
Intrusion Detection System Framework
for Internet of Things
Construction of an Intrusion Detection System for Wireless Sensor Nodes
with Modern Hardware

Master’s thesis in Computer Systems and Networks

Johan Becker
My Vester

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Intrusion Detection System Framework
for Internet of Things

Construction of an Intrusion Detection System for Wireless Sensor
Nodes with Modern Hardware

Johan Becker
My Vester

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Intrusion Detection System Framework for Internet of Things
Construction of an Intrusion Detection System for Wireless Sensor Nodes with Mod-
ern Hardware
JOHAN BECKER
MY VESTER

© JOHAN BECKER, MY VESTER, 2017.

Supervisor at University: Olaf Landsiedel, Network and Systems division
Supervisor at Company: Stefan Rasmusson, Combitech
Examiner: Magnus Almgren, Networks and Systems division

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Three Texas Instruments SensorTag cc2650stk sensor nodes in casings.

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Intrusion Detection System Framework for Internet of Things
Construction of an Intrusion Detection System for Wireless Sensor Nodes with Mod-
ern Hardware
JOHAN BECKER
MY VESTER
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Today, we see an increasing trend towards connected devices. This trend of con-
necting devices instead of people is called the Internet of Things (IoT). Some of
these devices are sensor nodes that are battery-driven micro controller units that
are equipped with sensors and wireless communication capabilities. When they are
connected to each other they compose a wireless sensor network (WSN). Historically
the sensor nodes have been very limited both in terms of computational power and
size of memory. As the nodes have grown more powerful, the WSNs have started
to communicate using IP, allowing for communication towards the Internet, which
makes the network vulnerable against common attacks against connected devices.
This is a problem since the nodes often lack protection due to their hardware limi-
tations. However, a new and more powerful generation of sensor nodes is currently
available. Allowing for additional security for the applications because they now
have more memory, hence they can store both the intended application and an In-
trusion Detection System (IDS).

This thesis presents the design, implementation and evaluation of a novel design of
an IDS framework for sensor nodes. The IDS is implemented on top of the Contiki
operating system (OS) which is a widely used OS for wireless sensor nodes. The
evaluation of the IDS is performed with focus on energy consumption, detection
rate, network reliability and latency, which makes the results comparable to other
related works in the field. The main contribution of the thesis is a novel design of
a detection method for detecting different routing attacks against RPL including
sinkhole attacks, wormhole attacks and selective-forwarding attacks. The method is
called RoVer which stands for role-based verification.

The IDS framework combines different detection methods for discovering both De-
nial of Service attacks and routing attacks. The implementation is tested and eval-
uated on the modern sensor node platform called Texas Instruments SensorTag
CC2650STK. Results show that the methods designed and implemented within the
thesis are not just feasible but also effective when detecting attacks against the sen-
sor nodes. Evaluation shows that RoVer has a detection rate of 100% while the
two detection algorithms for flooding attacks have detection rates on 75%, all while
keeping the amount of false alarms to a low number.

Keywords: IoT, IDS, WSN, Contiki, security, 6LoWPAN, IPv6, RPL, DoS, sinkhole.

v

Acknowledgements
We would like to thank our supervisor Olaf Landsiedel at Chalmers University of
Technology for his endless help and support during the thesis. Olaf provided us with
the hardware and helped us to form our idea into a real project. It would not have
been possible for us to do this without him.

Also a great thank you to our examiner Magnus Almgren at Chalmers University of
Technology who has provided us with valuable feedback during the process.

We would also like to thank our supervisor Stefan Rasmusson at Combitech Gothen-
burg for all of his input and guidance during the thesis.

A special thanks to Combitech who provided us with a workplace and coffee.

Finally, we would like to thank friends and family for their love and support.

Johan Becker, Gothenburg, June 2017
My Vester, Gothenburg, June 2017

vii

Abbreviations
API Application Programming Interface.
Contiki A real time operating system for wireless sensor nodes.
Cooja Wirless sensor networks simulator which simulates nodes

running Contiki.
DODAG Destination Oriented Directed Acyclic Graphs. Graphs built

by the routing protocol RPL.
DIO DODAG Information Object. A routing message sent and

received by all nodes in order to select proper routing graphs.
Energest A module in Contiki for energy estimation of the nodes.
HIN High intensity network, a network with a high traffic inten-

sity.
IncA Increasing Average Algorithm, one of the DoS-attack detec-

tion algorithms that the thesis proposes.
LIN Low intensity network, a network with a low traffic intensity.
LiReg Linear Regression Algorithm, one of the DoS-attack detec-

tion algorithms that the thesis proposes.
RoVer Role-based Verification, a method that the thesis proposes

for securing RPL routing by verifying claims from two sides.
RPL A Routing Protocol for Low power and Lossy Networks.
Servreg-hack . . . An application in Contiki which is used to register and an-

nounce network services.
TCP/IP-module . A module that is part of the Contiki operating system that

handles IP-communication.
TUD Time until detection, the time it takes from an attack is

launched until the attack is detected.
WSN Wireless sensor network.
6LoWPAN IPv6 over Low power Wireless Personal Area Networks.

ix

x

Contents

List of Figures xiii

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 Problem Background . 1
1.2 Purpose . 1
1.3 Aim . 2
1.4 Previous Work . 2
1.5 Motivation . 3
1.6 Scope and Limitations . 3
1.7 Implementation, Software and Hardware 4
1.8 Organization of the Rest of the Thesis 4

2 Background 5
2.1 Wireless Sensor Networks . 5
2.2 Contiki . 6
2.3 RPL . 6
2.4 6LoWPAN . 8
2.5 The Platform: Texas Instruments SensorTag CC2650STK 8
2.6 Attacks against Wireless Sensor Nodes 9
2.7 Basics about Intrusion Detection . 11
2.8 Detection of DoS-Attacks with Linear Regression 12

3 Related Work 15
3.1 Energy Consumption as a Metric . 15
3.2 Detection of Sinkhole Attacks in WSN 16
3.3 Combined IDSs . 17
3.4 Our Contribution . 19

4 System Model and Design 21
4.1 System Overview . 21
4.2 Detection Method 1: Anomaly-based DoS-Attack Detection 22
4.3 Detection Method 2: RoVer . 27

xi

Contents

5 Implementation 33
5.1 Outer Shell . 33
5.2 Simple Sensor Program . 33
5.3 Anomaly-based DoS-Attack Detection 34
5.4 RoVer . 36
5.5 Implementation of Attacks . 43

6 Evaluation 47
6.1 Evaluation Overview and Goals . 47
6.2 Evaluation Methodology . 48
6.3 Evaluation Metrics . 50
6.4 Anomaly-based DoS-Attack Detection 52
6.5 RoVer . 69

7 Discussion 87
7.1 Analysis of Evaluation . 87
7.2 Limitations . 92
7.3 Future Work . 93
7.4 Reflections on Ethics and Sustainability 94

8 Conclusion 97

Bibliography 99

xii

List of Figures

2.1 Images on hardware . 9

4.1 System design overview . 22
4.2 Energy consumption example . 25
4.3 Hierachy in RoVer . 28
4.4 The four different states of detection method 2 are shown. Each

transition between states are controlled via timers. 30

6.1 Evaluation setup . 49
6.2 Energest variations for only IDS and IDS plus example program . . . 54
6.3 Energest variations for different attack intensities 56
6.4 Energest variations for three different values on time period length . . 57
6.5 Network topology for evaluation of RoVer 70
6.6 Decreasing number of false alarms when sensitivity is lower 73
6.7 Latency for a node with and without RoVer 76
6.8 Latency for a node under attack with and without RoVer 77
6.9 Reliability for the network under attack with RoVer 78
6.10 Reliability for the network under attack without RoVer 78
6.11 Average reliability for the network with and without RoVer 79
6.12 Network topology when evaluating energy consumption for RoVer . . 79
6.13 Time spent in radio hardware for Z1 and SensorTag 84
6.14 Time spent in CPU for Z1 and SensorTag 85

xiii

List of Figures

xiv

List of Tables

6.1 Hardware specifications for Z1 and SensorTag 50
6.2 Current and voltage specifications for CC2650STK 51
6.3 DoS-attack intensities . 53
6.4 DoS attack start up delays . 53
6.5 Testcases for parameterization of IncA and LiReg 57
6.6 LiReg parameterization results . 58
6.7 IncA parameterization results . 59
6.8 Recommended parameters for IncA and LiReg 60
6.9 LiReg, false alarms . 60
6.10 LiReg, true alarms and detection times 61
6.11 IncA, false alarms . 61
6.12 IncA, true alarms and detection times 62
6.13 Simple sensor program, time spent in hardware 63
6.14 Simple sensor program, high intensity DoS Attack, time spent in hard-

ware . 64
6.15 Simple sensor program and LiReg, time spent in hardware 65
6.16 Simple sensor program and LiReg under high intensity DoS Attack,

time spent in hardware . 65
6.17 Simple sensor program and IncA, time spent in hardware 66
6.18 Simple sensor program and IncA under high intensity DoS Attack,

time spent in hardware . 67
6.19 Energy consumption summary, both under attack and normal state . 68
6.20 RoVer evaluation, network setups . 71
6.21 Sinkhole attack delays and test lenghts 71
6.22 RoVer, recommended parameters for two types of networks 73
6.23 False alarms for RoVer . 74
6.24 True alarms for RoVer on the low intensity network 75
6.25 True alarms for RoVer on the high intensity network 75
6.26 RoVer, unicast-sender, parent, Z1, time spent in hardware 80
6.27 RoVer and unicast-sender, child, Z1, time spent in hardware 80
6.28 Unicast-sender, parent, Z1, time spent in hardware 81
6.29 Unicast-sender, child, Z1, time spent in hardware 81
6.30 RoVer and unicast-sender, parent, SensorTag, time spent in hardware 82
6.31 RoVer, unicast-sender, child, SensorTag, time spent in hardware . . . 82
6.32 Unicast-sender, parent, SensorTag, time spent in hardware 83
6.33 Unicast-sender, child, SensorTag, time spent in hardware 83

xv

List of Tables

xvi

List of Algorithms

1 LiReg . 24
2 IncA . 26
3 RoVer: Fault tolerance for loss of messages 29
4 RoVer . 31
5 RoVer: Fault tolerance for verification 32

xvii

List of Algorithms

xviii

1
Introduction

This chapter serves as an introduction to this master thesis. It presents the problem
background and the purpose of the project. It also states the aim and discusses
previous work. Then it provides a short motivation for the thesis as well as the scope
and limitations before briefly describing the implementation, and the hardware and
software used. Finally, it provides the reader with an overview of the report.

1.1 Problem Background
Today, we see an ever increasing trend towards connected devices. Earlier, a person
connected himself to the Internet via an Internet connection. Today, it is not unusual
that a person owns many different devices that are connected to and communicate
via the Internet. Many of these devices are small and resource limited, and together
they compose what is commonly known as the Internet of Things (IoT). A concept
in the IoT is networks of small sensors that communicate with each other wirelessly.
These networks of sensors are known as wireless sensor networks (WSNs) and there
are many different use cases for them, like monitoring the temperature in a room.
Because of the limitations on the devices in WSNs in terms of both computational
resources and memory capacity there is a lack of protection against intrusions and
attacks [1]. The consequences of an attack against these networks can be very
serious. For example, if a small WSN monitoring a forest, looking for forest fires, is
attacked in such way that it can not function properly it will not be able to send any
warnings. Hence, fires that could have been detected early on and stopped before
they could do much damage now have the potential to grow to be a real threat
before anyone notices [2].

1.2 Purpose
The purpose of this master thesis is the design, implementation and evaluation
of a framework consisting of different intrusion detection mechanisms suitable for
nodes that are part of sensor networks in the IoT. The framework has support
for different detection methods which can be combined. This also leads to different
demands of energy consumption because of the changing complexity of the solutions
and the combination of them. The chosen operating system (OS) used for the
implementation is Contiki [3]. Contiki is a well known and extensively tested open
source OS in the field of WSNs. It is developed by a world-wide community of
computer experts and many different companies are contributing to the development
of the OS.

1

1. Introduction

1.3 Aim
The overall aim of the thesis is to design and implement an Intrusion Detection
System (IDS) for IoT applications running on WSNs with support for different de-
tection methods. Implementation of the IDS is done as an integrated part of the
operating system Contiki. The detection methods that this framework implements
are both based on previous work in the area of IDSs for the IoT and self-developed
algorithms. The framework combines the detection methods, providing the possi-
bility of protection against different attacks at the same time.

The goal of the IDS framework is to detect the following types of attacks against
the nodes:

1. Generic DoS/flooding attacks against nodes [4]
2. Sinkhole attacks against 6LoWPAN [5] [6]
3. Selective forwarding attack against routing [6]
4. Wormhole attack against routing [7]

1.4 Previous Work
Previous work in the field has proposed intrusion detection systems for IoT and
specifically WSNs. The proposed systems differ not only in architecture and plat-
form but also in terms of the used detection techniques and which attacks they are
able to detect.

Riecker et al. [4] propose a lightweight intrusion detection system for wireless sensor
nodes that is based on energy readings and linear regression. The authors describe
an intrusion detection system that is in the form of a moving agent which is sent
around the network like a token. The moving agent collects readings of consumed
energy of the nodes and makes predictions on how much energy that should have
been consumed the next time the agent arrives based on linear regression models.
By comparing the expected value with the actual value the aforementioned approach
allows for detection of generic Denial-of-Service attacks with a high accuracy.

Cervantes et al. [5] describe an IDS that focuses on detecting sinkhole attacks, which
are a kind of attack that swallows all packets in the network, for secure routing over
6LoWPAN. They propose an IDS called INTI (Intrusion detection of SiNkhole at-
tacks on 6LoWPAN for InterneT of ThIngs), which combines a watchdog, reputation
and strategies that builds on trust between the nodes which are used to analyze the
behavior of the network.

SVELTE is a real-time intrusion detection system for WSNs proposed by Raza et
al. [6]. It is constructed as integrated components in the Contiki OS and targets dif-
ferent routing attacks. The main part of SVELTE is a network mapper, which keeps
track of the network topology and uses this information as a map when detecting
sinkhole attacks. Evaluation of SVELTE shows that it detects all the attacks that
are being launched, however there are some false alarms.

2

1. Introduction

A centralized IDS that focuses on illegal memory writes (so called ”buffer overflows”)
is proposed by Saeed et al. [8]. In this case, the IDS is implemented in the sink node
and a random neural network is used to train a model of what normal behavior is
in the network. Abnormal behavior (or anomalies) such as reception of data that
is larger than the normal case will lead to abortion of the operation in order to not
compromise the sink.

This section just serves as a brief overview of what previous work has proposed in
the field. Chapter 3 describes the approaches mentioned here and other approaches
in more detail.

1.5 Motivation
Earlier research in the field of IDSs for IoT devices is carried out on sensor nodes
with lower memory and computational power in comparison with sensor nodes avail-
able today. This thesis uses a new generation of sensor nodes, which allows for more
complex solutions due to an increase in computational power. The chosen hardware
platform to use is Texas Instruments SensorTag CC2650STK [9] which supports a
processor frequency of up to 48 MHz which is 6 times faster than the popular but
older sensor node Tmote Sky which runs at 8 MHz [10]. The platform is further
described in Section 2.5.

The framework consists of different approaches that have been implemented and
proved to work well as stand-alone applications on specific hardware. This frame-
work provides more functionality. This leads to an IDS-framework with more func-
tionality than the stand-alone solutions. The challenge with the aforementioned
approach is to make the different solutions work well together and function properly
on modern hardware.

Thus, the process of combining the earlier proposed solutions into a new unique and
more powerful system demands in-depth knowledge of existing research prototypes,
and understanding the constraints of the problem formulation so that the algorithmic
choices in the combination of methods are well founded. Even though the synthesis
of the algorithms can sound quite easy, complex trade-offs need to be analyzed and
dealt with. Learning outcomes of the thesis is a deeper understanding of the research
in the field and also a scientific contribution in the field of security for the IoT. Many
research papers are critically analyzed in order to make a plan on how to implement
the proposed framework in this thesis. Since the authors lack previous experience
of the chosen operating system Contiki, a deeper understanding of the platform is
one of the learning outcomes from the thesis.

1.6 Scope and Limitations
The goals which Section 1.3 describes, also describes how the solutions of the frame-
work are implemented and limited to detect certain attacks. The goals are referring
to detection methods that are inspired by state-of-the-art techniques, namely in the
following papers [4], [5] and [6]. No additional intrusion detection mechanisms are

3

1. Introduction

considered beyond the adaption and design of methods that meet the goals.

The design and implementation of the framework should work on wireless sensor
nodes. To be more specific, it should work on the hardware mentioned in Section 2.5,
no testing or evaluation is performed on other hardware.

1.7 Implementation, Software and Hardware
The design and implementation of the IDS is carried out in the open source OS
Contiki. The IDS is implemented and included as a part of Contikis source files.
Contiki contains a simulator called Cooja, which has support for simulation of sev-
eral different sensor nodes. It is convenient to first test the implementation in the
simulator to verify the functionality since loading the code into the hardware and
test it takes more time. However, the hardware this thesis uses is not supported
in the simulator, so preliminary testing in the simulator needs to be carried out on
sensor nodes that are less powerful than the actual hardware used within the thesis.

1.8 Organization of the Rest of the Thesis
The rest of the thesis is organized as follows: In Chapter 2, relevant background
information introduces the reader to the topic. Then, in Chapter 3, related work in
the field is presented before Chapter 4 describes the designed system model of the
IDS in this thesis. Chapter 5 further describes how the different detection methods
proposed in the system model are implemented and then Chapter 6 describes the
evaluation of the system and its parts. Finally, Chapter 7 discusses the results
and compares them with results from related work and Chapter 8 presents the
conclusions of the thesis.

4

2
Background

This chapter provides the reader with relevant information about the topic of the
thesis. The chapter also introduces the specific hardware and software used in the
project, as well as some basics about intrusion detection and relevant attacks.

2.1 Wireless Sensor Networks
A wireless sensor network is a network consisting of a number of sensor nodes,
also called motes, that operates together. Generally, a node is a micro controller
which consists of a processor, a radio processor and sensors. A node typically con-
tains several different kinds of sensors, for example sensors that can measure sound,
temperature and/or light intensity. As IoT as a concept grows bigger, the use for
Wireless sensor nodes has increased, and there exist many different vendors that
develop a multitude of different nodes. The main contribution of WSNs is that
they provide a bridge between the digital and the physical world. There are many
different use cases for these networks; typically they are used to monitor systems
and gather data. Typical applications for wireless sensor networks include surveil-
lance of industrial plant processes, monitoring of the environment, or as described
by Burdakis et al. [2], to have safety-critical monitoring of a forest for fast detection
of fires to prevent major damages.

The sensor nodes in a WSN communicate with each other and collaborate when
routing the data sent to a dedicated node often called the sink node. The sink node
is also known in literature as the ”base station” or ”border router” when used as a
bridge between low power IPv6 networks and normal IPv6 networks. The responsi-
bility of the sink node is to take care of all the incoming and outgoing communication
to and from the WSN [11].

The nature of the wireless sensor networks requires the nodes to be low powered
and computationally efficient. Normally, the nodes are battery-driven and certain
respect needs to be taken for this constraint. Because of these constraints many
routing and network protocols that are commonly used in other systems are too
heavy [6]. New protocols have been developed to suit the needs of WSNs, such as
the routing protocol RPL and the Internet protocol 6LoWPAN. These are further
described later in this chapter in sections 2.4 and 2.3 respectively.

5

2. Background

2.2 Contiki
Contiki is a real-time OS for sensor nodes which is written in the C programming
language [12]. It is open source and provides support for both the full IPv4 and IPv6
protocol stack, but also contains more recent protocols that are built for low-power
and wireless communication, such as 6LoWPAN and RPL [13].

Cooja is a network simulator that is shipped with Contiki. It is built to simulate
and test WSNs virtually in order to provide a good overview of a network. The pur-
pose of Cooja is to provide assistance when developing against the IoT-platforms.
Testing and verification of solutions is easier to carry out in a simulator than to
program physical hardware and take care of the testing on the real hardware. Cooja
supports many different sensor nodes that can be fully emulated [14].

The key feature of the Contiki OS is called ”protothreads”. Protothreads are threads
that do not have a dedicated stack in memory and are therefore very memory effi-
cient. The protothreads are driven by events and used in order to provide a flow in
the programs written in Contiki. At least one thread is started by default, and this
thread can then create other threads to provide multithreading functionality to the
programs. Since the processes in Contiki are event-driven, the threads can inter-
communicate via process events sent to specific processes. This communication can
be used in order to command processes to start, stop or perform other actions [15].

In Contiki, another central part of the OS is the usage of timers. There exist many
different types of timers which solves different tasks. One usual type of timer is the
Event Timer which generates a timer event when it has finished counting. During
the time that a process waits for a timer event it can enter a form of deep sleep
mode which minimizes the energy usage of the sensor node. The sensors in Contiki
are either synchronous or asynchronous. They either generate a sensor event by
themselves or they need to be combined with a timer which takes care of fetching
values from the sensor on the periodic intervals.

2.3 RPL
Since wireless sensor nodes are limited in their resources, the routing protocol used
on the networks connecting these nodes has to be designed with certain constraints.
RPL (Routing Protocol for Low power and Lossy Networks) is a routing protocol
that, as the name suggests, is designed for low power and lossy networks that com-
municate over IPv6. These properties make RPL an apt protocol for IPv6 networks
with wireless sensor nodes, since they typically have both low power and low stor-
age [11].

RPL is built to keep packet processing/forwarding and the routing part separate
from each other in order to have as good routing as possible, i.e. allowing for pack-
ets to reach their destination fast and accurately. Since RPL is built on the usage of
directed tree graphs, the communication type in RPL is bi-directional communica-
tion. This is the case, since in order for the nodes to communicate they need to be

6

2. Background

able to reply to messages and forward other messages in both directions of the tree.
All relevant information about RPL can be found in the Request for Comments
(RFC) document about RPL [16].

The graphs that RPL builds over the network are Destination Oriented Directed
Acyclic Graphs (DODAGs). It is important to note that one reason for implement-
ing the graph as a DODAG is that there are no cycles in such graphs, so the data
will always flow forward in the graph as long as the network is static and therefore
the packets will reach the sink eventually and not risk getting stuck in loops. In a
dynamic setting however, there is a possibility that nodes will choose each others
as parents all the time, making the data loop. The DODAG is optimized to have a
good route between the nodes by using an Objective Function (OF). The OF uses at
least one metric that defines the rank of the nodes in the network to determine what
to look for when constructing the DODAG that best fits the network. The nodes
finds the metrics of the other nodes in the network by looking at specific messages
received which are further described below, and can for example be the hop count
or energy consumption of a node.

A DODAG is built in a tree-like form from one specific node called the root, where
the root is the node in the network that acts as the sink or border router (here-
after referred to as the sink) for the network. In order to create, maintain and also
exchange information about the graph there exists four different control messages.
The DODAG Information Object (DIO) is the control message that contains in-
formation about the routing graph such as the IPv6 address of the root and the
current ranks (based on the metrics) of all the nodes. Another control message is
the Destination Advertisement Object (DOA) which makes it possible for the infor-
mation to be routed upwards since it enables support for traffic flowing down in the
graph. The DODAG Information Solicitation (DIS) control messages can be sent
by a node to ask another about a DIO message from that node. The fourth control
message, Destination Advertisement Object Acknowledgment (DAO-ACK) is just
an acknowledgment message that a node sends when it receives a DAO in order to
confirm the reception of the message.

It is the sink that initiates the creation of a new DODAG for the routing of the
network. There can only exist one DODAG for each existing sink, except for cases
where there are two sink nodes that are somehow connected, e.g. if they share a
common backbone, so when the Sink initiates a new DODAG any other DODAG
routed from that node is destroyed. The sink creates the new DODAG by choosing
itself as the root with the lowest (i.e. best) possible rank and storing the information
about the created DODAG which it will send out in DIO messages. When the other
nodes in the network get a DIO message they will discover the new DODAG and
destroy the old one. New nodes that join the network can easily become a part of
the DODAG by listening for DIO messages. Upon receiving a DIO message the node
selects an appropriate parent according to the rank of its neighbors in the DODAG
and sends out its own DIO messages to the other nodes. Whenever a node receives
a new DIO message it will check the properties to make sure that it has the best

7

2. Background

parent, and therefore the DODAG can be flexible.

2.4 6LoWPAN
6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) is a developing
standard that was originated by the Internet Engineering Task Force (IETF) with
the purpose of being used in small networks. IP has come to be a common network
protocol for the IoT over the years. However, this was not the initial plan since
IP does not meet the specific requirements needed for WSNs since these networks
are low powered and lossy while IP is a heavy protocol. There are many advan-
tages with using IP. Some examples of this include that there is no need to start
developing something completely new, it will simplify the connectivity model and
applications that uses protocols such as TCP and UDP can be used. Because of all
the advantages with IP, the development of a thinner version of IP for WSNs called
6LoWPAN was started [17]. As the name suggests, 6LoWPAN is a low power ver-
sion of IPv6 that works between the ordinary IPv6 protocol and the lossy medium
that is the sensor network [13].

SICSlowpan is an implementation of the adaption layer of 6LoWPAN developed by
SICS (Swedish Institute of Computer Science). This adaption is now a part of the
Contiki operating system. In Contiki, SICSlowpan is used in order to use the radio
link layer in the sensor nodes to transmit IPv6 packets. It was a project that aimed
to develop the first open source implementation of IPv6 for the low power radio link
layer. It resulted not only in SICSlowpan, but also in the implementation of uIPv6,
which is the world’s smallest IPv6 stack [18].

2.5 The Platform: Texas Instruments SensorTag
CC2650STK

Texas Instruments SensorTag CC2650STK is a wireless sensor node that is part of a
newer generation of sensor nodes with greater performance. Therefore, it is able to
perform heavier computations than the sensor nodes used in many of the referenced
papers. The node has a total of ten different sensors, two leds (one green and one
red) and two buttons, making the application areas for the node very broad. It
contains a micro-controller with a processor that has a frequency of up to 48-MHz
Clock Speed, 128KB of In-System Programmable Flash, 8KB of SRAM for Cache
and 20KB of SRAM. Figure 2.1 displays the front and the back side of the platform.
The left figure shows the front side of the platform where the two leds, some sensors
and the CPU is visible. The right figure displays the back side of the platform where
the battery and debugging and programming ports are located.

Texas Instruments also develops tools for programing the nodes. These include Code
Composer studio (CCS) [19] and UniFlash [20]. CCS is an Integrated Development
Environment that is used for programming and debugging the different microcon-
trollers and processors developed by the company. UniFlash is a standalone software
for flashing programs onto the hardware.

8

2. Background

(a) Front side. (b) Back side.

Figure 2.1: The front and back sides of the platform are displayed. Sensors, leds,
CPU, battery and debug ports are visible.

2.6 Attacks against Wireless Sensor Nodes
Since border routers connects wireless sensor nodes to the Internet, they are vulner-
able against (adaptions of) common attacks against connected devices. An example
type of such attacks is Denial of Service attacks (DoS-attacks), which exhaust the
resources on a targeted node [4].

Another common type of attack against WSNs is routing attacks. A routing attack
targets the routing information in order to disrupt the routing of the network, e.g.
routing information can be spoofed or altered in order to send all traffic through a
specific node or create loops in the topology, where packets never reach their desti-
nation [21]. Both these types of attacks are further described below.

2.6.1 DoS-Attacks
In a DoS-attack the objective of the attacker is to disrupt the normal functions or
services of a network. In a WSN it can be caused by having at least one node in
the network send a lot of packets to either all of the other nodes or a chosen node
that is particularly important to the system. The nodes that receive the packets
need to handle them on the available network services that are open on the nodes,
so the nodes will not be able to handle normal traffic or perform its normal tasks
at the same time. Kasinathan et al. describe in [21] that there exists a wide range
of different DoS-attacks, everything from simple variants, like jamming attacks, to
more advanced attacks. The paper by Kasinathan et al. also discusses that DoS-
attacks in WSNs are often targeting 6LoWPAN, since this is a widely used protocol
for devices with low capacity. In such an attack the Internet protocol is used to send
a large number of IPv6 packets over UDP or TCP.

Further, Kasinathan et al. [21], describe the Jamming attack. It is a variant of a DoS
attack that focuses on disrupting the radio signal from the nodes by interfering with

9

2. Background

the radio channel frequency used by the network. It is performed at the link-level
by sending a lot of unnecessary packets that will cause the nodes to drop important
packets that are used for the normal operation in the network.

2.6.2 Routing Attacks
One common routing attack is the so called Sinkhole attack. It is the main focus
of the IDS described by Cervantes et al. [5]. They argue that the Sinkhole attack
is one of the most destructive attacks against WSNs since it prevents the nodes
from communicating properly. A sinkhole attack aims to disrupt the routing in a
network by having one node announcing that it knows the shortest path to the sink
node. This will make the nearby nodes send much of their traffic in the network
through the attacking node. Then, the attacking node will not continue to forward
the packets it receives to the other nodes. The node will just receive them and then
drop them. The routing protocol designed for and used with 6LoWPAN is RPL,
which is further described in Section 2.3. When using this protocol, routing can be
disrupted by having an attacking node provide a fake value for the specified metric
used to determine how the routing graph, or DODAG, should be constructed [7].

Raza et al. [6] focus on a wider range of routing attacks beyond sinkhole attacks.
One of these attacks is called the Selective-Forwarding attack. As the name suggest,
the main idea behind this attack is to only select certain packets to forward to the
rest of the network and disregard all the other packets. An attacker can use this
method to let through for example all RPL routing messages but drop messages
with other content that the network will send. As an example, if the network is
monitoring something the attacking node can choose to drop all the warning mes-
sages if something goes wrong, but it can still choose to forward all the RPL routing
messages it receives. By doing this it is harder to detect the attack because the
nodes will think that there is nothing wrong since the RPL routing messages ar-
rives, making it possible for the DODAG to be constructed and managed as usual [7].

Raza et al. [6] also discuss two other routing attacks, which are similar to each
other. These are the Sybil attack and the CloneID attack. Both these attacks in-
volves copying identities (IDs). In the Sybil attack, several different IDs are copied
on a single node, which makes it look like this node is more than just one to the rest
of the network, therefore counting it as several nodes. Whilst in a CloneID attack
an ID of a node is copied onto another node in the network. Both attacks have
the same goal, to be able to control the network in order to gain majority in voting
protocols. In 6LoWPAN and RPL these attacks will be troublesome when a packet
has the destination of a cloned node since only the cloned node with the best routing
metric will be sent the packet, leaving other nodes with the same ID unreachable [7].

Wallgren et al. [7] describe an attack known as the wormhole attack. The wormhole
attack is an attack where the attacker creates a virtual tunnel between two nodes.
A wormhole itself is not necessary bad and it can be set up intentionally in the
system. One potential usage of the wormhole is to send important packets between

10

2. Background

two nodes that is known to have reliable links while other packets are sent using the
normal routing protocol to be sure not to interrupt. However, a wormhole can be
set up and used by an attacker to disrupt the normal routing in a network, as an
example sending packets in loops or bypassing the sink node in a network.

2.7 Basics about Intrusion Detection
In order to detect attacks in a system, a so called Intrusion Detection System (IDS)
can be used. The role of an IDS is to detect attacks in the system and report them.
There exists another type of security mechanism that is closely related to an IDS,
namely an Intrusion Prevention System (IPS). IPSs aims to prevent an attacker
from either continuing with an attack or performing the attack in the first place.

Ghosal et al. [22] describe four different kinds of IDSs. These are called signature-
based IDS, anomaly-based IDS, specification-based IDS, and hybrid-based IDS. The
different kinds of IDSs are further described below.

A signature-based IDS focuses on detecting ”known attacks” by looking at param-
eters that are known to indicate a specific attack. The known parameters make up
the signature of the attack and thus the name of the type of IDS. The limitation
of this method is that it will not detect any attacks that are not previously known
to the system. A positive thing with the method is that the false positive rate is low.

Anomaly-based IDSs have the advantage of being able to detect attacks that are
not previously known to the system if they cause the system to behave different
from ”normal” behavior. This means that in order to determine what the normal
behavior is in a system, the behavior needs to be somewhat static in its type which
does not fit all kinds of systems. This limitation can be a disadvantage for anomaly-
based detection techniques. A node can start to behave ”different” than it normally
does for natural reasons. One example can be that a node in the network suddenly
needs to send a lot of packets at times it usually do not. When a system that is
monitoring something have nothing to report due to lack of activity it will not send
any data to the border router, but when something happens it will start to send
packets. An anomaly based IDS could interpret this as an attack and give a so called
”false positive” alarm [23].

If an IDS is specification-based it means that it combines the best parts of an
anomaly- and signature-based IDSs. This is done by having signatures that it knows
which can detect known attacks, but it can also look for anomalies. This mean that
they do detect anomalies in the network but have fewer false positives since it also
combines it with usage of signatures.

Finally, there are hybrid-based IDSs. The main differences between a specification-
based and a hybrid-based IDS is that in a system with a hybrid-based IDS there are
several explicit IDSs on the WSN that perform different kinds of intrusion detection.

11

2. Background

2.8 Detection of DoS-Attacks with Linear Regres-
sion

Riecker et al. [4] discuss the use of energy consumption as a metric when deter-
mining if a system is under attack. The core idea behind this approach is the use
of linear regression to be able to predict how much energy that will be used by
the node in the following time interval based on the previous energy consumption.
Then, by comparing the predicted value with the actual value in the next round, it
can be concluded that the node is under attack if the two values deviate too much.
This method assumes that the energy consumption in a system is somewhat linear
and contains few outliers (data that deviate from the norm) in order to function as
expected.

Since energy readings are points of x and y values, where x is the time unit and y
is the read energy value, simple linear regression can be used. By fitting a line to
the collected x and y values while trying to minimize the distance from the points
to the line, the next expected value is predicted to lie on the calculated line. Since
the probability that the next energy reading will be exactly on the line is small,
there needs to exist a tolerance for how much the real point and the estimated point
can deviate from each other without producing alarms that an attack is taking place.

The type of linear regression used by Riecker et al. in [4] is simple regression using
a variant of the least squares method.

fj(x) = bj + ajx = y (2.1)

They write the general form of linear regression as seen in Equation 2.1, where fj(x)
is the function for the approximated line in time x at node j, bj is the y intercept
of the linear model at node j, and aj is the slope of the line at node j. The value
that should be calculated, the next expected value, is y. In order to do this, aj (the
slope) and bj (the intercept) needs to be calculated.

aj = K
∑i

t=i+1−K xtjytj −
∑i

t=i+1−K xtj ∗
∑i

t=i+1−K ytj

K
∑i

t=i+1−K x2
tj − (∑i

t=i+1−K xtj)
(2.2)

bj =
∑i

t=i+1−K ytj −
∑i

t=i+1−K ajxtj

K
(2.3)

The slope and the intercept are then calculated by the formulas 2.2 and 2.3 respec-
tively. These formulas are fetched from [4]. Here, xtj is the time value at time t for
node j, and ytj the energy reading on node j at time t. This approach uses the last
K pairs of time values and energy readings in order to estimate the next value of y.
The value of K can be adjusted depending on how accurate the estimation should
be. In order to determine a good value for K, there are several things that needs
to be taken into consideration. A higher value for K can handle so called ”outliers”
better since the other energy readings will be more evenly distributed and lower the
slope of the line. As an example, a node will have a higher energy consumption
when using the radio, so if an energy reading is taking place shortly after sending or

12

2. Background

receiving something, the linear regression method will predict the next energy value
to be a lot higher than it will be in reality. This can lead the node into thinking
that it is under attack when comparing the real energy reading to the estimated one.
Therefore K needs to be big enough to prevent this, but having a large K value will
have an impact on the memories of the sensor nodes. The scenario can be described
as a trade-off between accuracy of the linear regression and the memory footprint
of the method on the sensor node’s memory.

13

2. Background

14

3
Related Work

This chapter introduces and discusses other works connected to the field of intrusion
detection in wireless sensor networks. Section 1.4 gives a brief description of previ-
ous works in the field. These are serving as background material for this thesis as
some of the algorithms for the detection methods are developed based on approaches
found in a selection of those papers. However, many of the algorithms designed and
implemented within this thesis are self-developed, and therefore the mentioned pa-
pers from Section 1.4 are also listed as related work.

3.1 Energy Consumption as a Metric
As discussed in detail below, monitoring energy consumption as a metric for dis-
covering attacks has previously been tested. The aim with the previous works in
the specific field has mainly been to show that energy consumption as a metric for
detecting attacks is feasible to begin with. This section introduces two different
ways of performing detection with energy consumption as a metric, where the first
work is quite early in the research area (2005) and the second is quite new (2015).

3.1.1 An intrusion detection system for wireless sensor net-
works

Among the earliest research that was carried out on the topic is the work by Onat
et al. [24]. They propose an architecture of an IDS that takes advantage of an al-
gorithm with low complexity that monitors the received packet signal strength and
arrival rates. It is achieved by looking at the last N packets that have been received
from each neighbor. These N packets are called the main packet buffer length. The
packets in the buffer are then used to calculate the statistics for the neighbor node
that sent them. Then, each packet that arrives is compared against the calculated
values. If the statistics match the information in the arrived packet the newly ar-
rived packet becomes part of the buffer while the oldest packet is discarded. All
the packets that are received have their arrival time and receive power saved. A
lower and an upper threshold value for the receive power of the packets are updated
with each packet that is flagged as normal and inserted into the buffer. If the re-
ceive power of an incoming packet is lower or higher than these threshold values the
packet is considered anomalous.

However, there are some disadvantages of the method. One of them is that the
system requires a so called ”training period”, where the system needs to learn the

15

3. Related Work

expected receive signal strength of the packets sent by the neighbors. During the
training phase no intrusions can be detected since the system do not know the
normal behavior of the network yet. Another drawback is that that the proposed
solution only works in a network that has a uniform traffic pattern.

3.1.2 Lightweight energy consumption-based intrusion de-
tection system for wireless sensor networks

Riecker et al. [4] propose an architecture of a lightweight intrusion detection system
for WSNs that is based on energy readings and linear regression. Their work covers
three different aspects: a mobile agent paradigm; the use of this mobile agent to
detect intrusions; and the last aspect is that their method shows that it is possible to
use the energy consumption as a metric for detecting attacks. As described earlier,
they take advantage of a moving agent which moves around from node to node in the
network like a token to collect readings of energy consumption by the nodes. The
mobile agent uses the energy readings collected to make predictions on how much
energy the node should have been consuming the next time the agent arrives based
on linear regression models. The approach does not require the nodes to collaborate
with each other or monitor their environment and it does not require any data to
be transferred to a central point. Their work also serves as a demonstration that
power consumption is a suitable metric for detecting denial-of-service-attacks with
high accuracy while maintaining low false-positive rates. On the other hand, the
implementation of this approach is tested in a simulator and never on real hardware,
so the results on real hardware might vary.

3.2 Detection of Sinkhole Attacks in WSN
One attack that can be really devastating in a WSN is the Sinkhole attack. Therefore
a number of different works in the field of security for IoT focuses on detecting
and mitigating this attack. Some of the earlier research focus on detecting and
mitigating not only Sinkhole attacks. Such IDSs with combined detection methods
are described in Section 3.3 while this section focuses on works that only target
Sinkhole attacks.

3.2.1 Detection of Sinkhole Attacks for Supporting Secure
Routing on 6LoWPAN for Internet of Things

One of the works that only focuses on the sinkhole attack is INTI, by Cervantes et
al. [5]. INTI focuses not only on detecting Sinkhole attacks but also on prevent-
ing and isolating the effects that the attacks have on the network. The proposed
method is also trying to reduce unfavorable effects on the system. Examples of such
unwanted effects can be high resource cost, many false positives and false negatives,
and a slow overall system performance. To achieve the goal of detecting and mitigat-
ing sinkhole attacks the authors use different strategies. Firstly, a watchdog is used
to keep track of the system, and then different reputation and trust strategies are
used to detect attacks by analyzing the nodes’ behavior. The network topology used

16

3. Related Work

is clusters, where the nodes take on different roles. In order to be able to coordinate
the network and have cooperation between the nodes the network is self-organized.
It is also self-repairing in order to detect suspicious nodes and mitigate them from
the network. This IDS also considers the mobility of nodes, something that other
works have omitted. The authors conclude that INTI can detect sinkhole attacks
in 92% of all cases when the nodes are not mobile and in 75% when they are mo-
bile. This can be achieved while keeping the rate of false positives and negatives low.

3.2.2 Evaluating sinkhole defense techniques in RPL net-
works

Weekly et al. [25] introduce two different techniques for determining if there are
any ongoing sinkhole attacks in a network. Their evaluation shows that both the
techniques fail to determine if there is an ongoing sinkhole attack on the network
most of the times when the techniques are used separately. The authors use a metric
called ”end-to-end delivery ratio” to evaluate the results of their work. The metric
is simply measured by taking number of messages that the sink has received by a
specific node divided by the number of sent messages by the same node. The two
techniques are named Parent fail-over and Rank authentication, and when
enabled only 16% and 23% of the respective messages are received while an attack
is ongoing. This is only slightly higher than what the number of received messages
are with no detection method activated at all (10%). However, when the authors
combine the two proposed methods the metric goes up to 82%. The first method, the
Parent-fail over, is an end-to-end acknowledgment scheme that works by adding a
field called the unheard nodes set (UNS) to the DIO message (routing advertisement
message) when the sink sends it. The field is then used for storing values in terms
of IDs of nodes whose paths may be interrupted by a sinkhole. A node is added
to the field if less than a chosen threshold value of messages that it is expected
to send are actually received by the sink. If a node receives a DIO message that
contains its own ID in the UNS field it will blacklist its parent locally to make sure
that it will not become a parent again. The other method, the rank verification,
works by making sure that all the nodes in the network are only allowed to lower
their announced rank in the routing graph by one unit of routing metric (where a
lower rank is better) within a reasonable time. This is achieved by the usage of
cryptographic hash values and verification of hash values that are present in the
routing advertisement messages.

3.3 Combined IDSs
The related work that has been mentioned up until here only focus on the detection
of one kind of attack. This is the case since the nature of many sensor nodes (with
their limited resources) often leave little capacity left after the main functionality
of the node has been implemented. This thesis takes advantage of modern sensor
nodes that are not as limited as the sensor nodes that have been used in previous
research and this thesis can therefore focus on detecting several attacks, as described
in Section 1.3. However, previous work exist that cover more than just one kind of
attack but often with the assumption that the sink node has more resources than

17

3. Related Work

the rest of the nodes. With a more powerful sink node the system is therefore able
to perform the more heavy parts of the intrusion detection. This section presents
and focus on related work that combines different detection methods so that the
IDS covers more than one type of attack.

3.3.1 SVELTE: Real-time intrusion detection in the Inter-
net of Things

Raza et al. [6] present an IDS for sensor nodes called SVELTE. While SVELTE
does detect more than just one kind of attack, it focuses on different kinds of rout-
ing attacks, leaving detection of other attacks as a possible extension of the work.
SVELTE has a combination of both centralized and distributed architecture over
the WSN. The design and implementation of the IDS expects the sink node in the
network to be more powerful than the other nodes, and therefore the heavier parts
of the IDS are placed in the sink. In SVELTE, the sink has three different modules.
The first one is called 6Mapper (6LoWPAN Mapper). This module keeps track of
how the RPL routing graph is formed and keeps it as a map in the sink node. The
second module uses the information gathered from the 6Mapper in order to detect
attacks on the network while the last component is a small implementation off a
distributed firewall. By keeping a firewall in the sink malicious traffic can be fil-
tered out before it enters the WSN. In order for the centralized modules to work,
all the nodes in the network must also implement a more lightweight sub-module
of two of the modules. They all have a module that provides the 6Mapper with
routing information so that the sink node can maintain the routing graph correctly.
In addition to the 6Mapper component the other nodes also keep a small part of the
firewall implementation. Additionally, all the nodes also keep a module for handling
end-to-end packet loss.

Evaluation of SVELTE is carried out in the simulator Cooja. The authors choose to
evaluate the IDS in two different modes, one mode with packet losses and another
mode without any packet losses. In the case with no packet losses the detection rate
is almost 100% and no false positives are detected. When the simulated network
is allowed to lose packets, the detection rate drops to approximately 90% in the
setup used, and the authors note that in a bigger network setup the detection rate
decreases even further. After a while, when the 6Mapper gets the time to collect all
the data about the network the detection rate will start to rise again as the routing
information propagates to the 6Mapper.

3.3.2 Intrusion detection for routing attacks in sensor net-
works

Loo et al. [26] present an IDS that is designed to detect a number of different
routing attacks. The authors construct a method that detects abnormal behavior in
the network by using a clustering algorithm that builds a model of how normal traffic
in the system looks like. This model does not require the nodes to communicate
with each other, which is an advantage since the power consumption of the nodes

18

3. Related Work

will be smaller. Instead, each node contains its own IDS that will be able to detect
attacks on its own, using the routing table information on the node. The authors
present twelve different attacks that the system is able to detect, where nine of
them are different types of Sinkhole attacks, and the other three are focusing on
different Denial of Service attacks. It is important to note that all the testing of
the method was carried out in a simulator. The number of false positives depends
on the cluster sizes, which can be set in the program. The authors conclude that
the system achieve the most reasonable trade-off between the detection rate and the
number of false positives when there is a false positive rate of around 5%, so the
cluster size w is adjusted for this value when evaluating the system. How much the
detection rate for the method varies depends on which attack that is detected, but it
varies from 100% (for active sinkhole attacks) to 70% (for passive sinkhole attacks)
when w is set according to the trade-off above.

3.4 Our Contribution
The works that this chapter summarizes are similar to the work in this thesis. The
biggest difference regarding this thesis is that the detection methods are written
for modern hardware, allowing more advanced algorithms and it also allows the
code to be larger and contain multiple detection methods at the same time. All of
the works this chapter discusses are evaluated completely in simulators while this
thesis also takes advantage of real hardware when measuring the detection rates and
energy consumption of the already tuned IDS for the first detection method, and
the energy consumption for the second detection method. Also, many of the works
are detecting one specific type of attack, while this thesis combines two different
methods to detect both DoS-attacks and routing attacks. However, other combined
IDSs do exist, as presented in Section 3.3. Finally, this thesis builds a framework
for different detection methods which makes it easy to extend the IDS with other
methods if desired. The framework also makes it possible to easily choose to activate
or deactivate one or more detection methods.

19

3. Related Work

20

4
System Model and Design

This chapter describes the design of the system model of the intrusion detection
system framework presented within the thesis. The chapter aims to describe the
goals and requirements of the implementation, and thus acts as a template that
is realized during the process of implementation. First, the chapter describes the
general system overview in a subsection with focus on requirements that need to
be fulfilled by the outer parts of the framework. Then, the chapter describes the
detection methods in subsections of their own. The subsections for the detection
methods focus on requirements on the methods themselves and propose algorithms
that solves the problems. Both of the subsections for the detection methods include
an adversary model that concretizes what the detection method detects or protects
against.

4.1 System Overview
The IDS framework consists of many different components. The design of the IDS
framework provides components that are not only security related in terms of algo-
rithms that detects attacks, but also components that runs normal tasks like reading
and sending sensor values. One of these components can be described as an outer
shell of the framework that acts as a wrapper for the whole application. Another
component is an example program that simulates the normal activities of a sensor
node in terms of collecting sensor values and sending these over the network. The
outer shell component acts as a common ground for the framework and is required
to support the activation of different detection methods and turning the example
program on and off. Subsections to this section further describes the requirements
of the outer shell component and the example program component.

In addition to the outer shell and the example program, the framework includes two
detection method components. The detection methods focus on different attacks
and adversary models. The first detection method focuses on detection of Denial-of-
Service attacks by usage of energy consumption as a metric. The second detection
method focus on both detection of and protection against sinkhole attacks (including
other routing attacks against RPL) by usage of a strict hierarchy and a verification
process of nodes that are responsible for routing and forwarding of messages. Both
the receiver side and the sender side of the node verifies that the node behaves as
it should and does not attack the network. The remedy includes blacklisting and
exclusion of nodes that attack the network.

21

4. System Model and Design

Figure 4.1 displays an overview of the IDS framework. It can be seen that the
implementation of the framework done on top of Contiki OS and that it consists of
four different components where three of them are possible to turn on or off.

Contiki OS
Outer shell

Detection method 2

Detection method 1

Simple sensor program

Security related parts

0
1

0
1

0
1

Figure 4.1: An overview of the system model is displayed. The framework consists
of an outer shell with support for turning the internal components on or off.

4.1.1 Outer Shell - Requirements
The basic shell of the framework requires support for combinations of different de-
tection methods, where the different combinations can be set by using a parameter
called ”security level”. The chosen security level leads to different effects regarding
which detection methods to use. Level 0 corresponds to just the shell itself, level
1 corresponds to outer shell and detection method 1, level 2 corresponds to outer
shell and the second detection method, and so forth.

4.1.2 Simple Sensor Program - Requirements
In order to simulate the normal activities of a WSN node a simple program that
takes advantage of the sensors on the platform needs to be implemented. The
only requirements are that it supports fetching of real sensor values and periodic
communication of the sensor values to the sink-node of the wireless sensor network.
Normal behaviour is important to simulate since some detection methods rely on
the distinction between what is normal and what is abnormal behaviour.

4.2 Detection Method 1: Anomaly-based DoS-
Attack Detection

The first detection method that this thesis proposes is denoted Anomaly-based DoS-
Attack Detection. It uses the solution that Riecker et al. [4] propose as a basis, where
energy consumption is used as a metric to determine if a node is under attack.
This section describes the requirements of the detection method and presents the
adversary model that the method assumes. The adversary model acts as the basis
for an attack that is implemented in order to test the detection method.

22

4. System Model and Design

4.2.1 Requirements
The first detection method focuses on detection of generic Denial of Service attacks.
It is based on energy consumption of the radio communication hardware of the node.
The reason for this is that any type of attack that targets exhaustion of a node’s
resources via use of flooding of the radio communication of the node will have an
impact of the energy consumption of the radio hardware. The method reads energy
consumption of the node and store values of how the energy consumption varies
in time in a suitable data structure. An algorithm analyzes the collected values in
order to detect attacks. Another requirement of the detection method is that the
placement of it needs to be locally on the nodes. The main motivation for this is
the improvement in hardware. There are fewer restrictions on the memory footprint
of the IDS framework on the sensor nodes that this thesis uses, hence there will be
space available for local detection methods.

If the energy consumption of the node is even and somewhat linear, the detec-
tion method can take advantage of linear regression and the history of the energy
consumption in order to predict what the next-coming energy consumption value
should be. Section 4.2.1.1 further elaborates the linear regression-based DoS detec-
tion method. Because of uncertainty regarding the power consumption profile of
a sensor node, design of an alternative approach that avoids the assumption that
the sensor node must have a linear power consumption is also done. Section 4.2.1.2
further describes the alternative approach that avoids assumptions regarding energy
consumption profile.

4.2.1.1 Linear Regression Algorithm: LiReg
The linear regression algorithm which this thesis propose is called LiReg. It takes
advantage of predictions of the next-coming energy consumption value with the
help of the linear regression technique as Section 2.8 describes. To enable this, a
data structure needs to store energy values. This enables a history of the node’s
energy consumption. The algorithm calculates the difference between the next-
coming energy value and the predicted value. The difference is then divided with
the average energy consumption value for the collected values which gives how many
percent larger (or smaller) the difference is in comparison to the average consumption
value. The design choice to compare the difference with the average value means
that sudden increases in the energy consumption that are unusual in comparison
to the history of the node will get noticed. A solution that only compares the
difference with the present value or the previous value would be much more sensitive
to disturbances between rounds of the program. If the resulting percentage from
dividing the difference with the average value is larger than a given threshold the
node alerts that it might be the target of a Denial of Service attack. This is a similar
approach as in the work by Riecker et al. [4]. Algorithm 1 shows the described
algorithm. Looking at the pseudo-code, it can be noted that three parameters are
required. The three parameters include one threshold limit denoted T that controls
how many percent the difference between the predicted value and the actual value is
allowed to differ from the average value among the collected energy consumptions.
For example, if the value is set at 100, it means that the difference is allowed to be
100 percent larger (or smaller) than what the average consumption value is. The

23

4. System Model and Design

second parameter controls how many elements that are required to be present in
the history before linear regression can be performed. This parameter is denoted K,
and a last parameter denoted R which controls how often the energy consumptions
is read.

Algorithm 1 LiReg
Require: thresholdpercent : T
Require: Least_number_of_elemenents_to_perform_linear_regression : K
Require: read_time_interval : R

1: while Forever do
2: wait(R)
3: energy_val←read_energy_for_last_period()
4: insert(energy_list, energy_val)
5: if length(energy_list) ≥ K then
6: if expected_val is present then
7: difference← energy_val − expected_val
8: if 100 · difference

energy_list_average
> T then

9: send_alarm()
10: end if
11: end if
12: expected_val←linear_regression()
13: end if
14: end while

The linear regression algorithm requires that the energy consumption is somewhat
linear. If the behaviour of a system can follow a straight line it is easy to detect
outliers by just marking all abnormal values that differs too much from the expected
value as an attack. However, if the energy consumption in a system varies a lot be-
cause of other behaviors, this can be a problem.

4.2.1.2 Increasing Average Algorithm: IncA
Riecker et al. [4] use a simulator to evaluate the implementation of the system design.
In such an environment the energy consumption can be expected to be somewhat
linear and no strange variances in the energy consumption appears, so linear regres-
sion works fine. In this thesis, the methods run on real hardware, so it is hard to
predict what kind of energy consumption variations the nodes have.

It could be linear with just a few outliers, in which case the linear regression ap-
proach will work well. But, it could also be more diverse, like in Figure 4.2. Real
sensor nodes are expected to not have a completely linear energy consumption profile
for reasons such as radio announcement messages. As an example, even if the nodes
do not run an application that uses the radio a lot, nodes periodically sends beacon
messages announcing their presence to the other nodes in the network. These peri-
odic and sometimes unforeseen radio activities cause the radio energy consumption
to increase. It will lead to ”spikes” in the energy readings and it could cause the

24

4. System Model and Design

linear regression algorithm to predict values that are either much higher or much
lower than what the actual values will prove to be. This could lead the node to send
a false alarm of an ongoing attack.

Note that Figure 4.2 is just an illustration of how the energy consumption could
look. In the figure the units are not of importance since it just serves to give visual
guidance for the argumentation. On the y-axis we have the unit ”real time ticks
in the radio hardware” and on the x-axis we have time intervals, where one time
interval is 10 seconds and an energy reading is taken at every interval.

0 20 40 60 80 100
Time intervall (where one time intervall is 10 seconds)

0

500

1000

1500

2000

E
n
e
rg

e
st

 V
a
lu

e
 (

re
a
l
ti

m
e
r

ti
ck

s
in

 r
a
d
io

 h
a
rd

w
a
re

)

Figure 4.2: Example of how the energy consumption of a node could look like
during normal execution. In this example, an energy reading is done every tenth
second.

As mentioned earlier, the approach with linear regression as Riecker et al. [4] de-
scribe has only been tested in a simulator and might thus not be suitable in real-world
scenarios without greater changes. As a result of the uncertainty about how well
the linear regression approach fits on real hardware, an alternative approach needs
to be implemented that avoids the assumption that the power consumption is linear.

The alternative method that this thesis proposes is called IncA. It collects and
compares how the average energy consumption varies for the node’s history of energy
consumption values. The method calculates an average over a specified history
size that can be changed as a parameter in order to find the optimal value for
history size. If the computed average values increase for a specified consecutive
number of rounds the node alerts that it is under attack. By counting the number
of rounds that the average value increases, and combining it with a limit for when
the node starts comparing average values, the assumption that a node must have
linear power consumption is avoided. Algorithm 2 shows the proposed algorithm. In
the pseudo-code, it can be noted that three parameters are required. One parameter
describes how many consecutive rounds that the average energy consumption value

25

4. System Model and Design

is allowed to increase, denoted I, one describes how many rounds that the algorithm
waits before starting to compare average-values, denoted N, and the last parameter
describes how often energy values will be read, denoted R. By studying Algorithm 2
one can note that if the average value decreases between two rounds, the counter is
reset to value zero.

Algorithm 2 IncA
Require: increasing_avg_limit : I
Require: rounds_before_activation : N
Require: read_time_interval : R

1: round← 0
2: increasing_avg_counter ← 0
3: while Forever do
4: round← round + 1
5: wait(R)
6: energy_val←read_energy_for_last_period()
7: insert(energy_list, energy_val)
8: average_prev ← average
9: average←average_list_value()

10: if round > N then
11: if average > average_prev then
12: increasing_avg_counter ← increasing_avg_counter + 1
13: if increasing_avg_counter > I then
14: send_alarm()
15: end if
16: else
17: increasing_avg_counter ← 0
18: end if
19: end if
20: end while

4.2.2 Adversary Model
There is a possibility that an attack launches from a node within the network itself,
and not necessarily from the outside through a border router. Such an attack would
avoid eventual filtering at the border router by means of firewall usage or other
defense mechanisms. This means that in this adversary model the adversary is con-
sidered to be spatially close. The adversary can disrupt the traffic in a WSN by just
bringing a node programmed with an application designed to flood the network and
launch the application when he is geographically close. Many nodes announce their
presence regularly, which means that the new node could potentially be able to join
the routing graph and then proceed to flood the network by sending packets at a
high frequency.

The adversary model uses an aggressive strategy. It expects that the adversary sends
a lot of high intensity traffic to all the nodes it can reach. The motivation for using
such an aggressive strategy is that it is likely that an attacker would try to disrupt

26

4. System Model and Design

the network using an aggressive strategy for exhaustion rather than by trying to
disrupt the network by flooding the network slowly. There are two main goals for
launching this type of attack. The first one is to disrupt the normal activity on the
network since the nodes will be busy handling all the incoming packets. The other
goal is that the attacker wants to drain the batteries on the sensor nodes, causing
the network to go down and stay down after the attack until the batteries can be
replaced.

4.3 Detection Method 2: RoVer
The works of Cervantes et al. [5] is an inspiration for the second detection method.
They propose the use of a hierarchical distributed architecture where nodes keep
track of parents of clusters and intermediary nodes between clusters. The use of
a hierarchical approach enables the authors to detect sinkhole attacks in the net-
work with a high accuracy. Therefore, this section describes the design and the
requirements of a detection method called RoVer which stands for Role-based Ver-
ification for securing RPL routing by verifying claims from two sides. The method
is based on a hierarchical structure of the network. The method’s focus is both
on detection and prevention of routing attacks against 6LoWPAN and the routing
protocol RPL. The method aims to detect sinkhole attacks, wormhole attacks and
selective forwarding attacks. The last subsection presents the adversary model that
the detection method assumes and protects against.

4.3.1 Requirements
Focus on both detection and mitigation of routing attacks against WSNs that are
communicating using the 6LoWPAN and RPL protocols is a requirement for the
second detection method. The approach must function without the usage of RPL
for communication between the nodes since the nodes cannot send traffic through a
node that potentially does not forward all packets.

4.3.1.1 Roles and Responsibilities
In the hierarchical structure of the network there are three roles present in addition
to the sink node, namely child, parent and grandparent. The three roles make the
node behave differently depending on role and situation and thus require to have
respective sets of operations. A child that is only a child is a leaf in the network
graph, i.e. a node that only connects to a parent. A parent is a node that connects
to its children and either the sink or another parent that is responsible for forwarding
messages to the sink. If the parent connects to another parent the node acts both
as a child (to the other parent) and a parent. Parents are nodes that are responsible
for forwarding messages from children towards the sink. Grandparents are parent
nodes that have at least one child who also acts as a parent and thus have its own
set of children. Figure 4.3 displays the hierarchy of the system architecture and its
corresponding roles.

27

4. System Model and Design

Sink

Grand-
parent

Child

Parent

Figure 4.3: The hierarchy of the network is displayed and the three roles (child,
parent and grandparent) a node can have are displayed. A node can have several
roles in the network; Parents who have children which are parents themselves are
actually grandparents and grandparents can also be children in the network.

The different roles have different sets of responsibilities and operations. Children
must exchange messages with their siblings about how many packets they have sent
to the parent. A requirement on these messages are that they need to reach all the
available siblings and must not go via the parent since the parent could potentially
be malicious. Children are responsible for the process of monitoring the parent.
A requirement on parents are that they need to broadcast how many packets they
have sent to the next node in the route to the sink. The same message must be
sent via broadcast to both the children and the grandparent of the node (with the
message content of how many packets the parent has sent to its own parent, i.e.
the grandparent). If a parent has a child that also has children then that parent is
also a grandparent and needs to keep track of the child that has children. This way,
both the children and the grandparent verify the parents behavior. Children and
grandparents verify a parent from two sides. Children verify that the parent’s claim
of how many packets it has sent is at least as many as all the siblings have sent to
the parent. For the grandparent, it verifies that the parent’s claim is actually how
many packets the grandparent have received from the node.

The different roles of the system can be combined. For example, a parent can also
be a child that communicates with its own siblings and verifies the respective parent.
In similar fashion, a grandparent could also potentially play the role of a child but
is always guaranteed to be a parent of another parent and thus the name of the role
in the system.

4.3.1.2 When an Attack is Detected
When the method detects an attack the network tree must be restructured in order
to remove the malicious node. The malicious node will not be permitted to become
a parent again. Blacklisting of a malicious node must be carried out by the same

28

4. System Model and Design

means as the communication among children, i.e. via communication that avoids
using RPL. For example by usage of broadcasts and replaying of broadcasts. This
way of communicating the blacklist message helps to avoid situations where some
part of the network still believe that the malicious node is a good parent. The
network allows a malicious node to be part of the network in the role of a child i.e.
as a sender of data, nothing else. If the method detects a malicious node, every
other node in the system ignores future routing announcement messages from that
node. Thus, the node that performs the attack is denied from ever becoming a par-
ent or a grandparent again since no other node will ever use the evil node as a router.

4.3.1.3 Tolerance of Packet Loss
The design and implementation of the detection method are required to have a tol-
erance of packet loss since it occurs naturally on this type of network. The tolerance
of packet loss is part of the verification of the nodes that are responsible for forward-
ing messages in the network. It uses hard limits for maximum number of allowed
packets to be lost when the total amount of messages is below a certain threshold.
If the total number of messages is above the threshold, a soft limit is used instead
which indicates how many percent of the traffic that are expected to arrive at the
receiver and then routed further on. The proposed strategy for packet loss is shown
in Algorithm 3.

Algorithm 3 RoVer: Fault tolerance for loss of messages
Require: threshold T
Require: numeric below threshold N
Require: percent value above threshold P

1: (In parent verification function:)
2: if messages by self and siblings ≥ T then
3: if messages by self and siblings −N ≥ claim by parent then
4: Flag parent node as malicious
5: end if
6: else
7: if messages by self and siblings ∗P ≥ claim by parent then
8: Flag parent node as malicious
9: end if

10: end if
11: (In child verification function:)
12: if claim by child ≥ T then
13: if claim by child −N ≥ messages received by child then
14: Flag child node as malicious
15: end if
16: else
17: if claim by child ∗P ≥ messages received by child then
18: Flag child node as malicious
19: end if
20: end if

29

4. System Model and Design

4.3.1.4 Algorithm with Four Phases
An algorithm with four phases realizes the sections above. The four phases are a
child broadcast-phase, a parent broadcast-phase, a phase for verification of data, and
a phase for blacklisting malicious nodes and distribution of the blacklist. Algorithm 4
shows the described algorithm. Looking at the algorithm, it can be seen that the
four-phase system can be modeled and implemented using a finite state machine-
approach where transitions between states are controlled by timers. Figure 4.4
displays the four different states of the system and the transitions between the
states.

Child broadcast Parent broadcast Verification Blacklist

States: 1 2 3 4

Figure 4.4: The four different states of detection method 2 are shown. Each
transition between states are controlled via timers.

4.3.1.5 Fault Tolerance for Control Messages
In addition to the fault tolerance of accepting normal packet losses, the system also
requires the implementation to be fault tolerant for the control messages of the
detection method. That is, if a node does not receive a broadcast from a parent
(whether it is the child of the parent or if it is the parent of the parent) it will not
mean automatic flagging of the node as malicious. The motivation for this design
choice is the uncertainty involved in broadcasting messages. In normal cases, the
sending node signals to the receiving node that it is about to receive a message
over the network by performing a process that can be described as flashing a light
until the receiver wakes up. For cases where broadcasts are involved, the sending
and receiving can be classified as a best effort process. When sending a broadcasts
no information about it beforehand is sent and thus it can not be expected to be
received by all intended recipients every time. To overcome this obstacle the design
of the system takes advantage of fault tolerance when verifying other nodes as can
be seen in Algorithm 5.

4.3.2 Adversary Model
The attacks that the second detection method protects against are originating from
a node within the network. This is the case since the malicious node needs to be
part of the routing graph in order to alter routing information. However, a remote
adversary could be possible if a node on the local network is compromised and used
as a so called ”bot”. Just as in the adversary model for the first detection method, a
geographically close adversary could bring a node that connects to the network via
the routing protocol if it is open for connections.

The attacking node needs to announce a spoofed routing metric, or rank, to the rest
of the nodes in order to receive as much traffic as possible to be routed through it.
This can be done by fabricating fake information and telling the rest of the network

30

4. System Model and Design

Algorithm 4 RoVer
1: while Forever do
2: wait for phase 1 timer
3: if isChild then
4: broadcast number of messages sent to parent
5: receive messages from siblings
6: re-broadcast messages received from siblings once
7: end if
8: wait for phase 2 timer
9: if isParent then

10: broadcast number of messages sent to parent or sink
11: end if
12: if isChild then
13: receive claim from parent
14: end if
15: if isGrandParent then
16: receive claim from child who is parent
17: end if
18: wait for phase 3 timer
19: if isChild then
20: parent_result←verify(parent)
21: end if
22: if isGrandParent then
23: child_result←verify(child_who_is_also_a_parent)
24: end if
25: wait for phase 4 timer
26: if parent_result == evil then
27: add_to_blacklist(parent)
28: broadcast(blacklist)
29: end if
30: if child_result == evil then
31: add_to_blacklist(child)
32: broadcast(blacklist)
33: end if
34: if blacklist update received then
35: re-broadcast blacklist once
36: end if
37: end while

31

4. System Model and Design

Algorithm 5 RoVer: Fault tolerance for verification
Require: max number of missed broadcasts N

1: (In verification function:)
2: if Parent broadcast has not been received then
3: increase counter
4: if counter ≥ N then
5: Flag node as malicious
6: end if
7: else
8: Proceed to verify node
9: end if

that it has the best metrics for routing the packets in the RPL routing messages.
In the case of a sinkhole attack, once the RPL graph is formed and the nodes starts
to send packets the adversary starts to drop all the incoming traffic, i.e. it does
not forward any packets. The malicious node can perform the dropping process by
looking at the destination address of all packets it receives. If the adversary receives
any packet not destined for the node itself it will do nothing instead of routing it
towards the final destination, thus swallowing the traffic. In the case of a malicious
node performing a selective forwarding attack, random messages, a specific type of
messages or all messages from a specific node can be dropped. This can be realized
by dropping packets according to a timer that is set with a random interval, looking
at the message type or looking at the source address of the message Lastly, for the
case of the adversary launching a wormhole attack, the received messages can be
sent to another node than the actual parent of the malicious node.

32

5
Implementation

This chapter presents the implementation and realization of the framework. The
chapter also describes the different implementation decisions of the components and
motivates them with respect to the requirements of the system model as Chapter 4
mentions. Each component in the framework has its own section in this chapter. In
relation to the implementation of the component, tests are conducted to verify the
functionality of the component. More intensive testing and evaluation of detection
methods are carried out in the chapter for evaluation, Chapter 6.

5.1 Outer Shell
The implementation of the basic shell of the framework supports different detection
methods by taking advantage of a predefined value for which method or methods to
run. Since distributed agreement protocols are out of the scope for this thesis the
choice of pre-defining which detection method(s) that should be run is motivated.
Another motivation is that since a system probably uses the detection method(s) it
needs depending on the application of the sensor node it can be assumed that the
node is programmed for the specific application area beforehand. The parameter
that defines which detection methods that should be run can be set at the same time
as the node gets programmed in order to also configure it security wise. Depending
on the value of the parameter, different processes are placed in the auto start-
command of the operating system. The different auto-start definitions are possible
with the help of conditional groups and C-preprocessors directives. The system can
add more detection methods easily due to the nature of the implementation. The
basic shell and its corresponding compilation files are placed in a dedicated location
while all the detection methods are placed inside another location which is dedicated
as a code-base for the framework.

5.2 Simple Sensor Program
The simple sensor program is built from an example program for the chosen platform
that was present as an example in Contiki. The program has support for storing
sensor values and network support to send the stored values to a sink node. The
program reads values from five out of the ten sensors that are present on the node
and stores them in a list structure which is designed to only contain the latest sensor
readings. Periodically the sensor values are sent to a sink with the help of added
network support via IPv6, UDP and an application called servreg-hack which
registers and announces network services in the WSN. Servreg-hack is a built-in
application within Contiki used to register an IP-address with an 8-bit service ID

33

5. Implementation

which can be used to perform lookups in the WSN for a specific node running a
specific service. The specific node is the sink node in the network and the specific
service is a simple service to receive sensor values sent over the network.

The simple sensor program is programmed in such a way that it never sends the
same value twice. It just sends the latest values read when all the values have been
read once again from the sensors (although the value read can be the same). The
motivation for this decision is that careful consideration must be taken in order
to keep energy consumption down when developing applications for WSNs. The
send interval consists of a static part and a random part that is dependent on and
smaller than the static part. The send interval is configured in this way to ensure
randomization so that multiple nodes do not send at the same time. The static
part of the send interval is adjustable to allow for experimentation with more or less
frequent network communication.

5.3 Anomaly-based DoS-Attack Detection
The implementation of the first detection method was done locally on the node as
specified by the requirements in Section 4.2. Its core idea is to detect generic Denial
of Service attacks against wireless sensor nodes with the use of measurements of
energy consumption as a metric. The detection method consists of the following
components: a process that fetches energy consumption values and inserts these
into a list data structure defined in Contiki, an algorithm to determine if the node is
under attack combined with a network component to inform the sink-node that the
node running the IDS is under attack. The following subsections further describes
the components and their important parameters. The subsections also presents two
different methods that determines what a normal state is and what an attack state
looks like.

5.3.1 Collecting Energy Values
Values for energy consumption can be fetched in Contiki via the activation of a
module called Energest. Energest is a module for software-based online energy
estimation of the sensor nodes and is entirely written in software and incorporated
into the operating system [27]. The module works by having two lines of code in each
hardware driver, one that produces a real-time clock timestamp when the hardware
component gets activated and one that produces another real-time clock timestamp
when the hardware component gets turned off. The Energest module keeps track
of the timestamps and is thus able to tell how much time has been spent in a given
component. With the help of these time stamp values combined with voltage and
current specifications for the specific component, an energy consumption for the
component can be approximated.

In the implementation of the first detection method, the Energest module gets
polled every tenth second as default. The values polled are the time values of the real-
time clock that has been spent in radio receive and radio transmit. It is important to
mention that the time period for fetching energy values is one of the parameters that

34

5. Implementation

can be varied and is evaluated for the different detection strategies. The parameter
is called ”Read Interval”. The values for time spent in radio listen and radio transmit
are added together into a combined radio energy metric and, since the return value of
the module is the total amount of time spent in the components, the old total energy
time value gets subtracted from the new value to form the energy consumption metric
for the last time period. The energy consumption values are kept in a list to enable
a history of energy metric values which enables statistical analysis of the energy
consumption. The length of the list, i.e. how many historical elements to store, is
the second parameter that can be varied and might have an impact on performance
since the list has to be looped through in order to perform linear regression or the
average method. The name of this parameter is ”Max Readings”.

5.3.2 Detection with LiReg
Section 4.2.1.1 presents the algorithm called LiReg, which is contained in Algo-
rithm 1. The algorithm describes how the values from linear regression are used to
determine if an attack is taking place. The function linear_regression() on line 12
uses the equations that Section 2.8 describes in order to perform linear regression
on the collected x (time readings) and y (energy readings) values collected in the
list. There are two important parameters for the algorithm that can be changed
to achieve an optimal setting. The first one, that is present in both Equation 2.2
and 2.3 is called K in the equations. It denotes how many historical values that
are required to be present in the list before the algorithm tries to predict what the
next value should be. The parameter is called ”Least elements to perform Linear
Regression” and it must be smaller than or equal to the maximum length of the list
with historical values in order to fit. The second parameter is a parameter that de-
fines how sensitive the algorithm should be for differences between the actual energy
value measured and the expected value, denoted y in equation 2.1. The name of this
parameter is ”Sensitivity Level” and it is given in how big the number of percent
larger or smaller the difference is allowed to be in comparison to the average energy
consumption value. The second parameter is not present in the formulas, but set
depending on how the nodes behave. It is used in the implementation to check if the
difference between the expected and actual value is greater than the sensitivity level
multiplied by the average value. Or, if the expression is rephrased, if the difference
divided by the average energy consumption value is larger than the percents given
by the sensitivity level as specified in Equation 5.1, if so, then the node informs both
readers of the serial output and the sink node about it being under attack.

100 · Difference

Average
> Sensitivity Level (5.1)

5.3.3 Detection with IncA
Section 4.2.1.2 describes the algorithm called IncA, which is contained in Algo-
rithm 2. The algorithm describes how the average energy consumption values of
the historical energy values of the node are used to determine if an attack is taking
place. Important parameters for the average algorithm include two parameters as
well. The first parameter is for controlling how many rounds of reading and storing
historical values that needs to be processed before the algorithm starts to compare

35

5. Implementation

the average values. The parameter is denoted ”Least Rounds to Track Average” and
it is used to control how many rounds that are needed to be processed as normal
rounds before the algorithm tries to find differences. It is needed since sensor nodes
have an initial high energy consumption when programs are started and announce-
ment messages are sent to the network.

The second parameter is denoted ”Sensitivity Level” and is used to control how
many consecutive algorithm rounds that the average value is allowed to increase
(compared to the last average value produced). In the implementation the second
parameter is used to control the sending of alarms to both serial output and the sink
node. If the average value has increased for ”Sensitivity Level” consecutive rounds,
the node produces an alarm. If it has not increased, the counter is reset to zero.

5.4 RoVer
The second detection method called RoVer is focusing on detection and mitigation
of routing attacks against the routing protocol RPL which is used in combination
with the IPv6 and 6LoWPAN protocols by sensor nodes that are running Contiki.
The implementation is done using the system model, algorithms and requirements
as described in section 4.3. The attacks which the system is designed to detect are
sinkhole attacks, wormhole attacks and selective forwarding attacks. A common
denominator for these attacks is that they disrupt normal routing and make packets
from other nodes either disappear partly, totally or take other unexpected paths (as
in the case of a wormhole attack). To detect such types of attacks the detection
method is designed to make nodes monitor each other to detect anomalies in the
number of forwarded or sent messages.

To aid in the detection of the aforementioned routing attacks the second implemen-
tation of the detection method is using the model of a distributed system built upon
the use of three different roles (as specified in Section 4.3.1), namely children, par-
ents and grandparents. The roles in the system can be combined, i.e. a node can be
both a child, a parent and a grandparent at the same time but not in relation to the
same set of nodes. The roles describe how a specific node is in relation to other nodes
in the nearby area. If a node acts as a parent to another node, then the parent node
is responsible for forwarding the child’s messages towards the sink. Children that
have the same parent are siblings and they need to exchange information with each
other when determining how many messages they have sent to their common parent.

The system uses verification of how many messages a node has actually forwarded in
comparison to how many messages the node claims that it has forwarded to function
as intended. If a node a acts as a parent for two nodes b and c, and at the same
time is the child of another node d that acts as both a parent and a grandparent
in the system, then the node a can be monitored from two sides by both the chil-
dren (nodes b and c) and the grandparent denoted d. The verification process is
carried out by letting the children and the grandparent verify a claim made by the
parent-node a towards both the children and the grandparent. The children or the
grandparent will discover an erroneous or fake claim since such a claim cannot be

36

5. Implementation

made to satisfy both sides.

For the verification of parents and children to function properly, switching of par-
ents cannot be allowed between some of the phases of the program. The phases
where statistical data is gathered, the phases where claims and announcements are
being made and finally the phase where the data is verified require a node to have
a static parent for the verification process to function properly. Otherwise, the
method could erroneously flag nodes as evil if a child switches parent and expects
the new parent to have forwarded all the messages during the round of the pro-
gram. A more complex solution could be implemented that would require more
memory (by storing unique information for each recipient of data) but in the end
it is a trade-off between memory usage and mobility where memory usage is being
prioritized in the implementation. Thus, the implementation disallows the switch-
ing of parents during the first three phases of the program and it can be concluded
that the design and implementation of the system is not built with mobility in mind.

The rest of this section and its corresponding subsections describe the implementa-
tion in more detail. Starting with a description of the implementation of the four
phases that were required in the system model, and then continuing with a descrip-
tion of how information is spread through the network without usage of the routing
protocol RPL. The following subsection also cover topics related to how storage
space is spared in the implementation, a simple algorithm for determining what
role a node has in the system, details about which messages that are counted, a
description of how the verification process is implemented and lastly details about
how the blacklisting, i.e. the actual remedy when an attack has been discovered, is
implemented.

5.4.1 Four Phases
The overview of the system design for the second detection method describes a
system model consisting of four phases that loop continuously while the detection
method is active. The phases are called child broadcast, parent broadcast, verifica-
tion of data, and blacklist. Each phase consists of different responsibilities for nodes
depending on their roles in the network. The outer main control loop that controls
the shifting between the four phases is implemented with the help of timers and in-
structions that tell the process to wait until the timers generate an event that informs
the program that the timer has expired. After expiration of the timer, the program
can enter the next phase and execute the corresponding actions therein. The timer
for each phase of the system is connected to an individual time period parameter.
The length of the periods are controllable and shall be evaluated thoroughly since
the lengths will be a key factor for how synchronized the system will need to be.
The parameters are called ”Period 1”, ”Period 2”, ”Period 3” and ”Period 4”.
A brief description of the phases and how they are implemented follows in the next-
coming subsections of this section.

5.4.1.1 Child Broadcast Phase
The first phase, known as the child broadcast phase, is where the children in the
system exchange messages with the other children that have the same parent. The

37

5. Implementation

children are performing this so that the siblings will be able to agree upon how many
messages they have sent to their common parent, and thus, how many messages the
parent must have sent further on if the parent behaves as it should.

During the first phase, the siblings communicate by broadcasts in order to avoid the
routing protocol RPL (which could be compromised). To ensure that all the siblings
receive each other’s messages each node re-broadcasts or replays a received message
once. Implementation-wise, in the communication the nodes need an identifier for
the parent and one identifier for the node itself in addition to the actual number of
messages that have been sent to the parent. To conserve space on the nodes and to
reduce energy consumption when communicating, the identifiers are constructed by
taking the last 16 bits of the IPv6-address of the node and the parent which sums
up to 4 bytes in total. 4 bytes is considerably smaller than sending two full length
IPv6-addresses on 128-bits each (which would have summed up to 32 bytes). In
addition to the four bytes for identifiers, there are two more bytes for sending a 16
bit unsigned integer that contains the number of messages sent to the parent. Thus,
the message payload sums up to 6 bytes in total in the implementation of the child
broadcast phase.

All nodes in the area close to a sending node will be able to hear a child broadcast
message that a node sends. The system has been designed to ignore messages that
does not contain the same parent identifier as the parent identifier for the actual
parent of the node.

5.4.1.2 Parent Broadcast Phase

The second phase, called the parent broadcast phase, is when nodes that acts as
parents in the system announce the number of messages they have sent to the next
responsible node, i.e. to the parent’s parent. A broadcast is sent which announces
the number of messages. Both the children of the parent and the parent of the parent
receive the same message and claim in the payload of the message. Implementation-
wise, the program performs a check so that only parents send broadcasts during the
second phase. The message that is sent is 4 bytes large, where 2 bytes comes from
the identifier of the node (the last 16 bits of the IPv6-address) and the remaining 2
bytes represent an unsigned 16 bit integer which contains the number of messages
that the parent has sent to its parent.

The children of a parent listen for an incoming parent broadcast and stores the
claim made by the parent when it arrives. During the second phase, grandparents
also listen for and store claims made by its children that also acts as parents in the
system. At the same time, a grandparent also stores how many messages it has
actually received from the given child node. The verification of the claims is left
until the third phase of the program.

38

5. Implementation

5.4.1.3 Verification Phase
During the third phase, denoted verification phase, no communication is taking
place within the program. Instead, the nodes verify each other’s activities and store
the results. Children verify parents by comparing the number of messages they and
their siblings have sent to their parent with the claim made by the parent during
the previous phase. Parents verify grandparents in the same way (a parent has a
child-parent relation to the grandparent). Grandparents verify its children that also
act as parents by comparing the claims made by the children with the number of
messages that the grandparents have actually received from the given nodes. The
objective is to discover fake or erroneous claims made by parent nodes. The result
from the verification, whether a parent or any children are misbehaving, is stored as
status bits to be read during the fourth phase. Finally, the flag for allowing possible
switching of parent is set before waiting for the next phase, i.e the system allows
switching of parent as soon as the verification of the current parent has been carried
out.

5.4.1.4 Blacklist Phase
In the fourth phase, called the blacklist phase, nodes check the results from the
verification phase, i.e. if any misbehaving nodes have been discovered. If misbe-
having nodes have been found, those nodes are added to a local blacklist which is
implemented as a part of the RPL-module in Contiki. After the misbehaving nodes
have been added to the local blacklist the nodes are sent as blacklist updates by
broadcasting to the network. Any node that receives a blacklist update checks if the
blacklisted node is already on the local blacklist. If the node is not already on the
list, the node adds the blacklist update to its local blacklist and then re-broadcasts
the message to allow the blacklist update to continue to be spread throughout the
network.

5.4.1.5 Between Last and First Phase
Between the fourth and the first phase all statistical data is reset to prepare for a
new round in the program. This include resetting all the siblings and children a node
saves during the first phase, resetting the statistics gathered in the TCP/IP-module
by calling a function implemented in the API and also reset the counters for number
of messages received by siblings and the parent claim. After resetting all variables,
the node disallows parent switching, checks if it is time to reset the blacklist by
checking a timer and then it goes to sleep until it is time to start with the instruc-
tions of the first phase again. While the program is sleeping the node is collecting
statistical data in the background on the number of messages sent and received.

5.4.2 Broadcasting and Re-broadcasting
One of the requirements in the system model of the second detection method is that
the control messages that are sent as a part of the detection method are not to be
sent with the help of the routing protocol RPL. The motivation for this requirement
is that the there exists a risk that the communication over the protocol could be

39

5. Implementation

compromised in case of an attack, and that sending control messages over the rout-
ing protocol could break the functionality of the detection method. To overcome
this problem, the implementation takes advantage of broadcasting, i.e. sending in-
formation to all nodes in the reachable nearby area. All the broadcasts in the system
are realized by making the nodes perform a best effort IPv6 link-local multicast to
the system. This means that all the nodes on the same local area network will listen
to the multicast, hence it will be the same as performing a broadcast. The terms
link-local multicast and broadcast are used interchangeably within the report since
the resulting effects are the same. All broadcasts except for the re-broadcast (re-
playing of messages) are performed more than once to increase the chance of other
nodes receiving the broadcasted message.

When a node receives a broadcast, the node can optionally re-broadcast the message
if the message needs to spread further than to the closest neighbors of the source.
Such a strategy allows for messages to spread throughout the network of nodes
without using the routing protocol RPL for routing of messages. Additionally, the
broadcasting strategy allows for nodes on two different sides of the sender to receive
exactly the same message which makes it harder for an adversary to make false
claims in the system. An erroneous claim that satisfies one side would dissatisfy
the node on the other side and the node would get blacklisted for claiming false
information.

5.4.3 Algorithm to Determine Role
All nodes in the system except for the sink-node are children in one way or another.
Since the different roles in the system have different responsibilities and tasks to
carry out, it is important to determine if a node acts as a parent or a grandpar-
ent. One way to discover what role a node has is by making the node listen on the
child broadcasts during the first phase of the program. If any of the nodes in the
nearby area performs a child-broadcast where the listening node’s id is reported as
the parent id in the payload of the broadcast, then the listening node knows that
it must be a parent in the system. In the case of such a message, the parent node
needs to save the id of the child so that the child can be identified later on. The id
of all its children are saved in a list, named children. When receiving the message
the node will first check if the child is already in the list; if not, it will add it. This
information is saved in order for the parent node to later on to be able to verify a
child that possibly also acts as a parent.

To determine if a node is a grandparent the node needs to listen for parent broad-
casts. If one of the children of a parent perform a parent broadcast then it can be
concluded that the parent node is in fact a grandparent and that the child of the
grandparent is responsible for forwarding messages from other nodes in the system.
In the case of the reception of such a parent broadcast from a child (from now on
denoted child-parent) the grandparent needs to save two additional things next to
the identity of the child-parent. The first is the child-parent’s claim of how many
messages the child-parent has sent to the grandparent, the second is how many mes-
sages the grandparent have actually received from the child-parent node. Since the

40

5. Implementation

child-parent is responsible for forwarding messages from other nodes it must also be
verified in the system.

5.4.4 Message Statistics
The implementation of the message counting for the detection method is found in
the TCP/IP-module of Contiki. The node stores both the messages sent and the
messages received in two different variables. In order for the detection method to
access the statistics in the TCP/IP-module, an extended API to access the statistical
data added to the module is implemented. The extensions include functions for
reading the number of messages sent, reading the number of messages received by
a specific node, and also a function for resetting all the statistical components to
allow for old data to be discarded.

One counter, implemented as a 16 bit integer, stores the number of messages sent
from the node. For the case of received messages there needs to be an individual
counter for each sender. This functionality makes it possible for a grandparent to be
able to verify claims made by its children that acts as parents as well. In both cases,
when counting the number of received messages and when counting the number of
sent messages, the only messages that are counted are the messages that are destined
beyond the nearest neighbor with the exception if the nearest neighbor is the sink.
The implementation choice to only count those specific types of messages means
that announcement messages and routing information messages are not counted.
This behavior is correct as those messages are not supposed to reach further than
the closest neighbors of the sending node. In practice it means that only the mes-
sages that are sent towards the sink are counted. Implementation-wise the methods
perform a check that investigates whether the next-hop address for the routing of
the packet to send is the same as the destination address of the packet. The node
ignores all those messages except for the case when the next-hop in the routing is
the sink. The sink itself requires special code since it does not forward any packets.
In the implementation, the sink counts messages as they are received directly in
the packet-input handler which has the drawback that also routing messages and
announcements are counted as received messages by the sink.

5.4.5 Verification of Statistical Data
During the verification phase of the program, all the claims made by parent nodes
needs to be verified and compared with the statistical data acquired for the num-
ber of messages that have been sent to or received by the parent nodes. It is the
children of a parent that performs the verification. For the children the objective is
to find out if the parents have sent at least as many messages as all the siblings in
common have sent to the parent for forwarding further to the sink. Grandparents
also perform verification of nodes that are their children that also act as parents.
For grandparents the objective is to find out if the claim made by the child during
the parent broadcast is the same as the number of messages that the grandparent
has actually received from the child.

41

5. Implementation

The program implements fault-tolerance in order to be able to handle packet loss
(which are common in wireless sensor networks). To achieve fault tolerance there are
two parameters for accepted packet loss. The first parameter is a numerical value
and acts as the exact number of accepted packet loss when fewer than 10 messages
have been sent or received during the round. For example, if 9 messages have been
sent and the threshold is to accept 2 lost packets. Even if only 7 messages arrive it
is still acceptable and not considered an attack. The second parameter is for when
more than ten messages have been sent or received. The second parameter is given
in percent of the packets that are expected to arrive. If for example, the parameter
is set at 90 and fewer than 90 % of all sent packets arrive, it can be concluded that
an attack is ongoing. The two parameters are denoted ”Below Ten Limit” and ”Over
Ten Limit”.

The following two formulas are used for verification of parents: If the total number
of sent messages (by node and siblings) is greater than 10 Equation 5.2 is used.
Multiplication with 100 on the left-hand side makes the number of messages compa-
rable with the threshold multiplication on the right-hand side (where the threshold
is given in percent).

Messages by Parent · 100 ≥ Total ·Over Ten Limit (5.2)

If total number of sent messages is fewer than 10 Equation 5.3 is used,

Messages by Parent ≥ Total −Below Ten Limit (5.3)

where Messages by Parent in both equations is representing the claim made by the
parent. If the check in the formula is not valid, the node is flagged as evil.

The following two formulas are used for verification of children’s claims (as claimed
in their parent broadcasts): If the total number of received messages from the child
is more than 10, Equation 5.4 is used. Multiplication with 100 is performed with
the same reasoning as in the formulas above.

Child Claim ·Over Ten Limit > Child Received · 100 (5.4)

If the total number of received messages is fewer than 10, Equation 5.5 is used.

Child Claim−Below Ten Limit > Child Received (5.5)

For the verification of children, only the children that are acting as parents are
verified and only if the checks in the formulas are valid, the children are flagged as
evil. (Note that the logic is inverted from the parent verification.)

5.4.6 Blacklisting Nodes
Based on the results from the verification phase, evil nodes can become blacklisted.
If the method flags a node as malicious during the verification phase, the node that
made the discovery first adds the malicious node to a blacklist and then broadcasts
a blacklist update to all its neighbors twice. Nodes that receive a blacklist update

42

5. Implementation

adds the blacklisted node to a local blacklist and then re-broadcasts the blacklist
update once. Upon reception of a blacklist update the sink node waits for a timer
to expire (so that the blacklist update has time to spread) and then it performs a
repair on the routing graph (DODAG) of the network by using a function included in
the RPL-module in Contiki. The repair function effectively means that the routing
graph is reconstructed without the malicious node being able to be a part of it.

The implementation of the blacklist is found in the RPL-module mentioned above.
To be blacklisted effectively means that all nodes are ignoring DIO (DODAG In-
formation Object) messages from the blacklisted node. Since all the nodes in the
network are ignoring the DIO-messages the rank of the blacklisted node will not
be known by any other node and therefore it will not be chosen as a parent by
anyone. The blacklisted node is still allowed to send packets to the sink, but it will
not have any children and is thus effectively blocked from performing any routing
attacks. The blacklisting is not made permanently. It has a timer connected to it
for resetting the blacklist so that nodes that are falsely flagged as evil will be able to
join the network again. The parameter used to set the time before allowing a node
back in the network is called ”Empty Blacklist Period” and the blacklist is emptied
periodically using this parameter.

5.5 Implementation of Attacks
This section describes the attacks that were implemented in order to test the de-
tection rate of the IDS. The attacks are following the specifications given in Sec-
tions 4.2.2 and 4.3.2 in order to meet the requirement to verify the functionality.

5.5.1 Generic DoS-Attack using IPv6 and UDP
One of the nodes in the WSN runs a program written to launch a DoS-attack. The
node starts and does not begin sending packets directly. It just indicates that it
is on by having the green led turned on. Once the button on the node is pressed,
the green led is turned off and the red led is turned on as the node starts sending
packets to all other sensor nodes that it can reach via IPv6 link-local multicast.

Since it is possible to sniff network traffic in a wireless network, it is feasible for
an attacker to find out which services and ports that are being used. This infor-
mation can be used by the attacker of the network and the adversary could start
sending multicast packets to the existing services and open ports. In order to send
the packets to all the nodes the packets are sent over UDP using multicast for IPv6,
where the multicast address is the link-local multicast address for IPv6 as defined by
IANA (Internet Assigned Numbers Authority) [28]. Since the nodes are complying
to this standard, all nodes in the network have receiving of multicast traffic enabled
by default, and hence they receive the sent packets (given that they are in range).

It is easy to change the parameters for the attacking node to simulate different in-
tensity of the attacks. The implementation uses a timer that reads a value for the
send interval to determine how often the packets is to be sent to the network. This

43

5. Implementation

send interval is defined in the code, and it is this parameter that controls the inten-
sity of the attack. A shorter send interval means more packets and thus a heavier
DoS-attack. The implementation sends packets with a small payload of just 4 bytes.
It can be argued that larger packets demand more power to be handled by the nodes
and thus provide a heavier attack energy and resource-wise. However, if the IDS
can detect an attack that only sends small packets, which thus consumes less energy
in the radio module, it should also be able to detect attacks that uses larger packets
that give a larger energy consumption. This fact acts as a motivation of the choice
of using small packets.

5.5.2 Routing Attacks
Three different routing attacks are implemented in order to test the second detection
method. This section describes the implementation of a sinkhole attack, a selective-
forwarding attack, and a wormhole attack.

5.5.2.1 Sinkhole Attack
The Sinkhole attack needs to fulfill two requirements. The first requirement it needs
to fulfill is to announce a good rank to the rest of the network in order to get as many
packets as possible routed through it. It also needs to drop the packets received,
thus reducing the traffic that actually reaches the sink and by doing so interrupting
the routing of the network. The implemented attack fulfills both of these require-
ments, in two different Contiki modules; the RPL-module and the TCP/IP-module.
The implementation of the attacker node takes advantage of a parameter that when
activated identifies that the node is a ”sinkhole attack”-node which means that it
runs modified code of the aforementioned modules.

In the RPL-module, the attacking node will first announce that it has the lowest
(and therefore best) rank in the routing graph (DODAG) by claiming that it has
the same rank as the sink. At first, the attacking node will just continue to route
the packets received towards the sink as a normal node, waiting for a timer to be set
off. The timer goes off after a predefined delay that is given in seconds, and then the
attacking node will start to drop all the packets it receives. It will however,continue
to send its own packets to the rest of the system.

5.5.2.2 Selective-Forwarding Attack
The selective forwarding attack acts in a similar way as the sinkhole attack. It has
its own parameter defining it as a ”selective forwarding”-node and runs modified
code added to the source files of Contiki in order to launch the attack. All the
implementation is done in the TCP/IP-module of Contiki. A selective forwarding
attack can start off by announcing a false rank as the sinkhole does in order to draw
in more traffic, however, this is not the case with this implementation. A selective
forwarding attack can act very differently depending on what the attacker wants
to achieve. In this case it is implemented by having the attacker node dropping
all packets from a certain given node (instead of, for example, dropping a certain
kind of messages like all the routing messages). In the TCP/IP-module it is defined
which node that will be the ”target node”, i.e. the node whose packets the evil

44

5. Implementation

node will drop when the attack is launched. The IP-address and last bits of the
IP-address, which serves as an identifier, for the target node is saved for later. Then
the attacking node will check the source addresses of the packets it receives. If the
identifier of source address of the packet is the same as the target node, it will not
send it through to the rest of the network; it will just drop the packet.

5.5.2.3 Wormhole Attack
The wormhole attack is implemented similarly to the previously described attacks.
The implementation has a parameter that can be set in order to run the modified
code in the TCP/IP-module. The wormhole attack is implemented by sending all
packets it receives to another pre-defined node instead of routing the messages in
the correct way by sending it to the parent of the node. The attack is realized by
changing the next-hop address of all messages that the attack node receives. By
only changing the next-hop address in the messages, the routing in the network will
be disrupted, but the message will eventually reach the sink unless the node that
receives the message routes it further away from the final destination. However,
there exist cases where it will not reach the sink. An example of this is when the
wormhole-node sends all messages back to one of his children. The messages will
then be stuck in a loop and never reach their destinations.

45

5. Implementation

46

6
Evaluation

This chapter describes the evaluation of the IDS framework. The overall aim of
the evaluation is first to set the parameters of the algorithms to suitable values and
then to demonstrate that the framework functions as intended (i.e. detect attacks)
while not being too demanding energy-wise. The chapter first presents an overview
of the evaluation which also mentions the aim and the goals of the evaluation of the
framework in more detail. The following sections present the evaluation methodol-
ogy and the evaluation metrics used for evaluating the detection methods. Then,
the chapter presents the results from the evaluation of both detection methods in
separate sections.

6.1 Evaluation Overview and Goals
Evaluation of the IDS framework focuses on demonstrating that the detection meth-
ods work as expected. Therefore, the focus of the evaluation is on the individual
methods and the evaluation of them. To aid the demonstration that the IDS func-
tions as expected, recommended parameters for the individual methods need to be
chosen. These parameters are not to be seen as the most optimal parameters but
rather as guidelines on what parameters to chose in order to have functional detec-
tion and protection.

Goals for the evaluation include deciding upon recommended parameters through
experiments and tests. With parameters chosen the next goal is to demonstrate
that the detection methods work as expected, i.e. detecting attacks. Demonstration
is assisted with the help of common metrics which make the results comparable
with state of the art research papers in the field. The metrics that are considered
are detection rate, time until detection, false alarm rate, energy consumption, la-
tency and reliability. Section 6.3 further explains these metrics and when they apply.

When it comes to measurements of energy consumption, the goal is to compare
having the IDS on and off in order to be able to see how large the impact is on
the sensor nodes. For other metrics, the goal is to demonstrate that the IDS either
detects or as in the case for the second detection method both detects and protects
against routing attacks attacks which are launched against the network.

In order to achieve all the aforementioned goals, a scientific approach is needed that
fulfills the question on how the evaluation goals are going to be achieved. Section 6.2
describes the methodology that is used to achieve the goals and also discusses the

47

6. Evaluation

evaluation of the detection methods in more detail. The second detection method
is primarily evaluated in the wireless sensor network simulator Cooja using sensor
nodes that are has almost as much memory and computational power as the sensor
nodes used within this thesis. The methodology section further discusses the subject
in more detail.

For the first detection method, two different algorithms that detect DoS-attacks
using energy consumption as a metric were designed and implemented. The goal of
evaluating the two algorithms is to compare their results in order to see which of
the two that performs the best according to the chosen metrics. The evaluation of
the first detection method is found in Section 6.4 where both parameterization of
the algorithms and evaluation results are presented.

The second detection method is evaluated according to more metrics since it not
only detects attacks, it also presents a remedy for the attacks in terms of blacklisting
malicious nodes. Section 6.5 presents the parameter choices, network setup and
results from the evaluation of the second detection method in the IDS framework.
The results demonstrate what impact the protection has for the operation of a
network that is the victim for a routing attack.

6.2 Evaluation Methodology
Evaluation is performed iteratively during the thesis to a small degree. After the im-
plementation of each detection method has been finalized, a micro evaluation takes
place. This evaluation includes a verification that the method functions as expected
and a test to search for suitable parameter choices that should be set when the
framework is undergoing the final thorough evaluation. During the micro evalua-
tions, attacks are implemented in order to be able to verify the desired functionality
of the detection methods. The requirements of the attacks and the adversary models
that they fulfill are described in Sections 4.2.2 and 4.3.2.

The process of evaluation and verification of the implemented components of the
intrusion detection system is carried out both in the WSN simulator Cooja and on
real hardware using the platform that Section 2.5 describes. When evaluating on
real hardware the sensor nodes need to be connected to a computer to inspect how
values and results change over time. The sensor nodes are connected in a similar
setup as Figure 6.1 displays.

The evaluation of the framework focus on the following metrics: energy consump-
tion, detection rate and time until detection. For the second detection method the
RPL reliability (throughput in the network) and network latency are also measured
and evaluated. For the first detection method, the metrics are evaluated by com-
paring the results when having the IDS on and off while running the Simple Sensor
program described in Section 5.2. For the second detection method, the results are
produced while letting the IDS be on and off while running a Contiki example pro-
gram called ”unicast-sender” which transmits messages using UDP and RPL at a
predefined frequency. The metrics are also compared between cases when the net-

48

6. Evaluation

Figure 6.1: The platform is connected to the computer with an USB-cable. Print
outs and results on the sensor node can be accessed from the computer host.

work is under attack and when the network is not under attack in order to have a
normal case to compare against.

The first detection method is thoroughly parameterized and then evaluated on the
hardware specified in Section 2.5. Typically, evaluation is performed using two or
three nodes where the setups include a node running the IDS, a node that acts as a
sink node and a node that performs the DoS-attacks. It is a known limitation that
only three nodes are used during the evaluation. The resulting parameter choices
are therefore fit only for setups similar to the one used during the evaluation and
other setups would probably require different parameter choices. The choice of hav-
ing just three nodes is motivated since the aim of the evaluation is to demonstrate
that the detection method works as intended on the hardware and to give initial
parameter choices, not to demonstrate that the IDS is built to scale to thousands
of nodes.

The second detection method focus on routing attacks and therefore needs to be
evaluated on larger clusters of sensor nodes than the first detection method. The
evaluation of the second detection method is carried out in the simulator Cooja to
a large extent in order to be able to evaluate different parameter choices with more
determination. In Cooja, the sensor nodes that are programmed with the IDS code
and are used for the simulations are of the type Zolertia Z1 since they have nearly as
much programmable memory as the platform that the thesis targets [29]. Table 6.1

49

6. Evaluation

presents a comparison between the two platforms in terms of programmable memory
(ROM) and processor frequency.

Table 6.1: Hardware specifications for Texas Instruments SensorTag and Zoler-
tia Z1. The Z1 mote has almost as much programmable memory (ROM) as the
SensorTag.

CPU frequency (MHz) ROM (kB) RAM (kB)
SensorTag 48 128 28
Z1 16 92 8

Using a simulator is motivated since it would be problematic and hard to evaluate
the different roles in the distributed system using real sensor nodes since one node
would need one computer in order to be monitored. Within Cooja however, it is
easy to setup clusters of sensor nodes and to monitor the nodes individually. An-
other motivation for evaluating the second detection method in Cooja is that the
algorithm is less sensitive for false alarms and hardware dependent values than the
algorithms used within the first detection method are.

Both of the detection methods within the IDS framework are evaluated on real
hardware in order to find the energy consumption of the designs that the thesis
propose. This choice is motivated since it is well within the scope of the thesis and
is part of the scientific contribution of the report. It is expected that the results
might vary since it is within the nature of real world scenarios that non-determinism
is involved when measuring energy consumption.

6.3 Evaluation Metrics
The detection methods of the framework are evaluated according to the following
metrics:

Total energy consumption of the implemented framework is measured by calcu-
lating energy consumption of both the communication and the computations. The
total energy consumption is measured by adding the results from the two compo-
nents together, as Equation 6.1 describes.

Etot = Eradio + ECP U (6.1)

Calculation of time spent on communication is performed by measuring transmit
and listen times of the radio hardware. These times are then used to calculate
energy consumption for radio activities according to Equation 6.2,

Eradio = (TReceive · IRadio RX + TT ransmit · IRadio T X) · VSystem (6.2)

where TReceive is the time spent on receiving radio communication, TT ransmit is the
transmit time, VSystem is the operating voltage of the system, IRadio RX is the cur-
rent consumption required for receiving, and IRadio T X is the current consumption

50

6. Evaluation

required for transmitting. IRadio RX , IRadio T X and VSystem are fetched from the man-
uals of the specific radio component of the sensor nodes used within the thesis.

The energy consumption of the CPU can be calculated by measuring time spent on
computations and time spent in standby mode and then use these values to calculate
total energy consumption of CPU according to Equation 6.3,

ECP U = (TCP U active · ICP U active + TCP U standby · ICP U standby) · VSystem (6.3)

where TCP U active is the active time of the CPU, ICP U active is the current consump-
tion of the CPU when it is active, TCP U standby is the time when the CPU is in
standby (sleeping), ICP U standby is the current consumption of the CPU when it is
in standby and VSystem is the operating voltage of the system.

Table 6.2 shows the current consumption and voltage for the internal components
and states of the hardware which are found in Table 5.4 in the data sheet for the
CC2650 platform [30]. There are two clocks that can be used during low power
mode of the CPU. During the experiments the RCOSC clock is used during standby
mode since it is chosen by default in the Contiki source-code. In the low power
mode the platform supports retention of values in the registers of the CPU, value of
the real-time clock and contents in RAM.

Table 6.2: Values for current consumption for the different states of the micro
controller unit. System voltage is also shown.

State Value
ICP U active at 48 MHz 2.9 mA
ICP U standby (RCOSC) 0.001 mA
IRadio RX 5.9 mA
IRadio T X at +5dBm 9.1 mA
VSystem 3.0 V

Detection rate, in addition to measuring the energy consumption, the detection
rate is an important metric to measure. It is calculated by taking the number of
true alarms generated by the IDS and dividing it by the number of launched attacks
against the network, as Equation 6.4 shows.

Detection rate = # of true alarms

of launched attacks
(6.4)

Number of false alarms, i.e number of erroneous alarms generated by the intru-
sion detection system.

Time until detection (TUD) measures the time it takes for the IDS to detect an
attack from the time that the attack is launched. Equation 6.5 shows how the TUD
is calculated.

TUD = Tdetected − Tlaunched (6.5)

51

6. Evaluation

RPL reliability, i.e. throughput in the network, is also an important metric to
measure since if the throughput is low the normal functionality of the network will
be disrupted. The formula that calculates the reliability takes number of packets
sent divided by number of packets delivered at destination as Equation 6.6 shows.

Reliability = # of packets received

of packets sent
(6.6)

Latency is measured as the latency introduced in the network by the IDS. Latency
is the time it takes from sending a message until the time it is received. The latency
is measured with the help of the simulator Cooja since Cooja provides global time
stamps in the system log of the simulation. Equation 6.7 shows how the latency for
a message is computed.

Latency = Treceived − Tsent (6.7)

6.4 Anomaly-based DoS-Attack Detection
This section presents the results of evaluating the two different detection algorithms
within the first detection method. The section presents a study on the energy
consumption profile of the radio hardware that is used when setting parameters for
the algorithms. The section also presents reasoning on how the different parameters
are set and why. Lastly, the section presents the results from the two algorithms in
terms of detection rate, false positives, time until detection of attacks and energy
consumption of using Contiki with the different components of the detection method.

6.4.1 Setup, Attack Parameters, Energy Profile and Detec-
tion Parameters

The evaluation of the first detection method is performed using three nodes where
the setup includes one node that acts as a sink, one node that runs the IDS and one
node that attacks the network with a DoS-attack. There are two ways to vary the
DoS-attack of the network where either the intensity or the launch time of the attack
can be varied. Section 6.4.1 describes how the parameters for different attacks are
varied during the evaluation.

The energy consumption profile of the sensor nodes is important to determine if
anomaly based detection of DoS-attacks is going to function without giving too
many false alarms. Section 6.4.1.1 elaborates and determines how the profile looks
depending on how often the energy consumption is inspected. When the energy
consumption profile has been determined, the parameterization of the detection al-
gorithms is carried out. Section 6.4.1.2 describes how the parameters are determined

52

6. Evaluation

and also presents recommended parameters to use for the algorithms that are used
for detection of DoS-attacks. The attacking node that is implemented to test the
first detection method has primarily two different parameters that can be adjusted.
The parameters control intensity of the attack and startup delay, i.e. when the
attack shall be launched.

Table 6.3 describes the four different attack intensities that are used when evaluat-
ing the first detection method. The table describes how often the attacking node
tries to send messages given in terms of messages per second. In the code, the in-
tensity is defined in terms of timer ticks. One second is 128 timer ticks, so in the
high intensity case, the node will try to send 128 messages every second as the table
shows. Note that just because the program tries to send a message during every
timer tick in the high intensity attack does not mean that it will succeed in doing so.

Table 6.3: Different attack intensities that describe how often the attacking node
will try to send a message over the network.

Intensity name Number of messages sent per second
Low 1.28

Medium low 2.56
Medium high 5.12

High 128

Table 6.4 shows the different attack delays that are used during the evaluation. The
value indicates that an attack is started after the given delay value when a delay is
used. The attack node continuously sends packets until it is shut down.

Table 6.4: Different attack start up delays that describe when the attack will be
launched. Time is given from startup of attack program on attack node.

Startup delay name Startup delay value (seconds)
Short 1 · 60

Medium short 5 · 60
Medium long 10 · 60

Long 60 · 60

6.4.1.1 Radio Energy Consumption Profile
Riecker et al. [4] assume that the energy consumption of the sensor nodes is fairly
even and linear. If the energy consumption values are evenly distributed it allows
the usage of linear regression to determine sudden changes of the energy consump-
tion as caused by a DoS-attack. Tests are conducted in order to determine how
the energy consumption is distributed in six different modes using a standardized
approach of reading how much time that has been spent in the radio hardware once
every tenth second. The tests include having two sensor nodes connected to one
computer each for reading the output. The first sensor node acts as the sensor

53

6. Evaluation

node running the IDS and the second sensor node acts as the sink node. The re-
sults from the tests are plotted in graphs in order to visually show how the time
spent in the radio hardware varied. Energest value, energy consumption and real-
time clock value is used interchangeably to describe the tests since the values scale
the same and represent the same metric, i.e. energy consumption by radio hardware.

The first test measures the energy consumption of the radio component while run-
ning only the first detection method, i.e. the Simple Sensor program is not active
at all. The test serves as an indicator whether energy consumption can be read or
not. Figure 6.2 presents the results from both the first and the second test which
is described below. The data that the graph presents shows that at most of the
time periods the energy consumption is linear, with only a few data points that
reach a value of over 10k. There are also two time intervals where the y-value goes
over 20k. The periods where the energy consumption peaked are most likely due to
announcement and beacon messages that the node sent and received.

0 20 40 60 80 100
Time Intervals (1 time interval = 10 seconds)

5000

10000

15000

20000

25000

30000

35000

E
n
e
rg

e
st

 V
a
lu

e
 (

re
a
l
ti

m
e
r

ti
ck

s
in

 r
a
d
io

 h
a
rd

w
a
re

) Only IDS
IDS and Example program

Figure 6.2: Energest value variations for 100 time intervals are shown for two
different cases. The difference between the cases are that the first case shows a node
that is having just the IDS on and the second case shows a node that has both the
IDS and the example program on.

The second test measures the energy consumption of the radio component while the
node is running both the first detection method and the Simple Sensor program that
periodically sends sensor values to the sink. The second test serves to show what
a normal energy consumption of the sensor node looks like and it serves as a basis
of comparison against how the energy consumption varies when the node is under
attack. It can be noted that the example program sent sensor values to the sink

54

6. Evaluation

node approximately once every 30th second. Figure 6.2 shows the plotted graph of
the results. Looking at the graph, it can be seen that the energy consumption does
not follow a linear pattern at all. For most time-periods the y-value varies between
just below 10k and 20k. A few values are over 20k and two values go up to around
35k. It is likely that the distribution is due to announcement and beacon messages
as well as sending of sensor values to the sink node at the same time interval.

The third, fourth, fifth and sixth tests measures the energy consumption of the radio
hardware when the node is running both the example program and the detection
method while being under attacks with varying degrees of intensities. Table 6.3 in
Section 6.4.1 describes the four different attack intensities that are used during the
tests. Figure 6.3 displays the resulting graphs of how the time spent in the radio
hardware varies for the four different attack intensities. The attack is undergoing
during the whole test interval and the results therefore serves to show the viability
of the detection method. Looking at the figure, it can be noted that the energy
consumption of the radio hardware increases during attacks just as one expects. For
the low intensity, all time periods have an Energest value of over 10k, three time
periods reach over 30k and one time period reaches over 50k. For the medium low
intensity, it can be noted that the time spent in radio hardware increases so that all
values are over 15k and that there are some spikes in the energy consumption. For
the medium high intensity attack, it can be noted that all the time periods have
an Energest value of at least 25k with some spikes reaching over 30k and a few up
to over 40k. For the high intensity attack, it can be noted that the y-values for all
the time periods reach over 30k and many reach up to around 35k, there are a few
spikes where the largest spike in consumption reach up to 65k in Energest value.

Figure 6.2 shows the normal consumption pattern for a sensor node when it runs
both the first detection method and the example program. From the figure it can
be concluded that the energy consumption is not smooth and linear for the chosen
length of time interval. The energy consumption pattern for the radio hardware
when reading the energy consumption once every tenth second has a lot of spikes
and variations. This indicates that the linear regression algorithm with 10 seconds
as length for the time periods is hard to use for determining what is a state of attack
and what is a normal state since predictions of next-coming values will potentially
be very far away from what the actual values are.

When using the increasing average algorithm however, one or two spikes do not
cause the node to yield an alarm since the average needs to increase for a certain
number of consecutive rounds before any alarm is triggered. The two spikes visible
in the aforementioned graph causes the average to increase for at least two rounds,
but when the node goes back to the ”normal” energy consumption the average sinks
again and the counter on how many consecutive previous rounds that the average
has been increasing is reset to zero again.

To make the linear regression algorithm predict values more accurately the time
period needs to become longer. A longer period will create a smoother graph and

55

6. Evaluation

0 20 40 60 80 100
Time Intervals (1 time interval = 10 seconds)

10000

20000

30000

40000

50000

60000

70000

E
n
e
rg

e
st

 V
a
lu

e
 (

re
a
l
ti

m
e
r

ti
ck

s
in

 r
a
d
io

 h
a
rd

w
a
re

) Low intensity attack
Medium low intensity attack
Medium high intensity attack
High intensity attack

Figure 6.3: Energest value variations for 100 time intervals for four different cases.
The graph shows the time spent in radio hardware while being under four different
degrees of intensity of a DoS-attack.

energy consumption profile since the sudden bursts will become interpolated over
a larger time period. To confirm this, further testing is conducted and Figure 6.4
presents the results from two tests where the period length of the rounds in the
method is increased to 20 and 30 seconds instead of 10. Looking at the figure, it can
be noted that the energy consumption profile becomes smoother the longer the time
period becomes, i.e. the profile is more linear between the first and the last data
points and the difference between the highest and the lowest data points is smaller.

6.4.1.2 Parameters for Detection Algorithms

In order to tune the performance of the DoS-attack detection method so that the
method avoids giving false alarms, the parameters for how often the energy should
be read and how many readings to store needs to be decided on. The parameters
are denoted read interval and max readings respectively, and Section 5.3.1 describes
them further. To achieve this, tests are performed by running the ”Simple Sensor
Program”, which Section 5.2 describes, with the detection method active as an ap-
plication without any ongoing attacks in the system.

Nine different test cases are designed with varying values for the aforementioned
parameters as Table 6.5 shows. The read interval is varied between 10, 20 and 30
seconds. The number of elements to keep, max readings, is varied between 5, 10
and 15 elements in the list.

56

6. Evaluation

200 400 600 800 1000
Time in Seconds

0

10000

20000

30000

40000

50000

60000

E
n
e
rg

e
st

 V
a
lu

e
 (

re
a
l
ti

m
e
r

ti
ck

s
in

 r
a
d
io

 h
a
rd

w
a
re

) 10 seconds period time
20 seconds period time
30 seconds period time

Figure 6.4: Energest value variations over 1000 seconds are displayed for three
different period times. The graph shows that a greater value for the time period
parameter creates a smoother graph with variations that are not in the order of a
100 % increase or decrease between time periods.

Table 6.5: Test cases with variations of the parameters that control how many
elements that are stored in the energy consumption history of a node and how
often the energy consumption should be read. Each test is performed for 100 time
intervals. The table summarizes how long each test takes.

Test case # 1 2 3 4 5 6 7 8 9
Read interval (seconds) 10 20 30
Max readings # 5 10 15 5 10 15 5 10 15
Duration (seconds) 1000 2000 3000

For each test, the program runs for 100 time intervals which makes the duration
of the tests different depending on how long the time interval is set to be. All the
tests are performed twice, once with the LiReg algorithm activated and once with
the IncA algorithm activated with the overall aim to set the sensitivity parameters
of the algorithms, i.e. how sensitive the algorithms shall be for raising alarms.

For the LiReg algorithm, Table 6.6 presents the lowest, highest and the average
values for the difference between where the predicted Energest value should be and
where it actually is when reading the energy consumption the next round. The
values that the table presents are calculated by taking the difference between the
predicted value, produced by the linear regression algorithm, and the actual value
read with Energest and then dividing by the average value of the earlier energy

57

6. Evaluation

readings. The obtained value is then multiplied by 100 so the resulting difference
can be shown in percents deviation from average. The average and highest values
in the table are used to determine how much the expected value and actual value
can deviate before assuming that the system is under attack. It is desired to have
the ”highest” value as low as possible in order to avoid false positives while still de-
tecting as low intensity attacks as possible since a low value for ”highest” indicates
a high accuracy of the prediction made by the LiReg algorithm.

Table 6.6: The values in percents deviation from the average are obtained when
changing the two parameters Read Interval and Max Readings for the LiReg al-
gorithm are shown. It can be seen that the read interval has a great impact on
the average and highest values, and that the significance of max readings becomes
smaller as the value for read interval increases.

Configuration parameters
Percents difference from
average (100 · diff

avg
)

Read Interval
(seconds)

Max Readings
(# elements) Lowest Average Highest

10 5 0 37.31 113
10 10 0 32.36 106
10 15 0 25.86 131
20 5 0 19.73 58
20 10 0 18.70 77
20 15 0 17.53 77
30 5 0 10.74 34
30 10 0 11.06 45
30 15 0 10.02 39

Table 6.6 shows that with a higher value for the read interval, the ”average” and
”highest” values become lower. However, as the read interval gets larger the impact
of having max readings set to a higher value gets smaller. The table also shows that
the difference for the average value between having max readings set to 5, 10 or 15
is less than one percent and the values in the highest values column seem to differ
independently of the value for max readings. Therefore, in the configuration to be
used when testing the system under attacks the read interval is set to 30 seconds and
max readings is set to 5 elements. A smaller list will conserve memory, and, since
the difference of having a smaller list in comparison to a larger can be considered
to be negligible, it provides a good set up. The threshold value for giving alarms
for an attack in the system is set to 40 although the highest value obtained for this
configuration is 34. This decision is based on the fact that the highest value seem
to deviate a bit when the list is of different length even though, as said earlier, the
impact of the average is negligible. By having a small margin it is desired to avoid
false alarms but still detect real attacks.

Table 6.7 presents the resulting test data for the algorithm that counts consecutive
rounds of increasing average. In this case the goal is to decide upon an apt value

58

6. Evaluation

for the parameter that determines how many rounds the average value for the list
is allowed to increase before the algorithm assumes that the system is under attack.
The data that the table presents in the columns called ”average” and ”highest” are
the number of consecutive rounds that the average value has continued to increase
before the counter has been reset (i.e. the average value has decreased again). The
data can be used to conclude that the parameters read interval and max readings
have a low influence on both the ”average” and the ”highest” values. The maximal
value detected for the consecutive rounds counter in all the tests is 5 and the average
number of rounds before resetting the counter is roughly 1. Since the parameters
for read interval and max readings have little to no impact on the highest value
observed the value of the parameter max readings is set to 5 to make the program
have a smaller memory footprint and the period time used is 10 since this allows
for attacks to potentially be detected faster. If there would be a need to save more
battery on the nodes the read interval can be easily changed to a larger one, but
the set up for the evaluation within the thesis prioritizes a better detection rate.

Table 6.7: The right half of the table shows the values, in terms of number of
rounds before the increasing energy value is reset to zero. The values are obtained
from varying the two parameters in the left half of the table, Read Interval and Max
Readings, for the IncA algorithm.

Configuration parameters Count on consecutive rounds
with increasing average value

Read Interval
(seconds)

Max Readings
(# elements) Lowest Average Highest

10 5 0 0.91 4
10 10 0 0.85 4
10 15 0 1.08 5
20 5 0 0.87 5
20 10 0 0.70 4
20 15 0 0.78 5
30 5 0 1.02 4
30 10 0 0.96 5
30 15 0 0.96 5

The data that the table presents for the chosen configuration makes it possible to
determine the parameter for how many rounds the value can continue to increase
before sending an alarm. The chosen configuration (and all other configurations as
well) has an observed highest value of 5 consecutive rounds of energy values that
increase the average value before emptying the list. This means that the number of
rounds that the average can increase to before sending an alarm can safely be set
to 6 rounds to eliminate most of the false positives and still detect real attacks.

Table 6.8 presents the two different recommended configurations that are chosen for
the two algorithms within the first detection method. It also shows the values for
the limits that are chosen based on the output values for the configurations. The

59

6. Evaluation

table serves as a summary of the tests performed in this section by presenting the
most important data.

Table 6.8: The recommended configurations for each algorithm in the first detec-
tion method are shown. The values for the chosen sensitivity levels, or limits, are
also shown for each of the recommended configurations.

Recommended parameters

Algorithm Read Interval
(seconds)

Max Readings
(# elements) Limit

LiReg 30 5 40
IncA 10 5 6

6.4.2 Results: LiReg
This section presents the results in terms of false alarms, detection rate, time until
detection for the linear regression algorithm called LiReg. The tests runs with the
attack parameters set according to Section 6.4.1 and the configuration used in all
the test cases are presented in Table 6.8, on the row for LiReg.

6.4.2.1 False Alarms
Table 6.9 presents the number of false alarms in the system. It can be seen that
during all the 16 tests only 2 false alarms are raised. Both of the false alarms occur
during the long delay of the attack (where the tests are run for a total of 65 minutes).
It can also be seen what intensity the attacks are run at, but since the false alarms
occur before the attack launches this fact does not matter in the data.

Table 6.9: Number of false alarms for the LiReg algorithm while testing. It can
be seen during which delay and intensity the false alarms are generated.

False alarms
Delay ↓ \ Intensity → Low Medium low Medium high High
Short 0 0 0 0
Medium short 0 0 0 0
Medium long 0 0 0 0
Long 1 1 0 0

The obtained data is used to calculate the False Alarm rate, which Equation 6.8
shows. It can be seen that in 12.5% of all test cases a false alarm is generated.

False Alarm Rate = 2
16 = 0.125 (6.8)

6.4.2.2 True Alarms and Time Until Detection
Table 6.10 shows the time until detection for all the attacks that are discovered or
not detected which are marked with N/D. It can be noted that none of the Low
intensity attacks and only one of the Medium Low intensity attacks are detected. It
can be argued that the Low intensity attack does not disrupt the normal function

60

6. Evaluation

of the system and therefore does not count as an attack. This is further elaborated
on and discussed in Chapter 7, but mentioned here as it gives two different results
for the detection rate. The formulas below the table present the detection rates.

Table 6.10: Number of attacks that are not detected (N/D) and the time until
detection for the attacks detected with the LiReg algorithm.

True alarms and Time Until Detection (seconds)
Delay ↓ \ Intensity → Low Medium low Medium high High
Short N/D N/D 120.01 120.01
Medium short N/D N/D 30.01 30.06
Medium long N/D N/D 30.01 30.10
Long N/D 30.06 30.05 30.23

The table is used to calculate the detection rate according to Equation 6.4. Equa-
tion 6.9 shows the detection rate with low intensity attacks included while Equa-
tion 6.10 shows the detection rate without low intensity attacks included.

Detection Rate16 Attacks = 9
16 = 0.562 (6.9)

Detection Rate12 Attacks = 9
12 = 0.75 (6.10)

6.4.3 Results: IncA
This section presents the results in terms of false alarms, detection rate, time until
detection for the increasing average algorithm called IncA. The tests runs with the
same attack parameters as the LiReg algorithm does, which are set according to
Section 6.4.1. The configuration used in all the test cases is presented in Table 6.8,
on the row describing the IncA algorithm.

6.4.3.1 False Alarms
As can be seen in Table 6.11, only one false alarm is raised during testing. The
false alarm occurs during the Long delay interval before the Medium high attack is
launched.

Table 6.11: Number of false alarms for the IncA algorithm while testing. It can
be seen during which attack delay and intensity the false alarms are generated.

False alarms
Delay ↓ \ Intensity → Low Medium low Medium high High
Short 0 0 0 0
Medium short 0 0 0 0
Medium long 0 0 0 0
Long 0 0 1 0

61

6. Evaluation

The obtained data is used to calculate the False Alarm rate, which Equation 6.11
shows. It can be seen that in 6.25% of all test cases a false alarm is generated.

False Alarm Rate = 1
16 = 0.0625 (6.11)

6.4.3.2 True Alarms and Time Until Detection
Table 6.12 shows the test cases where an attack is detected by showing the time
until detection in seconds. It also shows when an attack is not detected (N/D).
One of the four Low intensity attacks is detected, which is more than the results for
the LiReg algorithm. But on the contrary only half of the Medium high intensity
attacks are detected, while the LiReg algorithm detects all of them. The Medium
low intensity attack with the Short delay is not detected, but the other Medium
low intensity attacks are. The detection rate for the IncA algorithm is presented
with and without the low intensity attack included (using the same logic as with
the LiReg algorithm) below the table.

Table 6.12: Number of attacks that are not detected (N/D) and the time until
detection for the attacks detected with the IncA algorithm.

True alarms and Time Until Detection (seconds)
Delay ↓ \ Intensity → Low Medium low Medium high High
Short N/D N/D N/D 60.06
Medium short N/D 60.01 N/D 60.01
Medium long 80.11 60.04 50.04 50.08
Long N/D 50.37 50.06 40.53

The table is used to calculate the detection rate according to Equation 6.4. Equa-
tion 6.12 shows the detection rate with low intensity attacks included while Equa-
tion 6.13 shows the detection rate without low intensity attacks included.

Detection Rate16 Attacks = 10
16 = 0.625 (6.12)

Detection Rate12 Attacks = 9
12 = 0.75 (6.13)

6.4.4 Results: Energy Consumption
This section presents the results in terms of energy consumption by the sensor nodes.
The section is divided into three subsections so that each subsection can hold infor-
mation about the three components that are used when evaluating the framework;
the Simple Sensor Program, the detection method with the LiReg algorithm acti-
vated and the detection method with the IncA algorithm activated. The energy
consumption evaluation is conducted using six tests, two for each component. The
two tests are based on having the system under normal operation and having the
system under a high intensity attack. The Simple Sensor Program is evaluated
energy-wise in order to have a reference consumption to compare against. Both
the evaluation of the LiReg algorithm and the evaluation of the IncA algorithm is

62

6. Evaluation

conducted using the Simple Sensor Program running in the background in order to
simulate a ”real world” scenario. All the tests are conducted using a 30 minutes
duration in order to provide statistical security on the results. The test that are
conducted when the node is not under attack are performed using two sensor nodes,
one that runs the IDS and one that acts as a sink node. The tests that are con-
ducted when the node is under attack are performed using three sensor nodes, one
running the IDS, one that acts as a sink node and one node that runs the DoS-attack
program.

6.4.4.1 Energy Consumption: Simple Sensor Program
The Simple Sensor Program is evaluated in order to have reference values to com-
pare against when running the other tests. The program is evaluated under both
normal conditions and under attack conditions using the high intensity DoS-attack.

Table 6.13 presents the results in terms of how much time has been spent in differ-
ent hardware states while letting the program run for half an hour under normal
conditions. It shows that under normal operation a lot of time is spent in active
CPU mode. Only about half a minute is spent in CPU standby mode and even less
time is spent in the send and receive states of the radio hardware.

Table 6.13: How much time the system has spent in different hardware states
while running the Simple Sensor Program for 30 minutes under normal conditions
is shown in both real-time clock (RTC) ticks and in seconds.

State RTC Ticks Seconds
(1s=65536 RTC Ticks)

TCP U active 115 925 406 1768.88
TCP U standby 2 045 657 31.22
TReceive 1 637 858 24.99
TT ransmit 836 293 12.76

The values in the table are used to calculate the energy consumption of the CPU and
the radio according to the formulas as specified in Section 6.3. Equation 6.14 shows
the energy consumption for the CPU and Equation 6.15 shows the energy consump-
tion for the radio. Finally, Equation 6.16 shows the total energy consumption of the
detection method and the Simple Sensor Program.

ECP U 30min = (1768.88s · 2.9mA + 31.22s · 0.001mA) · 3V =
15.3893497J = 4.27481935mWh

(6.14)

ERadio 30min = (24.99 · 5.9mA + 12.76 · 9.1mA) · 3V =
0.790671J = 0.219630833mWh

(6.15)

Etot 30min = 15.3893497J + 0.790671J = 16.1800207J = 4.49445019mWh (6.16)

63

6. Evaluation

Table 6.14 presents the results in terms of how much time has been spent in different
hardware states while letting the program run for one hour during a high intensity
DoS-attack. The values in the table are then used to calculate the energy consump-
tion of the node during the timeperiod below the table using the same approach as
mentioned earlier.

Table 6.14: How much time the system has spent in different hardware states while
running the Simple Sensor Program for 30 minutes under a high intensity attack is
shown in both real-time clock (RTC) ticks and in seconds.

State RTC Ticks Seconds
(1s=65536 RTC Ticks)

TCP U active 113 335 266 1729.36
TCP U standby 4 642 352 70.84
TReceive 6 654 664 101.54
TT ransmit 695 866 10.62

Equation 6.17 shows the energy consumption for the CPU and Equation 6.18 shows
the energy consumption for the radio. Finally, Equation 6.19 shows the total energy
consumption of the Simple Sensor Program.

ECP U 30min = (1729.36s · 2.9mA + 70.84s · 0.001mA) · 3V =
15.0456445J = 4.1793457mWh

(6.17)

ERadio 30min = (101.54s · 5.9mA + 10.62s · 9.1mA) · 3V =
2.087184J = 0.579773333mWh

(6.18)

Etot 30min = 2.087184J + 15.0456445J = 17.1328285J = 4.75911903mWh (6.19)

6.4.4.2 Energy Consumption: LiReg
The energy consumption of running the Simple Sensor Program and the detection
method with the LiReg algorithm in the background is measured during a 30 min-
utes test. The test is performed twice, once under attack and once under normal
conditions.

Table 6.15 presents the results in terms of how much time has been spent in different
hardware states while letting the Simple Sensor Program and the detection method
with the LiReg algorithm run for one hour under normal conditions. Most of the
time is spent in active CPU mode while the time spent in standby CPU mode is
significantly small. Even less time is sent in radio, where the receive time exceeds
the send time.

64

6. Evaluation

Table 6.15: The time that the system has spent in different hardware states while
running both the Simple Sensor Program and the first detection method using LiReg
algorithm for 30 minutes under normal conditions is shown. The time is shown both
in real-time clock (RTC) ticks and in seconds

State RTC Ticks Seconds
(1s=65536 RTC Ticks)

TCP U active 115 929 484 1768.95
TCP U standby 2 041 580 31.15
TReceive 1 621 207 24.74
TT ransmit 859 471 13.12

Equation 6.20 shows the energy consumption for the CPU and Equation 6.21 shows
the energy consumption for the radio. Finally, Equation 6.22 shows the total energy
consumption of the detection method and the Simple Sensor Program.

ECP U 30min = (1734.35s · 2.9mA + 65.84s · 0.001mA) · 3V =
15.0890425J = 4.1914007mWh

(6.20)

ERadio 30min = (99.56s · 5.9mA + 11.04s · 9.1mA) · 3V =
2.063604J = 0.573223333mWh

(6.21)

Etot 30min = 15.0890425J + 2.063604J = 17.1526465J = 4.76462403mWh (6.22)

Table 6.16 presents the results in terms of how much time has been spent in different
hardware states while letting the Simple Sensor Program and the detection method
with the linear regression algorithm run for one hour while being under attack of
high intensity DoS-attack. It shows that the most time is spent in active CPU mode.
The node also spends more time in the radio hardware receiving packets than it does
in CPU standby mode due to the DoS-attack.

Table 6.16: The amount of time the system has spent in different hardware states
while running the Simple Sensor Program and the first detection method using the
LiReg algorithm for 30 minutes under a high intensity DoS-attack is shown in both
real-time clock (RTC) ticks and in seconds

State RTC Ticks Seconds
(1s=65536 RTC Ticks)

TCP U active 113 662 670 1734.35
TCP U standby 4 314 660 65.84
TReceive 6 524 572 99.56
TT ransmit 723 508 11.04

Equation 6.23 shows the energy consumption for the CPU and Equation 6.24 shows
the energy consumption for the radio. Finally, Equation 6.25 shows the total energy

65

6. Evaluation

consumption of the detection method with the LiReg algorithm and the Simple
Sensor Program.

ECP U 30min = (1734.35s · 2.9mA + 65.84s · 0.001mA) · 3V = 15.0890425J =
4.1914007mWh

(6.23)

ERadio 30min = (99.56s · 5.9mA + 11.04s · 9.1mA) · 3V = 2.063604J =
0.573223333mWh

(6.24)

Etot 30min = 15.0890425J + 2.063604J = 17.1526465J = 4.76462403mWh (6.25)

6.4.4.3 Energy Consumption: IncA
The energy consumption of running the Simple Sensor Program and the first detec-
tion method using the IncA algorithm is calculated by measuring how much time the
system spends in different hardware states. The energy consumption is measured
during two cases, one where the system is under a DoS-attack and one where the
system is not under attack. The test results are presented in individual tables.

Table 6.17 presents the results in terms of how much time has been spent in different
hardware states while letting the Simple Sensor Program program and the first de-
tection method using the IncA algorithm run for one hour under normal conditions.
It can be seen that most of the time is spent in active CPU mode, far less time is
spent in standby CPU mode. Even less time is spent in the radio module, for both
send and receive time.

Table 6.17: The amount of time that the system has spent in different hardware
states while running the Simple Sensor Program and the first detection method with
the IncA algorithm for 30 minutes under normal conditions is shown. The values
are shown in both real-time clock (RTC) ticks and in seconds

State RTC Ticks Seconds
(1s=65536 RTC Ticks)

TCP U active 115 866 919 1767.99
TCP U standby 2 104 145 32.11
TReceive 1 657 257 25.29
TT ransmit 845 020 12.89

Equation 6.26 shows the energy consumption for the CPU and Equation 6.27 shows
the energy consumption for the radio. Finally, Equation 6.28 shows the total energy
consumption of the detection method using the IncA algorithm and the Simple
Sensor Program.

66

6. Evaluation

ECP U 30min = (1767.99s · 2.9mA + 32.11s · 0.001mA) · 3V =
15.3816093J = 4.27266926mWh

(6.26)

ERadio 30min = (25.29s · 5.9mA + 12.89s · 9.1mA) · 3V =
0.79953J = 0.222091667mWh

(6.27)

Etot 30min = 0.79953J + 15.3816093J = 16.1811393J = 4.49476092mWh (6.28)

Table 6.18 presents the results in terms of how much time has been spent in dif-
ferent hardware states while letting the Simple Sensor Program and the first de-
tection method using the IncA algorithm run for one hour during a high intensity
DoS-attack. The energy consumption is presented below the table using the same
approach as mentioned above.

Table 6.18: The amount of time that the system has spent in different hardware
states while running both the Simple Sensor Program and the first detection method
using the IncA algorithm for 30 minutes under a high intensity DoS-attack is shown.
The values are shown in both real-time clock (RTC) ticks and in seconds

State RTC Ticks Seconds
(1s=65536 RTC Ticks)

TCP U active 113 597 410 1733.36
TCP U standby 4 379 886 66.83
TReceive 6 433 676 98.17
TT ransmit 739 900 11.29

Equation 6.29 shows the energy consumption for the CPU and Equation 6.30 shows
the energy consumption for the radio. Finally, Equation 6.31 shows the total energy
consumption of the detection method and the Simple Sensor Program.

ECP U 30min = (1733.36s · 2.9mA + 66.83s · 0.001mA) · 3V =
15.0804325J = 4.18900903mWh

(6.29)

ERadio 30min = (98.17s · 5.9mA + 11.29s · 9.1mA) · 3V =
2.045826J = 0.568285mWh

(6.30)

Etot 30min = 15.0804325J + 2.045826J = 17.1262585J = 4.75729403mWh (6.31)

67

6. Evaluation

6.4.4.4 Energy Consumption: Summary
This section provides a summary of the results from the energy consumption eval-
uation. The section does not add any new data from the evaluation but rather acts
as an overview of the results from the previous energy consumption measurements
of the first detection method and its related components. The section only brings
up the total energy consumption of the measured components since those numbers
are what matters in the end when draining the battery of the sensor node.

Table 6.19 shows a summary of the measured energy consumptions and also displays
the difference between normal state and attack state for each of the component
combinations tested. It can be noted that just running the Simple Sensor Program
has the lowest energy consumption and that the LiReg algorithm is a little bit more
complex than the IncA algorithm. The difference in energy consumption is not very
large between a state of attack and a normal state but the difference is definitely
measurable and visible in the results.

Table 6.19: Summary of the total energy consumption of the sensor node under
both normal state and attack state. The table also presents the difference between
the two states in order to show how much the energy consumption increases when
the system is under attack.

Component Normal state
Etot 30min (J)

Attack state
Etot 30min (J) Difference (J)

Simple Sensor
Program (SSP) 16.1800207 17.1328285 0.9528078

SSP+LiReg 16.1860324 17.1526465 0.9666141

SSP+IncA 16.1811393 17.1262585 0.9451192

68

6. Evaluation

6.5 RoVer
This section presents the results from the evaluation of the second detection method
which focuses on detecting routing attacks in WSNs. The section describes two types
of network setups including their components and corresponding parameters which
are used in the simulator Cooja during the evaluation. The section also discusses
which parameters that are tuned and evaluated in order to demonstrate the intended
functionality of the design of the method.

6.5.1 Network Setup, Parameters and Attack Description
The evaluation of the second detection method considers two types of networks that
are simulated within the wireless sensor network simulator Cooja using the mote
type Zolertia Z1 as specified in Section 6.2. One of the networks is a high intensity
network and the other is a low intensity network. The nodes in the high intensity
network sends a message to the sink every 15-30 seconds. The nodes have a send
interval of 15 seconds, and to the send interval a random time of 1-15 seconds is
added to make sure that all nodes in the network do not try to send at the same
time. The nodes in the low intensity network sends a message every 15-30 minutes.
The two setups require different periodic execution times of the IDS in order to
properly detect attacks against the network. Both networks use the same network
topology which consists of 12 nodes spread randomly across an area that is roughly
100 meters wide and 100 meters long. Figure 6.5 shows the network topology.
Among the nodes there is one sink node, one attack node (where the attack mode
can be turned off so that the node acts as a normal node) and 10 nodes that tries to
send a message at every send interval. The normal nodes and the attack node are
running an example program in Contiki called ”unicast-sender” which sends mes-
sages to the sink node at a given time interval. Both the network simulations are
set to have a 50% packet loss ratio in order to simulate lossy wireless network traffic.

There are three parameters in the second detection method that are interesting to
study. Two of the parameters are used for setting the sensitivity of the detection
method and the third parameter is used to control how often the program is exe-
cuted. Section 5.4.5 describes the sensitivity parameters which are called ”Below
Ten” and ”Above Ten”. The two parameters are from now on denoted lower limit
and upper limit. These are used in order to determine if there is an ongoing attack.
The first parameter is given as a numeric value of how many messages that are al-
lowed to be lost during normal operation if 10 or fewer messages has been sent by a
node and its siblings. The second parameter is used when more than 10 messages has
been sent by a node and its siblings to their common parent. The second parameter
is given in percent and controls how many percent of the messages that are expected
to arrive at the destination (i.e. the parent). In order to set the two sensitivity pa-
rameters to values that do not cause the program to create false alarms, the length
of the first phase of the program is important to look at. Section 5.4.1 describes the
implementation of the internal phases of the detection method. It is during the first
phase of the program that all the statistical data is gathered, and therefore it is the
longest and most important phase. The other timers for the remaining three phases
could also be set to different values, but these time periods are short and belongs

69

6. Evaluation

Figure 6.5: Network topology of simulated network of sensor nodes in Cooja. Node
marked with number 1 is the sink node, nodes 2-11 are normal nodes and node 12
is the attack node. One square is 10 meters wide and 10 meters high.

to the internal functionality of the program and are therefore not as important to
evaluate. Hence, the period length of the first phase will be used with different val-
ues to control how often the program is executed for the two different network types.

The two different networks require different lengths of the first phase in order to
work properly. For the high intensity network, the time of the first phase is set to
10 minutes. 10 minutes is a reasonable time interval to check and verify the parents
and the children in the network with the IDS since the nodes are sending messages
at such a high frequency. A too short period would also be inadequate since it would
drain the battery to run the IDS too often.

The low intensity network have the period time set to 60 minutes. Due to the long
send interval it is necessary to wait such a long time in order to be able to have
any messages to count at all. In one hour, the individual nodes are able to send a
maximum of 4 messages in total. This amount should be sufficient to detect attacks
if the limit value is set to an apt value. It can be argued that an even longer time
period could be used in order to save as much battery as possible, but that would
mean hours until an attack would be detected.

Table 6.20 gives an overview of the chosen network setups. In the table, both the
period time of the first phase of the detection method and the send interval for

70

6. Evaluation

each of the nodes that are running the ”unicast-sender” program are shown. Note
that the send interval is given as an interval since it is composed by a static and
a random part. In addition to the information in the table, the maximum number
of missed broadcasts from parents is set to five for both networks in order to avoid
unnecessary false alarms.

Table 6.20: Description of the two network setups. The parameters that are used
in order to set the limits for both networks are shown. Period time indicates how
often the detection method is executed, and send interval indicates how often the
nodes in the network send a message.

Network setups

Network type Period time
(seconds)

Send interval
(seconds) # Nodes

High Intensity 10·60 15-30 12
Low Intensity 60·60 15·60-30·60 12

6.5.1.1 Attack Parameters and Test Durations
The evil node launches the attack after different time periods in order to see if the
system detects the attack (and also prevents the node from being a parent again).
For each of the two network types that are described in the network setup, the
test duration is set to go on for two additional program rounds after the launch
of the attack. The length of the program rounds differ between the low intensity
and the high intensity network, therefore the length of the testing differs between
the network types. For each program round there are additionally two minutes of
internal time for the program, so for each round of testing two minutes are added
to the test duration time. Table 6.21 shows the delays that are used for starting
the attack against the network. The value that is given in the table means that the
attack starts after the given time. The table also shows the lengths of the tests for
the network types.

Table 6.21: Different attack start up delays that describes when the attack will
be launched. Time is given from startup of attack program on attack node. Test
durations for both high intensity network (HIN) and low intensity network (LIN)
are defined as two program execution rounds longer than the attack launch.

Delay name Delay value
(seconds)

HIN test duration
(seconds)

LIN test duration
(seconds)

Short 15 · 60 36 · 60 124 · 60
Medium short 45 · 60 72 · 60 124 · 60
Medium long 75 · 60 108 · 60 186 · 60

Long 105 · 60 144 · 60 186 · 60

6.5.1.2 Parameters for Detection
In order to determine recommended values for the parameters that control the lower
limit and the upper limit so that the program does not produce false alarms, an it-
erative approach is used which is described as follows. Before testing begins the

71

6. Evaluation

success ratio of receiving network traffic in Cooja is set to 50% if the receiving node
is at the maximum hearing distance from the sending node. This is important since
a success rate of 100% would not simulate a real world scenario. When determining
the value of the lower limit parameter the upper limit parameter is locked to just
accept all packet losses, and vice versa. By locking one of them it is certain that the
parameter that is currently not being tested will not generate any false alarms and
interfere with the testing. The test starts by setting the parameter currently under
evaluation to not accept any packet losses at all and then starting the simulation to
simulate normal network traffic, i.e. without launching any attacks. If there are any
false alarms the limit is changed to the next value and testing is started again. For
the lower limit parameter the next value is the current value increased by one, so it
starts with accepting 0 network losses, and the next round it will be set to 1 and so
on. For the upper limit parameter the next value is set to reduce the current by five
steps, so it starts of being 100 (i.e. expecting that 100% of network traffic to arrive),
and in the next round it will be set to 95 and so on. This method repeats until the
lowest (or highest for the upper limit parameter) value with no false alarms is found.

Parameters: Low Intensity Network
The low intensity network uses both the lower limit and the upper limit parameters,
depending on how many children a parent has. A child which only has one or zero
siblings will never use the upper limit since the child and its sibling can not send 10
or more messages together, but a child with at least two siblings might.

In order to set the parameters, each test is run for three detection rounds, meaning
it runs for slightly more than three hours. This gives the algorithms current value
for the parameter several chances to raise false alarms. Three rounds is enough since
each node verifies their parents or children (that acts as parents as well) which gives
several chances to report a false positive in each detection round.

Testing shows that no false positives are generated for either of the two parameters
when they are set to accept no packet losses. Therefore, only one test for each pa-
rameter is run and the parameter values that are chosen for the first testing round
of the method are chosen as recommended values. This means that the lower limit
is set to zero (indicating that zero message loss is tolerated) and the upper limit is
set to 100 (indicating that 100% of messages are required to arrive).

Parameters: High Intensity Network
The high intensity network also needs recommended values for both the packet loss
parameters, even though the lower limit seldom (or possibly never) is used due to
the high number of messages sent. One node will send a minimum of two messages
per minute, making it a total of at least 20 messages when the detection method
checks the total number of messages after 10 minutes. This means that even a child
with no siblings sends more than 10 messages. Each test is run for six verification
phases, meaning that it runs for slightly more than an hour per test.

72

6. Evaluation

Testing of the lower limit parameter shows that it can be set to the strictest value
(namely zero) since no false alarms are raised. As described previously, this behavior
is expected since the low limit is probably not used and the value that is used (the
higher) accepts all losses during the test. The upper limit parameter is set to 65%
after eight number of testing rounds. Figure 6.6 demonstrates how the number of
false positives drops until it reaches zero as the parameter gets less strict.

65707580859095100
Value of "Above Ten" in percent

0

1

2

3

4

5

N
u
m

b
e
r

o
f

fa
ls

e
 a

la
rm

s

Figure 6.6: Number of false alarms decreasing as the limit value grows less strict.
With a a strict limit not allowing any missed messages five false alarms are raised.
When the limit reaches 65% no false alarms are detected any more.

Recommended Parameters: Even though that tests demonstrate that the limit
parameters could be set to be as strict as possible for three out of four possible
parameter choices, it could be dangerous to have such strict limits. Having such
strict limits on the network would raise false alarms if just one message gets lost
during communication. The recommended parameters are therefore slightly less
sensitive for the parameters that could be set as strict as possible. Table 6.22 shows
the recommended parameter choices for the two types of network setups that are
simulated during the evaluation. The values in the table are the limit values that
are used for the rest of the evaluation and are thus the values that are tested when
determining if there are any ongoing attacks or not.

Table 6.22: Recommended parameters for the second detection method. The
table shows parameter values for both a high intensity and a low intensity network
as defined within the chapter. The values are slightly less sensitive than what tests
showed in order to avoid false alarms.

Recommended parameters

Network type Lower limit
(numeric value)

Upper limit
(percents)

Low Intensity 1 95
High Intensity 1 65

73

6. Evaluation

6.5.2 Results: Detection
This section presents the results of evaluating the detection method with the pa-
rameters for the upper limit and the lower limit set according to the recommended
parameter values which the previous section presents. To evaluate the detection rate
the Sinkhole attack is used which Section 5.5.2.1 describes the implementation of.
The implementation section also describes two other attacks, namely the Selective
forwarding attack and the wormhole attack. These two attacks are only used in
order to verify the correctness of the method (i.e. that they are detected by the
detection method) and are not further evaluated.

6.5.2.1 False Alarms
Table 6.23 presents the number of false alarms for every test in each network type.
After a node has been marked as evil and excluded from the network, alarms from
the node is ignored since it is not part of the network anymore. The tests on the
Low intensity network reports no false alarms at all. Tests on the High intensity
network reports a varying number of false alarms, from no false alarms at all to four
false alarms in the case of the Medium long delay before launching the attack.

Table 6.23: Number of false alarms when running the tests. It can be seen that
no delays are reported for the Low intensity network while a few are reported in the
high intensity network.

False alarms
Delay ↓ \ Network type → Low intensity High intensity
Short 0 0
Medium short 0 1
Medium long 0 4
Long 0 1

The table can be used to calculate the false alarm rate as following; there are eight
tests with twelve nodes that have the possibility to send a false alarms and a total
of six false alarms. The result is shown by Equation 6.32. The equation shows that
false alarms exist in 6.25% of all test cases.

False Alarm Rate = 6
8 · 12 = 0.0625 (6.32)

6.5.2.2 True Alarms and Time Until Detection
Table 6.24 and 6.25 shows the time until detection (TUD) for all launched attacks
for the low intensity network and the high intensity network respectively. TUD is
the time it takes from the point where the attack starts until one node reports the
attacking node as evil. The attack consists of two parts, one that attracts nearby
nodes’ traffic by announcement of spoofed routing rank and one that actively drops
all the received traffic. The latter part is controlled by the delay while the first part
of the attack is active from start. In some of the cases, the attacks are detected be-
fore the second part is activated. These have been marked as prematurely detected

74

6. Evaluation

and the TUD value is calculated from start (t=0) until the alarm is raised. The
premature detection can be explained by the effects of the first part of the attack.
All nodes that can physically reach the attacking node will chose the attacking node
as their parent (with the exception of nodes that are in direct contact with the
sink). This is an anomalous behavior in the network, and all children are not able
to communicate due to the unnatural routing graph that is formed. Because of the
lack of communication the children flags the attack node as evil.

By looking at Tables 6.24 and 6.25, it can be seen that all attacks are detected.
Therefore, the detection rate is at 100% for the second detection method for both
types of network.

Table 6.24: True alarms and how long it takes before the attack is detected for
the low intensity network. If the attack is detected prematurely, i.e. before the
dropping of packets starts, the TUD is calculated from t=0 to time of detection,
otherwise it is calculated from the time that the dropping of packets starts until the
attack is detected.

True alarms and Time Until Detection (seconds) for LIN
Delay TUD Premature detection
Short 6 357.864 no
Medium short 4 563.556 no
Medium long 2 780.022 no
Long 4 639.140 no

Table 6.25: True alarms and how long it takes before the attack is detected for
the high intensity network. If the attack is detected prematurely, i.e. before the
dropping of packets starts, the TUD is calculated from t=0 to time of detection,
otherwise it is calculated from the time that the dropping of packets starts until the
attack is detected.

True alarms and Time Until Detection (seconds) for HIN
Delay TUD Premature detection
Short 409.464 no
Medium short 1 312.147 yes
Medium long 1 312.147 yes
Long 4 562.241 yes

6.5.3 Results: Latency
When measuring the latency of the packets, success rate for packet transmit and
receive is set to 100% in Cooja. The aim when measuring the latency is to compare
the latency that the IDS introduces to the network compared to when the IDS is
turned off. To achieve this, the success rate of communication is set to 100%. This
is due to the fact that when measuring the latency, and also the reliability, it gives
the best result to have as many messages as possible to measure upon and that the

75

6. Evaluation

messages should not be subject of randomization introduced by simulated packet
loss. When measuring the latency, the high intensity network is used and when
an attack is present, the short delay is used which indicates that the test is run
for 36 minutes as Table 6.21 states. The latency for the network is counted on for
node #10 or node #5 since those nodes are the furthest away from the sink as can
be seen in Figure 6.5.

Figure 6.7 shows the latency for messages sent by node #10 both when the IDS
is turned on and when it is turned off when no attacks are launched against the
network. It can be seen that there is no significant difference between the two test
cases in general. Note that the points that disappears over value six seconds on the
y-axis goes to infinity since the messages are never delivered to the sink.

0 20 40 60 80 100 120 140
Message number

0

1

2

3

4

5

6

La
te

n
cy

 (
se

co
n
d
s)

Node #10 not running the IDS
Node #10 running the IDS

Figure 6.7: The latency for the messages sent from node #10 can be observed
both when the node runs the IDS and also when it does not. No direct impact on
the latency can be seen between running the IDS or not. Note that lines that are
reaching over the y-axis goes towards infinity due to non-delivered messages.

Figure 6.8 shows the latency for node #5 before, during and after the dropping
phase of the sinkhole attack has been launched. The chosen node has the attacking
node as parent in the routing graph before and during the attack. The figure shows
that the node that is running the IDS recovers and switches parent so that the la-
tency decreases to normal values again. It can be seen in the figure that the node
not running the IDS never recovers when the attack is launched, all future messages
goes to infinity.

6.5.4 Results: Reliability
In order to look at how the reliability changes over time in general and how it
changes during an attack scenario, the high intensity network is used in combina-
tion with the long attack delay which means that the test is run for 144 minutes as
Table 6.21 states. The total number of messages sent by a node are then divided
into ten equally large intervals and the rest that are left after the division are part

76

6. Evaluation

0 20 40 60 80 100 120 140
Message number

0

1

2

3

4

5

6

La
te

n
cy

 (
se

co
n
d
s)

Node #5 under attack with IDS
Node #5 under attack without IDS
Ongoing attack

Figure 6.8: The latency for the messages sent from node #5 can be observed,
both when the node runs the IDS and also when it does not. It can be seen that in
both cases the latency of the messages goes to infinity when the drop phase of the
sinkhole attack starts. The messages are being delivered again after a while for the
node that runs the IDS while the other node does not show the same result. Note
that lines that are reaching over the y-axis goes towards infinity.

of an eleventh interval).

Figure 6.9 shows how the reliability changes over time for nodes #2-11 when the
IDS is active while an attack is launched against the system. The sink node is ex-
cluded from the figure since it does not send any messages and the malicious node
is also excluded since it has an abnormal function in the network. It can be seen
that during message intervals 7 and 8 the attack is ongoing, lowering the reliability
of the network significantly. In interval 9 the attack is detected and the sinkhole
node excluded from the network, effectively stopping the attack and increasing the
reliability again.

Figure 6.10 shows the reliability for nodes #2-11 without the IDS active while an at-
tack is launched against the system. It can be seen that when the attack is launched
in interval 7 the reliability for the nodes quickly drops to zero and never recovers.
Only nodes number #3 and #8 are unaffected, but these are in direct contact with
the sink.

Figure 6.11 shows the average reliability and the standard deviation per interval for
both having the IDS on and off as shown in Figure 6.9 and Figure 6.10. It can be
seen that the reliability for the network with the IDS active recovers again while the
reliability for the network not running the IDS stays at 20%. The only thing that
keeps the reliability of the network without the IDS from dropping to zero is the
fact that nodes number #3 and #8 are unaffected by the attack since these nodes
are in direct contact with the sink.

77

6. Evaluation

2 4 6 8 10
Message send interval

0

20

40

60

80

100

R
e
lia

b
ili

ty
 (

P
e
rc

e
n
t

o
f

m
e
ss

a
g
e
s

th
a
t

a
rr

iv
e
 a

t
d
e
st

in
a
ti

o
n
)

Node #2 under attack with IDS
Node #3 under attack with IDS
Node #4 under attack with IDS
Node #5 under attack with IDS
Node #6 under attack with IDS
Node #7 under attack with IDS
Node #8 under attack with IDS
Node #9 under attack with IDS
Node #10 under attack with IDS
Node #11 under attack with IDS
Ongoing attack

Figure 6.9: The reliability for delivered messages for all nodes in the network is
shown except for the attack node and the sink node. All the nodes are running
the IDS. It can be seen that after the launch of the drop phase of the attack, the
reliability increases again so that messages are able to reach the destination.

2 4 6 8 10
Message send interval

0

20

40

60

80

100

R
e
lia

b
ili

ty
 (

P
e
rc

e
n
t

o
f

m
e
ss

a
g
e
s

th
a
t

a
rr

iv
e
 a

t
d
e
st

in
a
ti

o
n
)

Node #2 under attack without IDS
Node #3 under attack without IDS
Node #4 under attack without IDS
Node #5 under attack without IDS
Node #6 under attack without IDS
Node #7 under attack without IDS
Node #8 under attack without IDS
Node #9 under attack without IDS
Node #10 under attack without IDS
Node #11 under attack without IDS
Ongoing attack

Figure 6.10: The reliability of delivered messages for all nodes in the network is
shown except for the attack node and the sink. None of the nodes are running the
IDS. It can be seen that after the launch of the attack, the reliability goes towards
zero for all the affected nodes.

78

6. Evaluation

2 4 6 8 10
Message send interval

0

20

40

60

80

100

R
e
lia

b
ili

ty
 (

P
e
rc

e
n
t

o
f

m
e
ss

a
g
e
s

th
a
t

a
rr

iv
e
 a

t
d
e
st

in
a
ti

o
n
)

Average reliability without IDS
Average reliability with IDS
Ongoing attack

Figure 6.11: The average reliability for delivered messages and the corresponding
standard deviation is shown for all nodes shown in Figure 6.9 and 6.10. It can be
seen that the IDS restores reliability once the attack is detected and mitigated while
the network not running the IDS remains affected.

6.5.5 Results: Energy Consumption
Energy consumption is evaluated both on real hardware and in Cooja since the pre-
vious tests have been carried out in Cooja using simulated Z1 motes. Measurements
of energy consumption in Cooja serves as a comparison between the simulated Z1
platform and the real hardware used within the thesis. The aim is two-fold, firstly to
compare having the IDS on and off on the platform for two different roles; child and
parent, and secondly to compare the results of the two individual test cases for the
two roles between the simulated and the real platform. To make a fair comparison
a similar network setup is used for both simulator and real world tests. The setup
consists of three nodes: a sink node and two normal nodes that are placed on such
distances away from the sink so that one will act as a parent and the other as a
child. Figure 6.12 shows the simulated network in Cooja.

Figure 6.12: Network topology of simulated network of sensor nodes in Cooja that
is used when evaluating energy consumption. Node marked with number 1 is the
sink node, nodes 2-3 are normal nodes. One square is 10 meters wide and 10 meters
high.

79

6. Evaluation

6.5.5.1 Energy Consumption on Z1 Motes in Cooja
This section presents the energy consumption of the Zolertia Z1 nodes simulated in
Cooja. The results show the energy consumption for both a child and a parent in
the system when turning the IDS on and off.

With IDS:
Table 6.26 and 6.27 shows how much time the Cooja-simulated Z1 systems spends in
different hardware states during a 30-minutes test while the nodes are running both
the Contiki example program called ”unicast-sender” and the IDS. The ”unicast-
sender” program is configured as a high intensity network, i.e. sending messages
very often, and the IDS is configured to execute verification every tenth minute.

The first table shows the time spent in different states for a parent in the network
and the second table shows the time spent in different states for a child. It can
be seen that a parent spends more time being in an active CPU-state than a child.
This is expected since a parent performs more calculations than a child. The parent
also spends more time sending and receiving messages, which is also expected since
it forwards the child’s messages as well as the node is sending its own.

Table 6.26: How much time the simulated Zolertia Z1 system, acting as a par-
ent, spends in different hardware states while running both the ”unicast-sender”,
configured as a high intensity network, and the IDS for 30 minutes under normal
conditions is shown in both real-time clock (RTC) ticks and in seconds.

State RTC Ticks Seconds
(1s=32768 RTC Ticks)

TCP U active 894 722 27.30
TCP U standby 58 087 707 1 772.70
TReceive 466 126 14.23
TT ransmit 281 308 8.58

Table 6.27: How much time the simulated Zolertia Z1 system, acting as a child,
spends in different hardware states while running both the ”unicast-sender” config-
ured as a high intensity network and RoVer for 30 minutes under normal conditions
is shown in both real-time clock (RTC) ticks and in seconds.

State RTC Ticks Seconds
(1s=32768 RTC Ticks)

TCP U active 768 495 23.45
TCP U standby 58 213 936 1 776.55
TReceive 431 203 13.16
TT ransmit 261 621 7.98

80

6. Evaluation

Without IDS:
Table 6.28 and 6.29 shows how much the Cooja-simulated Z1 systems spends in
different hardware states during a 30-minutes test while the nodes are running just
the Contiki example program called ”unicast-sender” which is configured as a high
intensity network, i.e. sending messages very often.

The first table shows the time spent in different states for a parent in the network
and the second table shows the time spent in different states for a child. It shows
a similar trend as the tables presenting the times spent in different states with the
IDS turned on; the active CPU time and the send and receive times are slightly
higher for the parent.

Table 6.28: How much time the simulated Zolertia Z1 system, acting as a parent,
spends in different hardware states while running just the ”unicast-sender” config-
ured as a high intensity network under normal conditions for 30 minutes is shown
in both real-time clock (RTC) ticks and in seconds.

State RTC Ticks Seconds
(1s=32768 RTC Ticks)

TCP U active 813 867 24.84
TCP U standby 58 168 558 1 775.16
TReceive 465 485 14.21
TT ransmit 268 263 8.19

Table 6.29: How much time the simulated Zolertia Z1 system, acting as a child,
spends in different hardware states while running just the ”unicast-sender” config-
ured as a high intensity network under normal conditions for 30 minutes is shown
in both real-time clock (RTC) ticks and in seconds.

State RTC Ticks Seconds
(1s=32768 RTC Ticks)

TCP U active 695 042 21.21
TCP U standby 58 287 383 1 778.79
TReceive 420 438 12.83
TT ransmit 252 379 7.70

When comparing the tables for the IDS turned on or off it can be seen that there is
slightly more time spent in active hardware states and thus higher energy consump-
tion when the network runs the IDS. A parent has 2.46 seconds longer active CPU
time and a child has 2.24 seconds longer active CPU time. The increase in time
spent in radio for receiving and transmitting packets is even smaller. There is only
0.02 seconds more receive time and 0.39 seconds more send time for a parent and
only 0.33 seconds more receive time and 0.28 seconds more send time for a child.

81

6. Evaluation

6.5.5.2 Energy Consumption on SensorTag Platform
This section presents the energy consumption for the Texas Instruments cc2650STK
SensorTag platform. The tables presents how much time a parent and a child node
spends in different hardware states with and without the IDS.

With IDS:
Table 6.30 and 6.31 shows how much time the SensorTag spends in different hardware
states during a 30-minutes test while the nodes are running both the Contiki ex-
ample program called ”unicast-sender” and the IDS. The ”unicast-sender” program
is configured for a high intensity network, i.e. sending messages very often and the
IDS is configured to execute verification every tenth minute. The first table shows
the times for a parent in the system and the second table shows the times for a child.

The tables shows that, on the contrary from the Z1 node, the SensorTag spends most
of the time in active CPU mode instead of standby CPU mode. A child spends 11.9
seconds more in CPU standby mode than a parent, but on the other hand a child
spend almost half a minute more in the radio receive state than a parent. However,
a parent spends 22.9 seconds longer in the radio transmit state.

Table 6.30: How much time the SensorTag, acting as a parent, spends in different
hardware states while running both the ”unicast-sender” program configured as a
high intensity network and the IDS for 30 minutes under normal conditions is shown
in both real-time clock (RTC) ticks and in seconds.

State RTC Ticks Seconds
(1s=65536 RTC Ticks)

TCP U active 114 042 404 1 740.15
TCP U standby 3 934 732 60.04
TReceive 2 259 866 34.48
TT ransmit 2 713 098 41.40

Table 6.31: How much time the SensorTag, acting as a child, spends in different
hardware states while running both the ”unicast-sender” sender program configured
as a high intensity network and the IDS for 30 minutes under normal conditions is
shown in both real-time clock (RTC) ticks and in seconds.

State RTC Ticks Seconds
(1s=65536 RTC Ticks)

TCP U active 113 262 402 1 728.25
TCP U standby 4 714 758 71.94
TReceive 4 128 754 63.00
TT ransmit 1 189 694 18.15

82

6. Evaluation

Without IDS:
Table 6.32 and 6.33 shows how much time the SensorTag spends in different hard-
ware states during a 30-minutes test while the nodes are running just the Contiki
example program called ”unicast-sender”. The ”unicast-sender” program is config-
ured for a high intensity network, i.e. sending messages very often and the IDS
is configured to execute verification every tenth minute. The first table shows the
times for a parent in the system and the second table shows the times for a child.

The tables shows that the SensorTag platform spends more time in active CPU
mode than in CPU standby mode once again also when it is not running the IDS.
A child spends some seconds more in standby CPU mode than a parent does, but it
spends more time in radio hardware for both sending and receiving. The time that
differs is however small. A child only spends 3.4 seconds longer in receive mode and
3.69 longer in transmit mode than a parent does.

Table 6.32: How much time the SensorTag, acting as a parent, spends in different
hardware states while running just the ”unicast-sender” program configured as a
high intensity network for 30 minutes under normal conditions is shown in both
real-time clock (RTC) ticks and in seconds.

State RTC Ticks Seconds
(1s=65536 RTC Ticks)

TCP U active 114 908 294 1 753.36
TCP U standby 3 068 842 46.83
TReceive 2 563 762 39.12
TT ransmit 1 126 240 17.19

Table 6.33: How much time the SensorTag, acting as a child, spends in different
hardware states while running just the ”unicast-sender” program configured as a
high intensity network for 30 minutes under normal conditions is shown in both
real-time clock (RTC) ticks and in seconds.

State RTC Ticks Seconds
(1s=65536 RTC Ticks)

TCP U active 114 437 258 1 746.17
TCP U standby 3 539 904 54.01
TReceive 2 786 674 42.52
TT ransmit 1 368 208 20.88

6.5.5.3 Energy Consumption Summary
This section summarizes the energy consumption in terms of time spent in hardware
for both the simulated Z1 platform and the SensorTag platform. For each of the
platforms four different measurements are made: IDS on and off for both a child
and for a parent in the network. In order to compare the simulated Z1 platform and

83

6. Evaluation

the SensorTag platform energy-wise, the tables with data that the previous sections
present have been summarized into two figures where radio times are placed in one
graph and CPU times are placed in another.

Figure 6.13 and 6.14 present the summary for all four individual test cases for both
platforms. In the first figure the time spent in the radio hardware is shown, and in
the second figure the distribution between active and standby CPU time is shown.
In the figures it is visible that the difference of having the IDS on and off is minimal
for all cases for the Z1 platform. The difference is also minimal when studying CPU
state distribution for the SensorTag but it is visible for the platform that the IDS
demands more radio traffic for control messages in the graph for radio times.

It can also be seen that the SensorTag spends more time in high energy consuming
states than the simulated Z1 platform. There is more time spent in active radio
states, which is costly, and the SensorTag spends almost all of its time in an active
CPU state instead of going to sleep in the standby mode. The pattern is visible
independent of the on or off status of the IDS and the pattern is not observable on
the Z1. This indicates that the problem is not related to the IDS but rather to the
platform itself.

Child: IDS Parent: IDS Child Parent Child: IDS Parent: IDS Child Parent
 Zolertia Z1 Texas Instruments SensorTag

0

10

20

30

40

50

60

70

80

90

S
e
co

n
d
s

sp
e
n
t

in
 r

a
d
io

Radio transmit
Radio receive

Figure 6.13: The time spent in radio hardware for both parent and child with
and without the IDS activated. Both the simulated Z1 and the SensorTag is shown.
It can be seen that the SensorTag spends more than double the amount of time
in radio hardware compared to the simulated Z1 system. The difference between
having the IDS on and off is minimal on the Z1 platform. There is more difference
of having the IDS on and off on the SensorTag and it is definitively visible that the
IDS demands more radio traffic for communication of control messages.

84

6. Evaluation

Child: IDS Parent: IDS Child Parent Child: IDS Parent: IDS Child Parent
 Zolertia Z1 Texas Instruments SensorTag

0

500

1000

1500

2000

S
e
co

n
d
s

sp
e
n
t

in
 C

P
U

CPU active
CPU standby

Figure 6.14: The time spent in active and inactive CPU state for both the parent
role and the child role for both the Z1 platform and the SensorTag platform is
shown. The Z1 platform spends most of it time in the inactive CPU state while the
SensorTag spends most of it time in active CPU state. This applies for both the
roles in the network. The difference between having the IDS on and off is minimal.

85

6. Evaluation

86

7
Discussion

This chapter discusses the results from the evaluation in Chapter 6. It also mentions
the strong and weak points of the detection methods in this thesis and compares
the obtained results with results from related work found in Chapter 3 as far as
possible. Finally, the chapter introduces ideas for future work that can be done to
extend the work done in this thesis.

7.1 Analysis of Evaluation
This section discusses and analyses the findings from the evaluation in Chapter 6.
The results and what they implicate for both detection methods are elaborated on
and discussed in their respective sections below.

7.1.1 Anomaly-based DoS-Attack Detection
For the first detection method, the first set of parameters used when conducting the
tests were set after extensive testing in Cooja. The behavior in a simulator and the
real world may differ a bit, and therefore it may be possible that other parameters
had been chosen if the initial testing would have been performed on real hardware as
well. However, setting the initial parameters on real hardware would have taken a
lot more time than what had been feasible for the time scope of the thesis. Therefore
the decision to test on real hardware first after the first initial parameters had been
set according to experiment results from Cooja is motivated.

7.1.1.1 Detection Rates
For both the algorithms used for detection, only one low intensity attack in total
was detected. As Section 6.4.2.2 mentions, it can be discussed whether this counts
as an attack or not. While the attacks were run no disruption of the normal func-
tion of the network was seen. The nodes were able to send their messages with
seemingly no delay, and the sink node received them as usual. It is important to
determine when something counts as an attack when evaluating the detection rate
of the method for both algorithms. If the threshold for when something counts as
an attack is set at the medium low intensity (when the attacking node tries to send
a message every 50th timer tick, or roughly 2 messages per second) the detection
rate will go up from 56.25% to 75% for the LiReg algorithm and from 62.5% to 75%
for the IncA algorithm. This is a significant increase of the result. By comparing
the Energest value from the example program and the IDS in Figure 6.2 and the
low intensity attack in Figure 6.3 it can be argued that the low intensity attack
should be excluded from being counted as an attack. This conclusion originates

87

7. Discussion

from the fact that the Energest values for both programs deviates so little that both
algorithms would need to set their corresponding parameters so low to detect the
attack that they would have high false positive rates.

The number of false alarms is low for both algorithms. There is only one false
alarm during the testing of the IncA algorithm and two alarms during the testing of
the LiReg algorithm. Tables 6.9 and 6.11 show during which tests the false alarms
happens. The intensity of the attack does not matter since the false alarms occur
before the attack is launched. However, it is not surprising that the false alarms
happen during the Long delay in all cases since the detection method will check the
energy values more times and thus the chance of something going wrong increases.
The evaluation calculates the rate of false alarms by taking the number of false
alarms divided by the total number of launched attacks. This gives a relatively high
rate of false positives on 12.5% and 6.5% respectively. But if the total time spent
on tests are considered just one and two alarms are low. Table 6.4 shows the time
each Delay have before launching the attack. The sum of these values is a total of
76 minutes, and all the delays are run for all the intensities, giving a total run time
of roughly 5 hours for each algorithm. Considering this, the false positives is quite
low.

7.1.1.2 Comparison to Related Work
Riecker et al. [4] test their system by launching a blackhole attack and a flooding
attack. They present the results for the detection rate with number of false positives
and false negatives for two different configurations of their system, one that is ”bi-
ased” to achieve a higher detection rate. They achieve a false positive rate of 18.75%
and a detection rate of 93.75% in the non-biased configuration in a system with 16
nodes. This can be compared to the two algorithms that this thesis presents, which
achieves a false positive rate of 12.5% for the LiReg method and a rate of 6.25%
for the IncA algorithm. It can be seen that the algorithms in this thesis perform
better in terms of false positive rates. However, Riecker et al. achieve a detection
rate of 93.75%, which is considerably higher than for both algorithms (at the best
for both 75%). While keeping the false positives low is good, it is more important
to actually detect attacks and it can be argued whether the algorithms presented
in this thesis would have gotten a higher detection rate if the false positive rate
had been allowed to be larger or not. It can be noted that Riecker et al. evaluate
their work completely in a simulator, so the results may have been different on real
hardware.

7.1.1.3 Energy Evaluation
Table 6.19 presents a summary of the total energy consumption of a node under
three different conditions. When the Simple Sensor Program is run without the
detection method, and when it is run with the detection method using LiReg or the
IncA algorithm.

The difference in energy consumption between just running the example program
and also running the IDS is as low as 6 mJ for the LiReg and 1.1 mJ for the IncA
algorithm while the system is not under an attack. The overhead produced by the

88

7. Discussion

IDS is relatively low in this case. The small addition to the energy consumption can
be seen as quite low in contrast to gaining protection against attacks that would
drain the batteries a lot faster than the IDS would. On the other hand, this is just
how much extra energy the IDS uses over 30 minutes. Over time, the overhead will
of course grow bigger. This trade off is something one would have to reflect over
whether it is more useful to run the IDS and detect attacks or if it is better to leave
the IDS out and be vulnerable against attacks, but with batteries that last longer.

The difference in power consumption in the system when it is run in an attack
state or not is roughly the same for all components, roughly one joule for each of
them. It is interesting to note that while under attack, the power consumption of
the LiReg method is larger than the one for only the Simple Sensor Program while
the power consumption of the IncA algorithm used is still smaller. This might be
due to various reasons. The tests were carried out on real hardware, which makes
the results non deterministic. It might just happen that the sensor program tried to
send values at the same time as the attack and therefore tried to send values again.

7.1.2 RoVer
As mentioned earlier, in Chapter 6, the evaluation of the second detection method
is carried out in the network simulator Cooja (except for the energy consumption).
Evaluation of the second detection method on real hardware would require more
nodes (and therefore more computers to read the output) and a lot of time to prop-
erly test the system and make sure that all nodes chose a parent that is not the sink.
This would require a very large geographical area and would not be feasible. Hence,
it is decided to only measure the energy consumption on real hardware (which will
only require three nodes and therefore is feasible) while the parameterization and
testing of detection rates is carried out in Cooja. Of course, by only evaluating in a
simulator one might miss some important aspects of how the real system behaves.
A simulator, even a really good one, is still deterministic and can not fully replace
testing on real hardware. Nevertheless, all of the papers referenced in Chapter 3 use
some kind of simulator to evaluate their system, probably due to feasibility. Raza et
al. [6] claim that Cooja has been proven to produce realistic results, and therefore
they are content with only using Cooja for evaluation purposes. Since all these pa-
pers have deemed it a good enough evaluation it is supportable to use a simulator to
some extent in this thesis. The energy consumption is measured on real hardware
in this thesis, and thus the thesis adds even further knowledge about the feasibility
of running the actual IDS on real hardware, which others lack for their methods.

7.1.2.1 Detection Rates
The detection rate for the second detection method is as high as 100% since all at-
tacks are detected. However, for the cases with the three highest values in the high
intensity network the sinkhole node is detected before it starts dropping packets. A
sinkhole attack consists of two stages. The first is to attract as many nodes as pos-
sible and the second is the actual dropping of packets. The behavior of just making
other nodes choose the malicious node as a parent that would not have chosen the
evil node as a parent otherwise causes a disturbance in the network that leads to

89

7. Discussion

the reporting of him as being evil, as Section 6.5.2.2 describes. This behavior is
observed in three out of four cases for the High intensity network, and not at all in
the Low intensity network. It will probably vary with the network setup used, were
one of the most important factors probably is how many nodes that can reach the
attack node and choose it as a parent. Since this behavior is observed only in the
high intensity network another important factor for premature detection is probably
the number of messages, but this would have to be investigated further.

In most cases the attack is detected at the end of the same detection round or in the
following verification round. Therefore the time until detection is decided depend-
ing on how long one round of the detection method is. A shorter detection round
will detect the attack earlier, but it will also increase the energy consumption due
to the program running more often. Another issue to take into account is that a
too short period will not detect the attack at all. If too few messages have been
sent the threshold value for lost packets will make sure that the attack node goes
undiscovered. Therefore, careful consideration will have to be taken when lowering
the duration of the detection round.

The latency that Figure 6.7 presents show no overhead due to the IDS. Most of the
times the latency is below 1 second independent of having the IDS activated or not,
with some exceptions. In some cases the messages just take a bit longer to arrive,
but some of them are lost. The longer latency time probably depends on the fact
that some nodes on the route to the sink were busy with other tasks before they
could send the message on to the next node.

When comparing the reliability for a network running the IDS with RoVer activated
(Figure 6.9) to a network not running the IDS (Figure 6.10) it can easily be seen that
all nodes affected by the sinkhole attack never recovers when RoVer is not active.
Another interesting note when comparing the figures is that the reliability seems to
be better in general (even before the attack is launched) for the network that are
running the IDS. The IDS should not influence this for the better (or for worse) so
this is probably just a coincidence. Other tests might show a different result but it
is interesting to note.

7.1.2.2 Comparison to Others
Raza et al. [6] evaluate SVELTE against sinkhole attacks and selective forwarding
attacks. They evaluate for both a lossless network in Cooja and a lossy network.
For the lossy network, SVELTE achieves approximately 90% detection rate while
on a lossless network it achieves almost 100% detection rate. In this thesis, the sec-
ond detection method is evaluated towards a lossy network in Cooja by launching a
sinkhole attack. A detection rate of 100% is achieved, which is a higher result than
SVELTE since Cooja is set to a packet receive rate of 50%.

With a lossless network, SVELTE does not have any false positives at all, while they
have few false positives in a lossy network. Since no exact numbers are presented it
is hard to compare, but RoVer also achieves a low false positive rate of 6.25%.

90

7. Discussion

7.1.2.3 Energy Evaluation
When comparing the energy consumption on the simulated Z1 nodes only a small
overhead is seen due to the IDS being run. The biggest difference lies in the time
spent in active CPU time for both the parent and the child. The biggest impact of
the energy consumption lies in the time spent in active CPU for a parent and this
amount of time is still very small. The time spent in active CPU is 1,5% when run-
ning the IDS and 1.4% when not running the IDS. Therefore the impact in energy
consumption can be seen as almost negligible in comparison to gaining protection
against attacks.

Section 6.5.5.3 presents two graphs that shows the time spent in different hardware
states for a child and parent node in both the simulated Zolertia Z1 nodes and the
Texas Instruments SensorTag. In the first graph it is interesting to note that the
SensorTag platform spends a lot more time in the hardware states for sending and
receiving. More than double the time in all cases regardless of the IDS is turned on
or off. This is probably due to the nature of the different hardware and has probably
nothing to do with the program (and the IDS) that is being run on the nodes since
they are identical. Therefore further investigation into the difference between the
platforms and also how Cooja emulates the Z1 nodes would be needed in order to
find out why this happens.

Another interesting fact to note about the first graph is that almost all nodes spends
more time receiving packets than sending them, except for the parent running the
IDS on the SensorTag platform. Due to how the algorithm for RoVer is written it
is expected that a parent would have much to transmit, both to its children and its
own parents. The node playing the same role in the network with the Z1 mote does
spend more time in the radio transmit state than the rest of the Z1 nodes, but no
significant differences. This is probably also hardware specific.

When looking at the time spent in the radio hardware for the Z1 nodes both children
spend less time in radio hardware than the parent regardless of the IDS or not, thus
showing that the IDS has a very small overhead on the platform. On the other hand,
when looking at the time spent in radio hardware for the SensorTag it can easily be
seen that the IDS adds significant more time in the radio hardware when comparing
the child roles with each other and the parent roles with each other. There can be
many reasons for this. Since the Z1 has been on the market for longer than the
newer SensorTag there would also had been more time to update and provide new,
better drivers that works more effectively. Another reason could possibly be due
to the fact that Z1 is emulated in Cooja, which has a more deterministic behavior
than the real hardware, which might need to re-send messages several times, as an
example.

The other graph also shows an interesting behavior. While the Z1 spends almost
all time in CPU standby mode and has very little active time, the SenorTag does
the complete opposite. Naturally wireless sensor nodes will require low power and
should spend a lot of time in the standby node instead of the active mode since this

91

7. Discussion

reduces more energy consumption. No solution to why the SensorTag behaves in
this way could be found during the thesis while investigate the source files in Contiki
for the specific platform. But again, since both platforms runs the same code, the
overhead could not be blamed on the IDS or the unicast-sender program.

7.2 Limitations
This section describes the limitations of the work in this thesis. The limitations
are discussed not only for the two detection methods but also for the method used
during the evaluation and verification of the framework.

7.2.1 Anomaly-based DoS-Attack Detection
Since the first detection method uses two different algorithms for detecting attacks
it will have different strengths and weaknesses depending on which one it uses. A
limitation for both of the algorithms is that once an attack is launched the list of
energy readings will start to fill up with values that are much bigger than those in
a system under normal energy consumption. This means that both algorithms will
stop generating alarms that an attack is ongoing after only one or a few alarms,
as this behavior will start to become the new ”average” that they both use when
determining if the system is under attack.

As argued in Section 4.2.1.2 and confirmed in Section 6.4.1.1 a weakness with linear
regression is that it needs a fairly flat energy curve in order not to generate a lot
of false positives. In real life scenarios, the energy consumption is seldom flat. In
fact, as shown in previous chapter, the energy consumption varies a lot depending
on what the node is currently doing. This problem can be somewhat overcome by
choosing good parameters for the read interval and the length of the list of energy
readings. This way, how big the deviation of the actual value and the estimated
value can be set to a number in percent that will lower the number of false alarms
while still detecting alarms.

Another weakness of both the LiReg and the IncA algorithm is that they will not
detect DoS-attacks that start by sending few packets and then increase gradually.
This is because if the energy consumption rises slowly enough the new energy value
will always be within the difference of what is allowed. Thus, the average value of
all energy readings will slowly increase and therefore the read energy consumption
value can continue to rise undetected.

7.2.2 RoVer
If a malicious node has only a single child, the second detection method will prob-
ably not detect that the parent node is evil. This is due to the fact that when the
parent node sends the claim about how many messages it has sent it will include
its own messages in the total number of sent messages. The child will not have any
knowledge of number of messages sent by the evil node and therefore it will think
that the number of messages in the claim includes its own. The implementation

92

7. Discussion

includes a threshold value that determines how many messages the parent can lack
in its claim (due to the fact that these networks are lossy) and if this value is high,
one child will definitely not detect any attack. As an example, a child to a sinkhole
node has sent 10 messages to the parent. The parent has sent 8 messages on his
own (and dropped all of the child’s packets) and will therefore claim 8 sent messages
to the child. If the parameter for tolerated packet loss is set to 2, the child will be
satisfied and not raise any alarm. This may not be a problem in real life scenarios
since nodes in WSNs are often placed in clusters, and therefore one node should
have several children, but it is important to note that this weakness exists.

A node that comes from the outside and wants to join the network would be flagged
as malicious quite fast with RoVer if it does not run the RoVer code and announces
the required control messages. It can be argued whether it is a limitation or not
since an administrator that places the sensor nodes at their locations most likely
knows which nodes that are present (and thus which nodes that should run the IDS
code). The limitation is important to mention however, as it reduces the possibility
of having the IDS in a mobile scenario.

7.2.3 Implementation of Attacks
The attacks used to test the detection methods are designed according to the spec-
ifications of the adversary models described in Section 4.2.2 and Section 4.3.2 and
the implementation can be found in Section 5.5. Since both the adversary models
and the implementation are specified and realized as part of this thesis it is known
how both the detection methods and the attacks work before testing the system.
It can be argued that this is a problem. It is not hard to know how to detect an
attack when the exact implementation of it is known. The attacks were designed
to be as general versions of the described attacks as possible, but this might not be
enough. There exists a lot of different versions of attacks so it might be the case
that the attacks can be implemented in such way that they will not be detected by
the IDS. A good example of this is that both the LiReg and the IncA algorithms will
not detect DoS-attacks that are slowly increasing, as described in Section 7.2.1. To
properly test if the system detects attacks the attack should be designed by some-
one who does not know how the detection method works and the other way around.
However, this is out of scope for the thesis since it would have needed someone not
involved in the design of methods to design the attacks.

7.3 Future Work
The IDS is designed and implemented as a framework with support for adding of
more detection methods to the outer shell (which Section 4.1.1 describes). As of now
it can detect two types of attacks, three kinds of routing attacks and DoS-attacks
based on network flooding. These are some of the most common and destructive at-
tacks towards WSNs today, as argued earlier in the thesis, but new attacks that are
more dangerous can be implemented or discovered at any point. Thus, by making
sure that the framework is easy to extend will not make it outdated as soon as new
attacks and algorithms for detecting them are invented.

93

7. Discussion

For the first detection method further functionality could be added in order to save
the ”normal” state of energy consumption when an attack occurs. This could possi-
bly be done by saving more elements in the list and then, when an attack occurs the
latest values will be replaced by the older, lower, ones. This can be done in order
to generate continuous alarms that an attack is ongoing. This is just an idea of an
extension, and it would need to be designed, implemented and evaluated as a new
method in order to determine if it works as intended. Thereof, it is not a part of
this thesis.

It might also be possible to further increase the detection rate and lower the number
of false positives for the first detection method by combining the two algorithms. By
combining the algorithms it might be possible to set one of them to a stricter value
but not report anything until the other method agrees. However, this might not be
possible to actually implement with a good result. Further research and testing will
need to be performed in order to conclude if this would be feasible.

In contrary to the second detection method, the first only focuses on the process of
detection and does not have a remedy for the attacks. A possible extension to this is
to design a firewall for sensor nodes that keeps track of the senders IP-address and
excludes the IP-address of a node that has been detected as a malicious flooding
attack node. When such a node then tries to communicate with the node that runs
the IDS and the firewall, it will not succeed since the firewall will drop the packet
immediately. To make it more advanced, the sink node can be involved in the flag-
ging of a node as malicious and can also be in control of firewall updates regarding
adding and excluding nodes from the blacklist in the firewall.

One way that the second detection method could be extended would be to involve
the sink more in the blacklisting process. The system could be redesigned to make
nodes send alarms to the sink via broadcasts and re-broadcasts until the message
reaches the sink. Then, the sink will not blacklist the malicious node until a second
node marks the malicious node as evil. When that happens, the sink can send out
blacklist updates to all the nodes and recreate the routing graph with the malicious
node excluded.

Other future works includes a more thorough evaluation of the second detection
method on real hardware. Even though it has been tested and verified to work on
the Texas Instrumens CC2650STK platform, the evaluation (aside from the mea-
surements of energy consumptions) was performed in Cooja. To properly test the
method would require a lot of time and also computers to read the output of nodes
in order to make sure that it actually work as expected.

7.4 Reflections on Ethics and Sustainability
With an intrusion detection system, it is easy to see the ethical sides of the thesis.
Without protection of valuable systems, no one would be able to trust them and
therefore use them for safety-critical operations. For example, if a wireless sensor

94

7. Discussion

network is used to monitor a forest for detection of wild fires, it would be catastrophic
if someone attacks the network so that fire alarms do not reach the fire department.
It would be unethical to leave such a safety-critical network without protection. The
second detection method, RoVer, that this thesis proposes would solve the ethical
issue by providing both detection of and remedy for such attacks of the networks.
Therefore it is easy to see that this thesis performs well within an ethical perspective.

Regarding the perspective of sustainability, this thesis proposes the use of a dis-
tributed system for detection of attacks and intrusions. This means that a network
needs no additional nodes to detect attacks in comparison to the use of a centralized
approach. Therefore, no additional hardware is needed to protect against attacks
and therefore no additional hardware needs to be manufactured which in the end
means that sustainability is achieved with the use of the IDS framework. From an-
other perspective, the IDS uses more energy on the nodes which from the perspective
of sustainability is a bad thing. On the other hand, security is achieved which indi-
cates that there is a trade-off between the ethical part and the sustainability part.
Therefore, we as authors behind this thesis argue that some sustainability has to
be set aside in order to achieve the ethical perspective of gained protection against
attacks of vulnerable networks.

95

7. Discussion

96

8
Conclusion

This thesis introduce an IDS framework with three different techniques for detecting
attacks against wireless sensor networks. Two of the algorithms are based on en-
ergy consumption as a metric for detecting Denial of Service attacks against sensor
nodes. The two algorithms fall into the category of anomaly-based detection and
evaluation shows that they are not only functional but also effective at their task.
The two algorithms are called LiReg and IncA and they both prove to be effective
at detecting attacks with a detection rate of 75% each while still maintaining a low
number of false positives on 12.5% and 6.25% respectively throughout the evaluation.

One of the greater scientific contributions of this thesis is the second detection
method called RoVer which is short for Role-based Verification. RoVer is a method
for securing RPL routing by verifying message statistic claims from two sides of the
routing graph. RoVer demonstrates superb detection of attacks and has a detection
rate of 100% and a false alarm rate of only 6.25%. Through the evaluation it has
been shown that RoVer greatly improves the reliability of a network that is under
attack by a routing attack by encapsulating and excluding the malicious node from
the routing graph. Also, the evaluation shows that the induced latency by RoVer in
the network is minimal and not noteworthy.

The results in the thesis can easily be compared to other results from state of the
art research papers in the field of security for IoT and Wireless Sensor Networks.
The algorithms and methods that this thesis propose perform at least as good as
the techniques proposed by others in the field. The results from this thesis and from
the other researchers in the field serve as a basis for the conclusion that security for
the Internet of Things is no longer an issue and will be a decreasing future problem.

97

8. Conclusion

98

Bibliography

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Com-
puter networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] S. Burdakis and A. Deligiannakis, “Detecting outliers in sensor networks using
the geometric approach,” in 2012 IEEE 28th International Conference on Data
Engineering. IEEE, 2012, pp. 1108–1119.

[3] Thingsquare. (2017) Contiki: The Open Source OS for the Internet of Things.
[Online]. Available: http://www.contiki-os.org/

[4] M. Riecker, S. Biedermann, R. El Bansarkhani, and M. Hollick, “Lightweight
energy consumption-based intrusion detection system for wireless sensor net-
works,” International Journal of Information Security, vol. 14, no. 2, pp. 155–
167, 2015.

[5] C. Cervantes, D. Poplade, M. Nogueira, and A. Santos, “Detection of Sinkhole
Attacks for Supporting Secure Routing on 6LoWPAN for Internet of Things,”
in Integrated Network Management (IM), 2015 IFIP/IEEE International Sym-
posium on. IEEE, 2015, pp. 606–611.

[6] S. Raza, L. Wallgren, and T. Voigt, “SVELTE: Real-time intrusion detection in
the Internet of Things,” Ad hoc networks, vol. 11, no. 8, pp. 2661–2674, 2013.

[7] L. Wallgren, S. Raza, and T. Voigt, “Routing Attacks and Countermeasures in
the RPL-based Internet of Things,” International Journal of Distributed Sensor
Networks, 2013.

[8] A. Saeed, A. Ahmadinia, A. Javed, and H. Larijani, “Intelligent Intrusion Detec-
tion in Low-Power IoTs,” ACM Transactions on Internet Technology (TOIT),
vol. 16, no. 4, p. 27, 2016.

[9] Texas Instruments. (2017) CC13x0, CC26x0 SimpleLink™ Wireless MCU
Technical Reference Manual. [Online]. Available: http://www.ti.com/lit/ug/
swcu117g/swcu117g.pdf

[10] Moteiv Corporation. (2006) Ultra low power IEEE 802.15.4 compliant wireless
sensor module. [Online]. Available: http://www.eecs.harvard.edu/~konrad/
projects/shimmer/references/tmote-sky-datasheet.pdf

[11] I. El Korbi, M. B. Brahim, C. Adjih, and L. A. Saidane, “Mobility enhanced
RPL for wireless sensor networks,” in Network of the Future (NOF), 2012 Third
International Conference on the. IEEE, 2012, pp. 1–8.

[12] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flexible op-
erating system for tiny networked sensors,” in Local Computer Networks, 2004.
29th Annual IEEE International Conference on. IEEE, 2004, pp. 455–462.

99

http://www.contiki-os.org/
http://www.ti.com/lit/ug/swcu117g/swcu117g.pdf
http://www.ti.com/lit/ug/swcu117g/swcu117g.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf

Bibliography

[13] A. L. Colina, A. Vives, A. Bagula, M. Zennaro, and E. Pietrosemoli,
IoT in five Days. E-Book, june 2016, rev 1.1. [Online]. Available:
https://github.com/marcozennaro/IPv6-WSN-book/releases/

[14] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level
sensor network simulation with cooja,” in Local computer networks, proceedings
2006 31st IEEE conference on. IEEE, 2006, pp. 641–648.

[15] A. Dunkels, O. Schmidt, and T. Voigt, “Using protothreads for sensor node
programming,” in Proceedings of the REALWSN, vol. 5, 2005.

[16] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks,” Internet Requests for Comments, RFC
Editor, RFC 6550, March 2012, http://www.rfc-editor.org/rfc/rfc6550.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6550.txt

[17] G. Mulligan, “The 6LoWPAN architecture,” in Proceedings of the 4th workshop
on Embedded networked sensors. ACM, 2007, pp. 78–82.

[18] A. Dunkels, “Sicslowpan-internet-connectivity for low-power radio systems,”
SICS, 2008.

[19] Texas Instruments. (2016) Code Composer Studio (CCS) Integrated
Development Environment (IDE). [Online]. Available: http://www.ti.com/
tool/CCSTUDIO

[20] ——. (2016) Uniflash Standalone Flash Tool for TI Microcontrollers
(MCU), Sitara Processors & SimpleLink devices. [Online]. Available:
http://www.ti.com/tool/UNIFLASH

[21] P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits, “Denial-of-Service
detection in 6LoWPAN based Internet of Things,” inWireless and Mobile Com-
puting, Networking and Communications (WiMob), 2013 IEEE 9th Interna-
tional Conference on. IEEE, 2013, pp. 600–607.

[22] A. Ghosal and S. Halder, “A survey on energy efficient intrusion detection in
wireless sensor networks,” Journal of Ambient Intelligence and Smart Environ-
ments, vol. 9, no. 2, pp. 239–261, 2017.

[23] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne, “Evaluating
computer intrusion detection systems: A survey of common practices,” ACM
Computing Surveys (CSUR), vol. 48, no. 1, p. 12, 2015.

[24] I. Onat and A. Miri, “An intrusion detection system for wireless sensor net-
works,” in Wireless And Mobile Computing, Networking And Communications,
2005.(WiMob’2005), IEEE International Conference on, vol. 3. IEEE, 2005,
pp. 253–259.

[25] K. Weekly and K. Pister, “Evaluating sinkhole defense techniques in RPL net-
works,” in Network Protocols (ICNP), 2012 20th IEEE International Confer-
ence on. IEEE, 2012, pp. 1–6.

[26] C. Eik Loo, M. Yong Ng, C. Leckie, and M. Palaniswami, “Intrusion detection
for routing attacks in sensor networks,” International Journal of Distributed
Sensor Networks, vol. 2, no. 4, pp. 313–332, 2006.

[27] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-line energy
estimation for sensor nodes,” in Proceedings of the 4th workshop on Embedded
networked sensors. ACM, 2007, pp. 28–32.

100

https://github.com/marcozennaro/IPv6-WSN-book/releases/
http://www.rfc-editor.org/rfc/rfc6550.txt
http://www.rfc-editor.org/rfc/rfc6550.txt
http://www.ti.com/tool/CCSTUDIO
http://www.ti.com/tool/CCSTUDIO
http://www.ti.com/tool/UNIFLASH

Bibliography

[28] R. Droms, “IPv6 Multicast Address Scopes,” Internet Requests for Comments,
RFC Editor, RFC 7346, August 2014.

[29] Zolertia. (2013) Z1 Features: Quick Hardware Tour. [Online]. Available:
http://zolertia.sourceforge.net/wiki/index.php/Z1

[30] Texas Instruments. (2016) CC2650 SimpleLink™ Multistandard Wireless
MCUl. [Online]. Available: http://www.ti.com/lit/ds/symlink/cc2650.pdf

101

http://zolertia.sourceforge.net/wiki/index.php/Z1
http://www.ti.com/lit/ds/symlink/cc2650.pdf

Bibliography

102

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem Background
	Purpose
	Aim
	Previous Work
	Motivation
	Scope and Limitations
	Implementation, Software and Hardware
	Organization of the Rest of the Thesis

	Background
	Wireless Sensor Networks
	Contiki
	RPL
	6LoWPAN
	The Platform: Texas Instruments SensorTag CC2650STK
	Attacks against Wireless Sensor Nodes
	Basics about Intrusion Detection
	Detection of DoS-Attacks with Linear Regression

	Related Work
	Energy Consumption as a Metric
	Detection of Sinkhole Attacks in WSN
	Combined IDSs
	Our Contribution

	System Model and Design
	System Overview
	Detection Method 1: Anomaly-based DoS-Attack Detection
	Detection Method 2: RoVer

	Implementation
	Outer Shell
	Simple Sensor Program
	Anomaly-based DoS-Attack Detection
	RoVer
	Implementation of Attacks

	Evaluation
	Evaluation Overview and Goals
	Evaluation Methodology
	Evaluation Metrics
	Anomaly-based DoS-Attack Detection
	RoVer

	Discussion
	Analysis of Evaluation
	Limitations
	Future Work
	Reflections on Ethics and Sustainability

	Conclusion
	Bibliography

