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Abstract

The field of active safety in the automotive industry has unlimited potentials for the
future development of vehicles, especially in autonomy, which is expected to change
the way we drive in near future. In recent years, safer cars have become one of the
top-priorities among the biggest car manufacturers. The driver support functions
that make cars safer rely on accurate onboard sensor readings of the surroundings
of the car. To assure the high performance of the active safety systems as well as to
avoid problems for their verification during the development stage, it is necessary for
the support functions and the sensors to have the same definition of time when an
obstacle is detected on the vehicle’s surroundings. This requires synchronizing the
sensors’ data with data from other nodes where sensor fusion and decision making
are run for example. Poor synchronization directly inserts unwanted delays between
the nodes and impacts the ability of the functions to intervene on time, causing
serious safety issues. The present thesis addresses the problem of existence of delays
in a real-time embedded system, which consists of different processors without a
common timebase, where the tasks that take place are considered as black boxes.
The tasks can be, for example, signal processing algorithms. The thesis aims to
analyze theoretically the origin and the magnitude of the delays and develop statis-
tical methods for accurate estimations of these delays. The methods are applied to a
case-study which consists of an active safety system used in Volvo Cars Corporation.
The system includes camera and radar sensors and two processors which process the
signals coming from the sensors and make decisions on imminent threats correspond-
ingly. The traffic situations and the vehicle’s signals generated at different nodes of
the system in response to these situations are logged in an Ethernet-based logging
system. Logged data from drivings at public roads and test tracks are used for the
analysis. Due to the lack of a common timebase, the developed methods measure
the delays based initially on the processors’ timebase and then on the logger’s time-
base. Finally, data coming from a reference sensor system is used to measure the
same delays. The overall results of the thesis indicate that the delays depend on
the complexity of the traffic environment. In addition, the measurements of delays
from the different methods conclude to similar results and the outcome from the
reference sensor agree with the outcome from the examined sensor system, which
results in a good system’s performance.

Keywords: camera, distributed systems, radar, safety-critical systems, sensors,
synchronization, timestamps
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1 INTRODUCTION

Research in sensor networks started at the 1990s, however the field exploded around
the year 2000 with the availability of less expensive nodes, sensors and radios
(Heidemann and Govindan 2005). The advances in micro-electro-mechanical sys-
tems (MEMS) technology contributed to the development of multifunctional sensor
nodes equipped with sensing, data processing and communicating components (Rhee
et al. 2009). During the last decade, the sensor networking has been a very active
area with the wide availability of hardware platforms and the growing development
of software to make it well-established at research and commercial communities.

1.1 Problem background

Sensor networks are predicated on the ability of sensor nodes to collaboratively
detect events, monitor the environment and effect changes to it. A sensor node
is depicted in Figure 1.1. The architecture of a sensor node typically consists of
a computing device, noted as ”logic” in the Figure 1.1, with physical sensors and
actuators. The sensors percept the environment and detect changes in it. The sensor
data are then fed into the computing device which runs the logic on the data and
acts upon the outcome.

Figure 1.1. A sensor node.

The logic can be consisted of a CPU as well as it is possible to be encompassed by
other resources like memory, a human interface, a diagnostic port for diagnosing the
system which is being controlled etc. as it can be seen in Figure 1.2. This is an
embedded sensor network which can implement a variety of tasks like execute control
laws, run finite state machines and signal processing algorithms (Koopman 1996).

1



2 Chapter 1 Introduction

Figure 1.2. Embedded sensor network (Koopman 1996)

Since the embedded sensor networks become more and more complex using large
number of sensors, it is important to log all the data from the embedded systems
to detect and record faults as well as to develop new technologies and features like
new control laws.

In the embedded systems a lot of events take place. An event can be for example
the measurement which is taken by the sensor or the transmission of the signal from
the A/D conversion to the CPU. The events might be time consuming and this can
affect the performance of the system. For instance, if the sensor is a thermometer
inside a system which controls the heating system of a building, the time from
when the temperature is measured to the moment when the actuator will set the
temperature of the heaters in a higher or lower level it does not affect negatively
the performance of the system even if this time difference is quite big. However, if
the sensor is a camera in a game console which detects the user’s movements and
has to provide real-time interaction between the user and the game, if the time to
process the camera data and provide the actuation is large it will affect the total
performance of the system. Except for the last example, there is a big variety of
applications based on sensor networks where the time accuracy is a very important
aspect and this is the main issue that the present thesis deals with.

The applications of the embedded systems vary from educational applications to
industrial, scientific, commercial and environmental deployments, like military ap-
plications, environmental monitoring applications, space and automotive applica-
tions etc. (Heidemann and Govindan 2005) and timing accuracy is very vital for
the progress of all these fields. Specifically, timing accuracy is very crucial for auto-
motive applications in active safety, to increase the vehicle’s passengers protection,
and for autonomous driving to eliminate the wrong decision-making. In addition,
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in the signal processing domain, they deal with the modeling and development of
efficient systems for extracting and processing information where their operation is
underpinned by precise timing otherwise correct functionality cannot be guaranteed.
Telecommunications is another field that timing accuracy is very crucial. They rely
on accurate timing to ensure that the switches routing digital signals through net-
works all run at the same rate. If they did not, those switches running slow would
not be able to cope with the traffic and messages would be lost. Finally, applications
from global communications to satellite navigation, surveying and transport systems
in general depend on precise timing and the same stable and accurate time scale
must be in use everywhere for such systems to operate correctly (Stojmenovic 2005).
Consequently, the time accuracy is a necessity in sensor networks and there is a big
interest towards developing methods and algorithms to provide a common notion of
time.

The sensor networks must deal with the need of accurate timing, the synchronization
problem among nodes and the lack of a consistent coordinate frame (Zhao and
Guibas 2004). Since the sensors in a sensor network can operate independent of
each other, their local clocks may not be synchronized and this is an obstructive
factor if there is a need of integration and interpretation of information sensed at
different nodes. For instance, if a mobile robot is detected at two different times
along a path, the times must be comparable and for this reason there should be the
possibility to transform the time readings into a common frame of reference in order
to define the geometric properties of it, like its speed. Knowing the robot’s position
at the time when the data was collected is very crucial. Otherwise, and especially
if the robot is moving, synchronization errors or failure to map the readings into a
common timescale result in projection errors. The faster the robot is moving, the
more surprising the magnitude of the error will be, a fact that set serious safety issues
(Olson and Arbor 2010). Estimating time differences across nodes with accuracy and
reliability is also important in node localization for sensor networks and networks of
embedded devices. It uses robust techniques to estimate the range among the nodes
providing invaluable context in interpreting sensed data.

1.2 Problem statement

The performance of a sensor network can be restricted by the existence of delays in it
which might occur due to the transmission of signals or the heavy signal processing
in different parts of it. The present thesis focuses on the measurements of these
time delays in a sensor network where the nodes do not have common clocks. To
begin with, this requires to identify the sources of delays among the series of nodes
taking into consideration the causality of events, the latency occurrence etc. Some
important sources of delays are the computationally heavy signal processing on the
nodes and the transmission of signals through different interfaces. In addition, it is
required to map the nodes’ readings into a common timescale and create a congruent
understanding of the time among the different clocks in such a way that events which
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happen in different nodes should be chronologically comparable.

The ability of the sensor network to timestamp its measurements is used to model
the system and create statistical methods for estimating the time differences across
the most time consuming tasks on the nodes.

The methods are applied to a case study from the automotive area which is used as a
running example through the whole thesis. The system of the case study belongs to
the active safety field. The continuing progress in sensing and vehicle technologies
has enabled advances in this area which encompasses systems preventing the driver
from accidents rather than relieving the accident consequences. An outline of an
active safety system is given in Figure 1.3. It is composed of sensors whose role
is to perform sensing of the environment and a sensor fusion part which combines
and integrates the data derived from the different sensing elements for an improved
and robust output. This first part of the active safety system will be called as the
sensors node for the rest of the thesis. The output is fed to another node which makes
decisions on required warnings or interventions to the driver and finally actuation
of the braking or the steering system of the vehicle. This node is going to be called
as functions node.

Figure 1.3. Active safety system.

It is of paramount importance to know the exact times when a situation occurs
and the related signals generated and sent. The performance of the active safety
systems is limited by the fact that every step in signal processing, from detection to
actuation, takes considerable, and often uncontrollable, time. The delays come from
computationally heavy signal processing as well as transmission of signals between
the nodes. Apart from reducing the benefit of the active safety systems, these delays
pose problems for their verification during the development stage. It becomes hard
to accurately assess their performance, because it becomes impossible to compare
the signals with unknown delay with the true traffic situation. In addition, when
developing the cars of the future there is a large focus on autonomy. Autonomous
cars rely on a network of active safety systems to work and we want them to be
able to sense dangers and avoid accidents, without input from the driver. In such a
case all the processing times of the different tasks and possible existent delays must
be known in order to avoid system failures. Even if in today’s cars, especially in
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those which move at high speeds, even a delay in the timescale of milliseconds can
represent several meters divergence from the actual position of an obstacle. To prove
the correct performance of the system and help during the development stage of the
system, the traffic situations and the vehicle signals generated in the different nodes
are recorded over time through a data logger, Figure 1.4, in order to be analyzed
later.

Figure 1.4. Data logger.

1.3 An illustrative example

An illustrative example of the problem is given below. Let us define as host the
vehicle that we take the measurements and log the data and as target every vehicle
which is detected by the sensor system if it is inside its field of view. It is also
assumed that the longitudinal distance between the host and the target is reported
from the two nodes, the sensors node and the functions node, which are shown at
Figure 1.3.

The sensors’ output about the longitudinal position as well as the output from the
active safety functions about the same state estimate are logged and compared. The
first node, called as sensor node, reports that the longitudinal position between the
vehicles is, for example, x=5m at time 13:05:01.100. The second node, called as
functions node, states that the longitudinal position is x=5m at time 13:05:01.200,
as it can be seen in Figure 1.5.

There is a discrepancy of 100ms in the reporting of the time for the same state
estimate. If the host’s velocity is 20m/s, a discrepancy of 100ms results in 2m
uncertainty of the target’s position. The higher the host’s velocity is, the larger the
divergence from the actual position of the target. Let us assume that the actual state
estimates calculated by a reference sensor for the time 13:05:01.100 and 13:05:01.200
are shown in Figure 1.6. This time difference of 100ms might have been occurred
due to different factors, one of them can be the delay of the propagation of the signal
on the interface between the two nodes. However, this means that the active safety
system supposes that the target is 5m ahead while it is 3m ahead. A wrong warning
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Figure 1.5. The output from a commercial sensor system.

or a late intervention because of this uncertainty will pose problems in the system’s
performance and will cause safety issues.

Figure 1.6. The output from a reference sensor system.

A plot from a scenario which is examined in the thesis shows exactly the same
problem. For a specific time t, different target’s positions are reported from the
sensor and the functions nodes as it seems in Figure 1.7. This is caused due to the
delays in the system.

1.4 Aim and objectives

The aim of the thesis is to verify empirically the system’s performance by estimating
theoretically and experimentally the timing accuracy in the embedded sensor net-
work. The system consists of different nodes whose role is to perform sensing of the
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Figure 1.7. Plot showing the existence of delay in a system.

environment as well as to make decisions on required interventions from the driver
or the vehicle itself. Each of them has its own clock and is able to timestamp events
which take place in the node, for example the sending of a signal from the node
to another. However, the sending or receiving of a signal or the signal processing
on a node can take a lot of time and as a result delays occur in it. The delays
must be measured through the whole signal processing chain of the system with the
help of the timestamped events. The focus will be given more to find the sources
of delays and create accurate methods to measure them rather than to compensate
for them. Since there is not a common reference time basis, a mathematical model
will be created to correlate the timestamps and the events from one local timeline
to another. Statistical methods will be developed to estimate the delays of the most
time consuming tasks of the system. The methods will be evaluated by measuring
the delays based on each timeline which exists in the system and compare the final
results to each other as well as by the estimation of the same delays using a reference
sensor.

1.5 Outline

The report is organized as follows. Chapter 2 presents the current field of research
regarding precise time-stamping and delay measurement for time synchronization for
sensor networks. Also the theory behind the different methods that are used in the
thesis is described. In Chapter 3 an outline of the system which is used in this thesis
is given. In Chapter 4 the process of implementing the methods and the different
tools used to generate the results is analyzed. In Chapter 5 results are presented.
In Chapter 6 an analysis of the results is conducted and finally in Chapter 7 the
potential improvements and the continuation of the work are outlined.



2 BACKGROUND

A brief overview of the problems which we fronted during the thesis like the existence
of different local clocks in a sensor network and the lack of a common notion of time
is described in the Chapter 2. A short summary of important terms and formulas
used during the thesis are also included.

2.1 Important definitions

There are a lot of definitions related to clock terminology, synchronization methods
and metrics to evaluate synchronization schemes on sensor networks. Most of them
are mentioned in the analysis of the thesis’ methods while some others are useful to
provide a better understanding of them.

Since a sensor network consists of different nodes and it is probable that they do not
have access to a common reference clock, their timelines will be different. A timeline
or an ”arrow of time” is a progression of time from the past to the future (Kopetz
and Ochsenreiter 1987). If the time of a clock in a sensor node A is defined as CA(t),
where CA(t) = t for a perfect clock, the clock offset is the difference between the
times that are reported by the clocks of the two nodes and is caused because of the
lack of a common time origin of the clocks (Rhee et al. 2009). The offset of a clock
CA(t) relative to CB(t) at a time t is given by CA(t) − CB(t). The first derivative
of the clock offset with regard to time, C ′

A(t) − C ′

B(t), is the clock skew and is the
frequency difference of two clocks. The second derivative of the clock offset with
regard to time is the clock drift and for two nodes is defined as C ′′

A(t)−C ′′

B(t). If we
want to map the readings of one node’s timeline to another timeline it is important
to know those three values, the offset, the skew and the drift.

The stability is how well it can maintain a constant frequency (Mills 1991). The
accuracy is how well its time is compared to national standards and the precision is
how precisely time can be resolved in a particular timekeeping system. The reliability
of a timekeeping system is the fraction of the time it can be kept operating and
connected in the network.

2.2 Clocks and the synchronization problem

Network sensors consist of a set of nodes which communicate to exchange infor-
mation. Every node is used to have its own local physical clock. A physical clock
can be defined as a device based on some periodic physical oscillation, for example
the oscillation of a pendulum, a quartz crystal or an atom, and the local time is
the time of a local physical node (Kopetz and Ochsenreiter 1987). Suppose that

8



2.3 The need for synchronization in sensor networks 9

a clock of a node i shows time Ci(t) and t is the point of the real time at UTC
(Coordinated Universal Time) then a local clock may or may not agree with t. In a
perfect clock, Ci(t) = t for all the nodes i and all t. In other words, dCi/dt = 1, in
a perfect clock the clock skew is equal to 1. However, the skew depends on different
environmental conditions like temperature and humidity and can vary over time.
As a result in reality a clock can be faster than the perfect clock if dCi/dt > 1 or
slower if dCi/dt < 1. In Figure 2.1 we can see the behaviour of a perfect, a fast and
a slow clock. Nonetheless, it can be assumed that a clock is within its specifications
if:

1− ρ ≤
dCi

dt
≤ 1 + ρ, (2.1)

where ρ is the maximum skew rate.

The synchronization problem corresponds to the problem of equalizing the clocks
of different nodes. This is not an easy problem to solve as the clocks of the nodes
drift away over a time period, because of the temperature changes etc., and simul-
taneously there is a need of equalizing the offset and the clocks’ rates or repeatedly
correct the offsets every specific interval to keep the clocks synchronized. For two
nodes that they have hardware clocks with stability of ± 5 ppm (parts per million),
they can drift by as much as 10µs within one second (Hazra et al. 2009). The exis-
tence of synchronization though among the nodes in a sensor network is very vital
in order to exist a common understanding of the environment.

The synchronization problem can have different forms (Sivrikaya and Yener 2004).
The first one corresponds to ordering the events or the messages and just say if the
event a occurs before the event b. This is the simplest form of synchronization and
it is more a comparison of local clocks for order rather than time synchronization.
The second one includes the algorithms that keep track of the relative offset and
drift among the local clocks of nodes and they are able to convert the instant time
of a node to some other node’s local time. Finally, the third category includes
synchronization algorithms that all nodes’ clocks are synchronized to a reference
clock in a common global timescale (Sivrikaya and Yener 2004). In this case the
local clocks are continuously adjustable to the reference clock (Flaviu 1989). If the
local clock is CL = L while the reference clock CR shows time R and L 6= R, the goal
is to increase the speed of the local clock if R > L or decrease it if R < L in order
to show time R + α instead of L + α, where α is an amortization parameter. The
reference clock is a stable clock, usually Cesium or Rubidium based stable automatic
clocks,

2.3 The need for synchronization in sensor networks

There are two main types of sensor networks: Centralized and distributed systems.
In the first category, there is a clear ordering of the events and the times at which the
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Figure 2.1. Illustration of fast, perfect and slow clock (Sundararaman et al.
2005).

events happen are known because there is a common global timeline. One process
is timestamped and every other process which tries to get a timestamp, it will get
an equal or a higher value of time. However, in distributed systems, each processor
has its own internal clock and there is not a common notion of a time as there is not
a common global clock. In this case, there is an increased need for synchronization.

Since the sensor networks are mostly distributed systems, there are several reasons
for addressing the need of synchronization in them. One application that exact
timestamping and synchronization are indispensable is the multi-sensor fusion (Huck
et al. 2011), (Westenberger et al. 2011), (Brahmi et al. 2013). Sensor nodes need
to collaborate and coordinate their operations in order to achieve sensing tasks and
end up to a meaningful result. Especially, the active safety systems are based on
different sensors e.g. cameras, radars, laser-scanners etc. that are fused to associate
their data and provide an accurate perception of the environment. For example,
in tracking applications, sensor nodes report the location and time at which they
sense the vehicle to a sink node where information is combined to estimate the
location and velocity of the vehicle. Incorrect timestamps lead to wrong estimations
of the position of the detected vehicles and traffic situations cannot be evaluated
and rated correctly. Especially, in the case of very time critical applications like in
pre-crash situations or automatic emergency braking or steering, where the decisions
must be made in milliseconds, different latencies affect negatively the estimation of
the real time of measurement. Obviously these latencies cannot be neglected but
instead should be detected and compensated. Other applications are the vehicle-to-
vehicle (V2V) and the vehicle-to-infrastructure (V2I) communication where different
vehicles communicate the results from their local sensor fusion to other vehicles or
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to infrastructure. In these specific cases there are several problems that should
be taken into consideration and this is that not only the local sensors have to be
synchronized but also the clocks of the different vehicles and of the infrastructure.

2.4 Synchronization protocols

For the synchronization of nodes in different sensors networks there are a lot of
algorithms that have attracted a lot of attention in recent years. Some of them rely
on clock information from the GPS (Global Positioning System) and high power
receivers which are appropriate for a lot of networks, however they can present
disadvantages for others because of their cost, their size and their non-availability
in some situations like underwater, under foliage etc. If those algorithms cannot
be used in a network for the time synchronization, software-based protocols are
developed which achieve the same result. The choice of the synchronization protocol
depends on the application and the characteristics of a network so the protocols
are different from each other in some aspects but very similar in some others. A
classification of the synchronization protocols that can give an understanding of the
variety and the potentials that they have can be done based on either synchronization
issues or based on application features which are discussed in the following sections
(Rhee et al. 2009), (Sundararaman et al. 2005).

2.4.1 Classification of the synchronization protocols based on

synchronization issues

Initially, a classification of the software-based protocols is done based on synchro-
nization related issues. This classification includes the master-slave and the peer-
to-peer synchronization, the internal and external synchronization, the probabilistic
and deterministic synchronization, the sender-to-receiver and receiver-to-receiver
synchronization, the clock correction and untethered clocks and the pairwise syn-
chronization versus the network-wide synchronization (Sundararaman et al. 2005).

The master-slave protocol assigns one of the nodes as the master and the rest of
them as slaves (Sundararaman et al. 2005). The local clock reading of the master
node is assumed to be the reference time and the slaves are trying to synchronize
with the master. On the other hand, the peer-to-peer structure allows any node to
communicate directly with all the other nodes of the network. This removes the risk
of the master node failure making the structure more flexible but at the same time
more uncontrollable (Sundararaman et al. 2005). The structure which will be used
in the thesis is the peer-to-peer structure since there is not a master node.

In internal synchronization there is no global time base available and for this reason
the protocol attempts to minimize the maximum difference between the readings of
local clocks of the sensors (Sundararaman et al. 2005). The internal synchronization
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can be performed in master-slave or peer-to-peer structures. In external synchro-
nization, a source of time like UTC, is available and is used as the reference time.
The local clocks of the sensors are adjusted to this time in order to be synchronized.
External synchronization uses phase locked oscillators in order to maintain the local
clocks within a specified deviation from the externally maintained time reference.
In the contrary to the internal synchronization, the external is not possible to per-
form in peer-to-peer structure as it requires a master node to communicate with
a time service like GPS to synchronize the slaves and itself to the reference time
(Sundararaman et al. 2005). In the examined sensor network of the present thesis
there is neither a master node nor a GPS system so only internal synchronization
methods are taken into account.

In Sender-to-receiver synchronization, SRS, the sender sends periodically a times-
tamp with its current local time information to the receiver and the message delay
is calculated as the total round-trip time from when the receiver requires the times-
tamp to the time that it receives it (Sundararaman et al. 2005). Apparently, in this
method there is a variance in message delay between the sender and the receiver
due to network delays and workload in the nodes. The Receiver-to-receiver synchro-
nization, RRS, uses the time that each receiver receives the same messages and it
does not require the sender’s participation at all. In this approach it is assumed
that if any two receivers receive the same message in single-hop transmission, they
receive it at approximately same time. The receivers then calculate the offset among
the times that they have received the same message. This kind of synchronization
reduces the variance of the message delay (Sundararaman et al. 2005). This thesis
deals with an SRS structure rather than an RRS.

In the clock correction approach, the network’s local clocks of nodes are corrected
either instantaneously or continually to run in parallel with a global timescale or an
atomic clock which provide a reference time to keep the entire network synchronized
(Sundararaman et al. 2005). In the approach of untethered clocks a common notion
of time among the nodes of a network is achieved without synchronization but
instead a table of parameters is created which are used to relate the local clock of
each node to the local clock of every other node in the same network. The time
translation helps to compare all the local timestamps (Sundararaman et al. 2005).
In the present thesis, the sensor networks which are examined follow the untethered
clocks principle since there is not a global timescale.

In addition, the pairwise synchronization is used to synchronize two nodes while the
network-wide synchronization is designed to synchronize a large number of nodes
in the network (Sundararaman et al. 2005). The examined sensor networks in the
thesis deal with the pairwise synchronization.
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2.4.2 Classification of the synchronization protocols based on

applications features

This section describes the classification of software-based protocols based on appli-
cations features. The classification includes the single-hop and multi-hop networks,
the stationary networks and mobile networks and finally the MAC-layer-based ap-
proach versus standard approach (Sundararaman et al. 2005).

In a single-hop network a sensor node can directly communicate and exchange mes-
sages with any other node which belongs to the network. On the other hand, in
the multi-hop communication the sensors in a domain communicate with sensors in
another domain via an intermediate sensor relating to both domains (Sundararaman
et al. 2005). In this thesis’ sensor network, there is no intermediate node but the
nodes can directly communicate and exchange messages.

In Stationary networks the sensors do not have the ability to move. However, in
mobile networks the sensors are not stationary but they move and they have the
ability to connect with other sensors when they enter geographically the area of
these sensors. Thin means that the topology is changing often and it might insert
problems as the nodes should be synchronized again with each other (Sundararaman
et al. 2005).



3 SYSTEM DESCRIPTION AND MOD-

ELING

In Chapter 3 the problem of existing delays in a sensor network is analyzed, the
challenges are presented and the system which is exposed to delays is modelled. In
addition, an outline of an embedded sensor and processor network is given which is
used as a running example throughout the whole thesis.

3.1 Modeling of the system

3.1.1 Source of delays

To measure the time delays which exist in a sensor network where the nodes do not
have common clocks requires first to identify the sources of delays among the series
of nodes. However, this is a procedure which encompasses a lot of challenges. Often,
time synchronization methods among nodes are applied to sensor networks and they
are accomplished by exchanging messages. These messages allow to compute time
differences among the clocks and help a node to estimate the time in other nodes’
clock. Having calculated the time differences, it is possible to adjust or correct the
clocks to operate in tandem. A challenge though is that the messages are exposed
to different delays while they are starting from a source node and reaching to its
destination through different paths. Especially non-deterministic and unbounded
delays make synchronization difficult. However, in certain applications like real-time
automation and active safety functions, it is very vital to keep a certain maximum
level of latency because otherwise the application will not work in a satisfactory
manner or in the worst case it can fail outright. The most significant delays are the
nodal processing delay, the queuing delay, the transmission delay and propagation
delay and all together are accumulated to give a total nodal delay. The performance
of Active Safety systems is greatly affected by network delays so it is vital to know
the nature and the importance of these delays (Kurose and Ross 2013).

Let us assume that the sensor network that we examine consists of two nodes as the
Figure 3.1 shows.

The aim is to be able to calculate the delay x from when, for example, the signal
sent from node A to when it was received from node B. This delay might contain
delays which take place inside the nodes.

In a general system of two nodes a packet is transmitted from the source node A
through an outbound link to the destination node B. This link is probably preceded
by a queue (known also as buffer).

14
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Figure 3.1. The nodes of a sensor network.

Figure 3.2. The delays through two nodes.

• Processing delay

The processing delay, dproc, includes the time which is required to process the
packet’s header and determine the packet’s destination. It may also include fac-
tors like the time needed to check for bit-level errors in the packet that occurred in
transmitting the packet’s bits from a previous node to node A. Processing delays
are typically on the order of microseconds or less.

• Queueing delay

After the nodal processing is completed, the source node A directs the packet to a
queue that precedes the link to node B. While the packet waits to be transmitted
onto the link it is exposed to the queueing delay dqueue, which depends on the number
of earlier-arriving packets which are queued and waiting for transmission across the
link. The delay of a packet can vary significantly. If no other packet is currently
transmitted, the queue is empty and the queueing delay is zero, but if there is a
lot of traffic and other packets are waiting to be transmitted the queuing delay will
be long. Queuing delays can be on the order of microseconds to milliseconds in
practice.

The queueing delay is the most complicated type of delay because it can vary from
packet to packet. For example, if 10 packets arrive at a queue at the same time
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and the queue is empty, the first packet will be exposed to no dqueue whereas the
last one will suffer from a relatively large dqueue waiting for the previous packets to
be transmitted. Calculating with certainty the queuing latency requires a detailed
knowledge about all sources of traffic on the network. Due to the fact that the queu-
ing delay is very variable it is preferable to use statistical methods to characterize
it, like the average, the variance or the probability that the queuing delay exceeds
a specific value.

• Transmission delay

The transmission delay dtrans is the time needed to push all the packet’s bits into
the link. If it is assumed that the packets are transmitted in a first-come-first-served
manner, the packet can be transmitted only after all the packets that have arrived
before it have been transmitted. The transmission delay does not depend on the
distance between the nodes but on the packet’s length in bits and the transmission
rate of the link. If we define the length of the packet by L bits and the transmission
rate by R bits/sec, then the transmission delay is defined as

dtrans =
L

R
(3.1)

Transmission delays are typically on the order of microseconds to milliseconds in
practice.

• Propagation delay

The propagation delay dprop, which is the last delay that the packet is exposed, is the
time that it needs to travel over the link and reach at the destination node. The bits
propagate at the propagation speed of the link and the propagation speed depends
on the physical medium of the link. The physical link can be for example fiber
optics, twisted-pair copper wires etc. On the contrary to the transmission delay,
the propagation delay depends on the distance between two nodes. If we define the
distance between node A and node B as d and the propagation speed of the link as
s, the propagation delay is the distance between them divided by the propagation
speed as it is defined by the Equation 3.2

dprop =
d

s
(3.2)

Typically the propagation delays are on the order of milliseconds.
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• Total nodal delay

The contribution of these delay components can vary significantly. The sum of the
processing, queueing, transmission and propagation delay gives the total nodal delay
by:

dnodal = dproc + dqueue + dtrans + dprop (3.3)

In an Ethernet-based network for example, some sources of delay are calculated.
For the maximum size Ethernet frame 1500 bytes at rate 100 Mbps the transmission
delay is 120 µs. For comparison, the minimum size frame 64 bytes at rate of 1 Gbps
has a latency of 0,5 µs.

In addition, in the Ethernet network the bits which are transmitted along a fiber
link travel at 2 · 108 m/s. So, the one way latency for 10 km link is 50 µs using the
Equation 3.2.

Finally, the queuing delay is variable from packet to packet depending on the load of
network. If we want to calculate the average queueing delay of the Ethernet network
then we should use the Equation 3.4

dqueue = (network load) ∗ dtrans,(max) (3.4)

The average queuing latency is proportionally to the network load. The network load
is given as the fractional load relative to full network capacity and the dtrans,(max)

is the transmission delay of a full-size frame. If we assume that the network has
25% load and the frame is 1500 bytes, the average queueing delay of the Ethernet
network is 30 µs.

In some circumstances, packet loss occurs when one or more packets of data travel-
ling across the network fail to reach their destination. This happens due to the fact
that in reality the queue preceding a link has finite capacity so a packet can arrive
to find a full queue. With no place to store the packet, a node will drop it and the
packet will be lost. A packet loss looks like a packet having been transmitted into
the network core but never emerging from the network at the destination. There-
fore, performance at a node is often measured not only in terms of delay, but also
in terms of the probability of packet loss.

3.1.2 Events

Those were the most common delays which can be found in systems. Different events
though take place in different systems. To be able to define the delays in every given
system irrespectively the complexity of the system it is necessary to define events.
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It is assumed that the examined system is composed of different processes Pi,
i=1,2,...x. Each process consists of a sequence of events. The events of a process
form a sequence where event a occurs before event b in the sequence if a happens
before b. The type of events depends on the application we have. However, in dis-
tributed systems it is sometimes hard to say that one of two events occurred first
(Lamport 1987). We assume though a partial ordering of events inside the system
where the partial ordering is defined by an arrow → and it is applied if:

i. If a and b are events in the same process and a comes before b then a→b.

ii. In addition, if a is the sending of a message by one process and b is the receipt
of the same message by another process then a→b.

iii. Finally, if a→b and b→c then a→c.

For example, according to the system of Figure 3.2, a is the sending of a signal
from Node A and b is the receiving of the signal from Node B and according to the
definition (ii) it will be a→b.

3.1.3 Timestamps

We now introduce clocks into the system. According to (Lamport 1987), ’a logical
clock is just a way of assigning a number to an event, where the number is thought of
as the time at which the event occurred’. The challenge though, as it was mentioned
before, is that each node has its own clock and they do not have access to a central
clock which requires a service to ensure that the processors share a common notion of
time, where time can mean either an approximation to real time or an integer-valued
counter. In case that there was a common clock, the nodes could assign timestamps
to events in this common global time and the delays would be easily measurable by
a simple subtraction of the timestamps. However, especially in distributed systems,
it may be ineffective to use external clocks, as the cables interconnecting these
clocks introduce distortions, which could be higher than the inherent stability of the
external clock. In addition, the connection of each node to a stable clock is a very
expensive solution which is not preferred very often.

In this case though the non existence of a common time base creates the need of
applying internal synchronization methods among the nodes. These methods are
software based solutions which ensure that the logical clocks used by the nodes are
consistent within limits and they provide the possibility of common interpretation of
information. The software algorithms assure that the comparison of the timestamps
of specific events between nodes are able to provide numerical answers about the
delays within the system. In addition, we should remember that physical clocks may
drift due to temperature changes etc. as we saw in Chapter 2. The clocks in our
system might also drift.
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Let Ci(t) denote the reading of a clock Ci, i=1,2,...x depending on how many different
clocks exist in a system, at physical time t.

Now, we define each clock Ci(t) for each process Pi to be a function which assigns
the current time t which it reads from its clock Ci to an event a in that process. This
results in the fact that each event at a process Pi will be attached with a timestamp
ti equal to the time that it reads from its clock Ci when the event happens. Each
clock defines also a unique timeline. Given that we have x clocks in the system it
means that we will have x timelines respectively.

The following example sums up what it was mentioned till now about the delays,
events and timestamps. It was defined at the Section 3.1.2 that the event a is the
sending of a signal from Node A and the event b is the receipt of it from Node B.
The Node A has its own clock which is the CA and the Node B has another clock
defined as CB. Two timelines exist because of the two different clocks, the first is
the Node’s A timeline based on its hardware clock CA as well as the second is the
Node’s B timeline based on CB. Because of the two different clocks and as there is a
lack of a common time origin of them, there are offsets among the clocks. The offset
between the CA and CB clocks is defined as ∆(CA, CB) = CB − CA. As a result, in
order to introduce the timestamps in the modelling of the system, the tA < a > is
the timestamp which is attached by the clock of Node A CA to the sending of the
signal from Node A. Respectively, tB < a > is the current time which is assigned
from the clock CB to the event a. When the event a happens it is possible to be
timestamped by the clock CA since it is a part of node A however it is also possible
to be timestamped by the CB if and only if CA is synchronized with CB. As a result,
it is possible the two clocks to assign a timestamp for the same event only if the
nodes are synchronized.

Finally, to measure the delay x which is shown in the Figure 3.1, which is the delay
from when the signal is sent from node A to when it is received from node B, we
need to solve the next equation:

x = tB < b > −tB < a > (3.5)

However, if there was a central clock and all the nodes had access to that, then it
would be enough to solve:

x = T < b > −T < a > (3.6)

if it is supposed that T is the global time, e.g. the UTC time.

Modelling the delays of the whole system with equations like the 3.5 and solve them
will give us the solution to our problem. However, if we do not have the possibility
to interfere and verify the synchronization method among the nodes we have to
accept that it is accurate enough even if it might be a possible source of delays. For
this reason and in order to extinguish the uncertainties we will develop statistical
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methods to measure the delays. The methods will be applied to a large sample of
data and they will measure the delays based on different timelines. This means that
the delay x will be measured based on the timestamps that the clock CA reports but
also based on the timestamps that the clock CB reports. The measurements will be
compared to verify if the results are similar. What is more, a reference system can
be used to provide results about the same delay.

3.2 Case study

A use-case system is modelled according to the previous analysis and is used as
a running example throughout the thesis. It includes an embedded sensor network
which is used by Volvo Cars Corporation (VCC) for the development and verification
of advanced driver assistance systems (ADAS).

The system consists of sensors with radar and vision sensing for aiding the car’s
perception of its surrounding. It can access an imminent threat and enable a suite
of active safety features like forward collision warning (FCW), lane keeping aid
(LKA), collision mitigation support (CMS) etc., if there is a need. The system’s
sensors are located in one processor where they detect the obstacles, the data is
fused and then is sent over an interface to a second processor which is responsible to
make decisions and apply the active safety functions, if it is necessary. The signals
through the whole chain detection-fusion-decision are converted to UDP packets and
sent through a dedicated Ethernet network to a logging device. The two processors
and the logger have each of them local clocks and while the signals are timestamped
during the different procedures in the signal processing chain, any error affecting
the timestamp could have a direct impact on the active safety functions and the
accuracy of the system. It is possible to have delays in both data processing and
the logging system which result in the failure of the accurate correlation of signals
to each other and to the real traffic situations.

The system is depicted in Figure 3.3 and consists of a sensor processor and a function
processor that are connected through a Serial Peripheral Interface (SPI) data bus.
SPI is often used for transferring data between processors for several reasons, e.g.
it covers full duplex communication, it is not limited to 8-bit words in the case
of bit-transferring, it has a simple hardware interfacing and it is cheap. The data
from the two processors is converted to UDP packets and sent through a dedicated
Ethernet-based UDP network to a logging system.

The sensor processor includes integrated sensors for radar sensing, vision sensing
and data fusion. It uses data fusion algorithms to combine inputs from the sensors
to deliver high-accuracy estimates of the parameters describing the environment.
The function processor consists of further processing of the sensor data from the
sensor processor but also other sensors. This module is named as pre-processing
for functions and its output is fed as input to the driver’s support functions, like
adaptive cruise control (ACC), traffic jam assist (TJA) etc. where decision making is
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Figure 3.3. Block diagram of the use-case system.

taking place. The decisions are implemented in the actuators. The logging system
records the data at different points. This data is used for the verification of the
correct performance of the sensors and the functions.

In this distributed system, the sensor data acquisition is carried out in one processor
and the algorithms for the functions run in the second processor. Because of this fact
there is a delay for the sensor data to propagate to the functions. The magnitude
of the delay depends on the processing times of the different tasks that they take
place in the meantime as well as on the transmission of signals through the SPI. It
is very vital for the functions to know the exact state estimates (position, velocity,
acceleration) of the target the moment that they should make a decision and brake
or steer. However, the delay inserts uncertainty of the obstacles’ state estimates
when the data reaches the functions. For example, if the sensor data detects that
the target is at a specific position at a specific time but this information become
known to the functions 100ms later, during this time both the host and the target
car have been moved and if the functions decide how to act based on the delayed
data, their performance will not be satisfactory. The solution is to measure this
delay and compensate for it. While a compensation is made in the current system,
this thesis aims to measure the accuracy of the delays by defining different methods
to calculate the means and distributions of them. This requires in depth analysis of
the system and good handling of the inherent variable which is the time.
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3.2.1 Definition of delays

Every step in the signal processing chain from the obstacle detection by the sensors
to decision making in the functions takes considerable time because of the com-
putationally heavy signal processing methods on the nodes and the transmission
of signals through different interfaces, e.g. the SPI. To capture possible delays in
the system, we aim to estimate mathematically the processing times of the time-
consuming tasks. Those tasks are the sensor detection and fusion, the transferring
of the data over the SPI and the decision making at the functions. A scheme of
the times are given at the Figure 3.4. The times we aim to estimate are the ∆tsens,
∆ttrans, ∆tsens+trans and ∆tfunct as it seems in Figure 3.4.

Figure 3.4. Processing times of time consuming tasks.

The times we aim to estimate are summarized below:

• ∆tsens is the processing time of the sensors and the fusion in total.

• ∆ttrans is the time it takes to transfer the data trough the SPI as well as the
time in the pre-processing for functions module.

• ∆tsens+trans is the sum of the first two measurements.

• ∆tfunct is the processing time in the functions.
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To proceed with the estimation of the delays sensors and functions data is required
from the case-study system. The data was collected by Volvo Car Corporation
during test runs. The dataset contains data from the radar and camera sensors as
well as ground-truth data from a reference system which is installed on the car.

3.2.2 Clocks and timelines

The present distributed system consists of two processors that communicate by
messages transmission through the SPI interface and each processor has its own
hardware clock without access to a central clock.

Since in this system the sensor data acquisition and the algorithms for the functions
run in different processors a synchronization method to ensure that the processors
share a common notion of time is very vital to reduce timing error versus naively
timestamping sensor data when it arrives at the function processor.

Except for the two hardware clocks of the processors, the logging system, run in a
separate processor, has also a different clock and as a result there are three different
timelines in the system:

i. The sensor processor’s timeline based on its hardware clock Cs.

ii. The function processor’s timeline based on its hardware clock Cf .

iii. The logger’s timeline based on its clock Cl.

Because of the three different clocks and as there is a lack of a common time origin
of them, there are offsets among the clocks. The offset between the Cs and Cf

clocks is defined as ∆(Cs, Cf ) = Cf − Cs and accordingly ∆(Cs, Cl) = Cl − Cs,
∆(Cf , Cl) = Cl − Cf are the other two offsets.

The different timelines of the system is shown in Figure 3.5 and the relationship
among them is given by the Equation 3.7.

Figure 3.5. Timelines in the system.
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∆(Cs, Cl) = ∆(Cs, Cf ) + ∆(Cf , Cl) (3.7)

The offset between the function and logger timeline is the sum of the offset be-
tween the sensor and logger timeline and the offset between the sensor and function
timeline. We have the following cases:

• ∆(Cf , Cl) > 0 if Cl > Cf

• ∆(Cs, Cl) > 0 if Cl > Cs

• ∆(Cs, Cf ) > 0 if Cf > Cs

3.2.3 Events and timestamps

The use-case system is composed of three processes Ps, Pf and Pl. The Ps is the
sensor processor, the Pf is the function processor and the Pl is the logging system.

Different events take place inside the processes and the most important are listed
below:

e1. Radar measurement
e2. Radar measurement sent to logger
e3. Radar measurement received at logger
e4. Camera measurement
e5. Camera measurement sent to logger
e6. Camera measurement received at logger
e7. Fusion output
e8. Fusion output sent to functions
e9. Fusion output sent to logger
e10. Fusion output received at functions (as input to the pre-processing)
e11. Fusion output received at logger
e12. Functions input
e13. Functions output
e14. Functions output sent to logger
e15. Functions output received at logger

Now, partial ordering relations among the events can be defined according to the
Section 3.1.2 on when one of two events occurred first. The abbreviation meas =
measurement is used for sake of simplicity.

• For example, < radar meas > and < radar meas sent to logger > are events
in the same process and< radar meas > happens before< radar meas sent to logger >
so according to (i):
< radar meas > → < radar meas sent to logger >.
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• According to the second definition, < radar meas sent to logger > is a sending
of a message by one process and < radar meas received at logger > is the
receipt of the same message by another process so:
< radar meas sent to logger > → < radar meas received at logger >.

• Finally, since it is < radar meas > → < radar meas sent to logger > and
< radar meas sent to logger > → < radar meas received at logger >
according to the definition (iii) occurs that:
< radar meas > → < radar meas received at logger >.

Similarly, the next logical relations occur:

• < camera meas > → < camera meas sent to logger >
• < camera meas sent to logger > → < camera meas received at logger >
• < camera meas > → < camera meas received at logger >
• < fusion output sent to functions >→< fusion output received at functions >
• < fusion output sent to logger > → < fusion output received at logger >
• < functions input > → < functions output >
• < functions output > → < functions output sent to logger >
• < functions output sent to logger >→< functions output received at logger >
• < functions input > → < functions output sent to logger >
• < functions input > → < functions output received at logger >
• < functions output > → < functions output received at logger >

However we cannot say anything about the relation between the camera events, e.g.
< camera meas > and the radar events < radar meas > . There is no order
between them, the one can proceed the other and vice-versa depending on their
sampling rate.

As it was mentioned, three clocks exist in the system the Cs, Cf and Cl which
assign timestamps to the events. For example, the timestamp for the event <
radar meas > is defined as ts < radar meas >. Respectively, for the event
< functions input > at process Pf , the timestamp which is assigned is tf <
functions input >. According to what it was just mentioned, all the events which
were defined before they should be assigned with timestamps from the processors
that they belong to. So, events e1, e2, e4, e5, e7, e8 and e9 are assigned timestamps
from Cs. Events e3, e6, e11 and e11 are assigned timestamps from Cl and events
e10, e12, e13 and e14 are assigned timestamps from Cf .

Some of the timestamps are not logged, so there is not access to them like the e8,
e10, e13 and e14. The overall timestamps are summarized in Table 3.1.

However, the question in this point is how it is possible to correlate and find rela-
tions among the timestamps from the different processors and as a result calculate
the wanted delays. The answer is given by a synchronization method between the
sensor and function processor which is based on a synchronization pulse. Using
this method, an algorithm is implemented to transfer ts < radar meas > to the
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Table 3.1. Timestamps assigned at the events.

Events Timestamps of events

Radar measurement ts <radar meas>
Radar measurement sent to logger ts <radar meas sent to logger>
Radar measurement received at logger tl <radar meas received at logger>
Camera measurement ts <camera meas>
Camera measurement sent to logger ts <camera meas sent to logger>
Camera measurement received at logger tl <camera meas received at logger>
Fusion output ts <fusion output>
Fusion output sent to logger ts <fusion output sent to logger>
Fusion output received at logger tl <fusion output received at logger>
Functions input tf <functions input>
Functions output received at logger tl <functions output received at logger>

tf < radar meas >. This synchronization method assures also that the times in-
dicated from different clocks do not drift arbitrarily far apart and the clocks of the
sensor and function processors are consistent. In other words, the timestamps pro-
duced by the Cs clock when the radar measurement is taken were already known
but after the synchronization the timestamps that would be given by the Cf clock
when the radar measurement is taken become also known. So, it becomes known the
Cf (t) value that it would be given to the event < radar meas > if it was observable
by the function processor. This relation is the key for the solution of the problem
since it creates the foundation to compare timestamps between the two processors.
This relation is used to create a mathematical model with equations which correlate
additionally other timestamps from all the processors together and are used later to
calculate the delays.

3.2.4 Mathematical modeling of the case-study

Having defined the events and the timestamps in the different timelines we aim now
to create the equations or else the mathematical model to calculate the delays. The
equations will be a comparison between the timestamps for example to calculate the
∆tsens, we have to compare the ts < fusionoutput > with the ts < radarmeas >.
However, the challenge here is that very few timestamps are known. For the rest of
them we should be able to produce them. For this reason, the estimation of offsets
among the clocks as well as the mapping of the timestamps from one local timeline
to another are necessary tasks to create the mathematical model.

Since there is a lack of a common time origin of the clocks, offsets exist among them
and we aim to define them mathematically.

We start by trying to find the offset between the Cs and Cf clocks. We use the
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property that it was mentioned in Section 3.2.3 which give us the ts < radar meas >
and the tf < radar meas >, meaning that we have the timestamps for the same
event from the two different processors. The offset can be found from the Equation
3.8:

∆(Cs, Cf ) = tf < radar meas > −ts < radar meas > (3.8)

To find the offset ∆(Cs, Cl) we should choose two events which are timestamped at
the Cs clock and the Cl clock, and they need to refer to the same action. These events
can be, for example, the output from a node at sensor processor and the receipt of
this output at the logging system. The timestamps that satisfy the requirements
are the ts < fusion output > and the tl < fusion output received at logger > and
they are used for the calculation of the offset ∆(Cs, Cl) according to the equation:

∆(Cs, Cl) = tl < fusion output received at logger > −ts < fusion output > (3.9)

As it can be seen in Figure 3.6 the < fusion output > is sent as a UDP packet to
the logger. However, before the UDP message sent there is a processing time to de-
termine the packet’s destination, prepare the header of the message etc. After that,
it is placed in the UDP queue for its transmission. Then, it follows a transmission
and a propagation delay while it is sending through the physical link. Finally, when
it reaches the logger it is also queued and it waits to be read and written.

Figure 3.6. Logging of a timestamped event.

Those delays, known also as nodal delays, were explained in Section 3.1.1. As a
result the complete equation which calculates the offset is given by:

∆(Cs, Cl) = tl < fusion output received at logger > −ts < fusion output > −dnodal
(3.10)
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where the dnodal is given by:

dnodal = dproc + dqueue + dtrans + dprop

and in the dqueue are included both the delay at transmission queue and in the receive
queue.

The nodal delay depends on the load of the network. In addition, if we compare the
ts < fusion output > and the ts < fusion output sent to logger >, it is possible to
calculate the dproc. After calculations of this delay in our system, the dproc results
to be less than 200µs. Since this delay is in timescale of µs and it is not possible
to calculate the rest of the nodal delays, because the logging system and the sensor
processor have separate clocks which are not synchronized, for the present thesis we
assume that the nodal delay will be zero.

dnodal ≃ 0 (3.11)

The offset ∆(Cf , Cl) can be calculated by the Equation 3.7. We make the same
assumption as before when we calculate this offset.

We now wish to estimate the time ti on the function processor that is associated with
an external event ei occurred on sensor. For example, we want to know the time tf
that is given from Pf that the < camera meas > occurred. Having estimated the
offset ∆(Cs, Cf ), our request can be implemented and all the timestamps that exist
only in the sensor timeline can be mapped to the function timeline.

tf < camera meas >= ts < camera meas > +∆(Cs, Cf ) (3.12)

tf < fusion output >= ts < fusion output > +∆(Cs, Cf ) (3.13)

Accordingly, the timestamps that exist only in function timeline can be mapped in
the sensor timeline.

ts < function input >= tf < function input > −∆(Cs, Cf ) (3.14)

It is also possible to map all the timestamps that exist in the function timeline to
the logger timeline and the opposite.

tl < functions input >= tf < functions input > +∆(Cf , Cl) (3.15)
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tf < functions output received at logger > = tl < functions output received at logger >

−∆(Cf , Cl)

(3.16)



4 METHODS

This Chapter describes the methods used to calculate the delays.

We have modelled the use-case system and we will continue with calculating the
delays which were defined in the Section 3.2.1 and shown in Figure 3.4. The delays
are summarized below:

• ∆tsens is the processing time between the radar measurement and the sensor
fusion’s output.

• ∆ttrans is the time it takes to transfer the data trough the SPI as well as the
time in the pre-processing for functions module.

• ∆tsens+trans is the sum of the first two measurements, so from the radar mea-
surement to the output of the pre-processing module.

• ∆tfunct is the processing time in the functions.

The delays can be calculated by comparing the timestamps of different events. Since
we do not have the possibility to interfere in the synchronization method among the
nodes we will calculate all the delays based on the three different timelines by using
statistical methods. The measurements will be compared to verify if the results are
similar.

4.1 Methods

Statistical methods are developed to estimate experimentally the processing times
of the tasks. The first method is based on the real measurement timestamps of the
sensor, the second is based on the arrival time at the acquisition framework at the
logger and the third is based on the measurements from the reference sensor.

To estimate the processing times we use statistical methods and we take advantage
of the fact that there are different clocks in the system. We will estimate the
times first based on the timestamped events from the sensor and function timelines
where synchronization is applied and secondly calculate the same times based on the
arrival time at acquisition framework at the logger and after that we compare the
distributions of the calculations. If there are uncertainties we use a third method
where the delays are calculated based on the reference data that we have from the
reference system.

30
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4.1.1 Estimation of delays based on sensor’s and function’s

timelines

In this section we are going to compare events that are timestamped only at Cs or
Cf .

• ∆tsens

This delay includes the time that it takes for the sensors to acquire their raw data and
their processing from the sensor fusion. The delay is estimated from the Equation
4.1 by subtracting the timestamps of < radar meas > and < fusion output >
events.

∆tsens = ts < fusion output > −ts < radar meas > (4.1)

Both of them are reported based on Cs clock and the comparison between them
does not include uncertainties.

• ∆ttrans

This delay is calculated from the Equation 4.2

∆ttrans = tf < functions input > −tf < fusion output > (4.2)

where tf < fusion output > is calculated from the Equation 3.13.

• ∆tsens+trans

This is the delay from when the radar sensor takes its measurement to when the
pre-processing is completed on the function processor. After the pre-processing the
data will be processed from the functions’ algorithms in order to decide for the
active safety system’s reaction. In this point it is important that the functions
have updated data compensated for the time delay of the ∆tsens+trans to make right
decisions. This time is very critical for the system’s good performance. This time
is the sum of the two previous calculated delays according to Equation 4.3

∆tsens+trans = ∆tsens +∆ttrans (4.3)

or in terms of timestamped events the delay is given from the Equation 4.4

∆tsens+trans = tf < functions input > −tf < radar meas > (4.4)



32 Chapter 4 Data and methods

4.1.2 Estimation of delays based on logger’s timelines

During this method, we are going to compare events that timestamped only from
Cl. To distinguish the estimation of delays with the second method from the first,
the delays in this Section are written with capital T.

• ∆Tsens

Before we extract the equation to calculate the ∆Tsens delay, it is necessary to insert
two new notations. Those are the tlcalc < radar meas received at logger > and the
tlcalc < fusion output received at logger >.

After the radar sensor has taken its measurement, this information will be sent to the
logger and this event will be timestamped with ts < radar meas sent to logger >.
However, we do not know when this measurement will be sent. It can happen imme-
diately after the measurement is taken or much later (see Figure 4.1). What we need
to know to calculate the ∆Tsens is the logger’s time when the radar measurement
would be sent to the logger immediately after the measurement. This is calculated
by the Equation 4.5.

Figure 4.1. Illustration of events timestamped from sensor and logger timeline.

tlcalc < radar meas received at logger > = tl < radar meas received at logger >

−(ts < radar meas sent to logger > −ts < radar meas >)

(4.5)

Exactly the same applies for the fusion output. The Equation which gives the
tlcalc < fusion output received at logger > is the 4.6.
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As a result, the calculation of the ∆Tsens is not based on pure logger’s time. However,
we aim to calculate this time and compare the results with the same calculation
∆tsens from the first method to see how close the distributions are.

tlcalc < fusion output received at logger > = tl < fusion output received at logger >

−(ts < fusion output sent to logger >− ts < fusion output >)

(4.6)

Finally, the equation to calculate the delay ∆Tsens is given by 4.7.

∆Tsens = tlcalc < fusion output received at logger >

− tlcalc < radar meas received at logger >
(4.7)

• ∆Ttrans

The ∆Ttrans is given from the Equation 4.8.

∆Ttrans = tl < functions output received at logger >

− tlcalc < fusion output received at logger > −∆Tfunct

(4.8)

• ∆Tfunct

This delay is the processing time on the functions node. Unfortunately, there are
no events in the beginning and in the end of this node that are timestamped with
the same clock. Instead, there is the tf < functions input > in the function’s
timeline and the tl < functions output received at logger > in logger’s timeline.
To calculate the delay we will try to compute the time that the < functions input >
would be theoretically received at the logger if it was logged.

This is possible because there is some data that come immediately from the backbone
of the car and they are logged very often through FlexRay at the logger. The same
information comes through the sensor, they are compared to tf < functions input >
and go through the functions node as all the other information will go. The node
takes the last available information from the backbone, just the one before the
tf < functions input >. So the information is delayed until the processing in this
node is finished and then it is logged. As a result, the same information is written
at the logger in the beginning of functions node and in the end of it. If we compare
those two times the time difference will give us the ∆tfunct.

Since the node takes the last available information from the backbone and let us
assume that this comes every xms, the worst case scenario will be to exist an un-
certainty of xms for the ∆tfunct.
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4.1.3 Estimation of delays based on reference data

For the estimation of the delays with this method, only reference data are used.

To distinguish this method’s delays from the other methods we will use the notation
of τ , for example ∆τtrans. With this method we estimate only the ∆τtrans because
it seems that this delay is very dynamic and it is good to have a third chance of
distribution estimation.

• ∆τtrans

When the data is received at the logger it is timestamped with the logger’s clock.
This is applied for all the data that they are logged through all the interfaces,
for example data that are logged through Ethernet, CAN bus etc. Their arrival
time on the acquisition frame at the logger is based on the Cl clock. This helps in
synchronization of multiple sensors.

This gives us the opportunity to synchronize the reference data from the reference
system to the sensor data.

Initially we want to synchronize the reference data to the tl < fusion output received
at logger >. This means that we will have reference data about the state estimates
of the host and the target for all the timestamps when the fusion output is received
at the logger. Then, we calculate the TTC (Time To Collision) for every sample in
a logging file based on the reference data. The TTC is given by the Equation 4.9.

TTC =
longitudinal position

host velocity
(4.9)

Then, we synchronize the data from the reference system to the tl < functions output
received at logger > and we calculate again the TTC. For the last calculation we
subtract the ∆tfunct from TTC, in order to estimate the TTC when the functions
input would be logged at the logger.

The time difference between the TTCs wil give the ∆τtrans.



5 RESULTS AND DISCUSSION

In this chapter the results from the thesis are presented and are discussed in parallel.
The above mentioned methods are applied to a large number of files which include
the logged signals that are used to compute the statistics of the processing times.

5.1 Datasets

To examine how the different traffic situations can influence the delays tests were
created which were conducted in a test track in Gothenburg and they include one
car, the host, in which we log the data and it moves with constant speed and a
standstill car in front of it, named as the target. The same scenario is repeated but
now the host variates its speed. Finally, we use logging files which were collected
from common drivings in different kind of roads and in cities with low and very high
traffic. All the methods are applied in all the three data sets.

The logging files are categorized in three data sets which are summarized below:

• A set of logs with one target and constant host speed.

• A set of logs with one target and variable host speed.

• A set of logs with a lot of targets and variable host speed- dynamic driving.

The equations from the Chapter 4 of each method are applied to the three data sets
and the results are presented below.

All the results are normalized to the maximum delay which has been calculated. This
results in a maximum delay which is equal to 1 and all the other delays are adjusted
proportionally.

5.2 Results

We succeeded first to calculate the offsets among the clocks based on the Equations
3.7, 3.8 and 3.9. The offsets will be different for every logging file because of the
different notion of time from the clocks. For example, the sensor’s clock might be
reset to zero after a specific period of time while the logger might measure the time
continuously from the moment when the car is turned on.

For a specific logging file, which is picked up randomly, the results for the different
offsets are shown at Figures 5.1, 5.2, and 5.3. Those offsets are valid only for the
specific logging file and they are not applicable to all of them.

35
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The results for the offsets ∆(Cs, Cl) and ∆(Cf , Cl) include a big variation since
it is among the two processors and the logger, which include the delays over the
Ethernet.
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Figure 5.3. The offset between Cs and Cl.

Although different offsets exist, it is still possible to calculate the drift between
the sensor and processor clocks where synchronization is applied. The drift for the
specific logging file can be seen at Figure 5.2. Further calculations are made on a
large number of logging files in order to find the average drift which is estimated to
be 0.015ms for one minute log, a number also normalized to the maximum delay.
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From now and on, the statistical results from the computation of the delays after
we apply the three different methods to the three different data sets are given. The
methods are applied to around 90 logging files with 2 hours total duration containing
data from driving on public roads and at specific test tracks.

In the first method the events which are timestamped either from Cs or from Cf

clocks are compared and the numerical values of the delays ∆tsens, ∆ttrans and
∆tsens+trans are presented. In the second method events which are timestamped
only from the logger’s clock Cl are compared and the numerical results of the delays
∆Tsens, ∆Ttrans and ∆Tfunct are given. In the third method the delay of ∆τtrans is
given based on data from the reference sensor.

a. Estimation of delays based on sensor’s and function’s timelines

The delays ∆tsens, ∆ttrans and ∆tsens+trans have been calculated respectively from
the Equations 4.1, 4.2 and 4.3. The same delays are calculated for the logs which
include data with constant speed, variable speed, dynamic driving as well as for the
summation of them. Statistical results from this first method are presented in the
Table 5.1.

Table 5.1. Statistical results from the first method

Constant speed Variable speed Dynamic driving

∆tsens+trans ∆tsens ∆ttrans ∆tsens+trans ∆tsens ∆ttrans ∆tsens+trans ∆tsens ∆ttrans

Mean 0.563 0.310 0.254 0.602 0.360 0.243 0.593 0.349 0.244

Sigma 0.069 0.079 0.060 0.073 0.070 0.054 0.072 0.071 0.054

Median 0.572 0.360 0.249 0.606 0.381 0.241 0.597 0.379 0.241

Samples 39000 7500 60000

We notice that there is a difference in the measurements of the dispersion of the
delays when the host moves with constant speed and when it moves with variable
or it drives more dynamically.

By looking the ∆tsens+trans delay,which is the processing time from the radar mea-
surement to the output of the pre-processing module, we notice that this is lower
when the host drives with constant speed. In Figures 5.4, 5.5 and 5.6 we can see
the box plots of the ∆tsens+trans for the three different data sets. Box plot is a stan-
dardized way of displaying the distribution of the data based on the five number
summary: minimum, first quartile, median, third quartile, and maximum. The cen-
tral blue rectangle spans the first quartile to the third quartile. The segment inside
the rectangle shows the median while the ”whiskers” above and below the box show
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the locations of the minimum and maximum. The surprisingly high maximums or
surprisingly low minimums called outliers and are shown with the red crosses.

A bigger variation in distribution exists in the last two cases, in the variable speed
and in the traffic. In the case of constant speed the mean value is 0.563ms, in the
case of variable speed it is 0.602ms while in traffic it is 0.593ms.

The plot which includes the results from the overall logging files is given at Figure
5.7 where we can clearly recognise when the speed is not constant by the variation
in the distributions and the more extreme values. In constant speed the full range
of variation from minimum to maximum is distributed in similar way while in the
other case the distribution is more outspread. The overall statistical results for the
∆tsens+trans calculated by the first method which was applied to the summation of
the logging files are given analytically in the Table 5.4.
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Figure 5.6. Boxplot of ∆tsens+trans in traffic.
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Figure 5.7. Boxplot of ∆tsens+trans of all logging files.

By examining the results for the ∆tsens, which is the processing time that the sensors
make their measurements and the data is fused, from the Table 5.1 we notice that
there is a similar analogy in these results with the ∆tsens+trans results which means
that the delay is lower for the data set of the constant speed. The difference in the
distribution of ∆tsens among the three data sets is shown in the Figure 5.8.
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Figure 5.8. Distributions of the ∆tsens for the three data sets.

Examining the results for the ∆ttrans, which is the processing time for transferring
the data over the SPI and pre-process them to be ready for the functions, it is
noticed that there is a better symphony among the three data sets for this delay
which can be seen from the comparison of the normal distributions for the data sets
in the Figure 5.9.
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Figure 5.9. Distributions of the ∆ttrans for the three data sets.



5.2 Results 41

As a result, it seems that the ∆tsens delay depends on the complexity of the scenario,
which means that it varies a lot depending on the different speeds and the amount
of targets that are detected from the sensor. The more objects are detected, the
bigger the delay will be. On the other hand, the ∆ttrans seems to be not so dynamic
as the ∆tsens.

Consequently, the variation in the ∆tsens+trans delay which is shown in the Figure
5.7 is due to the delays during the detection and the fusion of the objects from the
sensor and not due to the transferring of the data over the SPI.

A comparison between the ∆tsens and ∆ttrans for the total amount of the logging
files can be seen in the box plots of Figures 5.10 and 5.11 while analytical results
for these delays can be found in the Table 5.4.
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Figure 5.10. Boxplot of ∆tsens of all logging files.
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Figure 5.11. Boxplot of ∆ttrans of all logging files.

b. Estimation of delays based on logger’s timelines

The results of this Section are generated by using events which only timestamped
from the logger’s clock. The statistical results of ∆Tsens and the ∆Ttrans for the
three different data sets are presented at the Table 5.2.

Table 5.2. Statistical results from the second method

Constant speed Variable speed Dynamic driving

∆Tsens ∆Ttrans ∆Tsens ∆Ttrans ∆Tsens ∆Ttrans

Mean 0.311 0.251 0.361 0.238 0.350 0.252

Sigma 0.079 0.063 0.071 0.055 0.072 0.060

Median 0.356 0.252 0.380 0.233 0.375 0.253

Samples 39000 7500 60000

Comparing the ∆Tsens among the data sets we notice that this delay is lower at
the logs with the constant speed. As it was noticed from the calculations of ∆tsens
with the first method, when the scenario is less complicated with very few obstacles
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and constant speed this delay will be lower since the less objects are detected in the
traffic environment the less time the fusion of them will take.

Regarding the ∆Ttrans delay that it takes from the data to be sent over the SPI and
pre-processed there is a closer agreement among the three data sets.

In addition, the delay of the ∆Tfunct is estimated to be 0.106ms. To calculate this
delay we choose a signal that comes immediately from the backbone of the car and
it is logged very often at the logger. The same signal comes through the sensor, it
is compared to tf < functions input > and go through the functions node as all
the other information will go. So, the same information is written at the logger in
the beginning of functions node and in the end of it. The comparison between those
two timestamps gives the ∆Tfunct result of 0.106ms.

The signal which was chosen was the ego vehicle longitudinal velocity which had
the smallest sampling interval. A signal with very small sampling interval helps to
avoid entering uncertainties in the calculations since the functions node takes the
last available information from the backbone which is going through the functions
and logged.

c. Estimation of delays based on reference data

While in the previous methods the timestamps from the events are used for the
computation of the delays, in this method for the estimation of ∆τtrans they are not
used timestamps but the state estimates from the reference sensor. Specifically, the
longitudinal position and the host speed are used which give us how much time it
will take for the host vehicle to collide with an obstacle on its path. This method is
not applied to the previously defined data sets because there are not reference data
for them. Instead, another data set is used where the signals have been logged from
both the examined sensor and the reference sensor. The data set includes logging
files where the host drives with constant speed towards a target which moves with
lower speed than the host’s.

Then, the reference data is synchronized first to the tl < fusion output received at
logger > and later to the tl < function output received at logger > and the TTC
is calculated for both cases. The difference between the TTCs give the ∆τtrans delay
which is presented in the Table 5.3. For the same data set the ∆ttrans, using the
first method, and the ∆Ttrans, from the second method, are calculated again and
the results are also shown in the Table 5.3.

Comparing the results in the Table 5.3, we can conclude that the values for ∆ttrans
and ∆Ttrans, calculated using different methods, agree with the value for ∆τtrans
which was calculated using reference data.
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Table 5.3. Statistical results from the reference data

Constant speed

∆ttrans ∆Ttrans ∆τtrans

Mean 0.256 0.251 0.263

Sigma 0.062 0.063 0.094

Median 0.25 0.253 0.307

Samples 6500

d. Overall results

The equations of the first and second method are applied to the summation of the
logging files (around 90 logging files and 106500 samples) and the overall results are
gathered and shown in the Table 5.4.

Table 5.4. Overall results

First method Second method

∆tsens+trans ∆tsens ∆ttrans ∆Tsens ∆Ttrans

Mean 0.583 0.336 0.248 0.337 0.251

Sigma 0.073 0.077 0.057 0.077 0.061

Median 0.589 0.368 0.244 0.363 0.253

Samples 106500

There is a close agreement between the delay ∆tsens and ∆Tsens where for the ∆tsens
the mean value is 0.336 with sigma 0.077 while for the ∆Tsens the mean value is
0.337 with sigma at 0.077. As a result, there is an accordance in the two methods
estimating the delay from the sensors’ raw data acquisition to the completion of
fusion at the sensor processor. According to the Table 5.4, a similar accordance
exists between the ∆ttrans and ∆Ttrans.

Therefore, the calculations of the processing times based on the two methods give
very similar results, which results in a good system performance.



6 CONCLUSION AND FUTURE WORK

This Chapter summarizes briefly the problem, the methods and the results as well
as it suggests ways on the next steps for the continuation of the thesis project.

The thesis addresses the problem and the question if there is or not high accuracy of
the correlation of the signals, which are produced by a sensor network, to each other
and to the real traffic situations. The limited accuracy is caused by the computa-
tionally heavy signal processing on the different nodes that the system consists of,
like the sensors, the node where fusion is run, the node which pre-processes the data
to be used as input to the node where the decision making is made. It is also caused
by the transmission of the signals through different interfaces (Ethernet, CAN bus,
SPI etc.). This problem reduces the performance of the active safety systems as
well as it poses problems for their verification during the development stage. A
real active safety system is used as a use-case in the thesis. This consists of three
processors, the sensor processor, the function processor and the logging system with
different physical clock each. Different events take place in the signal chain from
an object detection from the sensors, to fusion and decision making. Each of those
events are timestamped from the different clocks.

Since one of the processors is developed with a collaboration with an external sup-
plier, there is a limitation to make changes and interfere to that hardware. As a
result, there is no possibility to change the synchronization method between the two
processors but it is assumed that it works accurately, although it can be a possible
source of delays. To remove the uncertainties and to verify the accuracy of the
active safety system different methods are developed to estimate statistically the
delays that are caused by the heavy signal processing and the transmission of the
data over different interfaces. The delays that are calculated are:

• the processing time between the radar measurement and the sensor fusions
output

• the time it takes to transfer the data through the SPI as well as the time in
the pre-processing for functions module

• the sum of the first two measurements, so from the radar measurement to the
output of the pre-processing module

• the processing time in the functions

The first method is based on the sensors’ and functions’ processors timebase while
the second on the logger’ s timebase. Additionally, data coming from a reference
sensor system is used to measure the same delays. The methods are applied to a large
variety of collected data from drivings in different types of roads and conditions.
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The overall results indicate that the delays depend on the complexity of the traffic
environment. The more complicated the traffic conditions are, the higher delay
the system has. What is more, the measurements of the delays from the different
methods conclude to similar results and the outcome from the reference sensor agree
with the outcome from the examined sensor system which results in a good system
performance.

The limitation of the thesis project was the limited access to the architecture of the
system and more specifically to the synchronization methods. The logger was not
synchronized with the other two processors and the verification of the synchroniza-
tion of the sensors and functions processors was not an easy task.

What it is proposed for continuation of this thesis work is synchronization of the
logger with the other processors. If it was synchronized we would know the exact
time when an event occurs with the logger’s clock without this time to be exposed
in UDP delays or in buffer or write delays.

Another suggestion for further development of the system, and especially if it is
going to be used in combination with a lot more sensors, is to set the GPS time in
the logger. Using a reference system then, as we did in the third method, we will
have the accuracy of the examined system in the timescale of ns.
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