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Abstract

We explore means of evaluating Fourier-Whittaker coefficients on p-adic Lie groups by
evaluating in explicit detail these coefficients with respect to a generic unitary charac-
ter on the upper unipotent subgroup of SL(3,Qp). The method is by expanding the
integrand into an explicit complex-valued function on Q3

p and evaluating the resulting
integral. This has applications in evaluating similar integrals that appear in compacti-
fied type IIB string theory.
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1
Introduction

The notion of an automorphic form is an important one in several branches of mathemat-
ics, as well as string theory and some other parts of physics such as statistical physics.
The automorphic forms provide a deep connection between number theory, group theory,
and representation theory.

An automorphic form is in essence a function from a topological group to the complex
plane which transforms nicely under some discrete subgroup and satisfies some condition
on its derivatives and growth. One of the simplest and most well known cases, although
they are seldom called automorphic, is probably the complex exponentials e2πinx. These
are functions from the group of real numbers under addition, and they transform trivially
under the subgroup of integers under addition, as well as satisfying ∂2f

∂x2 = −(2πn)2f .

The most well known automorphic forms which are actually referred to as automorphic
forms are the modular forms. Here the group itself is SL(2,R) and the discrete subgroup
is the modular group SL(2,Z), and we demand that the function is holomorphic. These
and others can be formed by considering Eisenstein series; sums over the image of some
nice function over the discrete subgroup in question.

These appear in string theory when considering corrections in maximally super-symmetric
string theories. Then the moduli-spaces are symmetric spaces, and it is known that the
corrections must be automorphic forms on these symmetric spaces. We will work out one
example in some detail: the first order corrections to gravity in type IIB string theory in
10 dimensions. The Fourier-expansions of these corrections give us physical information.

In this thesis we will work out in explicit detail how one might evaluate the Fourier-
transforms of the Eisenstein series of the group SL(3,R). The results have been known
for a long time and can be found by exploiting the symmetries inherent in the group.
This is not always possible, so we shall do it without these symmetries.
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CHAPTER 1. INTRODUCTION

The reason for doing this is to find methods of evaluating the corresponding Fourier-
transforms of more complicated Lie groups such as the exceptional groups E7 or E8.
The automorphic forms of these groups appear as coefficients in higher-order quantum
corrections to Einstein gravity. Their Fourier-transforms contain information about the
physics involved, but evaluating their Fourier-transforms is difficult. So instead we will
look at SL(3,R) which is in some sense the easiest non-trivial example.

The theory of automorphic forms over real groups is best approached using the framework
of the rational Adeles. These are objects which contain the real numbers as well as other
number-fields known as the p-adics, which contain the number-theoretic information
that is lost when going from the rational numbers to the reals. As we have mentioned,
the automorphic forms find applications in number theory, so the number theoretical
content has to enter the theory somehow. By going through the Adeles the number
theory becomes much more natural and easier to manage.

The first part of this thesis, and a quite large one at that, is an overview of Lie theory
and the basics of complex, real and Adelic Lie groups, and the p-adic numbers and the
Adeles. A secondary goal here might be that this thesis can provide a good overview
for someone who knows very little about any or all of these subjects. We do however
not go into any great detail and almost all proofs are omitted except when they are
particularly illuminating. We do try to provide at least handwavy motivations for all
concepts introduced.

The rest of the thesis is mostly dedicated to deriving the so-called Fourier-Whittaker
coefficient of the Eisenstein series of SL(3,Qp), where Qp is the field of p-adic numbers.
We go from the basic definition of the Eisenstein series as the sum over an abstract coset
of an Adelic group all the way to the evaluation of an explicit Fourier-transform over
Q3
p.

We will also cover some ways one might attempt to evaluate these Fourier transforms
that fail, and point out why they fail, so that others need not try the same approach
unless they suspect their integral is some special case where this works nicely.

There will also be two detours through two big theorems that make up the theory of
Fourier-Whittaker coefficients of Eisenstein series: Langlands constant term formula and
the Casselman-Shalika formula. The proofs we depict for these two theorems serve as
inspiration for the methods we use in our own calculations.
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2
Preliminaries

In this chapter we will introduce some of the necessary theory that we will be using, but
which might not be familiar to your average fifth year physics student.

To start we will cover the basics of group theory and Lie theory before moving on to
the construction of semi-simple Lie algebras using the Cartan matrix. This perspective
writes each semi-simple Lie algebra as a combination of multiple sl(2,C) Lie algebras
with simple commutation relations.

We will also introduce the p-adic numbers and the Adeles which will feature heavily in
the theory of automorphic forms. They provide an alternative notion of continuity than
what we are used to from the real numbers, and encapsulate quite naturally the number
theoretic information that exists even in real automorphic forms.

Anyone already familiar with these topics can skip most of this, since we will not be doing
anything new or out of the ordinary. The exceptions might be the Fourier transforms we
derive in Section 2.2.6, which are probably not integrals that everyone knows by heart.
But in any case they are not that difficult to evaluate.

This material is entirely non-controversial so we will not be sourcing all statements
individually. The primary source of this thesis is the (as of yet unprinted) book by
D. Persson et al [1], who is also the supervisor of this thesis. That book contains (in
principle) everything needed. For primary sources and a more complete description we
refer to; C.C. Pinter [2] for discrete groups and the notions from abstract algebra; the
books by D. Bump [3] or V.G. Kac [4] for complex Lie groups; Deitmar’s book [5] for
the p-adics, and L. Brekke and P.G.O Freund’s text on p-adics in physics [6] for a softer
treatment; and for the Adelic Lie groups we refer to A. Weil [7], who first introduced
them.
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CHAPTER 2. PRELIMINARIES

2.1 Lie Groups and Lie Algebras

This thesis is about the evaluation of Fourier-Whittaker coefficients of the semi-simple
Lie group SL(3,R), so it makes sense that we need to understand some Lie theory.
Therefore we are going to walk through the basics of group theory and Lie algebras,
before we tackle the Cartan-matrix perspective of semi-simple Lie algebras. This way of
looking at a Lie group is the one we will be using in the entirety of the thesis.

2.1.1 Basic Group Theory

A group G is a set GS (typically written just G, making no distinction between the set
and the group) together with an associative multiplication between two objects of the
set such that the multiplication and inverses are closed in G. That is, we demand that
for any x,y,z ∈ G

xy ∈ G, (2.1)

(xy)z = x(yz), (2.2)

∃!e ∈ G : ex = xe = x, (2.3)

∃x−1 ∈ G : xx−1 = x−1x = e. (2.4)

We call a group Abelian or commutative if for all x,y ∈ G we have xy = yx.

A subgroup of a group G is a subset Γ of G such that Γ is itself a group, with the same
multiplication.

We can define the direct product between two groups,

G1 ×G2 = {(g1,g2) : g1 ∈ G1, g2 ∈ G2}, (2.5)

where the group multiplication is taken to be component-wise. Note in particular that
this is not the same thing as writing G1G2 = {g1g2 : g1 ∈ G1, g2 ∈ G2}, where G1 and
G2 are both subsets of some larger group G. In the first case, the two groups do not
talk to each other, while in the second case they do so explicitly. We will be making use
mostly of the second kind of product, but this should be clear from context.

For a subgroup Γ of G we can for any g ∈ G define the left coset

gΓ = {gγ : γ ∈ Γ} (2.6)

And similarly for the right coset Γg.

From this we can define a quotient set of a group G with respect to a subgroup Γ. This
is the set consisting of all different left (or right) cosets of Γ. That is,

G/Γ = {gΓ : g ∈ G} = {{gγ : γ ∈ Γ} : g ∈ G}, (2.7)

4



2.1. LIE GROUPS AND LIE ALGEBRAS

and equivalently for the left quotient. This splitting of the group G into cosets can also
be seen as introducing an equivalence relation on G, where two elements are considered
equal if they form the same coset. This is entirely equivalent to two elements being
considered equal if they only differ by a factor in Γ.

Of little importance to us, but still worth mentioning, is the notion of a normal subgroup.
Γ is a normal subgroup if for any g ∈ G we have gΓ = Γg1. Iff Γ is a normal subgroup
the coset is a group under the following multiplication

∀xΓ,yΓ ∈ G/Γ, xΓ · yΓ = xyΓ. (2.8)

This is called the quotient group. The normality condition is absolutely essential, without
this the above product is not even well defined.

We will mainly be dealing with simple Lie groups, which by their very definition will not
have any normal subgroups. We will however be looking at a lot of quotients, these are
then always merely cosets, not groups2.

The way we will be using these quotients and products is inside summations of matrix
groups, and then the interpretation is that for a quotient we pick a single representative
matrix for each coset, and use only that in the sum. This function that picks a single
matrix from the coset will be implicit, but the choice of matrix will be explicit.

Let X be some set, then a group action is a map φ : G×X → X, which for x ∈ X and
g ∈ G is typically written φ(g,x) = gx or φ(g,x) = g(x), that must satisfy

∀x ∈ X, ex = x (2.9)

∀x ∈ X,g,h ∈ G, g(h(x)) = (gh)(x), (2.10)

where e is the identity in G and gh is the group product.

A representation of a group is a map from the group into the set of linear transformations
acting on some vector space. We will be dealing only with matrix groups which are
defined by their so called fundamental representations, e.g. a group of invertible matrices
has the identity element as one representation. For any matrix group there are an infinite
number of representations, many of these are trivial. For instance, putting our 2 × 2
matrices as a block in a 3× 3 matrix and leaving the third diagonal element as 1.

A representation that is trivial in this way, that can be turned into block diagonal
matrices in a suitable basis of the target vector space, is called reducible. A representation
where this is not possible is called an irreducible representation.

A Lie group G is a group which is also a smooth manifold, and where both the group
product and inverse are smooth functions. That G is a smooth manifold means that

1There is nothing normal about this condition, most subgroups are in fact not normal.
2To make matters more confusing, the quotient sets will often end up being subgroups anyway.

Normality is only required for the quotient group to have that specific product.
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CHAPTER 2. PRELIMINARIES

there is a notion of open sets in G (it is a topological group), but also that for any g ∈ G
there is an open set U ⊂ G containing g and a continuous bijection φ : U −→ V , where V
is some Euclidian vector space, and the map φ is smooth (i.e. infinitely differentiable).
That the group product and inverse are smooth is just the statement that φ(xy) is
smooth, and so is φ(x−1) (as a function of x).

For us, the Lie groups will tend to be matrix groups and the vector space V will be the
corresponding vector space of matrices, with φ being the identity. For example we will
consider the Lie group of 2 × 2 complex matrices with determinant 1, SL(2,C). The
vector space V will then be the vector space of complex 2× 2 matrices.

2.1.2 The Basics of Lie Algebras

A Lie algebra g is a vector space together with a bilinear multiplication which is called
the Lie bracket or the commutator. The Lie bracket must be closed, antisymmetric and
for all x,y,z ∈ g satisfy the Jacobi identity

[x,[y,z]] + [z,[x,y]] + [y,[z,x]] = 0, (2.11)

which says that a cyclic product is zero. The Lie bracket can also be written as

adx(y) = [x,y], (2.12)

which is useful in particular when one of the elements is fixed or when we are considering
repeated applications of the Lie bracket, which can be written as for example ad3

x(y) =
[x,[x, [x, y]]]. The Jacobi identity can also be written in terms of ad as

adx([y,z]) = [adx(y),z] + [y, adx(z)]. (2.13)

This means that it behaves just like a derivative on the product defined by the Lie
bracket.

A representation of a Lie algebra is similar to a representation of a group. It is a map
from the Lie algebra into a map of linear operators acting on some vector space. As
an example we have that ad is a representation of the Lie algebra onto itself, called the
adjoint representation.

A subalgebra s of a Lie-algebra g is a vector subspace which is also invariant under the
Lie bracket,

[s, s] ⊂ s. (2.14)

An ideal i is a subalgebra which satisfies the stronger condition

[i, g] ⊂ i. (2.15)

Every Lie algebra has two trivial ideals, the one consisting only of the identity element
0, and the full Lie algebra. A Lie algebra which is not Abelian and does not have any
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2.1. LIE GROUPS AND LIE ALGEBRAS

non-trivial ideals is called simple. A Lie algebra which is a direct vector space sum of
simple Lie algebras is called semi-simple. We will in this thesis mostly be concerned
with the semi-simple Lie algebras.

A real Lie algebra g(R) is said to be a real form of a complex Lie algebra g(C) if when
we replace the scalars in g(R) by complex numbers, we get g(C).

2.1.3 The Connection Between Lie Algebras and Lie Groups

We have thus far not said a word about how the notions of Lie groups and Lie algebras
are connected. Given a Lie group we can define a related Lie algebra. This is a vector
space which consists of directions we can move within the Lie group. The way we tend to
think of it in physics is that if the Lie group represents some sort of transformation (i.e. it
has some action on some space we are interested in), the Lie algebra elements correspond
to infinitesimal transformations. We say that the Lie algebra elements generate these
transformations, and call them generators. The Lie bracket [x,y] is interpreted as the
difference between doing x followed by y, and y followed by x, or just [x,y] = xy − yx.

Formally we define the Lie algebra g(G) of a Lie group G as the tangent space at the
identity element. For general Lie groups this is somewhat complicated to describe, and
involves the maps that defined it as a smooth manifold. For us, we will only consider
matrix Lie groups, where differentiation is easy to understand.

Consider the Lie group SO(2) consisting of rotations inR2. This group can be parametrised
by for example

U(θ) =

cos θ − sin θ
sin θ cos θ

 . (2.16)

For small values of θ (that is, close to the identity-element at θ = 0) we have

U(dθ) =

0 −1
1 0

dθ +O(dθ2). (2.17)

By rescaling dθ we can get any real multiple of the matrix above. Thus the Lie-algebra
so(2) = g(SO(2)) is isomorphic to the vector space R, equipped with the Lie bracket
[x,y] = 0. This follows directly from the fact that SO(2) is an Abelian group.

For a more complicated example, one can show that the lie algebra so(3) of the group
of rotations in three dimensions, SO(3), is isomorphic to R3 with the Lie bracket being
given by [x,y] = x× y, the cross product3.

3This is one of the reason why the cross product is so important in classical physics.
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CHAPTER 2. PRELIMINARIES

We can go back to the Lie group from the Lie algebra using the exponential map4

exp(x) =
∞∑
k=0

xk

k! . (2.18)

From this we can define the notion of the Lie bracket. We want to relate it to commu-
tation in the Lie group, so consider for x,y ∈ g(G)

exp(x) exp(y) exp(−x) = exp
(

exp(x)y exp(−x)
)
. (2.19)

Now we define the Lie bracket through

exp(adx)y =
∞∑
k=0

adkx(y)
k! = exp(x)y exp(−x) (2.20)

For matrix Lie groups this leads to

adx(y) = xy − yx. (2.21)

One thing to note is that not every element of the Lie group can necessarily be written
as a matrix exponential of the Lie algebra. One striking example is the negative identity.
This cannot be written as a matrix exponential of any real matrix. This phenomenon
vanishes for complex Lie groups and that is one of the advantages of working with them.
The image of a Lie algebra under the exponential map is the identity component.

We can write the Lie bracket as a linear combination of basis elements. Thus, if we
choose a basis Ti ∈ g we can write

[Ti,Tj ] =
∑
k

f k
ij Tk, (2.22)

where the f k
ij are called the structure constants of the Lie algebra. This is a common

way of treating finite-dimensional Lie algebras. For example we have already mentioned
the Lie bracket of so(3) as the cross product, which can be written as

Ti × Tj =
∑
k

εijkTk, (2.23)

where εijk is the totaly anti-symmetric Levi-civita tensor.

4Once again, these are slightly more complicated to describe when we are not in a complex matrix
Lie group, and are instead solutions to differential equations of the form dg

dt = Tg, with the Lie algebra
being the possible elements T such that exp(T ) = g(1) is a group element.
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2.1. LIE GROUPS AND LIE ALGEBRAS

2.1.4 A First Look At SL(2,C)

As our first extended example we are going to look at the Lie group SL(2,C) and its
real forms. A lot of the concepts introduced here will be generalised to other complex
semi-simple Lie groups in the coming sections.

SL(2,C) is defined as the group of complex 2×2 matrices with determinant 1. Explicitly
we have that

SL(2,C) =


a b

c d

 ∣∣∣∣a,b,c,d ∈ C, ad− bc = 1

 (2.24)

and the group multiplication is matrix multiplication. That this forms a group is obvious
from basic linear algebra. We only need to remember that a matrix is invertible if its
determinant is not zero, and that for any matrices A and B, det(AB) = det(A) det(B).

Now we are interested in the Lie algebra of SL(2,C). This we defined as the tangent
space at the identity, so we want to find the structure of

1 + dg =

1 + da db
dc 1 + dd.

 (2.25)

The determinant condition then reads

(1 + da)(1 + dd)− dbdc = 1 + da+ dd+ Higher order terms. (2.26)

This has to be 1, which demands that da + dd = Tr dg = 0. This is the only condition
we have, and thus the Lie algebra sl(2,C) is the space of all complex 2 × 2 traceless
matrices. A nice basis for this space consists of

h =
( 1 0

0 −1
)
, e = ( 0 1

0 0 ), f = ( 0 0
1 0 ). (2.27)

Since this is a matrix group the Lie bracket acting on these basis elements can be readily
calculated as

[e,f ] = h, [h,e] = 2e, [h,f ] = −2f. (2.28)
We will make extensive use of a generalisation of this basis, the Chevalley basis, for more
general semi-simple Lie algebras.

Topological Structure of SL(2,R)

Take the basis above and consider the Lie algebra spanned by h,e,f over the real numbers.
This gives us the real form sl(2,R).

The constraint ad− bc = 1 means that the matrix g =
(
a b
c d

)
defines a Möbius transfor-

mation on C. We can therefore define an action of SL(2,R) on C as

g(z) = az + b

cz + d
= adz + bcz∗ + bd+ ac|z|2

|cz + d|2
. (2.29)

9



CHAPTER 2. PRELIMINARIES

That this is actually an action can quickly be verified by hand. Now we note that

Im g(z) = ad− bc
|cz + d|2

Im z = 1
|cz + d|2

Im z, (2.30)

so the sign of Im z is preserved. This means that SL(2,R) is a symmetry of the upper
half plane.

Next, note that
g(i) = adi− bci+ ad+ bc

c2 + d2 = i+ bd+ ac

c2 + d2 . (2.31)

If g was an element of the subgroup SO(2) we would get

g(i) = i− sin θ cos θ + cos θ sin θ
sin2 θ + cos2 θ

= i, (2.32)

so it turns out that SO(2) is a so-called stabiliser of i.

A general element of SL(2,R) can be written in the so called Iwazawa-decomposition as

g =

1 x

0 1

√y 0
0 1√

y

cos θ − sin θ
sin θ cos θ

 , (2.33)

for some choice of x,y > 0,θ ∈ [0,2π). This is a decomposition of the group into a Borel
subgroup and the maximally compact subgroup. On the Lie algebra level this corresponds
to taking sl(2,R) = Span e⊕Span h⊕Span(e−f). We will use a generalisation of this a

great deal. The matrices
(√

y 0
0 1√

y

)
make up the split Cartan torus. The entire Cartan

torus is the maximal Abelian subgroup, and also contains the negative of these matrices.

We have 1 x

0 1

√y 0
0 1/√y

 (i) =

1 x

0 1

 (iy) = x+ iy. (2.34)

Since SO(2) is the stabilizer of i we thus have an easy way of finding x and y from an
arbitrary matrix; just evaluate the corresponding Möbius transformation at i.

There is therefore a two-way map between the coset SL(2,R)/ SO(2) and H = {z ∈ C :
Im(z) > 0} so topologically we have that

SL(2,R) = SO(2)×H. (2.35)

Representation Theory

If we choose another basis, such as {ih, (e − f), i(e + f)} we end up with another real
form of sl(2,C). It is not as obvious that this construction is real under the Lie bracket,
but it can be readily verified that

[ih,(e− f)] = 2i(e+ f), [ih,i(e+ f)] = −2(e− f), [(e− f),i(e+ f)] = 2ih. (2.36)

10
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This results in the real form su(2) which is familiar from quantum mechanics, and is
a compact group. We know that the finite-dimensional representations of this group
are labeled by half-integers. This fact follows from compactness, and can be lifted
to representations of sl(2,C), since a representation of one can be converted into a
representation of the other. It therefore also follows for sl(2,R).

The reason that we get half-integers labelling the representations is because [h,e] = 2.
This 2 corresponds to a simple root with value 1, which means that the corresponding
fundamental weight must be 1/2. The representations are all labelled by an integral
multiple of the fundamental weights, and the eigenvalues of the representation differ by
the possible roots.

We will define these notions more clearly in the coming section.

2.1.5 Cartan Matrix Perspective of Semi-Simple Lie Algebras

Using the structure constants for infinite dimensional Lie algebras quickly becomes
daunting if we do not impose some structure that makes the sum contain only a fi-
nite number of terms. Even for finite dimensional ones it is a bit clunky.

A better way that works when dealing with complex semi-simple Lie algebras is to
construct them from multiple copies of sl(2,C), which is the smallest possible complex
simple Lie algebra. It turns out that any complex finite-dimensional semi-simple Lie
algebra can be constructed by intertwining copies of sl(2,C). And many non-complex
Lie algebras turn out to be real forms of such a complex Lie algebra.

We have already seen the commutation relations for one copy of sl(2,C). Now we
want to combine multiple sl(2,C) algebras into a larger one. Consider a collection of
r <∞ triplets (ei,fi,hi), i = 1,2,3, · · · r, which for any i satisfy the previous commutation
relations

[ei,fi] = hi, [hi,ei] = 2ei, [hi,fi] = −2fi, (2.37)

and for mixing between different indices we introduce the following,

[hi,hj ] = 0, [hi,ej ] = Aijej , [hi,fj ] = −Aijfj , [ei,fj ] = δijhj . (2.38)

The matrix Aij is called the Cartan matrix, and now contains all information about the
structure of the Lie algebra5.

The number r, the dimension of the Cartan matrix, is the rank of the Lie algebra.

The Cartan matrix must always satisfy for all i that Aii = 2. In this thesis we will restrict
our attentions to when A is a symmetric positive definite matrix with all off-diagonal
elements non-positive.

5Note that we are not using the Einstein summation convention here, the right hand sides are not
sums!
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We are now going to spend some time showcasing the details of this construction. Of
particular importance for us will be the root system and the bilinear form, the Iwazawa-
decomposition (which involves the Borel subgroup and the maximal compact subgroup),
and the notion of the Weyl group.

Serre Relations

We have said nothing about commutators of the form [ei,ej ] and [fi,fj ]. Without impos-
ing any further restrictions they are all new basis elements. This means our Lie algebra
is now infinite-dimensional, since we also have to include monsters of the form adnej (ek).

We are of course free to impose additional conditions. But what should they be? We are
mostly interested in semi-simple Lie algebras, and it turns out that the above construc-
tion contains ideals which we need to get rid of. One can show that ad1−Aij

ei (ej) is an
ideal element. It is instructive to compute [fi, adnej (ek)] to see this in action. I suggest
that the reader does this and checks what happens when n ≥ 1−Aij , in particular when
they are equal.

If we impose on our Lie algebra the further conditions6

ad1−Aij
ei (ej) = 0 = ad1−Aij

fi
(fj), (2.39)

we get a semi-simple Lie algebra.

Equations (2.39) are the Serre relations, and together with the information in the Cartan
matrix we have the Lie algebra generated by the Cartan matrix, which we denote g(A).
Such a Lie algebra has a chance of being finite dimensional, but it is by no means
guaranteed, since there are many other possible infinite families of commutators. We
will only be dealing with Cartan matrices where the Lie algebra turns out to be finite-
dimensional.

Basic Root Space Structure

Now that we know how the Lie algebra works in the Chevalley basis we can make some
general statements about the Lie algebra.

The set of hi span the maximal Abelian subalgebra which we will denote h. This is
known as the Cartan subalgebra. The rest of the algebra is spanned by the ei, fi and
commutators among these.

From the commutation relations we know that for any h ∈ h, adh is diagonalised7. We
will call an α : h→ C which for some x ∈ g obeys

∀h ∈ h, [h,x] = α(h)x (2.40)
6Formally this is the quotient algebra g(A) = g/i of g with ideal i; so it is a proper Lie algebra.
7The Jacobi identity guarantees that commutators are also mapped to themselves.

12
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a root. We define ∆ as the set of all roots. Since α is a map from h to the complex
numbers, it is a member of the dual space h∗ consisting of functionals on h.

It is clear from the construction of the Cartan matrix that for any element ei or fi there
is a corresponding root. We define a simple root as a root corresponding to an ei and
write it as αi. The root corresponding to fi is −αi.

For an element of the form [h,[ei,ej ]] we can use one of the forms of the Jacobi identity
to get

adh([ei,ej ]) = [adh(ei), ej ] + [ei, adh(ej)] = (αi(h) + αj(h))[ei,ej ]. (2.41)

It is easy to show using induction that for higher commutators we get the same result, the
root for this element is just the sum of the corresponding roots. Since all commutators
between the ei and fj lie in h it follows that any root can be written as an integral linear
combination of the simple roots, and with the same sign on all integers. This means
that we can split up the set of roots ∆ into positive roots ∆+ and negative roots ∆−,
with the sign of the root given by the sign in the sum of the linear combination.

We introduce the root space lattice Q as the span of the simple roots over Z, making it
a module. Then any root lies in Q, but not every element of Q is a root.

For each simple root αi we can define its co-root as

α∨i = hi, (2.42)

and extend this linearly for any root.

For any root α we can also talk of the root subspace gα consisting of all g ∈ g that for
all h ∈ h satisfy

[h,g] = α(h)g. (2.43)

The dimension of this subspace is called the multiplicity of the root. We can realize
that if the Cartan matrix is non-degenerate, which we have assumed, any basis element
corresponds to a unique such linear combination. Thus the multiplicity of any root is 1.

Therefore it makes sense to speak of the sl(2,C) subalgebra belonging to a positive root.
First pick an element Eα ∈ gα and Fα ∈ g−α. Now define Hα = [Eα,Fα]. Then we can
normalise Eα and Fα so that we get the normal sl(2,C) commutation relations,

[Hα,Eα] = 2Eα, [Hα, Fα] = −2Fα. (2.44)

When α is negative we define Eα = F−α.

At this point we can also introduce the maps used in the so called Chevalley notation,

xα(z) = exp(zEα), (2.45)

and
hα(z) = zHα = exp(log(z)Hα). (2.46)

13
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Sometimes when clear from context we might also write xi instead of xαi to denote this.
We get

xα(z)xα(z′) = xα(z + z′) (2.47)

and
hα(z)hα(z′) = hα(zz′). (2.48)

We also have
hα(u)xβ(v)hα(1/u) = xβ

(
u〈β|α〉v

)
(2.49)

This, and others, follows directly from the definition of the Lie bracket in Equation
(2.20).

Another important object is the Weyl vector, defined as

ρ = 1
2
∑
α∈∆+

α, (2.50)

which will appear naturally from time to time, especially in connection with the so-called
Weyl group and when dealing with sums of subsets of the roots. It is sometimes a root
itself, but this is not true in general.

With the root structure in place we can provide an alternative description of the Cartan
matrix. The rows are the actions of the simple roots on the simple coroots.

Invariant Bilinear Form

It is possible to define an invariant bilinear form on a Lie algebra g(A). That is, a
bilinear form 〈|〉 : g× g→ C which satisfies

〈[x,y]|z〉 = 〈x|[y,z]〉. (2.51)

For the finite dimensional simple Lie algebras such a bilinear form is always proportional
to the Killing form, which is given by the trace of the adjoint representation,

〈x|y〉K = Tr[adx ady], (2.52)

where we interpret adx as a matrix, defined by its action on the Lie algebra. The choice
of scalar product defining the matrix component is irrelvant, since the trace is invariant
under choice of scalar product.

We will find a nicer way of calculating it. We start from the Cartan torus. We already
have a bilinear form on the space of co-roots, define for a root αi and a co-root α∨j

〈αi|α∨j 〉 = α(α∨j ) = Aij . (2.53)

This can quite trivially be extended to a bilinear form on the Cartan torus through

〈α∨i |α∨j 〉 = 〈αi|α∨j 〉 = Aij . (2.54)

14
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These are, technically, two different bilinear forms, but we will denote both by 〈|〉.

Since we have assumed that Aij is a symmetric positive definite matrix, this is actually an
inner product on the Cartan torus8. Thus, we have a new purely geometric interpretation
of the Cartan matrix, it encodes the angles between two elements of the Cartan torus.

We extend this to the entirety of the Lie algebra using the invariance and the commu-
tation relations. The invariance and the commutation relations are enough to define the
bilinear form uniquely.

To see how they can be calculated let us do an example. For a simple root generator ei
we have on the one hand that

〈ei|[hj ,hk]〉 = 〈ei|0〉 = 0. (2.55)

But also using invariance of the bilinear form

〈[ei,hj ]|hk〉 = −Aji〈ei|hk〉. (2.56)

This demands that ei and hk are orthogonal, since the case j = i ensures that the factor
from the Cartan matrix does not vanish.

Weights

We defined Q = Span(Simple roots,Z), now consider h∗ = Span(Simple roots,C). We
extend 〈|〉 linearly in terms of the simple roots as before. Then in h we can find a basis
Λi of fundamental weights such that

〈αi|Λj〉 = δij . (2.57)

Now we define the space of weights to be the vector space spanned by the fundamental
weights over C. This coincides with the space h∗. The Weyl vector ρ can be written as
the sum of of the fundamental weights;

ρ =
r∑
i=1

Λi. (2.58)

We also define the module Λ consisting of integral linear combinations of the fundamental
weights.

A dominant highest weight is a an element which is an integral linear combination of the
fundamental weights, with all coefficients positive. The weights might appear a bit arti-
ficial, but they appear naturally in representation theory, where they are the eigenvalues
of the Cartan torus, just like the roots are eigenvalues of the adjoint representation.

8But only on the Cartan torus.
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The finite-dimensional representations V of a complex semi-simple Lie algebra are all
labelled by a dominant highest weight λ, for which there exists a vector v ∈ V such that
for h ∈ h

V (h)v = 〈λ|h〉v (2.59)

V (n+)v = 0. (2.60)

That is, the vector v is an eigenvector to all matrices in the Cartan subalgebra and is
annihilated by all the positive root generators.

Group Decompositions

There are three subalgebras which behave nicely with the root space structure, n±,
consisting of the positive and negative root generators respectively, and h. Intuitively
we can think of the positive and negative root generators as generating upper and lower
unit triangular matrices, and h generating diagonal matrices.

Another important subalgebra is the Borel subalgebra, b = n+ ⊕ h, which then corre-
sponds to generating upper triangular matrices. This will turn out to be important due
to the fact that it appears in the Iwazawa-decomposition, which is our main goal right
now.

We can write our Lie algebra as

g = n+ ⊕ h⊕ n− = b⊕ n− (2.61)

where n± is the sum of the rootspaces of the positive and negative roots, respectively,

n± =
⊕
α∈∆±

gα. (2.62)

What we need is a notion of compact subgroups. For matrix groups these correspond to
Lie algebras that consist of anti-Hermitian matrices. We want to generalise this, so we
need an antilinear involution which generalises the notion of conjugate transpose.

Define the Chevalley involution ω, which acts anti-linearly9 and on the basis elements
as

ω(Eα) = −E−α, ω(h) = −h. (2.63)

For matrix Lie algebras we we have that g† = −ω(g). By picking a basis of elements
which are all invariant under ω we can generate a real form which generates a compact
group. We saw this with SU(2) in (2.36), where we can verify that the basis elements
are indeed invariant under ω.

9That is ω(ax+ by) = a†ω(x) + b†ω(y)
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For a given real form g(R) we have that10

g(R) = k⊕ p, (2.64)

where k is the subspace of g(R) which is invariant under ω, and p is anti-invariant. For
the Chevalley basis, k is spanned by elements of the form ei− fi and p by hi and ei + fi.
This is only a vector space sum, as p is not a subalgebra of g. Instead we have the
relations

[p,p] ⊂ k, [k,p] ⊂ p, [k, k] ⊂ k. (2.65)

This is the Cartan decomposition. k is known as the compact subalgebra. If p contains
the Cartan subalgebra we say that the real form g(R) is split.

If g(R) is a split real form there is an Iwazawa-decomposition

g = k⊕ h⊕ n+ = k⊕ b (2.66)

This is a very important decomposition, and one we will make frequent use of.

The Iwazawa decomposition at the group level can be seen as a generalisation of the fact
that any matrix can be turned into an upper triangular matrix using rotation matrices.

We will use the notation N = exp(n+), B = exp(b), K as the maximal compact sub-
group, which will be exp(k) for real and complex groups. We will also use the notation
N− = exp(n−) and A = exp(h) for the Cartan torus. When applicable we will use the
notation G(F) to denote subgroups of these where the exponentials are restricted to
linear combinations in the set F. For example N(Z) for the subgroup of matrices in N
with all components integers.

In all of these subgroups we implicitly include all components, not just the identity
component.

The Weyl Group

Now we define the so-called Weyl group. This is an automorphism on the set of roots
such that the inner product is invariant. On the group level this can be thought of as a
way of changing the orders of rows and columns, but we will be starting from the roots
when we define it, since there is a bit more to it than that.

Define for each i = 1, · · · , r the operator wi as a Householder transformation under the
inner product 〈|〉 which reflects αi,

wi(γ) = γ − 2 〈αi|γ〉
〈αi|αi〉

αi = γ − 〈αiγ〉αi. (2.67)

10The symbol k is actually a lower case fraktur k, believe it or not.
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In terms of the simple roots we get

wi(αj) = αj −Aijαi. (2.68)

Because we have defined wi as a Householder transformation we get for free that wi(αi) =
−αi, w2

i = 1, 〈αi|γ〉 = 0 ⇒ wi(γ) = γ and the bilinear form is invariant, 〈wiα|wiα′〉 =
〈α|α′〉, since a Householder reflection is always an orthogonal matrix.

What does not follow for free is the fact that wi(αj) is actually a root, and not just a
point in the root space lattice. Proving this is somewhat technical, so we will not do it.

With this we define the Weyl group W as the group generated by the fundamental
reflections. This still has the property that for any w ∈ W we have 〈wα|wα′〉 = 〈α|α′〉.

An element of the Weyl group is referred to as a word. The length l(w) of a word w is
the number of fundamental reflections in the shortest possible factorisation of the word.

Next we want for each fundamental reflection wi a Lie group element w̃i such that

w̃iEαw̃
−1
i = ±Ewiα (2.69)

and
Adw̃i Hα = ±Hwiα. (2.70)

We need the minus signs if we want w̃i to be a part of G.

Such an element is given by

w̃i = x−αi(1)xαi(−1)x−αi(1) = exp(fi) exp(−ei) exp(fi). (2.71)

The group elements w̃ are only determined up to multiplication by w̃2
i . In the future

we will never be differentiating between w and w̃, it should be clear from context which
space they are acting on.

This might seem a bit artificial, but the Weyl group is of great help when doing calcula-
tions. We will be making use of the Bruhat decomposition, which states that a complex
Lie group G(C) can be decomposed into

G(C) =
⋃
w∈W

B(C)wB(C) (2.72)

where B(C) is the Borel subgroup. This also holds for any subfield of C, in particular
it holds for G(Q), but it does not hold for G(Z). This is one of the main reasons that
we are going to introduce the Adeles, because they allows us to trade a G(Z) symmetry
for a G(Q) symmetry.
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The Weyl Character Formula*

Let V be a representation of g(A), and denote by h∗V the set of weights which appear in
this representation (defined as the eigenvalues of V (Hα) in this representation). Then
we define the character of the representation as

chV (h) = TrV (h) =
∑
α∈h∗V

mult[α]eµ(h). (2.73)

The expression mult[µ] is the multiplicity of the weight µ, which is the dimension of
the eigenspace of µ in V . The exponential eµ is a character eµ : h −→ C satisfying
eµ(h) = e〈µ|h〉 and eµeµ

′ = eµ+µ′ . This means that chV : h −→ C.

It is not at all certain that this sum converges, but it always does for finite dimensional
representations, since then the number of weights is finite.

If V is a highest weight representation with dominant highest weight Λ there is another
way of writing this sum, the Weyl character formula,

chV =
∑
w∈W ε(w)ew(Λ+ρ)−ρ∏
α∈∆+(1− e−α) , (2.74)

where ε(w) = (−1)l(w) is the signature of the word w.

The typical way of defining the character is eλ(h) = e〈h|λ〉. Of course, we are really free
to normalise this however we want, so we are not forced to pick e as our base. We can
also interpret eλ as a function of the Cartan torus, and we write

eλ(hα(u)) = |u|〈α|λ〉. (2.75)

This is multiplicative in u and additive in α, which is what we need for eλ to be an
exponential on h.

For sl(2,C) we get for a representation Vλ with dominant highest weight λ

chVλ
(
v 0
0 v−1

)
= Tr

(
Vλ
(
v 0
0 v−1

))
= |v|

λ − |v|−λ−2

1− |v|−2 . (2.76)

2.1.6 Example, SL(3,C)

It is time we did an example. In the end we will be dealing with SL(3,R) (and Adelisa-
tions of this) so we might as well work out the details for SL(3,C).

Consider the Cartan matrix

A =

 2 −1
−1 2

 . (2.77)
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We have two basis elements in h, h1, and h2, three elements in n+, e1,e2 and [e1,e2], and
corresponding elements f1,f2 and [f1,f2] in n−. All higher commutators are killed by
the Serre relations since 1− A12 = 2. This is an 8-dimensional semi-simple Lie algebra
which is isomorphic to sl(3,C).

There are two simple roots, α1 and α2, which act on elements h of the Cartan torus by

αi(hj) = 〈αi|hj〉 = Aij . (2.78)

There is also a third positive root which we denote α3 = α1 + α2 which corresponds to
e3 = [e1,e2]. This has a corresponding Cartan generator

h3 = [[e1,e2],[f1,f2]] = h1 + h2. (2.79)

The fundamental weights are given by the columns of A−1 which are

Λ1 = 2h1 + h2
3 , Λ2 = h1 + 2h2

3 . (2.80)

The simple co-roots can in turn be written h1 = 2Λ1 − Λ2 and h2 = −Λ1 + 2Λ2.

The Weyl vector is given by

ρ = 1
2(α1 + α2 + α3) = α3, (2.81)

so ρ is actually a root in this case.

In the fundamental representation we have that the Lie algebra basis elements and
exponential maps are given by

Hα1 =


1 0 0
0 −1 0
0 0 0

 , Hα2 =


0 0 0
0 1 0
0 0 −1

 , Hα3 =


1 0 0
0 0 0
0 0 −1

 ,

Eα1 =


0 1 0
0 0 0
0 0 0

 , Eα2 =


0 0 0
0 0 1
0 0 0

 , Eα3 =


0 0 1
0 0 0
0 0 0

 ,

hα1(u) =


u 0 0
0 1/u 0
0 0 1

 , hα2(u) =


1 0 0
0 u 0
0 0 1/u

 , hα3(u) =


u 0 0
0 1 0
0 0 1/u

 ,

xα1(u) =


1 u 0
0 1 0
0 0 1

 , xα2(u) =


1 0 0
0 1 u

0 0 1

 , xα3(u) =


1 0 u

0 1 0
0 0 1

 .
(2.82)

For the negative roots we get a sign change in the Hα and a corresponding inversion in
hα while for Eα and xα we get a matrix transposition.
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The Weyl Group on Roots
e
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Figure 2.1: The action of the Weyl group when acting on the roots. We have three
”reflections” and two ”rotations”. This Figure is a little misleading in how the roots are
placed, the geometry means almost nothing in this picture. See Figure 2.2 for the actual
geometry.

Weyl Group

Applying the definition in (2.68) we find that

w1(α1) = −α1, w1(±α2) = α3 ± α3, w1(±α3) = ±α2, (2.83)

and similarly

w2(±α1) = ±α3, w2(±α2) = ∓α2, w2(±α3) = ±α1. (2.84)

From this we can work out the rest of the Weyl group. It turns out to have 3 additional
non-trivial elements, w1w2, w2w1 and w1w2w1 = w2w1w2 = w3. This is a non-abelian
group of order 6. There is only one such group, S3, the symmetry group of three objects.
This is isomorphic to the symmetry group of an equilateral triangle. The Weyl group of
SL(n,R) is always Sn.

As can be seen in Figure 2.1 the Weyl words w1, w2 and w3 correspond to reflections
while w1w2 and w2w1 are essentially rotations.
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Geometry of the Root Space

Λ1

−Λ1

α1

−α1

Λ2

−Λ2

α2

−α2

Λ3

−Λ3

α3

−α3

w2

w1w3

Figure 2.2: Illustration of the structures of sl(3,C) in the weight space. All points are
written in the basis of fundamental weights. The two triangles are two 3-dimensional rep-
resentations, corresponding to the fundamental representation, while the hexagon is the
8-dimensional adjoint representation (it also has two zero weights, in addition to the six
roots). The striped green lines show the lines through which the Weyl group reflects the
rootspace.

Doing the calculation on the fundamental weights we find that

w1(Λ1) = Λ2 − Λ1, w1(Λ2) = Λ2, (2.85)
w2(Λ1) = Λ1, w2(Λ2) = Λ1 − Λ2. (2.86)

Thus, if we define Λ3 = Λ2−Λ1 we have two triangles that are left invariant by the Weyl
group: (Λ1,− Λ2,Λ3) and (−Λ1,Λ2,− Λ3).

The group elements w1, w2 and w3 then correspond to reflections through the bisectors
of the triangles, while w1w2 and w2w1 are the clockwise and counter-clockwise rotations
by 2π/3. This is of course only true in the basis of fundamental weights, since that is an
orthonormal basis under 〈|〉. The basis of simple co-roots, which we will typically use, is
not orthonormal under 〈|〉 and thus the Weyl group also does shearing, as can be seen
in Figure 2.2

In matrix form (in the fundamental representation) we have that by applying (2.68) we
get that the fundamental reflections act by

w̃1 =
( 1

1
−1

)
, w̃2 =

(−1
1

1

)
. (2.87)

The rest of the Weyl group is given by

w̃1w̃2 =
( 1

1
1

)
, w̃2w̃1 =

( 1
1

1

)
, w̃3 =

(
−1

−1
−1

)
. (2.88)
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In deriving these we have used the fact that we are allowed to multiply by w̃2
i , which

changes the sign of two arbitrary non-zero components.

2.2 The p-adic Numbers

The typical case in physics when studying matrix Lie groups is to consider matrices that
have elements in either R, or C. It often happens that one can deduce things about a
real Lie group based on the properties of another complex Lie group.

For example the representations of SL(2,R), the group of real 2 × 2 matrices with
determinant 1 are related to the representations of SU(2), the group of 2 × 2 unitary
matrices, due to the fact that they are both real forms of SL(2,C). Thus, even if we
are interested only in the real group, it makes sense to study the complex group since it
contains additional information about the real group.

However, C is not the only number field which contains R as a subfield. We are going
to step back and consider the field Q of rational numbers. We got to R by demanding
that limits make sense under the norm of absolute value, but this is not the only norm
we can define on the rational numbers. There are also the p-adic norms which contain
number theoretical information that is lost in R.

The Adeles is then a set of objects which combines all of these different number fields
into a larger one. This in some sense gets rid of the fact that we have arbitrarily picked
R as our number field, and makes the calculations more natural.

We will extend the notion of Fourier series into the Adelic context, and evaluate a few
useful Fourier transforms that will appear when we do our calculations on the (by then
Adelic) Lie groups.

2.2.1 The p-adic Norm

Before we construct the p-adic numbers we should remind ourselves how we construct
the real numbers. We start with the rational numbers Q and then we introduce the
norm

|x| =

x if x ≥ 0

−x if x < 0.
(2.89)

Then we form R as the completion of Q with respect to this norm, so that all limits
make sense. Explicitly, we consider the space of Cauchy sequences in Q under this norm,
that is, sequences {xn}∞n=1 that satisfy

∀ε > 0 ∈ Q ∃N ∈ N : ∀n,m > N |xn − xm| < ε. (2.90)
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Then one defines a real number as a sequence of rational numbers that converges, and
two sequences that converge to the same real number are to be considered the same
number11.

The p-adic numbers Qp, where p is some prime number, are constructed in the exact
same way, except we will change the norm | · | into something we will denote | · |p.
Now, according to the fundamental theorem of arithmetic any integer can be factorised
uniquely into prime factors, and thus for any rational number x 6= 0 we can write
uniquely

x = pk
n

m
, (2.91)

where k,n ∈ Z and m ∈ N, in such a way that neither n nor m contains any factors of
p. Then we define

|x|p = p−k. (2.92)
For x = 0 we define |x|p = 0.

Of course, not just any function | · | defines a norm. It needs to satisfy for all x,y ∈ Q

• |xy|p = |x|p|y|p
• |x|p = 0⇔ x = 0

• |x+ y|p ≤ |x|p + |y|p.

The first two requirements are trivial. For the third, write x = pk nm , y = pl n
′

m′ , and
assume without loss of generality that k ≤ l. Then

x+ y = m′npk +mnpl

m′m
= pk

m′n+mn′pl−k

m′m
. (2.93)

From this we can deduce that we have at least k factors of p in x+ y, but we can have
more since m′n + mn′pl−k might contain additional factors of p if l − k = 0, but m′m
does not contain factors of p. Thus

|x+ y|p ≤ p−k ≤ p−k + p−l = |x|p + |y|p. (2.94)

In fact we have something much stronger than the regular triangle inequality,

|x+ y|p ≤ max(|x|p,|y|p). (2.95)

We have equality if x and y have different norms since we must have l − k = 0 for the
new denominator to contain further factors of p.

We will also have use of the p-adic valuation νp, defined by

|x|p = p−νp(x). (2.96)

Then the properties of the norm translate into properties of the p-adic valuation. For
x,y ∈ Qp we have

11That is, a real number is an equivalence class of Cauchy sequences taking values in Q, where two
sequences xn and yn are equivalent if for any ε > 0 there is an N such that ∀n > N, |xn − yn| < ε.
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• νp(xy) = νp(x) + νp(y),

• ν(0) =∞,

• ν(x+ y) ≥ min(νp(x),νp(y)).

Now that we have defined | · |p we define the p-adic numbers Qp as the completion of Q
with respect to the metric d(x,y) = |x− y|p induced by | · |p, the same way we did with
R.

2.2.2 Basic Arithmetic

These numbers are very strange when compared with the reals. A real number is small if
it has a larger denominator than numerator, a p-adic number is smaller the more factors
of p it has. While a real number can be written as a decimal number, or with any other
number as basis, a p-adic number is not very natural to write in any number basis other
than p. An arbitrary p-adic number x with norm |x|p = pk, where k ∈ Z, can be written
as

x = a−kp
−k + a−k+1p

−k+1 + · · ·+ a−1
p

+ a0 + a1p+ a2p
2 + · · · , (2.97)

where the ai are arbitrary natural numbers between 0 and p− 1 (a−k must be non-zero
if |x|p = pk).

We can use the usual notation for representing real numbers also for p-adics, but the
decimal expansion continues infinitely to the left, rather than to the right. So for example
we could write in the 5-adics,

4
52 + 3

5 + 2 + 5 + 52 + 53 + . . . = . . . 111.234. (2.98)

Notice that we have not allowed there to be a minus sign in this. There is good reason for
that. It is not actually meaningful to distinguish between positive and negative p-adic
numbers. To see this let a ∈ Qp, the sequence xn = a + (−1)npn converges to a in the
p-adics, even though it clearly changes ”sign” every other time. To make matters worse,
we can find p-adic numbers that are arbitrarily close to rational numbers on both sides
of 0. Consider a and a− pk. The number a+ pk lies at a distance p−k from both these
numbers (if p is not 2)

This is not actually an issue, let us expand −1 in the p-adics in this way. We have

−1 = p− 1
1− p = (p−1)(1 +p+p2 +p3 + . . .) = (p−1) + (p−1)p+ (p−1)p2 + . . . . (2.99)

This series converges absolutely since the norms of the terms decay like p−n. To see why
this works as −1, consider p = 3. We then have

− 1 = 2 + 2 · 3 + 2 · 9 + 2 · 27 + · · · . (2.100)
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which means

1 + (−1) = (1 + 2) + 2 · 3 + 2 · 9 + · · · = (1 + 2) · 3 + 2 · 9 + · · · = (1 + 2) · 9 + · · · (2.101)

and so on. Continuing this process we cancel every term in the series.

2.2.3 Important Subsets

The field Qp contains a lot of subsets that will turn out to be useful.

We first define the ring of p-adic integers as

Zp = {x ∈ Qp : |x|p ≤ 1}. (2.102)

This set contains in particular the ordinary integers, but also other numbers. For example
Z2 contains 1/3, as it has no factors of 2. This is a compact set, and this will have
implications later when we deal with Adelic groups.

We will also introduce the multiplicative part of the p-adic integers,

Z∗p = {x ∈ Zp : 1
x
∈ Zp} = {x ∈ Zp : |x|p = 1}. (2.103)

The condition in the second equation is necesary and sufficient, |1/x|p = 1/|x|p, so both
x and 1/x lie in Zp exactly when |x|p = 1. This is the unit circle, we have that the circle
of radius pk is given by

{x ∈ Qp : |x|p = pk} = p−kZ∗p. (2.104)

The important decomposition we will need is that into circles,

Qp =
∞⋃

k=−∞
pkZ∗p. (2.105)

This is a disjoint decomposition, which will be of great help when we calculate integrals,
which will in our case typically only depend on the norm.

2.2.4 Integration Measure

On the p-adics there is a translation invariant integration measure that scales according
to what we would expect. That is it has the properties that

d(x+ a) = dx, and d(ax) = |a|pdx. (2.106)

This will be normalized so that ∫
Zp

dx = 1. (2.107)
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From this we can establish that the closed ball of radius pk has volume∫
p−kZp

dx =
∫
Zp

d(p−kx′) = pk
∫
Zp

dx′ = pk. (2.108)

This implies that the full set of p-adics has infinite measure, just like the reals.

There is no theorem to replace the fundamental theorem of calculus. This means that
in most cases we are forced to find the values of the integrals using symmetry arguments
(e.g. odd functions) or by finding the sizes of certain subsets where the function we are
integrating is constant (e.g. function depends only on norm). We will be using both of
these techniques.

2.2.5 Special Functions

Now we will introduce some functions on the p-adics that will turn out to be useful.

We start by introducing an important function, the p-adic Gaussian,

γp(x) = χZp(x) =

1 if x ∈ Zp

0 otherwise.
(2.109)

This is simply the characteristic function of the closed unit ball Zp. This is related to
the real Gaussian γ∞(x) = e−πx

2 by the fact that they are both eigenfunctions of the
Fourier transform. We will prove this in a bit. There are two related functions

γ̄p(x) = 1− γp(x) =

1 if x 6∈ Zp

0 otherwise,
(2.110)

which is the characteristic function of Qp\Zp, and

γ∗p(x) = γp(x)− γp(x/p) =

1 if x ∈ Z∗p
0 otherwise,

(2.111)

which is the characteristic function of Z∗p.

Another function that will turn out to be useful is

Jp(x) = x̃ =

1 if x ∈ Zp

x otherwise.
(2.112)

This looks like a mildly uninteresting function at the moment, but it plays an important
role in the Iwazawa-decomposition of SL(2,Qp), which will be vital when we look at
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automorphic forms. It has a few properties that follow straight from the definition, the
first being that

|x̃|p = max(1, |x|p) = γp(x) + γ̄p(x)|x|p (2.113)

and the second that for any x ∈ Qp and n ∈ Zp

Jp(x+ n) = Jp(x). (2.114)

What we want to do in the end is evaluate something similar to a Fourier transform.
Then we need to know how to generalise eiωx. This is what is known as a unitary
character.

In order to do that we will need [y]p, the p-adic fractional part of y,

 ∞∑
k=k0

akp
k


p

=
−1∑
k=k0

akp
k, (2.115)

which is guaranteed to be a rational number.

If x is a rational numbers such that x ∈ Zp for all p, then p is an integer. As a corollary
to this, the number x−

∑
p<∞[x]p is always an integer.

A unitary character on a group G is a group homomorphism into the unitary group,

ψ : G→ U(1). (2.116)

For a p-adic number, with the group operation + we can write such a character as

ψmp (x) = e2πi[mx]p . (2.117)

Since [mx]p is always rational this is just the ordinary complex exponential. The number
m is the modenumber of the character, and can be any p-adic number. For p = ∞ we
can simply let the fractional part [x∞]∞ be the entire real number x∞.

It is easily verified that
[x+ y]p 6= [x]p + [y]p, (2.118)

just take x = p−1
p , y = 1

p . However, we clearly have that

[x+ y]p − [x]p − [y]p ∈ Z, (2.119)

so the exponential function is trivial there, thus, even though the fractional part is not
linear, the character defined in this way is is still multiplicative.
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2.2.6 Fourier Transform

Now that we have introduced norms, p-adic integration and characters we are ready to
consider the integrals that we will use in evaluating the Fourier-Whittaker coefficients
later. The Fourier transform is an integral of the form

Fx[f(x)](m) =
∫
Qp

f(x)e−2πi[mx]p dx. (2.120)

This has the normal translation, scaling and linearity properties we are used to, i.e.,

Fx[f(x− x0)](m) = e−2πi[mx0]pFx[f(x)](m), (2.121)

Fx[f(ax)](m) = 1
|a|p
Fx[f(x)][ma ], (2.122)

Fx[af(x) + bg(x)](m) = aFx[f(x)](m) + bFx[g(x)](m). (2.123)

In this section we will be calculating a number of useful integrals. Our main goal is to
evaluate the Fourier transform F [|x̃|sp](m), since these are the functions that will appear
in our Whittaker-coefficients.

The first thing we will do is build up so that we can evaluate the Fourier transform of a
constant over Z∗p. The integrand we are after only depends on the norm. Therefore we
decompose Qp into circles of the form pkZ∗p and take a sum, like in (2.105). The end
result is a geometric series that can be evaluated readily.

The first thing we will do is show that γp is a fixed point of the Fourier transform.
Lemma 2.1.

F [γp(x)](m) = γp(m). (2.124)

Proof. We can derive this from the fact that

Fx[γp(x)](m) = e2πi[m]pFx[γp(x− 1)](m) = e2πi[m]pFx[γp(x)](m). (2.125)

Here we have used the translation property, and used the fact that Zp is invariant under
translation by an integer. This shows that either we must have e2πi[m]p = 1, which
demands that m ∈ Zp and the remaining integral is 1, or the integral must vanish. This
gives us the result.

From this we can derive the Fourier transform of γ∗p
Corollary 2.2.

Fx[γ∗p(x)](m) = γp(m)− 1
p
γp(pm). (2.126)

Proof. This follows directly from the fact that γ∗p(x) = γp(x)−γp(x/p), using the linearity
and scaling properties.
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Now we can prove the following about Fourier transforms of functions which only depend
on the norm.
Lemma 2.3. If φ : Qp −→ C is a function only of the norm, we have

F [φ(x)](m) =
νp(m)∑
k=−∞

pk
(
φ(p−k)− φ(p−(k+1))

)
. (2.127)

Proof. We have

F [φ(x)](m) =
∫
Qp

φ(x)e−2πi[mx]p dx (2.128)

=
∞∑

k=−∞

∫
p−kZ∗p

φ(x)e−2πi[mx]p dx (2.129)

=
∞∑

k=−∞

∫
Z∗p

φ(p−kx′)e−2πi[mp−kx′]p |p−k|p dx′ (2.130)

=
∞∑

k=−∞
φ(p−k)pkF [γ∗p(x)](mp−k) (2.131)

=
∞∑

k=−∞
φ(p−k)pk

(
γp(p−km)− 1

p
γp(p−k+1m)

)
, (2.132)

where we got rid of x′ inside φ since it has norm 1. Now shift the second term by
k 7→ k + 1. This leaves us with

F [φ(x)](m) =
∞∑

k=−∞
γp(p−km)pk

(
φ(p−k)− φ(p−(k+1))

)
. (2.133)

We can write m = pν(m) in γ, which means our sum should only run to k = νp(m) and
thus

F [φ(x)](m) =
νp(m)∑
k=−∞

pk
(
φ(p−k)− φ(p−(k+1))

)
. (2.134)

We will later need a Lemma of the form
Lemma 2.4. If a is a p-adic number such that |a|p ≤ |m|p we have

F [γp(ax)φ(x)](m) = F [φ(x)](m) + γ∗p

(
a

m

) 1
|m|p

φ

( 1
mp

)
. (2.135)

Proof. Since γp is a function only of the norm we still fulfil the condition in Lemma 2.3.
Thus

F [γp(ax)φ(x)](m) =
νp(m)∑
k=−∞

pk
(
γp(ap−k)φ(p−k)− γp(ap−(k+1))φ(p−(k+1))

)
. (2.136)
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Since |a|p ≤ |m|p we have that ap−k is an integer for k ≤ νp(m). This means that we
can ignore them for all terms except when k = νp(m), where we have an extra +1 in
the second term. This term appears if and only if |a|p = |m|p, and thus we have to
compensate for it. Therefore

F [γp(ax)φ(x)](m) = F [φ(x)](m) + γ∗p

(
a

m

)
pνφ(p−(νp(m)+1)). (2.137)

Using the fact that 1
m has the same norm as p−νp(m) the result follows.

Now we are ready to state what we are actually after. These are the Fourier transforms
that will appear when we try to find Whittaker-coefficients of Eisenstein series,
Proposition 2.5.

F [|x̃|sp](m) = γp(m) 1− ps

1− ps+1

(
1− |pm|−(s+1)

p

)
. (2.138)

Proof. We can begin by noting that since |x̃|sp = γp(x) + γ̄p(x)|x|sp we need the Fourier
transforms of γp(x) and γ̄p(x)|x|sp. We already know the first of these, and the second is
of the form in the lemma we just proved with φ(x) = γ̄p(x)|x|sp. We therefore have

F [γ̄p(x)|x|sp](m) =
νp(m)∑
k=−∞

pk
(
γ̄p(p−k)pks − γ̄p(p−(k+1))p(k+1)s

)
. (2.139)

The γ̄p-factor demands that k ≥ 1 and k ≥ 0, respectively in each term. Adding the
missing k = 0 to the first term we end up with

F [γ̄p(x)|x|sp](m) = −γp(m) + γp(m)
νp(m)∑
k=0

(
pk(s+1) − p(k+1)(s+1)−1

)
. (2.140)

Evaluating this geometric series yields

F [γ̄p(x)|x|sp](m) = −γp(m) + γp(m)(1− ps)(1− |pm|−(s+1))
1− ps+1 . (2.141)

Combining this with the Fourier transform of γp(x) proves the result.

2.3 The Adeles

Now that we have the p-adic numbers we are ready to construct the Adeles. An Adele
a is a tuple

a = (a∞,a2,a3,a5, · · · ), (2.142)

where ap ∈ Qp, and for all but finitiely many primes we have xp ∈ Zp. It is normal in
this context to let R correspond to an infinite prime number, hence the notation x∞.
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We will often see products either over p ≤ ∞ or p < ∞, where in the first case the
product includes R, and in the second it goes over all finite primes. We will thus write

A = R×
′∏

p<∞
Qp =

′∏
p≤∞

Qp, (2.143)

where we understand that a product with a ′ is restricted in the above way to keep
almost all components in Zp. The components are often called the local parts of the
Adele.

The constraint of letting only finitely many components have arbitrary norm is for
technical reasons. We will not dwell on it.

For an Adele a we define the norm

|a| =
∏
p≤∞
|ap|p, (2.144)

which converges since only a finite number of the factors will be greater than 1. Note
that this is not a true norm, since |a| can be zero even if a 6= 0.

The Adeles clearly contain the real numbers as a subfield, just take the Adeles with
everything but the real factor taken to be 1. It also contains the rational numbers, and
in more than one way. One way is to let m be a rational number, and then let every
component of the Adele be m, since the rationals are contained in every set of p-adic
numbers. This works because there is always a largest prime factor in m, and after that
|m|p = 1. It can be quickly verified that |m| = 1 for all rational numbers (except 0).

This embedding has the nice property that the rational numbers become a discrete subset
of A. To see this, note that Q is topologically discrete if for any point q ∈ Q there exists
an open set containing no other points of Q than q itself.

Consider the case q = 0. Then we can take the open set to be

V = (−ε,+ ε)×
∏
p<∞

Zp. (2.145)

We remember that Zp is the closed unit ball, but it is also an open set due to the discrete
nature of the p-adic norm (we can define Zp as the open ball of a radius slightly larger
than 1.) The only rational number that lies in every single Zp are the actual integers, but
for ε < 1 no integer other than 0 lies in the real open set. Thus this set contains only the
rational number 0. This can be generalized to any rational number by simply shifting
the open sets. This will be important because it means that subgroups consisting of
rational Adeles will be discrete subgroups.

Suppose that we have a function fp defined for each prime p. Then we define the
Adelisation of fp as

fA(a) =
′∏

p≤∞
fp(ap). (2.146)
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We can then get back a function on R by considering fA evaluated at a convenient
constant for all primes except ∞. The functions fp for p <∞ is the local part of f .

We will be considering integrals of such functions. We will not say more about integration
other than that if fA(a) is a direct product of functions we have∫

A
fA(x) dx =

∏
p≤∞

∫
Qp

fp(xp) dxp. (2.147)

2.3.1 The Riemann ξ-Function

The Riemann ξ-function is a function that is related to the famous Riemann ζ-function,

ζ(s) =
∞∑
n=0

n−s =
∏
p<∞

1
1− p−s . (2.148)

We see that this has almost been written as an Adelic product, but it is missing the
infinite part. This turns out to make ζ somewhat messy. ζ satisfies the functional
relation

ζ(s) = ζ(1− s)2sπs−1 sin
(
πs

2

)
Γ(1− s). (2.149)

By adding in the missing infinite part of the product this gets simplified.

The ξ function is defined as12

ξ(s) = π−s/2Γ(s/2)ζ(s) = π−s/2Γ(s/2)
∏
p<∞

1
1− p−s , (2.150)

and we can see that if we define ξp(s) = ζp(s) = 1
1−p−s for finite primes and ξ∞(s) =

π−s/2Γ(s/2) we have
ξ(s) =

∏
p≤∞

ξp(s). (2.151)

This function is actually a simple Adelic integral,

ξ(s) =
∫
A
γ(x)|x|s−1 dx, (2.152)

where γ(x) = e−πx
2 ×

∏
p<∞ γp(x).

This function will turn out to appear quite frequently in the context of automorphic
forms, and it appears quite naturally as the integrals of norms.

12The exact normalisation varies. Sometimes ξ is written with a factor of s(1 − s) in front, which
satisfies the same functional relation.
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2.4 Adelic and p-adic Lie Groups

Now that we have discussed Lie-groups and the Adeles we are ready to discuss Adelic
Lie-groups. The generalisations are in most cases obvious, we just replace the entries
which were real or complex numbers by p-adic or Adelic numbers.

One thing that changes is that in the p-adic context the exponential exp is changed,
because the series no longer converges sufficiently; 1

n! is a large p-adic number. This is
not something we will be worried about, because we never evaluate the exponential in
this way. The definition of the Lie bracket is unchanged despite this.

The most important thing that changes is that the maximal compact subgroup K(Qp)
is not the orthogonal one generated by Eα − E−α, but rather we have that since Zp is
compact, K(G(Qp)) = G(Zp). The Iwazawa-decomposition is still somewhat valid with
this change, we have that any element g ∈ G(Qp) can be written as

g = nak, (2.153)

with n ∈ N(Qp), a ∈ A(Qp) and k ∈ G(Zp). This decomposition is not unique like in the
real case. The obvious problem is that b = na is only determined up to multiplication
by B(Zp) on the right. Thus we have to be careful when we use it. We must ensure that
our results do not depend on the choice of decomposition.

A generic element g ∈ G(A) can be written as

g = (g∞, g2, g3, · · · ), (2.154)

with gp ∈ G(Qp).

There is an integration measure on N(A). The measure dn is the Haar measure of the
group N(A), which for all g ∈ N(A) satisfies d(gn) = dn and is normalised so that∫

N(Q)\N(A)

dn = 1. (2.155)

2.4.1 Multiplicative Characters on A(A)

We will be interested in multiplicative characters χ : A(A) −→ C such that we can
extend them to functions χG : G(A) −→ C through

χ(a) = χG(a) = χG(nak) (2.156)

in a well-defined way as a function on the entirety of G(A). As we stated before we have
to be careful here, and must have that χ is trivial on A(Q).
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However, notice that any Cartan generator is part of an SL(2,A) subgroup. For SL(2,A)
we know that A(Zp) = A(Z∗p) since for a ∈ A(A) we have

a =

h 0
0 1

h

 . (2.157)

If h 6∈ Z∗p only one of these entries can be in Zp. Thus the entries of a are well defined
up to their norm, so as long as χ only depends on the norm of the entries everything is
fine.

Now we will define our characters χ in terms of a choice of root s. For any root α

χ(hα(x)) = |hα(x)|s = |x|〈s|α〉. (2.158)

Any such character χ can be written in this form, and we extend the function | · |s as a
character χG in the way described above. This is the notation we will use throughout.

2.4.2 Unitary Characters On N(A)

We introduce now the concept of a unitary character on N(A).

ψ : N(A) −→ U(1), (2.159)

which for n,n′ ∈ N(A) satisfies

ψ(nn′) = ψ(n)ψ(n′). (2.160)

This can be achieved by considering first a unitary character from the Adeles, ψmA :
A −→ C with

ψmA(x) = e2πim∞x∞ ×
∏
p<∞

e−2πi[mpxp]p , (2.161)

Then we just take
ψ(xα(u)) = ψA(u), (2.162)

with a new possible choice of m for each root. The reason for the sign change is that
we want to have ψmA(x) to be trivial on Q for m ∈ Q. This follows because we then get
something of the form mx∞−

∑
p[mxp]p, which we established in Section 2.2.5 is always

an integer.

Note that such a character ψ cannot actually depend on the entire subgroup N(A), only
the parts of N(A) defined by the simple roots. Consider such a ψ acting on a general
element of [N(A),N(A)]. Such ah element can be written as xyx−1y−1 for some x and
y in N(A). Then

ψ(xyx−1y−1) = ψ(x)ψ(y)ψ(x−1)ψ(y−1) = ψ(xx−1)ψ(yy−1) = 1. (2.163)
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where we have used that ψ(·) ∈ U(1) is Abelian. This means that ψ should be taken to
be trivial on [N(A),N(A)]13.

We will almost never write out the dependence on the modenumber m explicitly, and
instead reserve that position for the notation

ψa(n) = ψ(ana−1), (2.164)

where a is some element of A(A). We know from Equation (2.49) that ana−1 is actually
in N(A), so this is fine.

13It is also possible to consider characters that are not defined on the entirety of N , in which case
it might be impossible to break ψ(xyx−1y−1) into factors. This results in the so-called non-Abelian
Whittaker coefficients, and are necessary if you want to consider the dependence on the entire group.
We will not consider these.
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3
Automorphic Forms In String

Theory

We will now be looking at an extended introductory example. This will allow us to show
a bit more concretely how automorphic forms appear in string theory, as well as provide
context for some of the concepts we have just introduced. It will also serve as a primer
for what we will do in the coming chapter.

First we will look at how automorphic forms arise in type IIB string theory, and then we
will work through an example on the corrections to gravity that arise from interactions,
and determine the corresponding automorphic form.

3.1 Gravity Corrections in Type IIB String Theory

In string theory one considers the dynamics of one-dimensional objects called strings. In
the non-quantum picture these can be thought of as curves moving through space, and
they can be either open or closed. As they move they trace out a surface in space-time,
the so-called world-sheet. String theory can more accurately be described as the theory
of these world-sheets. Just like particle physics can be thought of as the study of the
trajectories of particles, the world lines.

Consider first a classical string with no quantum mechanical behaviour moving in flat
Minkowski spacetime. In order to do anything we first need to parametrise our world
sheet in a D-dimensional space-time. Let σ and τ be two parameters (σ can be thought
of as an angle around the string while τ can be thought of as time). Then our surface
can be parametrised by D functions Xµ(τ,σ) where µ = 1,2, · · ·D.
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The dynamics of the world-sheets are then defined in terms of an action. The possible
world-sheets are those that extremise the action. The simplest example of this is taking
the action to be the world-sheet area in space-time. This is not quite the area of normal
Euclidian space, but it is an equivalent to the fact that particles have an action given by
their proper time; a particle with a given momentum will always travel along a straight
line, since these are the shortest possible curves connecting two points in space-time.

Since the parameters σ and τ are completely arbitrary nothing physically real depends
on our choice of parametrisation. We should also be free to change the parametrisation
of space-time, since this too is arbitrary. This results in an extremely large symmetry-
group consisting of all possible changes of variable on the world sheet and on space-time.
In the end this results in string theory being conformally invariant.

Within a string theory there is a set number of scalar particles. These parametrise
the so-called moduli-space. The quantum corrections in the theory will be related to
automorphic forms on the moduli-space.

We will be looking at type IIB string theory. This is a chiral super-symmetric string
theory with only closed strings. In order for the theory to be super-symmetric it must
contain anti-commuting variables ψµα(τ,σ) on the world-sheet, in addition to the world-
sheet coordinates Xµ(τ,σ). That the theory is super-symmetric then says that we can
rotate ψµα and Xµ coordinates in a particular fashion.

It can be shown that the moduli-space (which we recall is the space spanned by the scalars
of the theory) of a maximally supersymmetric string theory is always a symmetric space
of the form M = G(R)/K(G(R)), where G(R) is some Lie group and K(G(R)) is its
maximally compact subgroup [8].

All super-symmetric string theories demand that the number of space-time dimensions
is 10, because it is not possible to have a representation of the Lorentz group acting on
quantum super-strings unless the number of dimensions is 10. (For Bosonic strings the
number of dimensions has to be 26.)

We can reduce this by assuming that space-time is a manifold of the form Rd × T10−d
for some number of dimensions d, where Tn is an n-dimensional torus. Then we can
expand our fields in terms of the size of the torii, and keep only the constant term. The
part of the integral defining the action on these torii can be evaluated and we get a new,
lower-dimensional action.

When reducing the number of dimensions we introduce new scalars in the theory, because
a scalar is something that does not transform under coordinate transformations, and
with a lower number of dimensions there are fewer transformation. The torii are nice
in that they preserve the maximal supersymmetry, so the moduli space must still be a
symmetric space. This means that while we reduce the number of space-time symmetries,
we increase the moduli-space ones.

We are going to be looking at the corrections of the uncompactified type IIB string
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D G K G(Z)
10 SL(2,R) SO(2) SL(2,Z)
9 SL(2,R)×O(1, 1) SO(2) SL(2,Z)× Z2

8 SL(3,R)× SL(2,R) SO(3)× SO(2) SL(3,Z)× SL(2,Z)
7 SL(5,R) SO(5) SL(5,Z)
6 Spin(5, 5,R) Spin(5)2/Z2 Spin(5, 5,Z)
5 E6(R) USp(8)/Z2 E6(Z)
4 E7(R) SU(8)/Z2 E7(Z)
3 E8(R) Spin(16)/Z2 E8(Z)

Table 3.1: Moduli spaces of compactifications of type IIB string theory, and their corre-
sponding compact and discrete subgroups of dualities. The discrete subgroups enter the
picture through the fact that they correspond to charge conservation, so the theory retains
an unbroken discrete symmetry [9].

theory. In type IIB string theory we start withM = SL(2,R)/ SO(2) in ten dimensions,
and reducing the number of dimensions one finds the compactified moduli-spaces in
Table 3.1. There we have also written down discrete subgroups G(Z), which will be
relevant in a bit.

If we do a series expansion in the two perturbative parameters α′ (related to the funda-
mental length of a piece of string) and gs (the coupling constant between the strings) we
find that to lowest order the theory is described by an effective action which reproduces
Einstein gravity in 10 dimensions, and additional terms for the other fields in the theory.
This comes from the conformal symmetry still present on the world-sheet. Explicitly
the lowest order effective action is given by

S = 1
α′4

∫ √
Ge−2φ

[
R+ · · ·

]
d10x. (3.1)

Here the subscript on S indicates lowest order in both α′ and gs.
√
G is the square root

of the determinant of the metric, which makes the action conformal in space-time. R is
the Ricci scalar defined as a contraction of the Riemann-tensor, which is a combination
of derivatives of the metric. φ is the dilaton field, which in a way determines the strength
of the coupling between the strings. The elipsis contains things such as the two scalar
fields φ and χ and any p-forms the theory contains, but we are not interested in these.

We see that S is very similar to the Einstein-Hilbert action which results in Einstein
gravity. By rescaling the metric we obtain

SEH = 1
α′4

∫ √
G

[
R+ · · ·

]
d10x, (3.2)
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which is just the Einstein-Hilbert action and is manifestly (at least in the terms we show)
invariant under SL(2,R). This holds also for the rest of the fields [8].

In the classical theory we would get general relativity out of this action. However, we
have to add quantum corrections to this. The next-to-lowest order in α′ is the third
order action,

S′ = 1
α′4

∫ √
Ge−2φ

[
R+ α′3R4 + · · ·

]
d10x. (3.3)

The quantity R4 is a specific scalar constructed out of the Riemann-tensor. Its exact
form is not important. So far we have not looked at corrections from gs, these should in
principle appear as an expansion on the R4 term and be of the form

S′′ = 1
α′4

∫ √
Ge−2φ

[
R+ α′3

∞∑
g=0

cge
2(g−1)φR4 + · · ·

]
d10x, (3.4)

where g denotes the genus of the world-sheet, the ”number of loops” and therefore the
number of factors gs. These are difficult to compute. For more details see [10].

In the classical type IIB theory in 10 dimensions, the part of the action containing gravity
is invariant under the entirety of SL(2,R), as we’ve mentioned. This is spontaneously
broken in the quantum theory by the corrections. However due to charge conservation
we retain the discrete SL(2,Z) symmetry. This is a general phenomenon, and this is
where the discrete subgroups in Table 3.1 enter the picture.

This means that the full correction must be a function on SL(2,Z)\SL(2,R)/SO(2),
rather than SL(2,R)/ SO(2). We can avoid having to calculate all the different pertur-
bative contributions for different genus, by instead packing them into one function: A
unique automorphic form on SL(2,Z)\SL(2,R)/SO(2). This has the distinct advantage
that it also captures any non-perturbative contributions.

Instead of writing out a series we can write the action as

S′′ = 1
α′4

∫ √
Ge−2φ

[
R+ α′3f(τ)R4 + · · ·

]
d10x, (3.5)

where f(τ) is a function which is invariant under SL(2,Z) Möbius transformations on the
complex scalar axio-dilaton field τ = χ+ ie−φ, consisting of the real scalar axion field χ
and dilaton field φ. (Recall that SL(2,R) had an action through Möbius transformation
on the upper half-plane.)

From super-symmetry arguments one can further derive (see [11, 12]) that the function
f must be an eigenfunction of the Laplacian on SL(2,R)/SO(2) with eigenvalue 3/4:

∆f(g) = y2(∂2
x + ∂2

y)f = 3
4f(g), (3.6)

where x and y are defined in the parametrisation g(i) = x+ iy. This parametrisation is
not suitable for string theory, but makes the math easier. We will get back to interpreting
this later.
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So what do we know?

• The function we are after should be a function from the symmetric space SL(2,R)/ SO(2)
into the complex numbers.

• From dualities coming from charge conservation we know that the function we are
after should be invariant under the discrete subgroup SL(2,Z).

• From supersymmetry we know that the function satisfies an analytical constraint,
it is an eigenfunction to the Laplacian on SL(2,R)/ SO(2).

• Due to physicality considerations the function must also satisfy certain growth
conditions. For instance, when the coupling tends to zero we should get back
approximately the lowest order corrections.

As we shall see, these conditions are exactly the conditions we will put on an automorphic
form. This automorphic form is unique up to normalisation, so now we only have to find
one such nontrivial function [1].

This generalises to other corrections where the moduli space is a different symmetric
space. So in principle all automorphic forms corresponding to entries in Table 3.1 are
interesting. SL(3,R) does not appear on its own, but it is the simplest non-trivial
extension of SL(2,R).

The discussion here above is closely mirrored by Chapter 8 of D. Perssons PhD thesis
[13], albeit with more details.

3.2 Constructing the Automorphic Form

Now to actually find the automorphic form. First of all, since we know from before that
SL(2,R)/ SO(2) is topologically the same as the upper half plane we can introduce z =
g(i) and work in terms of that, with SL(2,R) acting through Möbius transformations.
We start by finding eigenfunctions to the Laplacian ∆ which do not depend on x. This
gives us the family of solutions

χs(z) = ys = Im(z)s. (3.7)

This is however obviously not invariant under the entirety of SL(2,Z) on the left, so we
form what is known as the (formal) Eisenstein series

E(z,s) =
∑

γ∈SL(2,Z)
χs(γz), (3.8)

with z = g(i). However, χs already has some invariances. Recalling equation (2.30) we
have

χs
((
a b
c d

)
z
)

= Im(z)s

|cz + d|2s
. (3.9)
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For c = 0, d = 1 nothing changes so we have invariance. This forces a = 1 from
the determinant condition. This translates to invariance under the subgroup N(Z) =
{( 1 n

0 1 ) : n ∈ Z}, the subgroup of unit upper triangular matrices, which is the same as
real translations.

In our Eisenstein series we should therefore only include these terms once. This means
we have to divide away all of these elements, which results in

E(z,s) =
∑

γ∈N(Z)\SL(2,Z)
Im(γz)s. (3.10)

This takes care of all infinite symmetries, there is also the case c = 0, a = −1, d = −1,
but this is only a finite contribution so it is fine. This will only change the overall
normalisation by a factor of 2.

Now we will need to figure out how to describe a general element in the cosetN(Z)\ SL(2,Z).
Any element in the coset can be written as

N(Z)
(
a b
c d

)
=
{(

1 ξ
0 1

)(
a b
c d

)
=
(
a+cξ b+dξ
c d.

)
: ξ ∈ Z,

}
, (3.11)

with ad−bc = 1. It is clear that any choice of c and d results in a unique coset, but what
we can do with a and b is less obvious. It turns out that a and b provide no information.
Let us prove this.

There is a result in number theory known as Bêzout’s identity which states that over
the integers we have

ax+ by ∝ gcd(a,b). (3.12)

For us this implies that gcd(c,d) = 1, through the condition on the determinant. So c
and d must be coprime (this also applies to a and b, obviously). Further, the possible
solutions of a and b are all of the form

a = a0 + ξ · c, b = b0 + ξ · d, (3.13)

where a0 and b0 is some solution and ξ is an arbitrary integer. This means for any choice
of c and d there is only one choice of a and b, up to multiplication by an element in
N(Z) [1, 14].

Thus each coset is uniquely defined by a pair of coprime integers, c and d, and there is
a solution for each coprime c and d. Thus we find

E(z,s) =
∑

gcd(c,d)=1

ys

|cz + d|2s
. (3.14)

Summing over coprime integers is hard. Instead we define the similar function:

E(z,s) =
∑

(m,n)∈Z2

ys

|mz + n|2s
. (3.15)
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Terms that obviously do not work, (m,n) = (0,0), are excluded. Now we show that this
is proportional to E(z,s).

We make the substitutione m = kc and n = kd, where we take k = gcd(m,n). This
makes c and d coprime. Such a factorisation is clearly unique, and any choice of k, c and
d yields a valid choice of m and n. Doing this substitution we get

E(z,s) =
∞∑
k=1

1
k2s

∑
gcd(c,d)=1

ys

|cz + d|2s
= ζ(2s)E(z,s), (3.16)

where we have used the definition of the Riemann-ζ function.

Thus these two functions are equal modulo a constant factor, and therefore E(z,s) is
also an automorphic form, and is also proportional to the function f we were originally
after. We will not distinguish between them, as our discussion will not care about the
normalisation.

Evaluating the Sum

Now we want to write this function in a more useful form. The end goal is to find a
Fourier expansion of the function, but for now we start by evaluating the sums.

We have

E(z,s) =
∑
m,n

ys

|mz + n|2s
= ys

∑
n

1
|n|2s

+ ys
∑
m 6=0

∑
n

1
|mz + n|2s

. (3.17)

The first sum in n is easy since it is again just a ζ function

E(z,s) = 2ysζ(2s) + ys
∑
m 6=0

∑
n

1
|mz + n|2s

. (3.18)

To simplify the remaining sum we will use a trick. Using the definition of the Γ function
we have

Γ(s) =
∫ ∞

0
e−xxs

dx
x

=
[
x = ξ/t

]
= ξs

∫ ∞
0

e−
ξ
t

ts+1 dt (3.19)
so

1
ξs

= 1
Γ(s)

∫ ∞
0

e− ξt
ts+1 dt. (3.20)

Taking ξ = π|mz + n|2 (the extra π will be convenient in a bit) we get

∑
n

1
|mz + n|2s

=
∑
n

πs

Γ(s)

∫ ∞
0

e−
π
t
|mz+n|2

ts+1 (3.21)

= πs

Γ(s)

∫ ∞
0

dt e
−πy

2m2
t

ts+1

∑
n

e−
π
t

(mx+n)2 (3.22)

43



CHAPTER 3. AUTOMORPHIC FORMS IN STRING THEORY

The last sum in n we will simplify using Poisson re-summation.
Theorem 3.1 (Poisson Re-summation). Let f :→ C be a Schwarz function. Then∑

n∈Z
f(n) =

∑
k∈Z

f̂(k), (3.23)

where f̂ is the Fourier transform of f .

We can use this on f(n) = exp(−π
t (mx + n)2), for which the Fourier transform is

f̂(k) =
√
t exp(−πk2t + 2πikmx). It is here that the previous mysterious π is handy:

We now get something which has period 1 in x.

At this point we have

E(z,s) = 2ysζ(2s) + ysπs

Γ(s)
∑
m6=0

∑
k

e2πikmx
∫ ∞

0
dt e

−πy
2m2
t
−πk2t

ts+1/2 . (3.24)

For the final two sums the integral will evaluate to different things when k is zero and
when it is nonzero. For k = 0 we get, when Re s > 1/2,

∫ ∞
0

dt e
−πm

2
t

ts+1/2 = 1
(πm2y2)s−1/2 Γ(s− 1/2) (3.25)

and when k 6= 0 we get

∫ ∞
0

dt e
−πm

2
t
−πk2t

ts+1/2 = 2
∣∣∣∣ kmy

∣∣∣∣s−1/2
Ks−1/2(2π|km|y), (3.26)

where Kν is the modified Bessel function of the second kind.

Putting this together we have that

E(z,s) =2ysζ(2s) + πsys

Γ(s)
Γ(s− 1/2)
πs−1/2y2s−1

∑
m6=0

1
m2s−1 +

πsys

Γ(s)
2

ys−1/2

∑
k 6=0,m 6=0

∣∣∣∣ km
∣∣∣∣s−1/2

Ks−1/2(2π|km|y)e2πikmx, (3.27)

and consequently

E(z,s) =2ysζ(2s) + 2ζ(2s− 1)Γ(s− 1/2)
Γ(s)

√
πy1−s+

2πs√y
Γ(s)

∑
k 6=0,m 6=0

∣∣∣∣ km
∣∣∣∣s−1/2

Ks−1/2(2π|km|y)e2πikmx. (3.28)
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Now we want to change variable to n = km, and sum over n and m instead of k and m.
For a given n we must have that m is a divisor of n, which we denote m|n, so that k is
an integer. Thus

∑
k 6=0,m 6=0

∣∣∣∣ km
∣∣∣∣s−1/2

Ks−1/2(2π|km|y)e2πikmx

=
∑

n 6=0,m>0:m|n

∣∣∣∣ nm2

∣∣∣∣s−1/2
Ks−1/2(2π|n|y)e2πinx (3.29)

=
∑
n 6=0
|n|s−1/22µ1−2s(n)Ks−1/2(2π|n|y)e2πinx,

where we have defined
µs(n) =

∑
m|n,m>0

ms. (3.30)

This is the so-called divisor sum, or the instanton-measure, depending on if you are in a
mathematics or physics context, respectively [1]. We will talk about how this is related
to instantons in a little bit.

The final answer is thus

E(z,s) =2ζ(2s)ys + 2ζ(2s− 1)Γ(s− 1/2)
Γ(s)

√
πy1−s+

+
4πs√y
Γ(s)

∑
n6=0
|n|s−1/2µ1−2s(n)Ks−1/2(2π|n|y)e2πinx. (3.31)

If we normalise this by dividing it by a factor of 2ζ(2s) and using the fact that the
Riemann-ξ is ξ(s) = ζ(s)π−s/2Γ(s/2) we have

E(z,s) = ys + ξ(2s− 1)
ξ(2s) y1−s +

2√y
ξ(2s)

∑
n6=0
|n|s−1/2µ1−2s(n)Ks−1/2(2π|n|y)e2πinx. (3.32)

Getting here was quite the mouthful. We had several difficult steps, which would prob-
ably only get worse if we tried to do the same thing for more complicated Lie groups.
Perhaps the most complicated part of the calculation was that we had to find the struc-
ture of SL(2,Z)\ SL(2,R). This involved non-trivial results from number theory. Then
we actually had to evaluate the non-trivial sum, and used several tricks on the way.

We will redo this calculation later, but at that point we will consider the Adelic group
SL(2,A) instead. This means we can skip most of the above complications. In particular,
we will not have to know anything about SL(2,Z)\ SL(2,R), because we will be able to
trade it for the finite Weyl group.

45



CHAPTER 3. AUTOMORPHIC FORMS IN STRING THEORY

3.2.1 Interpretation

Now that we know the automorphic form on SL(2,Z)\ SL(2,R)/ SO(2) we can think
about what it means in string theory. We have two real scalar fields in the theory; the
axion field χ, and the dilaton field φ. These parametrise our moduli space through the
complex axio-dilaton field

τ = χ+ ie−φ. (3.33)

In this parametrisation we have that e〈φ〉 = gs can roughly be interpreted as the coupling
strength between the strings [13].

This means that in terms of fields we have (noting that s = 3/2 leads to the desired
eigenvalue 3/4)

f(τ,3/2) = g−3/2
s + ξ(2)

ξ(3)g
1/2
s + 2g−1/2

s

ξ(3)
∑
n6=0
|n|µ−2(n)K1(2π|n| 1

gs
)e2πinχ. (3.34)

This is not necessarily normalised in the correct way, but we will ignore that.

Consider weak coupling, when gs � 1. The only nontrivial function we have to expand
is K1, which has an asymptotic behaviour

K1(x) =
√
π

2xe
−x(1 +O(1/x)). (3.35)

Thus

f(τ,3/2) = g−3/2
s + ξ(2)

ξ(3)g
1/2
s + 2g−1/2

s

ξ(3)
∑
n6=0
|n|µ−2(n)

√
πgs

4π|n|e
2π
(
−|n| 1

gs
+inχ

)
(1 +O(gs)).

(3.36)

We note that the sum contains a factor of e−2π|n| 1
gs which is not perturbative; its series

expansion does not just contain positive powers of gs.

If we define the instanton fields

S(n) = −2πi|n|τ = −2πi|n|(χ+ ie−φ), (3.37)

where n denotes the charge of the instanton, we can rewrite our sum as

f(τ,3/2) =
(
· · ·
)

+ 1
ξ(3)

∞∑
n=1

√
|n|µ−2(n)

(
e−S(n) + e−S(n)†

)
(1 +O(gs)) , (3.38)

where S(n)† = 2πi|n|(χ− ie−φ) is the anti-instanton with charge n.

Here we see that µs(n) is in some way related to the size of the contribution from the
instantons, hence the name. To see why, we have to understand what the charge n is for
an instanton. The charge is given by the product of the wrapping number m and the
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rotational wave-number k. The wrapping number counts how many loops the string has,
while the rotational wave-number counts how fast the string is spinning around itself.
The total number of different possible configurations of instantons with a given charge
n is then related to the number of ways the charge can be factorised into n = mk. The
instanton measure is thus a measure of how many such instanton configurations there
are for a given charge n [13, 15].

3.2.2 Alternative Forms of the Instanton Measure

Now we are going to look at an alternative way of writing the instanton measure. This
will reveal to us how the prime numbers enter into this.

We have defined
µs(n) =

∑
d|n,d>0

ds. (3.39)

This function is actually multiplicative as long as the arguments are coprime. To see
this, suppose that n = km, where gcd(k,m) = 1. Then

µs(km) =
∑

d|km,d>0
ds. (3.40)

Since the two variables are co-prime any such d can be written uniquely as d = dkdm,
where dk is a divisor of k and dm is a divisor of m. Furthermore any choice of dk and
dm results in a valid divisor of km. Thus we can sum over dk and dm instead. This nets
us

µs(km) =
∑

dk|k,dm|m,dk,dm>0
(dkdm)s =

∑
dk|k,dk>0

dsk
∑

dm|m,dm>0
dsm = µs(k)µs(m). (3.41)

Now it suffices to evaluate µs at powers of primes. We have

µs(pν) = 1 + ps + p2s + · · ·+ pνs = 1− p−s(ν+1)

1− ps . (3.42)

If we write n =
∏
p<∞ p

νp(n) we get

µs(n) =
∏
p<∞

µs(pνp) =
∏
p<∞

1− |pn|sp
1− ps . (3.43)

This form of the instanton measure is the one we will see later when we do the Adelic
treatment.

The factors in the Euler product for µs(n) look very similar to the characters of repre-
sentations of SL(2,R),

chλ(h(a)) = |a|λ 1− |a|−2λ−2

1− |a|−2 . (3.44)
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If we take a = p−s and λ = ν(m) we get

chνp(m)(h(p−s)) = |m|−sp
1− |pm|2sp

1− p2s . (3.45)

This means that we can write

µ1−2s(n) = |n|1/2−s∞
∏
p<∞

chνp(n)(h(p−(1/2−s))), (3.46)

where we have used that for rational numbers 1/|n|∞ =
∏
p<∞ |n|p (this follows from the

fact that the total Adelic norm is 1). Therefore the instanton measure is related to the
characters of representations of SL(2,R), and the representations that are represented
depends on the prime factorisation of n.

The fact that the instanton measure, which as we will see later is the part of the Fourier-
expansion that comes from the p-adics, can be written as a product of characters over
representations is a general phenomenon. The Casselman-Shalika formula, which we will
look at later, can be put in this form [16].
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4
Automorphic Forms

We are often interested not just in the Lie groups, but also functions on the Lie group. In
particular, we are typically interested in functions that behave nicely with respect to the
group multiplication. One particular class of functions we are interested in is the so-called
automorphic forms. In essence, automorphic forms are well-behaved eigenfunctions to
some second order differential equation, has a discrete symmetry of some kind and plays
nicely with the Lie group.

In this chapter we are going to introduce the notion of an automorphic form and show
how one can construct some of them using Eisenstein series. This will be similar to what
we just did for SL(2,R) in the previous chapter.

Then we are going to introduce the Fourier-Whittaker coefficients, which will be the
corresponding notion of (some of the) terms in the Fourier-series expansion of the Eisen-
stein series. We will not be looking at all possible Fourier-coefficients, only those which
depend on the subgroup N(A). In general one has to consider all unipotent subgroups
of G(A).

We will then simplify the integrals defining the Fourier-Whittaker coefficient and turn
them into a more useful form. We will then see that they actually turn into integrals
over each prime separately, which is quite remarkable and won’t be obvious from the
start.

The last thing we will do is to derive some general formulas for the Fourier-Whittaker
coefficients; Langlands constant term formula, which is the part of the Fourier series
containing the constant term, when all modenumbers are 0; and the Casselman-Shalika
formula which deals with the case when all modenumbers are 1. In particular the proof
of Langlands formula will be important in the next chapter.

To get these we will need to find the Fourier-Whittaker coefficients of SL(2,A) manually,
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so we will also do that calculation.

4.1 Automorphic Forms and Eisenstein Series

An automorpic form f is a smooth function from a Lie group G into the complex num-
bers, that satisfies (the somewhat vague conditions)

• There is some discrete subgroup Γ of G where we have for γ ∈ Γ, g ∈ G that
f(γg) = a(γ)f(g), where a(γ) is some fixed function,

• it is an eigenfunction of some invariant operators on G,

• and it does not explode into infinities in some nasty way. (This can be restrictions
on growth or the size of some spaces.)

The exact criteria vary depending on application and setting [1].

In this thesis, we will only consider automorphic forms on an Adelic Lie group G(A)
that are smooth functions φ : G(A) −→ C and satisfy:

• For any γ ∈ G(Q) and g ∈ G(A) we have φ(γg) = φ(g).

• For any k ∈ K(G(A)) and g ∈ G(A) we have φ(gk) = φ(g), where K(G(A)) is the
maximal compact subgroup.

• It is an eigenfunction to some G(A)-invariant second order differential operators
on G(A).

• We have that for any norm ‖ · ‖ on G(A) there are constants C and n such that
for all g ∈ G(A) |φ(g)| ≤ C‖g‖n.

These conditions can be translated right into the real or p-adic case, with some minor
changes such as a new discrete subgroup.

Now on how to actually construct an automorphic form. One way, and the method we
will consider, is to create an Eisenstein series.

Suppose you are able to find a function f : A(A)→ C which is an eigenfunction to your
differential operator and which is multiplicative. Then it can be extended to a character
on the entire group as we did in Section 2.4.1 and thus have for any a ∈ A(A)

f(a) = |a|s (4.1)

for some choice of root s. This is already invariant on A(Q) by construction, since the
Adelic norm of any rational number is 1. To make it invariant on the entirety of G(Q)
we form the Eisenstein series as the sum of the orbit over G(Q)

E(g,s) =
∑

γ∈B(Q)\G(Q)
|γg|s. (4.2)
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Where this converges absolutely it is an automorphic form. It is still a solution to our
G(A)-invariant differential operator, since we can then evaluate this operator term by
term. It is also by construction invariant under G(Q) on the left. We will not show that
it satisfies the growth condition, but it does [1, 17].

We will also not show where this series converges, however it is known due to Godement
[18, 19] that the Eisenstein series converges on the so-called Godements domain for
sufficiently ”large” s, in particular s > ρ (component-wise). Furthermore, if we consider
s to be in the complexification of h∗ it is known due to Langlands [17] that the Eisenstein
series above can be extended by analytic continuation to a holomorphic function on the
entire complexified rootspace, except at a few isolated poles. This follows from the
possibility of deriving a functional relation for the Eisenstein series, which we will not
do.

The reason we take the quotient with B(Q) is that | · |s is already invariant under B(Q)
on the left. Since this is an infinitely large group we would get an infinite number of
terms with the same value, one for each element in B(Q). This would diverge. Therefore
we only consider terms which are different with respect to B(Q).

What we are really after in the end is the real Eisenstein series

ER(g,s) =
∑

γ∈B(Z)\G(R)
|γg|s. (4.3)

Naively one would say that the group G(Q) clearly contains the subgroup G(Z), so when
we restrict to the real case by only varying g∞ we get something that is invariant under
G(Z). There is one hangup, however. The subgroup G(Z) ⊂ G(A) is not the same thing
as the subgroup G(Z) ⊂ G(R). The former is made up by the Adelic groups of the form
(g,g,g, · · · ), with g ∈ G(Z), while the latter is of the form (g,1,1, · · · ). However, one can
show that there is a bijection between our definition of the Eisenstein series for real g
and the real Eisenstein series

E∞(g,s) =
∑

γ∈B(Z)\G(Z)
|γg|s. (4.4)

Thus the restriction to the real case still gives us what we want [1].

4.2 Fourier-Whittaker Coefficients

Given an Eisenstein series E (and thus implicitly a choice of root) on a group G(A) we
have that the Eisenstein series is invariant under G(Q), which in particular means that
it is invariant under N(Q). Thus, E is periodic in N(A) with ”period” N(Q)\N(A),
and can be expanded in a Fourier series.
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We define the Fourier-Whittaker coefficient with respect to the unitary character ψ :
N(A) −→ U(1) as

W ◦ψ(g,s) =
∫

N(Q)\N(A)

E(ng,s)ψ(n) dn. (4.5)

The circle is there to illustrate that this is a spherical coefficient, that is, it is invariant
under K on the right. Since E is invariant on N(Q) ψ also has to be invariant under
the change of variables n 7→ N(Q)n. As we have seen in Section 2.4.2 this means that
the mode-numbers in ψ all have to be rational numbers.

The Whittaker-coefficient can be thought of as the normal Fourier-series coefficient, but
with the mode baked in. Just like for a normal Fourier series we can restore the original
function by summing over the Fourier-modes, however there are some details involved
that we will not cover. We have considered only unitary characters defined on N(A),
while we have to consider unitary characters defined on arbitrary unipotent subgroups
in order to get the full Fourier-series. We have

E(g,s) =
∑
ψ

W ◦ψ(g,s) + · · · , (4.6)

where the terms in · · · contain Fourier-coefficients for unipotent subgroups of G(A) other
than N(A), such as [N(A),N(A)] [1].

Expanding the sum in E we get

W ◦ψ(s,g) =
∫

N(Q)\N(A)

∑
γ∈B(Q)\G(Q)

|γng|sψ(n) dn. (4.7)

We are now going to spend quite some time massaging the Fourier-Whittaker coefficient
into something much simpler, which results in the following proposition.
Proposition 4.1. The Fourier-Whittaker coefficients can be written as

W ◦ψ(s,nak) = ψ(n)
∑

w∈Wψ

|a|w−1(s−ρ)+ρ ∏
p≤∞

Iw,ψ,p(s,a), (4.8)

where
Iw,ψ,p(s,a) =

∫
Nw−(Qp)

|wn|spψ
ap
p (n) dn (4.9)

and Nw± are the set of elements in N generated by the positive roots that get mapped by
w to positive roots and negative roots, respectively. Wψ is the subset of W such that ψ
is trivial on Nw+.

The truly remarkable thing here is that the Fourier-Whittaker coefficient factorises into
local integrals. This is a highly non-trivial statement, since both E and the integration
domain can not be written as local products. It is only their combination which can be
written as a product.
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This proposition says that if ψ is nontrivial on a set of positive roots, the Whittaker
coefficient is a sum over the Weyl words which map all of these positive roots to negative
numbers.

There are two important special cases of this. When ψ is trivial we get the so-called
constant term (which is often treated separately). In this case ψ is trivial on all Nw+,
so the sum ranges over all Weyl words.
Corollary 4.2. The constant term corresponding to the trivial character ψ = 1 is given
by

W ◦1 (s,nak) =
∑
w∈W

|a|w−1(s−ρ)+ρ
∫
Nw−(Qp)

|wn|sp dn. (4.10)

When ψ is generic, which we recall means that it is not trivial on any root generator,
we get a contribution only from the word which maps all positive roots to negative ones.
This is only done by the longest Weyl word.
Corollary 4.3. The Fourier-Whittaker coefficient for a generic character ψ is given by

W ◦ψ(s,nak) = ψ(n)|a|w0

∫
N(Qp)

|w0n|spψapp (n) dn, (4.11)

where w0 is the longest Weyl word.

For other characters one can simplify further, but we will not need this so we will cut
the calculation short [1].

The rest of this section will be dedicated to proving Proposition 4.1

4.2.1 Rewriting As A Sum Over The Weyl Group

The first step is to get in a sum over the full Weyl group. To do this we want to use the
Bruhat decomposition, which we introduced in Section 2.1.5, which states that

G(Q) =
⋃
w∈W

B(Q)wB(Q). (4.12)

This will allow us to sum over the Weyl group instead of over cosets of G(Q). This is
where most of the magic happens. All the steps up to now can be done for a real group,
but in the real case the discrete subgroup is G(Z) so we cannot do this decomposition
because the Bruhat decomposition does not hold for G(Z). This is because Z is not a
field, unlike Q [1, 20].

In order to rewrite this as a sum over the Weyl group we need to factorise out B(Q)
also on the right in the sum. Let

γ = αδ (4.13)

where α runs over B(Q)\G(Q)/B(Q). Just thinking naively, we would expect the sum
over δ to run over B(Q), but it is not necessarily the whole B(Q) since that might lead
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to overcounting. Just denote the set of δ by ∆ for now. We have

W ◦ψ(s,g) =
∑

α∈B(Q)G(Q)/B(Q)

∑
δ∈∆

∫
N(Q)\N(A)

|αδng|sψ(n) dn. (4.14)

Then δ and δ′ = α−1B(Q)αδ (of course, granted that this latter element is actually in
B(Q)) yields the same element γ in B(Q)\ SL(2,Q). Thus we need to divide away this
factor α−1B(Q)α, and we have

∆ = α−1B(Q)α ∩B(Q)\B(Q). (4.15)

This gets rid of all extra terms, since this is the only symmetry of | · |s that applies. The
other one would be spherical symmetry on the right, but that has nothing to do with
B(Q) [1].

Now, using the Bruhat decomposition we can identify α with elements of W to get

W ◦ψ(s,g) =
∑
w∈W

∑
w−1B(Q)w∩B(Q)\B(Q)

∫
N(Q)\N(A)

|wδng|sψ(n) dn. (4.16)

What we want to do is change variable from n to δn, but δ potentially lies in the full
Borel subgroup B(Q), not just N(Q), which is the only part of the group where ψ is
defined.

However, since the Cartan torus A(A) is left invariant by the Weyl group, it is clear that
w−1B(Q)w contains the set A(Q), and thus thus we can factorise that away at once,
which yields

w−1B(Q)w ∩B(Q)\B(Q) = w−1N(Q)w ∩N(Q)\N(Q). (4.17)

Now we have that δ lies in N(Q), so we can introduce m = δn. Then the Haar measure
dn is invariant, and ψ is invariant since δ is in N(Q) where ψ is trivial. The domain
of integration changes to δ(N(Q)\N(A)). We can move the sum inside the integration
limit, and simplify the quotient and products, to get

W ◦ψ(s,g) =
∑
w∈W

∫
w−1N(Q)w∩N(Q)\N(A)

|wmg|sψ(m) dm. (4.18)

We can break out the dependence on n to rewrite this as

W ◦ψ(s,nak) = ψ(n)
∑
w∈W

∫
w−1N(Q)w∩N(Q)\N(A)

|wma|sψ(m) dm, (4.19)

which is often more convenient.

We will write this sum as

W ◦ψ(s,g) = ψ(n)
∑
w∈W

Cψ,w(s,a). (4.20)
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4.2.2 Simplifying the Integrals

Now we want to simplify Cψ,w(a). Consider at the coset

wN(Q)w−1 ∩N(Q)\N(A). (4.21)

LetNw± be the subset generated by the positive roots that are mapped to positive/negative
roots, respectively. Then if we split up N(A) = Nw+(A)Nw−(A) only Nw+(A) will be
affected by the quotient with wN(Q)w−1 ∩N(Q). Therefore we have

Cψ,w(s,a) =
∫

Nw+(Q)\Nw+(A)

dn+

∫
Nw−(A)

dn−|wn+n−a|s.ψ(n+n−), (4.22)

This can be split up into two separate integrals using the multiplicative properties (noting
that by construction wn+w

−1 ∈ N(A), where χ is trivial)

Cψ,w(s,a) =
∫

Nw+(Q)\Nw+(A)

ψ(n+) dn+

∫
Nw−(A)

|wn−a|sψ(n−) dn−. (4.23)

Doing the change of variables n+ 7→ n+ + n′, with n′ ∈ Nw+(A) we find that∫
Nw+(Q)\Nw+(A)

ψ(n+) dn+ = ψ(n′)
∫

Nw+(Q)\Nw+(A)

ψ(n+) dn+. (4.24)

This proves that if ψ(n′) is not trivial on the entirety ofNw+(A) the integral must vanish.
If ψ(n+) is trivial the remaining integral is just 1, due to our chosen normalisation. Thus

Cψ,w(s,a) =
∫

Nw−(A)

|wn−a|sψ(n−) dn− (4.25)

when ψ is trivial on Nw+(A), and zero otherwise.

Now we want to isolate the dependence on a. Note that from (2.49) we know that when
bringing through a this induces only a rescaling of the parameters in n−, the size of
which is for the generator of a root α just |a|α. Therefore, we get that

Cψ,w(s,a) = |waw−1|s|a|
∑

wα<0 α
∫

Nw−(A)

|wn−|sψa(n−) dn−. (4.26)

Now we need a small Lemma.
Lemma 4.4. For any Weyl word w∑

α>0:wα<0
α = ρ− w−1ρ. (4.27)
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Proof. We have that by definition of ρ∑
α>0:w−1α>0

α+
∑

α>0:w−1α<0
α = 2ρ. (4.28)

If we act on this with w−1 we get∑
α>0:w−1α>0

w−1α+
∑

α>0:w−1α<0
w−1α = 2w−1ρ. (4.29)

Now, if w−1α = ±α′ for some positive root α′ we clearly have α = ±wα′. Thus if we
change variable in the sums from α 7→ ±wα′ we get∑

wα′>0:α′>0
α′ −

∑
wα′>0:α′<0

α′ = 2w−1ρ. (4.30)

Subtracting the two equations we get the result.

With this we can simplify our integral to

Cψ,w(s,a) = |waw−1|s|a|ρ−w−1ρ
∫

Nw−(A)

|wn−|sψa(n−) dn−. (4.31)

We then have, using that w acting on a is the same thing as wT = w−1 acting directly
on s, that we can simplify this whole thing into

Cψ,w(s,a) = |a|w−1(s−ρ)+ρ
∫

Nw−(A)

|wn−|sψa(n−) dn−. (4.32)

Again, this holds when ψ is trivial on Nw+(A). When ψ is non-trivial the whole thing
will vanish. Notice that everything here can be be factorised so we can write this as

Cψ,w(s,a) = |a|w−1(s−ρ)+ρ ∏
p≤∞

∫
Nw−(Qp)

|wn|spψapp (n) dn. (4.33)

Introducing
Iw,ψ,p(s,a) =

∫
Nw−(Qp)

|wn|spψapp (n) dn (4.34)

Proposition 4.1 now follows, and so this concludes the proof.

4.3 Whittaker coefficients for SL(2,A)

We are now going to calculate the contributions Iw,ψ,p(s,a) for SL(2,A) using the machin-
ery we established in the previous section. This serves two purposes. First of all, it serves
as a good example to see what is actually going on here. Secondly, and perhaps most
importantly, our strategy for deriving the corresponding results in other semi-simple Lie
groups will be to reduce the problem to multiple integrals over SL(2,A) subgroups. Of
primary importance to us will be the following two propositions and their corollaries.
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Proposition 4.5. The integral Iw,ψ,p(s,a) for SL(2,Qp) is for finite primes p given by

∫
Qp

|x−α(u)|(1+〈s−ρ|α〉) α
〈α|α〉 e2πi[mu]p du = γp(m) ξp(〈s− ρ|α〉)

ξp(1 + 〈s− ρ|α〉
(
1− |pm|〈s−ρ|α〉p

)
,

(4.35)
and the result holds also for p =∞ if m = 0.
Remark 4.6. Since the rootspace of SL(2,A) is just 1-dimensional the bilinear form is
just multiplication with an inserted 2. We have therefore s = 〈s|α〉 α

〈α|α〉 and 2s − 1 =
〈s− ρ|α〉.
Corollary 4.7. Performing the product for w = 0 we find∫

A
|x−α(u)|(1+〈s−ρ|α〉) α

〈α|α〉 du = ξ(〈s− ρ|α〉)
ξ(1 + 〈s− ρ|α〉) . (4.36)

Proposition 4.8. For any positive root α and any u ∈ Qp we have the Iwazawa-
decomposition

x−α(u) = xα( 1
ũ)hα( 1

ũ)k. (4.37)

where k ∈ G(Zp).
Corollary 4.9. The above formulas also works for any SL(2,A) subgroup of a larger
group G(A).

Both of these propositions will be proved in the process of finding the Fourier-Whittaker-
coefficients of SL(2,A).

The integrals we are after are

Iψ,w,p(s,ap) =
∫
N−,w−(Qp)

|wn|sψapp (n) dn (4.38)

=
∫
Qp

|x−α(−u)|se±2πi[m|a|αpu]p du, (4.39)

with ψap(xα(u)) = e±2πi[m|ap|αup]p , with the plus for the real prime and minus for the
finite primes.

For SL(2,A) the Weyl group consists of two elements, the identity and the one funda-
mental reflection. For the identity element we find that Nw−(A) is empty, so the result
is just 11.

For the nontrivial Weyl word we have that since the only root is mapped to the negative
one, Nw−(A) = N(A). We have to find the Iwazawa-decomposition of something in
N−(A), and then carry out the integral. This will be different for finite and infinite
primes so we split the problem up in two parts.

1This is not zero, because this case means that the entire integral has been carried out in the integral
over Nw+, which is 1.
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4.3.1 Contribution From the Infinite Prime

First we get the Iwazawa-decomposition, which we can find in the fundamental repre-
sentation. We have

x−α(u) =

1 0
u 1

 . (4.40)

If we multiply by a rotation matrix k =
(

ξ ∓
√

1−ξ2

±
√

1−ξ2 ξ

)
we get

n−k =

 ξ ∗
±
√

1− ξ2 + uξ ∗

 . (4.41)

The two right-most components are irrelevant. Setting the lower left corner to zero gives
us

ξ = ± 1√
1 + u2

, (4.42)

where the sign depends on the sign of u, and is irrelevant. Thus

Iψ,w,∞(s,a∞) =
∫
R

(1 + u2)−se2πima2
∞u du. (4.43)

Remember that the modenumber m has to be a rational number, so it is the same for all
primes (and we neglect to write m∞). Also note that we get an extra factor of 2 from
taking 〈s|α〉 in the definition of | · |s.

For m = 0 this evaluates to

I1,w,∞(s,a∞) =
√
π

Γ(s− 1/2)
Γ(s) = π−(s−1/2)Γ(s− 1/2)

π−sΓ(s) = ξ∞(2s− 1)
ξ∞(2s) . (4.44)

This proves the infinite part of Proposition 4.5. For m 6= 0 the integral evaluates to

Iψ,w,∞(s,a∞) = 2
ξ∞(2s) |m|

s−1/2
∞ |a∞|2s−1

∞ Ks−1/2(2π|ma2
∞|∞), (4.45)

where Ks is a modified Bessel function of the second kind.

4.3.2 Contribution from the Finite Primes

Now we have again that in the fundamental representation

x−α(u) =

1 0
u 1

 . (4.46)
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Here we will find use for the function

ũ =

1 u ∈ Zp,

u u 6∈ Zp.
(4.47)

What we want to do is multiply by an element in B(Qp) so that the result is in K(Qp) =
SL(2,Zp). Because if g = bk then b−1g = k. This product can be writtenv x

0 1/v

1 0
u 1

 =

v + ux x

u/v 1/v

 . (4.48)

Here we see that for example v = ũ and x = −1 is a solution, since we have both u/ũ
and u− ũ in Zp for any choice of u. Taking the inverse of this element in B(A) we find
that an Iwazawa-decomposition is1 0

u 1

 =

1/ũ 1
0 ũ

 k =

1 1/ũ
0 1

1/ũ 0
0 ũ

 k. (4.49)

This proves Proposition 4.8.

This means that what we need is the integral

Iw,ψ,p(s,ap) =
∫
Qp

|ũ|−2s
p e−2πi[ma2

pu] du = F [|ũ|−2s
p ](a2

pm). (4.50)

Once again we get a factor of 2 from taking the inner product. This Fourier transform
has already been found in Proposition 2.5 to be

Iw,ψ,p(s,ap) = γp(a2
pm)(1− p−2s)

1− |pa2
pm|2s−1

p

1− p1−2s (4.51)

= γp(a2
pm) ξp(2s− 1)

ξp(1 + (2s− 1))(1− |pa2
pm|2s−1

p ) (4.52)

This proves Proposition 4.5.

4.3.3 Assembling the Global Formula

With these integrals calculated we can now assemble the full function. The exponent
that appears in the Whittacker coefficient is w(2s − ρ) + ρ which for the trivial Weyl
word 1 is just 2s while for the nontrivial Weyl word −1 it is 2ρ− 2s. Thus we have

W ◦1 (s,( 1 x
0 1 )

(
a 0
0 1/a

)
k) = |a|2s + ξ(2s− 1)

ξ(2s) |a|2−2s (4.53)
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and

W ◦ψ(s,( 1 x
0 1 )

(
a 0
0 1/a

)
k) = |a|2−2s|a|2s−1

∞
2

ξ(2s) |m|
s−1/2
∞ Ks−1/2(2π|ma2

∞|∞)e2πimx (4.54)

×
∏
p<∞

γp(a2
pm)

1− |pa2
pm|2s−1

p

1− p1−2s e−2πi[mxp]p .

To get the Eisenstein series for the real case we can set gp = 1 for p < ∞. This nets
us a factor of

∏
p<∞ γp(mp) which according to our discussion in Section 2.2.5 means m

must actually be an integer in order for the term not to vanish. Thus we have proved
that the Eisenstein series of SL(2,R) is given by

E

s,
1 x

0 1

√y 0
0 1√

y

 = ys + ξ(2s− 1)
ξ(2s) y1−s

+
4√y
ξ(2s)

∑
m 6=0
|m|s−1/2
∞ µ1−2s(m)Ks−1/2(2π|m|∞y)e2πimx, (4.55)

where we have used the alternate form of the instanton measure

µs(m) =
∏
p<∞

1− |pm|−sp
1− ps (4.56)

we found back in (3.43). This matches precisely with the expression we had in our
previous discussion, Equation (3.32).

4.4 Langlands Constant Term Formula

We are now going to derive the Whittaker coefficient for trivial ψ = 1 on an Lie group
G(A) defined by a Cartan matrix, known as Langlands constant term formula. As we
have already hinted, this will be done by reducing the problem to integrals over multiple
SL(2,A) subgroups, for which we now know the result. The reason we do this is that
when we derive our Whittaker coefficient for SL(3,Qp) we will use the same method,
but keep track of the changes of variable.
Theorem 4.10 (Langlands formula [1, 17]). The Whittaker-coefficient for the trivial
character is given by

W ◦1 (s,nak) =
∑
w∈W

|a|w(s−ρ)+ρM(w,s− ρ), (4.57)

where M(w,s) is given by

M(w,s) =
∏

α>0:wα<0

ξ(〈s|α〉)
ξ(1 + 〈s|α〉) . (4.58)
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Remark 4.11. The proof we give will be valid for Lie algebras which are simply laced,
that is, the off-diagonal elements of the Cartan matrix are 0 or −1. This in particular
means that all roots have the same norm. Langlands formula is valid even without this
assumption. We follow the proof as done in [1].

Proof. What we have left to evaluate thanks to Corollary 4.2 is the integral

Iw,1(s,a) =
∫
Nw−(A)

|wn|s dn, (4.59)

To do this we need to parametrise n in a suitable way. We first write w in reduced form
in terms of the fundamental reflections as

w = wi1wi2 · · ·wil , (4.60)

where l is the length of the Weyl word. Then we let

n = xγ1(u1)xγ2(u2) · · ·xγl(ul). (4.61)

The γi is some choice of the ordering of the positive roots which get mapped to negative
ones by w.

In this parametrisation we get

Iw,1(s,a) =
∫
Al

∣∣∣∣∣∣w
l∏

j=1
xγj (uj)

∣∣∣∣∣∣
s

du =
∫
Al

∣∣∣∣∣∣
l∏

j=1
wxγj (uj)w−1

∣∣∣∣∣∣
s

du, (4.62)

where the product is an ordered product, that is, factors have to be put in left to right in
order, and we have used the fact that w ∈ K(A), so it can be put in on the right with
no issue. Now, by definition the adjoint action of w acts on xα by changing the root so
we get

Iw,1(s,a) =
∫
Al

∣∣∣∣∣∣
l∏

j=1
xwγj (uj)

∣∣∣∣∣∣
s

du, (4.63)

where we have undone the fact that some of the parameters change sign.

Now we start evaluating this character. We write the right-most factor in its Iwazawa
decomposition as

xwγl(ul) = b(ul)k(ul). (4.64)
Important to note is that xwγl(ul) lies in the SL(2,A) subgroup of G(A) generated by
−wγl and thus the Iwazawa-decomposition is the same as it was for SL(2,A), and most
importantly does not involve any other generators.

We need to bring the n and a out to the left, which means bringing it through every
single remaining factor. Thus we get

Iw,1(s,a) =
∫
Al
|b(ul)|s

∣∣∣∣∣∣
l−1∏
j=1

b−1(ul)xwγj (uj)b(ul)

∣∣∣∣∣∣
s

dul. (4.65)
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Now we choose γl = αil , which is always a root that gets mapped to negative ones
by w, since the last factor is wil . The effect of bringing through b(ul) is a factor of
|bwγl(ul)|w(γ1+γ2+···+γl1 ) corresponding to the rescaling of the variables, and a unimodular
shift of the remaining parameters u1, · · ·ul−1. In particular note that this means that
αil is a simple root, with norm 〈αil |αil〉 = 2 and 〈ρ|αil〉 = 1. For details see [1].

Reusing Lemma 4.4 we then have

γ1 + γ2 + · · ·+ γl−1 = ρ− w−1ρ− αil (4.66)

and thus

Iw,1(s,a) =
∫
A
|bwγl(ul)|

s+w(ρ−w−1ρ−αil ) dulIww−1
l

=
∫
Nwγl (A)

|wnγl−|
s+wρ−ρ−wαil dnγl−Iww−1

l
. (4.67)

This can be evaluated, since this outermost integral can be evaluated as in Proposition
4.5. To do that we must project unto the positive root −wαil . We have

〈s− ρ+ wρ− wγl| − wαil〉 = 〈s− ρ| − wαil〉 − 〈ρ− αil |αil〉. (4.68)

where we have gotten rid off the w in the second term due to the fact that it is orthogonal
under 〈|〉. Now note that since αil is a simple root we know that 〈ρ|αil〉 = 1 and
〈αil |αil〉 = 2. Thus

Iw,1(s,a) =
∫
Nwγl (A)

|wnγl−|
(〈s−ρ|−wαil 〉+1)

−wαil
〈wαil |wαil 〉 dnαil−

∫
· · · (4.69)

This first integral is now a standard SL(2,A) contribution as in Corollary 4.5. Now
we are going to get rid of wil in w. Note that none of the roots γ1, · · · γl−1 can be αil .
Therefore the action of wil is just to permute the remaining positive roots and thus we
can now get rid of that factor in w, and write

Iw,1(s,a) = ξ(〈s− ρ| − wγl〉+ 1− 1)
ξ(〈s− ρ| − wγl〉+ 1) Iww−1

l
= ξ(〈s− ρ| − wγl〉)
ξ(1 + 〈s− ρ| − wγl〉)

Iww−1
l
. (4.70)

and the remaining integrals in Iww−1
l

can be treated in the exact same way.

By induction we can take a product over all the positive roots that get mapped to
negative roots by w, with each integral being of the form in Corollary 4.7, i.e.

Iw,1(s,a) =
∏

α>0:wα<0

ξ(〈s− ρ| − wα〉)
ξ(1 + 〈s− ρ| − wα〉) . (4.71)

The prefactor from breaking out a has a dependence on w−1. We would like to get rid
of that through a change of variables. To do that we need to replace the dependence
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on w here by w−1. We can get rid of the factor of w by using the same argument as in
Lemma 4.4. If wα = −α′ for some positive root α′ then in turn w−1α′ = −α. Therefore
we can write

Iw,1(s,a) =
∏

α>0:w−1α<0

ξ(〈s− ρ|α〉
ξ(1 + 〈s− ρ|α〉) . (4.72)

The full Whittaker coefficient is then (after changing variable in the Weyl sum from
w 7→ w−1)

W ◦1 (s,nak) =
∑
w∈W

|a|w(s−ρ)+ρ ∏
α>0|wα<0

ξ(〈s− ρ|α〉)
ξ(1 + 〈s− ρ|α〉) , (4.73)

as claimed.

4.5 Casselman-Shalika*

Now we are going to consider the unramified characters ψ(n) which are built up by the
unramified characters ψ(x) = e2πix∞∏

p≤∞ e
−2πi[x]p . All the modenumbers are 1, which

means that ψ is only trivial on N(Q). In this special case it is possible to evaluate the
contributions from finite primes p.

The only purpose this serves is to showcase one approach of evaluating the integral,
which appears in the appendix of alternative approaches. This has no bearing on the
next chapter except for as a means of comparing the result.
Theorem 4.12 (The Casselman-Shalika formula). The local Whittaker-coefficient for
the unramified character ψ1 is given by [1, 16]

W ◦ψ1,p(s,nak) = ψ(n)
∑
w∈W

|a|w(s−ρ)+ρ ∏
α>0

ξp(−〈w(s− ρ)|α〉)
ξp(1 + 〈s− ρ|α〉) . (4.74)

Remark 4.13. This is a remarkable formula, because this sum over the Weyl-group is
a new sum. The one we had in Proposition 4.1 has already been carried out; only w0
maps all positive roots to negative ones, and the unramified character is never trivial.
Remark 4.14. With some further work one can show that this is in fact related to the
characters of representations of G, which we saw for SL(2,A) in the previous chapter.

The proof of this formula is very different from the proof of Langlands formula. Instead
of attacking the integral directly we will perform one of the integrals and then derive
a functional relation for the Whittaker coefficient. From this we can create a function
that is Weyl-invariant and we write this new function as a Weyl orbit. From this we get
the Casselman-Shalika formula. We will once again be following the proof in [1], which
is a much simplified version of the original proof in [16].
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4.5.1 Constructing Weyl Invariant Function

The functional relation we are after is
Proposition 4.15. For any Weyl word w

W ◦ψ1,p(w(s+ ρ),g) =
∏

α>0:wα<0

[
ξp(1 + 〈s|α〉)
ξp(1− 〈s|α〉)

]
W ◦ψ1,p(s+ ρ,g). (4.75)

Proof. We have
W ◦ψ1,p(s,g) =

∫
N(Qp)

|wnig|sψ(n) dni, (4.76)

where we have used Corollary 4.3. Now define the function

Vi(s,g) =
∫
Ni−(A)

|ni−g|sψ−(ni−) dni−, (4.77)

where Ni−(A) is the part of the lower unipotent subgroup generated by the simple root
αi. By defining N̂−(Qp) = Ni−(Qp)\N−(Qp) we can then write

W ◦ψ1,p(s) =
∫
N̂−(QP )

Vi(s,n̂−g)ψ−(n̂−) dn̂−. (4.78)

The function Vi(s,g) is then invariant under

Vi(s,n̂gk) = Vi(s,g), (4.79)

where n̂ ∈ N̂(Qp) and k ∈ K(Qp) = G(Zp). This is because the commutator of
Ni−(QP ) with N̂(Qp) just results in a factor in N(Qp) under which | · |s is invariant.
The k invariance is trivial.

Now we write n̂−g = n̂âgik. Putting this in Vi we find that we are after

Vi(s,âgi) =
∫
Ni−(Qp)

|ni−âgi|sψ−(n−) dni−. (4.80)

Breaking out a we find

Vi(s,âgi) = |â|s−αi
∫
Ni−(Qp)

|n−igi|sψâ−(n−) dni−. (4.81)

This remaining integral is just a standard SL(2,Qp) integral, which we can evaluate,
and from this we we can derive that

Vi(wis,g) = Vi(s,g)ξp(1 + 〈wi(s− ρ)|αi〉)
ξp(1− 〈wi(s− ρ)|αi〉)

. (4.82)
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From this we know that

W ◦ψ1,p(wis,g) = ξp(1 + 〈s− ρ|αi〉)
ξp(1− 〈s− ρ|αi〉)

W ◦ψ1,p(s,g). (4.83)

Writing this in the form in the proposition we have that for a general Weyl word w =
wi1wi2 · · ·wil we have

W ◦ψ1,p(w(s+ ρ)) = ξp(1 + 〈w′s|αi〉)
ξp(1− 〈w′s|αi〉)

W ◦ψ1,p(w
′(s+ ρ),g). (4.84)

where w′ = ww−1
il

. We get the result by noting that as we carry out the product we hit
every such root exactly once.

Now, we can combine this with a function which has the opposite transformation under
w. Such a function is

ζ(s) =
∏
α>0

ξp(1 + 〈s− ρ|α〉), (4.85)

which can be verified by hand [1]. The function

ζ(s)W ◦ψ1,p(s,g) (4.86)

is therefore Weyl invariant. We will not consider the details but it can be shown from
the holomorphicity of | · |s that the the dependence on a can be extracted so that we
may write

ζ(s+ ρ)W ◦ψ1,p(s+ ρ,a) =
∑
w∈W

f(ws)|a|w−1s+ρ. (4.87)

for some function f [16].

4.5.2 Determining the Weyl Orbit

Now we want to determine the function f . When w is the longest Weyl word we know
that it is the coefficient in front of |a|w

−1
0 (s−ρ)+ρ in W ◦ψ1,p(s), multiplied by ζ(s). This

part of W ◦ψ1,p(s,1) is exactly the constant term in the polynomial resulting from the
integral ∫

N(Qp)
|w0n|s+ρψa(n) dn, (4.88)

due to the form of Proposition 4.1.

We only need this for one special case, so let a = 0 (this is somewhat formal as a = 0 is
not an element of A(A)) in ψa, which makes ψ trivial, so we find that the contribution
is exactly the same as the contribution to the constant term∫

N(Qp)
|w0n|s+ρ dn = M(w0,s) =

∏
α>0

ξp(〈s|α〉)
ξp(1 + 〈s|α〉) . (4.89)
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Therefore
f(w0s) = ζ(s)M(w,s) =

∏
α>0

ξp(〈s|α〉) (4.90)

which means
f(s) =

∏
α>0

ξp(〈w−1
0 s|α〉) =

∏
α>0

ξp(−〈s|α〉), (4.91)

where we have noted that w0 maps all positive roots to all negative ones.

Changing the variable in the sum from w 7→ w−1 we find

ζ(s)W ◦ψ1,p(s,a) =
∑
w∈W

|a|w(s−ρ)+ρ ∏
α>0

ξp(−〈w(s− ρ)|α〉). (4.92)

From this the Casselman-Shalika formula 4.12 now follows.
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5
Whittaker Coefficients for

SL(3,Qp)

Now we have finally arrived at the core result of this thesis. The goal here will be
to calculate the contribution from finite primes using direct integration, rather than
Casselman-Shalika. In this we will for simplicity restrict our attention to the case where
gp = 1. A non-constant only really yields a known contribution and a rescaling of the
parameters in ψ, so we will not include them explicitly. We are also typically only
interested in the real Eisenstein series, where gp is set to 1.

The way that turns out to work is to use the same parametrization of the integral as we
did in deriving Langlands formula for the constant term, but now we have to keep track
of the changes of variable since they affect the arguments of ψ. Despite these changes
of variables the result turns out to be not so bad, and the Fourier transforms can be
readily evaluated.

In this chapter we have suppressed the subscripts p on the absolute value and γ, since
it should be clear that we always mean | · |p and γp.

5.1 The Problem

Starting from Corollary 4.3 we know that all we need is the following Proposition.
Proposition 5.1. The integral

I = Iw,ψ,p =
∫
N(Qp)

|wn|sψ(n) dn, (5.1)
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where
ψ

(
1 x z
0 1 y
0 0 1

)
= e−2πi[m1x+m2y]p , (5.2)

is given by

I =γ(m1)γ(m2)M(w,s− ρ)(
1− |pm1|s2 − |pm2|s1 + |pm1|s2 |pm2|s3 + |pm1|s3 |pm2|s1 − |pm1|s3 |pm2|s3

)
. (5.3)

The rest of this section will be dedicated to proving this.

We are going to prove this in a slightly more convoluted way than is perhaps necessary,
just to further illustrate what happens in the derivation of Langlands constant term.
We will be carrying w around for quite some time, despite the fact that we can just get
rid of it from the start. We would just have to remember the order we should place the
roots in. All that would change is that it would appear like we are not only integrating
over the images of simple roots under w.

Before we begin let us note the following lemma.
Lemma 5.2. Unless the constants m1,m2 defining ψ are p-adic integers the coefficient
W ◦ψ, and thus also I, vanishes.

Proof. The Whittaker-coefficient is defined by the integral

I =
∫
Q3
p

|wn|sψ(n) dn. (5.4)

Since the character | · |s is invariant under K = SL(3,Zp) on the right we can change
variable from n to n′ = mk, with k ∈ N(Zp). This results in

I = ψ(k)
∫
Q3
p

|wn|sψ(n) dn. (5.5)

This proves that either ψ(k) is 1 or the integral vanishes, which means m1 and m2 must
be p-adic integers for the integral not to vanish.

5.1.1 Evaluating the Character

The first step is to evaluate the character | · |s inside the integral. This involves changing
variables a few times and will therefore introduce changes in ψ, according to the following.
Lemma 5.3. The integral I =

∫
N(Qp) |wn|sψ(n) dn when w is the longest Weyl word

and ψ(x1(u)x2(v)) = e−2πi[m1u+m2v]p is for SL(3,Qp) given by

I =
∫
Q3
p

|x̃|−(1+s2)|ỹ|−(1+s1)|z̃|−(1+s3) exp
(
−2πi

[
m1x+m2

z̃

x̃
y +m2z

]
p

)
dx dy dz,

(5.6)
where si = 〈s− ρ|αi〉.
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Proof. We have
I =

∫
N(Qp)

|wn|sψ(n) dn. (5.7)

The longest Weyl word can be factored as w = w1w2w1, so we should start with α1.
Thus we parametrise our integral as

I =
∫
Q3
p

|wxα2(ny)xα3(nz)xα1(nx)|sψ(nx,ny) dnx dny dnz. (5.8)

Acting with w on all the maps xα by inserting w−1w in between all factors we get

|x−α1(−ny)x−α3(−nz)x−α2(−nx)|s. (5.9)

Here we have used the matrices in (2.88) for w.

We know from Proposition 4.8 that an Iwazawa decomposition of a negatively generated
element is

x−2(nx) = x2(1/ñx)h2(1/ñx)k. (5.10)

Commuting this through the other factors we find that in the integral we have (these
can be found by multiplying matrices in the fundamental representation)

|h2(1/ñx)|s|x−1(nyñx − nz))x−3(nz/ñx)|s. (5.11)

This can be restored by taking
nz 7→ nzñx, (5.12)

followed by
ny 7→ ny/ñx + nz (5.13)

which gives us (after pulling out w again, and undoing also this sign change)

I =
∫
Q3
p

|h2(1/ñx)|s|wx2(ny)x3(nz)|sψ(nx, nyñx + nz) dnx dny dnz. (5.14)

The next step in the procedure is to get rid of the right-most factor in w, which in this
case is w1. The action of w1 is to swap places between α2 and α3 so we get

I =
∫
Q3
p

|h2(1/ñx)|s|w′x3(ny)x2(nz)|sψ(nx, nyñx + nz) dnx dny dnz, (5.15)

where w′ = w1w2. What luck, the x2(nz) is already placed to the right1. Now we act
with w′ = w1w2 which sends α3 to α−1 and α2 to −α3

2. Therefore we have to simplify
the character

|x−1(ny)x−3(nz)|s (5.16)
1It is almost like someone planned that.
2Here we are being extremely convoluted. We could have gotten the same result by just not pulling

out w, and removing the rightmost factor of w1.
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and we write just as before

x−3(nz) = x3(1/ñz)h3(1/ñz)k. (5.17)

Commuting this through we get

|h3(1/ñz)|s|x2(ny/ñ− z)x−1(ny/ñz)|s = |h3(1/z̃)|s|x−1(ny/ñz)|s. (5.18)

This can be restored by taking ny 7→ nyñz so our integral becomes

I =
∫
Q3
p

|h2(1/ñx)h3(1/ñz)|s|w′x3(ny)|sψ(nx, ny ñzñx + nz) dnx|ñz| dny dnz. (5.19)

Note that we have picked up an extra factor of |ñz|.

Just for completeness we do the last argument in the same way. We get rid of the
rightmost letter in w′, which is w2. This word takes α3 to α1 so we get inside the
integral just

|w1x1(−ny)|s = |h1(1/ñy)|s. (5.20)

Thus our full integral is (changing variables to x,y,z now that there is no confusion)

I =
∫
Q3
p

|x̃|−(1+s2)|ỹ|−(1+s2)|z̃|−(1+s3)ψ(x, y z̃x̃ + z) dx dy dz. (5.21)

We have gone ahead and inserted si = 〈s− ρ|αi〉. To do this we have used the fact that
〈ρ|α3〉 = 2 rather than 1, which conveniently cancels the extra |ñz| we picked up in step
two. Putting in the definition of ψ(x,y) = e−2πi[m1x+m2y]p and changing all signs gives
us the result.

Remark 5.4. We chose to derive this using w = w1w2w1, but since w is also equal to
w2w1w2 we can derive an alternative expression for ψ, which reveals a symmetry between
m1 and m2. Then one gets instead

ψ = exp
(
−2πi

[
m2y +m1

z̃

ỹ
x+m1z

]
p

)
. (5.22)

5.1.2 Evaluating the Fourier Transforms

Now that we have reduced the problem to just an ordinary integral over Q3
p we can

integrate ahead. Continuing from Lemma 5.3 we have

I =
∫
Q3
p

|x̃|−(s2+1)|ỹ|−(s1+1)|z̃|−(s3+1) exp
(
−2πi

[
m1x+m2y

z̃

x̃
+m2z

]
p

)
dx dx dz.

(5.23)
We are all but forced to integrate y first, since it is the only variable that does not appear
in a convoluted way in ψ.
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Using Proposition 4.5 we obtain

I = ξp(s1)
ξp(1 + s1)

∫
Q2
p

γ
(
m2

z̃
x̃

)(
1−

∣∣∣∣pm2z̃

x̃

∣∣∣∣s1)
|x̃|−(s2+1)|z̃|−(s3+1)e−2πi[m1x+m2z]p dy dz.

(5.24)
Note that since we know that m2 must be an integer, we can replace z̃ by z in γ, since
this will not affect its value. This puts it in the form in Lemma 2.4, and thus we can
remove this factor as long as we put in a proper counter-term, resulting in

I = ξp(s1)
ξp(1 + s1)

∫
Q2
p

(
1−

∣∣∣∣pm2z̃

x̃

∣∣∣∣s1)
|x̃|−(1+s2)|z̃|−(1+s3)e−2πi[m1x+m2z]p dx dz + I0.

(5.25)
The counterterm I0 turns out to be zero, which we will prove after the real calculation
is done.

I splits into two terms, I = ξp(s1)
ξp(1+s1)(I ′1 − |pm2|s1I ′2), with

I ′1 =
∫
Q2
p

|x̃|−(1+s2)|z̃|−(1+s3)e−2πi[m1x+m2z]p dx dz. (5.26)

and
I ′2 =

∫
Q2
p

|x̃|−(1+s2+s1)|z̃|−(1+s3−s1)e−2πi[m1x+m2z]p dx dz. (5.27)

Note that s2 + s1 = s3 and s3 − s1 = s2. This is exactly the action of w on α2 and α3.
In fact, if we define si(w) = 〈s− ρ|wαi〉 we have that by introducing

I ′(w) =
∫
Q2
p

|x̃|−(1+s2(w))|z̃|−(1+s3(w))e−2πi[m1x+m2z]p dx dz (5.28)

we can write I = ξp(s1)
ξp(1+s1)(I ′(e)− |pm2|s1I ′(w1)).

These two remaining integrals are completely decoupled, so we can evaluate them both
without issue to find

I ′(w) = γ(m1)γ(m2) ξp(s2(w))
ξp(1 + s2(w))

ξp(s3(w))
ξp(1 + s3(w))(1−|pm1|s2(w))(1−|pm2|s3(w)). (5.29)

Note here that for the ξp factors it does not matter if w is e or w1, since w1 just swaps
s2 and s3.

Assembling the full I from this we get

I = ξp(s1)
ξp(1 + s1)

ξp(s2)
ξp(1 + s2)

ξp(s3)
ξp(1 + s3)γ(m1)γ(m2) (5.30)(

1− |pm1|s2 − |pm2|s3 + |pm1|s2 |pm2|s3 (5.31)

− |pm2|s1 + |pm1|s3 |pm2|s1 + |pm2|s1+s2 − |pm1|s3 |pm2|s3

)
(5.32)
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which can be simplified to the desired form in Proposition 5.1.

We still have to prove that the counterterm I0 is zero. In terms of Lemma 2.4 the integral∫
Q2
p

γ(m2
x̃ z)

(
1−

∣∣∣∣pm2z̃

x̃

∣∣∣∣s1)
|x̃|−(1+s2)|z̃|−(1+s3)e−2πi[m1x+m2z]p dx dz (5.33)

has (when viewed as a Fourier transform in z) φ(z) =
(
1−

∣∣∣pm2z̃
x̃

∣∣∣s1) |x̃|−(1+s2)|z̃|−(1+s3),
a = m2

x̃ and w = m2 and thus gives rise to the counterterm

I0 =
∫
Qp

γ∗( 1
x̃) 1
|m2|

φ( 1
pm2

)e−2πi[m1x]p dx (5.34)

when we remove γ(m2
x̃ z).

Since m2 is an integer we know that 1
pm2

is guaranteed to not be in Zp. Therefore all
factors z̃ spit it right out. Furthermore, the factor γ∗( 1

x̃) ensures that |x̃| = 1. This
means we get

I0 = γ∗( 1
x̃) 1
|m2|

φ( 1
pm2

) = γ∗(x) 1
|m2|

(
1−

∣∣∣∣pm2
pm2

∣∣∣∣s1)
|pm2|1+s3 = 0. (5.35)

Therefore the entire integral vanishes, and the counterterm I0 is zero as promised.

This concludes the proof of Proposition 5.1.

5.2 Discussion

So we have managed to evaluate the sought-after Fourier-Whittaker coefficients. What
did it entail? First we had to find the Iwazawa-decomposition of

(
1 0 0
y 1 0
z x 1

)
, this turned

out to be more naturally expressed with the variables changed according to

x 7→ x′,

y 7→ y′
z̃′

x̃′
+ z′, (5.36)

z 7→ z′x̃′.

This netted us ∣∣∣∣∣∣∣∣


1 0 0
y′ z̃
′

x̃′ + z′ 1 0
z′x̃′ x′ 1


∣∣∣∣∣∣∣∣
s

= |x̃|−(1+s1)|ỹ|−(1+s2)|z̃|−(1+s3). (5.37)

This change of variable accomplished some subtle things. First of all, it made ψ aware
of z′. This was crucial, because it meant that ψ could feel all variables, which meant
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that all the integrals could have the same form: A Fourier-transform of |x̃|s′ , for some
root s′. In particular it turns into iterations of the same integral as for SL(2,Qp)

These roots s′ that arose were also always in the Weyl orbit of the original root s, and
this was ensured by the specific form z̃′

x̃′ . This specific factor was what made it so that
after integrating out y we still only had the projections s1,s2, and s3; Not something like
s1 − s2 or s1 + s3. However, after the y integral is done we did not pick up any more
products that could be interpreted as Weyl words. The rest of the changes of variable
did not seem to do anything like that. This is likely restored in the case m1 = m2.

The other non-trivial thing we did was to show that the counterterm I0, which arose
from an extra factor of γ in the integral, vanished. This demanded special properties of
the Fourier transform of |x̃|s in response to the changes of variables we did.

To generalise this treatment one would have to find the Weyl group structure inside the
change of variables, as well as show that the integral can be carried out through iterated
integrals such as in Equation (5.28). Also one would have to show that the counterterm
is zero in general. It clearly cannot remain since it does not contain the necessary ratio
of functions ξp.

The next step would be to write this result in terms of characters of representations of
SL(3,Qp), just like was done for SL(2,Qp) with the instanton measure. This has been
done by D. Bump, but for completeness it would be nice to have included the derivation.

After that we could look to generalise the calculation for arbitrary SL(n,Qp), or even
arbitrary Lie groups. The difficulty on this depends on the difficulty in understanding
the structure of the commutators [Eα, E−β], and the changes of variable they induce.
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A
Alternative Approaches

Since the goal of this thesis is to explore methods of evaluating the p-adic integrals that
appear in the Fourier-Whittaker coefficients of Eisenstein series it feels natural that one
should also include the methods that do not work. This is perhaps not a very interesting
part of the thesis, but it is included for completion. Below we will go through the
approaches that we attempted before we used the approach back in Chapter 5, and
discuss why they fail.

The first approach is to try and use the same method as in the proof of Casselman-
Shalika, introduce a new projected version of the character and perform the integral
over that first. Then try to restore the argument and repeat the procedure for all the
roots. The second approach is to try and find an explicit Iwazawa-decomposition in the
same way we did for SL(2,Qp) back in Proposition 4.8.

A.1 After The First Step Of Casselman-Shalika

The first thing we are going to be looking at is using the approach we used in the proof
of the Casselman-Shalika formula. The idea is that since this is what is used to calculate
the integral for the general case, it should also work in the specific case of SL(3,Qp).
The problem is of course that in the proof of Casselman-Shalika we used a symmetry-
argument that we do not want to use here, but one might expect it to be possible to
evaluate the rest of the integral anyway. The advantage would be that one does not
have to determine any Iwazawa-decompositions of the integration variables, but this is
perhaps hoping for too much.
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We start from Proposition 4.1. We want to evaluate the integral

W ◦ψ(s,1) = I =
∫

N(Qp)

|wn|sψ(n) dn =
∫
N−(Qp)

|n−|sψ−(n−) dn−. (A.1)

We then let
X1(g) =

∫
N1(Qp)

|wn1g|sψ(n1) dn1. (A.2)

This lets us write our desired integral as

W ◦ψ(s,1) =
∫

N̂(Qp)

X1(n2n3)ψ(n2) dn2 dn3, (A.3)

where N̂(Qp) = N1(Qp)\N(Qp).

Now we want to determine X1(g), to do that we decompose

g = n̂−âg1k, (A.4)

where n̂− = w−1n̂w. This leaves us with

X1(n̂−âg1k) =
∫

N1(Qp)

|wnn̂−â−g1|sψ(n1) dn1. (A.5)

From here we recall from the general proof that n̂− can be brought through n without
issue since they belong to different roots. The factor â we can fix in the standard way
from Proposition 4.1 to get

X1(n̂−âg1k) = |â|w−1(s−ρ)+ρ
∫

N1(Qp)

|ng1|sψâψ(n1) dn1. (A.6)

The integral that remains is now a standard SL(2,Qp) integral which we can do using
Proposition 4.5 to get

X1(n̂−âg1k) = |âa1|w
−1(s−ρ)+ρψâ(n1)γp(m1|âa1|α1) ξp(〈s− ρ|α1)

ξp(1 + 〈s− ρ|α1)(1−|pm|âa1|α1 |〈s−ρ|α1〉
p ).

(A.7)

Here comes the problem. What we need to do now in order to continue without having
to worry about how we did the Iwazawa-decomposition is to restore all factors; we need
to bring in the missing factors everywhere. This fails at multiple points.

• In all expressions |âa1| we can bring in n1 and k without issue, but we would need
to bring in a factor of n̂− on the left. This is impossible to do because it lies in a
lower subgroup, where | · |s is not invariant, |âa1| is simply not in general equal to
|n̂|. This can be verified when everything except n− equals 1. (Of course, this is
not something that n2n3 can actually be, but this should not matter.)
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• In ψâ(n1) we need to fix both n1 and the fact that there is a lone â there. Both are
likely impossible to fix. In particular, in order to fix n1 the only real possibility is
that this turns out to equal ψ(w1n2n3w

−1
1 ) which is not realistic.

We can however see some structures present that were also there in in our previous
calculation. For instance, after having carried out the integral over the first root we have
something that contains ψâ(n1). This looks an awful lot like it could be something of the
form exp

(
−2πi

[
nx

ñz
ñy

]
p

)
which is a factor we actually had in our integral. However,

remember that we had to carry out this integral first. Now we have not done so, and
that is most likely why this expression we have for X1(g) is so complicated.

Of course, one could continue integrating from here if one knew the Iwazawa-decomposition
of n2n3 in terms of the lower Borel subgroup, but then one runs into the same problem
that we solved using the parametrisation from the proof of Langlands formula, so one
might as well start from there.

A.2 Direct Iwazawa-Decomposition By Ansatz

Another approach that might work is to do like we did in finding the Iwazawa-decomposition
of SL(2,Qp). There we multiply our matrix wnw−1 by an element in B(Qp) on the left
such that the result is in K = SL(3,Zp). Then we have that the relevant B(Qp) matrix
is the inverse of this. We therefore have to find parameters v1,v2 and a,b,c such that the
following matrix

v1 a c

0 v2
v1

b

0 0 1
v2




1 0 0
x 1 0
z y 1

 =


v1 + ax+ cz a+ cy c

bz + v2
v1
x by + v2

v1
b

z
v2

y
v2

1
v2

 (A.8)

have only integer components, which means we have 9 inequalities on the norms of these
entries. We can solve the inequality |a+ cy|p ≤ 1 by simply shifting a 7→ a− cy we then
have to solve the six inequalities

|v1 + ax+ cz − cxy|p ≤ 1, |bz + v2
v1
x|p ≤ 1, |by + v2

v1
|p ≤ 1, (A.9)

| zv2
|p ≤ 1, | yv2

|p ≤ 1, | 1
v2
|p ≤ 1, (A.10)

under the constraints that a,b,c are p-adic integers. We are free to change variables x, y
and z, and we know that we will be forced to do that if we want to find nice expressions
for v1 and v2. Thus let

x 7→ ξx+ x0,

y 7→ ηy + y0, (A.11)
z 7→ ζz + z0.
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Which gives us

|v1 + a(ξx+ x0) + c(ζz + z0)− c(ξx+ x0)(ηy + y0)|p ≤ 1, (A.12)

|b(ζz + z0) + v2
v1

(ξx+ x0)|p ≤ 1, |b(ηy + y0) + v2
v1
|p ≤ 1, (A.13)

| ζz+z0
v2
|p ≤ 1, |ηy+y0

v2
|p ≤ 1, | 1

v2
|p ≤ 1. (A.14)

If we guess that
v1 = x̃z̃, v2 = ỹz̃, (A.15)

which basically corresponds to taking

b = nh1(x̃)h2(ỹ)h3(z̃), (A.16)

which we know from before is the correct answer, we find

|x̃z̃ + a(ξx+ x0) + c(ζz + z0)− c(ξx+ x0)(ηy + y0)|p ≤ 1 (A.17)

|b(ζz + z0) + ỹ
x̃(ξx+ x0)|p ≤ 1, |b(ηy + y0) + ỹ

x̃ |p ≤ 1, (A.18)

| ζz+z0
ỹz̃ |p ≤ 1, |ηy+y0

ỹz̃ |p ≤ 1, | 1
ỹz̃ |p ≤ 1. (A.19)

The bottom three equations are now almost trivial, they provide some constraints on
the growth of ζ,η,y0, and z0 but nothing hard. There are three remaining inequalities

|x̃z̃ + aX + c(Z −XY )|p ≤ 1, (A.20)

|bZ + ỹ
x̃X|p ≤ 1, (A.21)

|bY + ỹ
x̃ |p ≤ 1, (A.22)

were we have introduced X = ξx+ x0 and so forth just to make it easier to read.

Unfortunately these do not become trivial even when we provide a nice guess for v1 and
v2. We know that it should be possible to put it in this form, because that is what we
found when we did the calculation previously. It is also the result we must have in order
for Langlands constant term to be correct if we remove ψ (this also demands that the
Jacobian for the change of variables gives us a factor of |z̃| extra). Without some way
to show that these have a solution a,b,c for some choice of the parameters ξ,η,ζ,x0,y0,z0
we cannot proceed.

The two bottom inequalities are especially hard to solve, since they demand we find a b
that solves both inequalities simultaneously.

These three can be solved for the case SL(3,Qp), of course, but if we want to apply it
to larger groups some method of finding these changes of variables X,Y,Z, that make
the inequalities have solutions has to be found. It is possible that such methods exist,
or can be found, but we are not aware of them.
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