
Design and Implementation of a Modern
Standard Marine Communication Phrases
(SMCP) Language Learning Application

Degree project report in Computer Science

Mirco Ghadri & Zakariya Omar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2023
www.chalmers.se

www.chalmers.se

Degree project report 2023

Design and Implementation of a Modern
Standard Marine Communication Phrases

(SMCP)
Language Learning Application

Mirco Ghadri & Zakariya Omar

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023

Design and Implementation of a Modern Standard Marine Communication Phrases
(SMCP) Language Learning Application
Mirco Ghadri & Zakariya Omar

© Mirco Ghadri & Zakariya Omar, 2023.

Project Supervisor: Annamaria Gabrielli, Fackspråk och Kommunikation
Supervisor: Morteza Abdipour, Computer Science and Engineering
Examiner: Lars Svensson, Computer Science and Engineering

Degree project report 2023
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 31 772 1000

Cover: Marine Deck Officer or Chief mate on deck of vessel or ship . He holds VHF
walkie-talkie radio in hands. Ship communication

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Gothenburg, Sweden 2023

iv

Design and Implementation of a Modern Standard Marine Communication Phrases
(SMCP) Language Learning Application
Mirco Ghadri & Zakariya Omar
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract
This Bachelor’s thesis describes the development of a modern and updated Stan-
dard Marine Communication Phrases (SMCP) language learning application for the
shipping and marine technology division at Chalmers University of Technology. The
aim of this project is to design and construct a functional demo application that
serves as a proof of concept and provides valuable insights for future development.

By conducting data gathering, iterative design prototyping, and software imple-
mentation, the project successfully accomplished its goals. The outcomes include
the identification of user needs and the creation and evaluation of a design proto-
type. Online surveys were utilized for data gathering and evaluation, allowing for
the collection of user feedback and insights.

The project resulted in the development of a fully functional cross-platform appli-
cation compatible with Web, iOS, and Android platforms. The evaluation process
validated the effectiveness of the design, while also highlighting potential areas for
future enhancement. Ultimately the project’s findings and insights have the poten-
tial to significantly impact SMCP learning at Chalmers University of Technology
and beyond.

Keywords: Standard Marine Communication Phrases (SMCP), Language Learn-
ing Application, Ship Communication, Cross-platform Application, User-centered
Design, Software Development

v

Acknowledgements
We would like to express our sincere appreciation to our supervisor, Morteza Ab-
dipour, for his invaluable guidance and support throughout this project. His exper-
tise and advice have been instrumental in shaping our work. We would also like to
extend our gratitude to our project supervisor, Annamaria Gabrielli, for proposing
the thesis and guiding us along the way. Her continuous support and valuable in-
sights have contributed to the success of this project. Her strong commitment to this
thesis and effort in distributing our surveys to students and teachers internationally
have made this project possible.

Mirco Ghadri & Zakariya Omar, Gothenburg, June 2023

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

SMCP Standard Marine Communication Phrases
IMO International Maritime Organization
UCD User-centered Design
UI User Interface
VSC Visual Studio Code
IDE Integrated Development Environment

ix

Contents

List of Acronyms ix

List of Figures xiii

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Goal . 2
1.4 Scope . 2

2 Methodology & Project Approach 5
2.1 Agile Project Management . 5

2.1.1 Scrum . 5
2.2 User-centered Design . 5

3 Technical Background 7
3.1 User Interface(UI) . 7

3.1.1 Wireframe . 7
3.1.2 Figma . 7

3.2 Cross-platform Development . 7
3.2.1 Flutter (Framework) . 8

3.2.1.1 Dart (Programming Language) 8
3.2.1.2 Flutterflow (Low-code Builder) 8

3.2.2 Visual Studio Code (Code editor) 8
3.3 Version Control . 8

3.3.1 Git (Version Control System) 8
3.3.2 GitHub (Code hosting platform) 9

4 Method 11
4.1 Design . 11

4.1.1 Data gathering . 11
4.1.1.1 Survey . 11

4.1.2 Prototyping . 12
4.1.2.1 Wireframe prototyping 12
4.1.2.2 Figma prototyping 12

4.1.3 Evaluation . 12
4.1.3.1 Survey . 13

xi

Contents

4.2 Software Implementation . 13
4.2.1 Flutterflow . 13
4.2.2 Manual coding . 14

5 Results 15
5.1 Data gathering . 15

5.1.1 Survey results(students) . 15
5.1.2 Survey results(teachers) . 18
5.1.3 Survey Analysis & Findings 19

5.2 Prototyping . 21
5.2.1 Wireframe . 21
5.2.2 Figma prototype . 23

5.3 Evaluation . 27
5.3.1 Survey results(students) . 27
5.3.2 Survey Analysis and Findings 37

5.4 Software implementation . 38
5.4.1 Flutterflow . 38
5.4.2 Home menu . 40
5.4.3 Glossary . 43
5.4.4 Games . 46

5.4.4.1 Quiz . 47
5.4.4.2 The Ship Game . 50
5.4.4.3 Missing Word Game 53

5.4.5 Dictionary . 54

6 Discussion 57
6.1 Flutterflow . 57

6.1.1 Limitations . 57
6.1.2 Bugs . 58
6.1.3 Flutterflow Support & Community 59

6.2 Ethical & Ecological Aspects . 60
6.3 Future Work . 61

7 Conclusion 63
7.1 Design . 63
7.2 Software Implementation . 63
7.3 Summary . 64

Bibliography 65

A Appendix: Custom code I
A.1 The Ship Game . I
A.2 Voice Recording functionality . III
A.3 Recording playback functionality . IV
A.4 Recording Microphone . IV
A.5 Search filter . VI
A.6 Quiz answer options shuffling . VI

xii

List of Figures

1 Resource availability . 15
2 Skill relevance . 16
3 Feature usefulness . 16
4 Additional Features(students) . 17
5 Skill difficulty . 18
6 Suitable platform . 18
7 Additional features(teachers) . 19
8 Wireframe home page . 21
9 Wireframe quick menu . 21
10 Wireframe practice page . 22
11 Wireframe missing word game . 22
12 Figma home page . 23
13 Figma quick menu page . 23
14 Figma glossary menu page . 24
15 Figma glossary practice page . 25
16 Figma game menu page . 26
17 Figma missing word game page . 27
18 Number of icons . 28
19 Colors and shading . 29
20 Button and icons intuitiveness . 30
21 Full page or half page . 31
22 Search bar location . 32
23 The Ship Page user friendliness . 33
24 Page navigation and ease of use . 34
25 Phrase completion steps difficulty . 35
26 Perceiving completion of phrase difficulty 35
27 Prototype readiness . 36
28 Homepage in Flutterflow workspace 38
29 Splash Screen presented to user when starting the application 39
30 Home page created in Flutter . 39
31 Home menu in the Flutter application 40
32 Settings - light mode . 41
33 Settings - dark mode . 41
34 Homepage Flutter in Dark Mode . 42
35 Home menu in Flutter Dark mode . 42
36 Glossary menu page . 43

xiii

List of Figures

37 General terms practice page in Glossary 44
38 Microphone pressed . 45
39 Enabled playback button . 45
40 Letters practice page in Glossary . 45
41 Digits practice page in Glossary . 45
42 Games menu page . 46
43 Quiz first question . 47
44 Quiz correct answer selected . 48
45 Quiz wrong answer selected . 48
46 Quiz continue button & text hidden 49
47 Quiz question & options hidden . 49
48 Quiz completion page . 50
49 The Ship Game page 1 . 51
50 The Ship Game page 2 - Game page 52
51 The Ship Game - Game page checked 52
52 Missing word game . 53
53 Missing word game checked . 53
54 Dictionary . 54
55 Dictionary filtered with search . 54
56 Homepage search autocomplete . 55
57 Dictionary redirect . 55

xiv

1
Introduction

1.1 Background

The maritime industry is a constantly expanding global business that depends on
substantial international collaboration in order to keep developing, so as to meet
expanding global market needs. Safety, in particular on vessels, is crucial for this
industry to thrive. Safety on vessels, for crew and cargo, is primarily dependent on
the good communication skills of both shore and sailing personnel. Consequently,
the International Maritime Organisation (IMO), a UN organ established in 1948,
with currently 173 member states [1], has issued a number of regulations and stan-
dards with regard to the seafarers’ communication skills, but also with reference to
the ‘Lingua Franca of the sea’. Today, Maritime English is the only language for
specific purposes in the world, that is reinforced by international legislation.

At Chalmers University of Technology, all Bachelor’s studies within shipping and
marine technology include learning activities and learning outcomes with refer-
ence to communication skills, particularly Standard Marine Communication Phrases
(SMCP). According to the IMO convention, all officers in management and opera-
tional positions onboard must be ‘conversant with SMCP’ at different levels [2], or
else they will not be able to sail international waters. This means that all officers in
operational and management positions must be able to carry out a complete con-
versation using only SMCP.

At Chalmers, the significance of effective communication skills, specifically SMCP,
is recognized within the shipping and marine technology programs. Since 2007, a
desktop application for SMCP learning has been available exclusively on Chalmers
computers with good results. However, to better accommodate the evolving educa-
tional landscape and provide students with greater accessibility, there is a growing
need for a more modern and updated application that can be readily accessed beyond
the confines of school and the restrictions of desktop computers.

1.2 Purpose

The purpose of this project is to address the growing need for a modern and up-
dated application for Standard Marine Communication Phrases (SMCP) learning
at Chalmers University of Technology.

1

1. Introduction

1.3 Goal
The goal of this project is to lay the foundation for the development of a more
modern and updated Standard Marine Communication Phrases (SMCP) learning
application at Chalmers University of Technology. The specific objectives of this
project are as follows:

1. Identification: Identify the requirements and key features necessary for a
more modern and effective SMCP learning application. This involves con-
ducting research, gathering input from the target user group and analyzing
the limitations of the current desktop application.

2. Design: Design a comprehensive application that aligns with the identified
requirements and addresses the limitations of the existing desktop application.

3. Evaluation: Evaluate the design of the application by gathering feedback
from the targeted user group. This evaluation process will provide insights into
the application’s effectiveness, user satisfaction, and areas for improvement.
Based on the findings, revisions and refinements will be made to optimize the
application’s design.

4. Implementation: Implement the finalized design into a working application
that incorporates the identified requirements and design improvements. This
phase will involve developing the necessary software and integrating the learn-
ing materials.

By addressing these 4 objectives, this report intends to lay the foundation for the
development of an application that fulfils the educational needs of students and
equips them with the necessary communication skills for success in the maritime
industry.

1.4 Scope
The scope of this project is to develop a working demo application with a focus on
the structure and functionality of the application, rather than delivering a compre-
hensive end product. The demo application will provide the following features:

• Listening: Users can listen to a native speaker’s pronunciation of the SMCP
phrase

• Recording: Users can record themselves reading the SMCP phrase.

• Pronunciation Comparison: Users can compare their own pronunciation
with the native speaker’s.

2

1. Introduction

The demo application will include a selected sample of SMCP phrases to effectively
demonstrate its functionality. It will not encompass all SMCP phrases. The priority
of this project is to establish the foundation and demonstrate key features, leaving
room for future additions and expansions.

By focusing on the structure and functionality of the application, this project sets
the groundwork for further development and refinement in the future.

3

1. Introduction

4

2
Methodology & Project Approach

In this section, we will provide an overview of the taken project approach and the
methodologies employed to achieve the project’s objectives.

2.1 Agile Project Management
Agile project management was adopted as the primary methodology for this project.
Agile is a flexible and iterative approach that emphasizes collaboration, adaptabil-
ity, and continuous improvement [3]. By embracing Agile principles, we aimed
to enhance communication, increase productivity, and deliver high-quality results.
Within the Agile framework, the Scrum methodology was specifically utilized.

2.1.1 Scrum
Scrum is an agile framework that divides a project up into smaller sub-projects
called sprints. The work is reviewed at the end of each sprint, revisions are made
for the next sprint and the process is repeated until the project is complete [4].

By employing Scrum, we organized the work into weekly sprints. During each sprint,
we held regular meetings to discuss progress, tackle challenges and ensure alignment.
At the end of each sprint, a sprint review and retrospective were conducted to as-
sess the deliverables, gather feedback, and identify opportunities for improvement.
The adoption of Scrum facilitated a transparent and collaborative work environ-
ment. This iterative approach ensured a more efficient and responsive development
process.

2.2 User-centered Design
User-centred design (UCD) was another methodology employed in this project. UCD
focuses on understanding the needs, preferences, and behaviours of the end-users
throughout the design and development process [5]. By incorporating UCD princi-
ples, we conducted user research, gathered user feedback and iteratively refined the
application’s design based on user insights gained from evaluation. This approach
helped ensure that the application was intuitive, user-friendly, and effectively met
the needs of its intended users.

5

2. Methodology & Project Approach

By combining Agile project management with user-centred design, we aimed to cre-
ate an iterative and user-centric development process. These methodologies provided
a structured framework for efficient collaboration, frequent feedback, and continu-
ous improvement, ultimately leading to the successful achievement of the project’s
objectives.

6

3
Technical Background

In this section, we will delve into the underlying technologies, frameworks, and
concepts that are relevant to this project.

3.1 User Interface(UI)

The User Interface (UI) is the bridging gap between the user and the underlying
functionality of an application. UI refers to how a user interacts with an application
from the visual and interactive elements, such as buttons and menus, that enable
interaction. It includes the design, layout, and overall functionality of everything
that the user interacts with on the interface [6]. In the development of a detailed
UI, two important tools come into play.

3.1.1 Wireframe
Wireframes are usually developed in the initial phases of the design process and
help designers outline their ideas into a visual representation of the application’s
UI, usually in a two-dimensional skeleton showcasing what they’ll include in the
application. It serves as a blueprint for the overall structure and functionality of the
application and can be either drawn on paper or digitally [7].

3.1.2 Figma
Figma is a web-based design platform that offers robust design, prototyping, and
code-generation tools. It enables users to create detailed designs and interactive
prototypes. Designing complex, detailed and interactive UIs is one of its many
applications, and it even allows for collaboration in real-time [8].

3.2 Cross-platform Development
Cross-platform development is the process of building an application from a single
codebase that can run on multiple operating systems or platforms. Rather than
develop a specific application for each system or platform, developers can code once
and deploy it everywhere. This saves both time and resources [9]. There are several
tools and frameworks available for cross-platform development.

7

3. Technical Background

3.2.1 Flutter (Framework)
Flutter is an open-source software development framework developed by Google . It
enables the development of cross-platform applications for mobile, web and desktop
from a single codebase. Flutter allows for the creation of both high-performance
and visually appealing applications [10].

3.2.1.1 Dart (Programming Language)

Dart is an object-oriented and open-source programming language developed by
Google. It is the programming language utilized by Flutter and has a syntax which
is similar to Java [11]. Dart can compile to ARM and x64 machine code, but can also
be transpiled to Javascript, explaining why Flutter apps can run on all platforms,
even web [12].

3.2.1.2 Flutterflow (Low-code Builder)

Flutterflow is a third-party web-based visual builder tool for the Flutter framework.
Being a low-code visual builder, it enables the creation of a detailed user interface
for Flutter applications with little to no coding as a developer and with faster
development time. Flutterflow supports the addition of manual Dart code in the
forms of custom functions, actions and widgets [13].

3.2.2 Visual Studio Code (Code editor)
Visual Studio Code (VSC) is a powerful and versatile desktop and web-based code
editor with many functions of that of an Integrated Development Environment
(IDE). It comes with a range of different features, including IntelliSense code auto-
completion, debugging and version control integration [14]. VS Code supports many
different programming languages, frameworks and extensions, the Flutter framework
being one of them. Integrating perfectly with Flutter, it allows the user to effectively
build, run & debug their Flutter application [15].

3.3 Version Control
Version control is a system for tracking and managing software code. It allows
changes in the code to be tracked and different versions to be managed, and not
only helps to maintain the integrity of the code but also provides a way to organize
and collaborate [16]. Git and GitHub are two prominent tools in the field of of
version control.

3.3.1 Git (Version Control System)
Git is an open-source distributed version control system originally developed by
Linus Torvalds in 2005. Since then, it has become the most widely used Version
Control System. Its distributed nature allows users to use it locally without access

8

3. Technical Background

to the internet. Git also integrates flawlessly with most IDEs, including Visual
Studio Code, to allow for a seamless coding experience [17].

3.3.2 GitHub (Code hosting platform)
GitHub is a cloud-based hosting platform that incorporates Git as its underlying
version control system. It provides a hosting service in the form of a centralized
repository where developers can store, manage, and collaborate on their code. With
GitHub, users can easily share their projects, track changes, and leverage collabo-
rative features such as pull requests and issue tracking [18].

9

3. Technical Background

10

4
Method

This chapter covers the steps taken to achieve this projects goal, from the data
collection and designing phase, up until the software implementation phase.

4.1 Design
This project emerged from the necessity of updating an outdated application. To
address this need and develop an application that not only fulfils the current require-
ments but also meets the current needs of users, a user-centred design approach was
adopted. This approach emphasizes the importance of understanding the users, their
goals, and their preferences in order to create a tailored and effective application.

In this section, we will present the key phases of the design process, including data
gathering, prototyping, and evaluation.

4.1.1 Data gathering
In an attempt to accurately identify the needs of the application’s targeted user
group and create a positive user experience, user-centred data-gathering methods
were employed in this project prior to initiating both the design and software devel-
opment phases.

The aim was to gather the relevant information straight from the users in order
to inform and guide the decision-making process and help ensure the application
aligns with the user needs. The primary data collection tools employed were sur-
veys.

4.1.1.1 Survey

Two surveys were developed; one aimed at teachers and one at students. Both
surveys were distributed internationally to participants in the relevant field. The
surveys were created using google forms and took a form of a mix of multiple-choice
questions, open-ended questions and linear scales (1-5) questions. Providing both
qualitative and quantitative answers that gave a more holistic understanding of the
user’s perspective. The teacher survey consisted of a total of 20 questions, includ-
ing both main questions and follow-up questions. The student survey comprised
30 questions, including both main questions and follow-up questions. However, due
to the branching nature of the survey, the average user was expected to answer

11

4. Method

approximately 20 questions. The survey was designed to address the following key
questions and gather insights in the following areas:

• User Needs and Preferences

• User Interface Design

• Feature Prioritization

• Platform Accessibility

• User Feedback and Suggestions

The surveys were distributed internationally to ensure a diverse representation of
participants from different educational institutions and cultural backgrounds. This
approach enabled us to capture a wide range of perspectives and cater to the appli-
cation’s potential user base beyond Chalmers University of Technology. The choice
of targeting students and teachers was deliberate, considering their involvement in
maritime education and their direct engagement with SMCP learning. By including
both groups, we aimed to gather a comprehensive understanding of the user needs,
preferences, and challenges associated with SMCP learning.

4.1.2 Prototyping
Having analyzed the user data, a user-centred approach was taken in visualizing the
findings and designing the resulting prototype. Starting with a wireframe design
and advancing to the development of a Figma prototype.

4.1.2.1 Wireframe prototyping

Wireframes helped design the basic structure, layout and functionality of the appli-
cation. Serving as a low-fidelity prototype that helped visualized the results from
the findings and allowed for its refinement before the next stage of the prototyping
phase. The wireframes were drawn by hand on paper.

4.1.2.2 Figma prototyping

Building on the wireframe, a more interactive and high-fidelity prototype was devel-
oped using the digital designing tool Figma. The Figma prototype expanded on the
wireframe design and incorporated and allowed for greater detail and interactiveness
than could be achieved with the wireframe.

4.1.3 Evaluation
In order to appraise the effectiveness and usability of the high-fidelity prototype, an
evaluation was conducted. The evaluation served as a tool for validating the design

12

4. Method

decisions and functionalities implemented in the prototype. The primary data col-
lection tool employed was a survey.

We evaluated the prototype to identify the strengths and weaknesses of the de-
sign, validate its functionality, and gather suggestions for enhancements. The feed-
back received from participants played a crucial role in informing iterative design
improvements and shaping the final version of the prototype.

4.1.3.1 Survey

A survey was developed following a similar format to the previous surveys mentioned
in this report. It was distributed internationally to participants in the relevant field
and specifically targeted students to ensure that their perspectives and experiences
were effectively captured. The survey was designed to address and gather insights
into the following areas:

• Design: Evaluating the visual appeal and aesthetics.

• Layout: Evaluating the organization and arrangement of different elements.

• Workflow: Evaluating the usability and functionality.

• User Feedback and Suggestions: Gathering feedback and suggestions from
participants on their overall experience with the prototype.

The survey was structured according to these areas with each section containing a
set of questions that directly addressed the corresponding aspect of the prototype.
By structuring the survey in this way, we aimed to systematically evaluate the
design, layout, and workflow of the application, while also gathering user feedback
and suggestions.

4.2 Software Implementation
The software implementation phase involved the actual development of the applica-
tion, transforming the design concepts and user requirements from a Figma proto-
type into a functional and interactive application. This section provides an overview
of the two primary approaches used in the implementation process: Flutterflow and
manual coding.

4.2.1 Flutterflow
Flutterflow played a significant role in the implementation of the application’s user
interface. With its user-friendly drag-and-drop builder and extensive library of com-
ponents, Flutterflow enabled a quicker prototype development than strictly manual
coding on its own would have permitted. Its user-friendly drag-and-drop builder
allowed for a more natural and seamless translation of our Figma design into an

13

4. Method

application user interface. By taking care of most of the design aspects using a
visual drag-and-drop builder, it allowed us to focus more on the functionality of the
application.

4.2.2 Manual coding
While Flutterflow’s visual builder proved instrumental in the user interface (UI)
development, manual coding was necessary to implement some of the application’s
core features, logic and functionality. The manual coding utilized the Dart program-
ming language and the Flutter framework.

Manual coding addressed specific requirements that could not be accomplished
through low-code methods alone. Some of the key areas where manual coding was
essential were:

• Customization of the application’s behaviour: Manual coding allowed
us to tailor the application’s behaviour to meet the specific needs and prefer-
ences of the users. This included implementing custom interactions, anima-
tions, games and user workflows that went beyond the capabilities of low-code
tools.

• Integration of external libraries: Manual coding facilitated the integration
of external libraries into the application. This allowed us to leverage additional
functionality and services, incorporating advanced features that were not avail-
able out of the box. This included microphone recording functionality, which
was not built into Flutter and therefore did not exist in Flutterflow (see 38 &
A.2)

• Implementation of complex features: Manual coding was crucial for im-
plementing complex features that required custom logic and intricate imple-
mentation. One such example was the Ship Game(see 5.4.4.2 & A.1).

Flutterflow provided the option for adding manual code in multiple forms. The 3
main forms were custom functions, custom widgets and custom actions. Although
Flutterflow provided the ability for adding manual code, some of the manual code
was added outside of Flutterflow, by coding in Visual Studio Code and upload-
ing/pushing the code to the GitHub repository. The reason was that Flutterflow’s
manual coding editor had some limitations when it came to what was possible to
code (see 6.1.1).

By combining the strengths of Flutterflow for UI development and manual coding
for implementing intricate functionality, the implementation phase achieved a bal-
ance between efficiency and customization. This approach allowed for the efficient
creation of a visually appealing and user-friendly application while accommodating
the unique needs and complexities of the project.

14

5
Results

In this section, we will present the results from the method section of this project.
This includes the results from the surveys, the design prototypes and the final ap-
plication and code.

5.1 Data gathering
The results from the data gathering helped inform the needs of the users(students)
as well as teachers teaching the subject. This helped us get a wider perspective
and create a design that better aligned with these needs. In total, there were 36
participants, 28 students and 8 teachers. The responses to these questions provided
valuable data and perspectives that shaped the subsequent decisions and iterations
in creating an updated and user-centred application.

5.1.1 Survey results(students)
We started with a couple of general questions to get an overview of the educational
landscape and see where an application for practicing SMCP would fit in.

Figure 1: Resource availability

Q1: If any, how do you think an application helps/helped you learn SMCP
compared to traditional classroom instructions or other resources?

15

5. Results

Answer: I think it would contribute to learning SMCP, if the user practises con-
sistently. It would also be a more dynamic way of learning, rather than absorbing
the information via passive lectures.
Answer: I’ve used other language learning apps like Duolingo, and I would think
it would make learning SMCP a lot easier for some people.
Answer: An application would be a significant help in learning smcp because it
makes learning easier to start and continue

Figure 2: Skill relevance

Figure 3: Feature usefulness

The feature that most students found to be the most useful/second most useful
in a SMCP language learning application was to listen to the phrase. The third
perceived most useful feature was for students to be able to record their own pro-
nunciation of the phrase, followed by seeing the SMCP phrase and comparing their

16

5. Results

own pronunciation with the native speaker’s in fourth place.

Figure 4: Additional Features(students)

Q2: Are there any other methods that you would find helpful on the user
interface of a learning platform or application and if so can you give some
reasons for why?

Answer: Don’t have endless menus
Answer: Clear/minimalistic icons. Simple titles. No room for confusion, especially
since English isn’t everyone’s most fluent language.
Answer: Search function in i.e. SMCP PDF document.

Q3: Do you have any additional comments or suggestions regarding a
possible application dedicated to facilitating the learning of SMCP?

Answer: Include pictures when explaining certain ship specific terms.
Answer: Should be very simple interface and not require any additional knowl-
edge/training to use. Self-explanatory.

17

5. Results

5.1.2 Survey results(teachers)

Figure 5: Skill difficulty

Figure 6: Suitable platform

Q4: What are the reasons for your choice?

Answer: flexibility of having your phone with you at all times
Answer: Preferably available for all platforms. Make it off-line available.
Answer: Our students are not allowed to use their mobile phones while in the
Academy

18

5. Results

Figure 7: Additional features(teachers)

Q5: Do you have any additional comments or suggestions regarding a
possible application dedicated to facilitating the learning of SMCP?

Answer: Make it user friendly and simple and free for the student to make it
successful
Answer: if your application is nothing else than listen to the phrases and see them
written then smcpexamples.com already exists. Do a ubiquitous tool that allows for
study at a personal rate/convenience. Must be gamified too, to encourage students
to use it, or else it won’t.

5.1.3 Survey Analysis & Findings
Upon analyzing the survey responses from both students and teachers, several sig-
nificant findings emerged, indicating similarities in their perspectives. The following
key findings summarize the survey analysis:

1. Insufficient Resources for SMCP Practice:
Figure 1 highlights that 45.8% of students feel that there is a lack of resources
available to support their SMCP practice. This finding emphasizes the need for
an assisting tool that can address this gap. Additional details from Question
1 further underscore the perceived benefits of such a tool, with respondents
expressing how it would greatly enhance their practice experience.

2. Speaking Skills and Relevance:
Figures 5 & 2 reveal the congruence between teachers and students regarding
the challenges associated with speaking in SMCP. Teachers identified speak-
ing as the second most difficult skill for students, while students considered it
the most relevant skill for their current and future careers. This finding em-

19

5. Results

phasizes the importance of addressing speaking skills in SMCP to meet both
educational and career aspirations.

3. Listening as a Key Feature:
Figure 3 indicates that students prioritize listening to SMCP phrases as the
most useful feature for learning SMCP. This finding underscores the need and
desire for a feature that offers ample listening opportunities. It is evident that
incorporating listening exercises and resources into the application will greatly
benefit students’ language learning experience.

4. Beneficial Additions:
In Figures 4 and 7, responses regarding beneficial additions to the application
indicate that both students and teachers highly value the following:

• Relevant dialogues (70.8% of students and 37.5% of teachers)

• Simulations of real-life situations (75% of students and 62.5% of teachers)

• Quizzes, and games (25% of students and 75% of teachers)

This insight emphasizes the importance of including these features to enhance
engagement and effectiveness in SMCP learning. The need for additional re-
sources is also highlighted by teachers.

5. User Interface Preferences:
Insights on the desired user interface were gained from Question 2. Students
expressed the need for:

• A search function
• Clear and minimalistic icons
• Simple menus.

These preferences indicate the importance of creating a user-friendly and in-
tuitive interface to facilitate ease of use.

6. Platform Preference:
Figure 6 presents the participants’ platform preferences for the application.
The results indicate that 62.5% of participants chose mobile as the preferred
platform, while 37.5% preferred web-based access. This indicates a clear pref-
erence for a mobile application but with a significant portion expressing in-
terest in web accessibility as well. Thus highlighting the need to focus the
application development towards a mobile platform, ideally both iOS and An-
droid for the widest reach, while considering the possibility of supporting web
accessibility to cater to an even wider audience.

7. Additional Comments and Requests:
Question 3 revealed specific requests, such as the desire for a potential ship
game to aid in learning the different parts of a ship. The need for a potential

20

5. Results

dictionary was highlighted in question 2, where a user preferred a search func-
tion in the IMO SMCP document. Additionally, the need for simplicity and
ease of use was emphasized by teachers in Question 5.

These survey findings provided valuable insights into the needs, preferences, and
suggestions of both students and teachers. Incorporating these findings into the
application’s design and development process helped ensure that it effectively ad-
dressed the identified needs and aligned with user expectations, ultimately enhancing
the SMCP learning experience.

5.2 Prototyping

The result from the design prototype consisted of a hand-drawn Wireframe sketch
and a high-fidelity Figma design. The Wireframe outlined the skeleton of the appli-
cation while the Figma design depicted a more realistic application with colors and
user interaction capability.

5.2.1 Wireframe

Figure 8: Wireframe home page Figure 9: Wireframe quick menu

21

5. Results

Figure 10: Wireframe practice page Figure 11: Wireframe missing word
game

The home page (see Figure 8) is the initial page a user will be presented with upon
launching the application. The page is designed to allow for easy navigation. It
includes features like accessing a quick menu, a search bar for searching for phrases
and navigating to the glossary or games.

The quick menu page (see Figure 9) can be accessed from the home page (see Figure
8) and navigates back there. The page is designed to allow the user for quick access
to supplemental features that helps the user make better use of the application.
From this page, a user can access settings, help and privacy policy.

The glossary practice page (see Figure 10) can be accessed from the home page
(see Figure 8) and navigates back there. The page supports the following features:

• The user can play a phrase to hear the correct pronunciation
• Record themselves pronouncing the phrase
• Compare their own recording with the correct pronunciation
• Reveal/unreveal a translation of the phrase in their local language if supported.

The missing word game page (see Figure 11) can be accessed from the home page
(see Figure 8) and navigates back there. The page is designed to host a mini-game
that allows the user to practice their phrases in a more contextual way. The user is
provided with a text with a word missing and is given 4 options to fill the gap, with
one of the options being the correct missing word.

22

5. Results

5.2.2 Figma prototype

Figure 12: Figma home page Figure 13: Figma quick menu page

The home page (see Figure 12) was implemented according to the wireframe design
(see Figure 8). An additional selection for a dictionary feature was added. The quick
menu page (see Figure 13) was implemented according to the wireframe design (see
Figure 9). Additional selections for feedback and an about section were added.

23

5. Results

Figure 14: Figma glossary menu page

The glossary menu page (see Figure 14) can be accessed from the home page (see
Figure 12) and navigates back there. The page is designed to allow the user for easier
and quicker access to different glossary sections (See Figure 15) and help divide the
learning into different compartmentalized sections. The page also supports progress
tracking on the different sections with completed ones showing up with a blue dot
on their left side and uncompleted ones being the unfilled dot.

24

5. Results

Figure 15: Figma glossary practice page

The glossary practice page (see Figure 15) was implemented according to the Wire-
frame design (see Figure 10). Additional features were added such as revealing
a score on pronunciation correctness, highlighting a correctly completed phrase in
green and an incorrectly completed one in red. A header text instructed the user
to ‘Listen, record & compare’ which served as an additional hint to the way the
buttons were ordered.

25

5. Results

Figure 16: Figma game menu page

The games menu page (see Figure 16) can be accessed from the home page (see
Figure 12) and navigates back there. The page is designed to allow the user for easier
and quicker access to different supported games (See Figure 17) and help divide the
learning into different compartmentalized sections. The page also supports progress
tracking on the different games with the rate of completion showing up in both
percentage and colour coding, red meaning considerably in the uncompleted range
and green considerably in the completed range.

26

5. Results

Figure 17: Figma missing word game page

The missing word game page (see Figure 17) was implemented according to the
Wireframe design (see Figure 11). Added additional features such as highlighting a
correct or incorrect answer, correct being a green check and incorrect a red cross. A
continue button appears after a guess to navigate to the next iteration of the game.

5.3 Evaluation

The results from the evaluation phase consisted of the results from the evaluation
survey that was sent out to students internationally. This survey evaluated the
Figma prototype. However, since we had also started building the app at this point,
we also evaluated the design of our actual Flutter application to gain valuable in-
sights from the users.

5.3.1 Survey results(students)

The responses to these questions provided valuable data and perspectives that
shaped the subsequent decisions and iterations in creating an updated and user-
centred prototype. In total, there were 40 participants, all students. By targeting
students specifically, the survey ensured that the perspectives of the primary users
of the application were captured comprehensively.

27

5. Results

Figure 18: Number of icons

28

5. Results

Figure 19: Colors and shading

29

5. Results

Figure 20: Button and icons intuitiveness

Q6: If you disagree please explain why
Answer: The difference between the 2nd and 3rd button is not really clear
Answer: Seems weird with 3 different colors for this screen. The blue, green and
purple, or if there’s some intention behind this.
Answer: What is the difference between play and the soundwaves one?
Answer: I am not too sure about the compare Icon.
Answer: I cannot understand what those 3 buttons are for which one plays the
sentence why is there a microphone
Answer: I do not understand the third one

30

5. Results

Figure 21: Full page or half page

31

5. Results

Figure 22: Search bar location

*Design 1 (upper) = Home page search bar
*Design 2 (lower) = Quick Menu search bar

32

5. Results

Figure 23: The Ship Page user friendliness

Q7: If yes please give some explanation for why and what could be re-
moved
Answer: Maybe a drop-down menu when pressing on “sides” and ”parts” etc.
Answer: Drop window for ship specs
Answer: Pictures 1 and 2 are crowded partly because you chose to center the text.
Best option would be to hide the definition at first and let the user click to open the
text for each item
Answer: there is too much text i think it’s not really attractive to look at

33

5. Results

Figure 24: Page navigation and ease of use
34

5. Results

Figure 25: Phrase completion steps difficulty

Figure 26: Perceiving completion of phrase difficulty

Q8: If you answered no please explain why?
Answer: Symbols are better than color identification.

35

5. Results

Figure 27: Prototype readiness

Q9: Can you please motivate your answer
Answer: there is few little changes to do but the app could be used and reach its
purpose without problem.
Answer: I think that the prototype already looks pretty good and easy to navigate
Answer: It seems very clear and already useful to students to practice their SMCP,
with different possibilities to practice (glossary, games, dictionary)

36

5. Results

5.3.2 Survey Analysis and Findings
After collecting the survey responses, a thorough analysis was conducted to extract
key findings and identify patterns in the data. The survey analysis provided valuable
insights into the strengths, weaknesses, and areas for improvement in the prototype
as well as the app. The following key findings summarize the survey analysis:

Design:
• Font and Text Size: Participants indicated that the chosen font and text

size was to their liking.
• Colors and Shading: As can be seen in Figure 19, the majority of par-

ticipants found that the colours and shading employed in the design neither
enhanced nor detracted from the learning experience. However, a large num-
ber of participants thought it helped to enhance the learning experience. One
person commented that using 3 different colors in the same screen seemed a
bit off.

• Buttons and Icons: Figure 20 showed that majority of participants found
the actions of the buttons and icons immediately discernible and intuitive from
their visual representation. However, a larger minority did not, where several
people did not understand the purpose of the 3rd button. This leaves room
for improvement and incentive for a help page that explains the function of
the buttons.

An important design aspect learned was the number of icons the Glossary Section
page should have per row. As additional icons were potentially being considered,
Figure 18 indicated that 45% of participants believed that four icons or more would
be too overcrowded for the interface, suggesting that four icons or more wouldn’t
have clear majority support.

Layout:
• Quick Menu Page Layout: As can be seen in Figure 21, 67.5% of partici-

pants preferred the half-page look for the quick menu page layout. Indicating
that implementing it instead of the current full-page look might be a viable
choice.

• Search Bar Location: Figure 18 showed that majority of participants(72.5%)
preferred to have the search bar in the home page instead of in the quick menu.

• Ship Game layout: Figure 19 indicates that the layout of the ship game is
too crowded and needs to be adjusted. The need for a collapsable/scrollable
text is further highlighted in question 7.

Workflow:
• User-Friendly and Intuitive: Figure 24 shows that participants found the

prototype application to be straightforward and intuitive to use.
• Clear Identification of Incorrect Guesses: Figure 26 indicates that the

majority of participants found it clear which phrase a user has guessed in-
correctly on. However, 7.5% of participants did not find it clear, and one
participant mentioned in response to Q8 that "Symbols are better than colour

37

5. Results

identification". This aspect presents an opportunity for improvement.

Overall:
• Prototype Readiness: As can be seen in Figure 27, there was a clear ma-

jority of 100% who believed that the prototype was ready to be developed into
an actual app.

• Positive Feedback: When asked to motivate in Q9, participants commonly
mentioned that the prototype was clear to use and looked easy to navigate.
Many participants also found the extra additions of games to be helpful.

These survey findings, as highlighted in the respective figures, provided valuable
insights into the strengths, weaknesses, and areas for improvement in the proto-
type. Incorporating these findings into the iterative design and development process
helped refine the prototype as well as the application and ensure it aligned with user
preferences and expectations.

5.4 Software implementation
The results from the software implementation consisted of a fully functional cross
platform application built using the Flutter framework and the Dart programming
language.

5.4.1 Flutterflow
The majority of the UI was built using Flutterflow’s visual drag and drop builder.
Figure 28 shows the Flutterflow workspace.

Figure 28: Homepage in Flutterflow workspace

To the left are all of the pages in the application as well as all of the components
that make up those pages, such as buttons, text widgets, TextField widgets etc. To

38

5. Results

the right is the option to customize the widgets, such as changing the size and text
of the buttons, changing the color of the text and other functionality associated with
the specific widget.

When starting the application, the user would be presented with a splash screen.

Figure 29: Splash Screen presented to
user when starting the application

Figure 30: Home page created in Flutter

The home page consisted of 3 main sections, a glossary section, a games section and
a dictionary, as well as a home menu.

39

5. Results

5.4.2 Home menu

Figure 31: Home menu in the Flutter application

The home menu consisted of 5 items:
• Settings: This page controlled the settings of the application. The only

setting we implemented was light-/dark mode.
• Help: This page contained guides on how to use the different parts of the

application.
• Privacy Policy: This page was aimed for the privacy policy. However, since

our application did not collect any user sensitive data, we did not have a
privacy policy.

• Feedback: The purpose of this page was to link the users to a feedback form
where they could fill out their experience of the final application. Similarly
to how we had evaluated the design(see 5.3), we also wanted to evaluate the
final application. However, since we finished the application later than we
expected, we did not carry through with that idea.

• About: This section was devoted to describing the purpose of the application
and why/by whom it was created.

40

5. Results

Figure 32: Settings - light mode Figure 33: Settings - dark mode

41

5. Results

Figure 34: Homepage Flutter in
Dark Mode

Figure 35: Home menu in Flutter Dark
mode

42

5. Results

5.4.3 Glossary

Figure 36: Glossary menu page

The glossary menu was further divided up into 3 subsections:

• General: These were general terms taken from the SMCP glossary
• Letters: Since letters in SMCP need to be spelled out according to the NATO

phonetic alphabet, this needs to be practiced by the speaker.
• Digits: Digits in SMCP have a slightly modified pronunciation and therefore

needs to be practiced and learned by the speaker.

43

5. Results

Figure 37: General terms practice page in Glossary

The practice cards had 3 buttons which were:
• Play button: Listen to the Native Speaker’s pronunciation of the phrase
• Record button: Record your own pronunciation of the phrase
• Playback button: Play back your own recording of the phrase to compare

it with the native speaker’s. This playback button was initially disabled since
the user had not recorded their voice yet, but became enabled once the user
had recorded their voice for a specific phrase.

44

5. Results

From figure 38, we can see the microphone turning red, which happens when a user
presses down on it, indicating that it is recording. Figure 39 shows the playback
button(3rd button) becoming enabled after the user has recorded their voice for the
phrase. By clicking on the playback button, they can now play back their own voice
recording.

Figure 38: Microphone pressed Figure 39: Enabled playback button

Figure 40: Letters practice page in
Glossary

Figure 41: Digits practice page in Glos-
sary

The letters and digits practice page featured a flippable practice card. This allowed
the user to see the correct pronunciation of the letter/digit. For example, the correct
pronunciation of the letter ’A’ in SMCP is "Alpha" (see Figure 40). The correct
pronunciation of the digit 4 in SMCP is "fower" (see Figure 41).

45

5. Results

5.4.4 Games
Games were another crucial part of this application, which both students and teach-
ers preferred to have(see 5.1.3). Our Flutter application featured 3 games; a quiz, a
ship game, and a missing word game.

Figure 42: Games menu page

46

5. Results

5.4.4.1 Quiz

The quiz consisted of 4 questions related to SMCP, with each question having 4
possible options where 1 option was correct. At the end of the quiz, the user got to
see their score, as well as the time it took for them to complete the quiz together
with an animation of a moving ship.

Figure 43: Quiz first question

47

5. Results

Figure 44: Quiz correct answer
selected

Figure 45: Quiz wrong answer selected

From figure 44, we can see that a green checkbox appears when the user selects the
correct answer. The continue button is revealed which lets the user move on to the
next question of the quiz. When the user selects a wrong option, as seen in figure
45, there is a red cross as well as an explanatory text below the continue button
which informs the user about the correct answer. This is so that the user learns
something while taking the quiz, instead of just knowing whether they got the right
or wrong answer.

An inconvenience occurred in the quiz for smaller phone screens which was that
the user had to scroll down to see the continue button/the explanatory text.

48

5. Results

Figure 46: Quiz continue button
& text hidden

Figure 47: Quiz question & options hid-
den

From figure 46, we can see that the continue button is partly hidden after the user
has selected an option. However, the explanatory text below the continue button is
fully hidden. When the user scrolls down to see the continue button/explanatory
text (Figure 47), then the question and options disappear out of view. This created
a less friendly user experience in our opinion, since it forced the user to scroll down
in order to go to the next question, which should not have been necessary. When
creating the quiz in Flutterflow, this issue was not so clear since the phone screen
used in Flutterflow for testing is larger. However, when testing on smaller screen
sizes, it became evident that this is an issue.

One solution to this issue could be to reduce the font size of the question as well as
the size of the quiz answer options.

49

5. Results

Figure 48: Quiz completion page

Once the user completed the quiz, he was presented with a congratulation page that
showed the number of correct answers, the time it took to complete the quiz as well
as a colorful animation of a moving ship.

5.4.4.2 The Ship Game

This game consisted of an image of a ship with different parts of the ship labeled
with different numbers. Below the ship was a list of the different parts of a ship.
To complete the game, the user had to order the different parts of the ship chrono-
logically according to the numbered labels on the ship image. The need for such a
game was highlighted in 5.1.3.

50

5. Results

Figure 49: The Ship Game page 1

The first page of the ship game was aimed as a learning aid to support the exercise.
This was so that the user had the chance to learn the different parts of the ship
before they started the actual game. For this purpose, a video was provided as well
as explanatory text for the different parts of the ship. The explanatory text was
wrapped inside of an Expandable widget, which was initially collapsed. By clicking
on the downwards facing arrow, the text inside the Expandable widget would expand
and reveal itself. The reason for doing it this way was so that the user would see
the start game button without having to scroll down when they first opened the
page. This would make the page more user friendly and less cluttered. This was
something that was emphasized by the users in the evaluation phase (see 5.3.2).

51

5. Results

Figure 50: The Ship Game page 2
- Game page

Figure 51: The Ship Game - Game page
checked

Figure 50 depicts the actual game page. The drag handles to the right of the ship
parts allows the user to reorder them in the correct order (as marked on the ship).
Figure 51 shows what happens when the user presses the "Check" button. The
words that are in the correct position are highlighted with a green background and
the words that are in the wrong position are highlighted with a red background. For
example, the word funnel is placed in position 1 of the list and the funnel of the
ship in the image is marked with a 1. Therefore, the word is correctly placed and
given a green background when the user presses the check button.

52

5. Results

5.4.4.3 Missing Word Game

The Missing Word game consisted of 9 sentences with missing gaps in them. The
user had to fill in the missing gaps with the correct word/phrase. This allowed the
user to practice SMCP in a contextual way.

Figure 52: Missing word game Figure 53: Missing word game checked

Due to the font size of the text, and also the number of sentences, the full game would
not be visible on smaller phone screens. This caused an unfriendly user experience,
as the user would have to scroll down to press check, scroll up again to see if their
word was correct(green) or incorrect(red) etc. This could be made more responsive
by using less sentences per page or changing the font size.

53

5. Results

5.4.5 Dictionary
The dictionary featured a searchable list of all of the terms in the SMCP glossary
together with their definition.

Figure 54: Dictionary Figure 55: Dictionary filtered with
search

The SMCP glossary in the dictionary was ordered in alphabetical order. Figure 55
shows how the results in the dictionary are filtered based on the search term. The
search term "be" will update the dictionary to only display phrases that start with
"be" which in this case is "Beach" and "Berth".

The search bar in the homepage could further be used to search the dictionary.
It worked by autocompleting the search term with phrases in the dictionary that
started with that search term. When clicking on the autocomplete option, it would
redirect the user to the dictionary with the autocomplete term filled in the dictionary
search bar.

54

5. Results

Figure 56: Homepage search
autocomplete

Figure 57: Dictionary redirect

In the example above, we can see the user searching for a phrase in the home page
search bar. Figure 56 shows how all of the phrases in the dictionary that start
with "sa" show up. The user then clicks on the first autocomplete option which
is "Safe speed". Figure 57 shows how the user is redirected to the dictionary page
with the term "Safe speed" filled in the dictionary search bar and the results filtered
accordingly.

55

5. Results

56

6
Discussion

In this section, we will present the discussion and analysis of the completed project,
explore potential areas for further development and consider the ethical and ecolog-
ical aspects.

6.1 Flutterflow
Using Flutterflow was a great advantage and take-away from this project. It helped
speed up the development process and facilitate a more natural translation of our
Figma design to our application than would have been possible by manually coding
everything. However, there were some limitations on what was possible to do with
Flutterflow.

6.1.1 Limitations
Being a low-code builder that is based on Flutter, there were times that Flutterflow
lacked functionality or widgets that were available in Flutter. Furthermore, there
were situations when we needed custom logic, functionality and code, for example
when creating our microphone recorder, that was not available by default in Flutter
itself. Hence, these limitations could be classified into 2 categories - Flutterflow
limitations and Flutter limitations. Flutterflow limitations were a natural result of
Flutterflow being a good, yet not exhaustive extension of Flutter. Flutter limita-
tions were due to the nature of Flutter itself. Many functionalities in Flutter, such
as recording a users voice, come from third-party libraries, called packages and are
not built into Flutter itself.

2 approaches were employed to address these limitations. The first was to use Flut-
terflow’s manual code editor - which allowed for custom code in the form of custom
functions, custom widgets and custom actions. The second approach was to clone
the GitHub repository of the project, and work on the manual code adjustments
in Visual Studio Code. Both approaches had their advantages and disadvantages.
By coding in Flutterflow’s manual code editor, it allowed us to directly integrate
the custom code into our Flutterflow project and see the changes in Flutterflow.
However, this approach had its own limitations. First of all, even though custom
widgets were coded manually by yourself, Flutterflow had some limitations on what
parameters the custom widgets could take. For example, a custom widget could not
have a function as a parameter. It could have an action as a parameter, but the

57

6. Discussion

action could not have any arguments. This made it impossible for us to implement
some of our widgets in the Flutterflow manual code editor, and thereby forced us
to use Visual Studio Code. In addition to this, Flutterflow manual code editor only
allowed you to create new custom widgets. It did not allow you to modify/add
functionality to existing widgets created by the visual builder. This feature makes
sense, since it could potentially cause the entire application to crash if people get
to freely add error-prone code inside of the working code that Flutterflow’s visual
builder has generated. However, this prevented us from doing simple changes to the
components, such as when we wanted to add a dynamic audio path to our audio
player, something that was possible in Flutter but not in Flutterflow. Another ex-
ample was when we wanted to access the onSelected() callback function of the search
bar (TextField widget). However, being limited, Flutterflow only provided access
to the onChanged() and onFieldSubmitted() callback function of the search bar.
This prevented us from implementing the desired functionality for the search bar
in Flutterflow, so we had to do it in Visual Studio Code. Even simple things such
as adding a gradient color to the homepage (as seen in the Figma design) was not
possible in Flutterflow, so it had to be done outside of Flutterflow. A disadvantage
of using Visual Studio Code was that even though we pushed the changes in the code
to the official GitHub repository of the Flutterflow project, the changes were not
reflected in the Flutterflow project. Flutterflow was connected to the GitHub repos-
itory, meaning you could push your code from Flutterflow to the GitHub repository,
but the GitHub repository was not connected to Flutterflow. So changes made in
the GitHub repository did not affect the Flutterflow project, but remained solely on
GitHub.

In conclusion, limitations that could be solved using Flutterflow’s manual code edi-
tor were solved using the manual code editor. Other Flutterflow/Flutter limitations
were solved by coding in Visual Studio Code and pushing the code to the Flutterflow
GitHub repository.

6.1.2 Bugs
Coding a large application of course presents the challenges of bugs along the way.
Some of the bugs we faced were:

1. The Ship Game: One of the bugs which occurred was in the ship game.
Once a user had completed the game(sorted all items in the correct order),
the game would freeze. By investigating the code, we realized that this bug
occurred because we were rebuilding the parent widget inside of the build
function of the child widget. This caused an infinite loop which caused the
application to freeze and ultimately crash. We solved it by removing the call
to setState() which rebuilded the parent widget.

2. Overflow error: Another bug which occurred was overflow error. This oc-
curred for the Missing Word game. The content on the page was too long to
be displayed in its entirety on the phone screen. Therefore, the text overflowed

58

6. Discussion

at the bottom by a number of pixels on certain phone screens. The solution
to the overflow error was to wrap the Missing Word Game widget in a Sin-
gleChildScrollView, which allowed the page to be scrollable when the content
exceeded the maximum height of the screen.

3. AudioPlayer: A third bug which occurred was when we tried to provide the
audio player with audio files using the setUrl() method. When trying to play
the audio files, no sound was played. The solution was to provide the audio
files to the audio player using the .setAsset() method instead. The reason
was that the audio files were assets that belonged to the project and therefore
the .setAsset() method was the appropriate method to use for the audio player.

4. Microphone Recorder: A fourth bug which occurred was that the micro-
phone recorder did not work to record the user voice on an Iphone. We had
previously tested on android emulator as well as an android phone, and it had
worked fine. It also worked fine on Web. However, when testing on an Iphone,
we realized that it does not work for iOS. We still do not know the exact
reason for this bug, but we managed to solve it by simplifying our code for
recording the user voice. Our code for recording the user voice was unneces-
sarily complicated. By simplifying and refactoring our code to be as minimal
as necessary, the bug was solved and the application could successfully record
and playback the users voice on an Iphone.

Thanks partly to the visual builder taking care of much of the coding automatically
in the background, we did not have as many bugs as we expected for a project of
this scope. However, the bugs that occurred helped us learn more about Flutter
and Dart and improve our problem solving and debugging skills.

6.1.3 Flutterflow Support & Community
This project would not have been possible without the great help, documentation
and support of Flutterflow and its livid community. The Youtube channel of Flut-
terflow had many great videos and tutorials that were instrumental to learning the
tool. The documentation on the Flutterflow website further helped to solidify the
concepts and how to use the widgets. When a bug or issue arised, the commu-
nity was a great place to ask or get answers to questions other people had asked.
For certain questions, we directly addressed the support team of Flutterflow at
support@flutterflow.com . They were very helpful and engaged to help solve our
problems.

59

6. Discussion

6.2 Ethical & Ecological Aspects
The project, from an ethical and ecological standpoint, does not incur any negative
effects. As a learning platform, it does incur some positive effects. However, the
following considerations could create more positive effects:

• Data Privacy and Security: By taking appropriate measures to protect
user data and maintain privacy. Our demo application did not collect any
sensitive user information such as name, gender, email etc. However, this
could change in the future and therefore it is good to have a strong privacy
policy and data protection practices in place.

• Accessibility: By striving to make the application accessible to users with
diverse abilities. Doing so by incorporating accessibility features, adhering to
accessibility guidelines, and conducting usability testing with a focus on ac-
cessibility.

• Sustainable Development Practices: By employing efficient coding prac-
tices and optimized algorithms to reduce the application’s resource consump-
tion as well as giving consideration to other factors such as efficiency, minimal
data usage, and the application’s carbon footprint.

• Responsible Use of Technology: By considering the potential impact of
the application on users and society. Avoiding the promotion of harmful be-
haviour or enabling the misuse of the application’s features.

By taking these considerations and incorporating them, the application could end
up incurring more positive ethical and ecological effects.

60

6. Discussion

6.3 Future Work
While the project achieved its objectives and delivered a functional demo applica-
tion, the project was made with the intent of future development. There is a range
of areas that could be explored for future work and enhancements:

• Sound Wave Comparison: A feature that existed in the old application,
but which we did not implement into our application is for the user to be able
to see a sound wave comparison of their pronunciation of the phrase with the
native speakers. This feature could help the user to more clearly see how their
pronunciation differs from the native speakers and adjust it accordingly.

• Points on Pronunciation: A feature which existed in our design, but which
we did not have the time and resources to implement, was for the user to get
a numerical score on their pronunciation. Based on this score, they would get
a green or red border around the phrase which indicated if the pronunciation
was good/acceptable or bad.

• Content Expansion: The application was built to accommodate expansion.
With the addition of more SMCP phrases beyond the current sample phrases
and the implementation of more games is a possibility. This includes more
content in the current games, such as more questions in the quiz game, more
missing words in the missing word game as well as more parts of the ship.

• Responsive Application: Throughout this project, we have learned the
importance of creating a responsive application that runs well on different
platforms and screen sizes. Still, there is room for more fixes and improve-
ments in this domain.

• Integration with Backend Services: Integrating the application with back-
end services, such as a database or API, could enable dynamic content updates
and synchronization across devices.

• User Feedback and Iterative Improvements: Gathering further feedback
on both the design and usability of the application from users and incorpo-
rating their suggestions and insights can lead to more improvements and re-
finements in the application. By expanding the data collection to target other
user groups, such as professionals in the maritime industry, the application
can attract a broader user base and accommodate to their specific needs.

• Deploy to Appstore/Google Play Store: A final step would be to offi-
cially deploy this app to the Appstore/Google Play Store so that people all
around the world can use it to practice SMCP. We have already been able to
successfully deploy the app to Apple Test Flight and Google Play Testing as
well as web(GitHub).

61

6. Discussion

62

7
Conclusion

7.1 Design
The aim of the design phase of the project was to create an intuitive and visually
appealing user interface (UI) that aligned with the project’s objectives and user
requirements. Through the utilization of various design techniques and tools, the
following design results were achieved:

• Identification of the requirements for an application that is better aligned with
the current needs of users. This involved gathering user feedback and conduct-
ing research to understand user preferences and expectations.

• Development of a comprehensive set of wireframes outlining the structure and
layout of the application. These wireframes served as a blueprint for the overall
design and functionality of the application, providing a visual representation
of its various screens and features.

• Creation of a detailed and interactive UI design using Figma. This involved
incorporating visual elements, colours, typography, and intuitive navigation to
enhance the overall user experience.

• Evaluation of the design prototype through user feedback gathering. This pro-
cess helped identify areas for improvement and refinement, ensuring that the
final design met the expectations and needs of the intended users.

Overall, the design resulted in an interactive prototype that received strong valida-
tion from participants in the evaluation phase, with 100% of participants finding it
ready to be developed into an actual app (See Figure 27). The interactive prototype
can be found here.

7.2 Software Implementation
The software implementation phase focused on translating the design concepts and
user requirements into a functional and interactive application. Through the uti-
lization of Flutterflow and manual coding approaches, the following software results
were achieved:

63

https://www.figma.com/proto/XBnj0ioWDXOpTs4Ap5cHiT/SailorSpeak(1)

7. Conclusion

1. Working and Functional Application:
• The software implementation resulted in a working and functional appli-

cation that successfully supported the sample SMCP phrases.
• The application was developed to be cross-platform, supporting both web

and mobile platforms, including iOS and Android.

2. Implementation of a Design Prototype:
• The design prototype, created during the design phase, was successfully

implemented in the software.
• The visual elements, layout, and interactive features specified in the de-

sign prototype were incorporated into the application, providing users
with a consistent and intuitive user interface.

3. Implementation of Specified features:
• The software implementation included the successful implementation of

the features specified in the scope section of the report.
• The application included several interactive games as well as a dictionary

to incorporate user needs.

Overall, the software implementation phase resulted in a working and functional
application that fulfilled the specified requirements as well as the user needs, and
the results can be found here.

7.3 Summary
In conclusion, this project has laid a solid foundation for the development of a more
modern and updated SMCP language learning application. Moving forward, there
are ample opportunities for future work on the application and enhancements on the
ethical and ecological aspects for more positive effects. The application, supported
by the findings and insights obtained throughout the project, has the potential to
make a significant impact on SMCP learning at Chalmers University of Technology
and beyond.

64

https://github.com/Zakariya00/SailorSpeak-Application

Bibliography

[1] International Maritime Organization, https://www.imo.org/ (accessed Jul. 1,
2023).

[2] “IMO Standard Marine Communication phrases,” International Maritime Orga-
nization, https://www.imo.org/en/ourwork/safety/pages/standardmarinecommunication
phrases.aspx (accessed Jul. 1, 2023).

[3] L. Davis, “What is Agile Project Management? The Ultimate Guide,” Forbes,
https://www.forbes.com/advisor/business/what-is-agile-project-management/
(accessed Jul. 1, 2023).

[4] G. P. Staff, “Agile vs. Scrum: What’s the difference?,” Graduate Blog,
https://graduate.northeastern.edu/resources/agile-vs-scrum/ (accessed Jul. 1,
2023).

[5] “What is user centered design?,” The Interaction Design Foundation,
https://www.interaction-design.org/literature/topics/user-centered-design
(accessed Jul. 1, 2023).

[6] B. Patel, “What is user interface? key terminology explained,” Space Tech-
nologies, https://www.spaceotechnologies.com/glossary/tech-terms/what-is-
user-interface/ (accessed Jul. 1, 2023).

[7] “What is wireframing? A complete guide,” UX Design Institute,
https://www.uxdesigninstitute.com/blog/what-is-wireframing/ (accessed
Jul. 1, 2023).

[8] K. Bracey, “What is Figma?,” Web Design Envato Tuts+,
https://webdesign.tutsplus.com/articles/what-is-figma–cms-32272 (accessed
Jul. 1, 2023).

[9] “What is cross-platform mobile development?,” kotlinlang.org,
https://kotlinlang.org/docs/cross-platform-mobile-development.html (ac-
cessed Jul. 1, 2023).

65

Bibliography

[10] “Build apps for any screen,” Flutter, https://flutter.dev/ (accessed Jul. 1,
2023).

[11] “Flutter: What is Dart Programming - Javatpoint,” www.javatpoint.com,
https://www.javatpoint.com/flutter-dart-programming (accessed Jul. 1, 2023).

[12] “Dart overview,” Dart, https://dart.dev/overview#platform (accessed Jul. 1,
2023).

[13] “Build beautiful, modern apps incredibly fast!,” FlutterFlow,
https://flutterflow.io/ (accessed Jul. 1, 2023).

[14] "Visual studio code - code editing. Redefined", Visual Studio Code,
https://code.visualstudio.com/ (accessed Jul. 1, 2023).

[15] “Visual studio code,” docs.flutter.dev, Flutter,
https://docs.flutter.dev/tools/vs-code (accessed Jul. 1, 2023).

[16] "What is version control: Atlassian Git Tutorial", Atlassian. [Online]. Available
at: https://www.atlassian.com/git/tutorials/what-is-version-control (Ac-
cessed: 3rd June 2023).

[17] "What is Git: Atlassian Git Tutorial", Atlassian. [Online]. Available at:
https://www.atlassian.com/git/tutorials/what-is-git (Accessed: 3rd June
2023).

[18] "What is github? A beginner’s introduction to github" (2022) Kinsta. [On-
line]. Available at: https://kinsta.com/knowledgebase/what-is-github/ (Ac-
cessed: 3rd June 2023).

66

A
Appendix: Custom code

This section will provide the custom code that was used during the project. This
includes custom code for the games, custom code for the voice recording & playback
functionality and custom code for other important functionality in the application.
The custom code below does not reflect all of the custom code that was added during
the project. Some of the custom code involved changing existing components and
this code has not been included here.

A.1 The Ship Game

// Automatic FlutterFlow imports
import '/flutter_flow/flutter_flow_theme.dart';
import '/flutter_flow/flutter_flow_util.dart';
import '/custom_code/widgets/index.dart'; // Imports other custom

widgets↪→

import '/custom_code/actions/index.dart'; // Imports custom actions
import '/flutter_flow/custom_functions.dart'; // Imports custom

functions↪→

import 'package:flutter/material.dart';
// Begin custom widget code
// DO NOT REMOVE OR MODIFY THE CODE ABOVE!

class ReorderableViewPage extends StatefulWidget {
const ReorderableViewPage({

Key? key,
this.width,
this.height,
this.checked,
this.allCorrect,

}) : super(key: key);

final double? width;
final double? height;
final bool? checked;
final Future<dynamic> Function()? allCorrect;

@override

I

A. Appendix: Custom code

_ReorderableViewPageState createState() =>
_ReorderableViewPageState();↪→

}

class _ReorderableViewPageState extends State<ReorderableViewPage> {
final shipParts = shuffleOptions(FFAppState().shipParts.toList());

void reorderData(int oldindex, int newindex) {
setState(() {

if (newindex > oldindex) {
newindex -= 1;

}
final shipPart = shipParts.removeAt(oldindex);
shipParts.insert(newindex, shipPart);

});
}

@override
Widget build(BuildContext context) {

int nCorrect = 0;
for (int i = 0; i < shipParts.length; i++) {

if (shipParts[i] == FFAppState().shipParts.toList()[i]) {
nCorrect++;

}
}
if (nCorrect == 9) {

widget.allCorrect!();
}

return ReorderableListView(
primary: false,
children: <Widget>[

for (int i = 0; i < shipParts.length; i++)
Container(

key: ValueKey(shipParts[i]),
color: widget.checked ?? false

? ((shipParts[i] ==
FFAppState().shipParts.toList()[i])↪→

? FlutterFlowTheme.of(context).success
: FlutterFlowTheme.of(context).error)

: Colors.transparent,
child: Text(shipParts[i],

textAlign: TextAlign.center,
style:

FlutterFlowTheme.of(context).bodyMedium.override(↪→

fontFamily: 'Poppins',

II

A. Appendix: Custom code

fontSize: 24,
))),

],
onReorder: reorderData,
buildDefaultDragHandles: widget.checked ?? false ? false :

true,↪→

);
}

}

A.2 Voice Recording functionality

import 'package:record/record.dart';

/**
* Class for starting and stopping a recording
*/

class RecordingService {
final record = Record();

/**
* Starts the recording. On iphone/android, also checks that the

app has permission to record the users voice.↪→

*/
Future<void> startRecording() async {

// Check recording permission
if (await record.hasPermission()) {

try {
//start recording
await record.start();

} catch (e) {
print('Error starting recording: $e');

}
} else {

print('No permission to record audio.');
}

}

/**
* Stops the recording and returns the filepath to the recording
*/
Future<String> stopRecording() async {

return await record.stop() ?? ""; // Stop recording and return
the path↪→

}

III

A. Appendix: Custom code

}

A.3 Recording playback functionality

import 'package:just_audio/just_audio.dart';

final audioPlayer = AudioPlayer();

Future<void> playRecording(String filePath) async {
audioPlayer.setUrl(filePath);
audioPlayer.play();

}

A.4 Recording Microphone

import 'package:flutter/material.dart';
import

'package:sailor_speak/custom_code/actions/RecordingService.dart';↪→

import
'package:sailor_speak/flutter_flow/flutter_flow_icon_button.dart';↪→

import 'package:sailor_speak/flutter_flow/flutter_flow_theme.dart';

/**
* This class creates a microphone button that uses the Recording

Service to record a user voice.↪→

* The microphone button turns red when pressed down, indicating
that it has started recording.↪→

* The microphone button stops recording when released and updates
the recording path using the setRecordingPath function.↪→

*/
class RecordingMicrophone extends StatefulWidget {

const RecordingMicrophone({
Key? key,
required this.setRecordingPath,

}) : super(key: key);

/**
* Updates the recording path when the microphone button is
released. This path will then be used by the app to access the
recording for playback purposes.

↪→

↪→

*/
final Function(String) setRecordingPath;

@override

IV

A. Appendix: Custom code

_RecordingMicrophoneState createState() =>
_RecordingMicrophoneState();↪→

}

class _RecordingMicrophoneState extends State<RecordingMicrophone> {
late String path;
bool _isRecording = false;
final RecordingService recordingService = RecordingService();

@override
Widget build(BuildContext context) {

//Wrapping the FlutterFlowIconButton in a gesture detector is
necessary because the gesture detector can detect whether
the button is being pressed down/released.

↪→

↪→

return GestureDetector(
//called when the button is pressed down
onTapDown: (details) async {

setState(() {
_isRecording = true;

});
recordingService.startRecording();

},
//called when the button is released
onTapCancel: () async {

setState(() {
_isRecording = false;

});
path = await recordingService.stopRecording();
widget.setRecordingPath(path);

},
onTapUp: (details) async {

setState(() {
_isRecording = false;

});
path = await recordingService.stopRecording();
widget.setRecordingPath(path);

},
child: FlutterFlowIconButton(

borderRadius: 30.0,
borderWidth: 1.0,
buttonSize: 60.0,
onPressed: () {},
icon: Icon(

Icons.mic,
size: 30,
color: _isRecording

V

A. Appendix: Custom code

? Colors.red
: FlutterFlowTheme.of(context).primaryBtnText,

),
),

);
}

}

A.5 Search filter
bool startsWith(

String searchTerm,
String searchFor,

) {
/// MODIFY CODE ONLY BELOW THIS LINE

if (searchTerm.isEmpty) {
return true;

} else {
return searchFor.toLowerCase().startsWith(searchTerm.toLowerCase());

}
/// MODIFY CODE ONLY ABOVE THIS LINE

}

A.6 Quiz answer options shuffling
List<String> shuffleOptions(List<String> questionOptions) {

/// MODIFY CODE ONLY BELOW THIS LINE

questionOptions.shuffle();
return questionOptions;

/// MODIFY CODE ONLY ABOVE THIS LINE
}

VI

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	List of Figures
	Introduction
	Background
	Purpose
	Goal
	Scope

	Methodology & Project Approach
	Agile Project Management
	Scrum

	User-centered Design

	Technical Background
	User Interface(UI)
	Wireframe
	Figma

	Cross-platform Development
	Flutter (Framework)
	Dart (Programming Language)
	Flutterflow (Low-code Builder)

	Visual Studio Code (Code editor)

	Version Control
	Git (Version Control System)
	GitHub (Code hosting platform)

	Method
	Design
	Data gathering
	Survey

	Prototyping
	Wireframe prototyping
	Figma prototyping

	Evaluation
	Survey

	Software Implementation
	Flutterflow
	Manual coding

	Results
	Data gathering
	Survey results(students)
	Survey results(teachers)
	Survey Analysis & Findings

	Prototyping
	Wireframe
	Figma prototype

	Evaluation
	Survey results(students)
	Survey Analysis and Findings

	Software implementation
	Flutterflow
	Home menu
	Glossary
	Games
	Quiz
	The Ship Game
	Missing Word Game

	Dictionary

	Discussion
	Flutterflow
	Limitations
	Bugs
	Flutterflow Support & Community

	Ethical & Ecological Aspects
	Future Work

	Conclusion
	Design
	Software Implementation
	Summary

	Bibliography
	Appendix: Custom code
	The Ship Game
	Voice Recording functionality
	Recording playback functionality
	Recording Microphone
	Search filter
	Quiz answer options shuffling

