection algorithm.
Another method is regularization which keeps all features but reduces their magni-
tude. This is a valuable method if the data contains many important parameters
that contribute to the classification in a small way. The regularization parameter
is represented by λ. The cost function J(Θ) is calculated in the same way as in
equation 2.14 but with an added penalty of λ

2m
∑n
j=1 Θ2

j where n is the number of
features.

2.4 Literature Study - Automatic Squat Detec-
tion

The automatic detection of surface defects on rail tracks has been investigated in
several previous studies [1][3][4]. In the papers by A. Pieringer et. al [1] and M.
Molodova et. al [3], axle-box acceleration was used as measured data. In the paper
by A. Jamshidi et. al [4], image data and ultrasonic measurements are used. The
two studies which used ABA differed through processing method and detection
algorithm.

2.4.1 Surface Defect Detection Using Wavelets
In 2013, a Dutch study was published where surface defects were detected using
wavelet analysis of axle-box acceleration (ABA) measurements [3]. The research
investigated a method of early detection of squats. Furthermore, the power spectrum
in frequency ranges related to squats could indicate the severity of the squat. The
investigated squats were on rail tracks in the Netherlands. The study developed an
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algorithm that had a detection rate of over 78% for light squats and 100% for severe
squats.

Axle-box acceleration methods are suggested in the report due to their low cost
and easy maintenance. By installing accelerometers on the axle-box of specialized
measuring trains, the vertical and longitudinal acceleration was measured. It was
early identified that the acceleration data in the time domain was not sufficient for
detecting squats.

A measuring train runs over the entire Dutch network twice annually, collecting
geometrical irregularity data. Information about the position of squats, as well
as e.g. joints, switches, and level crossings are found in the database storing this
measurement data. To keep up to date for the research, short track irregularities
were monitored regularly on the sections where ABA was measured.

The data was preprocessed to improve the signal-to-noise ratio. The processing
included low-pass filtering, averaging several measurements, and finding the scale-
averaged wavelet power. The method of using wavelets was chosen due to the bene-
fits found when investigating transient signals with varying frequency composition.
The chosen mother wavelet was the Morlet wavelet. The scale-averaged wavelet
power, SAWP, was calculated in the frequency band related to squats, which varied
depending on the stage of the squats.

The prediction of a squat was made if the value of the calculated SAWP exceeded
a certain threshold. The threshold was determined statistically and depending on
whether light squats or severe squats were investigated. Finally, the severity was
assessed either by the frequency content or by the relation of the power spectrum
at 300 Hz and the area of the squat. The predictions were validated by visual
inspection of the track.

The frequency response of the ABA was observed up to 2.5 kHz. The maximum of
the wavelet power spectrum for light squats was found around 300 Hz. For moderate
to severe squats, the power spectrum showed a strong response in two ranges: below
600 Hz and between 600 Hz to 2000 Hz. The maximum was between 250 Hz and
350 Hz, as well as between 1000 Hz and 1300 Hz.

One possible issue with the measurement method is hunting, meaning a lateral
oscillation of the wheel [7]. This could result in the wheel not passing all squats at
each pass by. The probability of hunting leading to a squat remaining undetected
increase if the squat is smaller. A method of mitigating this error was passing each
track several times and finding the average acceleration.

The results of the prediction method showed a 78% hit rate and 15% false alarms
for light squats and a 100% hit rate for severe squats. Insulated joints were detected
as squats when detecting severe squats, as the ABA at these locations is strong, and
the frequency response partially overlaps that of the severe squat. The report also
suggests the possibility of expanding acceleration measurements on in-service trains
to cover more of the railway infrastructure. Furthermore, the management of the
large amounts of accumulated data was pinpointed as a focus of further research.
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2.4.2 Squat Detection Using Camera Images
A study from 2017 assesses the possibility of using video camera images and ul-
trasonic measurement for risk assessment of railway [4]. The image data was used
to detect rail defects and the ultrasonic measurements were used for crack growth
analysis. The focus of the study was to investigate handling large amounts of mon-
itoring data as well as developing a method for determining the risk of failure for
the railway.

For detecting squats a deep convolutional neural network, DCNN, was used. Convo-
lutional neural networks consist of several layers; in each layer, features are extracted
from the previous layer. The study used squats as an example of a surface defect to
be monitored. The training time for the DCNN was about 40 hours. The trained
DCNN had an accuracy of about 96.9% in predicting squats. Furthermore, the
study produced a correlation between the appearance of a squat, crack growth due
to the use of the rail, and the risk of failure. The produced results were a failure
probability at each assessed squat.

2.4.3 Squat Detection Using Short-Time Fourier Transform
In 2019, a joint project between DB Systemtechnik GmbH and Chalmers Univer-
sity of Technology was published [1]. The research and the included measurement
and simulation data are the basis of this thesis. In the study, a measurement car
"Schallmesswagen" (SMW) is used which is equipped both with a microphone above
the measurement bogie, as well as accelerometers on all four axle boxes of the bogie.
The advantages of using acoustic data are presented as two-fold. Firstly, light squats
are more easily classified by acoustic data than by photographs or ultrasound mea-
surements. Furthermore, the severity of the squat can be judged since the measured
quantity - acceleration - can be directly related to wheel/rail contact forces. The
report also identifies the issue that defects located outside the running band cannot
be detected by ABA measurements.

Beyond measurement data, simulated axle-box acceleration data is collected using
a model called WERAN (WhEel/RAil Noise). The method is a computationally
efficient method based on Kalker’s variational method. The model can simulate
both vertical and lateral wheel/rail interaction, but only the vertical interaction was
included. The squats were designed for the simulations with varying lengths, width,
and depth. Healthy rail was simulated with varying roughness. The depths are
between 0.1 mm and 1.4 mm and the diameters vary between 10 mm to 70 mm. In
general, the diameter of the squat was more influential to the maximum ABA as
well as the shape of the squat compared to the depth. This was not true for very
shallow squats.

The characteristic of the axle-box acceleration when passing a squat was identified
in the research. First, as the wheel enters the squat the acceleration decreases due to
unloading in the contact force. This decrease in acceleration is followed by a strong
peak in acceleration due to the subsequent impact. A larger diameter led to a larger
peak in magnitude as well as a wider peak in time. The frequency response of the
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simulated ABA showed similarities in frequency response above 700 Hz for different
size squats and larger variation in frequency response below 700 Hz. Furthermore,
the simulation investigated the influence of changing the rail pad stiffness and found
that a decreased stiffness resulted in a higher and narrower first peak of the ABA.

The ABA derived from the simulations was compared to measured acoustic signa-
tures of squats. This was done by using the measurement car SMW, on a 5 km
length of track in Munich-North in March 2019. The track was investigated visually
to localize any squats and other surface irregularities. The measurement conducted
using the SMW was repeated four times in the primary traveling direction and four
times in the opposite direction, with a target velocity of 80 km/h. During the mea-
surement campaign, 8 squats were noted along with 5 insulated rail joints and two
switches. The simulated data consisted of 68 squats with varying sizes. The sim-
ulated and measured data showed similarities both in time-domain as well as the
frequency domain. However, some peaks were shifted in frequency - the measured
peak at 1.4 kHz appeared in the simulated data at 1.2 kHz for a given squat.

A pattern recognition algorithm was developed using a logistic regression classifier.
The input data was the spectrogram of the ABA for 93 by 29 acceleration levels.
The produced spectrogram was found through a spatial resolution of 1 mm, the
frequency resolution of 22 Hz, and a 95% overlap. For severe squats, 100% detection
was achieved, whereas 87% detection was found for light squats. The validation was
made only on measured squats, and the squat which was to be tested was removed
from the training data for each validation. Furthermore, the algorithm was tested on
two test sequences of the measured passbys. False-positive classification occurred in
the appearance of insulated rail joints and at a few locations of measured rail which
were possibly false alarms.

2.4.4 Comparison of the Literature
The three papers investigated the possibility of automatically detecting squats by
equipping train-cars with some type of measurement device. The methods found
promising results through different data types, processing methods and algorithm
complexity.

The method of detecting squats with ultrasonic images, as tested by A. Jamshidi
et. al [4], requires crack growth to detect squats. This is disadvantageous compared
to acceleration measurements in regards to detecting less severe squats. However,
the successful identification was much higher. The high accuracy could also be
due to the complex algorithm, which required much more data and training time
compared to both the other methods.

The scale-averaged wavelet power method by M. Molodova et. al [3] did not use any
machine learning, decreasing the complexity. The detection of small squats was lower
compared to the paper by Pieringer et. al [1]. Once again, it is unclear whether this
is due to the processing method or the detection method. The frequency response
of the squats varied between the two papers, which is likely due to the difference in
track parameters as well as properties of the train car between the two countries.
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3
Building a Machine Learning

Algorithm

Two different types of machine learning algorithms were designed and tested using
Matlab. The algorithms chosen were logistic regression and a neural network with a
single hidden layer. The mathematics explained in Section 2.3 were used to design
the cost function and the hypothesis function used was the sigmoid function. Two
different descent functions were used depending on the machine learning method. In
the case of the logistic regression the built in function fminunc.m was used; in the
case of neural networks, fmincg.m, written by C.E. Rasmussen, was used. The rea-
soning behind this was that fmincg.m better handles large numbers of features [19].
Although the same number of features were used for both algorithms, the hidden
layer of the neural network added complexity and processing time; the fmincg.m
algorithm was selected.

3.1 Data Retrieval
A summary of the gathering of data and the findings of the report by A. Pieringer et.
al [1] is given in section 2.4.3. Both measured and simulated acceleration data was
retrieved, and the simulated data was validated in this study. The data available for
this thesis was thus both the acceleration data from both measured and simulated
track passbys, as well as the resulting images created from using short-time Fourier
transforms on the acceleration data. The given acceleration data was then processed
using several methods. The preprocessing methods, presented and evaluated in
Chapter 4, result in a varying number of features for each training set.

The measurements were made using a specialized noise measurement car, SMW,
on a track section called "specially monitored track" [20]. The noise measurement
car is equipped with a microphone mounted in a semi-anechoic chamber above the
measurement bogie as well as accelerometers on the wheel-sets of the measurement
bogie. The accelerometers measure vertical axle-box acceleration (ABA) on all four
of the axle boxes at a sampling rate, fs = 20 kHz. Only measurements which
satisfied the target velocity, 80 km/h, within ±5 km/h were included. An earlier
measurement where the measurement car had a target velocity of 100 km/h was
also available.
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The investigation of the track found 8 squats and 5 insulated rail joints which could
be used as measurement data. The naming of the squats and insulated rail joints
with the prefix ’Sf’ was adopted from the previous research. Furthermore, rail
switches and measurements of portions of rail were used as measured input data.
The portions of rail used as examples of healthy rail were visually inspected and
deemed free of squats. For training a machine learning algorithm, many training
examples are important to sufficiently distinguish different classes. As such, simula-
tion data of ABAs was acquired using a wheel-rail interaction model. The simulated
track contained several squats, as well as lengths of healthy rail. The squats had
varying geometries with a maximum length of 30 mm and a maximum depth of
1.5 mm. The track parameters and the wheel and rail roughness varied for three
different simulations to obtain a more robust set of training examples. The frequency
resolution of the simulated acceleration data was about fs = 22.2 kHz.

3.1.1 Geometric Information of the Squats
The variation of surface geometry along the track at the eight identified squats is
shown in Figure 3.1 [1]. It can be seen that the squats vary in depth, the width of
the deepest trough, and the overall length of the squat. From the squat geometry,
the squats can be divided roughly into three groups. The large squats are identified
as Sf8 and Sf20, the medium squats identified as Sf13 and Sf29, and the small
squats identified are Sf10, Sf12, Sf27, and Sf28. Although the overall depth of the
corrugation around Sf10 is quite deep, the notch at the center of the squat is shallow
relative to the squats identified as large.
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Figure 3.1: Geometry of squats along track length (x-axis) and depth (y-axis) for
8 squats

When investigating the acceleration data of the squats in the time domain, it was
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difficult to identify squat Sf27 sufficiently. As such, Sf27 was excluded from the
data. Squat Sf28 and Sf29 were located at the same location along the track but
on opposite rails. As Sf28 was much smaller than Sf29, in some measurements
the acceleration of the axle-box (on the side of squat Sf28) due to Sf29 was more
apparent on the acceleration data of the wheel passing Sf28. Although the algorithm
should be able to identify squats in such a case, it is understandable that the hit
rate may vary depending on the timing of the wheels and the direction of the train.

3.1.2 Collecting and Classifying Simulated Data
The available simulation data included acceleration data, location data along the
simulated track, as well as location information about the simulated squats. As
such, the data could be processed into examples of healthy rail and examples of
squats. This was done systematically from one end of the track to the other. To
verify that the code was succeeding in locating the squats, the short-time Fourier
transform was plotted- if a squat was in the image a ring showed up on the plot. If
the squat was localized sufficiently in the frame, the ring was green and the data was
classified as a squat. If the squat was only slightly in the frame, the ring was blue
and the data was classified accordingly. After visually verifying that the localization
was performing well, the plot was turned off and the script ran through the whole
data.

3.2 Variable Parameters
The machine learning algorithms inherently contain variable parameters that must
be selected wisely to optimize the algorithm. For both logistic regression and neural
networks, the number of iterations and the regularization parameter are variables.
For the neural network, the size of the hidden layer must be chosen as well. The
proportion of the data used as training and testing sets is also a variable. Fur-
thermore, the method of preprocessing the data affects both what information is
used for training the algorithm as well as the number of features used. Finally, the
choice of data could be manipulated. For example, it could be unnecessary to train
the algorithm with examples of insulated joints and switches as knowledge about
the location of these track variations is already available and could practically be
excluded from the measured data. Using too many examples of healthy rail may
lead the algorithm to skew results that favor predicting a healthy rail.

By increasing the number of iterations, the machine learning algorithm can minimize
the cost of the training set. If the algorithm is overall performing well, increasing
the number of iterations should increase successful identification. However, if the
data has large variations within one class, minimizing the error to the training data
may lead to the algorithm finding difficulty in classifying new data i.e. overfitting.
This may be an issue when the number of features is large. For example, there may
be some variation in the exact location of the squat in a spectrogram image; training
the algorithm too rigidly to one image may lead to the algorithm failing to identify
the same squat shifted only slightly in the time domain.
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The regularization parameter, λ, can be seen as a penalty added to the cost of the
algorithm. This is useful if there are many features which all contribute slightly
to the identification. This is true for the cases of using spectrogram images and
scalogram images as input data as the data is two-dimensional. The regularization
parameter can be varied heavily, but a rule of thumb used was that the parameter
should be the same order of magnitude or smaller than the input data.

The size of the hidden layer, used in the neural network, increases the complexity
and flexibility of the algorithm. Adding a feature to the hidden layer results in one
more node which connects each feature of the input layer to each feature in the clas-
sification. However, this also increases the time needed for training the algorithm,
as the complexity increases exponentially. Furthermore, if the algorithm is already
overfitting, increasing the hidden layer size may not improve the performance of the
algorithm.

3.3 Classification
The measured and simulated data was divided into four different classifications: no
squat, squat completely in the frame, squat slightly in the frame and insulated rail
joint. These classifications were altered for different tests of the machine learning
algorithm; the effect of different classification methods on the performance of the
algorithm was investigated. The squat data-sets were always given the observation
value of y = 1. The different observation values assigned to each track behavior are
given in Table 3.1.

Table 3.1: Observation values of different observed track behaviours for the first
test of training the machine learning algorithm

No Squat Squat Squat slightly
in frame

Joint
Isolation

Test 1 y = 0 y = 1 y = 0 y = 0
Test 2 y = 0 y = 1 y = 0 y = 2
Test 3 y = 0 y = 1 y = 2 y = 3
Test 4 y = 0 y = 1 y = 2 y = 0

3.4 Preparing Data for Machine Learning
When the data had been preprocessed the data from simulations and measurements
were combined into a single .mat-file. The matrix was ordered such that the mea-
sured data preceded the simulated data, and was ordered by group, i.e. squats were
first, followed by insulated rail joints, switches, and any rail.

The combined data was shuffled before being used as data for the machine learn-
ing algorithm. Furthermore, to test how the algorithm analyzed new data, one
squat or insulated rail joint was left out of the training data. To do so, a function
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leaveOneOut.m was created. First, the squat or insulated rail joint which was to be
left out was selected. Furthermore, the classification setup according to Table 3.1
was chosen. The datasets and their corresponding observation value were shuffled.
Finally, the function divided the shuffled data so that a portion of the data was
used as training data and the rest of the data was used as test data. The most
common division of training and testing data was 90% and 10% respectively. As
squat Sf27 was removed from the data, 7 squats and 5 insulated joints resulted in
12 training- and test runs for each preprocessing and classification method. Finally,
two test sequences were tested; when training the algorithm for these two sequences,
no measured data was left out.

3.5 Training and Validating Data
Once the algorithm design has been chosen and developed, the algorithm is tested
and validated by using a portion of the prepared data which was not used to train
the machine learning algorithm. Important results in this step are the successful
classification of squats, undamaged rail, and insulated joints, as well as the percent-
age of false alarms (classification any other examples as squats). As training and
updating of the algorithm can be done "offline" the priority of the results is set such
that correct classification is the most important result, and the speed of training the
algorithm is secondary.

3.5.1 Test Run on Measured Data
To investigate and present how the algorithm could work in practice, axle-box-
acceleration data for two 250 m lengths of the measured rail was used as test se-
quences. The acceleration data was taken from the ABA of wheel number 2 for the
first passby in the forward direction. The acceleration data was preprocessed in the
same way as the training data for each attempt. After training the algorithm, the
machine learning algorithm was used on the test sequence. As can be seen in the
acceleration data in Figure 3.2, the first test sequence covered a rougher portion of
the track. The first test sequence also passed squat Sf20 and insulated joint Sf21,
at approximately distances 200 m and 220 m. The second test sequence covered a
smoother portion of the track but passed by squat Sf13 after a distance 180 m.

As can be seen from the acceleration data in 3.2, a squat cannot be identified simply
from acceleration; the overall acceleration on test sequence 1 is almost always larger
than the acceleration at Sf13. Relative to the local acceleration, however, both
squats and insulated joints lead to a large increase in acceleration.

Figure 3.3 shows the scalogram image of two random portions of test sequence 1 and
2. In the wavelet data, it can be seen that around 450 Hz the system is damped;
this range has low levels even on the rougher test sequence 1. Both test sequences
show higher levels at the lower frequency range around 200 Hz, even for smoother
track.
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Figure 3.2: Acceleration measurements for two test sequences along the measured
track

(a) test sequence 1 (b) test sequence 2

Figure 3.3: Scalogram image of random segments of the two test sequences using
the Morse wavelet and a spatial resolution of 1.6 cm
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Preprocessing and Feature

Identification

Optimizing the machine learning algorithm was approached as an iterative process,
where either change was made to the controlled variables of the algorithm, or to how
the data was preprocessed. By processing the data in several different ways, key
features relative to squats of the acceleration data were found for the different cases.
As one of the problem statements was to optimize for clearer differentiation between
squats and insulated rail joints, these two phenomenon were observed critically to
identify differences in time and frequency domain.

Another interesting observation was whether a squat could be visually identified.
For example, the roughness at a squat may lead to oscillation at a specific frequency
related to the roughness of the surface defect. Although this would not feasibly
replace the time saved by automatic handling of large amounts of acceleration data,
it could lead to a secondary evaluation of the locations at which the algorithm found
a squat.

In the previous study by Pieringer et. al [1], simulations were validated by comparing
the acceleration data of a squat with similar geometry as a measured squat. It was
found that the simulation matched the magnitude and width of the first acceleration
peak. However, the simulation was too highly damped, leading to a smoother late
response. This may impact the ability to use data in the time domain as input
data. Furthermore, some of the peaks in the frequency domain were shifted. The
simulated squats were found to be sufficiently similar to the measured data when
comparing time-frequency and STFT; a short investigation of the similarity of the
wavelet transform for measured and simulated squats is presented in the following
section.

4.1 Features in the Time- and Frequency Domains
Vertical acceleration data from three axle-boxes in the measurement bogie were
obtained. Along with knowledge of the location of several squats and other track
anomalies, the axle-box acceleration at surface defects could be localized in the
data. The measured axle-box acceleration was assessed in both time- and frequency
domain. The accelerations at a squat showed peaks with large variation between
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40 m/s2 and 400 m/s2. In the frequency domain, clear peaks at approximately
200 Hz, 600 Hz, 750 Hz, 1000 Hz, 1400 Hz, and 1500 Hz were identified.
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Figure 4.1: Acceleration measurements of squat Sf8 for a passby in forward direc-
tion. The x-axis is localized such that 0 m is the location of the squat.

The acceleration at the squat Sf8 is shown in Figure 4.1. As can be seen in Figure
4.1, a squat in the time domain can be signified by a dip in acceleration as the
wheel starts to pass the squat due to the indentation of the rail surface. The squat
impacts the wheel with a large force, which results in a peak in acceleration following
the dip. The wheel continues to oscillate with some damping. For squat Sf8, the
acceleration amplitude decays primarily the first four meters after passing the squat.
However, it can be seen both before and after the squat that there is some amount
of low amplitude oscillation at the axle-box. For squats located on rougher track,
the decay was harder to distinguish in the time domain although the initial peak
was clear.
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Figure 4.2: Passbys of squat Sf13 in frequency domain for 9 different passbys. For
passby P4 the velocity of the train was below 80 km/h ± 5 km/h and disregarded.
For passby P0, the velocity was around 97 km/h

In Figure 4.2, the frequency content of the ABA around squat Sf13 can be seen for 10
different measurements. Measurements labeled by passby ’P1’, ’P3’, ’P5’, ’P7’ and
’P0’ pass the squat in the opposite direction compared to ’P2’, ’P4’, ’P6’ and ’P8’
which may explain the difference in the frequency composition. Furthermore the
train was turned around for measurement ’P0’. In general, there is a large similarity
between the measurements with regards to the frequency of the peaks; however, the
level of the peaks varies. Furthermore, when the velocity of the train is increased to
almost 100 km/h, a peak around 720 Hz is found as well as the peak around 600 Hz.
Using equation 2.1, it can be seen that velocity of 100 km/h, or 27.8 m/s, and a
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frequency of 720 Hz relates to a wavelength λ = 38.6 mm. A velocity of 80 km/h, or
22.2 m/s, and a frequency of 600 Hz relates to a wavelength of 37 mm. This similarity
in wavelength corresponds well to a hypothesis that short-pitch corrugation around
the squat is impacting the measured ABA.

The frequency composition seems to vary somewhat depending on the direction of
impact on the squat, as can be seen by comparing the two left plots in Figure 4.2.
This is reasonable, as squats are not perfectly symmetric. The same peaks can be
distinguished regardless of the direction of the train; the spectral balance of the
peaks varies.

4.1.1 Spectrogram Images
The spectrogram images produced used the same method as the research by Pieringer,
A. et. al. However, rather than centering the squat in the image, the time axis was
adjusted so that one-quarter of the time axis was before the squat and three quarters
was after the squat. This was chosen as the acceleration of the wheel after passing
the squat contained more information than before passing the squat.

Figure 4.3: Spectrogram image of measured ABA with fs=22.2 kHz at three
different squats, with a spatial resolution of 5 cm. From left, Sf8, Sf12 and Sf28

The spectrogram was found using a short-time Fourier transform, where the win-
dow size was 1024 samples, and a Hanning window was used. The transform was
performed by moving the window 50 samples between each transform, resulting in
a 95% overlap. After performing the STFT, the data was cut 7 samples before the
squat and 21 samples after the squat, resulting in 29 samples in the time/location
domain. In the frequency domain, the data was cut so that the first 93 samples were
included, corresponding to a frequency range between 0 Hz and 2 kHz.

Figure 4.3 shows spectrogram images from axle box acceleration measurements at
three squats. In Figure 4.4 two insulated rail joints and one switch is represented
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Figure 4.4: Spectrogram image of measured ABA with fs=22.2 kHz at two different
insulated rail joints, Sf6 and Sf15 (left and middle) as well as at a switch Sf2 (right),
with a spatial resolution of 5 cm

by their spectrogram images. The squats chosen as representative images are squats
Sf8 and Sf12 as Sf8 was geometrically considered a large squat, and Sf12 was ge-
ometrically considered to be a small squat. Squat Sf28 is located on the opposite
rail of a larger squat (Sf29) and is therefore also of interest. Common for the squats
is a broadband excitation at the location of the squat and a variation in damp-
ing depending on frequency. The more resonant regions are around 200 Hz, 600 Hz,
1000 Hz and around 1400-1500 Hz. In the case of Sf12, these are also the frequencies
that are more heavily excited as the wheel passes the squat.

In the left and middle plots of Figure 4.4, the spectrogram image of the ABA when
passing the insulated rail joints Sf6 and Sf15 are shown. The spectrogram images of
the insulated joints varies; this is likely due to the condition of the insulated rail joint.
Repeated loading at the joint may lead to one or both of the rails dipping, which
will lead to acceleration due to the step height and angle of the rail. Sf6 is chosen
as a representative insulated rail joint as the effect of the isolation deterioration
seems quite clear. However, it is worth noting that not all insulated rail joints have
a similar appearance; a milder case is shown in the middle plot in Figure 4.4. From
the spectrogram images of the insulated rail joints, it can be seen that the insulated
joint has a similar frequency composition compared to squats. This could be related
to the geometrical similarity; the dip angle and the step height of the rail joint may
be similar to the length and depth of a typical squat. Another hypothesis is that
the excitation is due to the resonance of the coupled system between axle-box and
rail.

In the case of the switch (right, Fig 4.4), excitation occurs in the low-frequency range
between 50 Hz to 400 Hz as well as around 600 Hz. The 600 Hz region has a slower
decay. As all three types of surface anomalies result in resonant excitation around
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600 Hz, a hypothesis is that 600 Hz resonance is a characteristic of the wheel-rail
interface rather than due to geometrical or mechanical characteristics of the different
rail surfaces.

Figure 4.5: Three examples of the short-time Fourier transform on simulated ABA
at three squats with fs=22.2 kHz, with a spatial resolution of 5 cm

In Figure 4.5, three examples of simulated squats are represented by an STFT
spectrogram. Between approximately 200 Hz and 1 kHz, the excitation is more
broadband compared to the measured examples shown in Figure 4.3. At 1.2 kHz
there is a clear peak for all three squats, this could be compared to the peak at
1.4 kHz for the measured squat Sf8 shown to the left in Figure 4.3.

4.1.2 CWT Scalogram Images
The continuous wavelet transform, CWT, was used to create scalograms of the
training data in the time-frequency domain. Similar to the STFT, the number of
input features increases quadrattically when increasing resolution or range in the
time- or scale (frequency) domain. The CWT was performed by using the built-in
Matlab function [cwt f] = wt(filterbank, inputdata) and the filterbank was
determined using the built-in function fb = cwtfilterbank() with several input
parameters. The wavelet type used was the ’Morse’ wavelet, the number of voices
per octave was set to 10, and the frequency range was set to between 50 Hz and
2000 Hz. The lower- and upper-frequency limit was chosen to confine to limitations
of the model used for creating the simulated acceleration data [21]. The result was
a wavelet transform over 54 different scales.

The choice of wavelet type was based on a visual evaluation of three wavelet types
included in the function fb = cwtfilterbank(). Furthermore, in an earlier study
[3], the wavelet type ’Morlet’ was used. To broaden the scope of research on the
topic, it would be of interest to use a different wavelet type. The three wavelet
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types included in fb = cwtfilterbank() were Morse, Morlet (specified as ’amor’)
and bump. An example of a scalogram image at a squat produced through wavelet
transforms of acceleration data using these three filter banks can be seen in Figure
4.6.

Figure 4.6: Scalogram images of the ABA at squat Sf12 for wheel 3 with the train
in forward direction using three different filter banks - Morse, Morlet and bump
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Figure 4.7: Real and Imaginary wavelets of Morse, Morlet and bump wavelet types

The different wavelet families are shown in the time domain in Figure 4.7 for scale
13. Using the given input parameters, scale 13 has a center frequency of 871 Hz.
The Morlet wavelet has the highest peak around time zero, with a quick decay. The
bump wavelet instead shows a slower decay and a smaller peak at the origin. The
Morse wavelet is quite similar compared to the Morlet wavelet, but has a smaller
peak at the origin. The width of the decay can be related to the resolution in the
frequency domain, as shown in Figure 4.8. The bump wavelet has a faster decay
in the frequency domain and is almost discontinuous at the edges. The decay time
correlates to the width of the frequency response for all three wavelet types. It is
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Figure 4.8: Frequency response for filter of wavelet 13 of Morse, Morlet and bump
filter banks

worth noting that several parameters can be varied within each wavelet family; the
default values were chosen for all three.

Due to the compromise between frequency and time resolution, the Morse wavelet
was chosen. Of the three investigated wavelet types, the Morse wavelet had a sharper
frequency resolution compared to the Morlet wavelet and a faster decay in the time
domain compared to the bump wavelet.

The segmentation of the scalogram images was chosen such that there was a spatial
resolution of 1.6 cm. The length of the scalogram in the time domain was 44 samples,
leading to the image beginning roughly 0.2 m before a squat and continuing 0.5 m
after a squat. The spatial resolution is higher compared to that of the short-time
Fourier transform. Instead, the total number of features due to the spatial and
frequency resolutions was kept in the same order. The scalogram images, as a
matrix of 54 by 44 samples resulted in 2376 features per example compared to 2697
features for the spectrogram.

Figure 4.9: Wavelet transform of measured ABA with fs=22.2 kHz at three dif-
ferent squats. From left, Sf8, Sf12 and Sf28

As can be seen in Figure 4.9, the squat can be identified by a broadband excitation
at the location of the squat. The same three squats are used for visual comparison
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Figure 4.10: Wavelet transform of measured ABA with fs=22.2 kHz at two dif-
ferent isolated joints, Sf6 and Sf15 (left and middle) as well as at switch Sf2 (right)

as in the case of the short-time Fourier transform. The main visual difference be-
tween the STFT and the wavelet scalograms is the apparent frequency modulation
above 600 Hz. This modulation is not found using the short-time Fourier transform.
Broadband, discrete peaks in amplitude could correspond to bumpiness on the rail
resulting in an impact on the ABA.

The wavelet scalogram of two insulated rail joints and a switch is given in Figure
4.10. Visually, the joint is similar to squat Sf8; the difference is a slower decay time.
However, this varies between squats and between different joints - a clear conclusion
cannot be made from these plots alone. In the right plot of Figure 4.10, it can once
again be seen that at switches, the excitement of the wheel/rail interface occurs
around 600 Hz. Otherwise, there is little visual similarity between the switches and
squats.

In Figure 4.11, three examples of simulated squats are shown by their scalogram
representations. The broadband excitation and the slower decay rate for lower
frequencies is similar to that of the measured ABA. However, a higher amplitude is
found around 800 Hz rather than 600 Hz. The simulated track parameters of the
three examples in Figure 4.11 were designed to correspond to the average measured
track receptance at the measurement site [1].

Compared to the short-time Fourier transform, the wavelet scalogram images of
simulated squats do not show a clear peak at the high frequency, 1.2 kHz. This
is likely due to the frequency resolution of the wavelet transform; the resolution
in the frequency domain is lower for higher frequencies. On the other hand, the
wavelet transform has a higher time resolution, which illustrates the modulation of
the high-frequency components in the measured case.
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Figure 4.11: Three examples of wavelet transform of the simulated ABA at three
squats with fs= 22.2 kHz, downsampled by a factor 16 in the time domain

4.2 Time Averaged Wavelet Power
In an attempt to minimize the number of features used as input for the machine
learning algorithm, the possibility of extracting important features of the wavelet
transform was investigated. One method was to average each wavelet in the time
domain to achieve a time-average for each of the wavelet scales. The data is not
resampled before averaging over time. The number of scales was increased in the
function fb = cwtfilterbank() to 24 voices per octave, resulting in 128 frequency
scales instead of 54. The increase in frequency resolution was justified by the overall
decrease in the number of features by a factor 20.
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Figure 4.12: Time averaged wavelet power of measured ABA at three different
squats. From top Sf8, Sf12 and Sf28

When extracting simulated data, the time-averaged power was found for every 16th

sample to maintain the same distance between each training example as the second
method of wavelet scalograms of 1.6 cm.
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Figure 4.13: Time averaged wavelet power of measured ABA at two different
isolated joints, Sf6 and Sf15 (top and middle) as well as at switch Sf2 (bottom)

By averaging over time, the importance of the two peaks of the squats at 600 Hz and
around 200 Hz, as shown in Figure 4.12 became apparent. The high level at higher
frequencies is also clear. In Figure 4.13, both peaks are clear for the insulated rail
joints as well. For the switch given in the example, the 600 Hz peak is not as clear,
but overall the time-averaged wavelet power is still similar.

4.3 Scale Averaged Wavelet Power
From Figure 4.12, it can be seen that squats generally show a peak in acceleration
in the frequency regions around 200 Hz and 600 Hz. However, the low-frequency
component seems to be common even for healthy rail, perhaps that it is an easily
excited eigenfrequency of the wheel-rail system. As such, the time variation of the
acceleration at the scales between 500 Hz and 707 Hz is investigated through scale
average wavelet power.

In Figure 4.14, it can be seen that most of the energy at these scales is centered
around the first 0.2 meters after passing a squat. However, the increase in energy
is seen just before the wheel passes the squat. This is a general observation for the
squats. However, the rate of decay after passing the squat varies for some of the
squats. In identifying squats through scale averaged wavelet power, how this rate of
decay affects the machine learning algorithm will likely be important to the overall
success of the algorithm.

Furthermore, correctly identifying the start of the squat for the training data is
imperative for success in the scale average wavelet power. As can be seen for squat
Sf8 in Figure 4.14, the shape of the curve is very similar for all passbys. However,
the position at which the power starts to increase is shifted up to 0.1 m between
different measurements. This improper alignment increases the variation between
the examples. However, if only examples of perfectly aligned squats are given to the
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Figure 4.14: Scale averaged wavelet power of the scales centered between 500 Hz
and 707 Hz, at three different squats. From top Sf8, Sf12 and Sf28
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Figure 4.15: Scale averaged wavelet power of the scales centered between 500 Hz
and 707 Hz, at two insulated rail joints Sf6 (top) and Sf15 (middle) as well as at a
switch Sf2 (bottom)
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training data, the implementation of the measurement system would require a very
high time resolution between each SAWP.

It can be seen in both Figures 4.14 and 4.15 that the acceleration level is consistently
high at least the first half meter after passing each surface anomaly. In the case of
Sf12 (middle of Fig 4.14) and a switch (bottom of Fig 4.15), the level varies quite
significantly between different passbys.
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Figure 4.16: Scale average wavelet power in dB for wavelet scales with center
frequencies 500 Hz through 707 Hz for the two test sequences. The locations marked
with a red star are squats and the location marked with a blue star is an insulated
rail joint.

By observing the scale averaged wavelet power over longer periods, the changes in
level can more clearly be observed. This was done for test sequences 1 and 2 (Figure
4.16). However, this method was not investigated further as this type of data was
not of use for training the logistic regression or neural network algorithms.

4.4 Conclusions for Optimization
Observing the acceleration data at a squat, it is found that there is some damping
which results in the acceleration decaying oscillation for a few meters. As such, the
data is cut so that the localization of the squat is the sample after one-quarter of the
segment; a larger portion of the data consists of acceleration data after the location
of the squat.

Although the time-average power shows clear peaks for squat measurements around
100-250 Hz as well as around 600 Hz, this is also true for insulated joints and
switches. As such, it cannot be expected that the method should increase successful
discrimination between the two.

The success of the scale average power depends on the patterns in the time domain.
As was found by the previous study on the same data [1], the simulated data was
generally more highly damped than the measured data. As such, it can be expected
that the scale average power may fail in finding commonality between measured and
simulated squats, leading to difficulty in training the algorithm. Furthermore, from

36



4. Preprocessing and Feature Identification

the figures in section 4.3, it is difficult to visually distinguish a squat from different
types of track data.

The long-time observation of the scale average wavelet power shown in Figure 4.16
shows promise in identifying squats from their wavelet power between 500 Hz and
707 Hz. Although this method minimizes the complexity of the detection method,
Figure 4.14 shows that both squats Sf12 and Sf28 have moderately low levels com-
pared to the rough track of test sequence 1.

Seemingly there are resonances of the track or the wheel or the interaction of the
two at 600 Hz as a peak is clear in almost all cases of increased force between the
rail and track. The theoretical frequency response of the wheel or track does not
signify any clear correlation to the measured acceleration. Furthermore, the system
is coupled, so investigating only the track or only the wheel is a simplification. No
clear inferences regarding the resonances of the system can be made.

To conclude, although the squats can visually be recognized both from spectrogram
and scalogram images, there is no clear advantage of either method found. Further-
more, neither averaging method seems to more clearly distinguish squats. Finally, it
can be concluded that distinguishing deteriorating insulated rail joints from squats
will be cumbersome with any of the chosen preprocessing methods.
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Optimization of Machine Learning

Algorithm

Designing a machine learning algorithm to perform well on a specific set of data
requires tuning a large number of parameters. Some of these are inherent to the
choice of the algorithm, such as regularization for logistic regression and neural
networks, or the hidden layer size for the neural network. Furthermore, choosing
how to label data, which data to include, and the number of features in the data set
relates to the input data itself. In optimizing the machine learning algorithm, the
different parameters were adjusted and evaluated iteratively. The different possible
variations of the algorithm explored are given in Table 5.1.

Focus on this thesis was to assess the results of different preprocessing methods.
A few attempts were made using the spectrogram data with the location of the
squat shifted, as explained in section 4.1.1, to determine if shifting the origin would
significantly affect the results. Furthermore, by shifting the origin of the STFT, the
results could more rigorously be compared to the results of the other preprocessing
methods used in the thesis.
Table 5.1: Possible variations of machine learning algorithm

Variable No. of
Variations

Classification 4
Algorithm 2
Preprocessing Method 4
Exclusion of data n/a
Regularization n/a
Hidden layer size n/a
Ratio healthy/squat rail n/a
Ratio training/testing data n/a
Number of Iterations n/a

Although it is possible to evaluate the different possible variations systematically,
a more organic approach was taken. The knowledge gained from applying a cer-
tain variation was applied to later optimization attempts. To illustrate, classifying
according to tests 2, 3, and 4 according to Table 3.1 did not lead to better identi-
fication. As such, assessing the effect of classification had a lower priority in later
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optimization methods.

After some iterations, it was found that correctly distinguishing between insulated
rail joints and squats was cumbersome. As knowledge of the location of both in-
sulated rail joints and railway switches is known, data at these locations can easily
be excluded from monitoring. Later attempts at optimizing the machine learning
algorithm excluded joints and switches from the training and testing data. In these
cases, only classification tests 1 and 4 according to Table 3.1 were relevant.

The relationship between the number of examples of healthy rail and squats was
relevant to the success of the algorithm. Including a large percentage of healthy rail
led to high training and test accuracy, but in many cases led to lower success in
identifying squats using the leave-one-out validation. Furthermore, decreasing the
number of healthy rail examples also generally increased the rate of false alarms for
the test sequences.

After varying the architecture of the two machine learning algorithms, a final design
was chosen. The final setup of the two algorithms is shown in Table 5.2. For
consistency, the different data and classification systems were trained using this
final design of the two algorithms. Unless otherwise stated, the variables in Table
5.2 were used. The focus of the results is therefore on the preprocessing methods
and classification method rather than the architecture of the two machine learning
algorithms.

The total number of examples used varied between different input data, due to the
amount of simulated data used for each preprocessing method as well as the ratio
between examples of healthy rail and squats. The number of training examples was
between approximately 5000 and 20000 examples. The amount of measured data was
kept consistent at 400 examples. This method is not recommended, as this was an
un-monitored variable between the different preprocessing methods. However, the
ratio between healthy rail and squats seemed more important for succesful algorithm
training than the total number of examples, which is shown in the section.

Table 5.2: Design of variable parameters of the machine learning algorithms. The
hidden layer size is only applicable to the neural network algorithm

Variable Setup
Number of Iterations 200
Regularization, λ 0.5
Hidden layer size 20
Ratio training/testing data 90/10

5.1 Spectrogram as Input Data
The neural network algorithm was trained with the spectrogram data using the
variable parameters given in Table 5.2. Furthermore, the percentage of the data
which were examples of squats was approximately 4.1%. The algorithm showed
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moderate success in identifying the squats, yet most examples of insulated rail joints
were falsely identified as squats. The results of the squat identification is given in
Table 5.3. The trained algorithm was tested on the two test sequences. For test
sequence one, the squat Sf20 was correctly identified along with 2 possible false
alarms. Of the false alarms, one was the identified joint Sf21. For test sequence
two, no false alarms were found. However, the squat Sf13 was not identified for this
passby, which is reasonable as only 3 of the 7 examples of squat Sf13 were correctly
identified.

Table 5.3: Results of neural network algorithm on squat data using spectrograms
as input for test one according to variable parameters given in Table 5.2

Sf8 Sf10 Sf12 Sf13 Sf20 Sf28 Sf29
Successful Identification 4 5 4 3 8 8 14
Total Examples 4 8 8 7 8 8 16

In the case of logistic regression, similar success was found for identifying squats.
However, the number of false alarms increased significantly. The number of false
alarms for test sequence one was up to 44, and the number of possible false alarms
for test sequence two was 8. However, both of the squats were identified. The result
is somewhat surprising, since the previous paper by A. Pieringer et. al [1] used the
logistic regression with the descent algorithm fminunc as well and had fewer false
alarms.

5.2 Scalogram as Input Data

5.2.1 Classification of Squats Only
Before deciding on the final machine learning architecture in Table 5.2, a first iter-
ation of the test used classification according to test 1 in Table 3.1. The training
data and testing data consisted of 70% and 30% of the total data respectively. The
chosen variable parameters are given in Table 5.4.

Table 5.4: Variable parameters of first test of scalogram

Variable Setup
Classification 1
Algorithm Neural Network
Number of Iterations 400
Regularization 5
Hidden layer size 30
Percentage examples of squats 1.8%
Exclusion of data none

The first test resulted in the perfect fitting of the training data (100%) and the
correct classification of the testing data between 93-97% depending on which data
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were excluded. The correct identification of squats and insulated rail joints is given
in Tables 5.5 and 5.6 respectively. For the test sequences, there were many false
alarms.

Table 5.5: Results of neural network algorithm on squat data using scalograms as
input for test one according to variable parameters given in Table 5.4

Sf8 Sf10 Sf12 Sf13 Sf20 Sf28 Sf29
Successful Identification 4 7 8 7 8 3 11
Total Examples 4 8 8 7 8 8 16

Table 5.6: Results of machine learning algorithm on insulated rail joints data using
scalograms as input for test one according to variable parameters given in Table 5.4

Sf6 Sf15 Sf16 Sf18 Sf21
Successful Identification 2 7 4 6 8
Total Examples 4 8 8 8 8

A second test excluded examples of insulated rail joints and switches. The design of
the variable parameters was once again set according to Table 5.2. The identification
of squats for the second test are given in Table 5.7. Aside from squat Sf10, which
was correctly identified for 75% of the examples, the algorithm correctly identified
all examples of measured squats. However, the algorithm resulted in many false
alarms when tested on the two test sequences.

Table 5.7: Results of neural network algorithm on squat data using scalograms as
input with variable parameters according to Table 5.2 with examples of insulated
rail joints and switches excluded

Sf8 Sf10 Sf12 Sf13 Sf20 Sf28 Sf29
Successful Identification 4 6 8 7 8 8 16
Total Examples 4 8 8 7 8 8 16

The number of false alarms for the two test sequences was much higher for the
scalograms compared to the short-time Fourier transform as well as compared to
the results from the previous study [1]. The false alarms which occurred on the
track where the ABA was less than 40 m/s2 could be removed. This resulted in
fewer false alarms on test sequence 2 but a large number of false alarms on the
rougher track of test sequence 1 remained.

An idea to improve the algorithm further was to add the maximum acceleration
observed during each segment as a feature in the input data. The results of the
third attempt on the scalogram data are given in Table 5.8. Aside from squat Sf28,
all examples of measured squats were correctly identified. For squat Sf28, half of
the examples were correctly identified.

The algorithm was tested on the two test sequences. All data which was classified
as a squat but had acceleration values below 40 m/s2 were reclassified as a healthy
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Table 5.8: Results of neural network algorithm on squat data using scalograms
as input for test three with variable parameters according to Table 5.2 excluding
images of insulated rail joints and switches and adding maximum acceleration as a
feature

Sf8 Sf10 Sf12 Sf13 Sf20 Sf28 Sf29
Successful Identification 4 8 8 7 8 4 16
Total Examples 4 8 8 7 8 8 16

rail. Running the algorithm on the first test sequence identified the squat Sf20 in
the data. Furthermore, the joint Sf21 was identified as a squat and three other
possible false alarms were identified. For the second test sequences, the squat Sf13
was correctly identified and there were no false alarms.

5.2.2 Other Classification Methods
The three later classification methods according to Table 3.1 were investigated for
their success in training the neural network algorithm. For classification methods 2
and 3, the insulated rail joints and switches were included in the data. For classifi-
cation method four, the joint and switch data were removed.

Classification method 2 resulted in the correct identification of insulated rail joint
Sf21. Both squats were identified in the test sequence. However, test sequence 1
found 16 possible false alarms, and test sequence 2 found 5 possible false alarms.
Classification method 3 led to the highest success of correctly classifying insulated
joints, although neither method clearly distinguished squats from joints. Both clas-
sification methods 2 and 3 resulted in many false alarms; the false alarms in test
sequence 2 were minimized by setting a minimum acceleration of 40 m/s2. However,
the false alarms for test sequence 1 remained.

Classification method 4, which excluded joints and switches, led to overall good
identification of the squats. Only one example of squat Sf10 and two examples of
squat Sf12 were falsely identified. Noticeably, the success rate of the testing data at
77%-82% was much lower than for the training data at 88%-92%. It can be inferred
that the algorithm is poor at generalizing new data.

5.2.3 Logistic Regression Method with Scalogram as Input
The logistic regression algorithm was used to test the success of the scalograms as
input data. The focus was set on classification method 1, i.e. classifying squats only.
The algorithm performed better by excluding joints and switches from the data.
By setting the requirement that only acceleration levels above 40 m/s2 could be
classified as squats led to zero false alarms for test sequence 2, but many seemingly
random hits for test sequence 1. The results of identifying the squats are given in
Table 5.9.

By adding the maximum acceleration found in each segment as a feature, the false
alarms in test sequence 1 decreased significantly to four possible false alarms, of
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Table 5.9: Results of logistic regression algorithm on squat data using scalograms
as input for test one with variable parameters according to Table 5.2

Sf8 Sf10 Sf12 Sf13 Sf20 Sf28 Sf29
Successful Identification 4 3 8 7 8 8 16
Total Examples 4 8 8 7 8 8 16

which one was an insulated rail joint. The false alarms were all within 7 meters
from the insulated rail joint or the squat, except for one false alarm which was
about 40 meters from the squat. There were no false alarms for test sequence 2.
The results of the detection of measured squats are given in Table 5.10.

Table 5.10: Results of logistic regression algorithm on squat data using scalograms
as input for test one with variable parameters according to Table 5.2 with maximum
acceleration added as a feature of the input data

Sf8 Sf10 Sf12 Sf13 Sf20 Sf28 Sf29
Successful Identification 4 7 8 4 8 4 15
Total Examples 4 8 8 7 8 8 16

Many of the methods found false alarms for the first test sequence. As the segment
covered had high acceleration levels, these false alarms were not eliminated by setting
a minimum acceleration requirement. A test was made by using the first 3000 test
examples from test sequence 1 as training data of healthy rail. Although there
was no guarantee that all these examples were of healthy rail, none of the identified
squats, joints, or switches were included. The result of including these test examples
significantly minimized the number of false alarms on the remainder of test sequence
1 while maintaining an equally high success rate of identifying measured squats. The
original data contained track with varying roughness; however, this test indicates
that more examples of rough track may improve training of the algorithm.

5.2.4 Discussion and Conclusions Regarding Scalogram-based
Algorithm

Both the neural network and logistic regression algorithms were successful after
adjusting the design of the algorithm. Furthermore, the algorithms performed better
by adding a feature of the maximum observed acceleration to the input data as the
number of false alarms decreased. The two squats which were not identified were
generally either Sf10 or Sf28 which both were considered as small squats by visual
investigation of the indentations.

Although the input data included a healthy track of varying roughness, the algorithm
found fewer false alarms when adding some of the rough track from test sequence 1
to the training data. This could indicate that there is still room for improvement
by adding more examples of different track parameters to the training data.

From the perspective of machine learning efficiency, an issue with the scalogram as
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input data is the number of features. The scalogram is two-dimensional, which leads
to a squared increase in the number of features when increasing range or resolution
in either the time or frequency domain. As there are not a lot of examples of squats
or other track anomalies, a few errors may occur. If almost all data is examples of
healthy rail, the algorithm may skew toward the healthy rail, by learning that the
cost generally decreases by assuming all examples are of healthy rail. Another issue,
if one is careful to not overload the training set with examples of healthy rail, is
that there is too little data to properly fit.

The complexity of the algorithm compared to an unbalanced number of examples of
each class may lead to skewing. Although the difference between the training data
and testing data success was only a few percentage points at most, the percentage
of the data which consisted of squat data was quite low, such that statistically, a
success lower than 98.2% may consist of the algorithm constantly predicting healthy
rail. The combination of validating measured squats to determine success in finding
squats, as well as the two test sequences, which should not have many false alarms,
was a sufficient method for assessing the skewing.

5.3 Scale Average Wavelet Power as Input Data
The scale average wavelet power as input showed little success for identifying squats
and found many false alarms when using the test sequence. The results of using
SAWP as input data with the neural network algorithm are given in Table 5.11

Table 5.11: Results of neural network algorithm on squat data using scale average
wavelet power as input and classification test 1 according to Table 3.1

Sf8 Sf10 Sf12 Sf13 Sf20 Sf28 Sf29
Successful Identification 3 4 7 6 0 2 0
Total Examples 4 8 8 7 8 8 16

By using the logistic regression algorithm, compared to the results in Table 5.11,
the algorithm identified one more case of squat Sf10 and two more cases each of
squats Sf20 and Sf28 and finally identified four more cases of squat Sf29. The same
success was found by adding the maximum acceleration data as a feature. However,
the number of false alarms remained high for all three attempts.

5.4 Time Average Wavelet Power as Input Data
The time-averaged wavelet power showed varying success in identifying squats, de-
pending on the different variable parameters. The most common error was the
inability to identify squats Sf10 and Sf28, which are two of the smaller squats. This
error occurred consistently for the different methods using the neural network algo-
rithm. The results of using time-averaged wavelet power on the logistic regression
algorithm with parameters according to Table 5.2 is presented in Table 5.12.
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Table 5.12: Results of the logistic regression algorithm on squat data using time-
average wavelet power as input for classification test 1 according to Table 3.1

Sf8 Sf10 Sf12 Sf13 Sf20 Sf28 Sf29
Successful Identification 3 0 2 2 8 2 16
Total Examples 4 8 8 7 8 8 16

Using time-averaged wavelet power to detect squats resulted in the trained algo-
rithm finding many false alarms for the test sequence. The descent algorithm was
monitored during training the different training examples. From the monitoring, it
was found that the descent was either very slow or oscillating around a consistent
level. The failure to descent indicates either that the method was finding a local
minimum or that the algorithm was failing to find a pattern in the data. As the
same effect was seen for many tests, the latter of the two seems more likely.

5.5 Comparison of Methods

5.5.1 Setup of the Machine Learning Algorithm
As can be seen in Table 5.1, the possible variations in the design of a machine
learning algorithm are infinite. As was presented by Andrew Ng on his online
machine learning course [19], there are some simple diagnostic tests to evaluate the
success of the machine learning algorithm.

The number of features for all different preprocessing methods is high, the expected
issue was that the algorithm would overfit to the data. This error is plausible if
the success of the training data is much higher compared to the success of the
test data. Some methods of mitigating the high variance are finding more training
examples, lowering the number of features, increasing the regularization parameter
λ, and stopping the training early. The first two of these methods are inherent to
the input data itself, meaning that the possible methods of lowering the variance
without altering the data were altering the regularization and lowering the number
of iterations.

The regularization parameter chosen was 0.5. With a higher regularization, the
variance was minimized for some of the different preprocessing methods, whereas
for other input data the descent method did not perform as well. With a lower
regularization parameter, it was found that the variance increased for most prepro-
cessing methods. Overfitting due to training the algorithm for too many iterations
was noticeable only for some of the preprocessing methods. However, it was found
that after 200 iterations the successful identification of testing data and validation
data did not increase noticeably for any of the preprocessing methods. As such, the
number of iterations chosen was 200.

The size of the hidden layer was chosen for the neural network. The size was kept
between the number of classifications and the size of the input layer. By increasing
the hidden layer size, the flexibility of the algorithm increased, which may lead to
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better results. However, increasing the hidden layer size leads to longer computation
time and may also lead to overfitting of the data. The choice of the hidden layer
size was a compromise between these factors.

5.5.2 Classification of the Data
The different methods of classifying the data according to Table 3.1 were designed
to test methods of distinguishing squats from insulated rail joints. However, dis-
tinguishing between the two was difficult. The insulated rail joints excite the axle
boxes with very similar frequency and time patterns compared to squats. This could
be related to the geometries of the squats and insulated rail joints. According to
Thompson [5], the step height and dip angle of the insulated rail joint are defining
factors of the generated wheel-rail noise. Another hypothesis is that the resonances
of the wheel-rail system which effects the ABA are very strong. This hypothesis is
supported by the ABA of the first test sequence, shown in Figure 3.3. Compared
to the smoother second test sequence, the scalogram image of test sequence 1 shows
excitation in the same frequency ranges as the squats and insulated rail joints.

Attempting to train the algorithm to differentiate between two very similar signals
may be counterproductive; after the difficulty in differentiating squats from insulated
rail joints was established, the insulated rail joints were removed from the data. The
examples of switches were removed as well, as the switches can easily be removed
from the data when implementing the algorithm in real-time.

5.5.3 Preprocessing Method
Both the time-averaged and scale-averaged wavelet power performed poorly for the
measured squats and the test sequences. The results varied heavily depending on
the setup of the machine learning algorithm. The conclusion can be made that the
ABA of a squat is most properly identified by a simultaneous representation in the
time and frequency domain.

Although the scale-averaged wavelet power performed poorly with the two machine
learning algorithms, the Figure 4.16 highlights the possibility of using scale-averaged
wavelet power for another method of automatic detection. This method was used in
the paper by M. Molodova et. al [13]. This method was not investigated further, but
due to the low complexity this method may be advantageous to investigate further.

The scalogram based algorithms did not perform better than the short-time Fourier
transforms from the previous study by Pieringer et. al [1]. However, the algorithm
performed much better than the STFT-based algorithms of this paper. Furthermore,
the number of false alarms for the test sequences decreased.

5.6 Final Design of Machine Learning Algorithm
Success in identifying squats along with low levels of false alarms were determining
in the final design of the machine learning algorithm. A lower complexity saves
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computation time and has less risk of overfitting. However, the highest overall
success was found for a neural network algorithm.

The algorithm chosen for the final design was the neural network algorithm with
parameters according to Table 5.2. The input data chosen were the scalogram levels
along with the maximum acceleration found in the signal segment as an added
feature. For each squat, the successful identification is therefore found in Table
5.8. For the medium to large squats Sf8, Sf13, Sf20, and Sf29, 100% successful
identification was found. For the small squats, Sf10, Sf12, and Sf28, 87% successful
identification were found due to the four misses of squat Sf28.

5.7 Discussion
The size of the squats was directly related to the success of identifying the squat.
The only method which was not able to identify the large squats Sf8 and Sf20 was
the scale-averaged wavelet power. However, it was expected that this data would
perform poorly compared to the other input data due to the large variation in input
data. This was established in section 4.3.

At the occasion of either surface irregularity, a broadband excitation occurs. How-
ever, some mid-frequency ranges are excited for an extended period, namely fre-
quencies around 200 Hz and 600 Hz. Furthermore the ABA at 1.4 kHz has high
levels for both squats and some of the examples of insulated rail joints. These could
either be seen as related to the eigenfrequencies of the wheelset-track system, or
related to the size of the irregularity combined with the speed of the train. The first
assumption is highlighted by the similarity between rough track shown in Figure
3.3(a) and for squats. If the frequency response at a defect is mainly determined by
the wheel-track mobility, differentiating between different surface defects would be
difficult, even with more measurement data. The frequency response at switches in-
dicates that the geometry of the surface irregularity is also relevant. A combination
of both phenomenon is probable.

Many of the attempts resulted in many false alarms for test sequence one. Although
the final design does not have this issue, it highlights the importance of including
more rough track data and variations in track parameters in the training data.
Furthermore, using two test sequences with significant difference in roughness was
a suitable method for troubleshooting.

For the final design, all squats were identified for at least once. In general, this is a
satisfying result, as the algorithm can identify even the smaller squats. Compared
to previous research, the main benefit of the optimization is a lowered number of
false alarms, making the system more practical for implementation.

5.7.1 Future Research
The study focused on developing and optimizing an algorithm for detecting squats
measured by a measurement train on the German railway. As a single measurement
car is used, there is the advantage that the coupling between the surface defect and
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the axle-box acceleration is consistent for each measurement compared to if many
different cars are used. However, the advantage of being able to use many different
wagons is that larger portions of the track may be measured and monitored with this
method. Future research could include either training the algorithm to generalize
regardless of wheel and car type or by processing the acceleration data to account
for the different couplings.

Another simplification of the measurement data is the use of data only within a
short range of velocities. The benefit of this is that the forces and frequencies of
passing each squat are kept more consistent; however, it requires that the passing
measurement car keeps this velocity. As could be seen in Figure 4.2, by increasing
the velocity to 100 km/h (27.8 m/s) some peaks in the frequency domain became
more pronounced and some of the peaks shifted upward in frequency. A method of
handling this could be investigating how to account for the velocity in the frequency
domain. However, many of the resonances seemed to be independent of the vehicle
velocity.

There are a number of different machine learning algorithms available to use, among
which the logistic regression algorithm and the single hidden layer neural network
was used for this thesis. An area of future research is testing other algorithms. One
algorithm, which is useful for image identification, is the deep convolutional neural
network. As the feature identification presented in Chapter 4 visually assessed the
data, image recognition algorithms may more closely relate to how squats are iden-
tified manually. An example of such research is the paper presented in section 2.4.2.
Spectrogram and scalogram images could be used as input, rather than ultrasound
as suggested in the paper, to detect the small squats earlier.
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Conclusion

The final implementation of a neural network machine learning algorithm to identify
squats from ABA was successful. The algorithm correctly identified all medium and
large squats, as well as 87% of the examples of small measured squats. Furthermore,
the number of possible false alarms for the test sequence was lowered compared to
previous attempts, to a total of four possible false alarms. The algorithm was not
able to differentiate between squats and insulated rail joints.

A lot of focus on optimizing the machine learning algorithm was set on differentiating
between squats and insulated rail joints. However, there was little measurement data
and no simulated data of the insulated rail joints. As such, little success was found
in this area of optimization. In order to differentiate between the two, more data
would be needed. Furthermore, the acceleration data from a squat and from an
insulated rail joint had many similarities.

Oversaturating the training set with examples of healthy rail led to more false clas-
sification. However, if not enough examples of healthy rail were given, the two test
sequences found a higher number of possible false alarms. For the final implemen-
tation, approximately 1.8% of the data were examples of measured or simulated
squats.

For further research, different machine learning algorithms could be used. The
squats were manually assessed through images of the spectrograms and scalograms
as well as through the plots of the time- and scale-averaged wavelet power. As such,
an algorithm that finds patterns in images rather than treating every sample as a
feature may find higher success.

Finally, in order to implement the algorithm, the algorithm should be trained on
many different types of track. Some variations would be in the railpad stiffness, the
spacing of the sleepers, and to train the algorithm on ballastless tracks. To conclude,
although the optimization attempt did not increase the successful identification of
small squats, the success of using a different preprocessing method on the ABA
data substantiates the hypothesis that the axle box acceleration data is a promising
method to detecting small squats.
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A
Preprocessing of Measured

Acceleration Data

CHOOSE MEASUREMENT
% Choose squat or joint insulation
% Squats: Sf [8 10 12 13 20 27 28 29] -- exclude 27
% Isos: Sf [6 15 16 18 21]
% Anys: [1 2 3 4 5 6 7 8 9 10 11 12]
% Switch: Sf [1 2]
sf = 8;
% set ’squat’, ’iso, ’any’, or ’switch’
type = ’squat’;

% Define direction
dir = ’FR’; % FR - forward, GFR - backward
% Define wheel
wh = 2; % 1:3L, 2:4L, 3:3R, 4:4R

LOAD MEASUREMENTS
% localize data
path_mea = ’MeasuredData’;

if strcmp(dir,’FR’)
pens=[1,3,5,7];

elseif strcmp(dir,’GFR’)
pens=[2,4,6,8];

end

order_r = [28 20 13 8];
order_riso = [0 21 18 16 15 6];
order_l = [29 20 12 10];

pos_any = [15790 17084 17020 16430 16700 15440 15300 ...
15650 16000 17400 15605 15900]; % belong to all wh
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pos_switch = [16129 16053]; % belong to wh 3 & 4

% pre-allocate
X=zeros(4,29*93);
xps=zeros(4,29);
fps=zeros(4,93);
vps=zeros(4,29);

for pp=1:4
pendel=pens(pp); %pendel
load([path_mea,’/vorbeifahrt’,...

num2str(pendel)],’acc’,’x’,’tt’,’v3’,’acc_label’)

if strcmp(type,’squat’) || strcmp(type,’iso’)
if wh == 2

load([path_mea,’/vorbeifahrt’,...
num2str(pendel)],’pos_squ_r’,’pos_iso_r’)

if strcmp(type,’iso’)
pos_sf = pos_iso_r(order_riso == sf);

else
pos_sf = pos_squ_r(order_r == sf);

end

else
load([path_mea,’/vorbeifahrt’,...

num2str(pendel)],’pos_squ_l’)

pos_sf = pos_squ_l(order_l == sf);
end

elseif strcmp(type,’any’)
pos_sf = pos_any(sf);

elseif strcmp(type,’switch’)
pos_sf = pos_switch(sf);

end

% manual locations of "any" and "switch"

% Labels
% tt - time data
%%%%dt = tt(2) - tt(1);
% x - spatial data
% v - velocity data
% acc - acceleration data
% acc_label - label of acceleration data:
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A. Preprocessing of Measured Acceleration Data

% index 1:3L, 2:4L, 3:3R, 4:4R

% Manually adjust squat position
% Currently ideal for Sf8
if strcmp(type,’squat’)

if sf == 8
if strcmp(dir,’GFR’) && wh == 2

pos_sf = pos_sf + 2.3 - 0.70;
end
if strcmp(dir,’FR’) && wh == 2

pos_sf = pos_sf + 0.31;
end

elseif sf == 10
if strcmp(dir,’FR’) && wh==3

pos_sf=pos_sf+0.1-2.35;
end
if strcmp(dir,’FR’) && wh==4

pos_sf=pos_sf+0.15;
end

elseif sf == 12
if strcmp(dir,’FR’) && wh==3

pos_sf=pos_sf-3.065;
end
if strcmp(dir,’FR’) && wh==4

pos_sf=pos_sf-0.57;
end

elseif sf == 13
if strcmp(dir,’FR’) && wh==2

pos_sf = pos_sf-1.34;
end
if strcmp(dir,’GFR’) && wh==2

pos_sf=pos_sf - .55;
end

elseif sf == 20
if strcmp(dir,’GFR’) && wh == 2

% pos_sf = pos_sf ;%- 2.5;
end

elseif sf == 28
if strcmp(dir,’FR’) && wh == 2

pos_sf = pos_sf - 3.15;
end
if strcmp(dir,’GFR’) && wh == 2

pos_sf = pos_sf - 3.55;
end

elseif sf == 29
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if strcmp(dir,’FR’) && wh==4
pos_sf=pos_sf-3.21;

end
if strcmp(dir,’FR’) && wh==3

pos_sf=pos_sf-5.71;
end
if strcmp(dir,’GFR’) && wh==4

pos_sf=pos_sf-3.65;
end
if strcmp(dir,’GFR’) && wh==3

pos_sf=pos_sf-6.1;
end

end
elseif strcmp(type,’iso’)

if sf == 6
if strcmp(dir,’FR’) && wh==2

pos_sf=pos_sf+.58;
end

elseif sf == 15
if strcmp(dir,’GFR’)

pos_sf=pos_sf-0.53;

end
if strcmp(dir,’FR’) && wh==2

pos_sf=pos_sf-0.65;
end

elseif sf == 16
if strcmp(dir,’GFR’)

pos_sf=pos_sf-0.15;
if pp == 4

pos_sf = pos_sf+2.7;
end

end
if strcmp(dir,’FR’) && wh==2

pos_sf=pos_sf-.17;
end

elseif sf == 18
pos_sf = pos_sf + 15.7;
if strcmp(dir,’GFR’)

pos_sf = pos_sf - 0.15;
if pp == 4

pos_sf = pos_sf - 1.5;
end

end
elseif sf == 21

if strcmp(dir,’GFR’)&& wh==2
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pos_sf=pos_sf - 0.55;
if pp == 4

pos_sf = pos_sf + 15.55;
end

end
if strcmp(dir,’FR’) && wh==2

pos_sf=pos_sf - 0.3;
end

end
elseif strcmp(type,’switch’)

if sf == 1
if strcmp(dir,’GFR’) && wh==4

pos_sf=pos_sf+2.9;
end
if strcmp(dir,’FR’) && wh==4

pos_sf=pos_sf+2.825;
end
if strcmp(dir,’FR’) && wh==3

pos_sf=pos_sf+0.3;
end
if strcmp(dir,’GFR’) && wh==3

pos_sf=pos_sf+0.4;
end

elseif sf == 2
if strcmp(dir,’GFR’) && wh==4

pos_sf=pos_sf+1.17;
end
if strcmp(dir,’FR’) && wh==4

pos_sf=pos_sf+2.4;
end
if strcmp(dir,’FR’) && wh==3

pos_sf=pos_sf-0.3;
end

end
end

% Place origin at centre of squat
if strcmp(dir,’FR’)

x = -(x - pos_sf);
elseif strcmp(dir,’GFR’)

x = x - pos_sf;
end

% ideal conditions of vel, dx, dt for interpolation
dx = 1e-3;
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vel = 80 / 3.6;
dt = dx / vel;

% interpolate measured aba to resolution of simulated
FF = griddedInterpolant(tt, acc(:,wh));
t2 = tt(1):dt:tt(end);
acc2 = FF(t2);
FF = griddedInterpolant(tt, x);
x2 = FF(t2);
FF2 = griddedInterpolant(tt, v3);
v2 = FF2(t2);

%find index for position of rail fault
[~,ipos] = min(abs(x2));

% Plot Time Data
AccFig = figure(1);
subplot(4,1,pp);
plot(x2,acc2,’k’);
xlim([0-10,0+10])
% labels set outside of loop

%%%%%%%%%%%%%%% SPECTROGRAM %%%%%%%%%%%%%%%
Nw=1024;
%calculate spectrogram
ind1 = ipos - 10000; % 10 meter before squat
ind2 = ipos + 10000; % 10 meters after squat
inds = ind1:50:ind2; % resolution 0.5 mm
Nsp = length(inds); % Number of points in spatial resolution
spectro = zeros(Nsp, Nw/2-1); % pre-allocate

for i=1:Nsp
Mmid=inds(i);
[freq_aba,AG] = do_spectra_av(acc2(:,Mmid-Nw/2-1:Mmid+Nw/2), ...

dt,1,Nw,Nw);
spectro(i,:)=AG.’;

end

% Resize around x = 0 for ML-alg
xp = x2(inds);
vp = v2(inds);
i = 200;
int1 = i-7:i+21;
Xex = 10 * log10(abs(spectro(int1,1:93)));
xp2 = xp(int1);
vp2 = vp(int1);
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xps(pp,:) = xp2;
vps(pp,:) = vp2;
fps(pp,:) = freq_aba(1:93);

% Unwrap Data for export for ML-alg
X(pp,:)=Xex(:)’;

end

han = axes(AccFig,’visible’,’off’);
han.YLabel.Visible = ’on’;
han.XLabel.Visible = ’on’;
ylbl = ylabel(han,’Acceleration / m/s^2’,’FontSize’,16);
xlbl = xlabel(han,’Location / m’,’FontSize’,16);
ylbl.Position(1) = ylbl.Position(1) - 0.01;
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Plot
figure(4)
for i=1:4

Xex=reshape(X(i,:),29,93);
subplot(2,2,i)
pcolor(xps(i,:),fps(i,:),Xex’/2)
shading interp
colormap jet
colorbar;
set(gca,’CLim’,[-30 20]);
xlabel(’Position, m’)
ylabel(’Frequency, Hz’)
title([’v=’,num2str(round(mean(vps(i,:))*3.6,2)),’ km/h’])
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end

vok=(abs(vel-mean(vps,2))/vel)<0.05;
%make sure the velocity is within 5% from 80 km/h
X=X(vok,:);
disp([num2str(sum(vok)),’ v’’s ok’])

save([’ProcessedData/stft_’,type,num2str(sf),dir,’_wh’,...
num2str(wh),’.mat’],’X’,’xps’,’fps’,’vps’,’vok’)

4 v’s ok
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Logistic Regression Algorithm

This code is based on the example code given for the assignments in the online
course "Machine Learning" available on Coursera [19].

Part 1: Loading and Visualizing Data
% load training data
load ../ProcessedData/Prep_tap300_comb_order.mat
X = Xin’; % 10 * log10(abs(Xin) + eps);
y = y’;

Leave One Out and Shuffle Data
% loop for the Sfs to use
% 0 -> test run
% joints: [6 15 16 18 21]
% squats: [8 10 12 13 20 28 29]
for num_sf = [0 8 10 12 13 20 28 29]

% set shuffle
shuffle = 1;

% set case
% 1) y = 1 if squat, y = 0 else
% 2) y = 1 if squat, y = 2 if iso, y = 0 else
% 3) y = 1 if squat, y = 2 if slight, y = 3 if iso, y = 0 else
% 4) y = 1 if squat, y = 2 if slight, y = 0 else
classification = 1;
% num_labels by case 1)1, 2)2, 3)3, 4)2
num_labels = 1;

[X_train, X_test, X_val, y_train, y_test, y_val] = ...
leaveOneOut(X, y, num_sf, shuffle, classification, 1);

Part 2: Regularized Logistic Regression
% Initialize fitting parameters
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initial_theta = zeros(size(X, 1), 1);

% Set regularization parameter lambda
lambda = 0.5;

% Compute and display initial cost and gradient for
% regularized logistic regression
[~, grad_h] = lrCostFunction(initial_theta, X_train, y_train, lambda);

Part 3: One-vs-All Training
% Set Options
options = optimset(’GradObj’, ’on’, ’MaxIter’, 800,’Display’,’iter’);
% Optimize

[all_theta, J, exit_flag] = ...
fminunc (@(t)(lrCostFunction(t, X_train, y_train, lambda)), ...
initial_theta, options);

Part 4: predict Train
[pred_train,~] = predict(all_theta, X_train);
train_val = double(pred_train == y_train) * 100;

fprintf(’\nTraining Set Accuracy: %f\n’, ...
mean(double(pred_train == y_train)) * 100);

Part 5: predict Test
[pred_test,~] = predict(all_theta, X_test);
test_val = double(pred_test == y_test) * 100;

fprintf(’\nTesting Set Accuracy: %f\n’, ...
mean(double(pred_test == y_test)) * 100);

info.lambda = lambda;
info.iters = options.MaxIter;
info.class = classification;
info.extranotes = "90% training data, excluding isos and switches";

Part 6: Validation
if num_sf ~= 0
[pred_val,sig_val] = predict(all_theta, X_val);
val_val = double(pred_val == y_val) * 100;

fprintf(’\nValidation Set Accuracy: %f\n’, ...
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mean(double(pred_val == y_val)) * 100);

save([’Results/logreg/tap/tap_vals_wosf’,num2str(num_sf),’.mat’],...
’train_val’,’test_val’,’val_val’,’info’,’sig_val’)

end

% run test sequences
if num_sf == 0

Xtemp = X;
load ../ProcessedData/tap300_test_seq1.mat
[pred_testseq1,~] = predict(all_theta, X);
% if excluding acc < 40

% pred_testseq1(X(:,end) < 40) = 0;

check_test_seq1 = find(pred_testseq1 == 1);
disp([num2str(length(check_test_seq1)),’ squats detected at’])
xs(check_test_seq1)
xs1 = xs;

load ../ProcessedData/tap300_test_seq2.mat
[pred_testseq2,~] = predict(all_theta, X);
% if excluding acc < 40

% pred_testseq2(X(:,end) < 40) = 0;

check_test_seq2 = find(pred_testseq2 == 1);
disp([num2str(length(check_test_seq2)),’ squats detected at’])
xs(check_test_seq2)
xs2 = xs;

save(’Results/logreg/tap/tap_vals_all.mat’,...
’train_val’,’test_val’,’info’,...
’pred_testseq1’,’pred_testseq2’,’xs1’,’xs2’,...
’check_test_seq1’,’check_test_seq2’)

X = Xtemp;
end

end
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C
Neural Network Algorithm

This code is based on the example code given for the assignments in the online
course "Machine Learning" available on Coursera [22].

Part 1: Loading and Visualizing Data
% load training data
load ../ProcessedData/Prep_tap_acc_comb_order.mat
% X = 10 * log10(abs(Xin) + eps); % Xin’; %
% X = Xin(:,1:2376)’;
% acc = Xin(:,2377);
X = Xin(:,1:end-1)’;
y = y’;

Leave One Out and Shuffle Data
% set which to leave out
% for inds = 1:12
% nums = [8 10 12 13 20 (27) 28 29 6 15 16 18 21];
% num_sf = nums(inds);
% end
for num_sf = [8 10 12 13 20 28 29] %. 6 15 16 18 21]

% num_sf = 8;
% set shuffle
shuffle = 1;

% set case
% 1) y = 1 if squat, y = 0 else
% 2) y = 1 if squat, y = 2 if iso, y = 0 else
% 3) y = 1 if squat, y = 2 if slight, y = 3 if iso, y = 0 else
% 4) y = 1 if squat, y = 2 if slight, y = 0 else
classification = 1;
% num_labels by case 1)2, 2)3, 3)4, 4)3
num_labels = 2;
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[X_train, X_test, X_val, y_train, y_test, y_val] = ...
leaveOneOut(X, y, num_sf, shuffle, classification, 0);

Set up Parameters
input_layer_size = size(X_train,2);
hidden_layer_size = 60;

Part 2: Loading Parameters
% set so Theta values are any random number between -0.5 and +0.5
init_epsilon = 0.5;

Theta1 = rand(hidden_layer_size,input_layer_size + 1) * 2 * init_epsilon ...
- init_epsilon;

Theta2 = rand(num_labels,hidden_layer_size + 1) * 2 * init_epsilon ...
- init_epsilon;

nn_params = [Theta1(:) ; Theta2(:)];

Part 3: Compute Cost (Feedforward)
lambda = 0.1;

J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
num_labels, X_train, y_train, lambda);

Part 6: Training NN
% size of the training set
options = optimset(’MaxIter’, 200);

% Create "short hand" for the cost function to be minimized
costFunction = @(p) nnCostFunction(p, ...

input_layer_size, ...
hidden_layer_size, ...
num_labels, X_train, y_train, lambda);

initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size);
initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels);

% Unroll parameters
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)];

% Now, costFunction is a function that takes in only one argument (the

XIV



C. Neural Network Algorithm

% neural network parameters)
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);

% Obtain Theta1 and Theta2 back from nn_params
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...

hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));

Part 7: Implement predictNN
After training the neural network, we would like to use it to predictNN
the labels. You will now implement the "predictNN" function to use the
neural network to predictNN the labels of the training set. This lets
you compute the training set accuracy.

[~, pred_train] = predictNN(Theta1, Theta2, X_train);
train_val = mean(double(pred_train == y_train)) * 100;

fprintf(’\nTraining Set Accuracy: %f\n’, mean(double(pred_train == y_train)) * 100);

% SET SAVE NAME

Xtemp = X;

Part 8: Testing
[~, pred_test] = predictNN(Theta1, Theta2, X_test);
test_val = mean(double(pred_test == y_test)) * 100;

fprintf(’\nTesting Set Accuracy: %f\n’, mean(double(pred_test == y_test)) * 100);

Part 9: Validation
% Information & save name
info.hiddenlayer = hidden_layer_size;
info.lambda = lambda;
info.iters = options.MaxIter;
info.class = classification;
info.extranotes = "80% training data, w isos and switches";

if num_sf ~= 0

save([’Results/tap/tap_thetas_wosf’,num2str(num_sf),’.mat’],...
’Theta1’,’Theta2’,’cost’,’X’)
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[h2_val, pred_val] = predictNN(Theta1, Theta2, X_val);
val_val = double(pred_val == y_val) * 100;

fprintf(’\nValidation Set Accuracy: %f\n’, mean(double(pred_val == y_val)) * 100);

save([’Results/tap/tap_vals_wosf’,num2str(num_sf),’.mat’],...
’train_val’,’test_val’,’val_val’,’info’,’h2_val’)

end

Part 10: Test Sequences
if num_sf == 0

load ../ProcessedData/tap_acc_test_seq1.mat
[~,pred_testseq1] = predictNN(Theta1, Theta2, X(:,1:end-1));
pred_testseq1(X(:,end) < 40) = 1;

check_test_seq1 = find(pred_testseq1 == 2);
% automatically set all values where acc < 40 to not squats
% remove/rewrite if the acc data is not one of the features

disp([num2str(length(check_test_seq1)),’ squats detected at’])
xs(check_test_seq1)

load ../ProcessedData/tap_acc_test_seq2.mat
[~,pred_testseq2] = predictNN(Theta1, Theta2, X(:,1:end-1));
pred_testseq2(X(:,end) < 40) = 1;

% automatically set all values where acc < 40 to not squats
check_test_seq2 = find(pred_testseq2 == 2);

disp([num2str(length(check_test_seq2)),’ squats detected at’])
xs(check_test_seq2)

save([’Results/tap/tap_acc_vals_all.mat’],...
’train_val’,’test_val’,’info’,’check_test_seq1’,’check_test_seq2’)

X = Xtemp;
save Results/tap/tap_thetas_all Theta1 Theta2 cost X

end

end
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