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Abstract 
 
In space, as on earth, there is a need for fast, reliable and reusable point-to-point data 
communication. The SpaceWire standard developed by the European Space Agency 
together with the European Space Industry and Academia aims to provide a unified 
standard that can support most data communication needs during space missions. The goal 
of this master thesis is to design and implement a SpaceWire Codec, compliant with the 
SpaceWire standard as described in ECSS-E-ST-50-12C, and make the design efficient 
enough to support the needs for the foreseeable future. 
 
During this master thesis a SpaceWire Codec have been designed, implemented and 
verified. During the design, focus has been on size, speed and re-usability as the pre-
existing solutions does not meet all the requirements emerging at RUAG Space AB. The 
SpaceWire Codec implemented during this theses is used to handle the low level reception 
and transmission of data and control characters over the SpaceWire link and provide an 
easy to use interface. 
 
Verification and synthesis of the SpaceWire Codec shows that the design can deliver 
contiguous transfer rates of one useful byte, transferred and received every BusClk, while 
still being lightweight in terms of digital logic. Further verification steps needs to be 
performed in order to make the SpaceWire Codec suitable for its planned space missions. 
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Sammanfattning 
 
I rymden, såväl som på jorden, finns ett behov av snabba och robusta data interface. 
SpaceWire standarden, utvecklad av ESA tillsammans med företag och universitet, är ett 
försök att skapa en standard där större delen av den datakommunikation som finns i såväl 
satelliter som raketer ska kunna rymmas. Målet med det här ex-jobbet är att designa och 
implementera SpaceWire standarden som den beskrivs i ECSS-E-50-12A och samtidigt 
göra designen tillräckligt effektiv för att RUAG Space ska kunna använda modulen i 
framtida produkter. 
 
Under arbetets gång har en SpaceWire Codec blivit designad, implementerad och 
verifierad. Under designfasen låg fokus på storlek, prestanda och användbarhet då äldre 
lösningar inte längre klarar de krav som växt fram på RUAG Space. Den SpaceWire Codec 
som implementerats här sköter all lågnivå hantering av data över SpaceWire länken och ger 
samtidigt resten av designen lättanvänt interface. 
 
Verifikation och syntes av den föreslagna lösningen visar att designen klarar den prestanda 
som sattes upp som mål i början av arbetet. Designen är dessutom förhållandevis effektiv 
vad gäller digital logik samt går att konfigurera beroende på vilka behov som finns. 
Ytterliggare tester och en full verifierings svit krävs dock innan den SpaceWire Codec som 
implementerats är klar för sina kommande missioner. 
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Bit Numbering 
The following conventions are used for bit numbering: 
• The Most Significant Bit (MSB) of a vector has the leftmost position. 
• The Least Significant Bit (LSB) of a vector has the rightmost position. 
• Unless otherwise indicated, the MSB of a vector has the highest bit number and the 

LSB the lowest bit number. 
 
Radix 
The following conventions are used for writing numbers: 
• Binary numbers are indicated by the subscript “2”, e.g. 12, 1011_1010_1011_11102, 

0100102 etc. 
• Decimal numbers are indicated by the subscript “10”, e.g. 67,872310, 4786010. 
• Hexadecimal numbers are indicated by the subscript “16”, e.g. E16  BABE16. 
• Unless the Radix is explicitly declared as above the number should be considered to be 

decimal number.  
 
Signal Names 
The following conventions are used for signal names: 
• Signal names are written in italics, e.g. SignalName. 
• Bus indices are indicated with brackets, e.g. SignalName[12:3]. 
• Signals maybe grouped into subsignals, e.g. SignalName.SubSignal. 
 
Graphics legend 
Standard graphics for state- and mode- graphs. 

Idle

 

State or modes are pictured as circulars. Double circle indicates the 
Reset/Initial state or mode. 

Request
Lock
Wait

 

Single circle indicates State or modes. 

 Normal transition 

 Exceptional transition 
 
Basic data types 
Byte 8 bits of data 
HalfWord 16 bits of data 
Word 32 bits of data 

 
 
Character types 
N-Char Data characters, EOP and EEP. 
L-Char FCT, NULL and TimeCode 
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Abbreviations 
 
ASIC Application Specific Integrated Circuit 
BusClk System clock 
DFF Digital Flip-Flop / register 
DS Data-strobe 
ESA European Space Agency 
ECSS European Cooperation for Space Standardization 
FPGA Field Programmable Gate Array 
HW Hardware 
Id Identifier 
I/F Interface 
IO Input/Output 
IP Intellectual Property 
LSB Least Significant Bit 
LSW Least Significant Word 
LVDS Low Voltage Differential Signal 
MSB Most Significant Bit 
MSW Most Significant Word 
MTBF Mean Time Between Failures 
N/U Not Used 
RTL Register Transfer Layer 
SDF Standard Delay Format 
SEU Single Event Upset 
SW Software 
TB Test Bench 
TBC To Be Confirmed 
TBD To Be Determined 
VHDL VHSIC Hardware Description Language 
VHSIC Very High Speed Integrated Circuit 
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1 Introduction 

RUAG Space is interested in developing a new SpaceWire interface to complement the 
existing solution provided by the European Space Agency (ESA). The main reasons for 
designing a new company controlled SpaceWire interface are twofold. The existing 
solution does not meet all size and performance needs for future ASIC and FPGA designs. 
There is a need for both light weight configurations, suitable for FPGA remote terminal 
applications, as well as high bandwidth configurations that can handle transmitting as well 
as receiving a large number of bits every clock cycle. Secondly the licensing process, when 
using the existing solution, as well as the cumbersome procedures post synthesis is time 
consuming. 
 
The new module should fit three major roles. The first is as a fast, yet lightweight 
SpaceWire interface in the modular test environment called COFTA. The second role is to 
provide small remote terminal FGPA designs with an area effective SpaceWire interface. 
The third is to take the role of the existing solution as a fast data interface, preferably being 
able to handle more bits per BusClk (System clock) then the design used today. 

1.1 Purpose 

The purpose of this master thesis is to write the specification for the new SpaceWire 
interface, design and implement the SpaceWire interface in VHDL and finally verify the 
design by running the design in a test-bench as well as in hardware, on a FPGA platform. 
 
The design goals are to make the design an all purpose SpaceWire module that is able to 
handle receiving and transmitting one useful byte of data every BusClk cycle, to design the 
input and output regions as small and uncomplicated as possible in order to minimize skew 
and to make the design suitable for high bandwidth applications. 

1.2 Delimitations 

The thesis covers the implementation of a SpaceWire Codec, aimed to be used for space 
missions, as described in [ECSS SPW] with a few exceptions. 

• Chapter 5: The physical level of the SpaceWire interface is not covered as it is not a 
part of the digital design. 

• Chapter 10: The network level is only covered briefly as it is not a part of the work 
done during the digital design. 

• The work does not cover Low Voltage Differential Signal (LVDS) drivers as these 
will be supplied by third party. 

• Flight readiness: The SpaceWire Codec designed and tested during this thesis will 
not be ready for flight production. A more complete test-bench covering all 
requirements will be needed, together with code inspection and validation. 
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1.3 Method 

During the three different stages of the design the following methods were used. 
• The method used to design the SpaceWire Codec was to first find the key features 

needed for each application. This was done by studying both the SpaceWire 
standard as well as the complementing SpaceWire protocol standards. The design 
proposed in the SpaceWire standard was analysed and a new design, with a 
different topology more suitable for the needs of RUAG Space AB was proposed. 

• During the development of the code, focus was on implementing the design as 
efficiently as possible and to implement effective ways to tailor size versus 
performance. The development of the code also took into account the hazards of 
digital logic in space in order to make the design robust enough to qualify for space 
missions. 

• During the verification of the design, test cases were written and a full spacewire test 
bench was developed. The basic functionality of the SpaceWire Codec was verified 
in both simulation and during tests on a FPGA platform. The tests worked as a 
proof of concept for the design and the SpaceWire Codec has since been submitted 
to a full verification by RUAG Space AB in order to qualify for use during 
missions. 

1.4 Key results 

The basic design of the SpaceWire Codec developed during this thesis proved to be good 
enough for use in space missions, after further testing by RUAG Space AB. The codec has 
already been incorporated into ASIC and FPGA designs as well as into IP-cores. The 
design proved to be easy to integrate into projects and the BusClk synchronous interface 
spawned the idea of a standardized internal interface for data packets, now used by many of 
the designs developed at RUAG Space AB in Gothenburg. The implementation of the 
SpaceWire Codec has proved to be effective in terms of digital logic and the different 
configuration options allow the hardware designer instantiating the codec to tailor 
performance and size the specific needs of the project. Synthesis of the design revealed that 
the SpaceWire Codec is capable of speeds exceeding that of the standard. As a final note 
the more than 11 000 lines of VHDL code written during this thesis has and hopefully will 
continue to serve RUAG Space AB for years to come. 
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1.5 Decomposition 

The chapters of this master thesis are distributed in the following manner. 
• Chapter 2 will present the SpaceWire protocol from a system point of view. This 

chapter also includes the protocol levels of the SpaceWire Codec implemented 
during this thesis as well as a short description of the different hazards associated 
with digital logic in space.  

• Chapter 3 contains the requirements derived from the SpaceWire standard as well as 
the company specific demands placed upon the design by RUAG Space AB. 

• Chapter 4 contains an in depth description of the functional design for every block of 
the design. The chapter describes design decisions made during the development as 
well as justifications for these. 

• Chapter 5 contains the verification of the SpaceWire Codec. The chapter describes 
both the functional tests performed during the verification as well as the setup for 
the tests done in hardware. 

• Chapter 6 contains the final results of work done during this thesis. This includes the 
test results as well as the performance and size of the final design. The chapter also 
include future improvements to further develop the SpaceWire Codec proposed in 
this thesis. 

• Chapter 7 contains the conclusion. 
• Chapter 8 contains the references. 
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2 System view and background information 

This chapter covers the SpaceWire interface and its role from a system point of view as 
well as a brief technology study. The chapter is included to give a better understanding of 
the protocol, where it originated from and the demands and limitations that this applies to 
the actual design and verification work done during this thesis. 
 
The chapter starts with a short description of the SpaceWire link as a concept, focusing on 
the system view and possible applications. A description of the development of the 
SpaceWire standard follows, including pre-existing standards on which the SpaceWire 
protocol is built and possible future updates. After the introduction to the standard, two 
sections follows that handle the protocol layers of the SpaceWire interface and the layers 
that the SpaceWire Codec is responsible for maintaining. The last subsection includes an 
overview of the specific demands placed on digital hardware designed for space 
applications as well as a description of the technologies available. 

2.1 SpaceWire as a concept 

The SpaceWire standard was developed in order to give space missions a versatile, 
standardized data interface capable of handling multiple roles. The standard specifies a full-
duplex, point-to-point, serial data communication link capable of data rates between 2 
Mbps and 400 Mbps. The ESA SpaceWire standard [ECSS SPW] covers everything needed 
to pass information over the link, from the physical level to the network level. The 
SpaceWire standard also addresses the need for time distribution as well as includes a well 
defined start-up and error recovery scheme.  
 
Beside the SpaceWire standard, there exist additional protocols that give the SpaceWire 
link more functionality. The remote memory access protocol (RMAP), as described in 
[ECSS RMAP] gives the system remote memory access capabilities, enabling the 
possibility for remote terminal applications without the direct support of a central 
processing unit (CPU). CCSDS Packet Transfer Protocol (CPTP), as specified in [ECSS 
PTP] is another protocol that is contained within a SpaceWire packet. PTP is a transfer 
protocol used to send one packet through a SpaceWire network to the appropriate 
destination. 
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2.1.1 Applications 

The SpaceWire link can support a wide range of applications thanks to the large span of 
available data rates and the inherit data safety of the protocol. There are also some benefits 
of using a protocol that is capable of accommodating applications that range from rather 
slow control interfaces to high speed data buses. This enables the use of standardized 
reusable equipment like routers and CPUs to be available off-the-shelf. An example of the 
possible applications is shown in Figure 1 below. 
 

 
Figure 1: The SpaceWire link connecting the system 

The SpaceWire protocol is able to support various tasks like connecting mass memory units 
(MMU) and instrument control units (ICU) with the CPU and the Telemetry/Telecommand 
devices (TM/TC) as seen in the example in Figure 1. 
 
The main benefit of using the same protocol for everything from low speed control 
applications to high speed data transfers is the re-usability of components and subsystems, 
lowering the development cost for new systems and increasing system reliability. 
 
The routing schemes make it possible to bypass routers if needed, when using the Target 
logical address as routing byte. It should be possible to, for instance, connect the MMU 
directly to the CPU in Figure 1 without any alterations. This can be useful during validation 
campaigns when the entire system might not be present at one location. 
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2.1.2 From test to mission 

The SpaceWire protocol is suitable for use both during space missions and during the 
development and debugging phase pre-flight. 
 

 
 

Figure 2: Benefits of a standardized interface 

Commercial products make it possible to connect a normal PC, via an Ethernet to 
SpaceWire-bridge, to the system under test as seen in Figure 2. When both systems have 
been validated, possibly at different location, the integration work can be performed at the 
assembly site.  

2.1.3 Network  

The network chapters of [ECSS SPW] are not covered during this thesis but a brief 
introduction is included in order to give a better understanding of the system as a whole.  
 
As the SpaceWire link offer only point-to-point data communication, a network of routers 
is needed to make efficient use of the resources. Figure 3 depicts one type of network 
topology available for SpaceWire systems. 
 



7 
 

 
Figure 3: Network topology 

A SpaceWire packet travelling through the network will be fitted with one or more routing 
bytes in the primary header of the packet. There are two routing schemes that can be used; 

• The first scheme uses only a Target Logical Address to guide the packet to the 
correct destination.  

• The second makes use a series of Target SpaceWire Addresses, preceding the Target 
Logical Address of the packet. These Target SpaceWire Address bytes will be 
stripped of one by one as they guide the packet to its final destination. 

2.1.4 Additional protocols 

The SpaceWire standard on its own does not cover all the functionality needed during 
missions and for that purpose, additional protocols can be used to give the system more 
capabilities. The CCSDS Packet Transfer Protocol (PTP) and the Remote Memory Access 
Protocol (RMAP) are not covered during the work done for this thesis but a short 
description is included in order to give an idea of normal system usage. 
 
The CCSDS PTP, as described in [ECSS PTP], is a generic packet transfer protocol used to 
guide a packet of data from source to destination in a SpaceWire network. The protocol 
does not provide services that ensure correct or timely data delivery. 
 
RMAP is used to distribute memory access rights to other members of a SpaceWire 
network. This enables a CPU to control remote terminal devices by accessing memory 
locations as well as status and control registers. 



8 
 

2.2 SpaceWire heritage and improvements 

This subsection covers the pre-existing standards on which the SpaceWire protocol 
was built together with improvements, specific to the SpaceWire protocol and 
possible future updates. 

2.2.1 Pre-existing standards 

The SpaceWire protocol is a derivative of the IEEE 1355-1995 standard [IEEE 1355-1995]. 
The SpaceWire standard share the same character setup for data and control character 
handling but have some additions and clarifications making it suitable for use in space 
applications.  
 
The electrical interface of the Low Voltage Differential Signalling (LVDS) interface is 
compliant with the standard ANSI/TIA/EIA-644. 
 
The Data-strobe (DS) encoding of the transmitted bits is defined in IEEE 1355-1995 as 
well as in IEEE 1394.1995, better known as FireWire. 

2.2.2 Improvements 

Improvements to the existing IEEE 1355-1995-standard have been made to make the 
SpaceWire protocol more rugged, lower the power consumption, improve EMC-
performance and to address ambiguities in the pre-existing standard. The SpaceWire 
Standard also cover networking solutions and router functionality not implemented during 
this thesis work.  
 
The main differences between the IEEE 1355-1995-standard and the SpaceWire standard 
that are relevant to this thesis are listed below: 

• Signal level:  The SpaceWire protocol use LVDS instead of PECL. 
• Character level: The use of the ESC character is explicitly defined. 
• Exchange level: Ambiguities during link start-up resolved. 

2.2.3 Revision 

The SpaceWire standard, in its current form, cover transfer rates from 2 Mbps to 400 Mbps 
but a revision of the standard is pending. One suggestion is that the 2 Mbps boundary might 
be lowered together with a lengthening of the timeout times.  
 
The upcoming revision also includes a clarification of the TimeCode characters as the 
existing standard leaves room for interpretations. 
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2.3 SpaceWire protocol 

This section will give a brief introduction to the protocol levels associated with the 
SpaceWire protocol and the levels covered by the SpaceWire Codec developed during this 
master thesis. 

2.3.1 Protocol levels 

The SpaceWire standard covers the following protocol levels: 
• Physical: Defines cables, connectors etc. 
• Electrical: Defines voltage levels and noise margins. 
• Signal: Defines signal encoding and data signalling rates. 
• Character: Defines data and control characters. 
• Exchange: Defines link initialization, error detection and recovery as well as flow 

control and time distribution. 
• Packet: Defines packets and data flow over the link. 
• Network: Defines the structure for networks of routers and end users. 

 
The list of protocol levels above is altered slightly from the original as described in [ECSS 
SPW]. In order to get a straightforward mapping of the protocol layers associated with the 
SpaceWire Codec, the original Signal layer have been split into the Electrical level and the 
Signal level. 

2.3.2 Levels of the Codec 

The SpaceWire Codec is responsible for handling the levels ranging from the Signal level 
to the Exchange level. The SpaceWire Codec’s main purpose is maintaining the link, 
performing the links initialization sequence when restarted and performing flow control by 
reception and distribution of flow control tokens. This also means that the SpaceWire 
Codec is only responsible for the low level maintenance of the link and does not contain 
any network services. 
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2.4 The SpaceWire Codec 

The main functions of the SpaceWire Codec are to handle the low level bit transfers over 
the link, as well as handle the link initialisation sequence and the error detection and 
recovery scheme. The Codec is also responsible for the handling of the specific characters 
used for time distribution and flow control, as well as the characters used for defining 
packet boundaries and erroneous packet terminations. 
 

 
Figure 4: SpaceWire Codec overview 

There are three main structures inside a SpaceWire codec. 
• Tx-pipeline: Responsible for transmitting data and control characters. 
• Rx-pipeline: Responsible for receiving and validating characters. 
• Control logic: Holds the state of the codec and is responsible for the start-up and the 

termination of the link. 
 
In Figure 4 the Tx-pipeline can be recognised as all structures that have downwards 
pointing arrows. The transmitted characters can originate from outside sources, depicted as 
memory in Figure 4, or from internal ones, i.e. the Control logic. 
The Rx-pipeline can be recognised as all structures with upwards pointing arrows in Figure 
4. The received characters can be consumed within the codec, as in the case of link specific 
characters, or be distributed to outside receivers for storage or processing.  
The Control logic is the glue that keeps the Rx- and the Tx-pipelines in sync. 
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The SpaceWire Codec as designed during the thesis aims at being a self contained entity 
providing an easy to use BusClk synchronous interface to the rest of the design. All non 
BusClk synchronous blocks of the Codec and their asynchronous interfaces are kept 
module internal. The reason for this is twofold. First, interfacing with a BusClk 
synchronous module is not as time consuming as interfacing over a clock boundary. The 
work of designing an asynchronous interface is only performed once, during the initial 
module design. Further more, including more of the functionality within the Codec makes it 
easier to optimize the design both in terms of performance and in terms of size. 
 
To clarify the actions performed by a SpaceWire Codec, during nominal operation, a 
walkthrough of the actions done by the Tx-pipeline during packet transmission follows 
below.  

 
Figure 5: Data flow for transmission 

The SpaceWire Codec receives packets of data directly from memory or from other 
supporting circuits as seen in Figure 5. The codec then generates data and control 
characters from the incoming data packet to make it ready for transmission. After a 
character is scheduled for transmission it will receive the parity bit, used for character 
validation by the receiving end of the SpaceWire link. In the last step, inside the transmitter 
in Figure 5, the character is serialized, Data-Strobe (DS) encoded and accelerated to double 
data rate before being handed over to the LVDS driver. 
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2.5 Digital logic in space 

This subsection will cover some of the specific problems associated with designing digital 
hardware for space applications and the techniques used to handle or contain them.  

2.5.1 Effects of radiation 

All digital hardware used in space needs to be designed to take the effects of radiation into 
account. Besides degradation of the silicon, the one big risk for digital hardware in 
hazardous environments is a single upset event (SEU). These are caused by the digital 
hardware being struck by an ion and can cause a register to shift value, thus making the 
execution falter or fail.  
 
There are several techniques used to deal with the effects of radiation. The logic cells needs 
to be radiation hardened, meaning that they are designed to have a better tolerance to 
radiation. But as the available technologies get smaller and faster, their radiation tolerance 
gets worse. To compensate for this triple buffering with voting is used. This ensures that no 
erroneous values get propagated even if one of the registers would get an SEU, but it does 
not protect against the sampling of an erroneous value. If an ion were to strike at the same 
time as the registers are sampling in a new value all three could sample the incorrect value 
with no chance of recovery. To overcome this triple buffering with a skewed clock can be 
used. This will force the registers to sample their value at different points in time giving 
them better radiation protection at the cost of performance. 
 
But even well designed libraries can get an SEU more work needs to be done. The effects 
of an SEU can be lessened by making the state machines and other control logic SEU 
proof. This means that even if an SEU occurs, the state machines will have a valid state to 
fall back to and continue execution. 

2.5.2 ASIC technology 

There are a few ASIC technologies available for digital logic designed for space. The two 
that the SpaceWire codec, designed during the thesis, was synthesized to were; 

• MH1: a 350 nm technology provided by Atmel. 
• ATC18: a 180 nm technology provided by Atmel. 

 
One of the goals with the SpaceWire Codec was that it should be capable of 200 Mbps in 
both receive and transmit with MH1 and double that in ATC18. 

2.5.3 FPGA technology 

There are not many manufacturers of FPGA technology designed for space mission. The 
FPGAs suitable for space are not as big as commercial ones. One of the goals with this 
design was that it should be capable of residing in a small Microsemi RTSX-FPGA with 
only 2000 registers and still leave room to spare for useful digital logic. 
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3 Requirements and demands 

This chapter will list the requirement and demands for the design. The chapter starts with 
specific demands and limitations that RUAG Space put on top of SpaceWire standard, 
followed by the requirements derived from the SpaceWire standard as described in [ECSS 
SPW]. The demands and requirements are written to give the SpaceWire Codec a solid 
foundation on which to design, build and verify. The main difference between the demands 
and the requirements is that demands use the less binding term “should” where 
requirements use the term “shall”. 

3.1 Company specific demands 

This sub section lists the company specific demands, as described by RUAG Space to make 
the design fit company needs. Demands are not written in a way so that they can be easily 
verified, instead focus have been on describing the general idea of the module and specify 
what areas of the design to focus on. 
 

3.1.1 Small footprint 

The module should ideally be light weight in terms of digital logic. This point is one of the 
main concerns of RUAG Space as the main goal of the design was to be able to fit inside 
the rather small FPGAs suitable for space mission and still leave room for useful digital 
logic. The minimum configuration should aim at using less then 500 registers including all 
data storage needed to get the SpaceWire link up and running.  

3.1.2 Straightforward configuration parameters 

In order to facilitate future implementations of the codec into projects, well defined and 
efficient configuration parameters are needed. The size of the data handling parts of the Rx 
and Tx regions as well as buffers and data storage in the BusClk region should ideally scale 
linearly with the bandwidth requirements for the specific application.  

3.1.3 Configurable transfer rates 

Generics should make it possible to configure the SpaceWire Codec for everything from 
small light weight designs to full 10 bits received and transmitted every BusClk. The design 
and configuration should allow asynchronous data rates for Rx and Tx meaning that the 
design should be able to handle a combination of full and minimum speed in the same 
design.  
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3.1.4 Small BusClk asynchronous regions 

The design should be such that the Rx- and Tx-regions contain a minimum of digital logic. 
This is important in order to keep power demands low as the receiver and the transmitter 
usually operate at a much higher frequency then the system clock. 

3.1.5 Easy post synthesis placement 

The design should allow for easy implementation into projects. In order to make the back-
end work as streamlined as possible the design should only include the bare minimum of 
falling edge registers. Also the need for hand placing of logic or registers should be kept to 
a minimum. 

3.1.6 Self calibrating timeout counters 

The timeout counters, responsible for the disconnect timeout as well as the exchange 
timeout periods, should be self calibrating. This will make the design more self sustained 
and minimize the need for configuration pins and / or processor interference. 

3.1.7 BusClk synchronous interface 

Make sure all asynchronous interfaces over clock boundaries should be module internal to 
facilitate future implementations of the module into designs. 

3.2 Non-formal demands 

This section covers the non-formal demands applied to the design in order to make it fit 
company needs and make it suitable for future development. 

3.2.1 Coding standard 

Write the code using company coding standard as described in [RUAG CSTD]. 

3.2.2 Design partitioning 

Partition the design in a tidy manner and make sure its modular enough to be able to be 
updated to future SpaceWire standards. 
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3.3 Requirements 

The following subsections contain the formal requirements for the SpaceWire Codec. The 
requirements are divided into sections based on what function or part of the system they 
belong to. Each requirement is also written to target only one aspect and to be easily 
mapped into test scenarios. 
 
The requirements in this document are numbered. The syntax is: 
 
R/SWC.<increment> - <requirement heading> 
<requirement text>  
<requirement comment> 
 
Where: 
<increment> is an incremental number used within each group of requirements. 
<requirement comment> Notes are not part of the formal requirement and should be 
considered as an extra explanation to the requirement or as a definition of the meaning of 
words within the requirement text. 
 
If a requirement is no longer valid this will be indicated by the text "Deleted". 
Requirement numbers may not be removed or reused. 

3.3.1 Signal encoding and transition constraints 

R/SWC.005 - Signal encoding: 
The SpaceWire Codec shall use Data-Strobe (DS) encoding as described in IEEE Standard 
1355-1995. An example is included in Figure 6 below. 
 

 
Figure 6: Data-Strobe example 

R/SWC.010 - Receiver simultaneous signal transition: 
The receiver shall be fault tolerant during simultaneous transitions on both Data and Strobe 
input signals. 
 
Note 1: Simultaneous transitions on a link that is up might force the link to go through the 
Link initialization procedure. 
 
Note 2: Fault tolerant means that link errors are acceptable but no dead-lock should occur 
as a result of simultaneous transitions. 
 
R/SWC.015 - Transmitter simultaneous signal transition: 
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The transmitter shall not toggle both Data and Strobe signals during normal operation, this 
includes link down reset during the Link initialization procedure. 
 
R/SWC.016 - Transmitter duty cycle: 
The duty cycle of the transmitted clock shall be 50-50 during contiguous operation. 
 
R/SWC.017 - Transmitter duty cycle at data rate shift: 
During data rate shift, no half cycle of the transmitted clock shall be shorter then the half 
cycle of the faster data rate. 

3.3.2 Data signal rate constraints  

R/SWC.020 - Minimum data signalling rate: 
The minimum data signalling rate at which the SpaceWire shall operate is 2 Mbps. 
 
Note 1: The minimum data signalling rate is set by the disconnect timeout 850 ns. 
 
R/SWC.025 - SpaceWire Codec maximum signalling rate: 
The SpaceWire Codec shall be able to be configured to reach a maximum signalling rate of 
10 bits received and transmitted every BusClk. 
 
Note 1: The actual maximum signalling rate is also depending on the electrical 
characteristics of the link. 
 
Note 2: The SpaceWire Codec should be capable of at least 200 Mbps throughput using 
MH1 and 400 Mbps using ATC18. 
 
R/SWC.120 – Link initialization signalling rate: 
During link initialization the SpaceWire Codec shall be capable of sending and receiving 
characters at 10 (+/- 1) Mbps. 
 
R/SWC.030 - SpaceWire Codec operational signalling rate for receiver: 
The SpaceWire shall be able to receive data at any rate between the minimum signalling 
rate and the maximum signalling rate. 
 
Note 1: The maximum signalling rate is dependent upon configuration. 
 
R/SWC.035 - SpaceWire Codec operational signalling rate for transmitter: 
The SpaceWire shall be able to transmit data at any rate between the minimum signalling 
rate and the maximum signalling rate given that the rate is the same as or an integer 
division of SpwClk * 2. 
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3.3.3 Serial interface characters 

R/SWC.040 - Data and control characters: 
The data and control characters shall be as described in chapter 7.2 and 7.3 in [ECSS 
SPW]. The different characters are illustrated in Figure 7 below for reference. 

P 0 X X X X X X X X

P 1 0 0

P 1 0 1

P 1 1 0

P 1 1 1

Data Characters

Parity bit

Data-control flag

FCT   Flow control token

EOP Normal end of packet

EEP Error end of packet

ESC Escape 

P 1 1 1

P 1 1 1

NULL

Time-Code

LSB MSB

0 1 0 0

0 1 T T T T T T F F
MSBLSB  

Figure 7: Data and control characters 

Note 1: NULL is made up of an ESC character followed by an FCT. 
 
Note 2: Time-Code is made up of an ESC character followed by a Data Character. 
 
R/SWC.041 – Escape Error 
ESC followed by any other character then an FCT or a Data Character is considered a 
forbidden combination and shall cause an Escape error event. 
 
R/SWC.045 - Data and control character priority: 
The priority of the data and control characters shall be as described in section 8.3.n of 
[ECSS SPW]. The priority of the characters is included in Table 1 below for reference. 

Table 1: Priority table for character transmission 

Priority Character 
Highest Time-Code 
 FCT  Flow control token 
 N-Chars 
Lowest NULL 
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3.3.4 Link timing 

R/SWC.050 – Deriving timing time. 
The SpaceWire Codec shall derive the disconnect timeout time of 850 ns as well as the 
Exchange timeout periods of 6.4 us and 12.8 us from the 10 Mbps transmitter clock during 
the Start-up cycle. 
 
R/SWC.055 – Disconnect timing: 
The SpaceWire Codec shall assert the disconnect timeout event if the link has been quiet 
for more then 850 ns (between 727 ns and 1000 ns) after the last received bit. 
 
R/SWC.060 – Disconnect timing start: 
The disconnect timer shall not start measuring the disconnect time until the first bit has 
been received. 
 
R/SWC.065 – Exchange timeout periods: 
The nominal timeout period of 6.4 us shall be from 5.82 us to 7.22 us long and the 12.8 us 
timeout period between 11.64 us and 14.33 us long. 
 
R/SWC.070 – Deleted 

3.3.5 Parity generation and error detection 

R/SWC.075 - Transmitter parity generation: 
The transmitter shall generate a parity bit as described in 7.4 in [ECSS SPW]. The parity 
coverage is illustrated in Figure 8 below. 

P 0 X X X X X X X X P 1 0 0P 1 0 1

Data Characters FCT EOP

Parity coverage Parity coverage

 
Figure 8: Parity coverage 

Note 1: The parity bit is calculated over character boundaries as seen in Figure 8. 
 
R/SWC.080 - Receiver parity detection: 
The receiver shall be capable of detecting parity errors. 
 
R/SWC.085 – Character validation: 
A received character shall not be acted upon until the parity has been checked. 
 
R/SWC.090 - Parity error handling: 
When the link receives a character with parity error the character associated with the parity 
error and all following characters until the link has reset and left the ErrorReset state shall 
be considered invalid. 
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3.3.6 Link status signals 

R/SWC.095 – RxErr: 
RxErr shall be asserted when the following statement is true: 
Parity error detected or  
Escape error detected or  
Disconnect timeout event detected. 
 
R/SWC.100 – gotFCT: 
gotFCT shall be asserted when the SpaceWire Codec receives a valid FCT character. 
 
R/SWC.105 – gotN-Char: 
gotN-Char shall be asserted when the SpaceWire Codec receives a valid normal character 
(N-Char). 
 
R/SWC.110 – gotTimeCode: 
gotTimeCode shall be asserted when the SpaceWire Codec receives a valid TimeCode 
character. 
 
R/SWC.115 – CreditError: 
CreditError shall be asserted when any of R/SWC.250 or R/SWC.270 is true. 
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3.3.7 Start-up procedure 

All states of the SpaceWire Codec and all possible transitions are shown in Figure 9. 

 
Figure 9: Start-up procedure and Main FSM 

R/SWC.125 – Link up in noisy environment: 
All characters shall be ignored until the first valid NULL-token has been received. After 
receiving the first valid NULL-token the SpaceWire Codec will consider the link up. 
 
Note 1: Noisy environment means that signal transitions might occur before the first valid 
NULL-character. 
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R/SWC.130 – Link up error detection. 
After link up, the SpaceWire Codec shall reset the link upon detecting an unexpected 
character or a parity error.  
 
Note 1: If the prerequisites for more then one state change is fulfilled, change to ErrorReset 
take precedence.  
 
R/SWC.135 – Link start-up error: 
The Link Start-up error shall be asserted if the following statement is true: 
 RxErr asserted or 
 gotFCT asserted or 
 gotN-Char asserted or 
 gotTimeCode asserted. 
 
Note 1: One NULL-character has to have been received. 
 
R/SWC.140 – States of the SpaceWire Codec: 
The SpaceWire Codec shall contain the states: ErrorReset, ErrorWait, Ready, Started, 
Connecting and Run. 
 
R/SWC.145 – Receiver during Start-up procedure: 
The receiver shall be Reset and disabled as long as the Main FSM is in the ErrorReset state 
and enabled in ErrorWait, Ready, Started, Connecting and Run. 
 
R/SWC.150 – Transmitter during Start-up procedure: 
The transmitter shall be reset and disabled during ErrorReset, ErrorWait and Ready states 
and enabled during Started, Connecting and Run. 
 
R/SWC.151 – NULL-character first: 
A NULL-character shall be the first character transmitted after the SpaceWire Codec have 
left the ErrorReset state. 
 
R/SWC.155 – ErrorReset proceed: 
The SpaceWire Codec shall move to the ErrorWait state, unconditionally, after 6.4 us. 
 
R/SWC.160 – ErrorWait error: 
The SpaceWire Codec shall move to ErrorReset state when a Link start-up error is detected. 
 
R/SWC.165 – ErrorWait proceed: 
The SpaceWire Codec shall move to Ready state, unconditionally, after 12.8 us. 
 
R/SWC.170 – Ready error: 
The SpaceWire Codec shall move to ErrorReset state when a Link start-up error is detected. 
 
R/SWC.175 – Ready proceed: 
The SpaceWire Codec shall move to Started state if one or both of the following are true:  

• LinkDisabled deasserted and AutoStart asserted and GotNull. 
• LinkDisabled deasserted and LinkStart is asserted. 

 
R/SWC.180 – Started error: 
The SpaceWire Codec shall move to ErrorReset state when a Link start-up error is detected. 
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R/SWC.190 – Started time error: 
The SpaceWire Codec shall move to ErrorReset state if it has not received a valid NULL-
token for 12.8 us. 
 
R/SWC.195 – Started Tx: 
The transmitter (Tx) shall send NULL-characters while in the Started state. 
 
Note 1: the normal start-up bit rate of 10 Mbps is used. 
 
R/SWC.200 – Started proceed: 
The SpaceWire Codec shall move to Connecting state on reception of a valid NULL-token. 
 
R/SWC.205 – Connecting error: 
The SpaceWire Codec shall move to ErrorReset state when the following is true 
 RxErr asserted or 
 gotN-Char asserted or 
 gotTimeCode asserted or  
 not gotFCT after 12.8 us. 
 
R/SWC.210 – Connecting Tx: 
The transmitter shall send FCT-characters and NULL-characters during Connecting state. 
 
R/SWC.215 – Connecting proceed: 
The SpaceWire Codec shall move to Run state on reception of a valid FCT-character. 
 
R/SWC.220 – Run error: 
The SpaceWire Codec shall move to ErrorReset state when the following is true 
 RxErr asserted or 
 CreditError asserted or 
 LinkDisabled asserted. 
 
R/SWC.225 – Run Tx: 
The transmitter shall be able to send all types of valid characters when in Run state. 

3.3.8 N-Char buffers 

R/SWC.230 – Receiver buffer size: 
The receive buffer shall be able to hold between 8 and 56 N-Chars. 
 
Note 1: The exact size of the receive buffer depends on RxFifoSize_G. 
 
R/SWC.235 – Transmit buffer size: 
The transmit buffer shall be able to hold between 1 and 56 N-Chars. 
 
Note 1: The exact size of the transmit buffer depends on TxFifoSize_G. 



23 
 

3.3.9 Flow control 

A flow control token (FCT) indicate that the receive buffer can store eight more N-Chars 
and shall be transmitted when there is enough room reserved in the receive buffer. 
 
R/SWC.240 – Deleted. 
 
R/SWC.245 – Flow control generation: 
The SpaceWire Codec shall send one FCT for every eight N-Chars of reserved space in the 
reception buffer after the link initialization procedure has reached the Connecting state to 
indicate that there is room for eight more N-Chars. 
 
Note 1: When in Run state FCTs shall be generated as soon as the receive buffer has room 
another eight N-Chars. 
 
Note 2: If for some reason the reception buffer does not have room for eight more N-Chars 
during the link initialization procedure, Null-characters shall be sent until the recipient 
resets the link. 
 
R/SWC.250 – Receive buffer overflow: 
Credit error shall be asserted when the number of received N-Chars is greater then the 
number of outstanding N-Char requests. 
 
Note 1: Outstanding N-Char requests equals to the number of FCTs transmitted minus the 
number of N-Chars received. 
 
R/SWC.255 – N-Char credit counter: 
The SpaceWire Codec shall implement a credit counter to keep track of how many N-Chars 
it is allowed to transmit. 
 
R/SWC.260 – N-Char credit counter behaviour: 
The credit counter shall increment its value by eight every time a FCT is received and 
decrement its value by one every time an N-Chars is transmitted. 
 
R/SWC.265 – N-Char credit counter maximum value. 
The credit counter shall hold a maximum credit count of 56. 
 
R/SWC.270 – N-Char credit counter error: 
Credit error shall be asserted if the credit counter goes above its maximum value. 
 
R/SWC.275 – N-Char credit count at zero. 
The SpaceWire Codec shall seize transmitting N-Chars when the credit counter is zero. 
 
R/SWC.280 – Link up credit counter: 
The credit counter shall be set to zero when the link is in ErrorReset state. 
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3.3.10 TimeCode interface 

The time interface of the SpaceWire Codec shall comprise of two signals, TickIn and 
TickOut, a six-bit time output port TimeOut, a six-bit time input port TimeIn, a two-bit 
control flag input port CtrlIn, a two-bit control flag output port CtrlOut, the signal 
WrTimeCode to write new values to the TickIn and CtrlIn ports and the signal 
ExtTimeCode. The signals are defined in Table 7. 
 
R/SWC.285 – Deleted. 
 
R/SWC.290 – TimeCode generation: 
When TickIn is asserted and the SpaceWire Codec is in the Run state a TimeCode shall be 
transmitted as soon as possible. 
 
Note 1: The TimeCode shall have priority over all other types of characters but since there 
is an asynchronous interface in the signal path the exact timing can not be specified. 
 
R/SWC.295 – TimeCode update. 
When the WrTimeCode is asserted the internal TimeIn and CtrlIn registers shall be updated 
with the values applied to the port. 
 
R/SWC.300 – TimeCode validity: 
The received TimeCode shall be considered valid if the time is one more modulo 64 then 
the previously received TimeCode. 
 
R/SWC.305 – TimeCode reception: 
TickOut shall be asserted when the SpaceWire Codec is in the Run state and a valid 
TimeCode is received. 
 
R/SWC.310 – Extended TimeCode: 
The two control flags shall be set to/checked against zero when ExtTimeCode is deasserted 
and be propagated when ExtTimeCode is asserted. 
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3.3.11 Data and control interface 

R/SWC.315 – Control interface 
The following signals are provided to control the overall functionality of the SpaceWire 
codec. 
 

Table 2: Control interface 

Signal Direction Description 
BusClk In System Clock 
SpwClk In SpaceWire transmit Clock 
TxClkDiv In Down conversion rate for TxClk 
Reset In Reset signal 
ResetEnd In Reset End signal 
LinkStart In Flag indicating that the link is ready to start 
LinkDisable In Flag indicating that the link is disabled 
AutoStart In Flag indicating that the link should start on reception of a 

NULL Character 
 
 
R/SWC.315 – BusClk asynchronous data reception interface 
The following signals are used to receive data. 
 

Table 3: RxLink interface 

Signal Direction Description 
DIn In Data signal to Receiver Block 
SIn In Strobe signal to Receiver Block 

 
R/SWC.320 – BusClk synchronous data reception interface 
The following signals are used to receive data. 
 

Table 4: RxData interface 

Signal Direction Description 
RxData Out Byte wide data from Rx FIFO 
RxDValid Out RxData valid 
RxDAck In Ack the data currently at RxData 
RxPkt Out  Deasserted at packet end 
RxErr Out Asserted at packet end when failure 
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R/SWC.325 – BusClk asynchronous data transmit interface 
The following signals are used to transmit data over the SpaceWire link.  
 

Table 5: TxLink interface 

Signal Direction Description 
DOut Out Data signal from Transmitter Block 
SOut Out Strobe signal from Transmitter Block 

 
R/SWC.330 – BusClk synchronous data transmit interface 
The following signals are used to transmit data. 
Table 6: TxData interface 

Signal Direction Description 
TxData In Byte wide data to Tx FIFO 
TxDValid In TxData valid 
TxDAck Out Ack the data currently at TxData 
TxPkt In Deasserted to indicate packet end 
TxErr In Asserted at packet end to indicate failure 

 
R/SWC.335 – TimeCode interface signals 
The following signals are used to transmit data. 

Table 7: Time-Code interface 

Signal Direction Description 
WrTimeCode In Updates the value for CtrlIn and TimeIn 
TickIn In Signal from time-master to send TimeCode 
CtrlIn In The two MSB of the TimeCode 
TimeIn In Time-Code to be transmitted 
TickOut Out Asserted when a valid Time-Code is received 
CtrlOut Out The last received Ctrl-field of the TimeCode 
TimeOut Out The last received Time-Code 

 
R/SWC.335 – Deleted. 
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4 Functional design 

This chapter includes the functional design of the SpaceWire Codec designed during this 
thesis. The chapter will start with a justification of the design partitioning developed during 
this theses followed by an overview of the proposed design. The next subsection gives an 
explanation of the data interface and the configuration parameters. The reminder of this 
chapter will give an in depth description of the design where each of the functional blocks 
will be described in detailed, with one exception, the Control Logic block. This part of the 
design will be mentioned in the context where it is deemed fit. This is done as the Control 
Logic is not confined in its entirety to one VHDL file but rather distributed amongst some 
of the files making up the rest of the design. 

4.1 Design partitioning 

This subchapter will discuss the usual partitioning of a SpaceWire codec and 
compare it to the design proposed in this thesis. 

4.1.1 Codec as described in the SpaceWire standard 

The design solution for the SpaceWire codec as described in [ECSS SPW] have only two 
clock regions, one being the RxClk region synchronous to the incoming Data-Strobe 
signals, and the other being the SpwClk region, see [ECSS SPW] §8.4 for details. This 
approach has a few drawbacks:  

• It makes the implementation for each new application cumbersome as an 
asynchronous interface between the SpwClk and the BusClk regions needs to be 
designed for each new implementation. 

• This also means that a large part of the design is residing in the fast SpwClk region 
increasing power needs and putting unnecessary demands on the synthesis and at 
worst, limiting performance due to hard timing constraints. 

• Increase size of the design as it is harder to make a lean asynchronous interface 
further away from the receiver and the transmitter. 

 
There are also benefits with this approach: 

• If SpwClk and BusClk are synchronous, there is no need for an asynchronous 
interface making the design use less registers. 

• You are free to implement the data interface in any way you see fit, making the 
codec suitable for a wider range of applications.  
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4.1.2 The proposed design 

The design solution proposed during this thesis differs from the one suggested in 
[ECSS SPW] on a number of things. The main points are:  

• Very small Rx and Tx regions with slim to no complex logic inside. All intelligent 
decisions are made in the system clock region in order to enhance receiver / 
transmitter performance while keeping power consumption down.  

• Internal data buffers capable of storing enough N-Chars to keep the SpaceWire 
Codec running stutter free. A side effect of this is that all flow control is handled 
within the SpaceWire Codec, removing the need to control this externally. 

• BusClk synchronous interfaces. The benefit of having the system interface in the 
system clock region is that no extra driver or asynchronous interfaces are needed 
outside of the SpaceWire Codec. 

• Self-calibrating timeout timers. The length of the timeout times is generated 
internally in order to reduce the number of configuration pins and / or register 
operations needed. 

 

SpaceWire Codec

Rx Tx

Rx Token
Handler

Rx Async If

Rx Fifo Tx Fifo

Tx Async If

Tx Token
Generator

Control
Logic

DIn SIn

Rx Data I/F Tx Data I/F

DOut SOut

Status & Ctrl

 
Figure 10: SpaceWire overview 

The SpaceWire Codec seen in Figure 10 contains every block needed for the link to start up 
and provide a BusClk synchronous data and control interface to the rest of the design, see 
§4.3 for details. Each block is configurable in size except the Control Logic. For details on 
how to configure the size and speed of the SpaceWire Codec, please refer to the 
subchapters of §4.4 for description or guidelines. 
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4.2 Overview 

The overview of the SpaceWire Codec seen in Figure 10 can be mapped, to some extent, to 
the general description of a SpaceWire codec as seen in Figure 4. The overview in Figure 
10 is more detailed as it depicts the functional blocks of the design rather then the function 
of the codec. Also note that the direction of the data flow in the pictures is reversed. 

4.2.1 Function 

To further explain the function of the SpaceWire Codec seen in Figure 10 a short 
description will follow.  
 
The receiver pipeline in the leftmost part of Figure 10, containing all functional blocks 
starting with Rx, is responsible for receiving all N- and L-Characters on the link during 
normal operation. Inside the dashed line, in Rx-region, the Data-Strobe signals generates 
RxClk that is used to clock in all incoming data. There is one bit received every rising and 
falling edge of RxClk, Double Data Rate (DDR), meaning that a 100 MHz clock carries 
data at a rate of 200 Mbps. The bits received in Rx will be made BusClk synchronous in the 
Rx Async IF, decoded in the Rx Token Handler and finally stored in the Rx FIFO before 
being handed over to the system. Note that only the N-Characters are handed over to the 
system level and that all L-Characters are handled internally by the Control Logic. 
 
The transmitter pipeline in the rightmost part of Figure 10, containing all functional blocks 
starting with Tx. The Tx-pipeline will get all N-Characters from the system level, via the 
Tx FIFO, and all L-Chars from the Control Logic. The Tx Token generator is responsible 
for preparing the characters, before being handed over to the Tx Async IF. The Tx Async 
IF-block is responsible for taking the BusClk synchronous signals and making them SpwClk 
synchronous. Inside the dashed line, in the Tx-region, all signals are SpwClk synchronous. 
The data-rate of the outgoing traffic can be divided down by setting the TxClkDiv in Table 
2, creating a fictive clock signal, the TxClk. The Data-Strobe signal transmitted over the 
link is DDR, meaning that one bit is transmitted each rising and falling edge of TxClk. 

4.3 Data Interface 

This section covers all data IO in the SpaceWire Codec entity. 

 
Figure 11: BusClk synchronous data interface 

In order for the SpaceWire Codec to be able to send as well as receive one byte of data 
every BusClk cycle, the RxDValid and the TxDValid as well as the RxDAck and the TxDAck 
need to keep up with the transmission at full speed. 
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The signals associated with the RxData I/F and the TxData I/F are designed to be able to 
communicate without the use of glue logic, meaning that the receiver data interface signals 
are able to drive the transmitter data interface signals when connected back to back in a 
router type design. 

4.4 Configuration 

The following chapters describe the configuration parameters needed in order to setup a 
working synthesis of the SpaceWire Codec with a certain performance. The chapter starts 
by introducing the different configuration parameters in Table 8 followed by an in depth 
description of each parameter, what it configures and how to calculate the correct value for 
a given RxClk / BusClk ratio. 
 

Table 8: Configuration table 

Generic Description 
DataSampleGroups_G The width in bit-pairs of the FIFO transporting bits 

across Rx Async IF 
RxAsyncIfFifo_G The width in bit-pairs of the received data that can be 

concatenated each BusClk 
CharacterBuffers_G The number of characters that can be received each 

BusClk 
RxFifoSize_G The number of bytes that can be stored in the Rx 

FIFO, needs to be larger then eight bytes. 
DataTransmitGroups_G The width (in 9 bit characters) of the Tx Async IF 
TxFifoSize_G The number of bytes that can be stored in the Tx FIFO

 

4.4.1 Data sample groups 

DataSampleGroups_G determines the number of bit pairs in the Rx reception buffer as well 
as the width of the Rx Async IF in Figure 10. The number of bit pairs needed in the 
asynchronous interface depends on the RxClk / BusClk ratio. Remember to use the 
maximum RxClk value as it can shift up to 10%.  
 
The minimum value is calculated as: 
DataSampleGroups_G >=  (RxClk / BusClk) * 2 + 2 

4.4.2 Rx Async IF FIFO 

RxAsyncIfFifo_G determine the maximum number of bit pairs that is allowed in FIFO that 
concatenates the incoming data from the Data sample groups to form whole characters. The 
number of bits needed is the length of one data character minus two plus the maximum 
number of new bytes per BusClk plus two. Remember to use the maximum RxClk as it can 
shift up to 10%. 
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The minimum value is calculated as: 
RxAsyncIfFifo_G >= (8 + (RxClk / BusClk) * 2 + 2) 

4.4.3 Character Buffer 

CharacterBuffers_G determines the number of Character Buffers needed to handle the 
incoming characters from the Rx Async IF FIFO in Figure 10 each BusClk. The number of 
Character Buffers needed is one plus the maximum number of Characters in one BusClk. 
Remember to use the maximum RxClk as it can shift up to 10%. 
 
The minimum value is calculated as: 
CharacterBuffers_G >= 1 + ((RxClk / BusClk) * 2 – 2) / 4 

4.4.4 Rx FIFO Size 

RxFifoSize_G determines the number of bytes that can be stored in the Rx FIFO seen in 
Figure 10. RxFifoSize_G can be any value between 8 and 56 but the value should be 
chosen large enough to make the reception or N-Chars go smoothly. The higher the RxClk / 
BusClk ratio the larger the buffer needs to be. 
 
The minimum practical limit is 10 but the optimal value for a given RxClk / BusClk ratio 
also depends on the transmission rate as a FCT needs to be transported over the link. 

4.4.5 Data transmit groups 

DataTransmitGroups_G determines the width of the Tx Async IF in Figure 10. The 
configuration value of DataTransmitGroups_G is determined by the number of bits needed 
to supply the transmitter with data, EOP and EEP characters. During transmission the bulk 
of the transmitted data is Data Characters so each Data Transmit Group can be counted as 
10 bits. 
 
There is no absolute limit for this configuration parameter but in order for the transmission 
to go stutter free, meaning no unnecessary NULL characters transmitted during data 
transmission, there needs to be one Data transmit group for every 2.5 bits transmitted every 
BusClk. 

4.4.6 Tx FIFO Size 

TxFifoSize_G determines the number of bytes that can be stored in the Tx FIFO as seen in 
Figure 10. The size of the Tx FIFO does not depend directly on the rate of transmission but 
rather on the rate and/or chunk size of data reception via the Tx Data interface.  
 
There are no easy ways to calculate the optimal value of TxFifoSize_G but a 
recommendation is to set the value to at least one more then the value of 
DataTransmitGroups_G. 
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4.5 Rx Pipeline 

The following sub chapters will give an in depth description of the Rx pipeline as seen in 
Figure 10 starting at the DS-signals and following the data flow down to the data interface 
at system level. 

4.5.1 Receiver 

The SpaceWire receiver, depicted as Rx in Figure 10, receives both data and strobe from 
the transmitter at the other end of the link. The detailed description of the Receiver and the 
supporting asynchronous interface is shown in Figure 12 below. The design has been made 
especially to facilitate place and route as well as to make the design as configurable and as 
cost effective in gates as possible.  

 

Figure 12: Receiver and asynchronous interface 

To further explain Figure 12:  
RxClk is generated as DIn xor SIn and all registers in the Rx region, the region to the left of 
the dash-dotted line, are triggered by RxClk. Since the D-signal is used to generate RxClk as 
well as carries the data content of the incoming bit-stream, the timing between the D-signal 
and the generated RxClk needs to be adjusted post synthesis.  
 
There is only one time critical falling edge DFF in the proposed design for the receiver, the 
DFF that samples incoming falling edge data. This helps to keep demands on place and 
route low and makes it possible to reach quite high data rates. The other falling edge DFF 
in the receiver is the LSB of the Counter but since all incoming data is handled in pairs, this 
DFF is not used for anything time critical. 
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The Counter in Figure 12 keeps track of the number of incoming data bit pairs and enables 
the correct Data Sample Group to buffer the incoming data and alert the Rx Async IF about 
arriving bit-pairs. The Enable signal from the Counter and a detailed description of the Data 
Sample Group is shown in Figure 13 below. 
 
The SpaceWire Codec has a configurable amount of Data Sample Groups, using 
DataSampleGroups_G, in order to optimize size for the desired performance. See 4.4.5 for 
configuration details. 
 
Once the Edge detection is asserted in the BusClk region all new data in the Rx Async IF 
DFFs will be moved and concatenated in the Rx Async IF FIFO in the rightmost part of 
Figure 12. 
 
The SpaceWire Codec has a configurable Rx Async IF FIFO using RxAsyncIfFifo_G. See 
4.4.4 for configuration details. 

4.5.2 Rx asynchronous interface 

This section will cover the design of the asynchronous interface for one Data Sample 
Group in detail followed by a short description about the asynchronous interface for the 
Counter as well as the reset signal for the Rx region. 

 
Figure 13: Rx Asynchronous interface in detail 

The details in Figure 13 can be seen as the structure marked Data Sample Group in Figure 
12. A description follows below: 
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Once the Enable signal from the counter points at the Data Sample Group, Rising edge and 
Falling edge data will be sampled on the next positive RxClk transition. At the same time 
the Data Valid signal, shown at the bottom of Figure 13 toggles. The Data Valid signal is 
propagated into the BusClk region and is used to trigger the Edge Detection, shown in 
Figure 12. The Edge Detection will let the supporting circuits of the Rx Async IF FIFO 
know that new data can be sampled in and concatenated to the bit-stream. The solution for 
Rx Async IF as seen above does have an overhead in terms of DFFs and logic compared to 
other solutions but was chosen as it’s a fast, configurable and robust way of crossing a 
clock boundary. 
 
The LSB of the Counter in Figure 12 have a standard asynchronous protocol #1 interface as 
described in [RUAG ASYNC]. The Counter together with the Edge Detection circuit is 
used to reset the Disconnect timeout timer every time a bit has been received.  
 
The asynchronous interface of the Reset-signal for the Rx-region is a standard 
asynchronous protocol #6 interface as described in [RUAG ASYNC]. All DFFs, except the 
ones that are used to sample DIn and SIn, use asynchronous reset since RxClk might be 
absent. The DFFs that are used to sample DIn and SIn are not reset to improve link timing. 

4.5.3 Rx token handler 

Once the incoming data is concatenated in the Rx Async IF FIFO the data needs to be 
decoded, split up into characters and moved to the Rx Token Handler shown in Figure 10. 
Once the data reaches the Rx Token handler, as shown below, a parity check is performed 
together with character decoding to be able to recognize, sort and signal specific commands 
to the Control Logic shown in Figure 10. The Token handler is shown in the figure below. 
 

 
Figure 14: Rx Token handler in detail 
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The different sized characters will be recognized by peeping at the data-control flag. Every 
full sized character found in the Rx Async IF FIFO is moved to the Character Buffers 
labelled 2 to n seen in Figure 14. The last Character is always moved to Character Buffer 1 
at the bottom of Figure 14 so that the parity check can be performed before the Character is 
allowed to have any effect on the system. The parity check is shown in grey in Figure 14. 
The ESC Placeholder is asserted when the last Character to pass the Parity check is an 
Escape Character. The ESC Placeholder is only there to minimize DFFs. 
 
The number of Character Buffers is configurable using CharacterBuffers_G, see 4.4.4 for 
configuration details. 
 
After parity check and detection, the characters will either be moved to the Rx FIFO seen in 
Figure 10 if the character is an N-Char or signal the Control Logic if the character is an L-
Char.  

4.5.4 Rx FIFO 

The Rx FIFO is configurable, using RxFifoSize_G, in 1 byte blocks to give the designer the 
ability to optimize for size or performance. See 4.4.4 for configuration details. The Control 
Logic is responsible for keeping track of the read and write counters for the Rx FIFO as 
well as the sending of FCTs. 
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4.6 Tx Pipeline 

The following sub chapters will give an in depth description of the Tx pipeline as seen in 
Figure 10. The description will start with an overview of the transmitter topology. After 
that the description will follow the flow of data from the BusClk synchronous data interface 
to the DS-drivers in the transmitter. 
 
The transmitter pipeline within Figure 10 can be viewed in detail in the figure below 
together with the Tx asynchronous interface and associated signals. 
 

 
Figure 15: Transmitter overview 

SpwClk is divided down to the rate indicated by TxClkDiv, creating the fictive clock signal 
TxClk. The TxClk is used to drive the flow of data inside the Tx-region. 
 
As seen in Figure 15 the transmitter consists of two identical transmitters, one for Data and 
one for the Strobe. The counter directs bit pairs from The D FIFO or the Logic generating 
the NULL and Time-Code Characters through the Strobe Generator.  
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4.6.1 Timer 

In order to have self calibrating timeout timers as demanded in 3.1.6 it is necessary to 
calculate the number of BusClk cycles that make up the 6.4 us timeout time. From those 6.4 
us the SpaceWire Codec can derive the 850 ns disconnect timeout time as well as the 12.8 
us time.  
 
The reference for measuring the time is the generated 5 MHz TxClk that is used during the 
Link initialization procedure. In order to get a correct count of the time, a start measure 
time pulse is first synchronised over to the SpwClk region where a counter returns a stop 
measure time pulse after 29 RxClk cycles, 32 RxClk equals 6400 ns - 2 RxClk for the start 
pulse asynchronous interface and -1 for the time activating the stop pulse. 
 
In the BusClk region a counter is measuring time in parallel from the time that the start 
measuring time pulse is activated, until it receives the stop measuring time pulse. The value 
is then deducted by 2 to compensate for the asynchronous interface from SpwClk to BusClk. 

4.6.2 Tx FIFO 

The size of the Tx FIFO is configurable, in one byte blocks, using TxFifoSize_G. This 
enables the hardware designer instantiating the SpaceWire Codec the means to tailor the 
circuit for optimal performance / size. For details on how to configure, see 4.4.6 for details. 
The Tx FIFO is responsible for the data interface of the Tx-pipeline and is capable of 
receiving one byte per BusClk during packet transmissions.  

4.6.3 Tx token generator 

The Tx Token Generator is responsible for serving the transmitter with data characters as 
well as for keeping track of how many more N-characters the SpaceWire Codec is allowed 
to transmit. The number of N-characters that the SpaceWire Codec is allowed to transmit is 
increased every time that one or more FCTs are received and decreased every time that the 
Tx Token Generator makes one N-Char available to the transmitter. These N-chars are 
taken from the Tx FIFO, concatenated and made available to the Tx Async IF when it is 
ready to receive more. 

4.6.4 Tx asynchronous interface 

As seen in Figure 15 there are four types of signals flowing over the BusClk / SpwClk 
boundary, these are: 

• Time-Code. 
• FCT 
• Data,  EEP and EOP 
• Mode Ctrl 
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The Time-Code needs special attention due to the time-critical response once a TICK-IN 
has been detected. Data, EOP and EEP-characters are made available to the SpwClk region 
through the Tx Token Generator. Mode Ctrl sets the Tx internal mode so that the state of 
the SpaceWire Codec have full control over start up /shut down- procedures as well as the 
automatic generation of NULLs when the transmitter is idle. A detailed view of the Tx 
Asynchronous IF is shown below. 
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Figure 16: Tx Asynchronous interface and supporting circuits 

The T-C Trigger seen in Figure 16 is a toggling signal that determines when to sample a 
new Time-Code and generate a Time-Code Character. Since Time-Codes have priority, 
special attention has been made to make sure that it is fast enough. 
 
The Mode lets the Logic within the Tx-region know when the SpaceWire link is enabled 
and the FCT part is a toggling signal that lets the transmitter know when to generate a new 
FCT-character. 
 
All data-characters as well as all EOP and EEP characters, transmitted via the Tx Token 
Generator into the Tx-region, are 9 bit vectors plus a valid flag. The valid flag indicates that 
the 9 bit vector contains valid information to be transmitted when possible. The 9 bit vector 
contains the data/control-bit and 8 more bits for data or control-character information, see 
4.4.5 for configuration details.  
 
The parity-bit is generated inside the Par-block in Figure 16. The Parity-block is allowed to 
update and proceed at rising edge of TxClk. 
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4.6.5 Data strobe generator 

The Strobe Generator-block seen in Figure 15 is shown in detail below. All DFFs in the 
Strobe Generator is allowed to update on rising edge of TxClk. 
 

 
Figure 17: Data strobe generator 

 
The logic inside Figure 17 consists of: 
S0q <= (D1q xor D0) xor S1q 
S1q <= (D0 xor D1) xor S0 
 
It is possible to disable the automatic strobe generation via the Mode control interface. 
Each of the S- and D-pairs is connected to a Transmitter, shown in detail in the next 
subsection. 

4.6.6 Tx driver 

The Transmitter make use of two identical internal transmitter channels, one for S and one 
for the D that is making up the bit stream. The active internal structure of these channels 
can be viewed in Figure 18 below. 
 

 
Figure 18: Transmitter drive stage 
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The upper path through Buffer 1 and Buffer 2 is for bits that are to be transmitted on rising 
edge of TxClk. This means MSB of the bit pair on uneven multiples of TxClk / SpwClk or 
both bits on even multiples of TxClk / SpwClk. The lower path carries only the LSB of the 
bit pair during uneven multiples of TxClk / SpwClk.  
 
The propagation speed is set by the enable signals EnR (enable rising) and EnF (enable 
falling).  TxR (TxClk rising edge) is responsible for propagating the bit pairs from the mux 
to the left of the PAR-block in Figure 16 and through the Strobe Generator. 
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5 Verification 

This chapter explains the verification procedure, via simulation as well as on hardware. The 
verification step performed here is not enough to make the module flight ready but they 
cover enough to make sure that the modules main functionality works correctly as well as 
gives the foundation for future more complete tests.  

5.1 Simulation 

This chapter will start with an in depth description of the test-bench modules followed by a 
functional and functionality description of the test-bench including its capabilities, fault and 
error detection mechanisms and the errors its capable of generating in order to give stimuli 
to the SpaceWire Codec. Finally the test procedure will be explained together with the 
desired outcome and what requirements the test is suppose to cover. 

5.1.1 Test bench description 

The test-bench concept is described below. The SpaceWire Codec, the module under test, is 
connected to Tb_SpwCodec. Tb_SpwCodec is responsible for the generation of stimuli to 
the SpaceWire Codec as well as sample all signals of interest. 
 

Figure 19: Test bench overview 
 
All clock inputs have their own clock driver in order to give full control of the timing and 
the speed of every clock pulse to be able to simulate a proper asynchronous system.  
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Every data and control input / output of the SpaceWire Codec is connected to the 
tb_SpwCodec. The tb_SpwCodec module works as a driver for the SpwCodec and handles 
all signal transitions as well as monitors all activity of the SpwCodec module. The 
tb_SpwCodec is commanded by the tb_System module where all test procedure are 
executed. All communication between tb_SpwCodec and tb_System is handles via the 
Tb_SpwCodecCmd and the Tb_SpwCodecStat signals.  
 
Tb_SpwCodecCmd is a record containing data to the tx-pipe of both Tb_SpwCodec and 
SpwCodec as well as TimeCode value, a bit-vector and an unspecified integer used for 
many of the operations performed by Tb_SpwCodec. Tb_SpwCodec is commanded to 
perform actions by the Command signal in Tb_SpwCodecCmd and a short description of 
the most important of them is included in Table 9.  

5.1.2 Test bench commands 

At present there are 55 different commands performed by Tb_SpwCodec and the table 
below covers the most important ones. The E / D column depicts Enable / Disable 
capabilities for the command. 

Table 9: Commands to tb_SpwCodec 

Command name E / D Clarification 
ResetTbSpw  Resets the Tb_SpwCodec. 
ResetAllConfig  Undo all configuration without resetting counters etc. 
ResetAllCnt  Resets all counters without resetting the 

configuration. 
ResetSpw  Resets the SpwCodec. 
SetTxClkDivNomTbSpw  Set the start-up nominal clock division rate for 

Tb_SpwCodec. 
SetTxClkDivMaxTbSpw  Set the run clock division rate for Tb_SpwCodec. 
ManualModeTbSpw E / D Toggle manual mode for TbSpw. 
AutoStartTbSpw E / D Toggle auto start functionality for Tb_SpwCodec. 
RxTbSpw E / D Disables or re-enables the receiver in Tb_SpwCodec. 
TxTbSpw E / D Disables or re-enables the transmitter in 

Tb_SpwCodec 
TxBabble E / D Toggles the ability to send predefined noise to the 

SpwCodec during a phase that it should not be 
possible to transmit. 

SendBit  Toggles the strobe signal from Tb_SpwCodec. 
SendBitStream  Transmit one predefined bit-stream to SpwCodec. 
BitStreams E / D Transmit or stops transmitting a contiguous bit-stream 

to SpwCodec. 
SendNull  Transmit a Null character to the SpwCodec 
SendNullParErr  Transmit a Null character with parity error to 

SpwCodec. 
SendFct  Transmit one FCT character to the SpwCodec. 
SendFctParErr  Transmit an FCT character with parity error to 

SpwCodec. 
Fct E / D Disables or re-enables the automatic transmission of 
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FCT characters from Tb_SpwCodec. 
SendTbData  Adds the data stored in TbData to the Tb_SpwCodec 

send queue. 
ReadTbData  Read one entry of the data received by 

Tb_SpwCodec, if any. 
SendTb Eop / Eep  Transmit one End of Packet or Error end of Packet 

char to SpwCodec. 
SendTbEsc  Transmit one Esc character. 
SendTbEscParErr  Transmit one Esc character with parity error. 
SendTbTimeCode  Transmit one time code character. 
SendTbTimeCodeParErr  Transmit one time code character with parity error. 
ResetSpw  Reset the SpaceWire Codec under test. 
EnableLinkStartSpw  
 

 Enables link start-up for the SpaceWire Codec under 
test. 

 

5.2 Test bench receiver capabilities 

This section covers the receiver part of the SpaceWire test bench and its mechanisms to 
verify the functionality of the SpaceWire Codec transmitter. The test bench receiver aims at 
verifying that the SpaceWire transmitter always works in a predictable manner and in 
accordance with the specification. To guaranty this, the receiver part of the test bench 
checks incoming characters as well as pulse lengths and start-up procedures.  The fault 
detection mechanisms and the latent monitors of the SpaceWire test bench are described in 
detail below.  

5.2.1 Monitors 

Monitors are used for autonomous control of certain functions. The two most 
important monitors are: 
 
ReceiveBpsMoni The receive bit per second monitor controls that the transmitted 

clock have the correct duty cycle and that no glitches appear. 
ParityErrMoni The parity error monitor controls that the parity bit of the 

transmitted characters is correct. 
CreditErrorMoni 
 

The credit error monitor controls that the SpaceWire Codec 
does not send more N-Chars than it is allowed to. 

5.3 Test bench transmitter capabilities 

The transmitter in tb_SpwCodec is capable of transmitting any sequence of bits. Most of 
the commands in Table 9 are dedicated to the control of characters or bit patterns 
transmitted to the SpaceWire Codec. See the test procedures below for more information. 
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5.4 Test procedures 

This section covers the test procedures used to verify the functionality of the SpaceWire 
Codec. The procedures are not enough to verify the module for flight operation but give 
enough confidence that the Codec as a whole performs within specification and that the 
concept works. Further the test-bench infrastructure developed during the thesis work gives 
future test developers a solid foundation on which to build a larger more complete test suite 
qualifying the SpaceWire Codec for flight missions.  

5.4.1 Start-up test 

The Start-up test aims at verifying the start-up procedure of the SpaceWire Codec. This is 
done by measuring the timing of the SpaceWire Codec’s state transitions as it is subjected 
to a variety of different scenarios. The test also checks the codec’s sensitivity to stimuli, 
both changes in configuration and input signals via the receiver. There are a total of five 
scenarios in the Start-up test. 
 

1. Normal start-up, start the SpaceWire Codec in auto start mode and measure the state 
transitions. The parameters of most importance during this scenario is to verify that 
the automatic time measuring algorithm responsible for deriving the different 
timeout times from the known 5 MHz TxClk is within specification. All mode 
transitions are timed and check together with character output. The link is reset by 
cutting the bit stream to the SpaceWire Codec and observing that the correct link 
reset procedure is observed. 

 
2. Start-up with inverted s-level just before the first Null Character is received by the 

SpaceWire Codec. All mode transitions is checked to specification in the same way 
as test case #1 but the most important functionality checked during this test case is 
that the receiver is capable of receiving and decoding incoming Characters even if 
the data flow is out of phase with the local clock, with out of phase meaning that 
the double dated input signal is out of sync with the Character boundaries so that 
each boundaries is received during falling edge RxClk. The link is reset by cutting 
the bit stream to the SpaceWire Codec and observing that the correct link reset 
procedure is observed. 

 
3. Start-up in a noisy environment. This test case simulates that the SpaceWire Codec 

tries to start-up connected to an extremely noisy link, this is tested by forcing the 
test bench transmitter to babble incoherently for 20 us before transmitting the first 
valid Null Character. All this as the SpaceWire Codec performs its start-up 
procedure with auto start disabled, making it wait in Ready state. As before all state 
transitions are checked and the link is reset by violating the 850 ns timeout time.  

 
4. Normal start-up, but let the test bench complete one start-up cycle before asserting 

Link Enabled. Make sure that the FCT generation from TbSpw is disabled long 
enough to test the 12.8 us timeout time. As before state transitions are checked but 
the most important characteristic tested is that the SpaceWire Codec is not affected 
by incoming characters when disabled and that the start-up work as specified after 
a failed start-up procedure on the link. The longest possible working delay for Null 
reception is the second thing tested. Link reset as before.  
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5. Normal start-up but disable test bench FCT transmit capabilities for long enough to 

test the 12.8 us timeout time. The last of the nominal start-up scenarios test the 
SpaceWire Codec’s capability to start the link even when starved on FCT 
characters for the longest possible time. Link reset as before.  

5.4.2 TimeCode test 

This test aims at verifying the functionality of the TimeCode interface. The main thing 
tested is that the SpaceWire Codec is capable of decoding incoming TimeCode characters 
and to the expected stimuli to the system. The SpaceWire capability to generate proper 
TimeCodes is also tested.  
 

1. Start-up the SpaceWire link and verify that everything is nominal. 
 

2. Send a TimeCode equal to one and verify the TimeCode and that TickOut is asserted. 
 

3. Send a TimeCode equal to one again and verify that TickOut remains deasserted. 
 

4. Send a TimeCode equal to zero and verify that TickOut remains deasserted. 
 

5. Send a TimeCode equal to one and verify that TickOut is asserted. 
 

6. Send a TimeCode equal to 63 and verify that TickOut remains deasserted. 
 

7. Send a TimeCode equal to zero and verify that TickOut is asserted. 
 

8. Send a TimeCode equal to one and expect that TickOut is asserted. 
 

9. Send a TimeCode equal to two with parity error and verify Link down. 
 

10. Wait until the link reset procedure is finished and the link is up and running. 
 

11. Loop over different values for TimeIn and CtrlIn and assert TickIn, verify that the 
correct TimeCode is received by tb_SpwCodec. 

5.4.3 Data test 

This test aims at verifying data reception and transmission as well as nominal FCT 
behaviour. The first part of the Data Test aims at testing the receiver pipe of the SpaceWire 
Codec as well as FCT character generation. A number of scenarios are tested making sure 
that the SpaceWire Codec acts in a predictable way. The second part of the test, starting at 
#12 aims at verifying the transmitter pipe of the SpaceWire Codec. The main interest 
during these steps is to make sure that the SpaceWire transmitter is capable of transmitting 
packet in an orderly fashion as well as are able to keep track of the number of N-chars it is 
allowed to transmit. The last step aims at verifying that the SpaceWire Codec is capable of 
duplex operation. 
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1. Start up the SpaceWire and make sure it is running normal. 
 

2. Send a 7 byte packet to the SpaceWire and make sure that the correct data is 
available in the SpaceWire. 

 
3. Send a 58 byte packet to the SpaceWire and make sure that the correct data is 

available in the SpaceWire. 
 

4. Send a 58 byte packet with a parity error in the EOP character to the SpaceWire, 
make sure that the correct data is available in the SpaceWire and that the packet is 
signalled erroneous.  

 
5. Send a 16 byte packet to the SpaceWire with a parity error on the last byte. 

 
6. Read out 10 bytes of data from the SpaceWire and wait until the SpaceWire have 

restarted the link. 
 

7. Send a packet larger than the SpaceWires receiver buffer and make sure that one of 
the last bytes has a parity error.  

 
8. Read back the rest of the data from #5 and enough of the packet from #7, allowing 

the new parity error to be transmitted.  
 

9. Read back the rest of the packet from #7, check all data and expect an erroneous end 
of packet.  

 
10. Send a 60 byte packet to the SpaceWire and force a Null character with parity error 

once the receiver buffer is full. 
 

11. Read the data from the SpaceWire, expect a buffer sized data packet with an 
erroneous end of packet. 

 
12. Send a 7 byte packet from the SpaceWire and make sure that the correct data is 

received by the test bench. 
 

13. Send a 58 byte packet from the SpaceWire and make sure that the correct data is 
received by the test bench. 

 
14. Disable the automatic FCT generation of the test bench before sending a 63 byte 

packet from the SpaceWire. Make sure that the packet is not received in full for 
several ms. 

 
15. Enable the automatic FCT generation once again and prepare the SpaceWire to 

send one more 17 byte packet as soon as the first is completed. 
 

16. Make sure that both packets are received by the test bench. 
 

17. Disable the automatic FCT generation of the test bench before sending a large 
enough packet from the SpaceWire. The packet is of a size that makes it occupy 
some of the SpaceWire transmission FIFO. Make sure the packet is not received in 
full by the test bench for several ms.  
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18. Send a 73 byte packet from the SpaceWire, this shall not be stuck in the 

transmission FIFO waiting for the previous packet to depart.  
 

19. Force a Null character with parity error from the test bench and wait until the link 
is reset. Then read back the broken packet from #17 and enable the automatic FCT 
generation before reading back the 73 byte packet from #18. Expect an erroneous 
end of packet for the first packet and a full correct packet for the data packet from 
#18.  

 
20. Disable the automatic FCT generation of the test bench before sending a large 

enough packet from the SpaceWire. The packet is of a size that makes it occupy 
some of the asynchronous interface between the Tx clock region and the bus clock 
region. Make sure the packet is not received in full by the test bench for several ms.  

 
21. Send an 80 byte packet from the SpaceWire, this shall not be stuck in the 

transmission FIFO waiting for the previous packet to depart.  
 

22. Force a Null character with parity error from the test bench and wait until the link 
is reset. After the link is restarted, read back the broken packet from #20 and enable 
the automatic FCT generation before reading back the 80 byte packet from #21. 
Expect an erroneous end of packet for the first packet and a full correct packet for 
the data packet from #21.  

 
23. Send a 120 byte packet from the SpaceWire and at the same time, send a 122 byte 

packet to the SpaceWire. Make sure both packets are received in full. 

5.4.4 FCT test 

This test aims at verifying that the FCT of the SpaceWire works as intended. The 
SpaceWire will be subjected to different scenarios, nominal as well as erroneous, to cover 
as much of the functionality as possible. The SpaceWire Codec needs to keep track of both 
how much room it has in its own receiver FIFO and how much room there is left in the 
receiver FIFO on the other side of the link, failure to do so will result in a Link down 
procedure to restart the link. The first part of the test from #1 to #11 mainly targets the 
receive buffer of the SpaceWire Codec and the reminder of the test aims to verify that the 
SpaceWire can keep track of the size of the buffer on the other side of the link.  
 

1. Start the link in autostart mode, make sure everything is normal. 
 

2. Send a data packet to the SpaceWire Codec that is one byte smaller then the receiver 
FIFO, this in order to utilize the entire FIFO and maximize the number of FCT 
characters sent. 

 
3. Make sure that the correct data have arrived and that the correct number of FCT 

characters have been transmitted. 
 

4. Send in more data then the receive FIFO in the SpaceWire Codec can handle, expect 
the link to reset. 

 



48 
 

5. Read back as much data as can be stored in the buffer and make sure it's correct. 
 

6. Wait until the link has been restarted and then send in as much data as can be stored 
in the receive buffer of the SpaceWire Codec.  

 
7. Read the data back and make sure the correct amount of FCT characters have been 

transmitted. 
 

8. Send a packet of size Rx FIFO size * 2 +5 to the SpaceWire Codec.  
 

9. Read back Rx FIFO size + 4 of the data transmitted in #8.  
 

10. Flood the FIFO by forcing the test bench to transmit more data then the receiver 
FIFO can handle. 

 
11. Read back the rest of the data and make sure that it is correct. 

 
12. Send a 6 byte packet from the SpaceWire Codec. 

 
13. Force the test bench to send to many FCT characters and verify that the link is 

reset. Verify the data sent from the SpaceWire Codec. 

5.4.5 FIFO flush test 

This test aims at verifying that the Rx and Tx FIFO flush works as specified. 
 

1. Start the link and disable FCT generation in the test bench after the SpaceWire have 
reached Run state.  

 
2. Send one packet from the SpaceWire Codec that is the size of the test bench FIFO + 

2. 
 

3. Send one more packet from the SpaceWire Codec and make sure that it’s big enough 
to not fit in the space that is left in the SpaceWire Tx FIFO. 

 
4. Send one packet to the SpaceWire that is large enough to fill the Rx FIFO. 

 
5.  Send one FCT with parity error and wait until the link resets. At this point the packet 

from #2 is flushed by the link down procedure and the packet from is waiting to be 
sent. The packet from #4 is in the Rx FIFO and. 

 
6. Flush both the Rx and the Tx FIFO. 

 
7. Make sure that the next packets transmitted and received over the link is correct. 
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5.5 Verification in hardware 

This chapter explains the verification procedure in hardware. The chapter starts with a 
description of the test platform the module will be running on followed by an explanation 
of the setup, its capabilities and why this method was used and the limitations that the setup 
inflicts on the verification.  
 

 
Figure 20: Setup for SpaceWire validation. 

In order to test as much of the SpaceWire capabilities as possible two SpaceWire Codec’s 
were connected back to back with the last one connected as a loop back. The first 
SpaceWire Codec was then connected to a proven and tested spacewire codec to verify that 
the design works together with an standard device. The setup was chosen in order to both 
verify the front end link while connected to a standard device and the capability of the 
SpaceWire Codec to drive another SpaceWire codec without any glue logic for the data 
path. The test was performed at a low data rate since the standard device did not support 
more then 4 / 3 times the Rx- / Tx-speed / BusClk.  
 
The test comprised of sending data from the first standard device, trough the two 
SpaceWire Codec’s connected back to back and out through the second SpaceWire Codec 
and back into its own receiver. Verification was simply making sure that the data received 
after it had been transferred was equal to the data sent. This test does not verify that the 
SpaceWire Codec is capable of handling every situation and failure case but it shows that it 
can connect and transmit data to both a known working device and to itself. 
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6 Results 

A fully functional SpaceWire codec was designed, implemented and verified during this 
thesis. The following subchapters will go through the criteria for evaluating the design, its 
implementation as well as the results grained from verification and synthesis. 

6.1 Implementation results 

The bulk of the work done during this thesis was aimed towards developing a good design 
for the SpaceWire Codec, implementing the design using VHDL and finally testing it both 
in a module level test bench and on a FPGA platform.  

6.1.1 Design 

As seen in §4 Functional design a well-defined design was developed from a top down 
perspective followed by a bottom up implementation of each hierarchal block. 
 
The major design decisions that panned out well are; 

• Keeping the RxClk region small and minimizing the number or falling edge registers 
facilitates both synthesis and post synthesis work i.e. made synthesis reach higher 
rates for RxClk as well as keeps manual placing of logic to a minimum. The task of 
the logic inside the RxClk region is reduced to supplying the BusClk region with 
data bit pairs making it robust and rather failsafe. 

• Keeping all intelligent decisions out of the transmitter made the BusClk 
asynchronous logic in the TxClk region smaller and less complicated. This together 
with only two falling edge registers, one in each driver for the data and strobe 
pipelines, helped synthesis of the TxClk region as well as kept manual placement of 
logic post synthesis low. The task of the transmitter is more or less reduced to the 
handling of a few asynchronous interfaces in parallel connected to a strict priority 
multiplexer choosing the appropriate character to transmit. This is followed by a 
pipeline used to generate the parity bit, strobe signal and finally accelerating to 
double data rate. 

• Module internal data buffers. Keeping both the Rx- and TxFifo module internal and 
supplying all data through a well defined internal interface was the final touch that 
made the design of the SpaceWire Codec a self contained entity. All tedious work 
of handling the reception and generation of flow control tokens are hidden from the 
user who only needs to worry about data packets, data characters and TimeCodes. 

 
The design decisions that did not pan out that well; 

• The asynchronous interface associated with the reception of data bits does not scale 
well with some FPGA synthesis tools. When aiming for high RxClk / BusClk ratios 
the logic used to concatenate the bit-stream and find the different characters grows 
more then linearly. 
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6.1.2 RTL implementation 

All in all there were more then 5000 lines of RTL code written during the development of 
the SpaceWire Codec. The code is distributed over 25 different files making up the sub 
blocks of the design. 
 
All RTL-code has been written to comply with the coding standard [RUAG CSTD] as 
supplied by RUAG Space AB. 

6.1.3 Test bench implementation 

The test bench for the SpaceWire codec is comprised of 17 files containing more then 6000 
lines of code but is not nearly enough to fully verify the design. The scope of this thesis 
would be too large if tests for a full verification were to be developed. Instead the 
verification cycled through all nominal test cases together with the most probably failures 
cases and verified that the SpaceWire Codec behaved as expected. 
 
After the first easy bugs, non-connected signals and the like, the tests did not find that 
many. The reason for this is two-fold: 

• The lengthy design stage of the development meant that the core functionality of the 
SpaceWire Codec was thought through before the coding started. 

• The test bench was aimed at verifying the core functionality of the design. 

6.1.4 Hardware verification 

The hardware verification did not run into any problems and no bugs were revealed. This 
does not mean that the design is fully functional but it does prove a few features; 

• The SpaceWire Codec developed during this thesis can communicate, exchange both 
N-Chars and L-Chars, with a known working SpaceWire codec without forcing 
link restarts or dropping data bytes. 

• The SpaceWire Codec can communicate, exchange both N-Chars and L-Chars, with 
itself in loop-back. 

• One SpaceWire Codec can drive the internal data interface of another instantiation of 
itself without any glue logic. 
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6.2 Size 

The size and performance of the SpaceWire Codec can be tailored by use of the 
configuration parameters described in §4.4. The final size of the design was evaluated for 
two different settings; the minimum configuration capable of 4 bits received and 
transmitted each BusClk cycle and the maximum configuration capable of 10 bits. 

6.2.1 Minimum configuration 

The configuration parameters for this setting can be found in Table 10 below: 

Table 10 Minimum configuration 

Parameter name Value 
DataSampleGroups  5 
RxAsyncIfFifo 16 
CharacterBuffers 1 
RxFifoSize 10 
DataTransmitGroups 1 
TxFifoSize 2 
 
 
The results gained from synthesis are as follows; 

Table 11 Register count minimum configuration 

Clock region Register count 
BusClk rise reaches  328 cells 
RxClk rise reaches  21 cells 
RxClk fall reaches  2 cells 
SpwClk rise reaches  122 cells 
SpwClk fall reaches  2 cells 
 
The total amount of registers, including all buffers needed to run stutter free, are 475. This 
is less than the 500 registers that the design aimed for as a minimum configuration.  
 
From Table 11 we can also see that the registers in the RxClk region are a mere 23 of which 
only 1 is a falling edge DFF with hard timing constraints. The registers in the TxClk region 
are in total 124. The main reason for the seemingly large count of TxClk registers are that 
the asynchronous interfaces often need two buffers to keep up with transmission speeds.  
 
Of the 328 registers in the BusClk region around 120 are in the dedicated input / output 
buffers for the data path and another 45 are used for the timeout time measuring logic, two 
of the features that were asked for by RUAG Space AB. 



53 
 

6.2.2 Maximum configuration 

The configuration parameters for this setting are as described in table Table 12 below; 

Table 12 Maximum configuration 

Parameter name Value 
DataSampleGroups  12 
RxAsyncIfFifo 20 
CharacterBuffers 3 
RxFifoSize 16 
DataTransmitGroups 4 
TxFifoSize 6 
 
 
The results gained from synthesis are as follows; 

Table 13 Register count maximum configuration 

Clock region Register count 
BusClk rise reaches  555 cells 
RxClk rise reaches  43 cells 
RxClk fall reaches  2 cells 
SpwClk rise reaches  184 cells 
SpwClk fall reaches  2 cells 
 
The total amount of registers, including all buffers needed to run stutter free are 786. This 
is roughly the same size as just the asynchronous interface for the data path of the previous 
solution with the same performance.  
 
From Table 13 we find that there is 45 registers in total in the RxClk region. The registers 
in the TxClk region are in total 186 and the increase from the minimum setting are more or 
less exclusively from the wider data path through the asynchronous interface.  
 
There are 555 registers in the BusClk region and out of these 220 are in the dedicated input 
/ output buffers for the data path and another 45 are used for the timeout time measuring 
logic, two of the features that were asked for by RUAG Space AB. 

6.2.3 Size comparison 

 
When comparing the differences between the two synthesis results the following can be 
seen. The maximum configuration can handle 2.5 times the data rate of the minimum 
configuration and the size scales as follows; 

• From Table 11 we find that there are 23 registers in the RxClk region with the 
minimum configuration and from Table 13 we find that there is 45 registers in 
total in the RxClk region for the maximum configuration. This makes the size of 
the RxClk region scale better than the increase in performance with 1.96 times the 
registers. 
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• From Table 11 we find that there are 124 registers in the TxClk region with the 
minimum configuration and from Table 13 we find that there is 186 registers in 
total in the TxClk region for the maximum configuration. This means that the 
TxClk region scales 1.5 times the registers for a 2.5 time increase in performance. 

• For the BusClk region the following can be seen. Dividing the size for the maximum 
configuration with the size of the minimum we find the relationship of 555 / 328 = 
1.69 with the same 2.5 times the performance. 

 
One of the demands placed on the design was that the size of the data path should scale 
more or less linearly with performance and this seems to be the case. The reason why the 
scaling factor is better than 2.5 is that only the data paths and not the control logic scale 
with the different speed settings. 

6.3 Performance 

The design was synthesized in two different configurations for two different rad-hard ASIC 
technologies, these are; 

• The MH1 technology, a 350 nm radiation hardened library. The target speed for this 
was 60 MHz for the BusClk region and 100 MHz, or 200 Mbps, for both the RxClk 
and the TxClk regions. 

• The ATC18 technology, a 180 nm radiation hardened library. The target speed for 
this was 100 MHz for the BusClk region and at least 200 MHz, or 400 Mbps, for 
both RxClk and TxClk regions. 

 
All values are gatherer in a worst case scenario, meaning high temperature, low voltage and 
a bad batch at the fab. All values are gathered with symmetric duty-cycles and medium 
effort on synthesis. All this adds up to worst case everything. 

6.3.1 MH1 

The results for when using the minimum configuration: 
BusClk passed with 16.5 ns clock period, equal to 60 MHz BusClk frequency. 
RxClk passed with 8 ns clock period, equal to 125 MHz RxClk frequency. 
TxClk passed with 8 ns clock period, equal to 125 MHz TxClk frequency. 
 
The results for when using the maximum configuration: 
BusClk passed with 16.5 ns clock period, equal to 60 MHz BusClk frequency. 
RxClk passed with 8 ns clock period, equal to 125 MHz RxClk frequency. 
TxClk passed with 8 ns clock period, equal to 125 MHz TxClk frequency. 
 
The SpaceWire Codec fulfils all requirements on clock speed that was placed on the design. 
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6.3.2 ATC18 

The results for when using the minimum configuration: 
BusClk passed with 10 ns clock period, equal to 100 MHz BusClk frequency. 
RxClk passed with 4 ns clock period, equal to 250 MHz RxClk frequency. 
TxClk passed with 4 ns clock period, equal to 250 MHz TxClk frequency. 
 
The results for when using the maximum configuration: 
BusClk passed with 10 ns clock period, equal to 100 MHz BusClk frequency. 
RxClk passed with 4 ns clock period, equal to 250 MHz RxClk frequency. 
TxClk passed with 4 ns clock period, equal to 250 MHz TxClk frequency. 
 
The SpaceWire Codec fulfils all requirements on clock speed that was placed on the design. 

6.4 Future development 

The SpaceWire standard is still a rather young standard and the SpaceWire Codec designed 
during this thesis most probably needs updates in the near future. The upcoming revision of 
the standard will change the TimeCode format.  
 
Upcoming projects also need a SpaceWire with RMAP support, making the need for an 
updated and compatible RMAP module a necessity.  
 
The core part of the SpaceWire codec should be able to remain as is since the bit-rate is 
high enough for all plausible implementations. The one thing I would change in the design 
is the partitioning of the asynchronous interface for the Tx pipeline. With a little more care 
the SpaceWire codec could shed some more DFFs in small remote terminal applications 
where the SpwClk and the BusClk are synchronous.  
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7 Conclusions 

The implementation of the SpaceWire Codec was a success. The codec does meet all of the 
company specific demands listed in 3.1 as well as comply with [ECSS SPW]. Most of the 
design ideas worked out well and the core functionality of the design has been proven in 
both verification using a test bench and in a validation test on a commercial FPGA-
platform. 
 
The amount of testing and validation done during this thesis is sufficient to know that the 
concept works and that the general design is good enough, but it not sufficient to make the 
codec space worthy. Further testing by a team company employed engineers must be 
performed at RUAG Space AB in order to prove that the design is good enough for space 
mission. 
 
A spacification of the SpaceWire Codec has been performed during the time that this paper 
was written and the design is now deemed fit for space missions. The design, as developed 
during this thesis, has already been used in IP-cores and is scheduled for use in the next 
ASIC developed at RUAG Space AB. 
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