
Master’s thesis 2021

Development of a Reference Architecture for
streaming of Cloud infotainment system

to In-Car Thin clients

Arjun Krishna Murthy
Ramkumar Venkatesh

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Development of a Reference Architecture for streaming of Cloud
Infotainment system to In-Car Thin clients

Arjun Krishna Murthy Ramkumar Venkatesh

Supervisor: Christian Berger and Michel Chaudron, Department of Computer Sci-
ence and Engineering
Advisor: Patrik Andersson, Aptiv Contract Services AB
Examiner: Gregory Gay, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

ii

Abstract
The gaming industry is rolling out new gaming solutions, where games are hosted
and rendered in the cloud and streamed to thin clients in 60 fps with 4K resolu-
tion. This technology enables new possibilities in extending the lifetime of existing
hardware, simplifying software deployment to multiple clients, and enabling data
analytics. These are topics that are of great interest to the automotive industry,
where vehicles are typically in use for ten years or more. By providing solutions
similar to the gaming industry, the automotive sector could address these issues.
The expectation is that car users should be able to get the same gaming experience
in an infotainment system as with playing it on the phone. But, it is not possi-
ble currently due to certain limitations. The video streaming from the phone to
the car head unit requires devices in the head unit. Even having such a device in
head-unit will not guarantee a high-quality, low latency video gaming experience
because of lag issues, as when you stream your phone screen, a lot of operations are
involved. Using the design science research methodology, we elicited the functional
and non-functional requirements required to develop and design the architecture
through semi-structured interviews. Based on the data collected from the interview
and the literature study, AGL’s technical feasibility for real-time low latency con-
tent streaming was reviewed. Architectural patterns and tactics were used to design
the AGL architecture, which supports streaming in both online and offline mode.
Architecture evaluation using a semi-structured interview was adopted to evaluate
the functional and quality attributes identified for the architecture developed.

Keywords: Computer, science, computer science, software engineering, AGL, In-
Vehicle infotainment system, project, thesis.

iii

Acknowledgements
The authors of this thesis would like to thank Aptiv AB, specifically Mr. Patrik
Andersson, for being incredibly supportive and motivating in every aspect of this
thesis. We would like to sincerely thank the pillar of support to our thesis, our
college supervisors, Mr. Christian Berger and Mr. Michel Chaudron, for guiding
us throughout the project. Finally, we would like to express our gratitude to all
the respondents for the support and willingness to spend some time with us to
participate in the interviews.

iv

Contents

List of Figures vii

1 Introduction 1
1.1 Background . 3
1.2 Problem Domain and Motivation . 3
1.3 Research Goal and Research Questions 5
1.4 Contributions . 5
1.5 Scoping . 6
1.6 Structure of thesis/paper . 6

2 Background 7
2.1 Automotive Grade Linux (AGL) . 7

2.1.1 AGL Software Architecture 7
2.2 Android Auto and Apple CarPlay . 8
2.3 Spotify . 9

3 Related Work 11
3.1 Systematic mapping study . 11

3.1.1 Define research questions . 11
3.1.2 Search . 11
3.1.3 Study selection . 13

3.2 Summary of relevant papers . 13

4 Methods 17
4.1 Research Methodology . 17

4.1.1 First Iteration cycle . 19
4.1.2 Second Iteration cycle . 19
4.1.3 Third Iteration cycle . 20

4.2 Data Collection . 20
4.3 Research Question 1 . 21

4.3.1 Brainstorming . 21
4.3.2 Interviews . 22

4.4 Research Question 2 . 23
4.4.1 Interviews . 23

4.5 Research Question 3 . 24
4.5.1 Documents Study . 24

v

Contents

5 Results 27
5.1 Architecture . 27

5.1.1 Component Description of the reference software architecture . 29
5.1.2 Sequence diagrams . 31

5.2 Findings for Research Questions . 34
5.2.1 Research Question 1 . 34

5.2.1.1 Findings from Document study 34
5.2.1.2 Findings from Interviews and Brainstorming 35

5.2.2 Research Question 2 . 37
5.2.2.1 Infotainment cloud state sync manager component . 40
5.2.2.2 Offline Manager . 41
5.2.2.3 User Manager component 42
5.2.2.4 Other questions on architecture 43

5.2.3 Research Question 3 . 45

6 Discussion 49
6.1 Quality attributes tactics . 49

6.1.1 Availability tactics . 49
6.1.2 Security tactics . 50
6.1.3 Performance tactics . 51

6.2 Functional Requirements tactics . 51
6.3 Reflection on Related work . 52
6.4 Reflection on Architecture . 53
6.5 Reflection on Methodology . 54
6.6 Threats to validity . 54

6.6.1 Construct Validity . 55
6.6.2 Internal Validity . 55
6.6.3 Conclusion Validity . 55
6.6.4 External Validity . 56

7 Conclusion 57
7.1 Answer to Research questions . 57
7.2 Future Work . 58

7.2.1 Pathway to Implementation 59

Bibliography 61

A Appendix 1 I
A.1 Semi structured Interview Questions for RQ1 II
A.2 Semi structured Interview Questions used for architecture evaluation III

vi

List of Figures

1.1 Cloud Gaming [79] . 1

2.1 AGL Software Architecture [80] . 8

4.1 Design science research methodology Table as per Peffers et al. 18
4.2 Design science research methodology - DSRM [20] 18
4.3 Representation of methods used in data collection approach 21

5.1 Top level component diagram of the cloud-infotainment system 27
5.2 Reference Software Architecture . 29
5.3 Sequence Diagram with internet connection 31
5.4 Sequence Diagram without internet connection 32
5.5 Sequence Diagram for Synchronization scenario between cloud and

infotainment system . 33
5.6 Representation of methods used in data collection approach 34
5.7 Data gathered from interview for Quality Attribute 36
5.8 Data gathered from interview for Functionality Attribute 37
5.9 Role/responsibilities of respondents 38
5.10 Knowledge/ understanding of AGL 38
5.11 Level of understanding of reference architecture components 39
5.12 End-to-end latency for UI interaction in our infotainment system . . 39
5.13 Latency added by Infotainment-Cloud State Sync Manager 41
5.14 Latency added by User Manager . 43
5.15 Impact of latency on dividing the component 44

vii

List of Figures

viii

1
Introduction

The automotive industry faces competition as there is a rapid increase in the devel-
opment of electric and connected vehicles leading the companies to deliver flexible
products and be used in the long run. Recently there are various innovations that
have started to evolve, leading to the advancement of technology. These innovations
are meant for enhancing the safety of the vehicle driving on the road, optimizing the
performance of the engine, managing different forms of in-built automated systems,
and offering infotainment.

In-Vehicle Infotainment (IVI) system is a feature that combines both software and
hardware by providing vehicle information and entertainment to drivers and pas-
sengers. By 2022, the infotainment system will see a tremendous increase in its
usage [11]. The smart vehicles currently enhance in-car user experience through
multimedia-enabled infotainment systems [67]. The intelligent vehicles are expected
to carry communication systems, computing facilities and require high storage and
sensing power. A number of solutions were proposed to address these challenges,
and Vehicle cloud technology is one of the solutions. Recently, there are advances in
cloud technology, where the focus in not on computation alone. Cloud technology
offers high definition rendering, which turns the idea of cloud gaming into a reality.
Cloud technology is used in the gaming industry where cloud gaming in its simplest
forms, renders an interactive gaming application remotely in the cloud and streams
the scenes as a video sequence back to the player over the internet [3].

Figure 1.1: Cloud Gaming [79]

The software in the automotive industry is populated with commercial tools and
applications due to safety and security concerns. In recent years, there are efforts
to make the software open and customizable through the open-source community.

1

1. Introduction

With the emergence of vehicle-to-vehicle communication and vehicle-to-cloud tech-
nologies, the developers are switching to open source and portable standards to
achieve interoperability between different vehicles. Some of the infotainment plat-
forms used by automakers are QNX, GENIVI, Windows Embedded Automotive and
Android Automotive. According to Höttger [70], AGL (Automotive Grade Linux)
was identified as the most appropriate car platform over Apertis, Ubuntu Core,
QNX, and Android Automotive. Automotive targeted open-source operating sys-
tems such as Automotive Grade Linux (AGL) [68] is a shared platform mainly used
for In-Vehicle infotainment system used mostly by the automakers and suppliers to
reduce fragmentation and to reuse the same code base leading to rapid innovation,
and faster time-to-market [69].

The automakers’ major issue for implementing connected cars is that each manu-
facturer uses custom operating systems to develop In-Vehicle Infotainment systems.
Thus, there is no standard platform being followed for the development of IVI sys-
tems [69].

Currently, in the automotive industry, as seen previously, there are limitations in
streaming high content, low latency video from phone to infotainment. Additionally,
AGL does not provide a clear roadmap of technical requirements about accomplish-
ing near real-time, low-latency, high data volume content streaming in their future
releases [44]. These limitations lead us to ponder over a possible solution which can
be inbuilt into the car infotainment system, where the near real-time, high-content
low-latency video is streamed, rather than relying on external devices for streaming.

Another exciting technology that is in the development stage is Holoride [49], which
gives hyper-immersive experiences by combining navigational and car data with X
Reality(XR). X-Reality is a form of mixed reality environment that is a union of wide
range of sensor/actuator networks and shared online virtual worlds. It includes wide
variety of hardware and software, including sensory interfaces, applications, and in-
frastructures that helps in enabling content creation [50]. It connects standalone
XR devices to the vehicle and is pre-installed. This technology is in the alpha stage,
but we can see that it comes pre-installed. But if it can be streamed from cloud
to the car, then the XR experience given can be updated regularly and provide a
much better experience to the changing user needs. To overcome these problems, we
see a need for research using cloud-based technology for the In-Vehicle infotainment
systems.

There are several advantages when using cloud technology for an In-Vehicle info-
tainment system. Cloud technology for infotainment systems helps in extending
the hardware life for the infotainment systems. It also simplifies the software de-
velopment for the In-Vehicle Infotainment systems as most of the applications are
housed in the cloud. Cloud technology also helps to improve the data analytics
where most of the data is stored in the cloud, and it is easier for the automakers
or suppliers to understand the behavior of the system and also helps to run the IVI
system efficiently. From a business perspective, the cloud solutions for infotainment

2

1. Introduction

systems provide a high-end user experience with low-cost hardware and also helps
in managing infotainment systems in a cost-effective way.

1.1 Background
The Automotive Grade Linux (AGL) is a shared open-source platform used mainly
for In-Vehicle infotainment systems by the automakers and suppliers to reduce frag-
mentation and reuse the codebase, which will lead to rapid innovation and faster
time to market [69]. Automotive Grade Linux (AGL) provides APIs at all levels
from CAN (Controlled Area Network) to Infotainment by improving entertainment
and safety on board [71]. Automotive Grade Linux (AGL) acts as a reference frame-
work based on which the OEMs and suppliers manufacture their own products by
integrating their own innovations. One of the important goals of Automotive Grade
Linux (AGL) is to provide a full user interface access to OEMs where automakers and
suppliers rely on a single open source In-Vehicle infotainment software platform [69].

Reference architecture captures the essence of the architecture of a collection of sys-
tems [72]. The purpose of the reference architecture is to act as a guide that can be
used for future developments [15]. It can be considered as an architectural pattern
for developing an architecture for software systems of a particular domain. refer-
ence architecture helps to systematize and standardize the development of software
systems and helps to reuse the design [16]. Establishing reference architectures is
an important issue, as they can describe both essential building blocks as well as
design choices for dealing with functional and non-functional requirements in cloud
environments [5]. According to Angelov et al. [6], how reference architecture can be
evaluated by applying existing evaluation methods meant for concrete architecture
is assessed. Challenges in applying the existing evaluation method to reference ar-
chitecture are identified by them, and they recommend how the evaluation methods
can be applied to reference architecture with certain changes.

1.2 Problem Domain and Motivation
In-Vehicle infotainment (IVI) requirements are more complex than any other con-
sumer electronic device [13]. When implementing features similar to Personal Digital
Assistant (PDA), smartphones, etc., for the IVI units, they need to provide a seam-
less user experience without interfering with the actual driving, which is the main
and most important task when using a vehicle. According to a study, removing eyes
from the road for just two seconds or longer doubles the risk of a crash [46]. The IVI
units must be working across the lifetime of a vehicle, which is 5 to 10 times longer
than any smartphone [13] [14]. Some of the factors which contribute to the reason
that most car head units are not up to the mark with the latest smartphones, are
as follows. Firstly, cars usually have a long lead time. The time between the initial
car design phase and final delivery of the car from the manufacturer with various

3

1. Introduction

features or particularities is technically 1-2 years. By the time the car reaches the
customer, it will include an infotainment system, which may be outdated. To get
the latest infotainment systems or to update the units, the customers need to ap-
proach the car manufacturers. Secondly, the components which are included in an
IVI system need to withstand vibration, dust, extreme temperatures, and moisture,
which the smartphones are not subjected to(many be not on a similar level of IVI
system). The innovation cycle between car makers and vendors will be slowed down
when the car makers use off-the-shelf consumer products as the products will not be
of automotive-grade. Lastly, car makers are teaming with tech companies (Apple
and Google) as they realize that it is difficult to develop the feature in the car to
improve user experience.

At present, the car manufacturers allow certain applications that are present on
smartphones to be accessed on car infotainment by connecting the phone to a
car infotainment system, by providing support for Android Auto [31] and Apple
CarPlay[32]. The number of applications that we can use from a phone in the car
head-unit is limited by platform owners like Google and Apple. If the restriction
to limit the application by platform owners is removed, we should be able to access
applications from the phone in the car IVI. If we connect the phone via USB to
IVI, we should be able to stream the content directly or be able to play Google
Stadia games on the infotainment system. But, it is not possible currently due to
certain limitations. The video streaming from the phone to the car IVI requires the
Chromecast device[43] (incase of Google Stadia) in the head-unit. Even having a
Chromecast device in head-unit will not guarantee a high-quality, low latency video
gaming experience because of lag issues, as when you stream your phone screen, a
lot of operations are involved. An alternative solution to reduce lag is to use an
HDMI cable to connect to Infotainment system [42]. HDMI provides a bandwidth
capacity of up to 10.2 Gbps, more than twice the bandwidth needed to transmit an
uncompressed 1080p signal, resulting in better-looking movies, faster gaming, and
a richer audio/video for consumers. In order to use the advantages of HDMI in
infotainment, support to HDMI port becomes an additional hardware requirement.
This will require changes to be made to both phone and car infotainment hardware,
which incurs overhead costs.

In the current roadmap of AGL [44], they have mentioned certain Vehicle-to-Cloud
(V2C) scenarios, which include data logging, GPS tracking, remote control, and di-
agnostics, but do not provide details of technical requirements about accomplishing
near real-time, low-latency, high data volume content streaming.

It can also be noted from the literature that cloud technology focuses on seamless
streaming of applications and also high-level models for developing the applications.
In fact, there is a lack of consensus on which functional elements and non-functional
properties must be addressed by platforms targeting cloud-based systems[5]. Also,
to the best of the authors’ knowledge, there has not been much research conducted
in developing an architecture for the automotive infotainment system which uses
cloud technology.

4

1. Introduction

1.3 Research Goal and Research Questions
In this thesis, we investigate an open-source platform, which is Automotive Grade
Linux (AGL), and explore how cloud applications like Spotify, Google Stadia stream
high content low latency data and the technical limitations associated with the ap-
plication when used on the car platform. We also look into the software platforms
Apple CarPlay and Android Auto, which duplicates the user smartphone, and also
the technical specification required by Spotify when it is used in CarPlay and An-
droid Auto. We also investigate the technical specification of audio and video com-
ponents currently supported by the AGL to stream cloud-related high content data.
With the analysis performed, we create a base for the architecture, and based on
the base created, we design and develop the reference architecture which supports
a high-quality, low latency real-time content streaming of infotainment from the
cloud to the car during online and offline mode [1]. The reference architecture is
also assessed on robustness and generality to ensure architecture fitness to purpose
[2].

The purpose of this thesis is to address the above issues mentioned in the problem
domain section, leading us to define the following research goal:

"Understanding the issues involved in enabling cloud-based near real-time, low-
latency, high data content streaming to car platforms which provide high end-user
experience."

Based on the above research goal, the research questions are as follows:

RQ1: What are functional and non-functional attributes that are required for the
reference architecture to support near real-time, low-latency, high data volume con-
tent streaming?

RQ2: How can we evaluate that the attributes identified in RQ1 have been sat-
isfied in the reference architecture developed?

RQ3: How can the AGL reference architecture be extended to support near real-
time, low-latency, high data volume content streaming?

1.4 Contributions
This thesis will explore the current features offered by AGL and the features pro-
posed in its roadmap. This could potentially result in possible feature additions
that can be made to AGL.

The study will investigate the working of software applications like Android Auto,

5

1. Introduction

Apple CarPlay, Google Stadia, and Spotify through a literature survey. It will iden-
tify the current requirements and limitations that exist in these applications for
streaming data from Cloud to vehicle. The researchers will carry out a design sci-
ence research methodology in order to understand AGL reference architecture and
provide suggestions to expand the reference architecture to support near real-time,
high volume, low latency data content streaming.

This thesis would add to the existing body of academic knowledge within software
engineering when it comes to designing reference software architecture and tactics
used in the context of streaming near real-time, high volume, low latency data from
cloud to vehicle. Furthermore, the study contributes with the knowledge of identi-
fying the functional and non-functional attributes that are required when designing
the architecture for cloud content streaming to vehicles.

The thesis will also serve as a good pre-study resource for researchers interested
in designing reference architecture for streaming near real-time data from cloud to
vehicle, as they can find some insights from the thesis.

1.5 Scoping
To focus on the investigation of the characteristics mentioned in this thesis, we
decide to explicitly exclude legal aspects involved in content streaming in-car plat-
forms and focus only on the technical aspects of content streaming. Additionally,
we reduce the scope to focus on the infotainment side (client side) rather than the
cloud side (server side).

1.6 Structure of thesis/paper
This thesis is structured as follows: in section 2, we present the background. In
section 3, we discuss the related work. In section 4, we describe research method-
ologies, followed by section 5 that explains the results of our research, and in section
6, the main analysis and discussions of results are presented. In section 7, the thesis
ends with a conclusion and future work.

6

2
Background

This section will give a brief about Automotive Grade Linux(AGL), Android Auto
and Apple CarPlay, and Spotify.

2.1 Automotive Grade Linux (AGL)
Automotive Grade Linux(AGL) was launched by the Linux Foundation in 2012,
which was developed as an open-source project to help the automakers to rely on a
Linux-based platform. AGL provides a basic software kernel based on Linux OS and
also includes several software modules like communication, web services, graphics,
navigation, and automotive services. The AGL provides Unified Code Base (UCB),
which includes an operating system, middleware components, and application frame-
work. This will provide 70-80% of the starting point required for the development
of the IVI system. The remaining 20-30% is for the automakers and suppliers where
they can customize it according to the customer requirements [69]. The latest AGL
Unified Code Base (UCB) release 9.0.3, named Itchy Icefish, was released in August
2020 [73].

The main concept associated with AGL is that it will act as a reference framework
which can be used and supported by the OEMs and suppliers to deliver their own
customized product by integrating their own ideas and innovations. To do this,
AGL aims to provide automakers and suppliers a common platform that provides
full user interface access. In this way, AGL can achieve its goal of developing and
implementing a fully open-source IVI for vehicles at a rapid pace. The In-Vehicle
Infotainment system is the communication point of information in a connected car.
The services and functions of the car are controlled by the vehicle’s driver, which
utilizes the IVI. The IVI system also supports route planning and also provides
communication of roadside services. The Automotive Grade Linux (AGL) focuses
on standardizing such open-source IVI [68].

2.1.1 AGL Software Architecture
The AGL software architecture is represented by four layers, application/HMI layer,
followed by application framework layer, followed by service layer, and lastly, op-
erating system layer. The application/HMI layer supports different features that
are displayed to the users. The application framework layer, also called the system
layer, provides the APIs for application development and communication. The ser-

7

2. Background

Figure 2.1: AGL Software Architecture [80]

vice layer contains all software available user-space resources. Lastly, the operating
system layer includes the kernel, different device drivers, and common operating
system utilities. The user interface and functionality of the AGL framework are
made entirely in JavaScript and HTML5, and the platform communicates with the
car via an Automotive Message Broker (AMB) using Tizen IVI web runtime to al-
low applications to transmit data to and from the vehicle. The features which are
currently included in AGL’s user experience are Home Screen, Dashboard, Heating
Ventilation, and Air Conditioning (HVAC) system, Google Maps, Internet and News
Service, etc. [69]

2.2 Android Auto and Apple CarPlay
Apple-designed CarPlay as a multimedia technology for passenger cars, and it serves
as co-pilot[33]. The users can perform many operations like navigation feature, listen
to songs, read incoming messages and reply to them, answer incoming calls using the
Siri feature without driver’s attention-getting distracted. The voice control button

8

2. Background

on the steering wheel can be pressed and held by the user to enable synchronization
between CarPlay compatible multimedia devices and iPhone to activate the voice
control feature. It can be used by touch sense in the touchscreen of vehicles.

Google developed Android auto as a smartphone projection standard to control the
smartphones from vehicles. The USB interface is used by Android auto to display
Google Now interface on the car’s info screen. Users can use the car’s touch screen,
steering controls, and other control arms while using Android Auto. The Android
Auto interface can only support the approved applications that meet Google’s secu-
rity requirements.

But, Google and Apple, in the role of the platform owner, determine which smart-
phone applications are unlocked for use in cars[34]. The developers get access to
necessary APIs to adapt the functionalities for the application in cars. In order to
minimize the distraction to the car driver, certain adjustments are necessary, as re-
strictions are imposed on applications that can be used in cars; for example, display
applications should be in reduced form on the infotainment screen. Additionally,
animations are prohibited for applications in cars, which could cause a distraction
to the driver. The use of CarPlay or Android Auto in cars always requires the agree-
ment of the OEM, which decides about the integration of the solutions provided by
Google or Apple. The applications (on the smartphone), which are certified by the
platform owner (Apple or Google) can be used through the head-unit. The selection
of applications and its design of graphical user interface (GUI) is the responsibility
of the platform owners, as mentioned previously. The GUI of the platform of the re-
spective OEM is deactivated as long as the smartphone integration is active. Hence,
the number of applications that be used on car head-unit is currently limited by the
platform owners and OEM agreements. Additionally, there is a minimum hardware
requirement of head-unit for Android Auto, and CarPlay [35] [36]. For instance,
CarPlay to work with car head-unit, requires the head-unit to have a minimum
physical display of 6 inches, 24-bit color, 30 Hz refresh rate, support for H.264 video
decoding, high-resolution display is required - 16:9 aspect ratio (800*480, 1280*720,
960*540, 1920*720 pixels), USB infrastructure. As a result of the above require-
ments, a list of car manufacturers that support Android Auto/Apple CarPlay does
not include all the cars in the market [40] but is a growing list.

2.3 Spotify
Spotify is one of the popular digital music services from which you can listen to mil-
lions of songs across many genres. Spotify is an application where users can browse
songs from various playlists and listen to them. Spotify uses client-server access and
peer-to-peer protocol for streaming songs from the cloud. The Spotify protocol is
a proprietary network protocol designed for streaming music [17]. For streaming,
clients avoid downloading data from servers until there is a need to maintain the
song quality. The client, at most times, tries to stream from a peer-to-peer network.

9

2. Background

The system requirements for using Spotify and accessing Spotify content through
the Spotify app are as follows. For operating systems like iOS, it requires iOS 12
or above, Android OS 4.1 or above, Mac OS X 10.10 or above, Windows Desktop
and laptops running Windows 7 or above [47]. For optimum performance, Spo-
tify recommends having at least 1GB of free memory on your device [48]. Spotify
supports various audio quality(bitrate options) to suit various devices, and plans
[46]. For Spotify to work on the phone, the options are as follows. For Spotify free
users, low-quality audio is equivalent to approximately 24kbit/s, normal quality is
approximately 96kbit/s, and high quality is 160kbit/s. For Spotify Premium users,
in addition to the free user option, we get an additional very high-quality option,
which is equivalent to approximately 320kbit/s.

10

3
Related Work

This chapter aims to present previous work that relates to the research goal of this
master thesis. Research papers, articles, and blogs regarding the automotive info-
tainment platforms, and specifically Automotive Grade Linux (AGL), were searched
for in academic databases using keywords such as "Automotive Grade Linux" and
"AGL". The reference articles were searched by using the snowball sampling tech-
nique. A systematic mapping study was conducted, outlined in the following sec-
tions, along with the summary of the AGL articles. Section 3.1 describes the system-
atic mapping study process, and section 3.2 provides the summary of the relevant
papers.

3.1 Systematic mapping study
A systematic mapping study [74] was conducted according to Petersen et al. [74]
and is described in this section.

3.1.1 Define research questions
The scope of the study is defined, which is the first step of a systematic mapping
study. In this thesis, the scope was defined using the research goal and research
questions in Section 1.3.

3.1.2 Search
The second step of the mapping study was to search for related articles. In order
to avoid narrow search, four different online libraries were used to search for related
work: ACM Digital Library [75], Springer Link [76], arXiv [77], IEEE Xplore [78].
By using Google Scholar, results from other libraries like Research Gate and Google
patents were also found.

Automakers’ major issue in implementing the connected car concept is that they
do not follow a standard platform for the development of Infotainment systems be-
cause every vehicle line within each automaker uses customized operating systems
from different suppliers. Due to this, time to market and manufacturing costs are
high. By switching to an open-source solution, people can try out the software with-
out any effort, and developers can learn various technologies without the required
training. The open-source helps to customize the technologies and reduces the time-

11

3. Related Work

to-market. The automakers can reduce the maintenance cost by teaming up with
the community behind the open-source platform. Source codes can be effectively
aligned according to user needs and improved code quality and stability. Hence in
this thesis, we chose AGL as an appropriate platform as it was the only open-source
platform to develop IVI systems.

The initial search string used was "AGL" and "Automotive Grade Linux" and then
the results were separated by setting different inclusion and exclusion criteria de-
fined in section 3.1.3. As this search engine did not yield much of related articles,
more strings were used to fetch. The final keywords used for the search were Linux
foundation, connected car, open-source platforms, AGL Connectivity, Infotainment
connectivity, connected vehicles, wireless connectivity, vehicle communication, Inter-
net of Vehicles, Automotive Grade Linux AND OTA update, AGL AND OTA, AGL
AND Over the Air update, AGL AND infotainment updates, AGL AND Software
update, Automotive Grade Linux AND streaming, AGL AND Streaming apps, Info-
tainment streaming, automotive-grade Linux AND stream, automotive-grade Linux
AND network AND stream, AGL streaming application.

Initially, the terms carplay, Apple CarPlay, Android Auto, Connected cars, Mobile
platforms, Mirrorlink were not included. Although as infotainment platforms were
studied further, it was found that those terms were used to denote platforms used
by Apple and Android, which replicates the smartphone on the car infotainment
system, and they were thus added to the search string.

This step resulted in 120 articles across all databases at the time of this thesis.

Search Terms Papers found
AGL+Cloud+connectivity: Keywords used: AGL, automotive
grade linux, Linux foundation, connected car, open source plat-
forms, AGL Connectivity, Infotainment connectivity, connected ve-
hicles, wireless connectivity, vehicle communication, Internet of Ve-
hicles.

32

OTA Keyword used: Automotive Grade Linux + OTA update,
AGL + OTA, AGL + Over the Air update, AGL + infotainment
updates, AGL + Software updates

23

Streaming Keyword used : Automotive Grade Linux + streaming,
AGL + Streaming apps, Infotainment streaming,Automotive Grade
Linux + streaming, AGL + Streaming apps, Infotainment stream-
ing,automotive grade linux + stream,automotive grade linux + net-
work + stream,automotive grade linux + data + stream,automotive
+ infotainment + stream, automotive + infotainment + data, AGL
+ Stream, AGL+Infotainment, AGL streaming application

33

Apple Carplay & Android auto Keywords used: carplay, Apple
CarPlay, Connected cars, Mobile platforms, Mirrorlink.

32

12

3. Related Work

3.1.3 Study selection
After the initial search, inclusion and exclusion criteria were derived to filter the
results. Firstly, the data extraction included only articles in English. Furthermore,
the inclusion criteria was that the articles should propose infotainment platform Au-
tomotive Grade Linux and not just mentioning AGL as a possible application area.
In addition to the above criteria, additional articles containing the combination of
AGL with connectivity, cloud, OTA update, and content streaming were searched.

The inclusion criteria that need to be fulfilled for the mapping study are that the
title or abstract mentions that the paper explicitly uses an AGL platform to im-
plement automotive infotainment services. Apart from the papers in English, the
exclusion criteria are that the papers just mention AGL but use different platforms
to implement automotive services.

All of the articles found were filtered based on the above mentioned criterion. The
filtering was based solely on the papers’ abstract. No sources were excluded based
on the type of study, although the sources after filtering only contained scientific
journals and conference papers.

Once the platform was finalized, the researchers carried out the search across all
databases using the keywords mentioned above. The filtering resulted in 88 arti-
cles for AGL, with 69 articles discarded based on the exclusion criteria mentioned
above. Out of the 19 relevant papers, 6 papers were considered a valuable addition
to this thesis. These 6 papers provided us the knowledge on the communication
between different layers in the AGL architecture, the various API services AGL uses
for improving infotainment systems. It helped us to understand why the connected
car concept is moving towards open source. It provided knowledge on how differ-
ent V2C scenarios are implemented in the architecture. It helped us to understand
that AGL can be used in combination with other platforms. Finally, it helped us
to understand the advantages of using AGL, which is in line with the advantages
of an open-source platform. The 19 articles which were discarded did not provide
any information on AGL; instead, the papers used different platforms to implement
different applications other than infotainment systems. The filtering result for Ap-
ple CarPlay and Android Auto resulted in 32 papers, which were discarded as they
mention the terms but do not implement Apple CarPlay and Android Auto. The
summary of all the papers found across all databases is placed in the GitHub [84]

3.2 Summary of relevant papers
This section summarizes the previous related papers which were found during the
systematic mapping study.

Arcangelo Castiglione et al. [71] investigate symmetric encryption algorithms, par-
ticularly lightweight ciphers, to secure CAN-level message exchange, which is a

13

3. Related Work

reliable solution on hardware-constrained devices. They use the API service of Au-
tomotive Grade Linux (AGL), which allows CAN-bus interaction. They propose an
approach by implementing appropriate modifications to the AGL system module,
which helps in sending messages on the CAN bus. They use Automotive Grade
Linux in the experimental phase to check the effectiveness of the proposed solution.
They modify the AGL module, which helps in reading and writing the CAN bus
message. They use AGL because it contains APIs at all levels from CAN to info-
tainment, which helps to improve entertainment and safety on board.

In the book, Mobility in a Globalised World 2018, the chapter on "Why Open Source
is Driving the Future Connected Vehicle" [70] highlights the importance of Automo-
tive Grade Linux over other platforms like Apertis, Ubuntu Core, SuSe Embedded,
Legato, QNX, and Android Auto. They also highlight the major features of AGL like
platform features, platform runtime, application runtime, application development,
and SDK, app store, licensing, and developer community, which other platforms
do not provide. The chapter talks about a possible solution Eclipse kuksa, which
is built on AGL and features containing different technologies as services to meet
connected vehicle demands.

Mustafa et al.[81] paper discusses the benefits of the embedded Linux platform’s
challenges, which provides a basis for new improvements. The author discusses as-
pects that are benefited from the yocto project, which is based on the Linux platform
Automotive Grade Linux (AGL). The paper mentions different aspects like archi-
tecture, software, and community support, which support people to create features
quickly and effectively. This is one of the benefits which is available for the plat-
form. The other benefits include small footprint, platform independence, portability,
Manageability and Separation of Concerns, Genericness. The paper concludes by
mentioning that the open-source platform is inevitable, which will be more reliable.

In the first virtual All Members Meeting Summit, hosted by the Automotive Grade
Linux (AGL) at the Linux Foundation [82]. They mention how V2C (Vehicle to
cloud) scenarios can be enabled by connecting AGL to the cloud. In the meeting,
they discuss different V2C scenarios like data logging, GPS tracking, remote con-
trol, OTA updates, and remote diagnostics and how these scenarios can be enabled
independently. They suggest that by integrating cloud connectivity inside the AGL
stack, different V2C scenarios can be implemented. They continue by suggesting
that Cloud connectivity can be achieved using a set of connectors to different cloud
platforms such as Azure, AWS, google cloud, and Bosch IoT cloud. They conclude
that each connector acts as a proxy between the AGL ecosystem and cloud platform
on the other data where data is transferred to the cloud using a cloud hub.

Stefan [68] writes about how Adaptive AUTOSAR can be used in combination with
AGL for updates. Adaptive AUTOSAR provides the software platform to connect
the vehicle’s ECUs to outside road services. However, to show the significance
of adaptive AUTOSAR, a GUI is needed, which is not provided by adaptive AU-
TOSAR. In contrast, AGL provides a useful GUI implementation that is easy to

14

3. Related Work

implement. Thus a combination of adaptive AUTOSAR and AGL is beneficial. The
new concept of adaptive AUTOSAR will be introduced, and recent design archi-
tectures are outlined. Further, the combination of adaptive AUTOSAR and AGL
is motivated to design a proof-of-concept (POC) that is efficient for further perfor-
mance evaluation of each software platform’s software components. In this study, a
combination of adaptive AUTOSAR and AGL is proposed to realize a prototype of
a connected car software platform.

Sivakumar et al.[69] highlights the characteristics of AGL and how the platform
helps automakers for rapid innovation and reduce time-to-market for new products.
They then introduce the two automotive gateways with a short discussion regard-
ing constructing a comprehensive in-vehicle communication system with completely
different networks and automotive gateways. Thereafter they propose an AGL sys-
tem where they discuss the technology behind AGL and the software architecture.
Furthermore, they discuss the system implementation required to implement an in-
fotainment system using AGL and discuss the hardware setup required to run the
AGL image. Their article is similar to this thesis; however, their aim is to show
how AGL reduces the lifecycle costs of the vehicle’s infotainment system. Whereas
this thesis focuses on creating a reference architecture for streaming low latency
real-time high-quality content streaming.

15

3. Related Work

16

4
Methods

In this section, the methods used to conduct the research and achieve the research
goal is described. Firstly, the research methodology and outcome in each iteration
cycle is explained. Following that, data collection being carried out phase wise is
explained. The section ends with the explanation of methods used for each research
question.

4.1 Research Methodology
Design Science Research Methodology (DSRM) is an outcome-based information
technology research methodology, which offers specific guidelines for evaluation and
iteration within research projects.[18][19][20]. In this method, the academic research
objective is more practical, which suits our thesis topic very well. DSRM was mainly
created with three objectives in my mind by Peffers et al. (2008)[20]. They were
"(1) provide a nominal process for the conduct of DS research, (2) build upon prior
literature about DS in IS and reference disciplines, and (3) provide researchers with
a mental model or template for a structure for research outputs."

The primary focus of DSRM is directed towards improving the production, presen-
tation, and assessment of design science research yet being consistent with principles
and specifications of design science research created in previous research studies such
as Hevner et al., 2004[22], Nunamaker et al.[21], 1991.

Peffers et al. (2008)[20] presented DSRM with a sequence of six different activi-
ties: (1) problem identification and motivation, (2) definition of the objectives of
a solution, (3) design and development, (4) demonstration, (5) evaluation, and (6)
communication. The below table shows the DSRM presented in Peffers et al. (2008)
by Guido L. Geerts [19].
Based on the table Figure 4.1, the researchers adapted the format of DSRM for the
thesis work as represented in Figure 4.2.

The researchers carried out the thesis using DSRM methodology in an iterative
phased manner, as seen in Figure 4.2. The researchers carried out a three iteration
cycle. As described in the earlier section, the researcher’s problem statement was to
develop and evaluate a reference architecture to support near real-time, low-latency,
high data volume content streaming from cloud to In-Vehicle Infotainment. The
phenomenon being investigated is the functional and non-functional attributes re-

17

4. Methods

Figure 4.1: Design science research methodology Table as per Peffers et al.

Figure 4.2: Design science research methodology - DSRM [20]

quired to be considered to develop a reference architecture for the cloud to In-vehicle
infotainment system. Following that, method to evaluate the reference architecture
is looked into. The approach to check how can the AGL reference architecture be
extended to support near real-time, low-latency, high data volume content streaming
is looked into.

18

4. Methods

4.1.1 First Iteration cycle

In the first iteration cycle, the researcher’s objective was data collection. They need
to gather data that would help them understand the current problem and increase
the knowledge base to move towards the solution.

Researchers conducted an extensive study of related documents to gather related
data about the existing systems. It helped researchers gain necessary background
knowledge and possible issues that might arise in architecture development. The
document study also helped them to identify current feature support in AGL and
upcoming features in its roadmap. This also helped researchers to identify the scope
for improvement in terms of streaming content from the cloud.

Researchers carried out a semi-structured interview to acquire the necessary data
about existing systems and how the new system should look. The flexible nature of
the semi-structured interview was the reason the researchers chose to go with it. It
aided in eliciting functional and quality requirements.

Researchers conducted a brainstorming session to identify the possible problems
about existing solutions and difficulties they would face in developing the new solu-
tion.

The researchers shared the gathered data with supervisors. They took the feedback
and suggestions from them at regular intervals. At the end of the first iteration,
researchers had gathered reasonable data to begin the work of creating the archi-
tecture.

4.1.2 Second Iteration cycle

In the second iteration cycle, the researchers started building the reference archi-
tecture. Based on the data collected in the previous cycle, the architecture was
created. The researchers created different versions of the architecture, with each
version being built on the previous version.

The researchers created various sequence diagrams as seen in Figure 5.3, Figure 5.4
and Figure 5.5 to understand the flow of data in the architecture. The sequence dia-
grams helped the researchers to identify potential bottlenecks in the architecture. It
helped researchers to fine-tune their architecture. Researchers started to develop a
prototype to support the reference architecture created using an open-source frame-
work in c++ language.

At the end of the second iteration, the researchers had created the reference archi-
tecture.

19

4. Methods

4.1.3 Third Iteration cycle
In the third iteration cycle, the reference architecture built in the previous cycle was
evaluated using interviews. The interviews were conducted among individuals who
had good knowledge of AGL and reference architectures.

Researchers completed the prototype for reference architecture. At the end of the
third iteration cycle, researchers had gathered the interview result, analyzed it, and
drew conclusions towards the research goal.

4.2 Data Collection
The main objective of data collection is to help answer the research questions. This
study’s data collection is a combination of documents study, interviews, and brain-
storming categorized as qualitative research. The data collection was conducted in
three phases. Phase 1 was conducted to gather relevant data about existing systems
and to understand its current limitations. Phase 2 was conducted to elicit functional
and non-functional requirements, which were needed to develop reference architec-
ture. Phase 3 was conducted to gather evaluation results of reference architecture
developed.

In phase 1, researchers started data collection by performing a document study.
This method helped the researchers to collect critical data about the rules and the
relevance of the existing systems. Analysis and study of the data showcased a brief
insight into the possible path in this study and how to proceed.

In phase 2, the outcome of findings in phase 1 was used to formulate and structure
the semi-structured interviews and brainstorming approaches to elicit functional and
non-functional attributes needed to design and develop the reference architecture.
Data collected from this phase helped in moving one step forward towards finding
the answer to research questions.

In phase 3, semi-structured interviews were conducted to obtain evaluation result
data of the architecture. The data from all the above steps were combined to answer
the research questions.

The data collected from phase 1 and 2 laid the foundation for developing the key
components of cloud architecture for streaming data to the in-vehicle infotainment
system. The Figure 4.3 presents methods used in data collection approach.

20

4. Methods

Figure 4.3: Representation of methods used in data collection approach

4.3 Research Question 1
The researchers used document study, brainstorming, and interviews methods for
RQ1. Document study was done in common to answer both RQ1 and RQ3. Docu-
ment study will be explained under subsection 4.5.1.

4.3.1 Brainstorming
Brainstorming is a technique where ideas are shared openly [23] [24]. The researchers
learned about this technique during their Master’s course - Requirement Engineer-
ing. The technique was chosen as the researchers wanted to debate the possible
requirements for the architecture quickly and efficiently.

The brainstorming was done as a formal session, where the researchers had booked a
meeting room and a specific time duration was set. The agenda was set to elicit the
requirements (functional and non-functional) for developing the reference architec-
ture and to identify possible bottlenecks. The researchers performed two sessions of
brainstorming, with each session lasting approximately 120 minutes. The outcome
of the session was documented. The result will be discussed in the result section.

The two researchers have previously worked as software engineers in the software
industry for 8+ years for various companies before starting the master course. They
have worked on various projects during their work tenure and have interacted with
many international clients during the course of work. This work background of re-
searchers helped them to use this technique effectively to come up with a broad
range of ideas for requirements.

21

4. Methods

This also provided an opportunity to go in-depth and explore possible bottlenecks
that might arise while developing the architecture. The possible constraints were
identified, and an approach to solving them was constructed. The innovative thoughts
generated were useful and documented.

4.3.2 Interviews
Semi-structured interviews were chosen to gather the existing system’s required
information and how the new system should look. The researchers selected semi-
structured interviews as the data collection method mainly due to their flexible
nature. The core of the intended question is kept, and its flexibility to modify based
on the interviewees was apt for the type of data researchers were looking for. These
were mainly conducted to elicit quality and functional attributes for the In-Vehicle
Infotainment domain and cloud streaming domain in general. A set of prepared
questions was asked to the interviewees, and follow-up questions were asked based
on context. The questions were designed in order to gather information about ex-
isting cloud and infotainment systems. It also covered the expected quality and
functional attributes that needed to be part of the proposed architecture develop-
ment. The questions can be found in section A.1. In order to assure the quality of
the questions, the questions were reviewed by a supervisor from Aptiv with sound
knowledge about the existing In-vehicle Infotainment system and by Chalmers Uni-
versity professor. This was of importance as the questions need to be pertinent,
clear, and comprehensive to an appropriate level.

Researchers chose the interview participants who had good work experience in soft-
ware industry and had adequate knowledge on infotainment systems. Researchers
interviewed a total of 12 people (software engineers working in Aptiv). The inter-
view respondents composed of Lead developers/Architects, Senior developers and
Junior developers working in Aptiv. All interviews conducted were documented,
and the transcript was prepared for analysis by researchers. The consent of the
interviewees was taken to share and document the data gathered for thesis purpose.
Interview meetings were planned and booked in advance, and they were conducted
during office working hours. Most were held in conference rooms.

The interview sessions were planned for the duration of 45 minutes and were in-
formed to the interviewees beforehand. The researchers had kept a buffer of 15
minutes as well. Both the researchers were present during the interview. One of
them asked the questions, and the other was taking notes of the response. Interview
sessions started by thanking the subjects for their participation, followed by a brief
introduction about the purpose of the interview and the topics being covered in the
questions. The interview flow and confidentiality were also addressed. The entire
interview process was audio recorded with appropriate consent from interviewees.
The interview sessions were structured according to the Pyramid model, which be-
gins with specific questions and continues with open-ended ones.[30] At the end of
the session, feedback and suggestions from subjects were noted.

22

4. Methods

After each interview session, the session’s summary list based on notes taken was
prepared, and the knowledge gained was noted. The audio recording was transferred
into a text transcript for future analysis.

4.4 Research Question 2
The researchers used Interviews to evaluate the attributes and architecture devel-
oped for research question 2.

4.4.1 Interviews
The researchers decided to use a semi-structured interview to evaluate whether the
reference architecture satisfies the functional and non-functional attributes identi-
fied in RQ1.

The researchers set up an online zoom meeting for the interviews. The interview
consisted of 15 questions, and the estimated time to completing the interview was
20 minutes. The researchers aimed to keep the duration short so that the partici-
pants accept to be part of it. Another advantage of having the interview duration
shorter is that response quality will be better and will keep the participants more
motivated[53]. The researchers have taken great care in keeping the questions short
and addressed to the point, keeping in mind that participants might not be willing
to spend too much time in the interview.

Researchers constructed two types of questions for the interview: open-ended and
closed-ended questions. The questions are can be found in section A.2. The open-
ended questions were designed to give the participants a free hand in voicing their
opinions. This would give participants more freedom to express their points of view.
The closed-ended questions were designed as multiple choices/checkboxes and Likert
scale questions. This was designed to retrieve quantifiable data. The researchers
have put in their best effort to make the questions very precise, clear cut and ex-
plicit. The college supervisor reviewed the questions to improve the quality of the
questions. The survey included few demographics questions, followed by general
questions related to AGL; then it delved into questions relating to the evaluation of
attributes in architecture identified as part of interviews and brainstorming. It also
included questions about the understand-ability and usability of new components
added as part of a reference architecture to existing AGL architecture. The general
suggestions were also asked at the end of the interview.

The selection of participants was made with care, as it had a pre-requisite of good
knowledge about AGL architecture. The researchers interviewed a total of 5 peo-
ple. They chose one working software professional from Aptiv company. Then they
approached four IEEE paper authors who have published papers on a topic related
to AGL and Infotainment architecture in general, by sending out an email request
to be part of the interview. The email consisted of a brief about the thesis and its
purpose, followed by the estimated time taken to complete the interview. After the

23

4. Methods

participants accepted the invitation, researchers finalized the list of 5 participants
and then sent the details about the architecture and its component beforehand.
The researchers set up the zoom meeting based on common time availability, and
the zoom meeting invitation was sent. The participants were sent the architecture
details approximately one week before the zoom meeting.

In the interview session, the researchers greeted the participants and thanked them
for taking time out of their schedule to be part of the interview. The consent of
the participants was taken to use their response data. The participants were also
informed that their responses and analysis would be available online as part of thesis
publication.

The researchers gave a presentation about the problem being addressed in the thesis,
its motivation, and the details about the proposed reference architecture and the
components. The UML diagrams were presented to illustrate the workflow of the
architecture. The presentation lasted close to 5-8 minutes, majorly due to the fact
that the participants had read the architecture detail document sent prior to the
meeting. Post presentation, the researchers went ahead with the set of interview
questions. One of the researchers was handling the part of asking the question,
while the other was taking notes of the participant responses. At the end of the
interview, the researchers thanked the participants again for their valuable time.
After each interview session, the summary list of the session based on notes taken
was prepared, and the knowledge gained was noted. The average total interview
session was approximately 25 minutes of duration.

4.5 Research Question 3
The researchers conducted a document study to answer research question 3.

4.5.1 Documents Study
Document study was the initial step conducted by researchers to gather related
data about the existing system. The initial study began by reading about the
existing cloud system architectures, current infotainment system, followed by the
architectural styles used by Aptiv company for their infotainment solutions. Then
researchers studied Automotive Grade Linux(AGL). They studied the existing fea-
ture support by AGL and its future road-map. These documents were carefully
studied and analyzed by both the researchers. Few key documents were studied,
which gave the researchers useful insight into the existing solutions (AGL and other
platforms) and the various reasoning behind selecting the existing solution. The
main business logic of the systems was comprehended. This gave us an important
understanding and purpose of the current systems. It aided researchers in identify-
ing the gaps and scope for improvement in AGL in terms of content streaming from
the cloud. It also helped identify how to evaluate quality attributes of architecture

24

4. Methods

and measure quality attributes of a reference architecture.

All the documents helped the researchers to comprehend the required background
knowledge for developing the architecture. Additionally, it also helped researchers
to identify possible problem areas in developing the architecture solution. The most
important complex areas were identified by researchers and helped them in under-
standing the whole picture.

25

4. Methods

26

5
Results

This section presents the results from interviews, brainstorming and document study
and, software architecture developed. These findings are based on systematic experi-
ments involving human subjects. The first section presents the software architecture
developed, followed by the sequence diagram for the architecture developed. The
second section presents the results for interviews, brainstorming, and document
study for research question 1. The third section presents the results for interviews
for research question 2. The section ends with document study results for research
question 3.

5.1 Architecture
In this section, the reference architecture designed is explained. The architecture
was developed by taking AGL as a reference, and the architecture is based on the
data which was collected during the data collection phase. According to the data
collection and analysis, it can be seen that the quality attributes like availability
and performance were the most preferential. To render the system when there is a
drop in connection, the architecture utilizes an offline manager, which fetches the
cached data, and the response is streamed to the UI, making the system available at
all times. The infotainment-cloud state sync manager is used for state synchronicity
management. It helps to keep the infotainment system’s state in sync with the cloud
between online and offline mode.

Figure 5.1: Top level component diagram of the cloud-infotainment system

27

5. Results

Figure 5.1 represents the top-level diagram of the cloud - infotainment system. The
infotainment system interacts with the cloud system to get data for the requests
it makes. It also authenticates itself with the cloud system. Database host sends
responses for any data request/records made by the offline manager. The infotain-
ment system sends service requests to HAL to perform hardware-related activities.
The user manager gets the response from the cloud. It sends the response to the
Infotainment UI via the Policy Manager.

Figure 5.2 represents the detailed reference software architecture of the infotain-
ment system. The reference architecture consists of two parts - Cloud system and
Infotainment system. In this thesis, we will discuss on Infotainment system part of
the architecture and cloud system part is only to provide a reference to picture the
entire system as a whole. The infotainment part of reference architecture consists
of 9 components. Next section provides the detailed description of each of the com-
ponents used in the reference architecture developed.

28

5. Results

Figure 5.2: Reference Software Architecture

5.1.1 Component Description of the reference software ar-
chitecture

This section presents the description of the components which are used in the soft-
ware architecture developed.

1. Database Host This component stores the data that needs to be sent when
the system is in offline mode. In offline mode, the Offline Manager requests
data from the local database to be sent to the UI.

2. Offline Manager This component is responsible for processing the data re-
quest from the User manager in offline mode. This component stores the
cloud’s response in cached data, and this data is sent to handle UI requests.
When there is no cache data available, the Offline Manager, with the help of

29

5. Results

an offline UI and data processor, fetch the data from the local database and
send it to the data renderer. Data Renderer renders the data obtained by
combining the data from offline UI and data processor.

3. User Manager This is an existing component in AGL. In addition to its
existing responsibility, we have added the following responsibilities. This com-
ponent checks for the connection at regular intervals between the infotainment
system and the cloud. On a data request from the Policy manager, and if there
is a connection available, it sends a request to the cloud. The response from
cloud is sent back to the Policy manager. It also sends the data response
from the cloud to the Offline Manager. Where there is no internet connection
available, it sends the data request to the Offline Manager. When the internet
connection is changed from offline to online and, if there is a state synchroniza-
tion request from the Infotainment-Cloud State Sync manager, then it sends
the request to the cloud. The corresponding response from the cloud is sent
back to the Infotainment-Cloud State Sync manager. The communication be-
tween the User manager and the cloud is encrypted.

4. Policy Manager This is an existing component in AGL. This component
is mainly responsible for making decisions regarding the data request. When
there is a data request, the Decision Manager decides whether the requests
need to be sent to the cloud for the response or whether it can be handled
locally.

5. Infotainment-Cloud State Sync Manager The Infotainment-Cloud State
Sync Manager stores the latest state of the Infotainment UI at the time of
disconnection. This component on regular intervals will check with the User
Manager that if there is a connection established to the cloud. Once recon-
nection is established, the latest state data of UI will be sent by Infotainment-
Cloud State Sync Manager to the cloud via User Manager. The cloud resolves
the state and sends the updated state. The Infotainment-Cloud State Sync
Manager receives the updated state, updates the current state, and sends it
to the Offline Manager to update the UI.

6. HAL Hardware Abstraction Layer takes care of communicating with vehicle
hardware to send and receive data.

7. Vehicle Hardware The vehicle hardware to which data is sent/received form
HAL.

8. Event Handler This component processes the inputs from the UI and han-
dles the request to be sent to the cloud and hardware. This component helps
to achieve performance, where it will limit the number of requests.

9. Offline UI This component is responsible for generating a UI in case of con-
nection drop and the generated UI is sent to the data renderer, which in turn

30

5. Results

streams it to the infotainment UI.

5.1.2 Sequence diagrams
In this section, three sequence diagrams for the software architecture are presented.
They depict the component interaction in three scenarios.

Figure 5.3 represents the sequence diagram when there is internet connection be-
tween Cloud and infotainment system. The Infotainment UI sends out the request
to Policy Manager. The Policy Manager decides whether the request needs to be
sent to cloud or HAL. For requests to be sent to cloud, Policy Manager sends the re-
quest to User Manager. User Manager checks for internet connection with cloud. On
successful connection response, User Manager sends the request to the cloud. The
Cloud system sends data response to User Manager, which is sent to Infotainment
UI via Policy Manager.

Figure 5.3: Sequence Diagram with internet connection

31

5. Results

Figure 5.4 represents the sequence diagram when there is no internet connection
between Cloud and infotainment system. For the request that needs to be sent to
cloud, the Policy Manager sends the request from Infotainment UI to User Man-
ager. User Manager checks for internet connection with cloud. On unsuccessful
connection response, User Manager sends the request to Offline Manager. Offline
Manager checks for cache data, processes the request and sends data response to
the Infotainment UI.

Figure 5.4: Sequence Diagram without internet connection

32

5. Results

Figure 5.5 represents the sequence diagram for state synchronization scenario be-
tween cloud and infotainment system. When there is no internet connection between
cloud and infotainment system (offline mode), Offline Manager sends the response
to Infotainment UI. Infotainment-Cloud State Sync Manager component gets the
latest state of the UI and periodically checks with User Manager regarding internet
connection status. On re-establishment of internet connection between infotainment
and cloud, the Infotainment-cloud state sync manager sends the latest state of the
UI to the cloud via User Manager. The cloud synchronises the states and sends
the updated state to the Infotainment-cloud state sync manager via User Manager.
The Infotainment-cloud state sync manager updates its current state and sends the
updated state to Offline Manager, which updates the infotainment UI state to latest
state from cloud.

Figure 5.5: Sequence Diagram for Synchronization scenario between cloud and
infotainment system

33

5. Results

5.2 Findings for Research Questions
To be able to answer the research questions, several steps had to be made before-
hand. Related literature had to be analyzed. Interviews had to be conducted to elicit
the functional and non-functional requirements required to develop the architecture.
Finally, the developed architecture had to be evaluated using semi-structured inter-
views. After these steps were completed, results could be generated to answer the
research questions.

The Figure 5.6 represents the different times at which the data collection was per-
formed and analyzed. Data from the document study was collected and analyzed in
phase 1. The data from brainstorming and semi-structured interviews were collected
and analyzed in phase 2. The data from semi-structured interview to evaluate the
architecture was collected and analyzed in phase 3. .

Figure 5.6: Representation of methods used in data collection approach

5.2.1 Research Question 1
5.2.1.1 Findings from Document study

In this study, qualitative content analysis was used for data analysis of the docu-
ments study. Researchers recognized the critical concepts and patterns by analyzing
the documents.

The researchers thoroughly analyzed the initial set of documents that were gathered
during the first phase of data collection. The data analysis of the document study
allowed researchers to understand the core concepts with clear sight and in-depth
perception. This approach helped the researchers to concentrate better on the most
critical areas and study them in full depth.

Researchers obtained a good understanding of the existing cloud-based and game-
based architectures. It helped them to acquire knowledge on key components essen-

34

5. Results

tial for architecture for cloud streaming of infotainment for an automobile. The dif-
ferent available architecture styles were thoroughly analyzed by researchers, which
helped them to grasp the general overview of available and popular architectural
styles. Researchers analyzed top-rated cloud-based applications like Google Stadia
and Spotify. Analyzing these applications helped the researchers understand the
architectural styles used by them. The similarities and dissimilarities between the
existing architecture and the one proposed to be developed were analyzed. It helped
the researchers to focus better on specific required areas.

Based on the knowledge obtained in the document study, researchers identified the
need for a reference architecture for streaming the IVI from the cloud. The scope
of the architecture is large for the problem statement. Hence, with the help of
supervisors, researchers reduced the scope to the infotainment system part only.
The cloud part is not being discussed in this thesis. This helped researchers to focus
with better clarity to work on the architecture.

5.2.1.2 Findings from Interviews and Brainstorming

In this study, the data set obtained from interviews and brainstorming was analyzed.
In a brainstorming session, the researchers shared their ideas about the functional
and non-functional requirements for developing the reference architecture. During
the session, researchers started to discuss the most important attributes present
in the current infotainment system. This initial discussion went on for about 60
minutes. During this short session, the researchers came up with many quality
requirements. They noted down these requirements. Then researchers started to
discuss the attributes that will be important when developing a cloud-based info-
tainment solution. They made a note of these requirements. This short session went
to about 60 minutes. Researchers then took a short break and started with the next
session of 120 minutes. In the first half of this session, they discussed in detail the
pros and cons of each requirement they made a note of in the previous session. The
various trade-offs associated with the requirement were debated. This session went
for about 90 minutes. Researchers then discussed various functional requirements
that might be necessary for the cloud-based infotainment system. This discussion
went for about 30 minutes, and the ideas were noted down. At the end of the two
sessions conducted, researchers agreed that Availability and Security would be the
top two non-functional requirements that would be most necessary and should not
be compromised in the architecture. For functional requirements, they agreed that
the navigation feature should be an important functional feature that should be
needed for the Infotainment system, as most of today’s users use and expect nav-
igation to be part of the infotainment. Researchers were also of the opinion that
climate control (AC temperature) should also be another important functional fea-
ture. This is because having a climate control feature has become a standard norm
in most today’s cars, and users will more often use this feature when driving. This
feature also helps the users to maintain the desired temperature inside the car, which
will make them relaxed while driving, as outside temperature varies and cannot be
controlled.

35

5. Results

The interview data set was categorized based on the type of question by researchers.
Various topics were covered in the questions. There were few personal questions
asked, like the interviewees’ job role, their overall work experience, and their work
experience in the infotainment domain. Then there were domain-specific questions
on cloud infotainment. They were asked about current features in infotainment sys-
tems, their quality and functional attributes, and their challenges. The interviewees
were asked about cloud-based architecture, challenges associated with it, and the
necessary top attributes. At the end of the interview, researchers asked for general
suggestions apart from the questions asked. The set of questions can be found in
section A.1

There was a good mixture of the composition of the interviewees. Based on their
job designation/role, about 50% of the interviewees were Lead developers/Architect,
30% were senior developers, and 20% were junior developers in the software industry.
Based on the tenure of work experience in the software industry, about 70% of
interviewees had 8+ years of experience, 20% had 5-8 years of experience, and 10%
had less than five years experience working in the software industry. Based on
working in the Infotainment domain, about 60% had 5+ years experience, 20% had
2-5 years experience, and 20% had 0-2 years experience in the infotainment domain.
A graph was created to illustrate the data obtained in a human-readable format.
The Figure 5.7 depicts the quality attributes desired for the proposed architecture
development.

Figure 5.7: Data gathered from interview for Quality Attribute

The Figure 5.8 depicts the functional attributes desired for the proposed architec-
ture development.

As represented in Figure 5.7, About 80% of the interviews were of the opinion that
Performance and Availability was an important quality attribute, 60% think Security
was an important quality attribute, and 20% think test-ability and maintainability
was an important attribute. Based on interview data, researchers analyzed that Per-
formance, Security, and Availability are the top most important quality attribute

36

5. Results

Figure 5.8: Data gathered from interview for Functionality Attribute

that is expected of the architecture. The majority of interviewee subjects empha-
sized these three quality attributes for the system we planned to build.

As represented in Figure 5.8, about 90% of interviewees believe that Navigation and
Music (Tuner/Audio Player) is the most important functionality of the infotainment
system. 20% of interviewees think video player functionality is important. Based
on data, researchers analyzed that Navigation and Music (Tuner/Audio Player) to
be the most important functionality that has to be supported in IVI.

Analysis of the interview data has helped the researchers concentrate on the impor-
tant attributes for the development of architecture. It enabled them to make wise
trade-offs and apply appropriate tactics and styles in developing the architecture.

5.2.2 Research Question 2
A semi-structured interview was used for Research question 2. The set of questions
can be found in section A.2. There were a total of 5 participants who took part in
the interview. 4 participants were men, and one was a woman participant. 20% of
the participants were from Sweden, 40% of them were from other parts of Europe
and 40% were from India.

Figure 5.9 depicts respondent’s various roles and responsibilities as per question 1
in interview questions. It can be clearly observed that the Software Architects and
Senior Developer/QA were the highest respondents with 50%. Students (researcher)
and Product owners compromised of 25% each.

Figure 5.10 illustrates the knowledge or understanding about AGL as per question
2. It shows that 50% of the respondents had read white papers about AGL and
have used AGL in prototype projects. 25% of the respondents had been involved in
product development based on AGL, and the remaining 25% had just heard about

37

5. Results

Figure 5.9: Role/responsibilities of respondents

AGL. There were no respondents who had not heard about AGL.

Figure 5.10: Knowledge/ understanding of AGL

In the next question, the respondents were asked to rate their level of understanding
of the roles/responsibilities of the architecture components based on the description
provided prior to the interview.

Figure 5.11 depicts their responses to the level of understanding. It clearly shows
that for the Offline Manager component, 60% of the respondents felt they under-
stood the design for the Offline Manager component, but would not feel comfortable
explaining it to others. 40% of the respondents felt that they could understand the
design and would feel comfortable to explain it to others, but could not make changes
to adopt it our needs. For Infotainment-cloud state Sync Manager, 40% responded

38

5. Results

that they could understand the design and feel comfortable explaining to others, but
could not make changes to adopt it our needs. 60% responded that they understood
the design but would not feel comfortable to explain to others. For User Manager
and Policy Manager, 60% responded that they could understand the design and
would feel comfortable to explain it to others, and could make changes to adapt it
our needs, whereas 20% responded that they understood the design, but would not
feel comfortable to explain it to others and 20% responded that they could under-
stand the design and would feel comfortable to explain it to others, but could not
make changes to adopt it our needs.

Figure 5.11: Level of understanding of reference architecture components

In question 4, the respondents were asked to rate the possible end-to-end data la-
tency for UI interaction in our infotainment system. Figure 5.12 depicts that 60% of
the respondents were of the opinion that the end-to-end latency would be between
10-50 milliseconds(ms). 20% responded that latency would be between 50-100ms
and the remaining 20% responded with 100-150ms.

Figure 5.12: End-to-end latency for UI interaction in our infotainment system

39

5. Results

5.2.2.1 Infotainment cloud state sync manager component

The next set of questions were based on the Infotainment cloud state sync manager
component. In the interview, the respondents were explained about the role of the
component, which is to synchronize the state between cloud and infotainment sys-
tem.

Question 5 asked about the respondents opinion about the role of this component.
One of the respondents, the senior Architect, indicated that this component achieved
state sync between online and offline systems and thought that it was a good idea
to reduce the transfer of the state at a given point in time.

Few respondents were of the opinion that the component is essential and very impor-
tant to achieve synchronicity of the state between online mode (internet connection)
and offline mode(no internet connection). The product owner responded that the
need for state synchronization management is high in many products that he han-
dles in his software company. The respondent indicated that the state sync manager
sends the latest state data of the UI to the cloud via User Manager and thought it
would play a major role in achieving state synchronicity in the case of internet re
connection.

One of the respondents was of the opinion that it depends on implementation and
did not want to comment on this question.

The respondents were asked about the possible latency addition due to the Sync
manager component as per question 6. Figure 5.13 illustrates that 60% of the re-
spondents were of the opinion that the latency added will be very negligible and less
than one milliseconds(ms). The rest 40% stated that latency might be between 1-5
milliseconds.

The respondents were asked the basis of choice of their responses. They stated that
having low latency in the Infotainment-Cloud State Sync Manager component will
provide a better user experience for the infotainment system and thought it should
have low latency. They felt this component would play a crucial part in user ex-
perience, which will depend on the implementation of the component. One of the
respondent, the researcher, felt this component would play major role in offline mode
and indicated the latency will be less. The respondent thought that this component
does not appear to interfere with the online part, and it kept the state in sync. The
respondent liked the idea of states being separated out.

The respondents were of the general opinion that this component would be a good
value addition to the architecture. Following their latency expectation, the respon-
dents were asked about possible drawbacks and how it can be mitigated to achieve
better state synchronization as per question 7.

The respondents came up with various answers. They thought about possible draw-
backs that this component might offer or face. The software architect indicated that

40

5. Results

he could not identify any major drawback in the component. He thought that, as the
component is an addition to the already existing architecture, the entire system’s
latency would not be compromised.

Few respondents were curious to understand that when new states are added, how
will the component track them. They felt that if tracking is not implemented cor-
rectly, the system might face state management issues. One of the respondents
raised few concerns, like how the Infotainment-Cloud State Sync Manager compo-
nent supports the transient between two states and whether it is possible to increase
or decrease the component’s latency.

Figure 5.13: Latency added by Infotainment-Cloud State Sync Manager

5.2.2.2 Offline Manager

Following the Infotainment-Cloud State Sync Manager component, the next set of
questions were based on the Offline Manager component. The respondents were
explained about the Offline Manager component and its role in the reference archi-
tecture. In the offline manager, the offline UI component generates the UI required
during the offline mode, which is combined with data from the data processor to
render to the user. The respondents were asked to opinion out the advantages and
disadvantages of this approach to render the UI to the user to interact, as per ques-
tion 8.

One of the respondents thought that there was no drawbacks for the component
and indicated that offline UI’s advantage is that it fetches the data from the cached
data when there is a connection loss with the cloud. The respondent indicated that
the offline UI component would render the UI to the user without any discrepancies
during poor internet connection and cautioned that if there is database corruption

41

5. Results

or cached data corruption, then it might be difficult for the component to render
the data.

The Senior developer felt that one of the drawbacks was how the rendering is
achieved. He felt that while implementing the component, the requirement for addi-
tional memory and CPU might arise, which needs to be handled carefully. Another
respondent was of the opinion that there might be an additional delay when there
is a switch between online and offline mode. The Architect emphasized on memory
management. The respondent indicated to look into the size of memory that will be
utilized by the data processor and raised concern that, whether it will be sufficient
enough to handle longer duration of offline state without affecting data loss.

The respondents were asked a follow-up question about their opinion of the offline
renderer to render UI and how it might affect state synchronicity and latency, as
per question 9.

The Senior developer was of the opinion that, though Offline renderer was useful
in creating realistic images and videos from the processed data, it will have a huge
impact on the latency of the system when compared to the online connection state
between cloud and infotainment.

Few respondents thought that the component might not affect latency and felt it
was a good idea to move the state out of the equation. But they also suggested
that, in order to improve performance, it might be a good idea to consider merging
online mode and offline mode rendering, so that the need to transfer the amount
of data is reduced. They also stated that offline renderer was a good approach to
render the data.

5.2.2.3 User Manager component

The respondents were informed about the additional responsibility added to the
User Manager component, as this component already exists in AGL architecture.
They were asked to give out their opinion on possible latency this component might
add due to the additional responsibility of redirecting the request based on internet
connection(online/offline mode) as per question 10.

Figure 5.14 illustrates that 60% of the respondents felt that latency added will be
low and will be between 1-5ms, whereas 40% felt the latency added will be between
5-10ms. There was a follow-up question for this, which asked the motivation or
reasoning for their responses.

Few respondents were of the opinion that the latency added will be less as this is an
existing component in AGL architecture and it should not affect latency much, while
another respondent answered that this component would lead to high latency as it
will be overloaded with additional responsibility. One respondent felt it depended
purely on implementation and thought it might be less than 5ms, but was unsure.
The Software architect was of the opinion that this additional responsibility might

42

5. Results

add more latency. The respondent specified that this component would redirect the
request based on the internet connection and indicated that this would lead to the
addition of few more components, and it might increase the overall latency of the
system.

Figure 5.14: Latency added by User Manager

5.2.2.4 Other questions on architecture

Following the component-specific questions, the researchers asked generic questions
on architecture. The respondents were asked if the components in reference architec-
ture were overloaded with responsibilities, to which many respondents stated that
they were overloaded with responsibilities. Follow up question was asked to identify
which component was overloaded and, if we divide the component into two or more
sub-components, will it have an impact on latency as per question 11.

Figure 5.15 depicts that for Offline Manager, all the respondents felt that dividing
the component into two or more sub-component will decrease the latency of the
component. For the Infotainment-Cloud State Sync Manager component, 60% felt
that dividing the component will decrease the latency, while the remaining 40%
were of the opinion of not dividing the component. In the case of the User Manager
component, similar to Offline Manager, all the respondents felt that dividing the
component into two or more sub-component will decrease the latency of the compo-
nent. They felt that it was overloaded and might add high latency. Dividing it into
more sub-components might reduce the impact on latency. For the Policy Manager
component, 80% felt that dividing the component will decrease the latency, while
the remaining 20% were of the opinion of not diving the component.

43

5. Results

Figure 5.15: Impact of latency on dividing the component

The respondents were asked about the features that work well in the proposed ref-
erence architecture and the reason behind their opinion. Most of the respondents
stated that the Infotainment-Cloud State Sync Manager component was a good
idea, as it makes state management simpler. They felt it could make the user expe-
rience better. One of the respondents thought that the reference architecture is good
enough to achieve real-time data streaming in infotainment system with low latency.

The respondents also stated that the implementation of the components would play
a crucial role in determining the latency. They were of the opinion that with good
implementation, this architecture might add good value for real-time data streaming
in the automobile industry.

The researchers asked the respondents for suggestions to make the reference archi-
tecture more efficient in terms of Performance, Availability, and Security attributes.
They emphasized on exploring more on the security of data, while acknowledging
that User Manager encrypts the data used for communication with cloud and user
authentication, which provides good data security. They highlighted that data from
systems like User Profile, Advanced Driver Assistance Systems (ADAS) must be
handled with utmost care. In terms of performance, one of the respondents indi-
cated that having a simple implementation will be helpful to make a real estimation
regarding latency. The respondent also pointed out that giving more details about
each component’s working will help in reasoning out the latency estimates.

The respondents indicated that though the estimates they have given on latency
of the components are based on experience, knowledge and component description,
they cautioned that they could change based on implementation. They also an-
swered that the offline mode feature is a good idea for availability attribute during
the loss of internet connection. They also asked us to ponder over how the failure of
the Offline manager component will be handled and how it can affect the availability.

To conclude the interview, researchers asked for other overall suggestions. Few re-
spondents replied that we must also look into how component failure can be handled

44

5. Results

and what is its impact on the system, while few did not have any more suggestions.
One of the respondents was of the opinion that our contribution to the thesis is
good. He was very happy with our thesis, and he thought it would be a good value
addition to AGL.

5.2.3 Research Question 3
To answer the research question "How can the AGL reference architecture be ex-
tended to support near real-time, low-latency, high data volume content streaming?"
results of the literature review of existing architecture are discussed.

A review of the existing AGL architecture specification determined that the cur-
rent specification does not contain the roadmap features required to achieve near
real-time low latency high data volume content streaming. However, the existing
specification supports Connectivity and OTA. But, the cloud and content streaming
applications are not present in any layer and are also not specified in the current
roadmaps of the specification document.

The literature review results show that AGL is the most appropriate in-vehicle
platform over other potential platforms because of platform features, platform run-
time, application run-time, application development, SDK, app store, and licensing,
and developer community. In order to extend the AGL architecture, multiple fac-
tors were identified and reviewed. Firstly, the researchers had to identify in which
layer of the architecture does the features or elements like cloud, connectivity, OTA,
or/and streaming-based functions need to be implemented. The researchers also had
to identify whether AGL architecture can support the required technical feasibility
required for real-time low latency high data volume content streaming.

Considering the factor of identifying the layer on which the elements need to be
implemented, multiple literature and AGL meetings were reviewed. According to
Zhang and AGL summer meeting [82] [83], AGL supports a number of Vehicle-
to-Cloud (V2C) scenarios, which can be enabled by connecting AGL to the cloud.
According to the AGL specification, Connectivity is in the service layer, and OTA
in the Application layer [80]. According to [82], the AGL cloud is implemented
in the application framework layer, where it provides methods to create Software
applications and their user interface. Streaming is also one type of V2C scenario.
The AGL application layer provides basic services to all applications regardless of
the framework they are implemented so that there is a standard method providing
the services. It makes logical sense to have cloud and streaming in the application
layer so that they provide standards methods to access cloud and streaming features
irrespective of frameworks.

Technical requirements of different applications were reviewed in order to find whether
the streaming of real-time low latency contents can be supported in AGL. Initially,
Apple Carplay and Android Auto’s software platforms were reviewed because these

45

5. Results

software platforms mirror the smartphones using wifi and USB connection, which
is used as a third-party application in the infotainment unit. To support Apple
Carplay and Android Auto, the OEMs provide a minimum technical requirement
for the infotainment system, which is compared with the technical requirement of
AGL, to find whether applications used in Apple Carplay and Android Auto can be
implemented in AGL.

To support standard applications like Spotify, Google stadia by AGL, the researchers
reviewed the minimum technical requirements of Google Stadia to support stream-
ing through USB from phone to Infotainment systems. It was found that Google
Stadia requires an operating system of Android 6.0 or later and bandwidth require-
ment of 35Mbps for 4K with HDR and 5.1 surrounds, 20Mbps for 1080p and 5.1
surround, and 10Mbps for 720p and stereo sound. The limitation associated with
playing Google Stadia on a mobile data network is that the user must be on an
LTE or 5G network. The mobile device must have a solid, consistent cellular sig-
nal and should stay in one place. If you’re in a vehicle or moving quickly, your
connection may be interrupted. The user needs to avoid public areas with lots of
mobile device network traffic. Network performance may be degraded in these areas.

Based on the above literature review, researchers were able to find the limitations
in the current technologies and missing implementations in AGL. The limitations
were the video streaming from the phone to the head unit requires HDMI support
or the Chromecast (incase of google stadia). AGL does not provide a roadmap of
technical requirements about how they might achieve high content low latency video
streaming. The majority of OEMs are moving towards open source AGL rather than
Genivi/QNX.

Once the limitations were identified, the researchers performed a literature review
to find whether AGL provides support for high content, low latency video. Based
on the review, it was found that the multimedia services are present in the Auto-
motive services, which is a part of the Services layer in AGL architecture. AGL
provides an API that allows the handling of various media data within the system,
including audio/video playback, APIs to support QoS and recording, and media
streaming over the network. AGL provides support for major network streaming
protocols such as HTTP, RTSP, Digital Radio (DAB), DigitalTV, and it is also
possible to extend the set of supported streaming protocols. AGL also provides
support for major multimedia containers, such as MPEG2-TS/PS (ISO/IEC 13818-
1), MP4 (MPEG-4 Part 14, ISO/IEC 14496-14:2003). It is also possible to extend
the set of supported multimedia formats according to system requirements and ex-
tend AGL to support additional optional multimedia containers such as OGG (RFC
3533), 3GPP (ISO/IEC 14496-12). In addition to the above specification, AGL also
supports Media Audio Codecs such as MP3 (MPEG-1/2 Audio Layer-3, ISO/IEC
11172-3, ISO/IEC 13818-3), AAC (ISO/IEC 13818-7, ISO/IEC 14496-3). It is also
possible to extend AGL to support additional audio codecs, such as VORBIS [85],
Windows Media Audio. AGL also supports Media Video Codecs such as MPEG-2
(ISO/IEC 13818-2), MPEG-4 Part 2 (ISO/IEC 14496-2), H.264 (MPEG-4 Part10,

46

5. Results

ISO/IEC 14496-10, ITU-T H.264). It is also possible to extend the set of supported
audio and video codecs in accordance with system requirements. Therefore, the
review shows that AGL supports the necessary technical specification required to
stream real-time low latency high contents.

Once the researchers found that AGL contains the necessary technical specification
to support near real-time high content low latency streaming. In the next step, the
researchers reviewed the architecture, and the components which are used in the
AGL architecture [80]. The current AGL architecture was reviewed to identify the
components that can be reused, where the existing components are provided with
additional responsibilities to support content streaming. On reviewing the existing
AGL architecture, the researchers identified that policy manager and user manager
could be modified by adding more responsibilities to support content streaming
during online and offline modes. In addition to these components, additional com-
ponents were identified and added to different layers of the AGL architecture in
order for the infotainment to support the streaming during no or low internet con-
nection.

In order to provide a seamless user experience, the infotainment system needs to
stream the data to users irrespective of the internet connection. The new changes
include new components like Offline manager, Infotainment-cloud state sync man-
ager, data encryption. The identified components are placed in the different layers
of the current AGL, as discussed previously in the section. The components Offline
manager and Infotainment-cloud state sync manager are placed in the application
framework layers of the AGL architecture. These components help the system in
different ways, Firstly with the help of the offline manager, the system can stream
the data to the user when there is a drop in connection. With the help of an of-
fline manager, the system can cache the data from the cloud and can stream the
data to the UI in case of loss of network connection. Secondly, with the help of the
Infotainment-cloud state sync manager, the system can update the state of the UI
data request from the cloud. Apart from its existing responsibility, the user manager
provides the component to check the connection at regular intervals between the in-
fotainment system and the cloud. Whereas the policy manager acts as a decision
manager where it decides whether the requests need to be sent to the cloud for the
response or whether it can be handled locally.

To conclude, the researchers were able to make changes to the existing AGL ar-
chitecture, and with the help of the changes, the researchers were able to propose
a new reference architecture that can be used to stream near real-time, high con-
tent, low latency content data from the cloud irrespective of the internet connection.

47

5. Results

48

6
Discussion

This section presents the discussion on factors that helped in developing an archi-
tecture along with the validity threats. The first section presents the tactics used to
achieve quality attributes for the architecture, the second section presents the dis-
cussion on how the functional requirements were achieved, the third section presents
the reflection on architecture designed, the fourth section presents the reflection on
methodology used, and the final section presents the threats to validity.

6.1 Quality attributes tactics
Architectural tactics are the techniques an architect uses to achieve quality at-
tributes. They are the design decisions that influence the achievement of a quality
attribute response. An architectural tactic is a means to satisfy the quality attribute
response measure by manipulating the model through design decisions [61][65]
.
The system is designed based on the number of decisions. These decisions help in
controlling the quality attribute responses, while some decisions ensure the system
functionality is achieved. Tactics are like design patterns that intend to control re-
sponses to stimuli. Applying design patterns is often difficult due to the complexity
of the design patterns as they consist of a bundle of design decisions. The quality
attribute is achieved by modifying and adapting the design patterns, and applying
the tactics helps in assessing the options to add details to the existing patterns.
Tactics allow us to construct design fragments from "first principles" when no design
pattern exists. Tactics make the design more systematic. The choice of which tactic
to use depends on a trade-off among the quality attributes.

According to the data collected from the interview and brainstorming sessions, the
quality attributes the architecture developed should achieve are availability, security,
and performance. In the below section, we present the tactics of the three quality
attributes used in developing the architecture.

6.1.1 Availability tactics
Availability is one of the quality attributes which refers to the ability of the system
to be available at any point, irrespective of failures or outages [65]. One of the main
challenges of this study is that the IVI system needs to be always available for the
user even when there is a drop in connections. This challenge is achieved by using

49

6. Discussion

Availability tactics in the developed architecture.

Consider the scenario; the infotainment system loses the network connection when
there is a data request. We have used the Ping/echo tactic in the user manager
component to detect the connection between the Infotainment system and the cloud
system. On detecting connection drop or loss, the user manager keeps checking the
network every second by sending the ping request to the cloud system [65].

We have used active redundancy in case of network drop. Consider the scenario,
cars will be moving long distances, and we will not be aware of when there will be a
connection drop or a poor connection. When there is a connection drop, the system
must be able to provide the user with data all the time. The user manager com-
ponent is responsible for detecting this fault and uses a ping tactic to monitor the
network connection. On failing to connect with the cloud system, the user manager
sends the request to the Offline manager. The Offline manager handles the request
and sends the response to the UI. Hence in offline mode, the user can use the IVI
system. The interview results indicated that having an Offline Manager component
to provide data to UI during offline mode was a good idea. They believed that this
would make the UI available to the user in offline mode.

In addition to this, we have also used a secondary database. The secondary database
contains the same information as the primary but is maintained in a separate server.
The secondary database is used when the primary database fails or crashes. The
database is used to respond to data requests made by the Offline manager.

6.1.2 Security tactics
Security refers to the ability of the system to protect the data and information from
any unauthorized access and enabling authentic users to use the system without any
restriction [65]. One of the limitations of cloud technology is the lack of security. In
this study, this limitation is mitigated using security tactics. The security tactics
used are encrypt/decrypt data and authenticate users.

Consider the scenario, authentication of the cloud system for the users. Users have
to be authenticated and will contain a single active session. This will be performed
via an SSL certificate for increased security. Using the Authentication manager and
SSL certificate, the risk of intrusion or spoofing is controlled as the SSL certificate
is provided with a signature validated by the authentication manager in the cloud.

The response and the request information to and from the IVI are encrypted using
the data encryption component. By using this tactic, the information communi-
cated between the systems is secured, thus restricting the system from unauthorized
access. The interview respondents also emphasized the importance of security of
the data shared between the infotainment and the cloud. They appreciated the
encryption and authentication mechanism in place and indicated the data must be
handled securely, and other security options can be explored.

50

6. Discussion

6.1.3 Performance tactics
Performance is related to the timing requirements of the system. It is the ability
of the system to respond well in time for the events, data requests from different
systems [65]s. The main purpose of this thesis is to provide continuous streaming
of data from the cloud to the user irrespective of the connection. The IVI system
involves many user actions; due to this, there will be many information requests
coming from the system to the cloud. The response from the cloud system needs
to be presented to the user without any interruption. The performance tactics used
are resource management, and multiple copies of databases are maintained.

Consider the scenario, a data request is sent, and during the response, there is a
drop in internet connection. The response to the user is delayed, and the data
in the infotainment system is in a different state compared to data sent from the
cloud system action. To overcome this, we have used different components like
Infotainment-Cloud State Sync Manager and Offline Manager, which stream the
data to the Infotainment UI. The Infotainment-Cloud State Sync Manager stores
the latest state of the Infotainment UI at the time of disconnection. When there is
a loss of internet connection, the cached data in offline mode will be used to process
Infotainment requests. On reconnection, the latest state data of UI will be sent by
Infotainment-Cloud State Sync Manager to the cloud via User Manager. The cloud
resolves the state and sends the updated state. The Infotainment-Cloud State Sync
Manager receives the updated state, updates the current state, and sends it to the
Offline Manager to update the UI. By assigning the state management to separate
components, the overloading of the component with responsibilities is reduced. Hav-
ing a dedicated component for a specific role will help in better management of the
component, and interview respondents were of the opinion that the Sync manager
component would add negligible latency to the overall architecture. By using these
resources, the latency is predicted to be decreased.

6.2 Functional Requirements tactics
The functional requirement plays a vital role in the design of the architecture. Based
on interview results for RQ1, navigation and music(audio/video player) were identi-
fied as the basic functional features that users expect to be part of the infotainment
system. But after thorough literature study, researchers identified two important
functional requirements for the architecture, which were state management and of-
fline management.

State management was thought to be an important functional requirement, as it is
very commonly used in the gaming industry. As the system faces changing internet
connections, there was a need for state management. If the states are not managed
properly, it might lead to state mismatch between the infotainment system and the
cloud. To address this issue, researchers decided to add Infotainment-Cloud State

51

6. Discussion

Sync Manager component to the architecture, which handles the state synchroniza-
tion between online and offline mode. At regular intervals, this component will check
with the User Manager that if there is a connection established to the cloud. On
reconnection, the latest state data of UI will be sent by Infotainment-Cloud State
Sync Manager to the cloud. The cloud receives this state, updates the state, and
sends back the updated state. The Infotainment-Cloud State Sync Manager com-
ponent uses the cloud state to update the current state of the infotainment system.
The respondents of the interview for RQ2 appreciated the idea of state management
and thought it was a good approach to handle the states separately. They felt this
component would play a crucial part in user experience.

Offline management was thought to be necessary to handle the request when there
is no internet connection(offline mode). When there is no internet connection, there
was a need for a mechanism to manage the UI requests, without which the users
might face issues in accessing the infotainment UI. This might lead to a bad user
experience. In order to address this scenario, the researchers added Offline Manager
component to the architecture. In the offline manager, the offline UI component
generates the UI required during the offline mode, which is combined with data
from the data processor to render data to the user. The interview respondents
of RQ2 were of the opinion that this component would render the UI to the user
without any discrepancies during poor internet connection. They felt that the offline
renderer was useful in creating realistic images and videos from the processed data
but cautioned that there might be an additional latency added to the system due
to the component.

6.3 Reflection on Related work

In the related work section, researchers presented currently trending cloud appli-
cations like Spotify and Google Stadia, open source platform Automotive Grade
Linux (AGL), software platforms Apple CarPlay and Android Auto. All of these
applications vary with our thesis on different factors , from user behavior, the size of
streaming objects, and the number of objects offered for streaming. The researchers
identified that in automotive industry, there are limitations in streaming high con-
tent, low latency video from cloud to infotainment.

Also, researchers identified that there were lot of papers on AGL and how it can
be customised, but noticed that there was lack on papers on implementing cloud
content streaming in AGL. Due to this, there is room for research regarding the
different approaches that can be used to stream real-time, low-latency, high data
volume content from cloud to infotainment. On contrary, studies regarding the
architecture evaluation methods were common. The researchers discovered that
evaluating the architecture based on semi structured interviews was best suited
for getting architecture evaluated by multiple people who had required background
knowledge. It provided the researchers to interact with the respondents and gather
their insight about the proposed architecture.

52

6. Discussion

6.4 Reflection on Architecture

The reference architecture was designed and developed based on the literature study
and interview results from the first phase of data collection. The architecture was
designed by keeping in mind the quality attributes that were prioritized by the
stakeholders.

The architecture developed was evaluated using interviews. Based on the results
from the interview, the researchers analyzed that the proposed architecture served
as a good starting point towards the right direction in achieving cloud-based near
real-time, low-latency, high data content streaming to car platforms. The archi-
tecture addressed an important area of state synchronicity management when the
system switches between offline and online internet connection mode. The results in-
dicated that the idea of state synchronicity management received a positive response.
The interview respondents highlighted that state synchronicity management is the
need of the hour when the system switches between varying internet connections.
They indicated that the idea of carving out the state synchronicity management
to a separate component was a good design decision. They mentioned that many
cloud-based gaming applications currently have state synchronization management
techniques implemented in them, and by including it in the reference architecture,
design of the architecture was thought to be in-line with the current cloud applica-
tions. To make the system available in offline mode, the Offline Manager component
was designed, and the interview respondents were of the opinion that it was an inter-
esting approach to make UI available in offline mode. The offline UI, which can be
used in UI rendering, was thought to be useful. They also indicated that identifying
and using existing components of AGL is always a good approach, as it promotes
reusability. Adding additional responsibility to the User Manager was thought to be
useful, as the added responsibility was closely linked with its existing responsibility,
and grouping them was a good design approach. It was thought to be the same with
the Policy manager component as well, which is used to redirect the request as it is
closely linked with its existing responsibility.

The positives of the architecture being stated, there were a couple of areas which
architecture needed to address or improve on. The architecture did not furnish fur-
ther details on how new states added to the system are being tracked and how the
state switch is handled. The architecture also needed to consider the amount of
resources like CPU, memory, that will be needed by the Offline Manager component
during offline mode. One of the important feedback for architecture was regarding
the latency. The interview respondents indicated that there might be an additional
delay when there is a switch between online and offline mode. They suggested that
to improve performance, it might be a good idea to merge online mode and offline
mode rendering, so that the need to transfer the amount of data is reduced. They
indicated that a couple of components might have a sizeable impact on latency. Com-
ponents like Offline Manager and User Manager was thought to add more latency
due to their role/responsibilities, whereas Infotainment-Cloud State Sync Manager
component was thought to have less impact on latency. They indicated that it’s al-

53

6. Discussion

ways good to design components that have a negligible impact on the latency of the
system. The overall end-to-end latency was thought to be less and within 10-50ms,
which is good for the Infotainment system. The general opinion was that most of
the components in architecture were overloaded with roles/responsibility, and it was
suggested to divide them into two or more sub-components to reduce the latency
caused by the components. Exploring different ways to redesign the components to
reduce latency was suggested.

The interview feedback also indicated that latency results predicted for the archi-
tecture might change in real-time based on the type of implementation. The ar-
chitecture needed to address the issue of component failure and its impact on the
usability of the overall system.

Overall, the reference architecture identified and addressed the key areas needed for
achieving cloud-based near real-time, low-latency, high data content streaming to
car platforms, with enough room to improve it to handle the areas that it missed.
The architecture was thought to provide a good infotainment experience with the
right implementation.

6.5 Reflection on Methodology
The research methodology used for this thesis was Design Science Research Method-
ology (DSRM). The researchers were of the opinion that DSRM aided their thesis in
the right direction. The iterative approach and specific guidelines helped researchers
to plan and execute the thesis in a time-bound manner.

Interviews, Brainstorming, and document study was used for data collection. Doc-
ument study helped researchers to gain good domain knowledge and identify the
areas of improvement in the domain. Brainstorming helped them to think about
possible issues that might require attention when developing the architecture. In-
terviews provided the researchers a good opportunity to interact with people who
had the domain knowledge and work experience. It provided them with valuable
information that helped researchers in developing the architecture. Interviews were
conducted to evaluate the architecture developed with respondents who had prior
knowledge of AGL. Though it provided good evaluation points, researchers felt they
had to include another methodology for evaluation as well. They felt having more
than one methodology for the evaluation would have improved their thesis results.

6.6 Threats to validity
The validity of the study illustrates the reliability of the results, the truthfulness
of the results, and the unbiased subjective viewpoint of researchers[30]. The main
validity threats that researchers predict for this study are Conclusion validity and
External validity. In this section, the above-mentioned threats are discussed, fol-
lowed by possible measures availed to reduce their impact.

54

6. Discussion

6.6.1 Construct Validity
Construct validity is mainly focused on the early stages of the project. It is related
to how the research is being conducted. "Construct validity concerns generalizing
the result of the experiment to the concept or theory behind the experiment "[28].

In order to evaluate our architecture in a better way, researchers chose interviews
for the evaluation process. The evaluation results derived from it might vary if
researchers had chosen other evaluation methods. Moreover, the prototype tool de-
veloped was designed to focus on a small section of the online-offline scenario. The
tool developed was not a very extensive one, ignoring many other areas. The tool
was developed and tested on the same system. The change in network connection
was simulated. These produce a risk to construct validity, as the results obtained
might differ in real-world scenarios. The result obtained might be affected when the
tool is put to use in a real-world scenario.

6.6.2 Internal Validity
Threats to internal validity are things that can affect the independent variable with
respect to causality, without the researcher’s knowledge[28].

For conducting the interviews, researchers chose a set of software engineers working
in Aptiv, and for evaluation, researchers chose people who had prior knowledge
or work experience in AGL. The data obtained from the interview were used for
the result. It might be possible that if a chosen group of volunteers were more
diverse (job/experience/work geography/gender), the result obtained might have
been different. Including more volunteers might have affected the results. The
selected volunteer group is not representative of the whole population. There was
one volunteer(software engineer working at Aptiv) who was part of both interview
and architecture evaluation. The volunteer, who was part of the interview, was
already familiar with the type of architecture being developed. The volunteer’s
prior knowledge might have influenced his feedback in architecture evaluation. If
different group of volunteers were chosen for the evaluation, the results might have
changed.

6.6.3 Conclusion Validity
Conclusion validity relates to the process of analyzing data, finding patterns in the
data, and drawing conclusions from it. Conclusion validity is more of our ability to
draw correct conclusions from our observations.[29]

The volunteers were interviewed in a semi-structured format, where a couple of ques-
tions were open-ended. There might have been a possibility that volunteers would
have misinterpreted the question and given incorrect responses. The thesis work is
carried out in a company based on a non-disclosure agreement; due to this; it might
be difficult to reproduce the same results outside because of missing and confidential

55

6. Discussion

information.

The reference architecture developed might not be the best one created, as the
researchers had many trade-offs to handle and took the decision based on their
knowledge, experience, and available data. Different options in trade-offs design
decisions might have impacted results.

6.6.4 External Validity
Threats to external validity are conditions that limit our ability to generalize the
results of our experiment to industrial practice.[28]

The set of software engineers chosen for interviews were from Aptiv and did not
represent the whole population. Due to time constraints, only a limited number of
volunteers were involved in data collection. If more people were included, the data
obtained from interviews might have been different and might have impacted the
result. For architecture evaluation, the volunteer group consisted of very few peo-
ple who had prior knowledge about AGL. If we had included more people working
on AGL projects, then the evaluation result might have differed. The researchers
chose to build the reference architecture based on AGL architecture, as it was more
popular and widely used.

If researchers had chosen other infotainment platforms used by automakers like
QNX, GENIVI, Windows Embedded Automotive, Android Automotive, then the
reference architecture built might have been different, and results would have dif-
fered. The evaluation method used was Interviews. If other evaluation methods
like ATAM were used, the results obtained might have been different. These factors
increase the threats to generalizing the results.

56

7
Conclusion

This thesis was conducted with the aim of understanding the issues involved in en-
abling cloud-based near real-time, low-latency, high data content streaming to car
platforms that provides high-end user experience, and design a reference architec-
ture that could achieve the real-time, low-latency, high data content streaming.

The study is closely related to the research questions (RQ1, RQ 2, and RQ 3), and
the answers to the respective questions can be found below section.

7.1 Answer to Research questions
RQ 1:

What are functional and non-functional attributes that are required for the reference
architecture to support near real-time, low-latency, high data volume content stream-
ing?

Based on data analysis results from Figure 5.7 and literature study, the character-
istics and features, which researchers have identified are : Function features - State
management, Offline management and Non-functional features - Performance, Avail-
ability and Security. The functional features proposed in the architecture was appre-
ciated by the interview respondents and they indicated that it will play crucial role
in achieving good user experience. These attributes (functional and non-functional)
are most necessary for developing reference architecture, which will serve as a guide
to building a next-generation infotainment system, streaming the complete infotain-
ment system from cloud to in-car.

RQ 2:

How can we evaluate that the attributes identified in RQ1 have been satisfied in the
reference architecture developed?

The researchers have used the semi-structured interview to evaluate the attributes
identified in the previous question. Using interviews, researchers successfully eval-
uated whether the reference architecture developed would satisfy the attributes
deemed necessary for the architecture for near real-time, high content, low latency
content streaming. The interview helped the researchers to evaluate each of the

57

7. Conclusion

components in the infotainment system and identify how each component in the
developed reference architecture influenced the attributes identified in RQ1. The
interview helped the researchers to gather good insight about the proposed archi-
tecture from the respondents, who had prior knowledge of AGL. Based on the in-
terview feedback, the reference architecture identified and addressed the important
areas needed for achieving cloud-based near real-time, low-latency, high data con-
tent streaming to car platforms, but it also fell short in addressing few other areas.
The architecture was thought to provide a good infotainment experience with the
right implementation and had enough scope for improvement.

RQ 3:

How can the AGL reference architecture be extended to support near real-time, low-
latency, high data volume content streaming?

The researchers have used a document study literature review to gather the data
required to perform the current AGL architecture changes. On a thorough review of
the literature, researchers identified that the current AGL architecture does not have
any roadmap regarding content streaming. Using the literature review, researchers
were able to successfully identify the technical feasibility required for the streaming
near real-time , high content, low latency content streaming from the cloud. The
researchers were able to identify the components which can be reused from existing
AGL architecture and incorporate additional new components into the new refer-
ence architecture for content streaming, which is based on AGL architecture.

7.2 Future Work
This thesis can be considered as an initial step in understanding the issues involved
in enabling cloud-based near real-time, low-latency, high data content streaming to
car platforms, which provides high-end user experience and identifying the func-
tional and non-functional attributes required to build a reference architecture for
next-generation infotainment system. There are many other ways in which the re-
search can be conducted in this thesis.

As indicated in the report, this thesis mainly focused on infotainment system archi-
tecture, its attributes, and evaluation. To identify and investigate more bottlenecks,
different architecture approaches/styles for cloud part and infotainment part could
be explored. The reference architecture was built on top of AGL architecture, but
various other platforms like Windows Embedded Automotive, Android Automotive
can be considered to build the reference architecture. Numerous architectural tactics
could be inspected in achieving the attributes for the reference architecture. Dif-
ferent combinations and variations of offline/cache mechanisms could be explored
for achieving interactive UI in offline mode. Numerous state synchronization man-
agement techniques can be explored. To further increase the generalizability of the
result, other modes of transport(bus, truck, ship, etc.) can be pursued. To enhance

58

7. Conclusion

the user gaming experience, ways of streaming cloud gaming applications like Google
Stadia can be looked into. Technology like Holoride, which gives hyper-immersive
experiences, comes pre-installed at present, but if it can be streamed from cloud
to car, the XR experience provided will be better and up to date. Several ways to
achieve this can be investigated.

7.2.1 Pathway to Implementation
The reference architecture developed can be used for the development of some excit-
ing applications. Consider the Holoride application being used in the infotainment
system, which uses the reference architecture developed. Holoride is an application
that provides a dynamic VR experience for the passengers in cars. It provides pas-
sengers with fascinating theme games combined with vehicle data to move through
a colorful fantasy of their own.

Consider the scenario where the passenger is bored during the travel and grabs
the virtual reality headset. When there is a regular connection(online mode), the
vehicle data is sent to the cloud and the game theme from the cloud is streamed
to the user (virtual reality headset) through the policy manager. When the user
experiences a drop in network connection, the user manager detects and sends the
request to the offline manager. A lightweight version of the game can be stored
in offline manager or local database, which can be used during offline mode. The
offline manager checks for the cache data or local database and renders the data
response to the user who can continue the game without any interruptions. The
Infotainment-cloud state sync manager keeps track of the latest state and checks
for the connection regularly through the user manager. On reconnection, with the
help of the Infotainment-cloud state sync manager, which keeps track of the latest
state of the game, the online game’s state is resolved, and the updated state of the
game is rendered to the user via the offline manager. In this way, we can provide a
seamless user experience.

59

7. Conclusion

60

Bibliography

[1] M. Galster, "Software reference architectures: related architectural concepts
and challenges," 2015 1st International Workshop on Exploring Component-
based Techniques for Constructing Reference Architectures (CobRA) , Mon-
treal, QC, 2015, pp. 1-4

[2] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison Wesley, 3rd edition, 2013.

[3] R. Shea, J. Liu, E. C. -. Ngai and Y. Cui, "Cloud gaming: architecture and
performance," in IEEE Network, vol. 27, no. 4, pp. 16-21, July-August 2013,
doi: 10.1109/MNET.2013.6574660.

[4] S. Chuah, C. Yuen and N. Cheung, "Cloud gaming: a green solution to massive
multiplayer online games," in IEEE Wireless Communications , vol. 21, no. 4,
pp. 78-87, August 2014.

[5] Everton Cavalcante, Marcelo Pitanga Alves, Thais Batista, Flavia Coimbra
Delicato, and Paulo F. Pires. 2015. An Analysis of Reference Architectures for
the Internet of Things. In Proceedings of the 1st International Workshop on Ex-
ploring Component-based Techniques for Constructing Reference Architectures
(CobRA ’15).

[6] Samuil Angelov, Jos J.M. Trienekens, and Paul Grefen. Towards a method for
the evaluation of reference architectures: Experiences from a case. In Second
European Conference, ECSA, Software Architecture, pages 225–240. Paphos,
Cyprus, September 29-October 1 2008.

[7] Hyunwoo Nam, Kyung-Hwa Kim, Doru Calin and Henning Schulzrinne. YouS-
low: a performance analysis tool for adaptive bitrate video streaming. SIG-
COMM ’14: Proceedings of the 2014 ACM conference on SIGCOMMAugust
2014 Pages 111–112https://doi.org/10.1145/2619239.2631433

[8] Anthony Neal Park, Yung-Hsiao Lai and David Randall Ronca. Encoding video
streams for adaptive video streaming. US20110268178A1, 2011-11-03.

[9] [Online] Available: Google Stadia https://en.wikipedia.org/wiki/Google_
Stadia , Date of access: 2020-2-20.

[10] [Online] Available: A First Look at Google Stadia https://dzone.com/
articles/a-first-look-at-google-stadia , Date of access: 2020-2-20.

[11] [Online] Advancement in infotainment system in automotive sector with ve-
hicular cloud network and current state of art https://search.proquest.
com/docview/2331661420?pq-origsite=gscholarfromopenview=true ,Date
of access: 2020-2-17.

[12] Peter van der Stok. Dynamic and Robust Streaming in and between Connected
Consumer-Electronic Devices. Springer, 2005

61

https://en.wikipedia.org/wiki/Google_Stadia
https://en.wikipedia.org/wiki/Google_Stadia
https://dzone.com/articles/a-first-look-at-google-stadia
https://dzone.com/articles/a-first-look-at-google-stadia
https://search.proquest.com/docview/2331661420?pq-origsite=gscholarfromopenview=true
https://search.proquest.com/docview/2331661420?pq-origsite=gscholarfromopenview=true

Bibliography

[13] G. Macario, M. Torchiano and M. Violante, "An in-vehicle infotainment soft-
ware architecture based on google android," 2009 IEEE International Sym-
posium on Industrial Embedded Systems, Lausanne, 2009, pp. 257-260, doi:
10.1109/SIES.2009.5196223.

[14] M. Klecha and S. Drude, "System Architecture for a modular and distributed
Solution for next Generation Car Infotainment Systems," 2007 Digest of Techni-
cal Papers International Conference on Consumer Electronics, Las Vegas, NV,
2007, pp. 1-2, doi: 10.1109/ICCE.2007.341454.

[15] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole and M. Bone, "The
Concept of Reference Architectures", Systems Engineering, vol. 13, no. 1, pp.
14-27, 2010

[16] M. Guessi, L. B. R. Oliveira, L. Garcés and F. Oquendo, "Towards a formal
description of reference architectures for embedded systems," 2015 1st Interna-
tional Workshop on Exploring Component-based Techniques for Constructing
Reference Architectures (CobRA), Montreal, QC, 2015, pp. 1-4.

[17] G. Kreitz and F. Niemela, "Spotify – Large Scale, Low Latency, P2P Music-
on-Demand Streaming," 2010 IEEE Tenth International Conference on Peer-to-
Peer Computing (P2P), Delft, 2010, pp. 1-10, doi: 10.1109/P2P.2010.5569963.

[18] Roel J. Wieringa. Design science methodology: For information systems
and software engineering. Mar. 2014, pp. 1–332. isbn: 9783662438398. doi:
10.1007/978-3-662-43839-8. url: https://link.springer.com/book/10.1007/978-
3-662-43839-8.

[19] Guido L. Geerts, A design science research methodology and its ap-
plication to accounting information systems research, International Jour-
nal of Accounting Information Systems, Volume 12, Issue 2, 2011,
Pages 142-151, ISSN 1467-0895, https://doi.org/10.1016/j.accinf.2011.02.004.
(http://www.sciencedirect.com/science/article/pii/S1467089511000200)

[20] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger Samir Chatter-
jee (2007) A Design Science Research Methodology for Information Systems
Research, Journal of Management Information Systems, 24:3, 45-77, DOI:
10.2753/MIS0742-1222240302

[21] Jay F. Nunamaker Jr., Minder Chen Titus D.M. Purdin (1990) Systems Devel-
opment in Information Systems Research, Journal of Management Information
Systems, 7:3, 89-106, DOI: 10.1080/07421222.1990.11517898

[22] Alan R. Hevner, Salvatore T. March, Jinsoo Park and Sudha Ram
MIS Quarterly.Management Information Systems Research Center, Uni-
versity of Minnesota. Design Science in Information Systems Research.
Vol. 28, No. 1 (Mar., 2004), pp. 75-105 DOI: 10.2307/25148625
https://www.jstor.org/stable/25148625 Page Count: 31

[23] Paweł Weichbroth.Facing the brainstorming theory. A case of requirements elic-
itation, Journal of Studia Ekonomiczne. Publisher -Wydawnictwo Uniwersytetu
Ekonomicznego w Katowicach. 2016 |Vol 296 | 151-162.

[24] U. Rafiq, S. S. Bajwa, X. Wang and I. Lunesu, "Requirements Elicitation Tech-
niques Applied in Software Startups," 2017 43rd Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA), Vienna, 2017, pp. 141-
144, doi: 10.1109/SEAA.2017.73.

62

Bibliography

[25] "Prototype." UXL Encyclopedia of Science, edited by Amy Hackney Blackwell
and Elizabeth Manar, 3rd ed., UXL, 2015. Gale In Context: Science

[26] [Online] Available: https://github.com/llfjfz/LiveRender
[27] [Online] Available: https://en.wikipedia.org/wiki/Qt_Creator
[28] Claes Wohlin et al. Experimentation in Software Engineering. Vol.

9783642290. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
1–236. isbn: 978-3-642-29043-5. doi:10. 1007/978-3-642-29044-2. url:
http://link.springer.com/10.1007/978-3-642-29044-2.

[29] Miroslaw Staron. Action Research in Software Engineering. Cham: Springer
International Publishing, 2020. isbn: 978-3-030-32609-8. doi: 10.1007/978-3-
030-32610-4. url:http://link.springer.com/10.1007/978-3-030- 32610-4.

[30] Runeson, P., Höst, M. (2009). Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering, 14(2),
131-164.

[31] [Online] Available: Android Auto https://www.android.com/auto/
[32] [Online] Available: Apple Carplay https://www.apple.com/ios/carplay/
[33] Development of a Mobile News Reader Application Compatible with

In-Vehicle Infotainment. Cham: Springer International Publishing,
2020. isbn: 978-3-319-97162-9. doi: 10.1007/978-3-319-97163-6_2. url:
https://link.springer.com/chapter/10.1007/978-3-319-97163-6_2.

[34] Platforms and Ecosystems for Connected Car Ser-
vices. Micha Bosler, Christopher Jud,Georg Herzwurm.
https://tutcris.tut.fi/portal/files/13887121/Proc_IWSECO_2017.pdfpage=24

[35] [Online] Available: https://developer.apple.com/videos/play/wwdc2016/
723/

[36] [Online] Available: https://developer.apple.com/videos/play/wwdc2017/
717/

[37] [Online] Available: https://support.google.com/stadia/answer/9338852
[38] [Online] Available: https://support.google.com/stadia/answer/9578631
[39] [Online] Available: Google Stadia https://stadia.google.com/
[40] [Online] Available: https://www.android.com/auto/compatibility/

#compatibility-vehicles
[41] [Online] Available: https://www.reddit.com/r/Stadia/comments/fnnnbm/

whyhow_does_stadia_work_great_while_casting_my/
[42] [Online] Available: https://www.reddit.com/r/Stadia/comments/glxi85/

will_casting_the_stadia_app_from_your_phone_to/
[43] [Online] Available: Chromecast https://store.google.com/product/

chromecast
[44] [Online] Available: AGL Roadmap https://wiki.automotivelinux.org/

agl-roadmap
[45] [Online] Available: https://www.orioninc.com/articles/

agl-session-replay-from-all-member-summer-2020-meeting/
[46] [Online] Available: Spotify streaming https://support.spotify.com/us/

article/high-quality-streaming/
[47] [Online] Available: Spotify system requirements https://support.spotify.

com/us/article/spotify-system-requirements/

63

https://github.com/llfjfz/LiveRender
https://en.wikipedia.org/wiki/Qt_Creator
https://www.android.com/auto/
https://www.apple.com/ios/carplay/
https://developer.apple.com/videos/play/wwdc2016/723/
https://developer.apple.com/videos/play/wwdc2016/723/
https://developer.apple.com/videos/play/wwdc2017/717/
https://developer.apple.com/videos/play/wwdc2017/717/
https://support.google.com/stadia/answer/9338852
https://support.google.com/stadia/answer/9578631
https://stadia.google.com/
https://www.android.com/auto/compatibility/#compatibility-vehicles
https://www.android.com/auto/compatibility/#compatibility-vehicles
https://www.reddit.com/r/Stadia/comments/fnnnbm/whyhow_does_stadia_work_great_while_casting_my/
https://www.reddit.com/r/Stadia/comments/fnnnbm/whyhow_does_stadia_work_great_while_casting_my/
https://www.reddit.com/r/Stadia/comments/glxi85/will_casting_the_stadia_app_from_your_phone_to/
https://www.reddit.com/r/Stadia/comments/glxi85/will_casting_the_stadia_app_from_your_phone_to/
https://store.google.com/product/chromecast
https://store.google.com/product/chromecast
https://wiki.automotivelinux.org/agl-roadmap
https://wiki.automotivelinux.org/agl-roadmap
https://www.orioninc.com/articles/agl-session-replay-from-all-member-summer-2020-meeting/
https://www.orioninc.com/articles/agl-session-replay-from-all-member-summer-2020-meeting/
https://support.spotify.com/us/article/high-quality-streaming/
https://support.spotify.com/us/article/high-quality-streaming/
https://support.spotify.com/us/article/spotify-system-requirements/
https://support.spotify.com/us/article/spotify-system-requirements/

Bibliography

[48] Online] Available: Spotify https://support.spotify.com/us/article/
storage-and-data-information/

[49] [Online] Available: Holoride https://www.holoride.com/
[50] [Online] Available: XR Eeality https://en.wikipedia.org/wiki/X_

Reality_(XR)
[51] Klauer SG, Guo F, Sudweeks JD, Dingus TA. An Analysis of Driver Inattention

Using a Case-crossover Approach on 100-car Data. Washington, D.C.: National
Highway Traffic Safety Administration; 2010. Report No.: DOT HS 811 334

[52] Van Gog, T., Paas, F., Savenye, W., Robinson, R., Niemczyk, M., Atkinson, R.,
... Hancock, P. A. (2008). Data collection and Analysis. Handbook of Research
on Educational Communications and Technology 3e, 763-806.

[53] Galesic, M., Bosnjak, M. (2009). Effects of questionnaire length on partic-
ipation and indicators of response quality in a web survey. Public Opinion
Quarterly, 73(2), 349-360.

[54] Cape, P. (2010). Questionnaire length, fatigue effects and response quality re-
visited. Survey Sampling International.

[55] M. A. Babar, L. Zhu and R. Jeffery, "A framework for classifying and compar-
ing software architecture evaluation methods," 2004 Australian Software En-
gineering Conference. Proceedings., Melbourne, Victoria, Australia, 2004, pp.
309-318, doi: 10.1109/ASWEC.2004.1290484.

[56] M. A. Babar and I. Gorton, "Comparison of scenario-based software architec-
ture evaluation methods," 11th Asia-Pacific Software Engineering Conference,
Busan, South Korea, 2004, pp. 600-607, doi: 10.1109/APSEC.2004.38.

[57] Mattsson, M., Grahn, H., and Mårtensson, F.: ‘Software Architecture Evalu-
ation Methods for Performance, Maintainability, Testability, and Portability’,
QoSA 2006

[58] J. Bosch and P. Molin, "Software architecture design: evaluation and trans-
formation," Proceedings ECBS’99. IEEE Conference and Workshop on Engi-
neering of Computer-Based Systems, Nashville, TN, USA, 1999, pp. 4-10, doi:
10.1109/ECBS.1999.755855.

[59] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson and J.
Carriere, "The architecture tradeoff analysis method," Proceedings. Fourth
IEEE International Conference on Engineering of Complex Computer Sys-
tems (Cat. No.98EX193), Monterey, CA, USA, 1998, pp. 68-78, doi:
10.1109/ICECCS.1998.706657.

[60] B. Gallagher, "Using the Architecture Tradeoff Analysis Method to Evaluate
a Reference Architecture: A Case Study," SEI, Carnegie Mellon University,
CMU/SEI-2000- TN-007, 2000

[61] F. Bachmann, L. Bass, and M. Klein, "Deriving Architectural Tactics: A
Step Toward Methodical Architectural Design," Software Engineering Institute
CMU/SEI-2003-TR-004, 2003

[62] C. Wulf, C. C. Wiechmann and W. Hasselbring, "Increasing the Through-
put of Pipe-and-Filter Architectures by Integrating the Task Farm Paral-
lelization Pattern," 2016 19th International ACM SIGSOFT Symposium on
Component-Based Software Engineering (CBSE), Venice, 2016, pp. 13-22, doi:
10.1109/CBSE.2016.21.

64

https://support.spotify.com/us/article/storage-and-data-information/
https://support.spotify.com/us/article/storage-and-data-information/
https://www.holoride.com/
https://en.wikipedia.org/wiki/X_Reality_(XR)
https://en.wikipedia.org/wiki/X_Reality_(XR)

Bibliography

[63] Jones, L., Lattanze, A.: Using the architecture tradeoff analysis method to
evaluate a wargame simulation system: A case study. Tech. rep., Software En-
gineering Institute, Carnegie Mellon University (2001)

[64] M. Barbacci, P. Clements, A. Lattanze, L. Northrop, and W. Wood. Using the
Architecture Tradeoff Analysis Method (ATAM) to evaluate the software archi-
tecture for a product line of avionics systems: A case study. CMU SEI Technical
Note CMU/SEI-2003-TN-012, Software Engineering Institue, Pittsburgh, PA,
2003

[65] Software architecture in practice I Len Bass, Paul Clements, Rick Kazman. 3rd
ed. p. em. (SEI series in software engineering)

[66] I. M. Putrama, K. T. Dermawan, G. R. Dantes and K. Y. E. Aryanto, "Archi-
tectural evaluation of data center system using architecture tradeoff analysis
method (ATAM): A case study," 2017 International Conference on Advanced
Informatics, Concepts, Theory, and Applications (ICAICTA), Denpasar, 2017,
pp. 1-6, doi: 10.1109/ICAICTA.2017.8090982.

[67] M. Saini, K. M. Alam, H. Guo, A. Alelaiwi, and A. El Saddik, “InCloud: A
cloud-based middleware for vehicular infotainment systems,” Multimedia Tools
Appl., pp. 1–29, Jan. 2016, doi: 10.1007/s11042-015-3158-4

[68] S. Aust, "Paving the Way for Connected Cars with Adaptive AUTOSAR
and AGL," 2018 IEEE 43rd Conference on Local Computer Networks
Workshops (LCN Workshops), Chicago, IL, USA, 2018, pp. 53-58, doi:
10.1109/LCNW.2018.8628558.

[69] P. Sivakumar, R. S. Sandhya Devi, A. Neeraja Lakshmi, B. VinothKumar
and B. Vinod, "Automotive Grade Linux Software Architecture for Automo-
tive Infotainment System," 2020 International Conference on Inventive Com-
putation Technologies (ICICT), Coimbatore, India, 2020, pp. 391-395, doi:
10.1109/ICICT48043.2020.9112556.

[70] Höttger R. Why Open Source is Driving the Future Connected Vehicle. Mobility
in a Globalised World 2018. 2019 Jul 22;22:274.

[71] A. Castiglione, F. Palmieri, F. Colace, M. Lombardi and D. Santaniello,
"Lightweight Ciphers in Automotive Networks: A Preliminary Approach," 2019
4th International Conference on System Reliability and Safety (ICSRS), Rome,
Italy, 2019, pp. 142-147, doi: 10.1109/ICSRS48664.2019.8987693.

[72] G. Muller, A reference architecture primer, Gaudi project, 2008.
[73] [Online] Available: Automotive Grade Linux, https://www.automotivelinux.

org/software, Date of access: 2020-11-16.
[74] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting sys-

tematic mapping studies in software engineering: An update”, in Informa-
tion and Software Technology, 2015, isbn: 0360-1315. doi: 10.1016/j.infsof.
2015.03.007.

[75] [Online] Available: ACM Digital Library, 2020. http://dl.acm.org/.
[76] [Online] Available: Springer Link, 2020. https://link.springer.com/.
[77] [Online] Available: arXiv Link, 2020. https://arxiv.org/.
[78] [Online] Available: IEEE Explore, 2020. http://ieeexplore.ieee.org/

Xplore/home.jsp

65

https://www.automotivelinux.org/software
https://www.automotivelinux.org/software
http://dl.acm.org/.
https://link.springer.com/.
https://arxiv.org/.
http://ieeexplore.ieee.org/Xplore/home.jsp
http://ieeexplore.ieee.org/Xplore/home.jsp

Bibliography

[79] [Online] Available: Cloud Gaming, 2020. https://786games.com/
best-cloud-gaming-services-available-in-2020/

[80] [Online] Available: Automotive Grade Linux Requirements Definition. Auto-
motive Grade Linux (AGL). 2020. https://docs.automotivelinux.org/en/
master/#2_Architecture_Guides/1_Introduction/1_AGL_Requirements_
Specifications/

[81] M. Ozcelikors and A. Gumuskavak, "Platform-independent Infotainment and
Digital Cluster Development using Yocto Project," 2020 International Confer-
ence on Electrical, Communication, and Computer Engineering (ICECCE), Is-
tanbul, Turkey, 2020, pp. 1-5, doi: 10.1109/ICECCE49384.2020.9179288.

[82] [Online] Available: Orion Summer Meet 2020 https://www.orioninc.com/
articles/agl-session-replay-from-all-member-summer-2020-meeting/

[83] Zhang, Q., Cheng, L. Boutaba, R. Cloud computing: state-of-the-
art and research challenges. J Internet Serv Appl 1, 7–18 (2010).
https://doi.org/10.1007/s13174-010-0007-6

[84] [Online] Available: Github for literature papers https://github.com/
ramven-chalmers/Literature_review_papers

[85] [Online] Available: Vorbis http://xiph.org/vorbis/

66

https://786games.com/best-cloud-gaming-services-available-in-2020/
https://786games.com/best-cloud-gaming-services-available-in-2020/
https://docs.automotivelinux.org/en/master/#2_Architecture_Guides/1_Introduction/1_AGL_Requirements_Specifications/
https://docs.automotivelinux.org/en/master/#2_Architecture_Guides/1_Introduction/1_AGL_Requirements_Specifications/
https://docs.automotivelinux.org/en/master/#2_Architecture_Guides/1_Introduction/1_AGL_Requirements_Specifications/
https://www.orioninc.com/articles/agl-session-replay-from-all-member-summer-2020-meeting/
https://www.orioninc.com/articles/agl-session-replay-from-all-member-summer-2020-meeting/
https://github.com/ramven-chalmers/Literature_review_papers
https://github.com/ramven-chalmers/Literature_review_papers
http://xiph.org/vorbis/

I

A. Appendix 1

A
Appendix 1

A.1 Semi structured Interview Questions for RQ1

Sl No Interview Questions
1 What is your role in the company?

a. How many years have you worked? How many years in infotainment domain?
2 Have you worked on the current infotainment system?

a. If yes, What are the 3 key challenges you faced when working on current infotainment
system?
b. Prioritize the challenges with most important one as first
c. What are the top quality attributes which you have implemented in the current info-
tainment system?
d. How were the quality attributes of current infotainment system evaluated?
e. What trade-offs were considered when implementing the quality attribute?
f. What are the must have functional attributes when implementing a new mod-
ule/component in the infotainment system?
g. What are the must have non functional attributes when implementing a new mod-
ule/component in the infotainment system?
h. What were the key challenges faced when implementing the functional attributes?
i. How were the functional attributes of current infotainment system evaluated?

3 What are the most important apps that you want in an infotainment systems?
4 Is it important that the infotainment system supports online/real-time gaming?

a. If yes, how is it important?
5 Do you know about cloud based architecture?

a. If yes, What are the 3 unique features in cloud architecture that stands out from other
architectures?
b. If yes,Can you name 3 key challenges you forsee when adopting a cloud architecture
for infotainment system?
c. Prioritize the challenges with most important one as first
d. If yes, What are the 3 quality attributes you consider when adopting a cloud architec-
ture for infotainment system?
e. Prioritize the attributes with most important one as first
f. What are the must have functional attributes when implementing a new mod-
ule/component in cloud based system?
g. What were the key challenges faced when implementing the functional attributes?
h. How were the functional attributes evaluated?

6 Do you know about cloud gaming?
a. If yes, What are the 3 unique features in cloud gaming?

7 What are the apps which you use frequently while driving?
8 Other General Suggestions regarding the architecture we plan to develop?

II

A. Appendix 1

A.2 Semi structured Interview Questions used for
architecture evaluation

1. What is your role/responsibility? -

Junior Developer/QA
Senior developer/QA
Software Architects
Manager
Student
Other

2. Rate your knowledge/understanding of AGL

have just heard about AGL
have read whitepapers about AGL
have use AGL in prototype projects
have been involved in a product development based on AGL
have not heard about AGL

3. In the architecture design, we have provided a description about roles/responsibility
of the new components and existing components in AGL. Rate your level of under-
standing of the components roles/responsibility. (Choose only one option per row)

Component Level of Understanding
Offline Manager
Infotainment-Cloud State Sync manager
User Manager(with added responsibility)
Policy Manager(with added responsibility)

0- I do not understand the design
1- I understand the design , but would not feel comfortable to explain it to others
2- I understand the design and would feel comfortable to explain it to others
3- I understand the design and would feel comfortable to explain it to others, but
could not make changes to adopt it for our needs
4- I understand the design and would feel comfortable to explain it to others, and
could make changes to adopt it for our needs

III

A. Appendix 1

4. According to the literature papers, the average end-to-end latency of interaction
in an HMI system is around 100ms. According to you, rate the possible end-to-end
data latency for UI interaction in our infotainment system?

Latency might be >150ms
Latency might be in the range of 100-150ms
Latency might be in the range of 50-100ms
Latency might be in the range of 10-50ms
Latency might be <10ms

5. In the proposed architecture design, the offline manager is responsible to render
UI when there is no internet connection. When there is internet connection, the
data is streamed from the cloud. Infotainment-cloud state sync manager compo-
nent is used to synchronize the state between the cloud and infotainment system.
What is your opinion on the state sync manager’s role in achieving state synchronic-
ity?(descriptive)

6. In the architecture, we have used the Infotainment-Cloud State Sync Manager
component which is used to sync the state between infotainment and cloud. In your
opinion, how much latency might this component add? Please provide the motiva-
tion for your choice as well.

Very High latency(>10ms)
High latency(5-10ms)
Low latency (1-5ms)
Negligible latency(<1ms)
No latency

7. In the architecture, we have used the Infotainment-Cloud State Sync Manager
component which is used to sync the state between infotainment and cloud. In your
opinion, do you think there is any drawback of this component in achieving state
synchronicity? If so, what are the drawbacks and how it can be improved to achieve
better state sync?(descriptive)

8. In the offline manager, the offline UI component generates the UI required dur-
ing offline mode which is combined with data from the data processor to render to
the user. In your opinion, What are advantages and drawbacks of this approach to
render the UI to the user to interact? (descriptive)

9. In the offline manager, the offline UI component generates the UI required dur-
ing offline mode which is combined with data from the data processor to render

IV

A. Appendix 1

to the user. What is your opinion about having an offline renderer to render UI?
How do you think the offline renderer might affect state synchronicity and latency?
(descriptive)

10.In architecture, we have used the existing User Manager component in AGL
and added additional responsibility of redirecting the request based on internet con-
nection(online/offline mode). In your opinion, how much latency might this add?
Please provide the motivation for your choice as well.

Very High latency(>10ms)
High latency(5-10ms)
Low latency (1-5ms)
Negligible latency(<1ms)
No latency

11. In the architecture design, we have provided a description about roles/responsibility
of the new components and existing components in AGL. If the components are over-
loaded with a lot of responsibilities and splitting the components might/might not
have an impact on the latency, in your opinion, rate the impact of latency on com-
ponent split.

Component Split-Increases
latency

Split-Decreases
Latency

No Split

Offline Manager
Infotainment-Cloud State
Sync manager
User Manager(with added
responsibility)
Policy Manager(with added
responsibility)

12. In your opinion, With our changes to the current AGL architecture, what fea-
tures work well in the architecture and why? (Descriptive)

13. Do you have any suggestions to make the architecture more efficient in terms of
Performance, Availability and Security?(Descriptive)

14. Any other suggestions?(Descriptive)

V

	List of Figures
	Introduction
	Background
	Problem Domain and Motivation
	Research Goal and Research Questions
	Contributions
	Scoping
	Structure of thesis/paper

	Background
	Automotive Grade Linux (AGL)
	AGL Software Architecture

	Android Auto and Apple CarPlay
	Spotify

	Related Work
	Systematic mapping study
	Define research questions
	Search
	Study selection

	Summary of relevant papers

	Methods
	Research Methodology
	First Iteration cycle
	Second Iteration cycle
	Third Iteration cycle

	Data Collection
	Research Question 1
	Brainstorming
	Interviews

	Research Question 2
	Interviews

	Research Question 3
	Documents Study

	Results
	Architecture
	Component Description of the reference software architecture
	Sequence diagrams

	Findings for Research Questions
	Research Question 1
	Findings from Document study
	Findings from Interviews and Brainstorming

	Research Question 2
	Infotainment cloud state sync manager component
	Offline Manager
	User Manager component
	Other questions on architecture

	Research Question 3

	Discussion
	Quality attributes tactics
	Availability tactics
	Security tactics
	Performance tactics

	Functional Requirements tactics
	Reflection on Related work
	Reflection on Architecture
	Reflection on Methodology
	Threats to validity
	Construct Validity
	Internal Validity
	Conclusion Validity
	External Validity

	Conclusion
	Answer to Research questions
	Future Work
	Pathway to Implementation

	Bibliography
	Appendix 1
	Semi structured Interview Questions for RQ1
	Semi structured Interview Questions used for architecture evaluation

