

Development of SpaceWire interface in VHDL

Development of a SpaceWire interface in VHDL

Master of Science Thesis in Programme Electrical Engineering

DAVID JULIUSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden, February 2012

i

The Author grants to Chalmers University of Technology and University of Gothenburg the
nonexclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.

The Author warrants the he is the author to the Work and warrants that the Work does not contain
text, pictures or other material that violates the copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher
or a company), acknowledge the third party about this agreement. If the Author has signed a
copyright agreement with a third party regarding the Work, the Author warrants hereby that he has
obtained any necessary permission from this third party to let Chalmers University of Technology
and University of Gothenburg store the Work electronically and make it accessible on the Internet.

Development of a SpaceWire interface in VHDL

© David Juliusson, February 2012.

Examiner: Kjell Jeppson.

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Department of Computer Science and Engineering
Chalmers University of Technology

ii

Abstract

In space, as on earth, there is a need for fast, reliable and reusable point-to-point data
communication. The SpaceWire standard developed by the European Space Agency
together with the European Space Industry and Academia aims to provide a unified
standard that can support most data communication needs during space missions. The goal
of this master thesis is to design and implement a SpaceWire Codec, compliant with the
SpaceWire standard as described in ECSS-E-ST-50-12C, and make the design efficient
enough to support the needs for the foreseeable future.

During this master thesis a SpaceWire Codec have been designed, implemented and
verified. During the design, focus has been on size, speed and re-usability as the pre-
existing solutions does not meet all the requirements emerging at RUAG Space AB. The
SpaceWire Codec implemented during this theses is used to handle the low level reception
and transmission of data and control characters over the SpaceWire link and provide an
easy to use interface.

Verification and synthesis of the SpaceWire Codec shows that the design can deliver
contiguous transfer rates of one useful byte, transferred and received every BusClk, while
still being lightweight in terms of digital logic. Further verification steps needs to be
performed in order to make the SpaceWire Codec suitable for its planned space missions.

iii

Sammanfattning

I rymden, såväl som på jorden, finns ett behov av snabba och robusta data interface.
SpaceWire standarden, utvecklad av ESA tillsammans med företag och universitet, är ett
försök att skapa en standard där större delen av den datakommunikation som finns i såväl
satelliter som raketer ska kunna rymmas. Målet med det här ex-jobbet är att designa och
implementera SpaceWire standarden som den beskrivs i ECSS-E-50-12A och samtidigt
göra designen tillräckligt effektiv för att RUAG Space ska kunna använda modulen i
framtida produkter.

Under arbetets gång har en SpaceWire Codec blivit designad, implementerad och
verifierad. Under designfasen låg fokus på storlek, prestanda och användbarhet då äldre
lösningar inte längre klarar de krav som växt fram på RUAG Space. Den SpaceWire Codec
som implementerats här sköter all lågnivå hantering av data över SpaceWire länken och ger
samtidigt resten av designen lättanvänt interface.

Verifikation och syntes av den föreslagna lösningen visar att designen klarar den prestanda
som sattes upp som mål i början av arbetet. Designen är dessutom förhållandevis effektiv
vad gäller digital logik samt går att konfigurera beroende på vilka behov som finns.
Ytterliggare tester och en full verifierings svit krävs dock innan den SpaceWire Codec som
implementerats är klar för sina kommande missioner.

iv

About the author

David Juliusson is a Master of Science student in Integrated Electronic System Design
(Department of Computer Science and Engineering) and began his studies at Chalmers
University of Technology in 2006 in the Electrical Engineering programme. Having prior
experience from developing modules for space applications for both FPGAs and ASICs the
main challenge during this thesis has been to write the requirements and to design robust
asynchronous interfaces.

v

Preface

This master thesis was performed at the department of Integrated Electronics System
Design at Chalmers. The work started at the spring of 2010 and the final report was
completed during April 2012. The practical work was performed at the company RUAG
Space AB in Gothenburg.

RUAG Space is a subdivision of RUAG Group in Switzerland. The Company specializes in
designing and producing both hardware and software for space missions with data handling
systems as one of their major product areas.

Of the people involved in this project I would like to extend a special thanks to the
following from RUAG Space.
I would like to thank Andreas Karlsson my tutor at RUAG Space, for his support in making
the design fit company needs. I would also like to thank Peter Spjuth and Karl Engström for
their insight into asynchronous interfaces and ASIC-design.

From Chalmers I would like to thank Kjell Jeppson for his support and knowledge of
microelectronics.

Göteborg 2012

David Juliusson

vi

Bit Numbering
The following conventions are used for bit numbering:
• The Most Significant Bit (MSB) of a vector has the leftmost position.
• The Least Significant Bit (LSB) of a vector has the rightmost position.
• Unless otherwise indicated, the MSB of a vector has the highest bit number and the

LSB the lowest bit number.

Radix
The following conventions are used for writing numbers:
• Binary numbers are indicated by the subscript “2”, e.g. 12, 1011_1010_1011_11102,

0100102 etc.
• Decimal numbers are indicated by the subscript “10”, e.g. 67,872310, 4786010.
• Hexadecimal numbers are indicated by the subscript “16”, e.g. E16 BABE16.
• Unless the Radix is explicitly declared as above the number should be considered to be

decimal number.

Signal Names
The following conventions are used for signal names:
• Signal names are written in italics, e.g. SignalName.
• Bus indices are indicated with brackets, e.g. SignalName[12:3].
• Signals maybe grouped into subsignals, e.g. SignalName.SubSignal.

Graphics legend
Standard graphics for state- and mode- graphs.

Idle

State or modes are pictured as circulars. Double circle indicates the
Reset/Initial state or mode.

Request
Lock
Wait

Single circle indicates State or modes.

 Normal transition

 Exceptional transition

Basic data types
Byte 8 bits of data
HalfWord 16 bits of data
Word 32 bits of data

Character types
N-Char Data characters, EOP and EEP.
L-Char FCT, NULL and TimeCode

vii

Abbreviations

ASIC Application Specific Integrated Circuit
BusClk System clock
DFF Digital Flip-Flop / register
DS Data-strobe
ESA European Space Agency
ECSS European Cooperation for Space Standardization
FPGA Field Programmable Gate Array
HW Hardware
Id Identifier
I/F Interface
IO Input/Output
IP Intellectual Property
LSB Least Significant Bit
LSW Least Significant Word
LVDS Low Voltage Differential Signal
MSB Most Significant Bit
MSW Most Significant Word
MTBF Mean Time Between Failures
N/U Not Used
RTL Register Transfer Layer
SDF Standard Delay Format
SEU Single Event Upset
SW Software
TB Test Bench
TBC To Be Confirmed
TBD To Be Determined
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

viii

Contents
1 Introduction .. 1
1.1 Purpose .. 1
1.2 Delimitations .. 1
1.3 Method .. 2
1.4 Key results ... 2
1.5 Decomposition ... 3
2 System view and background information ... 4
2.1 SpaceWire as a concept ... 4
2.1.1 Applications... 5
2.1.2 From test to mission.. 6
2.1.3 Network... 6
2.1.4 Additional protocols ... 7
2.2 SpaceWire heritage and improvements.. 8
2.2.1 Pre-existing standards ... 8
2.2.2 Improvements .. 8
2.2.3 Revision .. 8
2.3 SpaceWire protocol... 9
2.3.1 Protocol levels.. 9
2.3.2 Levels of the Codec .. 9
2.4 The SpaceWire Codec ... 10
2.5 Digital logic in space... 12
2.5.1 Effects of radiation ... 12
2.5.2 ASIC technology .. 12
2.5.3 FPGA technology ... 12
3 Requirements and demands .. 13
3.1 Company specific demands.. 13
3.1.1 Small footprint ... 13
3.1.2 Straightforward configuration parameters ... 13
3.1.3 Configurable transfer rates... 13
3.1.4 Small BusClk asynchronous regions ... 14
3.1.5 Easy post synthesis placement ... 14
3.1.6 Self calibrating timeout counters .. 14
3.1.7 BusClk synchronous interface.. 14
3.2 Non-formal demands... 14
3.2.1 Coding standard ... 14
3.2.2 Design partitioning ... 14
3.3 Requirements ... 15
3.3.1 Signal encoding and transition constraints... 15
3.3.2 Data signal rate constraints .. 16
3.3.3 Serial interface characters.. 17
3.3.4 Link timing .. 18
3.3.5 Parity generation and error detection .. 18
3.3.6 Link status signals .. 19
3.3.7 Start-up procedure .. 20
3.3.8 N-Char buffers ... 22
3.3.9 Flow control... 23

ix

3.3.10 TimeCode interface .. 24
3.3.11 Data and control interface.. 25
4 Functional design .. 27
4.1 Design partitioning.. 27
4.1.1 Codec as described in the SpaceWire standard................................... 27
4.1.2 The proposed design ... 28
4.2 Overview ... 29
4.2.1 Function .. 29
4.3 Data Interface ... 29
4.4 Configuration ... 30
4.4.1 Data sample groups... 30
4.4.2 Rx Async IF FIFO .. 30
4.4.3 Character Buffer ... 31
4.4.4 Rx FIFO Size ... 31
4.4.5 Data transmit groups ... 31
4.4.6 Tx FIFO Size ... 31
4.5 Rx Pipeline... 32
4.5.1 Receiver .. 32
4.5.2 Rx asynchronous interface... 33
4.5.3 Rx token handler .. 34
4.5.4 Rx FIFO .. 35
4.6 Tx Pipeline... 36
4.6.1 Timer .. 37
4.6.2 Tx FIFO .. 37
4.6.3 Tx token generator.. 37
4.6.4 Tx asynchronous interface ... 37
4.6.5 Data strobe generator .. 39
4.6.6 Tx driver.. 39
5 Verification .. 41
5.1 Simulation.. 41
5.1.1 Test bench description... 41
5.1.2 Test bench commands ... 42
5.2 Test bench receiver capabilities .. 43
5.2.1 Monitors .. 43
5.3 Test bench transmitter capabilities .. 43
5.4 Test procedures... 44
5.4.1 Start-up test.. 44
5.4.2 TimeCode test .. 45
5.4.3 Data test .. 45
5.4.4 FCT test... 47
5.4.5 FIFO flush test ... 48
5.5 Verification in hardware .. 49
6 Results ... 50
6.1 Implementation results .. 50
6.1.1 Design ... 50
6.1.2 RTL implementation ... 51
6.1.3 Test bench implementation .. 51
6.1.4 Hardware verification ... 51
6.2 Size ... 52

x

6.2.1 Minimum configuration .. 52
6.2.2 Maximum configuration .. 53
6.2.3 Size comparison ... 53
6.3 Performance ... 54
6.3.1 MH1.. 54
6.3.2 ATC18 .. 55
6.4 Future development... 55
7 Conclusions .. 56
8 References.. 57

1

1 Introduction

RUAG Space is interested in developing a new SpaceWire interface to complement the
existing solution provided by the European Space Agency (ESA). The main reasons for
designing a new company controlled SpaceWire interface are twofold. The existing
solution does not meet all size and performance needs for future ASIC and FPGA designs.
There is a need for both light weight configurations, suitable for FPGA remote terminal
applications, as well as high bandwidth configurations that can handle transmitting as well
as receiving a large number of bits every clock cycle. Secondly the licensing process, when
using the existing solution, as well as the cumbersome procedures post synthesis is time
consuming.

The new module should fit three major roles. The first is as a fast, yet lightweight
SpaceWire interface in the modular test environment called COFTA. The second role is to
provide small remote terminal FGPA designs with an area effective SpaceWire interface.
The third is to take the role of the existing solution as a fast data interface, preferably being
able to handle more bits per BusClk (System clock) then the design used today.

1.1 Purpose

The purpose of this master thesis is to write the specification for the new SpaceWire
interface, design and implement the SpaceWire interface in VHDL and finally verify the
design by running the design in a test-bench as well as in hardware, on a FPGA platform.

The design goals are to make the design an all purpose SpaceWire module that is able to
handle receiving and transmitting one useful byte of data every BusClk cycle, to design the
input and output regions as small and uncomplicated as possible in order to minimize skew
and to make the design suitable for high bandwidth applications.

1.2 Delimitations

The thesis covers the implementation of a SpaceWire Codec, aimed to be used for space
missions, as described in [ECSS SPW] with a few exceptions.

• Chapter 5: The physical level of the SpaceWire interface is not covered as it is not a
part of the digital design.

• Chapter 10: The network level is only covered briefly as it is not a part of the work
done during the digital design.

• The work does not cover Low Voltage Differential Signal (LVDS) drivers as these
will be supplied by third party.

• Flight readiness: The SpaceWire Codec designed and tested during this thesis will
not be ready for flight production. A more complete test-bench covering all
requirements will be needed, together with code inspection and validation.

2

1.3 Method

During the three different stages of the design the following methods were used.
• The method used to design the SpaceWire Codec was to first find the key features

needed for each application. This was done by studying both the SpaceWire
standard as well as the complementing SpaceWire protocol standards. The design
proposed in the SpaceWire standard was analysed and a new design, with a
different topology more suitable for the needs of RUAG Space AB was proposed.

• During the development of the code, focus was on implementing the design as
efficiently as possible and to implement effective ways to tailor size versus
performance. The development of the code also took into account the hazards of
digital logic in space in order to make the design robust enough to qualify for space
missions.

• During the verification of the design, test cases were written and a full spacewire test
bench was developed. The basic functionality of the SpaceWire Codec was verified
in both simulation and during tests on a FPGA platform. The tests worked as a
proof of concept for the design and the SpaceWire Codec has since been submitted
to a full verification by RUAG Space AB in order to qualify for use during
missions.

1.4 Key results

The basic design of the SpaceWire Codec developed during this thesis proved to be good
enough for use in space missions, after further testing by RUAG Space AB. The codec has
already been incorporated into ASIC and FPGA designs as well as into IP-cores. The
design proved to be easy to integrate into projects and the BusClk synchronous interface
spawned the idea of a standardized internal interface for data packets, now used by many of
the designs developed at RUAG Space AB in Gothenburg. The implementation of the
SpaceWire Codec has proved to be effective in terms of digital logic and the different
configuration options allow the hardware designer instantiating the codec to tailor
performance and size the specific needs of the project. Synthesis of the design revealed that
the SpaceWire Codec is capable of speeds exceeding that of the standard. As a final note
the more than 11 000 lines of VHDL code written during this thesis has and hopefully will
continue to serve RUAG Space AB for years to come.

3

1.5 Decomposition

The chapters of this master thesis are distributed in the following manner.
• Chapter 2 will present the SpaceWire protocol from a system point of view. This

chapter also includes the protocol levels of the SpaceWire Codec implemented
during this thesis as well as a short description of the different hazards associated
with digital logic in space.

• Chapter 3 contains the requirements derived from the SpaceWire standard as well as
the company specific demands placed upon the design by RUAG Space AB.

• Chapter 4 contains an in depth description of the functional design for every block of
the design. The chapter describes design decisions made during the development as
well as justifications for these.

• Chapter 5 contains the verification of the SpaceWire Codec. The chapter describes
both the functional tests performed during the verification as well as the setup for
the tests done in hardware.

• Chapter 6 contains the final results of work done during this thesis. This includes the
test results as well as the performance and size of the final design. The chapter also
include future improvements to further develop the SpaceWire Codec proposed in
this thesis.

• Chapter 7 contains the conclusion.
• Chapter 8 contains the references.

4

2 System view and background information

This chapter covers the SpaceWire interface and its role from a system point of view as
well as a brief technology study. The chapter is included to give a better understanding of
the protocol, where it originated from and the demands and limitations that this applies to
the actual design and verification work done during this thesis.

The chapter starts with a short description of the SpaceWire link as a concept, focusing on
the system view and possible applications. A description of the development of the
SpaceWire standard follows, including pre-existing standards on which the SpaceWire
protocol is built and possible future updates. After the introduction to the standard, two
sections follows that handle the protocol layers of the SpaceWire interface and the layers
that the SpaceWire Codec is responsible for maintaining. The last subsection includes an
overview of the specific demands placed on digital hardware designed for space
applications as well as a description of the technologies available.

2.1 SpaceWire as a concept

The SpaceWire standard was developed in order to give space missions a versatile,
standardized data interface capable of handling multiple roles. The standard specifies a full-
duplex, point-to-point, serial data communication link capable of data rates between 2
Mbps and 400 Mbps. The ESA SpaceWire standard [ECSS SPW] covers everything needed
to pass information over the link, from the physical level to the network level. The
SpaceWire standard also addresses the need for time distribution as well as includes a well
defined start-up and error recovery scheme.

Beside the SpaceWire standard, there exist additional protocols that give the SpaceWire
link more functionality. The remote memory access protocol (RMAP), as described in
[ECSS RMAP] gives the system remote memory access capabilities, enabling the
possibility for remote terminal applications without the direct support of a central
processing unit (CPU). CCSDS Packet Transfer Protocol (CPTP), as specified in [ECSS
PTP] is another protocol that is contained within a SpaceWire packet. PTP is a transfer
protocol used to send one packet through a SpaceWire network to the appropriate
destination.

5

2.1.1 Applications

The SpaceWire link can support a wide range of applications thanks to the large span of
available data rates and the inherit data safety of the protocol. There are also some benefits
of using a protocol that is capable of accommodating applications that range from rather
slow control interfaces to high speed data buses. This enables the use of standardized
reusable equipment like routers and CPUs to be available off-the-shelf. An example of the
possible applications is shown in Figure 1 below.

Figure 1: The SpaceWire link connecting the system

The SpaceWire protocol is able to support various tasks like connecting mass memory units
(MMU) and instrument control units (ICU) with the CPU and the Telemetry/Telecommand
devices (TM/TC) as seen in the example in Figure 1.

The main benefit of using the same protocol for everything from low speed control
applications to high speed data transfers is the re-usability of components and subsystems,
lowering the development cost for new systems and increasing system reliability.

The routing schemes make it possible to bypass routers if needed, when using the Target
logical address as routing byte. It should be possible to, for instance, connect the MMU
directly to the CPU in Figure 1 without any alterations. This can be useful during validation
campaigns when the entire system might not be present at one location.

6

2.1.2 From test to mission

The SpaceWire protocol is suitable for use both during space missions and during the
development and debugging phase pre-flight.

Figure 2: Benefits of a standardized interface

Commercial products make it possible to connect a normal PC, via an Ethernet to
SpaceWire-bridge, to the system under test as seen in Figure 2. When both systems have
been validated, possibly at different location, the integration work can be performed at the
assembly site.

2.1.3 Network

The network chapters of [ECSS SPW] are not covered during this thesis but a brief
introduction is included in order to give a better understanding of the system as a whole.

As the SpaceWire link offer only point-to-point data communication, a network of routers
is needed to make efficient use of the resources. Figure 3 depicts one type of network
topology available for SpaceWire systems.

7

Figure 3: Network topology

A SpaceWire packet travelling through the network will be fitted with one or more routing
bytes in the primary header of the packet. There are two routing schemes that can be used;

• The first scheme uses only a Target Logical Address to guide the packet to the
correct destination.

• The second makes use a series of Target SpaceWire Addresses, preceding the Target
Logical Address of the packet. These Target SpaceWire Address bytes will be
stripped of one by one as they guide the packet to its final destination.

2.1.4 Additional protocols

The SpaceWire standard on its own does not cover all the functionality needed during
missions and for that purpose, additional protocols can be used to give the system more
capabilities. The CCSDS Packet Transfer Protocol (PTP) and the Remote Memory Access
Protocol (RMAP) are not covered during the work done for this thesis but a short
description is included in order to give an idea of normal system usage.

The CCSDS PTP, as described in [ECSS PTP], is a generic packet transfer protocol used to
guide a packet of data from source to destination in a SpaceWire network. The protocol
does not provide services that ensure correct or timely data delivery.

RMAP is used to distribute memory access rights to other members of a SpaceWire
network. This enables a CPU to control remote terminal devices by accessing memory
locations as well as status and control registers.

8

2.2 SpaceWire heritage and improvements

This subsection covers the pre-existing standards on which the SpaceWire protocol
was built together with improvements, specific to the SpaceWire protocol and
possible future updates.

2.2.1 Pre-existing standards

The SpaceWire protocol is a derivative of the IEEE 1355-1995 standard [IEEE 1355-1995].
The SpaceWire standard share the same character setup for data and control character
handling but have some additions and clarifications making it suitable for use in space
applications.

The electrical interface of the Low Voltage Differential Signalling (LVDS) interface is
compliant with the standard ANSI/TIA/EIA-644.

The Data-strobe (DS) encoding of the transmitted bits is defined in IEEE 1355-1995 as
well as in IEEE 1394.1995, better known as FireWire.

2.2.2 Improvements

Improvements to the existing IEEE 1355-1995-standard have been made to make the
SpaceWire protocol more rugged, lower the power consumption, improve EMC-
performance and to address ambiguities in the pre-existing standard. The SpaceWire
Standard also cover networking solutions and router functionality not implemented during
this thesis work.

The main differences between the IEEE 1355-1995-standard and the SpaceWire standard
that are relevant to this thesis are listed below:

• Signal level: The SpaceWire protocol use LVDS instead of PECL.
• Character level: The use of the ESC character is explicitly defined.
• Exchange level: Ambiguities during link start-up resolved.

2.2.3 Revision

The SpaceWire standard, in its current form, cover transfer rates from 2 Mbps to 400 Mbps
but a revision of the standard is pending. One suggestion is that the 2 Mbps boundary might
be lowered together with a lengthening of the timeout times.

The upcoming revision also includes a clarification of the TimeCode characters as the
existing standard leaves room for interpretations.

9

2.3 SpaceWire protocol

This section will give a brief introduction to the protocol levels associated with the
SpaceWire protocol and the levels covered by the SpaceWire Codec developed during this
master thesis.

2.3.1 Protocol levels

The SpaceWire standard covers the following protocol levels:
• Physical: Defines cables, connectors etc.
• Electrical: Defines voltage levels and noise margins.
• Signal: Defines signal encoding and data signalling rates.
• Character: Defines data and control characters.
• Exchange: Defines link initialization, error detection and recovery as well as flow

control and time distribution.
• Packet: Defines packets and data flow over the link.
• Network: Defines the structure for networks of routers and end users.

The list of protocol levels above is altered slightly from the original as described in [ECSS
SPW]. In order to get a straightforward mapping of the protocol layers associated with the
SpaceWire Codec, the original Signal layer have been split into the Electrical level and the
Signal level.

2.3.2 Levels of the Codec

The SpaceWire Codec is responsible for handling the levels ranging from the Signal level
to the Exchange level. The SpaceWire Codec’s main purpose is maintaining the link,
performing the links initialization sequence when restarted and performing flow control by
reception and distribution of flow control tokens. This also means that the SpaceWire
Codec is only responsible for the low level maintenance of the link and does not contain
any network services.

10

2.4 The SpaceWire Codec

The main functions of the SpaceWire Codec are to handle the low level bit transfers over
the link, as well as handle the link initialisation sequence and the error detection and
recovery scheme. The Codec is also responsible for the handling of the specific characters
used for time distribution and flow control, as well as the characters used for defining
packet boundaries and erroneous packet terminations.

Figure 4: SpaceWire Codec overview

There are three main structures inside a SpaceWire codec.
• Tx-pipeline: Responsible for transmitting data and control characters.
• Rx-pipeline: Responsible for receiving and validating characters.
• Control logic: Holds the state of the codec and is responsible for the start-up and the

termination of the link.

In Figure 4 the Tx-pipeline can be recognised as all structures that have downwards
pointing arrows. The transmitted characters can originate from outside sources, depicted as
memory in Figure 4, or from internal ones, i.e. the Control logic.
The Rx-pipeline can be recognised as all structures with upwards pointing arrows in Figure
4. The received characters can be consumed within the codec, as in the case of link specific
characters, or be distributed to outside receivers for storage or processing.
The Control logic is the glue that keeps the Rx- and the Tx-pipelines in sync.

11

The SpaceWire Codec as designed during the thesis aims at being a self contained entity
providing an easy to use BusClk synchronous interface to the rest of the design. All non
BusClk synchronous blocks of the Codec and their asynchronous interfaces are kept
module internal. The reason for this is twofold. First, interfacing with a BusClk
synchronous module is not as time consuming as interfacing over a clock boundary. The
work of designing an asynchronous interface is only performed once, during the initial
module design. Further more, including more of the functionality within the Codec makes it
easier to optimize the design both in terms of performance and in terms of size.

To clarify the actions performed by a SpaceWire Codec, during nominal operation, a
walkthrough of the actions done by the Tx-pipeline during packet transmission follows
below.

Figure 5: Data flow for transmission

The SpaceWire Codec receives packets of data directly from memory or from other
supporting circuits as seen in Figure 5. The codec then generates data and control
characters from the incoming data packet to make it ready for transmission. After a
character is scheduled for transmission it will receive the parity bit, used for character
validation by the receiving end of the SpaceWire link. In the last step, inside the transmitter
in Figure 5, the character is serialized, Data-Strobe (DS) encoded and accelerated to double
data rate before being handed over to the LVDS driver.

12

2.5 Digital logic in space

This subsection will cover some of the specific problems associated with designing digital
hardware for space applications and the techniques used to handle or contain them.

2.5.1 Effects of radiation

All digital hardware used in space needs to be designed to take the effects of radiation into
account. Besides degradation of the silicon, the one big risk for digital hardware in
hazardous environments is a single upset event (SEU). These are caused by the digital
hardware being struck by an ion and can cause a register to shift value, thus making the
execution falter or fail.

There are several techniques used to deal with the effects of radiation. The logic cells needs
to be radiation hardened, meaning that they are designed to have a better tolerance to
radiation. But as the available technologies get smaller and faster, their radiation tolerance
gets worse. To compensate for this triple buffering with voting is used. This ensures that no
erroneous values get propagated even if one of the registers would get an SEU, but it does
not protect against the sampling of an erroneous value. If an ion were to strike at the same
time as the registers are sampling in a new value all three could sample the incorrect value
with no chance of recovery. To overcome this triple buffering with a skewed clock can be
used. This will force the registers to sample their value at different points in time giving
them better radiation protection at the cost of performance.

But even well designed libraries can get an SEU more work needs to be done. The effects
of an SEU can be lessened by making the state machines and other control logic SEU
proof. This means that even if an SEU occurs, the state machines will have a valid state to
fall back to and continue execution.

2.5.2 ASIC technology

There are a few ASIC technologies available for digital logic designed for space. The two
that the SpaceWire codec, designed during the thesis, was synthesized to were;

• MH1: a 350 nm technology provided by Atmel.
• ATC18: a 180 nm technology provided by Atmel.

One of the goals with the SpaceWire Codec was that it should be capable of 200 Mbps in
both receive and transmit with MH1 and double that in ATC18.

2.5.3 FPGA technology

There are not many manufacturers of FPGA technology designed for space mission. The
FPGAs suitable for space are not as big as commercial ones. One of the goals with this
design was that it should be capable of residing in a small Microsemi RTSX-FPGA with
only 2000 registers and still leave room to spare for useful digital logic.

13

3 Requirements and demands

This chapter will list the requirement and demands for the design. The chapter starts with
specific demands and limitations that RUAG Space put on top of SpaceWire standard,
followed by the requirements derived from the SpaceWire standard as described in [ECSS
SPW]. The demands and requirements are written to give the SpaceWire Codec a solid
foundation on which to design, build and verify. The main difference between the demands
and the requirements is that demands use the less binding term “should” where
requirements use the term “shall”.

3.1 Company specific demands

This sub section lists the company specific demands, as described by RUAG Space to make
the design fit company needs. Demands are not written in a way so that they can be easily
verified, instead focus have been on describing the general idea of the module and specify
what areas of the design to focus on.

3.1.1 Small footprint

The module should ideally be light weight in terms of digital logic. This point is one of the
main concerns of RUAG Space as the main goal of the design was to be able to fit inside
the rather small FPGAs suitable for space mission and still leave room for useful digital
logic. The minimum configuration should aim at using less then 500 registers including all
data storage needed to get the SpaceWire link up and running.

3.1.2 Straightforward configuration parameters

In order to facilitate future implementations of the codec into projects, well defined and
efficient configuration parameters are needed. The size of the data handling parts of the Rx
and Tx regions as well as buffers and data storage in the BusClk region should ideally scale
linearly with the bandwidth requirements for the specific application.

3.1.3 Configurable transfer rates

Generics should make it possible to configure the SpaceWire Codec for everything from
small light weight designs to full 10 bits received and transmitted every BusClk. The design
and configuration should allow asynchronous data rates for Rx and Tx meaning that the
design should be able to handle a combination of full and minimum speed in the same
design.

14

3.1.4 Small BusClk asynchronous regions

The design should be such that the Rx- and Tx-regions contain a minimum of digital logic.
This is important in order to keep power demands low as the receiver and the transmitter
usually operate at a much higher frequency then the system clock.

3.1.5 Easy post synthesis placement

The design should allow for easy implementation into projects. In order to make the back-
end work as streamlined as possible the design should only include the bare minimum of
falling edge registers. Also the need for hand placing of logic or registers should be kept to
a minimum.

3.1.6 Self calibrating timeout counters

The timeout counters, responsible for the disconnect timeout as well as the exchange
timeout periods, should be self calibrating. This will make the design more self sustained
and minimize the need for configuration pins and / or processor interference.

3.1.7 BusClk synchronous interface

Make sure all asynchronous interfaces over clock boundaries should be module internal to
facilitate future implementations of the module into designs.

3.2 Non-formal demands

This section covers the non-formal demands applied to the design in order to make it fit
company needs and make it suitable for future development.

3.2.1 Coding standard

Write the code using company coding standard as described in [RUAG CSTD].

3.2.2 Design partitioning

Partition the design in a tidy manner and make sure its modular enough to be able to be
updated to future SpaceWire standards.

15

3.3 Requirements

The following subsections contain the formal requirements for the SpaceWire Codec. The
requirements are divided into sections based on what function or part of the system they
belong to. Each requirement is also written to target only one aspect and to be easily
mapped into test scenarios.

The requirements in this document are numbered. The syntax is:

R/SWC.<increment> - <requirement heading>
<requirement text>
<requirement comment>

Where:
<increment> is an incremental number used within each group of requirements.
<requirement comment> Notes are not part of the formal requirement and should be
considered as an extra explanation to the requirement or as a definition of the meaning of
words within the requirement text.

If a requirement is no longer valid this will be indicated by the text "Deleted".
Requirement numbers may not be removed or reused.

3.3.1 Signal encoding and transition constraints

R/SWC.005 - Signal encoding:
The SpaceWire Codec shall use Data-Strobe (DS) encoding as described in IEEE Standard
1355-1995. An example is included in Figure 6 below.

Figure 6: Data-Strobe example

R/SWC.010 - Receiver simultaneous signal transition:
The receiver shall be fault tolerant during simultaneous transitions on both Data and Strobe
input signals.

Note 1: Simultaneous transitions on a link that is up might force the link to go through the
Link initialization procedure.

Note 2: Fault tolerant means that link errors are acceptable but no dead-lock should occur
as a result of simultaneous transitions.

R/SWC.015 - Transmitter simultaneous signal transition:

16

The transmitter shall not toggle both Data and Strobe signals during normal operation, this
includes link down reset during the Link initialization procedure.

R/SWC.016 - Transmitter duty cycle:
The duty cycle of the transmitted clock shall be 50-50 during contiguous operation.

R/SWC.017 - Transmitter duty cycle at data rate shift:
During data rate shift, no half cycle of the transmitted clock shall be shorter then the half
cycle of the faster data rate.

3.3.2 Data signal rate constraints

R/SWC.020 - Minimum data signalling rate:
The minimum data signalling rate at which the SpaceWire shall operate is 2 Mbps.

Note 1: The minimum data signalling rate is set by the disconnect timeout 850 ns.

R/SWC.025 - SpaceWire Codec maximum signalling rate:
The SpaceWire Codec shall be able to be configured to reach a maximum signalling rate of
10 bits received and transmitted every BusClk.

Note 1: The actual maximum signalling rate is also depending on the electrical
characteristics of the link.

Note 2: The SpaceWire Codec should be capable of at least 200 Mbps throughput using
MH1 and 400 Mbps using ATC18.

R/SWC.120 – Link initialization signalling rate:
During link initialization the SpaceWire Codec shall be capable of sending and receiving
characters at 10 (+/- 1) Mbps.

R/SWC.030 - SpaceWire Codec operational signalling rate for receiver:
The SpaceWire shall be able to receive data at any rate between the minimum signalling
rate and the maximum signalling rate.

Note 1: The maximum signalling rate is dependent upon configuration.

R/SWC.035 - SpaceWire Codec operational signalling rate for transmitter:
The SpaceWire shall be able to transmit data at any rate between the minimum signalling
rate and the maximum signalling rate given that the rate is the same as or an integer
division of SpwClk * 2.

17

3.3.3 Serial interface characters

R/SWC.040 - Data and control characters:
The data and control characters shall be as described in chapter 7.2 and 7.3 in [ECSS
SPW]. The different characters are illustrated in Figure 7 below for reference.

P 0 X X X X X X X X

P 1 0 0

P 1 0 1

P 1 1 0

P 1 1 1

Data Characters

Parity bit

Data-control flag

FCT Flow control token

EOP Normal end of packet

EEP Error end of packet

ESC Escape

P 1 1 1

P 1 1 1

NULL

Time-Code

LSB MSB

0 1 0 0

0 1 T T T T T T F F
MSBLSB

Figure 7: Data and control characters

Note 1: NULL is made up of an ESC character followed by an FCT.

Note 2: Time-Code is made up of an ESC character followed by a Data Character.

R/SWC.041 – Escape Error
ESC followed by any other character then an FCT or a Data Character is considered a
forbidden combination and shall cause an Escape error event.

R/SWC.045 - Data and control character priority:
The priority of the data and control characters shall be as described in section 8.3.n of
[ECSS SPW]. The priority of the characters is included in Table 1 below for reference.

Table 1: Priority table for character transmission

Priority Character
Highest Time-Code
 FCT Flow control token
 N-Chars
Lowest NULL

18

3.3.4 Link timing

R/SWC.050 – Deriving timing time.
The SpaceWire Codec shall derive the disconnect timeout time of 850 ns as well as the
Exchange timeout periods of 6.4 us and 12.8 us from the 10 Mbps transmitter clock during
the Start-up cycle.

R/SWC.055 – Disconnect timing:
The SpaceWire Codec shall assert the disconnect timeout event if the link has been quiet
for more then 850 ns (between 727 ns and 1000 ns) after the last received bit.

R/SWC.060 – Disconnect timing start:
The disconnect timer shall not start measuring the disconnect time until the first bit has
been received.

R/SWC.065 – Exchange timeout periods:
The nominal timeout period of 6.4 us shall be from 5.82 us to 7.22 us long and the 12.8 us
timeout period between 11.64 us and 14.33 us long.

R/SWC.070 – Deleted

3.3.5 Parity generation and error detection

R/SWC.075 - Transmitter parity generation:
The transmitter shall generate a parity bit as described in 7.4 in [ECSS SPW]. The parity
coverage is illustrated in Figure 8 below.

P 0 X X X X X X X X P 1 0 0P 1 0 1

Data Characters FCT EOP

Parity coverage Parity coverage

Figure 8: Parity coverage

Note 1: The parity bit is calculated over character boundaries as seen in Figure 8.

R/SWC.080 - Receiver parity detection:
The receiver shall be capable of detecting parity errors.

R/SWC.085 – Character validation:
A received character shall not be acted upon until the parity has been checked.

R/SWC.090 - Parity error handling:
When the link receives a character with parity error the character associated with the parity
error and all following characters until the link has reset and left the ErrorReset state shall
be considered invalid.

19

3.3.6 Link status signals

R/SWC.095 – RxErr:
RxErr shall be asserted when the following statement is true:
Parity error detected or
Escape error detected or
Disconnect timeout event detected.

R/SWC.100 – gotFCT:
gotFCT shall be asserted when the SpaceWire Codec receives a valid FCT character.

R/SWC.105 – gotN-Char:
gotN-Char shall be asserted when the SpaceWire Codec receives a valid normal character
(N-Char).

R/SWC.110 – gotTimeCode:
gotTimeCode shall be asserted when the SpaceWire Codec receives a valid TimeCode
character.

R/SWC.115 – CreditError:
CreditError shall be asserted when any of R/SWC.250 or R/SWC.270 is true.

20

3.3.7 Start-up procedure

All states of the SpaceWire Codec and all possible transitions are shown in Figure 9.

Figure 9: Start-up procedure and Main FSM

R/SWC.125 – Link up in noisy environment:
All characters shall be ignored until the first valid NULL-token has been received. After
receiving the first valid NULL-token the SpaceWire Codec will consider the link up.

Note 1: Noisy environment means that signal transitions might occur before the first valid
NULL-character.

21

R/SWC.130 – Link up error detection.
After link up, the SpaceWire Codec shall reset the link upon detecting an unexpected
character or a parity error.

Note 1: If the prerequisites for more then one state change is fulfilled, change to ErrorReset
take precedence.

R/SWC.135 – Link start-up error:
The Link Start-up error shall be asserted if the following statement is true:
 RxErr asserted or
 gotFCT asserted or
 gotN-Char asserted or
 gotTimeCode asserted.

Note 1: One NULL-character has to have been received.

R/SWC.140 – States of the SpaceWire Codec:
The SpaceWire Codec shall contain the states: ErrorReset, ErrorWait, Ready, Started,
Connecting and Run.

R/SWC.145 – Receiver during Start-up procedure:
The receiver shall be Reset and disabled as long as the Main FSM is in the ErrorReset state
and enabled in ErrorWait, Ready, Started, Connecting and Run.

R/SWC.150 – Transmitter during Start-up procedure:
The transmitter shall be reset and disabled during ErrorReset, ErrorWait and Ready states
and enabled during Started, Connecting and Run.

R/SWC.151 – NULL-character first:
A NULL-character shall be the first character transmitted after the SpaceWire Codec have
left the ErrorReset state.

R/SWC.155 – ErrorReset proceed:
The SpaceWire Codec shall move to the ErrorWait state, unconditionally, after 6.4 us.

R/SWC.160 – ErrorWait error:
The SpaceWire Codec shall move to ErrorReset state when a Link start-up error is detected.

R/SWC.165 – ErrorWait proceed:
The SpaceWire Codec shall move to Ready state, unconditionally, after 12.8 us.

R/SWC.170 – Ready error:
The SpaceWire Codec shall move to ErrorReset state when a Link start-up error is detected.

R/SWC.175 – Ready proceed:
The SpaceWire Codec shall move to Started state if one or both of the following are true:

• LinkDisabled deasserted and AutoStart asserted and GotNull.
• LinkDisabled deasserted and LinkStart is asserted.

R/SWC.180 – Started error:
The SpaceWire Codec shall move to ErrorReset state when a Link start-up error is detected.

22

R/SWC.190 – Started time error:
The SpaceWire Codec shall move to ErrorReset state if it has not received a valid NULL-
token for 12.8 us.

R/SWC.195 – Started Tx:
The transmitter (Tx) shall send NULL-characters while in the Started state.

Note 1: the normal start-up bit rate of 10 Mbps is used.

R/SWC.200 – Started proceed:
The SpaceWire Codec shall move to Connecting state on reception of a valid NULL-token.

R/SWC.205 – Connecting error:
The SpaceWire Codec shall move to ErrorReset state when the following is true
 RxErr asserted or
 gotN-Char asserted or
 gotTimeCode asserted or
 not gotFCT after 12.8 us.

R/SWC.210 – Connecting Tx:
The transmitter shall send FCT-characters and NULL-characters during Connecting state.

R/SWC.215 – Connecting proceed:
The SpaceWire Codec shall move to Run state on reception of a valid FCT-character.

R/SWC.220 – Run error:
The SpaceWire Codec shall move to ErrorReset state when the following is true
 RxErr asserted or
 CreditError asserted or
 LinkDisabled asserted.

R/SWC.225 – Run Tx:
The transmitter shall be able to send all types of valid characters when in Run state.

3.3.8 N-Char buffers

R/SWC.230 – Receiver buffer size:
The receive buffer shall be able to hold between 8 and 56 N-Chars.

Note 1: The exact size of the receive buffer depends on RxFifoSize_G.

R/SWC.235 – Transmit buffer size:
The transmit buffer shall be able to hold between 1 and 56 N-Chars.

Note 1: The exact size of the transmit buffer depends on TxFifoSize_G.

23

3.3.9 Flow control

A flow control token (FCT) indicate that the receive buffer can store eight more N-Chars
and shall be transmitted when there is enough room reserved in the receive buffer.

R/SWC.240 – Deleted.

R/SWC.245 – Flow control generation:
The SpaceWire Codec shall send one FCT for every eight N-Chars of reserved space in the
reception buffer after the link initialization procedure has reached the Connecting state to
indicate that there is room for eight more N-Chars.

Note 1: When in Run state FCTs shall be generated as soon as the receive buffer has room
another eight N-Chars.

Note 2: If for some reason the reception buffer does not have room for eight more N-Chars
during the link initialization procedure, Null-characters shall be sent until the recipient
resets the link.

R/SWC.250 – Receive buffer overflow:
Credit error shall be asserted when the number of received N-Chars is greater then the
number of outstanding N-Char requests.

Note 1: Outstanding N-Char requests equals to the number of FCTs transmitted minus the
number of N-Chars received.

R/SWC.255 – N-Char credit counter:
The SpaceWire Codec shall implement a credit counter to keep track of how many N-Chars
it is allowed to transmit.

R/SWC.260 – N-Char credit counter behaviour:
The credit counter shall increment its value by eight every time a FCT is received and
decrement its value by one every time an N-Chars is transmitted.

R/SWC.265 – N-Char credit counter maximum value.
The credit counter shall hold a maximum credit count of 56.

R/SWC.270 – N-Char credit counter error:
Credit error shall be asserted if the credit counter goes above its maximum value.

R/SWC.275 – N-Char credit count at zero.
The SpaceWire Codec shall seize transmitting N-Chars when the credit counter is zero.

R/SWC.280 – Link up credit counter:
The credit counter shall be set to zero when the link is in ErrorReset state.

24

3.3.10 TimeCode interface

The time interface of the SpaceWire Codec shall comprise of two signals, TickIn and
TickOut, a six-bit time output port TimeOut, a six-bit time input port TimeIn, a two-bit
control flag input port CtrlIn, a two-bit control flag output port CtrlOut, the signal
WrTimeCode to write new values to the TickIn and CtrlIn ports and the signal
ExtTimeCode. The signals are defined in Table 7.

R/SWC.285 – Deleted.

R/SWC.290 – TimeCode generation:
When TickIn is asserted and the SpaceWire Codec is in the Run state a TimeCode shall be
transmitted as soon as possible.

Note 1: The TimeCode shall have priority over all other types of characters but since there
is an asynchronous interface in the signal path the exact timing can not be specified.

R/SWC.295 – TimeCode update.
When the WrTimeCode is asserted the internal TimeIn and CtrlIn registers shall be updated
with the values applied to the port.

R/SWC.300 – TimeCode validity:
The received TimeCode shall be considered valid if the time is one more modulo 64 then
the previously received TimeCode.

R/SWC.305 – TimeCode reception:
TickOut shall be asserted when the SpaceWire Codec is in the Run state and a valid
TimeCode is received.

R/SWC.310 – Extended TimeCode:
The two control flags shall be set to/checked against zero when ExtTimeCode is deasserted
and be propagated when ExtTimeCode is asserted.

25

3.3.11 Data and control interface

R/SWC.315 – Control interface
The following signals are provided to control the overall functionality of the SpaceWire
codec.

Table 2: Control interface

Signal Direction Description
BusClk In System Clock
SpwClk In SpaceWire transmit Clock
TxClkDiv In Down conversion rate for TxClk
Reset In Reset signal
ResetEnd In Reset End signal
LinkStart In Flag indicating that the link is ready to start
LinkDisable In Flag indicating that the link is disabled
AutoStart In Flag indicating that the link should start on reception of a

NULL Character

R/SWC.315 – BusClk asynchronous data reception interface
The following signals are used to receive data.

Table 3: RxLink interface

Signal Direction Description
DIn In Data signal to Receiver Block
SIn In Strobe signal to Receiver Block

R/SWC.320 – BusClk synchronous data reception interface
The following signals are used to receive data.

Table 4: RxData interface

Signal Direction Description
RxData Out Byte wide data from Rx FIFO
RxDValid Out RxData valid
RxDAck In Ack the data currently at RxData
RxPkt Out Deasserted at packet end
RxErr Out Asserted at packet end when failure

26

R/SWC.325 – BusClk asynchronous data transmit interface
The following signals are used to transmit data over the SpaceWire link.

Table 5: TxLink interface

Signal Direction Description
DOut Out Data signal from Transmitter Block
SOut Out Strobe signal from Transmitter Block

R/SWC.330 – BusClk synchronous data transmit interface
The following signals are used to transmit data.
Table 6: TxData interface

Signal Direction Description
TxData In Byte wide data to Tx FIFO
TxDValid In TxData valid
TxDAck Out Ack the data currently at TxData
TxPkt In Deasserted to indicate packet end
TxErr In Asserted at packet end to indicate failure

R/SWC.335 – TimeCode interface signals
The following signals are used to transmit data.

Table 7: Time-Code interface

Signal Direction Description
WrTimeCode In Updates the value for CtrlIn and TimeIn
TickIn In Signal from time-master to send TimeCode
CtrlIn In The two MSB of the TimeCode
TimeIn In Time-Code to be transmitted
TickOut Out Asserted when a valid Time-Code is received
CtrlOut Out The last received Ctrl-field of the TimeCode
TimeOut Out The last received Time-Code

R/SWC.335 – Deleted.

27

4 Functional design

This chapter includes the functional design of the SpaceWire Codec designed during this
thesis. The chapter will start with a justification of the design partitioning developed during
this theses followed by an overview of the proposed design. The next subsection gives an
explanation of the data interface and the configuration parameters. The reminder of this
chapter will give an in depth description of the design where each of the functional blocks
will be described in detailed, with one exception, the Control Logic block. This part of the
design will be mentioned in the context where it is deemed fit. This is done as the Control
Logic is not confined in its entirety to one VHDL file but rather distributed amongst some
of the files making up the rest of the design.

4.1 Design partitioning

This subchapter will discuss the usual partitioning of a SpaceWire codec and
compare it to the design proposed in this thesis.

4.1.1 Codec as described in the SpaceWire standard

The design solution for the SpaceWire codec as described in [ECSS SPW] have only two
clock regions, one being the RxClk region synchronous to the incoming Data-Strobe
signals, and the other being the SpwClk region, see [ECSS SPW] §8.4 for details. This
approach has a few drawbacks:

• It makes the implementation for each new application cumbersome as an
asynchronous interface between the SpwClk and the BusClk regions needs to be
designed for each new implementation.

• This also means that a large part of the design is residing in the fast SpwClk region
increasing power needs and putting unnecessary demands on the synthesis and at
worst, limiting performance due to hard timing constraints.

• Increase size of the design as it is harder to make a lean asynchronous interface
further away from the receiver and the transmitter.

There are also benefits with this approach:

• If SpwClk and BusClk are synchronous, there is no need for an asynchronous
interface making the design use less registers.

• You are free to implement the data interface in any way you see fit, making the
codec suitable for a wider range of applications.

28

4.1.2 The proposed design

The design solution proposed during this thesis differs from the one suggested in
[ECSS SPW] on a number of things. The main points are:

• Very small Rx and Tx regions with slim to no complex logic inside. All intelligent
decisions are made in the system clock region in order to enhance receiver /
transmitter performance while keeping power consumption down.

• Internal data buffers capable of storing enough N-Chars to keep the SpaceWire
Codec running stutter free. A side effect of this is that all flow control is handled
within the SpaceWire Codec, removing the need to control this externally.

• BusClk synchronous interfaces. The benefit of having the system interface in the
system clock region is that no extra driver or asynchronous interfaces are needed
outside of the SpaceWire Codec.

• Self-calibrating timeout timers. The length of the timeout times is generated
internally in order to reduce the number of configuration pins and / or register
operations needed.

SpaceWire Codec

Rx Tx

Rx Token
Handler

Rx Async If

Rx Fifo Tx Fifo

Tx Async If

Tx Token
Generator

Control
Logic

DIn SIn

Rx Data I/F Tx Data I/F

DOut SOut

Status & Ctrl

Figure 10: SpaceWire overview

The SpaceWire Codec seen in Figure 10 contains every block needed for the link to start up
and provide a BusClk synchronous data and control interface to the rest of the design, see
§4.3 for details. Each block is configurable in size except the Control Logic. For details on
how to configure the size and speed of the SpaceWire Codec, please refer to the
subchapters of §4.4 for description or guidelines.

29

4.2 Overview

The overview of the SpaceWire Codec seen in Figure 10 can be mapped, to some extent, to
the general description of a SpaceWire codec as seen in Figure 4. The overview in Figure
10 is more detailed as it depicts the functional blocks of the design rather then the function
of the codec. Also note that the direction of the data flow in the pictures is reversed.

4.2.1 Function

To further explain the function of the SpaceWire Codec seen in Figure 10 a short
description will follow.

The receiver pipeline in the leftmost part of Figure 10, containing all functional blocks
starting with Rx, is responsible for receiving all N- and L-Characters on the link during
normal operation. Inside the dashed line, in Rx-region, the Data-Strobe signals generates
RxClk that is used to clock in all incoming data. There is one bit received every rising and
falling edge of RxClk, Double Data Rate (DDR), meaning that a 100 MHz clock carries
data at a rate of 200 Mbps. The bits received in Rx will be made BusClk synchronous in the
Rx Async IF, decoded in the Rx Token Handler and finally stored in the Rx FIFO before
being handed over to the system. Note that only the N-Characters are handed over to the
system level and that all L-Characters are handled internally by the Control Logic.

The transmitter pipeline in the rightmost part of Figure 10, containing all functional blocks
starting with Tx. The Tx-pipeline will get all N-Characters from the system level, via the
Tx FIFO, and all L-Chars from the Control Logic. The Tx Token generator is responsible
for preparing the characters, before being handed over to the Tx Async IF. The Tx Async
IF-block is responsible for taking the BusClk synchronous signals and making them SpwClk
synchronous. Inside the dashed line, in the Tx-region, all signals are SpwClk synchronous.
The data-rate of the outgoing traffic can be divided down by setting the TxClkDiv in Table
2, creating a fictive clock signal, the TxClk. The Data-Strobe signal transmitted over the
link is DDR, meaning that one bit is transmitted each rising and falling edge of TxClk.

4.3 Data Interface

This section covers all data IO in the SpaceWire Codec entity.

Figure 11: BusClk synchronous data interface

In order for the SpaceWire Codec to be able to send as well as receive one byte of data
every BusClk cycle, the RxDValid and the TxDValid as well as the RxDAck and the TxDAck
need to keep up with the transmission at full speed.

30

The signals associated with the RxData I/F and the TxData I/F are designed to be able to
communicate without the use of glue logic, meaning that the receiver data interface signals
are able to drive the transmitter data interface signals when connected back to back in a
router type design.

4.4 Configuration

The following chapters describe the configuration parameters needed in order to setup a
working synthesis of the SpaceWire Codec with a certain performance. The chapter starts
by introducing the different configuration parameters in Table 8 followed by an in depth
description of each parameter, what it configures and how to calculate the correct value for
a given RxClk / BusClk ratio.

Table 8: Configuration table

Generic Description
DataSampleGroups_G The width in bit-pairs of the FIFO transporting bits

across Rx Async IF
RxAsyncIfFifo_G The width in bit-pairs of the received data that can be

concatenated each BusClk
CharacterBuffers_G The number of characters that can be received each

BusClk
RxFifoSize_G The number of bytes that can be stored in the Rx

FIFO, needs to be larger then eight bytes.
DataTransmitGroups_G The width (in 9 bit characters) of the Tx Async IF
TxFifoSize_G The number of bytes that can be stored in the Tx FIFO

4.4.1 Data sample groups

DataSampleGroups_G determines the number of bit pairs in the Rx reception buffer as well
as the width of the Rx Async IF in Figure 10. The number of bit pairs needed in the
asynchronous interface depends on the RxClk / BusClk ratio. Remember to use the
maximum RxClk value as it can shift up to 10%.

The minimum value is calculated as:
DataSampleGroups_G >= (RxClk / BusClk) * 2 + 2

4.4.2 Rx Async IF FIFO

RxAsyncIfFifo_G determine the maximum number of bit pairs that is allowed in FIFO that
concatenates the incoming data from the Data sample groups to form whole characters. The
number of bits needed is the length of one data character minus two plus the maximum
number of new bytes per BusClk plus two. Remember to use the maximum RxClk as it can
shift up to 10%.

31

The minimum value is calculated as:
RxAsyncIfFifo_G >= (8 + (RxClk / BusClk) * 2 + 2)

4.4.3 Character Buffer

CharacterBuffers_G determines the number of Character Buffers needed to handle the
incoming characters from the Rx Async IF FIFO in Figure 10 each BusClk. The number of
Character Buffers needed is one plus the maximum number of Characters in one BusClk.
Remember to use the maximum RxClk as it can shift up to 10%.

The minimum value is calculated as:
CharacterBuffers_G >= 1 + ((RxClk / BusClk) * 2 – 2) / 4

4.4.4 Rx FIFO Size

RxFifoSize_G determines the number of bytes that can be stored in the Rx FIFO seen in
Figure 10. RxFifoSize_G can be any value between 8 and 56 but the value should be
chosen large enough to make the reception or N-Chars go smoothly. The higher the RxClk /
BusClk ratio the larger the buffer needs to be.

The minimum practical limit is 10 but the optimal value for a given RxClk / BusClk ratio
also depends on the transmission rate as a FCT needs to be transported over the link.

4.4.5 Data transmit groups

DataTransmitGroups_G determines the width of the Tx Async IF in Figure 10. The
configuration value of DataTransmitGroups_G is determined by the number of bits needed
to supply the transmitter with data, EOP and EEP characters. During transmission the bulk
of the transmitted data is Data Characters so each Data Transmit Group can be counted as
10 bits.

There is no absolute limit for this configuration parameter but in order for the transmission
to go stutter free, meaning no unnecessary NULL characters transmitted during data
transmission, there needs to be one Data transmit group for every 2.5 bits transmitted every
BusClk.

4.4.6 Tx FIFO Size

TxFifoSize_G determines the number of bytes that can be stored in the Tx FIFO as seen in
Figure 10. The size of the Tx FIFO does not depend directly on the rate of transmission but
rather on the rate and/or chunk size of data reception via the Tx Data interface.

There are no easy ways to calculate the optimal value of TxFifoSize_G but a
recommendation is to set the value to at least one more then the value of
DataTransmitGroups_G.

32

4.5 Rx Pipeline

The following sub chapters will give an in depth description of the Rx pipeline as seen in
Figure 10 starting at the DS-signals and following the data flow down to the data interface
at system level.

4.5.1 Receiver

The SpaceWire receiver, depicted as Rx in Figure 10, receives both data and strobe from
the transmitter at the other end of the link. The detailed description of the Receiver and the
supporting asynchronous interface is shown in Figure 12 below. The design has been made
especially to facilitate place and route as well as to make the design as configurable and as
cost effective in gates as possible.

Figure 12: Receiver and asynchronous interface

To further explain Figure 12:
RxClk is generated as DIn xor SIn and all registers in the Rx region, the region to the left of
the dash-dotted line, are triggered by RxClk. Since the D-signal is used to generate RxClk as
well as carries the data content of the incoming bit-stream, the timing between the D-signal
and the generated RxClk needs to be adjusted post synthesis.

There is only one time critical falling edge DFF in the proposed design for the receiver, the
DFF that samples incoming falling edge data. This helps to keep demands on place and
route low and makes it possible to reach quite high data rates. The other falling edge DFF
in the receiver is the LSB of the Counter but since all incoming data is handled in pairs, this
DFF is not used for anything time critical.

33

The Counter in Figure 12 keeps track of the number of incoming data bit pairs and enables
the correct Data Sample Group to buffer the incoming data and alert the Rx Async IF about
arriving bit-pairs. The Enable signal from the Counter and a detailed description of the Data
Sample Group is shown in Figure 13 below.

The SpaceWire Codec has a configurable amount of Data Sample Groups, using
DataSampleGroups_G, in order to optimize size for the desired performance. See 4.4.5 for
configuration details.

Once the Edge detection is asserted in the BusClk region all new data in the Rx Async IF
DFFs will be moved and concatenated in the Rx Async IF FIFO in the rightmost part of
Figure 12.

The SpaceWire Codec has a configurable Rx Async IF FIFO using RxAsyncIfFifo_G. See
4.4.4 for configuration details.

4.5.2 Rx asynchronous interface

This section will cover the design of the asynchronous interface for one Data Sample
Group in detail followed by a short description about the asynchronous interface for the
Counter as well as the reset signal for the Rx region.

Figure 13: Rx Asynchronous interface in detail

The details in Figure 13 can be seen as the structure marked Data Sample Group in Figure
12. A description follows below:

34

Once the Enable signal from the counter points at the Data Sample Group, Rising edge and
Falling edge data will be sampled on the next positive RxClk transition. At the same time
the Data Valid signal, shown at the bottom of Figure 13 toggles. The Data Valid signal is
propagated into the BusClk region and is used to trigger the Edge Detection, shown in
Figure 12. The Edge Detection will let the supporting circuits of the Rx Async IF FIFO
know that new data can be sampled in and concatenated to the bit-stream. The solution for
Rx Async IF as seen above does have an overhead in terms of DFFs and logic compared to
other solutions but was chosen as it’s a fast, configurable and robust way of crossing a
clock boundary.

The LSB of the Counter in Figure 12 have a standard asynchronous protocol #1 interface as
described in [RUAG ASYNC]. The Counter together with the Edge Detection circuit is
used to reset the Disconnect timeout timer every time a bit has been received.

The asynchronous interface of the Reset-signal for the Rx-region is a standard
asynchronous protocol #6 interface as described in [RUAG ASYNC]. All DFFs, except the
ones that are used to sample DIn and SIn, use asynchronous reset since RxClk might be
absent. The DFFs that are used to sample DIn and SIn are not reset to improve link timing.

4.5.3 Rx token handler

Once the incoming data is concatenated in the Rx Async IF FIFO the data needs to be
decoded, split up into characters and moved to the Rx Token Handler shown in Figure 10.
Once the data reaches the Rx Token handler, as shown below, a parity check is performed
together with character decoding to be able to recognize, sort and signal specific commands
to the Control Logic shown in Figure 10. The Token handler is shown in the figure below.

Figure 14: Rx Token handler in detail

35

The different sized characters will be recognized by peeping at the data-control flag. Every
full sized character found in the Rx Async IF FIFO is moved to the Character Buffers
labelled 2 to n seen in Figure 14. The last Character is always moved to Character Buffer 1
at the bottom of Figure 14 so that the parity check can be performed before the Character is
allowed to have any effect on the system. The parity check is shown in grey in Figure 14.
The ESC Placeholder is asserted when the last Character to pass the Parity check is an
Escape Character. The ESC Placeholder is only there to minimize DFFs.

The number of Character Buffers is configurable using CharacterBuffers_G, see 4.4.4 for
configuration details.

After parity check and detection, the characters will either be moved to the Rx FIFO seen in
Figure 10 if the character is an N-Char or signal the Control Logic if the character is an L-
Char.

4.5.4 Rx FIFO

The Rx FIFO is configurable, using RxFifoSize_G, in 1 byte blocks to give the designer the
ability to optimize for size or performance. See 4.4.4 for configuration details. The Control
Logic is responsible for keeping track of the read and write counters for the Rx FIFO as
well as the sending of FCTs.

36

4.6 Tx Pipeline

The following sub chapters will give an in depth description of the Tx pipeline as seen in
Figure 10. The description will start with an overview of the transmitter topology. After
that the description will follow the flow of data from the BusClk synchronous data interface
to the DS-drivers in the transmitter.

The transmitter pipeline within Figure 10 can be viewed in detail in the figure below
together with the Tx asynchronous interface and associated signals.

Figure 15: Transmitter overview

SpwClk is divided down to the rate indicated by TxClkDiv, creating the fictive clock signal
TxClk. The TxClk is used to drive the flow of data inside the Tx-region.

As seen in Figure 15 the transmitter consists of two identical transmitters, one for Data and
one for the Strobe. The counter directs bit pairs from The D FIFO or the Logic generating
the NULL and Time-Code Characters through the Strobe Generator.

37

4.6.1 Timer

In order to have self calibrating timeout timers as demanded in 3.1.6 it is necessary to
calculate the number of BusClk cycles that make up the 6.4 us timeout time. From those 6.4
us the SpaceWire Codec can derive the 850 ns disconnect timeout time as well as the 12.8
us time.

The reference for measuring the time is the generated 5 MHz TxClk that is used during the
Link initialization procedure. In order to get a correct count of the time, a start measure
time pulse is first synchronised over to the SpwClk region where a counter returns a stop
measure time pulse after 29 RxClk cycles, 32 RxClk equals 6400 ns - 2 RxClk for the start
pulse asynchronous interface and -1 for the time activating the stop pulse.

In the BusClk region a counter is measuring time in parallel from the time that the start
measuring time pulse is activated, until it receives the stop measuring time pulse. The value
is then deducted by 2 to compensate for the asynchronous interface from SpwClk to BusClk.

4.6.2 Tx FIFO

The size of the Tx FIFO is configurable, in one byte blocks, using TxFifoSize_G. This
enables the hardware designer instantiating the SpaceWire Codec the means to tailor the
circuit for optimal performance / size. For details on how to configure, see 4.4.6 for details.
The Tx FIFO is responsible for the data interface of the Tx-pipeline and is capable of
receiving one byte per BusClk during packet transmissions.

4.6.3 Tx token generator

The Tx Token Generator is responsible for serving the transmitter with data characters as
well as for keeping track of how many more N-characters the SpaceWire Codec is allowed
to transmit. The number of N-characters that the SpaceWire Codec is allowed to transmit is
increased every time that one or more FCTs are received and decreased every time that the
Tx Token Generator makes one N-Char available to the transmitter. These N-chars are
taken from the Tx FIFO, concatenated and made available to the Tx Async IF when it is
ready to receive more.

4.6.4 Tx asynchronous interface

As seen in Figure 15 there are four types of signals flowing over the BusClk / SpwClk
boundary, these are:

• Time-Code.
• FCT
• Data, EEP and EOP
• Mode Ctrl

38

The Time-Code needs special attention due to the time-critical response once a TICK-IN
has been detected. Data, EOP and EEP-characters are made available to the SpwClk region
through the Tx Token Generator. Mode Ctrl sets the Tx internal mode so that the state of
the SpaceWire Codec have full control over start up /shut down- procedures as well as the
automatic generation of NULLs when the transmitter is idle. A detailed view of the Tx
Asynchronous IF is shown below.

E

=1

=1

D0d

D1d

Logic

Cnt

Req

Ack

DAV

Tx
Token

Generator

E E

9 bit Char

Mode,
FCT

E
Time-
Code

T-C
Trigger

Data, EOP,
EEP

T-C,
NULL

=1

Valid P
a
r

Figure 16: Tx Asynchronous interface and supporting circuits

The T-C Trigger seen in Figure 16 is a toggling signal that determines when to sample a
new Time-Code and generate a Time-Code Character. Since Time-Codes have priority,
special attention has been made to make sure that it is fast enough.

The Mode lets the Logic within the Tx-region know when the SpaceWire link is enabled
and the FCT part is a toggling signal that lets the transmitter know when to generate a new
FCT-character.

All data-characters as well as all EOP and EEP characters, transmitted via the Tx Token
Generator into the Tx-region, are 9 bit vectors plus a valid flag. The valid flag indicates that
the 9 bit vector contains valid information to be transmitted when possible. The 9 bit vector
contains the data/control-bit and 8 more bits for data or control-character information, see
4.4.5 for configuration details.

The parity-bit is generated inside the Par-block in Figure 16. The Parity-block is allowed to
update and proceed at rising edge of TxClk.

39

4.6.5 Data strobe generator

The Strobe Generator-block seen in Figure 15 is shown in detail below. All DFFs in the
Strobe Generator is allowed to update on rising edge of TxClk.

Figure 17: Data strobe generator

The logic inside Figure 17 consists of:
S0q <= (D1q xor D0) xor S1q
S1q <= (D0 xor D1) xor S0

It is possible to disable the automatic strobe generation via the Mode control interface.
Each of the S- and D-pairs is connected to a Transmitter, shown in detail in the next
subsection.

4.6.6 Tx driver

The Transmitter make use of two identical internal transmitter channels, one for S and one
for the D that is making up the bit stream. The active internal structure of these channels
can be viewed in Figure 18 below.

Figure 18: Transmitter drive stage

40

The upper path through Buffer 1 and Buffer 2 is for bits that are to be transmitted on rising
edge of TxClk. This means MSB of the bit pair on uneven multiples of TxClk / SpwClk or
both bits on even multiples of TxClk / SpwClk. The lower path carries only the LSB of the
bit pair during uneven multiples of TxClk / SpwClk.

The propagation speed is set by the enable signals EnR (enable rising) and EnF (enable
falling). TxR (TxClk rising edge) is responsible for propagating the bit pairs from the mux
to the left of the PAR-block in Figure 16 and through the Strobe Generator.

41

5 Verification

This chapter explains the verification procedure, via simulation as well as on hardware. The
verification step performed here is not enough to make the module flight ready but they
cover enough to make sure that the modules main functionality works correctly as well as
gives the foundation for future more complete tests.

5.1 Simulation

This chapter will start with an in depth description of the test-bench modules followed by a
functional and functionality description of the test-bench including its capabilities, fault and
error detection mechanisms and the errors its capable of generating in order to give stimuli
to the SpaceWire Codec. Finally the test procedure will be explained together with the
desired outcome and what requirements the test is suppose to cover.

5.1.1 Test bench description

The test-bench concept is described below. The SpaceWire Codec, the module under test, is
connected to Tb_SpwCodec. Tb_SpwCodec is responsible for the generation of stimuli to
the SpaceWire Codec as well as sample all signals of interest.

Figure 19: Test bench overview

All clock inputs have their own clock driver in order to give full control of the timing and
the speed of every clock pulse to be able to simulate a proper asynchronous system.

42

Every data and control input / output of the SpaceWire Codec is connected to the
tb_SpwCodec. The tb_SpwCodec module works as a driver for the SpwCodec and handles
all signal transitions as well as monitors all activity of the SpwCodec module. The
tb_SpwCodec is commanded by the tb_System module where all test procedure are
executed. All communication between tb_SpwCodec and tb_System is handles via the
Tb_SpwCodecCmd and the Tb_SpwCodecStat signals.

Tb_SpwCodecCmd is a record containing data to the tx-pipe of both Tb_SpwCodec and
SpwCodec as well as TimeCode value, a bit-vector and an unspecified integer used for
many of the operations performed by Tb_SpwCodec. Tb_SpwCodec is commanded to
perform actions by the Command signal in Tb_SpwCodecCmd and a short description of
the most important of them is included in Table 9.

5.1.2 Test bench commands

At present there are 55 different commands performed by Tb_SpwCodec and the table
below covers the most important ones. The E / D column depicts Enable / Disable
capabilities for the command.

Table 9: Commands to tb_SpwCodec

Command name E / D Clarification
ResetTbSpw Resets the Tb_SpwCodec.
ResetAllConfig Undo all configuration without resetting counters etc.
ResetAllCnt Resets all counters without resetting the

configuration.
ResetSpw Resets the SpwCodec.
SetTxClkDivNomTbSpw Set the start-up nominal clock division rate for

Tb_SpwCodec.
SetTxClkDivMaxTbSpw Set the run clock division rate for Tb_SpwCodec.
ManualModeTbSpw E / D Toggle manual mode for TbSpw.
AutoStartTbSpw E / D Toggle auto start functionality for Tb_SpwCodec.
RxTbSpw E / D Disables or re-enables the receiver in Tb_SpwCodec.
TxTbSpw E / D Disables or re-enables the transmitter in

Tb_SpwCodec
TxBabble E / D Toggles the ability to send predefined noise to the

SpwCodec during a phase that it should not be
possible to transmit.

SendBit Toggles the strobe signal from Tb_SpwCodec.
SendBitStream Transmit one predefined bit-stream to SpwCodec.
BitStreams E / D Transmit or stops transmitting a contiguous bit-stream

to SpwCodec.
SendNull Transmit a Null character to the SpwCodec
SendNullParErr Transmit a Null character with parity error to

SpwCodec.
SendFct Transmit one FCT character to the SpwCodec.
SendFctParErr Transmit an FCT character with parity error to

SpwCodec.
Fct E / D Disables or re-enables the automatic transmission of

43

FCT characters from Tb_SpwCodec.
SendTbData Adds the data stored in TbData to the Tb_SpwCodec

send queue.
ReadTbData Read one entry of the data received by

Tb_SpwCodec, if any.
SendTb Eop / Eep Transmit one End of Packet or Error end of Packet

char to SpwCodec.
SendTbEsc Transmit one Esc character.
SendTbEscParErr Transmit one Esc character with parity error.
SendTbTimeCode Transmit one time code character.
SendTbTimeCodeParErr Transmit one time code character with parity error.
ResetSpw Reset the SpaceWire Codec under test.
EnableLinkStartSpw

 Enables link start-up for the SpaceWire Codec under
test.

5.2 Test bench receiver capabilities

This section covers the receiver part of the SpaceWire test bench and its mechanisms to
verify the functionality of the SpaceWire Codec transmitter. The test bench receiver aims at
verifying that the SpaceWire transmitter always works in a predictable manner and in
accordance with the specification. To guaranty this, the receiver part of the test bench
checks incoming characters as well as pulse lengths and start-up procedures. The fault
detection mechanisms and the latent monitors of the SpaceWire test bench are described in
detail below.

5.2.1 Monitors

Monitors are used for autonomous control of certain functions. The two most
important monitors are:

ReceiveBpsMoni The receive bit per second monitor controls that the transmitted

clock have the correct duty cycle and that no glitches appear.
ParityErrMoni The parity error monitor controls that the parity bit of the

transmitted characters is correct.
CreditErrorMoni

The credit error monitor controls that the SpaceWire Codec
does not send more N-Chars than it is allowed to.

5.3 Test bench transmitter capabilities

The transmitter in tb_SpwCodec is capable of transmitting any sequence of bits. Most of
the commands in Table 9 are dedicated to the control of characters or bit patterns
transmitted to the SpaceWire Codec. See the test procedures below for more information.

44

5.4 Test procedures

This section covers the test procedures used to verify the functionality of the SpaceWire
Codec. The procedures are not enough to verify the module for flight operation but give
enough confidence that the Codec as a whole performs within specification and that the
concept works. Further the test-bench infrastructure developed during the thesis work gives
future test developers a solid foundation on which to build a larger more complete test suite
qualifying the SpaceWire Codec for flight missions.

5.4.1 Start-up test

The Start-up test aims at verifying the start-up procedure of the SpaceWire Codec. This is
done by measuring the timing of the SpaceWire Codec’s state transitions as it is subjected
to a variety of different scenarios. The test also checks the codec’s sensitivity to stimuli,
both changes in configuration and input signals via the receiver. There are a total of five
scenarios in the Start-up test.

1. Normal start-up, start the SpaceWire Codec in auto start mode and measure the state
transitions. The parameters of most importance during this scenario is to verify that
the automatic time measuring algorithm responsible for deriving the different
timeout times from the known 5 MHz TxClk is within specification. All mode
transitions are timed and check together with character output. The link is reset by
cutting the bit stream to the SpaceWire Codec and observing that the correct link
reset procedure is observed.

2. Start-up with inverted s-level just before the first Null Character is received by the

SpaceWire Codec. All mode transitions is checked to specification in the same way
as test case #1 but the most important functionality checked during this test case is
that the receiver is capable of receiving and decoding incoming Characters even if
the data flow is out of phase with the local clock, with out of phase meaning that
the double dated input signal is out of sync with the Character boundaries so that
each boundaries is received during falling edge RxClk. The link is reset by cutting
the bit stream to the SpaceWire Codec and observing that the correct link reset
procedure is observed.

3. Start-up in a noisy environment. This test case simulates that the SpaceWire Codec

tries to start-up connected to an extremely noisy link, this is tested by forcing the
test bench transmitter to babble incoherently for 20 us before transmitting the first
valid Null Character. All this as the SpaceWire Codec performs its start-up
procedure with auto start disabled, making it wait in Ready state. As before all state
transitions are checked and the link is reset by violating the 850 ns timeout time.

4. Normal start-up, but let the test bench complete one start-up cycle before asserting

Link Enabled. Make sure that the FCT generation from TbSpw is disabled long
enough to test the 12.8 us timeout time. As before state transitions are checked but
the most important characteristic tested is that the SpaceWire Codec is not affected
by incoming characters when disabled and that the start-up work as specified after
a failed start-up procedure on the link. The longest possible working delay for Null
reception is the second thing tested. Link reset as before.

45

5. Normal start-up but disable test bench FCT transmit capabilities for long enough to

test the 12.8 us timeout time. The last of the nominal start-up scenarios test the
SpaceWire Codec’s capability to start the link even when starved on FCT
characters for the longest possible time. Link reset as before.

5.4.2 TimeCode test

This test aims at verifying the functionality of the TimeCode interface. The main thing
tested is that the SpaceWire Codec is capable of decoding incoming TimeCode characters
and to the expected stimuli to the system. The SpaceWire capability to generate proper
TimeCodes is also tested.

1. Start-up the SpaceWire link and verify that everything is nominal.

2. Send a TimeCode equal to one and verify the TimeCode and that TickOut is asserted.

3. Send a TimeCode equal to one again and verify that TickOut remains deasserted.

4. Send a TimeCode equal to zero and verify that TickOut remains deasserted.

5. Send a TimeCode equal to one and verify that TickOut is asserted.

6. Send a TimeCode equal to 63 and verify that TickOut remains deasserted.

7. Send a TimeCode equal to zero and verify that TickOut is asserted.

8. Send a TimeCode equal to one and expect that TickOut is asserted.

9. Send a TimeCode equal to two with parity error and verify Link down.

10. Wait until the link reset procedure is finished and the link is up and running.

11. Loop over different values for TimeIn and CtrlIn and assert TickIn, verify that the
correct TimeCode is received by tb_SpwCodec.

5.4.3 Data test

This test aims at verifying data reception and transmission as well as nominal FCT
behaviour. The first part of the Data Test aims at testing the receiver pipe of the SpaceWire
Codec as well as FCT character generation. A number of scenarios are tested making sure
that the SpaceWire Codec acts in a predictable way. The second part of the test, starting at
#12 aims at verifying the transmitter pipe of the SpaceWire Codec. The main interest
during these steps is to make sure that the SpaceWire transmitter is capable of transmitting
packet in an orderly fashion as well as are able to keep track of the number of N-chars it is
allowed to transmit. The last step aims at verifying that the SpaceWire Codec is capable of
duplex operation.

46

1. Start up the SpaceWire and make sure it is running normal.

2. Send a 7 byte packet to the SpaceWire and make sure that the correct data is
available in the SpaceWire.

3. Send a 58 byte packet to the SpaceWire and make sure that the correct data is

available in the SpaceWire.

4. Send a 58 byte packet with a parity error in the EOP character to the SpaceWire,
make sure that the correct data is available in the SpaceWire and that the packet is
signalled erroneous.

5. Send a 16 byte packet to the SpaceWire with a parity error on the last byte.

6. Read out 10 bytes of data from the SpaceWire and wait until the SpaceWire have

restarted the link.

7. Send a packet larger than the SpaceWires receiver buffer and make sure that one of
the last bytes has a parity error.

8. Read back the rest of the data from #5 and enough of the packet from #7, allowing

the new parity error to be transmitted.

9. Read back the rest of the packet from #7, check all data and expect an erroneous end
of packet.

10. Send a 60 byte packet to the SpaceWire and force a Null character with parity error

once the receiver buffer is full.

11. Read the data from the SpaceWire, expect a buffer sized data packet with an
erroneous end of packet.

12. Send a 7 byte packet from the SpaceWire and make sure that the correct data is

received by the test bench.

13. Send a 58 byte packet from the SpaceWire and make sure that the correct data is
received by the test bench.

14. Disable the automatic FCT generation of the test bench before sending a 63 byte

packet from the SpaceWire. Make sure that the packet is not received in full for
several ms.

15. Enable the automatic FCT generation once again and prepare the SpaceWire to

send one more 17 byte packet as soon as the first is completed.

16. Make sure that both packets are received by the test bench.

17. Disable the automatic FCT generation of the test bench before sending a large
enough packet from the SpaceWire. The packet is of a size that makes it occupy
some of the SpaceWire transmission FIFO. Make sure the packet is not received in
full by the test bench for several ms.

47

18. Send a 73 byte packet from the SpaceWire, this shall not be stuck in the

transmission FIFO waiting for the previous packet to depart.

19. Force a Null character with parity error from the test bench and wait until the link
is reset. Then read back the broken packet from #17 and enable the automatic FCT
generation before reading back the 73 byte packet from #18. Expect an erroneous
end of packet for the first packet and a full correct packet for the data packet from
#18.

20. Disable the automatic FCT generation of the test bench before sending a large

enough packet from the SpaceWire. The packet is of a size that makes it occupy
some of the asynchronous interface between the Tx clock region and the bus clock
region. Make sure the packet is not received in full by the test bench for several ms.

21. Send an 80 byte packet from the SpaceWire, this shall not be stuck in the

transmission FIFO waiting for the previous packet to depart.

22. Force a Null character with parity error from the test bench and wait until the link
is reset. After the link is restarted, read back the broken packet from #20 and enable
the automatic FCT generation before reading back the 80 byte packet from #21.
Expect an erroneous end of packet for the first packet and a full correct packet for
the data packet from #21.

23. Send a 120 byte packet from the SpaceWire and at the same time, send a 122 byte

packet to the SpaceWire. Make sure both packets are received in full.

5.4.4 FCT test

This test aims at verifying that the FCT of the SpaceWire works as intended. The
SpaceWire will be subjected to different scenarios, nominal as well as erroneous, to cover
as much of the functionality as possible. The SpaceWire Codec needs to keep track of both
how much room it has in its own receiver FIFO and how much room there is left in the
receiver FIFO on the other side of the link, failure to do so will result in a Link down
procedure to restart the link. The first part of the test from #1 to #11 mainly targets the
receive buffer of the SpaceWire Codec and the reminder of the test aims to verify that the
SpaceWire can keep track of the size of the buffer on the other side of the link.

1. Start the link in autostart mode, make sure everything is normal.

2. Send a data packet to the SpaceWire Codec that is one byte smaller then the receiver
FIFO, this in order to utilize the entire FIFO and maximize the number of FCT
characters sent.

3. Make sure that the correct data have arrived and that the correct number of FCT

characters have been transmitted.

4. Send in more data then the receive FIFO in the SpaceWire Codec can handle, expect
the link to reset.

48

5. Read back as much data as can be stored in the buffer and make sure it's correct.

6. Wait until the link has been restarted and then send in as much data as can be stored
in the receive buffer of the SpaceWire Codec.

7. Read the data back and make sure the correct amount of FCT characters have been

transmitted.

8. Send a packet of size Rx FIFO size * 2 +5 to the SpaceWire Codec.

9. Read back Rx FIFO size + 4 of the data transmitted in #8.

10. Flood the FIFO by forcing the test bench to transmit more data then the receiver
FIFO can handle.

11. Read back the rest of the data and make sure that it is correct.

12. Send a 6 byte packet from the SpaceWire Codec.

13. Force the test bench to send to many FCT characters and verify that the link is

reset. Verify the data sent from the SpaceWire Codec.

5.4.5 FIFO flush test

This test aims at verifying that the Rx and Tx FIFO flush works as specified.

1. Start the link and disable FCT generation in the test bench after the SpaceWire have
reached Run state.

2. Send one packet from the SpaceWire Codec that is the size of the test bench FIFO +

2.

3. Send one more packet from the SpaceWire Codec and make sure that it’s big enough
to not fit in the space that is left in the SpaceWire Tx FIFO.

4. Send one packet to the SpaceWire that is large enough to fill the Rx FIFO.

5. Send one FCT with parity error and wait until the link resets. At this point the packet

from #2 is flushed by the link down procedure and the packet from is waiting to be
sent. The packet from #4 is in the Rx FIFO and.

6. Flush both the Rx and the Tx FIFO.

7. Make sure that the next packets transmitted and received over the link is correct.

49

5.5 Verification in hardware

This chapter explains the verification procedure in hardware. The chapter starts with a
description of the test platform the module will be running on followed by an explanation
of the setup, its capabilities and why this method was used and the limitations that the setup
inflicts on the verification.

Figure 20: Setup for SpaceWire validation.

In order to test as much of the SpaceWire capabilities as possible two SpaceWire Codec’s
were connected back to back with the last one connected as a loop back. The first
SpaceWire Codec was then connected to a proven and tested spacewire codec to verify that
the design works together with an standard device. The setup was chosen in order to both
verify the front end link while connected to a standard device and the capability of the
SpaceWire Codec to drive another SpaceWire codec without any glue logic for the data
path. The test was performed at a low data rate since the standard device did not support
more then 4 / 3 times the Rx- / Tx-speed / BusClk.

The test comprised of sending data from the first standard device, trough the two
SpaceWire Codec’s connected back to back and out through the second SpaceWire Codec
and back into its own receiver. Verification was simply making sure that the data received
after it had been transferred was equal to the data sent. This test does not verify that the
SpaceWire Codec is capable of handling every situation and failure case but it shows that it
can connect and transmit data to both a known working device and to itself.

50

6 Results

A fully functional SpaceWire codec was designed, implemented and verified during this
thesis. The following subchapters will go through the criteria for evaluating the design, its
implementation as well as the results grained from verification and synthesis.

6.1 Implementation results

The bulk of the work done during this thesis was aimed towards developing a good design
for the SpaceWire Codec, implementing the design using VHDL and finally testing it both
in a module level test bench and on a FPGA platform.

6.1.1 Design

As seen in §4 Functional design a well-defined design was developed from a top down
perspective followed by a bottom up implementation of each hierarchal block.

The major design decisions that panned out well are;

• Keeping the RxClk region small and minimizing the number or falling edge registers
facilitates both synthesis and post synthesis work i.e. made synthesis reach higher
rates for RxClk as well as keeps manual placing of logic to a minimum. The task of
the logic inside the RxClk region is reduced to supplying the BusClk region with
data bit pairs making it robust and rather failsafe.

• Keeping all intelligent decisions out of the transmitter made the BusClk
asynchronous logic in the TxClk region smaller and less complicated. This together
with only two falling edge registers, one in each driver for the data and strobe
pipelines, helped synthesis of the TxClk region as well as kept manual placement of
logic post synthesis low. The task of the transmitter is more or less reduced to the
handling of a few asynchronous interfaces in parallel connected to a strict priority
multiplexer choosing the appropriate character to transmit. This is followed by a
pipeline used to generate the parity bit, strobe signal and finally accelerating to
double data rate.

• Module internal data buffers. Keeping both the Rx- and TxFifo module internal and
supplying all data through a well defined internal interface was the final touch that
made the design of the SpaceWire Codec a self contained entity. All tedious work
of handling the reception and generation of flow control tokens are hidden from the
user who only needs to worry about data packets, data characters and TimeCodes.

The design decisions that did not pan out that well;

• The asynchronous interface associated with the reception of data bits does not scale
well with some FPGA synthesis tools. When aiming for high RxClk / BusClk ratios
the logic used to concatenate the bit-stream and find the different characters grows
more then linearly.

51

6.1.2 RTL implementation

All in all there were more then 5000 lines of RTL code written during the development of
the SpaceWire Codec. The code is distributed over 25 different files making up the sub
blocks of the design.

All RTL-code has been written to comply with the coding standard [RUAG CSTD] as
supplied by RUAG Space AB.

6.1.3 Test bench implementation

The test bench for the SpaceWire codec is comprised of 17 files containing more then 6000
lines of code but is not nearly enough to fully verify the design. The scope of this thesis
would be too large if tests for a full verification were to be developed. Instead the
verification cycled through all nominal test cases together with the most probably failures
cases and verified that the SpaceWire Codec behaved as expected.

After the first easy bugs, non-connected signals and the like, the tests did not find that
many. The reason for this is two-fold:

• The lengthy design stage of the development meant that the core functionality of the
SpaceWire Codec was thought through before the coding started.

• The test bench was aimed at verifying the core functionality of the design.

6.1.4 Hardware verification

The hardware verification did not run into any problems and no bugs were revealed. This
does not mean that the design is fully functional but it does prove a few features;

• The SpaceWire Codec developed during this thesis can communicate, exchange both
N-Chars and L-Chars, with a known working SpaceWire codec without forcing
link restarts or dropping data bytes.

• The SpaceWire Codec can communicate, exchange both N-Chars and L-Chars, with
itself in loop-back.

• One SpaceWire Codec can drive the internal data interface of another instantiation of
itself without any glue logic.

52

6.2 Size

The size and performance of the SpaceWire Codec can be tailored by use of the
configuration parameters described in §4.4. The final size of the design was evaluated for
two different settings; the minimum configuration capable of 4 bits received and
transmitted each BusClk cycle and the maximum configuration capable of 10 bits.

6.2.1 Minimum configuration

The configuration parameters for this setting can be found in Table 10 below:

Table 10 Minimum configuration

Parameter name Value
DataSampleGroups 5
RxAsyncIfFifo 16
CharacterBuffers 1
RxFifoSize 10
DataTransmitGroups 1
TxFifoSize 2

The results gained from synthesis are as follows;

Table 11 Register count minimum configuration

Clock region Register count
BusClk rise reaches 328 cells
RxClk rise reaches 21 cells
RxClk fall reaches 2 cells
SpwClk rise reaches 122 cells
SpwClk fall reaches 2 cells

The total amount of registers, including all buffers needed to run stutter free, are 475. This
is less than the 500 registers that the design aimed for as a minimum configuration.

From Table 11 we can also see that the registers in the RxClk region are a mere 23 of which
only 1 is a falling edge DFF with hard timing constraints. The registers in the TxClk region
are in total 124. The main reason for the seemingly large count of TxClk registers are that
the asynchronous interfaces often need two buffers to keep up with transmission speeds.

Of the 328 registers in the BusClk region around 120 are in the dedicated input / output
buffers for the data path and another 45 are used for the timeout time measuring logic, two
of the features that were asked for by RUAG Space AB.

53

6.2.2 Maximum configuration

The configuration parameters for this setting are as described in table Table 12 below;

Table 12 Maximum configuration

Parameter name Value
DataSampleGroups 12
RxAsyncIfFifo 20
CharacterBuffers 3
RxFifoSize 16
DataTransmitGroups 4
TxFifoSize 6

The results gained from synthesis are as follows;

Table 13 Register count maximum configuration

Clock region Register count
BusClk rise reaches 555 cells
RxClk rise reaches 43 cells
RxClk fall reaches 2 cells
SpwClk rise reaches 184 cells
SpwClk fall reaches 2 cells

The total amount of registers, including all buffers needed to run stutter free are 786. This
is roughly the same size as just the asynchronous interface for the data path of the previous
solution with the same performance.

From Table 13 we find that there is 45 registers in total in the RxClk region. The registers
in the TxClk region are in total 186 and the increase from the minimum setting are more or
less exclusively from the wider data path through the asynchronous interface.

There are 555 registers in the BusClk region and out of these 220 are in the dedicated input
/ output buffers for the data path and another 45 are used for the timeout time measuring
logic, two of the features that were asked for by RUAG Space AB.

6.2.3 Size comparison

When comparing the differences between the two synthesis results the following can be
seen. The maximum configuration can handle 2.5 times the data rate of the minimum
configuration and the size scales as follows;

• From Table 11 we find that there are 23 registers in the RxClk region with the
minimum configuration and from Table 13 we find that there is 45 registers in
total in the RxClk region for the maximum configuration. This makes the size of
the RxClk region scale better than the increase in performance with 1.96 times the
registers.

54

• From Table 11 we find that there are 124 registers in the TxClk region with the
minimum configuration and from Table 13 we find that there is 186 registers in
total in the TxClk region for the maximum configuration. This means that the
TxClk region scales 1.5 times the registers for a 2.5 time increase in performance.

• For the BusClk region the following can be seen. Dividing the size for the maximum
configuration with the size of the minimum we find the relationship of 555 / 328 =
1.69 with the same 2.5 times the performance.

One of the demands placed on the design was that the size of the data path should scale
more or less linearly with performance and this seems to be the case. The reason why the
scaling factor is better than 2.5 is that only the data paths and not the control logic scale
with the different speed settings.

6.3 Performance

The design was synthesized in two different configurations for two different rad-hard ASIC
technologies, these are;

• The MH1 technology, a 350 nm radiation hardened library. The target speed for this
was 60 MHz for the BusClk region and 100 MHz, or 200 Mbps, for both the RxClk
and the TxClk regions.

• The ATC18 technology, a 180 nm radiation hardened library. The target speed for
this was 100 MHz for the BusClk region and at least 200 MHz, or 400 Mbps, for
both RxClk and TxClk regions.

All values are gatherer in a worst case scenario, meaning high temperature, low voltage and
a bad batch at the fab. All values are gathered with symmetric duty-cycles and medium
effort on synthesis. All this adds up to worst case everything.

6.3.1 MH1

The results for when using the minimum configuration:
BusClk passed with 16.5 ns clock period, equal to 60 MHz BusClk frequency.
RxClk passed with 8 ns clock period, equal to 125 MHz RxClk frequency.
TxClk passed with 8 ns clock period, equal to 125 MHz TxClk frequency.

The results for when using the maximum configuration:
BusClk passed with 16.5 ns clock period, equal to 60 MHz BusClk frequency.
RxClk passed with 8 ns clock period, equal to 125 MHz RxClk frequency.
TxClk passed with 8 ns clock period, equal to 125 MHz TxClk frequency.

The SpaceWire Codec fulfils all requirements on clock speed that was placed on the design.

55

6.3.2 ATC18

The results for when using the minimum configuration:
BusClk passed with 10 ns clock period, equal to 100 MHz BusClk frequency.
RxClk passed with 4 ns clock period, equal to 250 MHz RxClk frequency.
TxClk passed with 4 ns clock period, equal to 250 MHz TxClk frequency.

The results for when using the maximum configuration:
BusClk passed with 10 ns clock period, equal to 100 MHz BusClk frequency.
RxClk passed with 4 ns clock period, equal to 250 MHz RxClk frequency.
TxClk passed with 4 ns clock period, equal to 250 MHz TxClk frequency.

The SpaceWire Codec fulfils all requirements on clock speed that was placed on the design.

6.4 Future development

The SpaceWire standard is still a rather young standard and the SpaceWire Codec designed
during this thesis most probably needs updates in the near future. The upcoming revision of
the standard will change the TimeCode format.

Upcoming projects also need a SpaceWire with RMAP support, making the need for an
updated and compatible RMAP module a necessity.

The core part of the SpaceWire codec should be able to remain as is since the bit-rate is
high enough for all plausible implementations. The one thing I would change in the design
is the partitioning of the asynchronous interface for the Tx pipeline. With a little more care
the SpaceWire codec could shed some more DFFs in small remote terminal applications
where the SpwClk and the BusClk are synchronous.

56

7 Conclusions

The implementation of the SpaceWire Codec was a success. The codec does meet all of the
company specific demands listed in 3.1 as well as comply with [ECSS SPW]. Most of the
design ideas worked out well and the core functionality of the design has been proven in
both verification using a test bench and in a validation test on a commercial FPGA-
platform.

The amount of testing and validation done during this thesis is sufficient to know that the
concept works and that the general design is good enough, but it not sufficient to make the
codec space worthy. Further testing by a team company employed engineers must be
performed at RUAG Space AB in order to prove that the design is good enough for space
mission.

A spacification of the SpaceWire Codec has been performed during the time that this paper
was written and the design is now deemed fit for space missions. The design, as developed
during this thesis, has already been used in IP-cores and is scheduled for use in the next
ASIC developed at RUAG Space AB.

57

8 References

[ECSS SPW] ESA Requirement & Standards Division ESTEC (2008)

SpaceWire – Links, nodes, routers and networks; ECSS-E-ST-50-12C

[ECSS PTP] ESA Requirement & Standards Division (2010)
CCSDS Packet Transfer Protocol; ECSS-E-ST-50-53C

[ECSS RMAP] ESA Requirement & Standards Division (2010)
Remote Memory Access Protocol; ECSS-E-ST-50-52C

[IEEE 1355-1995] IEEE Standards Board (1995)
IEEE Standard for Heterogeneous InterConnect; IEEE Std 1355-1955

[RUAG CSTD] RUAG Space GDC
VHDL Coding Standard; S-DSTD-HWI-00029-SE

[RUAG ASYNC] RUAG Space GDC
ASIC, Multiple Clocks and Asynchronous Interfaces; S-DSTD-HWI-
00030-SE

	1 Introduction
	1.1 Purpose
	1.2 Delimitations
	1.3 Method
	1.4 Key results
	1.5 Decomposition

	2 System view and background information
	2.1 SpaceWire as a concept
	2.1.1 Applications
	2.1.2 From test to mission
	2.1.3 Network
	2.1.4 Additional protocols

	2.2 SpaceWire heritage and improvements
	2.2.1 Pre-existing standards
	2.2.2 Improvements
	2.2.3 Revision

	2.3 SpaceWire protocol
	2.3.1 Protocol levels
	2.3.2 Levels of the Codec

	2.4 The SpaceWire Codec
	2.5 Digital logic in space
	2.5.1 Effects of radiation
	2.5.2 ASIC technology
	2.5.3 FPGA technology

	3 Requirements and demands
	3.1 Company specific demands
	3.1.1 Small footprint
	3.1.2 Straightforward configuration parameters
	3.1.3 Configurable transfer rates
	3.1.4 Small BusClk asynchronous regions
	3.1.5 Easy post synthesis placement
	3.1.6 Self calibrating timeout counters
	3.1.7 BusClk synchronous interface

	3.2 Non-formal demands
	3.2.1 Coding standard
	3.2.2 Design partitioning

	3.3 Requirements
	3.3.1 Signal encoding and transition constraints
	3.3.2 Data signal rate constraints
	3.3.3 Serial interface characters
	3.3.4 Link timing
	3.3.5 Parity generation and error detection
	3.3.6 Link status signals
	3.3.7 Start-up procedure
	3.3.8 N-Char buffers
	3.3.9 Flow control
	3.3.10 TimeCode interface
	3.3.11 Data and control interface

	4 Functional design
	4.1 Design partitioning
	4.1.1 Codec as described in the SpaceWire standard
	4.1.2 The proposed design

	4.2 Overview
	4.2.1 Function

	4.3 Data Interface
	4.4 Configuration
	4.4.1 Data sample groups
	4.4.2 Rx Async IF FIFO
	4.4.3 Character Buffer
	4.4.4 Rx FIFO Size
	4.4.5 Data transmit groups
	4.4.6 Tx FIFO Size

	4.5 Rx Pipeline
	4.5.1 Receiver
	4.5.2 Rx asynchronous interface
	4.5.3 Rx token handler
	4.5.4 Rx FIFO

	4.6 Tx Pipeline
	4.6.1 Timer
	4.6.2 Tx FIFO
	4.6.3 Tx token generator
	4.6.4 Tx asynchronous interface
	4.6.5 Data strobe generator
	4.6.6 Tx driver

	5 Verification
	5.1 Simulation
	5.1.1 Test bench description
	5.1.2 Test bench commands

	5.2 Test bench receiver capabilities
	5.2.1 Monitors

	5.3 Test bench transmitter capabilities
	5.4 Test procedures
	5.4.1 Start-up test
	5.4.2 TimeCode test
	5.4.3 Data test
	5.4.4 FCT test
	5.4.5 FIFO flush test

	5.5 Verification in hardware

	6 Results
	6.1 Implementation results
	6.1.1 Design
	6.1.2 RTL implementation
	6.1.3 Test bench implementation
	6.1.4 Hardware verification

	6.2 Size
	6.2.1 Minimum configuration
	6.2.2 Maximum configuration
	6.2.3 Size comparison

	6.3 Performance
	6.3.1 MH1
	6.3.2 ATC18

	6.4 Future development

	7 Conclusions
	8 References

