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Abstract

Dynamic substructuring is a powerful method to analyse complex structures by means of their substructures.
While the method is well developed and widely used with Finite Element models, numerous hindrances exist
for experimental dynamic substructuring. One remedy is the so-called transmission simulator which is an
additional structure that matches the interface between two substructures. The physical specimen is attached to
the substructure of interest and the assembly is measured. The influence of the transmission simulator is later
removed from the identified model by means of its Finite Element model. By using this method, experimental
models can be improved, and experimental-analytical substructuring can be performed with greater success.
Over the last decade, the transmission simulator technique has been developed and used with the well-known
methods Component Mode Synthesis and Frequency Based Substructuring. In this work, the transmission
simulator method will be transferred to state-space synthesis, another approach for dynamic substructuring,
where first-order state-space models are to be coupled. Moreover, the constraints Connection Point Constraints
and Modal Constraints for Fixture and Subsystem will be applied. To verify the theoretical derivations, all
aforementioned methods will be tested on a simple analytical beam example. Finally, experimental-analytical
substructuring is conducted on the Ampair wind turbine, the SEM Dynamic Substructuring Focus Group
benchmark structure. Experimental models of three blades will be identified with the help of the hub as
transmission simulator and then coupled, removing the influence of two Finite Element hub models to arrive at
a model of the rotor.

Keywords: Dynamic Substructuring, Transmission Simulator, State-Space Coupling, Ampair Wind Turbine

Zusammenfassung
Substrukturtechnik ist eine effiziente Methode, um komplexe Strukturen anhand ihrer Substrukturen zu
analysieren. Das Verfahren wird häufig erfolgreich für Finite Elemente Berechnungen eingesetzt. Allerdings
gibt es zahlreiche Hürden bei Anwendung von experimentellen Modellen. Mit Hilfe des Transmission Simulators
können diese Modelle verbessert werden. Der Transmission Simulator steht als physikalisches Bauteil zur Verfü-
gung und ist zusätzlich mit Finite Elemente modelliert. Das physikalische Bauteil wird mit der entsprechenden
Substruktur verbunden und die Baugruppe vermessen. Später wird der Einfluss des Transmission Simulators
vom experimentell bestimmten Modell entfernt. Dadurch können die Ergebnisse experimental-analytischer
Substrukturtechnik verbessert werden.

Im Laufe des letzten Jahrzehnts wurde der Transmission Simulator entwickelt und mit den bekannten
Methoden Component Mode Synthesis und Frequency Based Substructuring angewandt. In dieser Arbeit soll
nun der Transmission Simulator auf die sogenannte State-Space Synthesis Methode übertragen werden. Dies ist
ein weiterer Ansatz der Substrukturtechnik, bei dem Zustandsraummodelle erster Ordnung gekoppelt werden.
Darüber hinaus werden die Bedingungen Connection Point Constraints und Modal Constraints for Fixture and
Subsystem angewandt. Um die theoretische Herleitung zu überprüfen, werden alle genannten Methoden an
einem einfachen Balkenbeispiel getestet.

Schließlich werden Experimente an der Ampair Windkraftanlage durchgeführt, welche von der SEM Dynamic
Substructuring Focus Group als Modellstruktur ausgewählt wurde. Dadurch soll der Transmission Simulator in
Anwendung mit allen drei Methoden verglichen werden. Dazu werden experimentelle Modelle dreier Rotorblätter
mit Nabe als Transmission Simulator bestimmt und dann gekoppelt. Um das Modell des Rotors zu erhalten,
wird der Einfluss der überzähligen zwei Naben mit Hilfe eines Finite Elemente Modells entfernt.
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Nomenclature

A System matrix in a state-space model CB Craig-Bampton
A Area CB-IP Craig-Bampton Interface Preserving
a Modal Foss damping CMS Component Mode Synthesis
B Input matrix in a state-space model CPT Connection Point Constraints
b Width DOF Degree of Freedom
C Output matrix in a state-space model EMA Experimental Modal Analysis
D Feedthrough matrix in a state-space model FBS Frequency Based Substructuring
E Compatibility matrix FE Finite Element
E Young’s Modulus FRF Frequency Response Function
F Fourier transform of external forces MAC Modal Assurance Criterion
f External forces MCFS Modal Constraints for Fixture and

Frequency in Hz Subsytstem
G Fourier transform of connection forces SEM Society for Experimental Mechanics
g Connection forces
H Frequency Response Function matrix Indices
h Height a Accelerance
I Identity matrix b Body DOF
I Second moment of area c Connection/Coupling DOF
K Stiffness matrix d Displacement

Coupling term in state-space coupling e Element
L Boolean localisation matrix f Related to external forces
l Length g Related to connection forces
M Mass matrix k Kept
m Mass meas Measurement points
n Number of states mod Modal
P Localisation matrix for inputs and outputs q Physical
Q Fourier transform of displacements r Residual
q Physical displacement s Substructure
r Residual force tot Total system
T Transformation matrix ts Transmission simulator
t Time u Input
u Input v Velocity, mobility
V Damping matrix y Output
x State vector ω Frequency Domain
y Output
Z Dynamic stiffness matrix Superscripts

¯ Coupled
H Fourier transform of modal coordinates ˙ Time derivative
η Modal coordinates ˜ Transformed
λ Eigenvalue + Pseudo-inverse
ξ Modal damping ratio ∗ Complex conjugate
ρ Density
Φ Modal matrix
φ Modal shape vector
ω Angular frequency in rad/s

= Imaginary part
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1 Introduction
In this chapter, an introduction to dynamic substructuring is given followed by challenges associated with
experimentally derived models. Next, the transmission simulator is shortly described. Furthermore, the purpose
and limitations of the work at hand are given. The chapter concludes with an outline of the report.

1.1 Background

Dynamic substructuring is the idea of dividing complex structures into simpler components, which can be
analysed efficiently and in detail [1]. The dynamics of the substructures are then coupled together to obtain a
model for the assembled structure. Local behaviours can typically be investigated better with the substructure
models since the model of the whole structure is likely to be coarser. Furthermore, dynamic substructuring
is highly beneficial and widely used if the full structure is in fact an assembly of parts designed by separate
project groups. Then, the substructures can be analysed independent of the other substructures and different
modelling approaches may be applied, as Finite Element (FE) models or exerimental models.

Dynamic substructuring can be used in FE calculations for model order reduction where components
are represented by a reduced set of generalised coordinates rather than by their detailed discretisation. FE
models will subsequently be denoted analytical models. In some cases however, certain substructures cannot be
modelled well due to unknown material properties or complex geometries [2]. Thus, recent years have seen
an interest in coupling experimentally derived models with analytical ones. To achieve more progress in this
research field, the Society for Experimental Mechanics (SEM) Dynamic Substructuring Focus Group chose to
use a common testbed: the Ampair A600 wind turbine [3]. This structure is a rather simple structure, yet
presenting ample opportunities for experimental dynamics substructuring.

The process of dynamic substructuring relies on enforcement of the compatibility and equilibrium at
component interfaces as sketched in Figure 1.1. In their paper [1], de Klerk et al. provided a detailed overview
on the topic including different methods for dynamic substructuring. The authors distinguish between primal
and dual coupling in the physical, frequency, and modal domain. In primal coupling, a unique set of degrees of
freedom (DOFs) is chosen to describe the coupled interface’s motion, whereas equilibrium at the interface is
enforced a-priori for dual coupling. Only primal coupling will be used in the present thesis.

Dynamic substructuring in the modal domain is known as Component Mode Synthesis (CMS). In CMS,
the motion of the substructures is described by a reduced set of mode shapes. This method is widely used for
synthesizing both experimentally derived and FE models. Different modes and basis vectors can be chosen to
replicate the vibration. Most commonly, the Craig-Bampton representation is used for FE models, and free-free
mode shapes are utilized when it comes to experimental models. Introductions to CMS are given e.g. by Craig
and Kurdila [4] and by Meirovitch [5].

In Frequency-Based Substructuring (FBS), Frequency Response Functions (FRFs) are coupled directly
and was first formulated by Bishop and Johnson [6]. It gained popularity with the improved formulation of
Jetmundsen et al. [7]. FBS may be beneficial if measured FRFs are coupled, avoiding the need of system
identification, yet measurement errors are often amplified in the coupling procedure.

substructure 1 substructure 2

Figure 1.1: Coupling of two general substructures. The interface between the substructures consists of three
connection points.
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In this thesis, another substructuring method utilizing state-space models will be applied. State-space
synthesis as used here is a rather new concept and was introduced by Sjövall in the last decade [8, 9]. A similar
approach was proposed earlier by Su and Juang [10]. In state-space coupling, first-order systems are coupled,
allowing for the wide field of first-order system identification methods such as subspace identification [11, 12].

Common to all experimental substructuring techniques is a need for high-quality data. CMS and state-space
synthesis further require models of that data obeying physical constraints. These constraints may be violated
by measurement errors such as noise. By directly decoupling measured FRFs, those constraints cannot be
enforced which may yield wrong results after the coupling procedure. A second-order modal model with real
eigenvectors includes features that have to be explicitly enforced for the more general state-space models. One
crucial feature is Newton’s second law which is essential for mechanical structures. Liljehren extensively applied
state-space coupling and made a contribution to the system identification procedure with respect to dynamic
substructuring (e.g. [13]).

Even though the concept of dynamic substructuring is straightforward, imposing the compatibility and
equilibrium conditions on experimentally derived models is fraught with problems. For instance, not all DOFs
at the interface can be measured as would be needed to enforce strict compatibility. For some structures, the
actual connection points are not accessible at all. Moreover, experimental substructuring is typically feasible
using only a small number of connection points, which may not be an adequate replication of the actual interface
[14].

As a remedy, the transmission simulator technique was introduced by Allen, Mayes, and their co-workers [2,
15]. The transmission simulator is a well-modelled additional structure both available as physical specimen and
analytical model. The physical part is joined to the structure of interest. Then, the compound structure is
measured, and system identification is performed. To obtain a valid model for the structure of interest, the effect
of the transmission simulator has to be removed from the identified model which is done by coupling the negative
analytical model of the transmission simulator. Among the advantages of this technique is the avoidance of
measuring the connection DOFs at the cost of an additional decoupling step. Instead, the measurement points
on the transmission simulator are coupled to the exact same points of the analytical transmission simulator
model.

Two different coupling conditions can be applied in this method, namely Connection Point Constraints
(CPT) and Modal Constraints for Fixture and Subsystem (MCFS). The first estimates information on the
connection points’ motion using measurements points of the transmission simulator. The second method
enforces the coupling conditions using these measurement points instead of the interface. To the author’s
knowledge, the transmission simulator was only applied to FBS and CMS (see e.g. [16] for a summary of both
methods). Further, the methodology was tested on structures including the benchmark wind turbine by several
research groups (see e.g. [17, 18]).

1.2 Purpose and Limitations

The goal of this work is to transfer the transmission simulator concept to state-space coupling in order to
combine the benefits of both methods. At the point of writing, a similar approach has not been found in
literature. Thus, this method will be introduced in the present work. First, removing the influence of one
system from another in terms of state-space models will be derived. Both CPT and MCFS will be used as
coupling constraints. Then, all methods will be verified by means of a simple theoretical beam example before
experimental-analytical substructuring is performed on the wind turbine. Here, only MCFS will be used since
these conditions show better results for experimental substructuring. The goal is to obtain a model of the
rotor using the hub as transmission simulator. To achieve this, three blades will be attached to the hub and
measured separately. Then, the three experimentally derived models are coupled with two negative analytical
hub models. The coupled model will be compared with the measured rotor and its FE model. Further, the
measurements will be carried out with different types of excitation to find the best model possible.

For the analytical representation of the transmission simulator, only free-free mode shapes will be utilized.
Other approaches like the Craig-Bampton transmission simulator [19] are out of the scope of this thesis.
Furthermore, it would be of interest to compare the results obtained with the transmission simulator to results
obtained by coupling the blades directly to the hub. This was not done in this thesis but an attempt of this
approach has been performed previously [20]. The FE model of the hub is not experimentally verified, only the
density properties are modified such that the model replicates the measured weight. Since the flexible modes of
the hub are far above the frequency range of interest, this modification is believed to be sufficient. Additionally,
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the state-space synthesis is not generalised for an arbitrary number of systems. Coupling of multiple models is
performed in subsequent steps, combining two systems at a time.

1.3 Outline

The report is structured in five chapters. This introduction is followed by an extensive theory chapter. First,
dynamic substructuring in different domains are explained in Section 2.1, and the transmission simulator is
elaborated on in Section 2.2. Remarks on the transformation between models, system identification, and the
Modal Assurance Criterion are given in Sections 2.3 to 2.6. Afterwards, the different substructuring methods
are applied to a simple beam example in Chapter 3. This includes remarks on decoupling in Section 3.1 and the
transmission simulator in Section 3.2, both with CPT and MCFS. Chapter 4 elaborates on the experimental
results obtained with the wind turbine. The chapter starts with a brief literature overview in Section 4.1. Next,
the FE models used are described in Section 4.3, and the measurements and the system identification are
addressed in Sections 4.4 to 4.6. The results of the substructuring are finally presented in Section 4.7, followed
by a discussion in Section 4.8. The work concludes with remarks and states ideas on future research work to
further promote state-space experimental-analytical substructuring in Chapter 5.
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2 Theory
In the following chapter, the four different dynamic substructuring methods physical coupling, CMS, FBS, and
state-space synthesis will be explained and derived in parts. The notation of de Klerk et al. [1] is used wherever
possible but sometimes changed to avoid confusion with the state-space notation. Subsequently, the concept of
the transmission simulator is explained, including a brief review of the current literature. This technique is
then derived for CMS following the paper of Allen et al. [21] and applied to FBS. Finally, the transmission
simulator is developed for state-space synthesis. Both CPT and MCFS are applied as coupling constraints.
The chapter also includes transformations between the models and their domains and concludes with remarks
on the system identification procedure and the Modal Assurance Criterion.

2.1 Coupling of Substructures

In this section, dynamic substructuring is explained in the physical, modal, frequency, and state-space domain.

2.1.1 The Physical Domain

In the physical domain, the motion of a linear, discretised, non-gyroscopic, and non-circulatory multiple-degrees-
of-freedom system with viscous damping is described by the differential equation [4]

M(s)q̈(s)(t) + V (s)q̇(s)(t) + K(s)q(s)(t) = f (s)(t) + g(s)(t) (2.1)

with the mass, damping, and stiffness matrices M , V , and K, respectively. q(s) stands for the displacements,
f and g represent external and connection forces between the substructures, respectively [1]. The superscript s
indicates the substructure’s index.

The equations of multiple, still uncoupled substructures can be compactly written in block diagonal form as

M q̈(t) + V q̇(t) + Kq(t) = f(t) + g(t) (2.2)

with

M =

M
(1)

. . .
M (h)

 , V =

V
(1)

. . .
V (h)

 , K =

K
(1)

. . .
K(h)

 ,

f =

f
(1)

...
f (h)

 , g =

g
(1)

...
g(h)

 ,
and h being the number of substructures.

To couple the substructures, two conditions have to be enforced. First, the coupling DOFs at the interface
between the substructures, indicated by the subscript c, have the same displacement when coupled. This
condition is dubbed compatibility condition. Secondly, the connection forces cancel out, which is called
equilibrium condition. Mathematically expressed, the compatibility condition for two adjacent substructures 1
and 2 is

q(1)c = q(2)c , (2.3)

and the equilibrium condition is

fc = f (1)c + g(1)c + f (2)c + g(2)c = f (1)c + f (2)c (2.4)

or
0 = g(1)c + g(2)c . (2.5)
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substructure 1 substructure 2

f
(1)
b g

(1)
c g

(2)
c

f
(1)
c f

(2)
c

q
(1)
c q

(2)
c

f̄
(1)
b

f̄c

q̄c

Figure 2.1: Coupling of two substructures. The interface between the substructures consists here of three
points. The interface’s motion is described by the substructure coordinates q(s)c and is influenced by the external
and connection forces f (s)c and g(s)c , respectively. The forces are only exemplified for one connection point.
Furthermore, the substructure 1 is excited by an external force on a body DOF f

(1)
b . In the coupled configuration,

the connection forces cancel out and the motion is now described in terms of a reduced set of coordinates,
denoted q̄c. The coupled structure is excited by external forces at the interface, f̄c, and at a body DOF, f̄b.

Equations (2.3) and (2.5) can be generalised for more adjacent substructures and for all interfaces in the
structure. In matrix notation, this is expressed as

Eq = 0 (2.6)

and
LT g = 0. (2.7)

If the coupling DOFs match on all adjacent substructures, the compatibility matrix E has only 1, 0 and -1 as
entries and is called a signed Boolean matrix. This is the case e.g. for FE models with consistent meshes and
will be the case in the present thesis. Under those circumstances, the matrix L is also a Boolean matrix. The
coupled system can thus be described with three equations, denoted as the three-field formulation [1],

M q̈(t) + V q̇(t) + Kq(t) = f(t) + g(t)

Eq = 0

LT g = 0.

(2.8)

De Klerk et al. [1] distinguish between primal and dual coupling. In this work, only primal coupling will be
considered. Therefore, a unique set of DOFs q̄ for the coupled structure is chosen as

q = Lq̄. (2.9)

Thus, the matrix L localizes the coupling DOFs of the substructures q(s) in the global set of DOFs q̄ of the
coupled system. The coupling procedure until now is depicted in Figure 2.1.

Using the global coordinates, the compatibility equation becomes

Eq = ELq̄ = 0. (2.10)

Since the vector q̄ is in general not equal to zero, L must be the nullspace of E in order to fulfil the equation,

L = null(E). (2.11)

Now, the coupled system can be written as{
ML¨̄q(t) + V L ˙̄q(t) + V Lq̄(t) = f(t) + g(t)

LT g = 0.
(2.12)
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Multiplying the first equation from the left by LT and using the information of the second, the equation of
motion for a coupled system is obtained as

M̄ ¨̄q(t) + V̄ ˙̄q(t) + K̄ q̄(t) = f̄(t) (2.13)

with
M̄ = LTML, V̄ = LTV L, K̄ = LTKL, f̄ = LT f. (2.14)

2.1.2 The Modal Domain
Instead of using the physical DOFs to describe the motion of a structure, modal coordinates η can be utilized.
To this end, the coordinate transformation

q = Φη (2.15)

is introduced. The matrix Φ may contain any mode shape vector φ of the structure, e.g. constraint modes or
normal modes such as free normal modes or fixed interface normal modes. The reader is referred to Craig and
Kurdila [4] for a thorough explanation of these and other modes. In this thesis, only free normal modes will be
used. A discretized system described by nq physical DOFs has also nq modes. Normally, only a subset of the
mode shapes are taken into account yielding a reduced order model. More on reduced order models can be
found in the books of Craig and Kurdila [4] and Meirovitch [5].

Coupling in the modal domain, dubbed CMS, may involve both experimental and FE models. Experimentally
derived modal models are usually obtained using Experimental Modal Analysis (EMA), whereas modal FE
models are obtained by solving the eigenvalue problem of a FE model.

If the coordinate transformation (2.15) is used with Φ containing mass normalised modes, the following
modal model

Mmodη̈(t) + Vmodη̇(t) + Kmodη(t) = fmod(t) + gmod(t) (2.16)

with

Mmod = ΦTMΦ = I,

Vmod = ΦTV Φ =


. . .

2ωiξi
. . .



Kmod = ΦTKΦ =


. . .

ωi
2

. . .


fmod = ΦT f, gmod = ΦT g.

is obtained, where ωi is the i-th resonance frequency of the system in rad/s and ξi is the associated modal
damping ratio. The equations hold only if the matrices M , V , and K are symmetric.

Non-normalised mode vectors Φ̃ yield the matrices

M =


. . .

mmod,i

. . .

 , V =


. . .

2mmod,iωiξi
. . .

 , K =


. . .

mmod,iωi
2

. . .

 , (2.17)

with mmod,i 6= 1. The mode vector can then be mass normalised with

φi =

√
1

mmod,i
φ̃i. (2.18)

In the following, the truncation of a modal model will be investigated. The transformation (2.15) can be
partitioned such that

q =
[
Φk Φr

]{ηk
ηr

}
, (2.19)
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where k and r stand for the kept and the neglected residual modes, respectively. Since modal transformations
yield diagonal matrices, the following relation

ΦT
kMΦkη̈k + ΦT

kMΦrη̈r + ΦT
k V Φkη̇k + ΦT

k V Φrη̇r + ΦT
kKΦkηk + ΦT

kKΦrηr = ΦT
k f + ΦT

k g (2.20)

holds. Introducing the residual force r, which replaces the terms associated with the residual modes ηr, the
reduced order equation of motion is

ΦT
kMΦkη̈k + ΦT

k V Φkη̇k + ΦT
kKΦkηk = ΦT

k f + ΦT
k g −ΦT

k (MΦrη̈r + V Φrη̇r + KΦrηr)

= ΦT
k f + ΦT

k g −ΦT
k r(t).

(2.21)

Due to the orthogonality of the mode shapes, ΦT
k r(t) = 0 holds. Hence, the residual force r is zero in the

reduced space. Subsequently, Φ will be used for the modal transformation matrix, irrespective of how many
modes are taken into consideration.

Coupling in the modal domain is done analogously to the physical domain. Here, the modal mass, stiffness,
and damping matrices of all substructures are compactly written in block diagonal form to obtain the first
equation of the three-field formulation (2.8). The compatibility and equilibrium equations are expressed as

Eq = EΦη = Emodη = 0 (2.22)

LTΦT g = LTmodgmod = 0, (2.23)

and a unique set of coordinates is chosen to be

η = Lmodη̄ (2.24)

with
Lmod = null (Emod) . (2.25)

Multiplying the equation of motion of the uncoupled system by LTmod and incorporating both the equilibrium
condition and the new coordinates, the coupled modal system is described by

M̄mod ¨̄η + V̄mod ˙̄η + K̄modη̄ = f̄mod (2.26)

with

M̄mod = LTmodMmodLmod, V̄mod = LTmodVmodLmod, K̄mod = LTmodKmodLmod, f̄mod = LTmodfmod.

2.1.3 The Frequency Domain
The equation of motion (2.1) expressed in the time domain can also be transformed to the frequency domain.
Here, the Fourier transform of the displacement Q and of the forces F and G are used. The mass, stiffness,
and damping properties are combined in the dynamic stiffness matrix Z. The three-field formulation is then

(−ω2M + iωV + K)Q(ω) = Z(ω)Q(ω) = F (ω) +G(ω)

EωQ(ω) = 0

LTωG(ω) = 0.

(2.27)

Defining a unique set of DOFs Q̄ and performing the same steps as before, the equation of motion of the
coupled systems,

Z̄(ω)Q̄ = F̄ (ω) (2.28)

with
Z̄ = LTωZLω, F̄ = LTωF, (2.29)

is obtained. The FRF of the coupled system H̄ can then be calculated by inverting Z̄.
This formulation is straightforward, although numerical issues are inherent. To obtain coupled FRFs from

substructure FRFs, three inversions are needed: two inversions to calculate the dynamic stiffness matrices of the
substructures and one to convert the dynamic stiffness matrix of the coupled system to a FRF. An alternative
formulation, reducing the number of inversions, was proposed by Jetmundsen et al. [7] and is commonly used
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to couple FRFs in practice. The derivation of this formula for two substructures can be found in the Appendix
A.1. Starting from the FRF of a substructure,[

Q
(s)
c

Q
(s)
b

]
= H(s)

[
F

(s)
c

F
(s)
b

]
(2.30)

with

H(s) =

[
H

(s)
cc H

(s)
cb

H
(s)
bc H

(s)
bb

]
, (2.31)

the FRF of the coupled system Q(1)
b

Qc

Q
(2)
b

 = H̄

F (1)
b

Fc

F
(2)
b

 (2.32)

is obtained as

H̄ =

H̄
(11)
bb H̄

(1c)
bc H̄

(12)
bb

H̄
(c1)
cb H̄

(cc)
cc H̄

(c2)
cb

H̄
(21)
bb H̄

(2c)
bc H̄

(22)
bb

 =

H
(1)
bb H

(1)
bc 0

H
(1)
cb H

(1)
cc 0

0 0 H
(2)
bb

−
 H

(1)
bc

H
(1)
cc

−H(2)
bc

(H(1)
cc + H(2)

cc

)−1

 H
(1)
bc

H
(1)
cc

−H(2)
bc


T

(2.33)

and  H
(1)
bc

H
(1)
cc

−H(2)
bc


T

=
[
H

(1)
cb H

(1)
cc −H(2)

cb

]
. (2.34)

The last relation holds only for reciprocal systems (see Section 2.5).
The notation is chosen such that the FRF of a substructure, H , is indicated by its index as single superscript.

The coupled FRF H̄ has two superscripts. The first superscript determines the substructure where the response
DOF is localised, and the second describes the substructure with the input. The first and second subscripts
distinguish between body (b) and coupling (c) DOFs on the output and input, respectively. For example, H̄(c2)

cb

is the FRF from an input on a body DOF of substructure 2 to an output on a coupling DOF, whereas H̄(12)
bb is

the FRF from an input on a body DOF of substructure 2 to an output on a body DOF of substructure 1.
Compared to CMS, the drawback of coupling in the frequency domain is amplification of noise, which can

yield unphysical coupling results. If synthesised FRFs of models are used, the results are equal to CMS. Yet,
models in the frequency domain circumvent the problems associated with modal truncation, since the influence
of high frequency modes is inherent in the measured FRFs [1].

2.1.4 The State-Space Domain
The last dynamic substructuring technique presented in this thesis is the synthesis of state-space models. Here,
first-order differential equations expressed in state-space systems are coupled.

For the following derivation, the state vector is defined with physical coordinates, x =
{
qT q̇T

}T . In the
present thesis, the inputs are forces connected by the relation f = Puu, where the Boolean matrix Pu localises
the input locations among all physical DOFs. The output of a system will be a set of displacements unless
stated otherwise, defined by y = Pyq, where Py is again a Boolean selection matrix. With this, a state-space
representation of the equation of motion [4] is{

ẋ = Ax+ Bu

y = Cx+ Du
(2.35)

with 
A =

[
0 I

−M−1K −M−1V

]
B =

[
0

M−1Pu

]
C =

[
Py 0

]
.
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For both displacement and velocity outputs, the relation D = 0 holds since forces have only a direct influence
on the acceleration, not on velocity or displacements, according to Newton’s second law.

Next, the synthesis of two state-space models is explained. The following method was developed by Sjövall
[9]. For a thorough derivation, the reader is referred to the licentiate thesis [8], and a shorter version can be
found in the paper of Liljerehn [13].

The derivation starts from a general state-space system. The following equations are taken from Sjövall’s
work [8], following his notation. In a general system, the states are arbitrary, possibly unknown, linear
combinations of physical coordinates. However, the inputs and outputs are known and the vectors can be
partitioned in entries corresponding to the coupling DOFs and entries corresponding to the remaining body
DOFs. The system is then described by

u(s) =

{
u
(s)
c

u
(s)
b

}
, y(s) =

{
y
(s)
c

y
(s)
b

}
, (2.36)

and 
ẋ(s) = A(s)x(s) + B(s)u(s) = A(s)x(s) +

[
B

(s)
c B

(s)
b

]
u(s)

y(s) =

[
C

(s)
d

C
(s)
b

]
x(s).

(2.37)

The subscript d in Cd stands for displacement outputs at coupling DOFs. Before the systems can be coupled,
the state vector x is transformed such that the coupling DOFs are represented by the displacement and the
velocity at the interface, y(s)c and ẏ(s)c . This transformation is written as

x̃(s) = T (s)x(s) =


ẏ
(s)
c

y
(s)
c

x
(s)
b

 , (2.38)

and the new state-space representation, dubbed coupling form, is

Ã(s) = T (s)A(s)T (s)−1
=

A(s)
vv A

(s)
vd A

(s)
vb

I 0 0

0 A
(s)
bd A

(s)
bb


B̃(s) = T (s)B(s) =

B(s)
vv B

(s)
vb

0 0

0 B
(s)
bb


C̃(s) = C(s)T (s)−1

=

[
0 I 0

C
(s)
bv C

(s)
bd C

(s)
bb

]
,

(2.39)

where the subscript v stands for velocity at the coupling DOF.
The transformation matrix T is found as follows. First, the matrix

T
(s)
0 =

C
(s)
d A(s)

C
(s)
d

T
(s)
0,3

 (2.40)

is defined, with T0,3 being an arbitrary nullspace of B(s)
c , T (s)

0,3B
(s)
c = 0, such that T (s)

0 is non-singular. The
final transformation is given by

T (s) =

 C
(s)
d A(s)

C
(s)
d

T
(s)
0,3

(
I −A(s)Z

(s)
0,1C

(s)
d

)
 (2.41)

where
Z

(s)
0 = T

(s)
0

−1
≡
[
Z

(s)
0,1 Z

(s)
0,2 Z

(s)
0,3

]
. (2.42)
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If the number of states is given by n and the number of coupling DOFs by nc, the size of the identity matrix
I and the transformation matrix T is n x n. The partition T0,3 is of size (n− 2nc) x n, while Z0,1 is of size
n x nc.

Essentially, state-space synthesis of two systems is extracting the second-order differential equation of each
model and adding them:

B(1)
vv

−1
ÿ(1)c + B(2)

vv

−1
ÿ(2)c = B(1)

vv

−1
(
A(1)
vv ẏ

(1)
c + A

(1)
vd y

(1)
c + A

(1)
vb y

(1)
b + B(1)

vv u
(1)
c + B

(1)
vb u

(1)
b

)
+ B(2)

vv

−1
(
A(2)
vv ẏ

(2)
c + A

(2)
vd y

(2)
c + A

(2)
vb y

(2)
b + B(2)

vv u
(2)
c + B

(2)
vb u

(2)
b

)
.

(2.43)

To enforce compatibility and equilibrium, the conditions

ÿ(1)c = ÿ(2)c = ÿc

ẏ(1)c = ẏ(2)c = ẏc

y(1)c = y(2)c = yc

u(1)c = u(1,2)c,g + u
(1)
c,f

u(2)c = −u(1,2)c,g + u
(2)
c,f

uc = u(1)c + u(2)c

(2.44)

have to be incorporated. Then, the coupled state-space system is obtained after some transformations as


¨̄yc
˙̄yc

ẋ
(1)
b

ẋ
(2)
b

 =


Āvv Āvd Ā

(1)
vb Ā

(2)
vb

I 0 0 0

0 A
(1)
bd A

(1)
bb 0

0 A
(2)
bd 0 A

(2)
bb




˙̄yc
ȳc

x
(1)
b

x
(2)
b

+


B̄vv B̄

(1)
vb B̄

(2)
vb

0 0 0

0 B
(1)
bb 0

0 0 B
(2)
bb



ūc

u
(1)
b

u
(2)
b



ȳc

y
(1)
b

y
(2)
b

 =

 0 I 0 0

C
(1)
bv C

(1)
bd C

(1)
bb 0

C
(2)
bv C

(2)
bd 0 C

(2)
bb




˙̄yc
ȳc

x
(1)
b

x
(2)
b


(2.45)

with 

K =
(
B(1)
vv + B(2)

vv

)−1

Āvv = B(1)
vv KA(2)

vv + B(2)
vv KA(1)

vv

Āvd = B(1)
vv KA

(2)
vd + B(2)

vv KA
(1)
vd

Ā
(1)
vb = B(2)

vv KA
(1)
vb

Ā
(2)
vb = B(1)

vv KA
(2)
vb

B̄vv = B(1)
vvKB(2)

vv

B̄
(1)
vb = B(2)

vv KB
(1)
vb

B̄
(2)
vb = B(1)

vv KB
(2)
vb .

(2.46)

The intermediate steps are explained in Sjövall’s licentiate thesis [8]. For the equation manipulations, a special
case of the Woodbury matrix identity is used, which is derived in the Appendix A.2.

The state-space synthesis of substructures was further translated into de Klerk’s general framework by
Gibanica [20, 22]. He also revealed numerical difficulties of the state-space approach applied to a complex
structure like wind turbines that stem from the choice of the nullspace in the coupling form transformation. As
a remedy, all state-space systems will be diagonalised before the transformation is performed, as was suggested
by Gibanica.

A very similar approach for state-space coupling was introduced by Su and Juang [10]. However, their
method does not yield a minimal model. In contrast, Sjövall avoids the auxiliary states of Su and Juang by
using the similarity transformation to coupling form.
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The state-space method in the present form is related to both FBS and CMS. On the one hand, the technique
uses the same equations for compatibility and equilibrium as FBS but the problem of matrix inversions is
reduced as the only inversion needed in equation (2.46) is for the matrix K. On the other hand, models are
used for the coupling procedure rather than (measured) FRFs. During the system identification, errors can
occur and be transferred to the coupled models in both state-space synthesis and CMS. But noise is removed
at the same time, diminishing associated errors.

One benefit in using state-space synthesis is the allowance for the wide field of first-order system identification
methods. Many currently used system identification algorithms use state-space models. Thus, by applying
state-space coupling, the identified model does not have to be transformed to second-order form prior to
coupling.

Note that important prerequisites exist for state-space coupling. The systems used for the synthesis need to
be passive and physically consistent, which must be ensured during the system identification process. More
on this topic can be found in Section 2.5. In addition, one matrix version is needed in state-space coupling
(see the derivation by Sjövall [8]). Therefore, the matrix Bvv = CdABc must be full rank . However, Bvv

−1

corresponds to the interface inertia and it thus exists.
Furthermore, crucial conditions on the inputs and outputs hold for the coupling form transformation. In

order to have a full rank transformation matrix, Bc must have full column rank and Cd must have full row
rank. These conditions are easily fulfilled if only a few coupling DOFs are used. However, if the state-space
synthesis should be used for interfaces containing many connection points, the aforementioned conditions can
cause severe difficulties. Up to now, state-space synthesis was not applied to continuous interfaces. Moreover,
state-space synthesis is hitherto limited to coupling two systems at a time. Multiple systems need to be coupled
step by step.

2.2 The Transmission Simulator

The following sections deal with experimental substructuring using a transmission simulator. First, the concept
of the transmission simulator will be explained, including an overview of the literature. Next, decoupling of
structures will be derived for CMS and FBS, following the paper of Allen et al. [21]. Then, the transmission
simulator will be developed for state-space representations. Furthermore, the two coupling constraints CPT
and MCFS will be explained thoroughly for the modal domain [21] and applied to the other methods as well.

2.2.1 The Transmission Simulator Concept
So far, coupling of analytical models has been performed with great success. However, serious difficulties arise
in the synthesis of experimental and analytical models [21]. Traditionally, experimental models are obtained
with measurements simulating free-free boundary conditions. However, the extracted eigenvectors do not form
a good basis for the motion of the coupled system since stress at the interface cannot be represented [14]. Thus,
a large number of mode shapes is typically necessary to replicate the interface motion. For analytical models,
the mode shape basis can be enlarged with e.g. residual flexibility or constraint modes and fixed-interface
modes as in the Craig-Bampton Method [4]. Yet, it is infeasible to measure for instance constraint modes since
it would require the application of displacements at distinct DOFs. Previously, researchers have used lumped
masses to excite the interface [21], improving the obtained mode shape basis. After the measurements, the
mass is removed from the model. Depending on the structure and frequency range of interest, it can be difficult
to have a mass which is large enough in order to have the desired effect but is also rigid [21].

Yet another challenge in experimental substructuring is connected to the measurement of the interface. To
define the coupling constraints, all DOFs at every connection point must be known. In general, moments and
rotations at the connection points are difficult to measure. Moreover, it may be infeasible to mount sensors at
those locations. In most cases however, coupling a discrete interface consisting of a rather small number of
connection points is practical. The rotational DOFs can be obtained from measurements of points close to
the connection points, if the interface is considered to be rigid in this frequency range. Alternatively, multiple
connection points with translational information only are coupled [23]. However, few connection points might
not represent the actual physical coupling well [14]. Yet, increasing the number of connection points to imitate
a continuous interface intensifies the aforementioned difficulties.

The transmission simulator was conceived to remedy the aforementioned roadblocks. This method uses
an additional structure, denoted transmission simulator. It can be used to retrieve information about the
connection points using the transmission simulator’s mode shapes and to relax the coupling constraints due to
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− + =

ATS (measured) TS (FE) B AB

Figure 2.2: Scheme of the Transmission Simulator. The structure of interest A is assembled with the physical
transmission simulator TS, and the structure ATS is measured. Then, an analytical model of the transmission
simulator is subtracted. In a second coupling step, a second structure B is coupled to arrive at a model for the
assembled structure AB.

model truncation. Instead of measuring the structure of interest in a free-free configuration, it is attached to a
second structure, the transmission simulator, and the assembly is measured. The influence of the transmission
simulator needs to be removed afterwards, which is done by subtracting its analytical model [21]. The scheme
of the transmission simulator idea is depicted in Figure 2.2.

Applying this technique, the measurement of rotations and forces at all connection points can be avoided
[14]. The additional mass excites the interface, which brings a larger number of modes into the measured
frequency range. The obtained mode shapes will likely resemble the motion of the coupled system more closely
than free-free mode shapes, yielding a better modal basis and reducing the number of necessary mode shapes.

The transmission simulator was introduced by Mayes, Allen, and their co-workers [2, 15]. Mayes et al. [2]
extended the mass-loading approach by using a flexible structure. To couple the substructures in the frequency
domain, Connection Point Constraints (CPT) were used. Thereby, the connection points’ motion is inferred
using the measurement points on the transmission simulator structure. If the structure is considered to be
rigid, the geometry information is sufficient to do so. However, Mayes et al. concluded that it can be beneficial
to use mode shapes instead.

In the companion paper [15], the transmission simulator with CPT was used with CMS. Moreover, Allen and
Mayes introduced new constraint conditions dubbed Modal Constraints for Fixture and Subsystem (MCFS).
Instead of enforcing strict equality, the constraints are applied in a least squares sense yielding a reduced
sensitivity towards measurement errors. A short introduction to the topic was provided by Mayes [16], whereas
a thorough derivation of both methods was given by Allen et al. [21], including an explanation under which
conditions the transmission simulator method works.

In order to replicate the joints at the interface, it is advised to use a part of the actual assembled system as
a transmission simulator [21], hence avoiding the need of manufacturing a new structure. However, this choice
is not always feasible. Thus, Mayes and Arviso [14] list specifications for the physical design of the transmission
simulator as well as for the sensor placement. Note that in their work, the term transmission simulator is used
for the first time.

One hindrance of the transmission simulator is the occurrence of indefinite mass or stiffness matrices after
decoupling, which yields unphysical results. Allen et al. [24] elaborated on metrics for further investigation as
well as possible reasons for this issue. Techniques to overcome this problem were suggested by Mayes et al. [25].
A new extension of the transmission simulator approach is the Craig-Bampton (CB) transmission simulator
introduced by Kammer et al. [19], where a CB model is used instead of free-free mode shapes.

At this stage, the reader should note the combinations of transmission simulator methods, which may cause
slight confusion. Strictly speaking, one has to distinguish between the free-free and the CB representation of the
structure. Furthermore, three different coupling constraints exist which are CPT, MCFS and Motion Relative
to the Interface. The latter is commonly abbreviated with CB-IP for Craig-Bampton Interface Preserving. In
his thesis, Seeger [26] has given an overview and numerical investigations on all versions. In the present work,
the term transmission simulator denotes the use of a free-free representation with MCFS. However, CPT will
be explained in the following section and used for the theoretical beam example in Chapter 3.

Alternative ideas to overcome the difficulties in experimental coupling without transmission simulator were
suggested by different research groups. One of them is the Virtual Coupling Point and Equivalent Multi-
Point Connection [23] where translational measurements close to the actual connection point are necessary.
D’Ambrogio and Fregolent suggested extended and mixed interfaces for coupling [27], using interface and body
(internal) DOFs.

In summary, the transmission simulator is a good method to remove some of the major obstacles in
experimental-analytical coupling. By measuring the structure in a coupled configuration, the extracted mode
shapes form a better basis for the system. Connection properties of joints can be included in the model. Since
MCFS is applied on the measurement points, the estimate of the connection point displacements and rotations
is avoided (see section 2.2.4 for more explanations). Moreover, these constraints allow for a distributed interface
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since it is implicitly modelled by the transmission simulator mode shapes.

2.2.2 The Modal Domain
Removing the influence of one structure from another is equal to adding a negative representation of the
first one to the latter [21]. In the subsequent, this procedure will be dubbed subtraction or decoupling of a
system. In the modal domain, decoupling is achieved by adding a system with negative modal mass, damping,
and stiffness to the compound structure. In the following, the structure to be subtracted will be denoted
transmission simulator (ts) and decoupled from the total system (tot). The uncoupled block diagonal form of
both systems is then[
M

(tot)
mod 0

0 −M (ts)
mod

]{
η̈(tot)

η̈(ts)

}
+

[
V

(tot)
mod 0

0 −V (ts)
mod

]{
η̇(tot)

η̇(ts)

}
+

[
K

(tot)
mod 0

0 −K(ts)
mod

]{
η(tot)

η(ts)

}
=

{
f
(tot)
mod

f
(ts)
mod

}
+

{
g
(tot)
mod

g
(ts)
mod

}
.

(2.47)
Applying the coupling conditions, a model of the structure of interest is obtained.

2.2.3 Connection Point Constraints
As stated above, the displacements at the interface need to be known for the coupling process in traditional
dynamic substructuring. If the actual connection point cannot be measured, its motion can be estimated
from the measurement points’ motion using the analytical transmission simulator model. In the FE model,
information about all DOFs is available. This approach is called CPT. To succeed, the physical transmission
simulator being part of the total structure must have the same motion as its analytical model. In other words,
q
(tot)
c is unknown as well as Φ

(tot)
c , which refers to the partition of the modal matrix including only coupling

DOFs. The mode shapes associated with the measurement points, Φ
(tot)
meas, are measured and the full mode

shape matrix of the transmission simulator Φ(ts) is available from the analytical model.
The motion of the total structure corresponding to the transmission simulator can be expressed in terms of

the latter’s modal coordinates, {
q
(tot)
c

q
(tot)
meas

}
=

{
Φ

(ts)
c

Φ
(ts)
meas

}
η(ts). (2.48)

The subscript meas refers only to the measurement points on the transmission simulator. It is required that
the mode shapes are linearly independent on the chosen measurement point set and that there are at least as
many measurement points as modes in the transmission simulator representation [21]. Thus, Φ

(ts)
meas has more

rows than columns and full column rank. Then, the motion of the total structure’s connection point q(tot)c can
be written with

η(ts) =
(
Φ(ts)
meas

)+
q(tot)meas (2.49)

as
q(tot)c = Φ(ts)

c

(
Φ(ts)
meas

)+
q(tot)meas (2.50)

where + stands for the Moore-Penrose pseudo-inverse. With this estimate, the modified compatibility condition
is

q(ts)c −Φ(ts)
c

(
Φ(ts)
meas

)+
q(tot)meas = 0 (2.51)

or in matrix notation

[
I −I

]{q(tot)c

q
(ts)
c

}
=
[
I −I

] [Φ(ts)
c

(
Φ

(ts)
meas

)+
0

0 I

]{
q
(tot)
meas

q
(ts)
c

}

=
[
I −I

] [Φ(ts)
c

(
Φ

(ts)
meas

)+
0

0 I

][
Φ

(tot)
meas 0

0 Φ
(ts)
c

]{
η(tot)

η(ts)

}
= 0.

(2.52)

If the compatibility matrix is defined as

ECPT =
[
I −I

] [Φ(ts)
c

(
Φ

(ts)
meas

)+
0

0 I

][
Φ

(tot)
meas 0

0 Φ
(ts)
c

]
, (2.53)
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the matrix LCPT is calculated as LCPT = null(ECPT ). Φ
(ts)
meas must be well conditioned since its pseudo-inverse

is needed for the estimation. For the assessment, the condition number is utilized [28].

2.2.4 Modal Constraints for Fixture and Subsystem

Problems occur if the measurement information is not sufficient for describing the motion of the connection
points. A solution to this is the MCFS method. Here, the coupling is enforced by constraining the displacement
of all measurement points on the transmission simulator to be equal to the motion of the analytical transmission
simulator model which is

q(ts)meas = q(tot)meas. (2.54)

Note that q(ts)meas and q
(tot)
meas have the same size since q(tot)meas stands for the measurement points on the part of

the total structure that belongs to the transmission simulator and q(ts)meas stands for the displacement of the
analytical model at exactly those measurement points.

If there are more measurement points than modes, some coupling conditions will be redundant and may
cause problems like lock-down. To avoid such problems, it is desired to relax the constraints and fulfil them in
a least squares sense. This is done in terms of the transmission simulator modal matrix Φ

(ts)
meas, hence the name

modal constraints [21]. The pseudo-inverse of the modal matrix is multiplied by equation (2.54),(
Φ(ts)
meas

)+
q(ts)meas = η(ts) =

(
Φ(ts)
meas

)+
q(tot)meas =

(
Φ(ts)
meas

)+
Φ(tot)
measη

(tot). (2.55)

The term (Φ
(ts)
meas)

+
q
(tot)
meas describes an orthogonal projection of the total systems’ motion onto the space

spanned by the transmission simulator mode shapes. Again, only the specified measurement points on the
transmission simulator are considered. The number of constraints is thereby reduced to the number of modes in
the representation of the transmission simulator. If fewer modes than measurement points are considered, the
constraints do not enforce strict equality of the displacements but the compatibility condition will be fulfilled
in the desired least squares sense.

In matrix notation, the coupling condition is

(
Φ(ts)
meas

)+ [
Imeas −Imeas

]{q(tot)meas

q
(ts)
meas

}
=
(
Φ(ts)
meas

)+ [
Imeas −Imeas

] [Φ(tot)
meas 0

0 Φ
(ts)
meas

]{
η(tot)

η(ts)

}
=
[(

Φ
(ts)
meas

)+
Φ

(tot)
meas −Imod

]{η(tot)
η(ts)

}
= EMCFS

{
η(tot)

η(ts)

}
= 0

(2.56)
and LMCFS = null(EMCFS). Here, the identity matrix Imeas in the first row has as many rows and columns
as there are measurement points, whereas Imod in the second row has as many rows and columns as there are
modes in the representation of the transmission simulator.

After the model for the substructure of interest is obtained, it can be coupled to other structures. This
can be done using the information of the connection point included in the transmission simulator. Thus,
the coupling condition would constrain the negative transmission simulator with the next substructure [21].
However, MCFS can also be applied for the next coupling step, which yields better results. Moreover, it has
been recommended to use the same transmission simulator for both structures to be coupled and then removing
the transmission simulator twice1, as was done e.g. in the work of Allen et al. [21]. Thereby, the robustness
properties of MCFS can be exploited for the overall coupling procedure.

If the transmission simulator is to be subtracted nts times from ntot representations of the total systems,
the mass, damping, and stiffness matrices are multiplied with nts and ntot accordingly [16],[

ntotM
(tot)
m 0

0 −ntsM (ts)
m

]{
η̈(tot)

η̈(ts)

}
+

[
ntotV

(tot)
m 0

0 −ntsV (ts)
m

]{
η̇(tot)

η̇(ts)

}

+

[
ntotK

(tot)
m 0

0 −ntsK(ts)
m

]{
η(tot)

η(ts)

}
=

{
f
(tot)
m

f
(ts)
m

}
+

{
g
(tot)
m

g
(ts)
m

}
.

(2.57)

1Even though this statement is not mentioned explicitly, hints can be found in the paper [21]. Furthermore, Randy Mayes, one
of the authors, has reported the observation in a conversation.
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2.2.5 The Frequency Domain

Now, the constraints CPT and MCFS introduced above will be applied to FBS using the formulation of
Jetmundsen et al. Selected equations can be found in the work of Mayes and Arviso [14, 16].

Subtracting of frequency domain models can be done in two ways, denoted Inverse Coupling and Direct
Decoupling [27]. Direct Decoupling is the approach of rearranging the coupling equations (2.33) such that the
system of interest can be deduced. For instance, the equations can be chosen as

H(1)
cc = H̄(cc)

cc − H̄(cc)
cc

(
H̄(cc)
cc −H(2)

cc

)−1

H̄(cc)
cc (2.58)

H
(1)
bc = H̄

(12)
bb

(
H

(2)
cb

)+ (
H(1)
cc + H(2)

cc

)
(2.59)

H
(1)
cb =

(
H(1)
cc + H(2)

cc

)(
H

(2)
bc

)+
H̄

(21)
bb (2.60)

H
(1)
bb = H̄

(11)
bb + H

(1)
bc

(
H(1)
cc + H(2)

cc

)−1

H
(1)
cb . (2.61)

Recall the notation explained in Section 2.1.3. The above equations hold for systems with more body DOFs
than coupling DOFs. If Hbc and Hcb are square, the pseudo-inverse reduces to the inverse of the matrices.

In Inverse Coupling, the negative FRFs of the transmission simulator, H(ts), is coupled to the positive
total system’s FRFs H(tot). This will be used in the present thesis. Applying CPT, the measurement points’
displacements are used to infer the coupling point’s displacement according to equation (2.50),{

q
(tot)
c

q
(tot)
b

}
=

[
Φ

(ts)
c

(
Φ

(ts)
meas

)+
0

0 I

]{
q
(tot)
meas

q
(tot)
b

}
. (2.62)

Accordingly, the forces at the coupling point are obtained with

{
f
(tot)
meas

f
(tot)
b

}
=

(Φ
(ts)
c

(
Φ

(ts)
meas

)+)T
0

0 I

{f (tot)c

f
(tot)
b

}
. (2.63)

Thus, the measured FRFs {
Q

(tot)
meas

Q
(tot)
b

}
= H(tot)

{
F

(tot)
meas

F
(tot)
b

}

=

[
H

(tot)
meas,meas H

(tot)
meas,b

H
(tot)
b,meas H

(tot)
b,b

]{
F

(tot)
meas

F
(tot)
b

} (2.64)

will be transformed to{
Q

(tot)
c

Q
(tot)
b

}
=

[
Φ

(ts)
c

(
Φ

(ts)
meas

)+
0

0 I

][
H

(tot)
meas,meas H

(tot)
meas,b

H
(tot)
b,meas H

(tot)
b,b

](Φ
(ts)
c

(
Φ

(ts)
meas

)+)T
0

0 I

{F (tot)
c

F
(tot)
b

}

=

[
H

(tot)
c,c H

(tot)
c,b

H
(tot)
b,c H

(tot)
b,b

]{
F

(tot)
c

F
(tot)
b

}
.

(2.65)

The transmission simulator to be subtracted is represented by the negative FRFs

H(ts) = −
[
H

(ts)
c,c H

(ts)
c,b

H
(ts)
b,c H

(ts)
b,b

]
. (2.66)

Coupling these two FRF matrices, the system of interest is deduced.
MCFS can be applied similarly. The measurement points’ motion and the associated forces will be expressed
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in modal coordinates,

{
η(tot)

q
(tot)
b

}
=

[(
Φ

(ts)
meas

)+
0

0 I

]{
q
(tot)
meas

q
(tot)
b

}
(2.67)

{
η(ts)

q
(ts)
b

}
=

[(
Φ

(ts)
meas

)+
0

0 I

]{
q
(ts)
meas

q
(ts)
b

}
(2.68)

{
f
(tot)
meas

f
(tot)
b

}
=

((Φ
(ts)
meas

)+)T
0

0 I

{f (tot)mod

f
(tot)
b

}
(2.69)

{
f
(ts)
meas

f
(ts)
b

}
=

((Φ
(ts)
meas

)+)T
0

0 I

{f (ts)mod

f
(ts)
b

}
(2.70)

This yields the FRFs

{
H(tot)

Q
(tot)
b

}
=

[(
Φ

(ts)
meas

)+
0

0 I

][
H

(tot)
meas,meas H

(tot)
meas,b

H
(tot)
b,meas H

(tot)
b,b

]((Φ
(ts)
meas

)+)T
0

0 I

{F (tot)
mod

F
(tot)
b

}

=

[
H

(tot)
mod,mod H

(tot)
mod,b

H
(tot)
b,mod H

(tot)
b,b

]{
F

(tot)
mod

F
(tot)
b

} (2.71)

for the total system and

{
H(ts)

Q
(ts)
b

}
= −

[(
Φ

(ts)
meas

)+
0

0 I

][
H

(ts)
meas,meas H

(ts)
meas,b

H
(ts)
b,meas H

(ts)
b,b

]((Φ
(ts)
meas

)+)T
0

0 I

{F (ts)
mod

F
(ts)
b

}

= −
[
H

(ts)
mod,mod H

(ts)
mod,b

H
(ts)
b,mod H

(ts)
b,b

]{
F

(ts)
mod

F
(ts)
b

} (2.72)

for the negative transmission simulator. To obtain the system of interest, these FRFs can then be coupled as
explained in Section 2.1.3. Note the difference in notation between H(ts) and H(ts). The first is the FRF matrix
of the transmission simulator, whereas the latter indicates the Fourier transform of the modal coordinates η(ts).
Accordingly, F (ts)

mod stands for the Fourier transform of the modal forces f (ts)mod. If a system is to be subtracted n
times, the dynamic stiffness matrix is multiplied by that factor, while the FRF is divided by it [14].

2.2.6 The State-Space Domain

In the following, subtracting models in the state-space domain will be derived, and then, CPT and MCFS
will be applied. A negative state-space system can be illustrated by the use of the physical state vector
x =

{
qT q̇T

}T . With negative mass, stiffness, and damping, the state-space matrices
A =

[
0 I

−(−M)
−1 (−K−1

)
−(−M)

−1 (−V −1
)] =

[
0 I

−M−1K−1 −M−1V −1

]
B =

[
0

−M−1Pu

]
= −

[
0

M−1Pu

]
C =

[
Py 0

]
(2.73)

can be obtained. In other words, it suffices to multiply only the input matrix B by −1.
Instead of adding a negative system, Equation (2.43) could also be modified such that a positive system can

be subtracted by changing the plus into a minus. However, the phase of the transmission simulator body DOFs
is then inverted which causes wrong results if they are coupled in a later step. This will be shown in Chapter 3.
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The CPT can be implemented in the state-space domain similar to the frequency domain. Starting from
the identified state-space representation of the measured total system,

ẋ(tot) = A(tot)x(tot) +
[
B

(tot)
meas B

(tot)
b

]{u(tot)meas

u
(tot)
b

}
{
y
(tot)
meas

y
(tot)
b

}
=

[
C

(tot)
d,meas

C
(tot)
b

]
x(tot),

(2.74)

the inputs and outputs are transformed to

ẋ(tot) = A(tot)x(tot) +
[
B

(tot)
meas B

(tot)
b

](Φ
(ts)
c

(
Φ

(ts)
meas

)+)T
0

0 I

{u(tot)c

u
(tot)
b

}

= A(tot)x(tot) +
[
B

(tot)
c B

(tot)
b

]{u(tot)c

u
(tot)
b

}
{
y
(tot)
c

y
(tot)
b

}
=

[
Φ

(ts)
c

(
Φ

(ts)
meas

)+
0

0 I

][
C

(tot)
d,meas

C
(tot)
b

]
x(tot) =

[
C

(tot)
d,c

C
(tot)
b

]
x(tot)

(2.75)

The state-space model of the transmission simulator remains unmodified except for the negative input matrix.
Then, the two systems are coupled as shown in Section 2.1.4.

Using the MCFS method in the state-space domain, the measured input and output vectors{
u
(ts)
meas u

(ts)
b

}T
,

{
u
(tot)
meas u

(tot)
b

}T
,

{
y
(ts)
meas y

(ts)
b

}T
,

{
y
(tot)
meas y

(tot)
b

}T
are expressed in terms of modal coordinates marked by the subscript mod. This is again done by means of the
modal matrix (Φ

(ts)
meas)

+
. The body inputs and outputs remain unchanged. Hence, the new inputs and outputs

are given by{
u
(tot)
meas

u
(tot)
b

}
=

((Φ
(ts)
meas

)+)T
0

0 I

{u(tot)mod

u
(tot)
b

}
,

{
u
(ts)
meas

u
(ts)
b

}
=

((Φ
(ts)
meas

)+)T
0

0 I

{u(ts)mod

u
(ts)
b

}
(2.76)

and {
y
(tot)
mod

y
(tot)
b

}
=

[(
Φ

(ts)
meas

)+
0

0 I

]{
y
(tot)
meas

y
(tot)
b

}
,

{
y
(ts)
mod

y
(ts)
b

}
=

[(
Φ

(ts)
meas

)+
0

0 I

]{
y
(ts)
meas

y
(ts)
b

}
, (2.77)

respectively. With the new vectors, the transformed models

ẋ(tot) = A(tot)x(tot) +
[
B

(tot)
meas B

(tot)
b

]((Φ
(ts)
meas

)+)T
0

0 I

{u(tot)mod

u
(tot)
b

}

= A(tot)x(tot) +
[
B

(tot)
mod B

(tot)
b

]{u(ts)mod

u
(tot)
b

}
{
y
(tot)
mod

y
(tot)
b

}
=

[(
Φ

(ts)
meas

)+
0

0 I

][
C

(tot)
d,meas

C
(tot)
b

]
x(tot) =

[
C

(tot)
d,mod

C
(tot)
b

]
x(tot)

(2.78)

and 

ẋ(ts) = A(ts)x(ts) +
[
B

(ts)
meas B

(ts)
b

]((Φ
(ts)
meas

)+)T
0

0 I

{u(ts)mod

u
(ts)
b

}

= A(ts)x(ts) +
[
B

(ts)
mod B

(ts)
b

]{u(ts)mod

u
(ts)
b

}
{
y
(ts)
mod

y
(ts)
b

}
=

[(
Φ

(ts)
meas

)+
0

0 I

][
C

(ts)
d,meas

C
(ts)
b

]
x(ts) =

[
C

(ts)
d,mod

C
(ts)
b

]
x(ts)

(2.79)
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are obtained.
By coupling these models, the influence of the transmission simulator is removed and the system of interest

is deduced. The final state-space system is then


¨̄ymod
˙̄ymod

ẋ
(tot)
b

ẋ
(ts)
b

 =


Āvv Āvd Ā

(tot)
vb Ā

(ts)
vb

I 0 0 0

0 A
(tot)
bd A

(tot)
bb 0

0 A
(ts)
bd 0 A

(ts)
bb




˙̄ymod
ȳmod

x
(tot)
b

x
(ts)
b

+


B̄vv B̄

(tot)
vb B̄

(ts)
vb

0 0 0

0 B
(tot)
bb 0

0 0 B
(ts)
bb



ūmod

u
(tot)
b

u
(ts)
b



ȳmod

y
(tot)
b

y
(ts)
b

 =

 0 I 0 0

C
(tot)
bv C

(tot)
bd C

(tot)
bb 0

C
(ts)
bv C

(ts)
bd 0 C

(ts)
bb




˙̄ymod
ȳmod

x
(tot)
b

x
(ts)
b


(2.80)

with 

K =
(
B(tot)
vv −B(ts)

vv

)−1

Āvv = B(tot)
vv KA(ts)

vv −B(ts)
vv KA(tot)

vv

Āvd = B(tot)
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Ā
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B̄vv = −B(tot)
vv KB(ts)

vv

B̄
(tot)
vb = −B(ts)

vv KB
(tot)
vb

B̄
(ts)
vb = B(tot)

vv KB
(ts)
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Here, the input matrix B(ts) is considered positive and the minus is written down explicitly for a better
understanding. Note that this is the same result as applying traditional state-space synthesis with a negative
input matrix

B(ts) = −
[
B

(ts)
mod B

(ts)
b

]
.

If nts copies of the transmission simulator are decoupled from ntot copies of the total system, Equation
(2.43) changes accordingly to

ntotB
(tot)
vv

−1
ÿ(tot)c + ntsB

(ts)
vv

−1
ÿ(ts)c

= ntotB
(tot)
vv

−1
(
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vb y

(tot)
b + B(tot)
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(tot)
vb u

(tot)
b

)
+ ntsB

(ts)
vv

−1
(
A(ts)
vv ẏ

(ts)
c + A

(ts)
vd y

(ts)
c + A

(ts)
vb y

(ts)
b + B(ts)

vv u(ts)c + B
(ts)
vb u

(ts)
b

)
.

(2.81)

This is equal to dividing B
(tot)
vv by ntot and B

(ts)
vv by nts. Note that care must be taken with the term B̄vv.

As in equation (2.57), only the mass, stiffness, and damping parameters are multiplied but the input matrix
for the forces remains equal. Therefore, the equilibrium condition (2.44) also remains unmodified. Hence, the
definition of B̄vv changes. If each system is only coupled once, recall the definition

B̄vv = B(tot)
vv KB(ts)

vv = B(tot)
vv

(
B(tot)
vv −B(ts)

vv

)−1

B(ts)
vv . (2.82)

However, if at least one of the systems is to be coupled multiple times, the definition changes to

B̄vv =
ntot + nts
ntotnts

B(tot)
vv KB(ts)

vv =
ntot + nts
ntotnts

B(tot)
vv

(
1

ntot
B(tot)
vv − 1

nts
B(ts)
vv

)−1

B(ts)
vv . (2.83)

2.3 Receptance, Mobility and Accelerance FRFs

In this work, the input to a system will always be force excitation. Depending on the output, different terms to
denote the FRF will be used [29]. If the output of the system is a set of displacements, the term receptance and
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the subscript d will be used. Mobility data stands for velocity outputs, indicated by the subscript v, whereas
acceleration outputs yield accelerance FRFs and will be indicated by a. In addition, the term driving-point or
direct FRF labels a frequency response function where the input and output are located at the same position.

In the frequency domain, velocity and acceleration can be deduced from the displacement by multiplying
with iω and −ω2, respectively. Accordingly, the receptance FRF Hd is connected to the mobility FRF Hv and
the accelerance FRF Ha by

Ha = iωHv = iω (iωHd) = −ω2Hd. (2.84)

In order to synthesize FRFs from state-space systems, the output equation of the time-domain state-space
model has to be adapted. Output displacements are given by

y = Cdx. (2.85)

Velocity outputs can be obtained from the derivative

ẏ = Cdẋ = Cd (Ax+ Bu) = CdAx+ CdBu = Cvx+ Dvu. (2.86)

Since Newton’s second law states that forces and velocities are connected via integration, there must not be
a direct feedthrough from force input to velocity outputs for physical, structural problems modelled with
state-space, thus

Dv = CdB = 0. (2.87)

If the state vector is formed by displacements and velocities, x =
[
qT q̇T

]T , the relation can also be illustrated
by

y = Cdx =
[
Py 0

]
x (2.88)

ẏ = CdAx+ CdBu =
[
Py 0

] [ 0 I
−M−1K −M−1V

]
x+

[
Py 0

] [ 0
M−1Pu

]
u

=
[
0 Py

]
x+ 0u = Cvx

(2.89)

Acceleration outputs can be obtained accordingly with

ÿ = Cvẋ = Cv (Ax+ Bu) = CvAx+ CvBu = CdA
2x+ CdABu = Cax+ Dau (2.90)

or in terms of a physical state vector,

ÿ = CvAx+ CvBu =
[
0 Py

] [ 0 I
−M−1K −M−1V

]
x+

[
0 Py

] [ 0
M−1Pu

]
u

=
[
−PyM−1K −PyM−1V

]
x+ PyM

−1Puu = Cax+ Dau.

(2.91)

2.4 The Domain Transformations

To compare the results of the different substructuring methods, it is desired to transform models from one
domain to another. FRFs of modal and state-space models are synthesized with

H(ω) = Φ
(
−ω2Mmod + iωVmod + Kmod

)−1
ΦT (2.92)

and
H(ω) = C(iωI −A)

−1
B + D, (2.93)

respectively. A second-order modal model is connected to a first-order state-space system with the matrices
A =

[
0 I

−M−1
modKmod −M−1

modVmod

]
B =

[
0

M−1
modΦ

TPu

]
C =

[
PyΦ 0

]
.

(2.94)
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Obtaining a second-order modal model from a state-space model is somewhat less straightforward. The
eigenvalues of the system matrix A come in complex conjugated pairs λi,i+1 = −ωiξi± iωi

√
1− ξi2. For lightly

damped structures, ξi2 is negligible yielding λi,i+1 ≈ −ωiξi ± iωi. Thus, the resonance frequency and modal
damping can be deduced easily.

To scale the calculated eigenvectors, the modal mass mmod can be utilized. Using the input and output
matrices B and C, the modal Foss damping ai is calculated [30] which is related to the model parameters by

ai = 2ξiωimmod + 2λimmod,i, (2.95)

assuming that the damping matrix can be brought to diagonal form. With the aforementioned approximation
for lightly damped structures, the modal mass is extracted by

mmod,i =
=(ai)

2ωi
. (2.96)

Solving the eigenvalue problem of the state-space system, the obtained eigenvectors will be complex. However,
for lightly damped systems or system with proportional damping, the entries of every eigenvector form a
straight line arbitrarily rotated in the complex plane. After rotating the eigenvector such that it coincides with
the real axis, a real mode shape vector is obtained which can then be mass normalised.

2.5 System Identification of Physical Models

Before coupling state-space systems, models have to be identified starting from the measured FRFs. In the
present work, state-space subspace identification is applied using the command n4sid of MATLAB’s System
Identification toolbox [12]. The theory of subspace identification can be found in the books of Ljung [11], and
Van Overschee and De Moor [31].

The correct model order of the identified system is decisive for the success of substructuring. It can be found
by thorough investigation of the measurement data to distinguish physical from spurious modes. Yet, this
approach is cumbersome and its success is not guaranteed. An alternative is the automated system identification
method developed by Yaghoubi and Abrahamsson [32]. Both approaches are used in this thesis.

Another crucial point in the synthesis of state-space models is physically consistent models. This was
stressed in the work of Sjövall and Abrahamsson [9] and Liljerehn and Abrahamsson [33]. In contrast to
second-order modal models identified with common mode extraction techniques, state-space models, estimated
with first-order system identification, are rather general representations of systems, which try to replicate the
data as well as possible, independent of potential violation of physical laws. However, measurement errors may
yield unphysical models. Thus, a physically correct model needs to be ensured by enforcing physical properties.
In the remainder of this section, all necessary steps are explained [33].

Starting from an identified model with velocity outputs denoted mobility form, first reciprocity is enforced.
Maxwell’s reciprocity theorem states that the response of a system measured at position i and excited at
position j is the same as the response measured at j and excited at i [34]. Thus, the FRF matrix of a reciprocal
system is symmetric. Having measured all responses of a system excited at one position, reciprocity can be
used to obtain the unmeasured FRFs.

Next, passivity of the system is enforced. The energy dissipated in a passive system must be non-negative.
This implies a non-negative real part of the mobility driving-point FRF for reciprocal systems [9], yielding a
phase of [−90◦, 0◦]. Equivalently, the accelerance and receptance driving-point FRFs have a phase range of
[0◦, 180◦] and [−180◦, 0◦], respectively. Another interpretation is that the receptance condition ensures the
response at the driving-point to be in the direction of the excitation force. A method developed by Liljerehn
[33] is utilized for the enforcement.

Finally, a force input to a system fulfilling Newton’s second law has a direct effect on the acceleration only,
not on velocity or displacement. For state-space systems, this corresponds to a zero direct feedthrough matrix
D. Measurement errors or model truncation may evoke a non-zero feedthrough matrix. Thus, the satisfaction
of Dd = 0 and Dv = CdB = 0 has to be checked.

2.6 The Modal Assurance Criterion

To compare the mode shapes of two models, the Modal Assurance Criterion (MAC) is applied. The MAC value
is a metric for the linear consistency of two mode shape sets [35] and lies between 1 for perfect consistency and
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0 for no consistency at all. For the two vectors φk and φl, it is calculated for the mode i as

MACkl,i =
|φTk,iφ∗l,i|

2

φTk,iφ
∗
k,iφ

T
l,iφ

∗
l,i

(2.97)

where ∗ indicates the complex conjugate of the vector. In general, a MAC value below 0.8 is considered as bad
whereas a MAC value above 0.9 is a good correlation [29].

The MAC metric may lack significance for symmetric structures as the rotor of a wind turbine. Due to
the symmetry, some modes are symmetric modes that are typically close in frequency. For such modes, the
calculated eigenvectors of the identified system span the subspace associated with these modes, yet they can be
arbitrarily rotated. In contrast, the modes of FE models often represent shapes that meet intuition. Thus, the
identified mode shapes are most likely a linear combination of the associated FE mode shape vectors yielding
low MAC values. To account for that, the angle between the subspaces spanned by the identified eigenvectors
and the FE mode shapes is calculated for modes close in frequency [36]. If the angle is close to zero, the
subspaces align well, and the corresponding mode shapes replicate the same motion. The squared cosine of
the angle between subspaces spanned by only one vector each is equal to the MAC value. Therefore, both the
MAC value and the squared cosine of the subspace angle will be used to assess the coherency of two models for
symmetric structures.
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3 The Beam Example
In this chapter, the transmission simulator is applied to a simple structure consisting of only a few beam
elements. By this example, numerous effects and problems, which are typically encountered, can be illustrated.
This includes for instance the design of the transmission simulator and the choice of modes to span the mode
shape basis. In the first section, the example is depicted, and decoupling is performed. Here, a system will be
subtracted without the use of a transmission simulator, assuming that the connection point’s motion is given.
This is followed by the transmission simulator method with CPT and MCFS in the second section.

3.1 Decoupling

In order to compare the substructuring methods CMS, FBS, and state-space synthesis, a simple example is
chosen. With its aid, it will be shown that all decoupling methods yield the same results if the same information
is inherent in the models and if the transmission simulator is applied properly. A beam structure is chosen for
this purpose, built up by plane elements obtained from axial and Bernoulli-Euler bending elements [4, 37]. The
mass and the stiffness matrices of one element are

Me =
m

420


140 0 0 70 0 0
0 156 22l 0 54 −13l
0 22l 4l2 0 13l −3l2

70 0 0 140 0 0
0 54 13l 0 156 −22l
0 −13l −3l2 0 −22l 4l2

 (3.1)

and

Ke =



EA

l
0 0 −EA

l
0 0

0 12
EI

l3
6
EI

l2
0 −12

EI

l3
6
EI

l2

0 6
EI

l2
4
EI

l
0 −6

EI

l2
2
EI

l

−EA
l

0 0
EA

l
0 0

0 −12
EI

l3
−6

EI

l2
0 12

EI

l3
−6

EI

l2

0 6
EI

l2
2
EI

l
0 −6

EI

l2
4
EI

l



, (3.2)

respectively, with the element mass m, the length l, Young’s modulus E, the cross section A and the second
moment of area I = bh3/12. To obtain the beam structures, these element matrices are coupled in the physical
domain as is done in FE calculations.

The assembled beam structure involves two beams. The left one, dubbed A, will later be the structure of
interest in the decoupling procedure and consists of three elements. A two-element beam denoted B is supposed
to be coupled to the former in order to form the total structure, called AB. The elements of this structure have
the material properties of steel, i.e. a density of ρ = 8000 kg/m3 and Young’s modulus of E = 210 GPa. The
cross section is chosen to be quadratic with a side length b = h = 0.01 m. With the element length l = 0.1 m,
the mass and stiffnesses of one element are m = 0.08 kg, EI = 175 Nm2 and EA = 21, 000, 000 N. To create a
lightly damped structure, proportional damping was set to V = αM + βK, α = 0.1, and β = 10−8.

First, the influence of beam B will be removed from the assembled system AB to arrive at a model for A.
Decoupling in this example acts on the assumption that all DOFs of the connection point 4 between A and B
are known. Obviously, this will rarely be the case in reality since the coupling point is typically not accessible in
a coupled configuration. However, with the help of this rather escapist assumption, the subtraction of systems
in the frequency and state-space domain will be investigated. The procedure is depicted in Figure 3.1, where
black nodes indicate that all three DOFs are known, whereas the DOFS of white nodes are unknown simulating
a restricted number of measurement points.

All methods mentioned in the theory chapter are applied to this example, that is decoupling with CMS,
inverse coupling and direct decoupling of FRFs as well as state-space decoupling. The latter is performed both
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Figure 3.1: Decoupling scheme of two plane beams. The influence of beam B is to be removed from the structure
AB in order to retrieve a model of A. All three DOFs at the black nodes are assumed to be known, whereas
white nodes are unknown.
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Figure 3.2: Phase of the decoupled beam FRF. The direct receptance FRF at connection node 4 in lateral
direction is shown. If a negative representation of B is coupled to AB, the phase of state-space synthesis with
negative input matrix, CMS, and FBS equals the phase of the true system. The phase of state-space decoupling
by subtracting the positive system B yields an inverted phase at the connection point.

by coupling the system B with a negative input matrix and by subtracting the positive system B. As stated in
the theory section, the phase at node 4 of beam A is inverted if the positive system B is subtracted. Figure 3.2
illustrates this observation. All other methods, including inverse coupling and direct decoupling of FRFs, yield
exactly the same results. Neither Figure 3.2 nor Figure 3.3 show deviations between the FRF of true beam A
and the decoupled structure. Note that in this example, there are more body degrees of freedom than coupling
degrees of freedom which facilitates direct decoupling of FRFs.

In accordance with the FRFs, the calculated resonance frequencies and damping ratios of the CMS and
state-space results match the true values exactly. However, this holds only for the flexible modes since some rigid
body resonance frequencies in the initial beam models were found to be negative due to numerical inaccuracies
and ill conditioned matrices.

An interesting feature in decoupling modal and state-space systems becomes apparent in this decoupling
task. The state-space system obtained after substructuring has more states than the true system for beam
A. Given the number of states nAB and nB for the beams AB and B, respectively, the number of states that
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Figure 3.3: Magnitude of the decoupled beam FRF. The direct receptance FRF at node 3 in lateral direction is
shown. All methods yield the exact same FRF as the true system.
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Figure 3.4: Coupling scheme of two beams with the transmission simulator TS. Its influence is to be removed
from the structure ATS in order to retrieve a model of A. Then, the system B is coupled in a second step. All
three DOFs at the black nodes are assumed to be known, whereas white nodes are unknown.

are retained after the coupling step are n = nAB + nB − 2nc. Here, nc is the number of coupling DOFs. This
yields 48 states for the decoupled system in contrast to 24 states for the true system A. Accordingly, the
decoupled model obtained with CMS has 24 modes instead of 12 modes. Moreover, the results reveal that
the spurious modes come in pairs. Hence, the twelve spurious modes correspond to six spurious resonance
frequencies. The occurrence of those pairs can be explained vividly by means of state-space coupling. The
model of the decoupled beam A still consists of both the systems AB and B. Thus, the motion of B is present
in the partitions associated with beam AB as well as in the partition corresponding to B, which yields an
increased model order and the aforementioned spurious doubled states. In this example, those states can be
easily identified and removed as the true resonance frequencies are unique, meaning that no repeated modes
exist. However, the spurious states are no longer evident if the decoupling is performed with CPT and MCFS
as will be stated later.

Furthermore, all investigated methods are interchangeable for damped structures, as long as the same
information is used and noise is absent. If damping is removed, spurious peaks occur in the FRFs for state-space
synthesis, since one of the spurious modes in each pair becomes unstable.

3.2 Utilisation of a Transmission Simulator

Now, a third beam, coupled to the beam A, is introduced as transmission simulator to form the assumed
experimental structure ATS (see Figure 3.4). By means of this simple example, essential insights can be
gained with respect to the transmission simulator’s application. Especially, the design of the transmission
simulator proves to be of utmost importance for the substructuring results. In this section, these observations
are demonstrated.

The geometrical dimensions of the transmission simulator elements are chosen to be the same as for the
other beams. In order to have enough measurement points on the transmission simulator, the beam is built
up by six elements. All DOFs are assumed to be known, hence six measurement points on the transmission
simulator with three DOFS each are available.

Under certain conditions, the mass matrix of the decoupled system can become indefinite [24]. To prevent
this, the element mass of the transmission simulator was lowered and chosen to be mts = 0.08m. At the same
time, the transmission simulator needs to be stiff. More precisely, the first flexible mode of the transmission
simulator should to be higher than the first flexible mode of the structure of interest1. Therefore, Young’s
modulus Ets = 16E was chosen. With these properties, the transmission simulator features the desired
behaviour while still being a beam with only a few elements.

3.2.1 Coupling with CPT

Twenty modes were chosen to represent the total system ATS, whereas nine modes were included in the
transmission simulator representation, which corresponds to a condition number of 101.0 for the mode shape
matrix Φ

(ts)
meas. If only the decoupling step ATS− TS = A is performed, beam A is retrieved unsatisfactorily.

The FRFs of the true and the substructured system resemble the axial motion very well but fail to replicate
lateral and bending motion, as can be seen in Figure 3.5. Consequently, the estimated resonance frequencies of
the beam A are not in agreement with the true ones.

Moreover, three of the obtained resonance frequencies in the CMS results are complex since both the mass
matrix and the stiffness matrix become indefinite after substructuring. To force the model to be physical, two
possible remedies exist. Mayes et al. proposed two techniques [25], which prevent negative mass matrices. Yet,
a straightforward approach to remove complex resonance frequencies is their manual elimination since they are

1Again, this requirement was mentioned by Randy Mayes in a conversation.
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(a) Direct receptance FRF, node 1 in axial direction
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(b) Direct receptance FRF, node 4 in lateral direction

Figure 3.5: Results for the decoupled beam A with CPT in two directions. All methods yield the exact same
FRF. The axial motion estimates the true FRF very well.

easily identified. In general, this should not affect the estimated FRF. However, neither of the techniques is
applied in the present work since the focus in this chapter is on the effects of the transmission simulator rather
than on a physical result.

The identified complex resonance frequencies are also present in the state-space results. Here, they appear
as their complex conjugates. This means that a purely imaginary resonance frequency in the CMS results
transforms to a real pole in the state-space system which appears twice and is comparatively highly damped.
One of these real poles is stable, the other unstable. However, the influence in the FRFs is not obvious due to
the high damping.

A pair of complex conjugated resonance frequencies in the CMS results turn into two pairs of complex
conjugated poles in the state-space representation. Again, the imaginary and real parts are exchanged. Further,
two of the four eigenvalues are unstable. Compared to the other modal damping ratios in a lightly damped
structure, the damping is still high, consequently reducing their effect on the FRF.

Complex resonance frequencies and state-space poles are complex conjugated because of the definition of
the eigenvalue problem. For a second-order equation, the ansatz eiω is chosen, whereas a first-order state-space
eigenvalue problem is solved with the ansatz eλ. Hence, the resonance frequency will be obtained as a real
value in the first formulation, while it is associated with the imaginary part of λ for state-space systems.

After analysing the decoupling step only, the whole coupling procedure as depicted in Figure 3.4 is now
investigated. Both the predicted resonance frequencies and the obtained FRF of the beam AB are similar to
the true system. Two FRFs are shown in Figure 3.6. Again, the axial motion is retrieved well whereas the
lateral motion deviates significantly for lower frequencies and approaches the true FRF for higher frequencies.
However, the overall behaviour is captured better than the behaviour of the beam A shown in Figure 3.5.

The first resonance frequency is underestimated by only 1 % but then, numerous spurious modes occur
which leads to the spurious peaks in the lateral FRF in Figure 3.6. In contrast to the decoupling without
transmission simulator, these modes cannot be readily identified as spurious any longer since they do not come
in pairs. In total, six complex resonance frequencies are present in the results. Again, the investigated methods
CMS, state-space coupling with a negative input matrix, and inverse coupling of FRFs, yield the same results.
If damping is removed, unstable poles in the state-space synthesis occur. However, the FRFs do not deviate
from the results obtained with damped systems.

3.2.2 Coupling with MCFS

Compared to CPT, the results both for the beam A and AB are significantly improved with MCFS. Here, all
FRFs associated with the body DOFs of the beam A match the true FRF very well. Minor deviations occur
only for the modes highest in frequency and are more pronounced at the connection node 4 in lateral and
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(a) Direct receptance FRF, node 1 in axial direction
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Figure 3.6: Results for the coupled beam AB with CPT. All methods yield the exact same FRF. The axial
motion can be estimated well, though one peak is shifted in frequency. Numerous spurious peaks occur in the
FRF in lateral direction but the substructured FRF approaches the true FRF for higher frequencies. However,
two modes are not captured at all.
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Figure 3.7: Results for the decoupled beam A with MCFS. The direct receptance FRF at the connection node 4
in lateral direction is shown. All methods yield the exact same FRF, which resembles the true system well.

rotational direction. By way of example, Figure 3.7 shows the lateral FRF at this node.
Figure 3.8 shows two FRFs of the coupled structure AB. The results are equally good for all DOFs, and only

a few modes deviate visibly. Accordingly, the errors for the predicted resonance frequencies and for the damping
of the first four modes are low. For higher frequencies, spurious modes appear that are difficult to distinguish
from the true modes at first glance. In total, five of those spurious resonance frequencies are complex. As with
CPT, unstable poles occur in the state-space results if damping is neglected, although there is no apparent
change in the FRFs. In conclusion, the results obtained with MCFS are better than the CPT results, yet the
same observations can be made with respect to spurious modes.

In the subsequent, the influence of the included modes for MCFS is investigated. As before, the total
system ATS is represented using 20 modes. The results shown so far are obtained with a modal basis of the
transmission simulator spanned by nine modes. Further, substructuring was performed with three, four, and
six modes. As can be seen in Figure 3.9, the number of modes included has no influence on the axial motion.
However, the substructuring results in the lateral direction deteriorate if less modes are considered. For a four
mode basis, spurious peaks are present already in the low frequency area which is even more pronounced for
three modes. In contrast, good results are gained for both six and nine modes.

Apparently, the motion of the total structure can be better replicated if more mode shapes of the transmission
simulator are included. Then, the basis formed by the transmission simulator’s modes is more likely to be
appropriate for the coupled system’s motion. At the same time, the condition number of the modal matrix
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(a) Direct receptance FRF, node 1 in axial direction
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Figure 3.8: Results for the coupled beam AB with MCFS. All methods yield the exact same FRF and both axial
and lateral motion are estimated well.
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(a) Direct receptance FRF, node 1 in axial direction
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Figure 3.9: Results for the coupled beam AB with MCFS. Here, the number of modes included in the transmission
simulator is varied. The number of modes has no influence on the axial motion but the lateral FRFs deteriorate
if less modes are considered. Only CMS results are plotted.
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Φ
(ts)
meas increases. In this example, the lowest condition number is 5.9 for three modes. Four and six modes

yield a condition number of 11.9 and 25.4, respectively, and the highest is obtained with nine modes and a
value of 101.0. The condition number does not seem to be of great importance in a theoretical example like
the present. However, for real structures, both experimental and FE models, the metric is believed to be
crucial for the success of the transmission simulator [14]. In the literature, the reported condition numbers
used in experimental structures were not higher than six [21, 28]. The condition number can be lowered if more
measurement points are included. For experiments, this is in turn limited by factors such as the number of
available sensors or the introduced mass-loading effect for lightweight structures. Thus, there is a trade-off
between a higher number of modes and a limited number of sensors.

3.2.3 Remarks
Two remarks should be stated regarding the presented example. First, it was also attempted to use a vertical
beam as transmission simulator following the experimental setup of Allen et al. [21]. In the variant used in this
thesis, the beams were simplified and modelled with only few beam elements. The node in the middle of the
transmission simulator was chosen as connection point. However, it showed that the mode shapes associated
with the corresponding measurement points on the transmission simulator are not able to span an appropriate
basis. Thus, the motion of the connection point could not be retrieved, which led to wrong coupling results. A
possible remedy would be a second transmission simulator connected from the left to beam B. As stated in the
theory chapter, coupling results can be improved if both structures are connected to a transmission simulator
which is then removed twice. In the notation used here, this corresponds to ATS+TSB− 2TS = AB. However,
the effect of a second transmission simulator on a theoretical example was not investigated in this work.

Second, the dynamics of the transmission simulator are crucial for the substructuring performance. In fact,
it is advisable to have a stiff transmission simulator whose first flexible mode is higher in frequency than the
first flexible mode of the structure of interest, as stated earlier. If this requirement is violated, the obtained
coupling results are erroneous. One possible explanation may be that the dynamics of a too flexible transmission
simulator affect the interface dynamics. However, it is difficult to link the erroneous results with the dynamics
of the flexible transmission simulator. This insight was gained in the development of this example and will be
explained by means of FBS in the following.

Given that the transmission simulator is too flexible, Htot
mod,mod and −Hts

mod,mod are full rank quadratic
matrices. Yet, the summation becomes rank deficient if the transmission simulator is inappropriate. Using
Jetmundsen’s formulation, this matrix has to be inverted during the coupling procedure. Depending on the
structures, good results may still be obtained if the pseudo-inverse is implemented instead, but one should be
aware of the rank deficiency. Applying state-space coupling, the inappropriate transmission simulator causes
the matrix partition Bvv to be rank deficient. In contrast, no evident indication of this issue was found in CMS.
Thus, using different methods for the substructuring task proved to be helpful in order to find possible pitfalls.

To summarise the observations, the performance of the substructure process is mainly governed by the
chosen properties of the transmission simulator. Changes in the stiffness and mass can result in improvements
but also in deteriorated results. Of great importance is the number of modes in the transmission simulator
representation as well as the chosen measurement points. The latter needs to contain enough information to
fairly represent the motion of the total structure. Therefore, numerical pre-studies of at least the transmission
simulator are crucial in order to find suitable structures, measurement points and mode shapes. If the complete
substructuring task can be simulated beforehand using numerical models, the experiments can be designed and
prepared even better. However, numerical models of the structure of interest may not be at hand, since the
lack of models is one of the reasons for applying experimental substructuring.

Moreover, the condition number is believed to play a significant role in substructuring of real structures but
did not show an effect on the beam elements. Furthermore, the stiffness and mass matrices of the substructured
system become indefinite under certain conditions, yielding complex resonance frequencies in CMS. The complex
conjugates of these frequencies occur as doubled poles in the state-space system. Finally, all methods yield
the same results if the transmission simulator is well defined. Otherwise, investigating the results of different
methods helps in finding possible sources of errors.
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4 Application to the Ampair 600 Wind Turbine
This chapter presents the experimental results using the Ampair Wind Turbine. It starts with a selection
of mainly experimental work related to the benchmark wind turbine, that was reported over the last years
in literature. The contribution of this thesis is elaborated on thereafter. This includes an explanation of
the substructuring task, followed by a description of the FE models and the measurement setup. Then, the
performed measurements are analysed with respect to different excitations and their validity. Afterwards, the
system identification steps are outlined, and finally, the substructuring results are presented and discussed.

4.1 Dynamic Substructuring of the Benchmark Wind Turbine

At the 29th IMAC in 2011, the SEM dynamic substructuring focus group agreed on using a common testbed
structure, the Ampair A600 wind turbine. The turbine is a rather small but challenging structure and was
described by Mayes [3] who also carried out first measurements of the whole wind turbine. Harvie and
Avitabile [38] investigated different experimental setups for blade measurements. Initial thoughts and ideas on
experimental substructuring applied to the testbed were further introduced by Mayes [39].

A thorough investigation of the blades by Gibanica et al. revealed a significant spread above 400 Hz [40]. In
the paper, twelve blades were tested including the set of blades that is used in the present work. Moreover,
Linderholt et al. [41] reported a rather large spread in the measurements of partly and completely assembled
turbines from three universities applying both shaker and impact excitation.

Rahimi et al. [42] contributed to the decoupling of blades by measuring both one blade connected to a
chopped off version of the clamp and the assembled rotor. The experimental models were coupled applying
Lagrange Multiplier FBS (de-)coupling as well as an adaptation of the Interface Deformation Mode method
to overcome the lack of rotational DOFs and to minimise the measurement noise. Furthermore, remarks and
observations regarding the experimental setup can be found in their work.

First numerical efforts in decoupling the blades from the hub were made by Brunetti et al. [43]. Using dual
FRF coupling by selecting a reduced set of interface DOFs, FE models of the hub and the blades were coupled.
The same authors also coupled experimental models of mass-loaded blades to the hub [44].

The transmission simulator method was applied to the testbed structure by Macknelly et al. [45]. Here, a
plate attached to the blades was chosen as transmission simulator. However, the obtained results were not
satisfying. While emphasising the importance of the transmission simulator design, the brackets were suggested
to be an adequate transmission simulator.

Useful insights regarding the driving-point were reported by Rohe and Mayes [17] who used the hub as
transmission simulator to couple the rotor to the tower of the wind turbine. Recently, Roettgen and Mayes
chose the hub as transmission simulator to arrive at a rotor model built from experimental blade models [18].
The same substructuring task will be carried out in this thesis, as elaborated on in the following section.

4.2 The Substructuring Task

In the present work, the goal of dynamic substructuring is to acquire a model of the rotor, also denoted
three-bladed hub. Due to the aforementioned spread found in the blades, it is believed that a system built up
by experimental models will outperform FE modelling with identical blades. Thus, three different blades will
be measured and coupled to the hub in contrast to Roettgen and Mayes [18] who measured only one blade and
coupled it three times.

In the subsequent, the term hub will be used to describe the actual hub assembled to the shafts and the
brackets which connect the blades with the hub (see [3] for a description). This structure is believed to be an
appropriate transmission simulator since it is stiff compared to the blades and offers enough locations to mount
sensors that replicate the motion. Moreover, it inherently includes the joint properties because it is part of the
assembled three-bladed hub.

The substructuring scheme is depicted in Figure 4.1. All three blades are separately assembled to the
hub as transmission simulator and will be measured. For the one-bladed hubs, each blade is jointed to the
same bracket it will be assembled to in the three-bladed hub. The measurement data will be used to identify
experimental models, which in turn will be coupled in order to form the assembled structure. To obtain a valid
model, the influence of the hub has to be removed twice which is done by means of the FE model.
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Fig. 4.1: The substructuring task in this paper. Three one-bladed hubs are measured and coupled with two
negative FE transmission simulators. The obtained coupled model of the assembled structure is compared with
measurements and the FE model.

Component m (kg)

Hub with brackets and bolts 3.980
Hub with brackets without bolts 3.707
Three bolts with nuts and washers, averaged 0.030
One bracket with bolts and shaft, averaged [20] 0.432

Table 4.1: Component masses of the rotor. The measurements were performed using a scale with a precision of
0.1 g.

Since the transmission simulator is part of all models to be coupled, MCFS can be applied in all coupling
steps. Thus, the need for discrete connection points is avoided, and a more realistic coupling configuration is
achieved. To compare the coupled system, the assembled three-bladed hub is also measured.

The blades used in this work have the serial numbers 790, 828, and 850. To shorten the notation, the
corresponding one-bladed hubs will be referred to with A, B, and C, respectively.

4.3 Finite Element Models

In this work, the FE models described by Gibanica [20] are used and solved with FEMAP v11.1.0 and NX
Nastran. The blade model is built from a combination of solid and layered composite shell elements and is
calibrated to one blade which was done by Johansson et al. [46] using destructive material testing. Thus, the
model is calibrated to another blade than the ones used here.

The hub, shaft, and bracket were modelled using isotropic solid elements. The density of these components
is chosen to match the measured weights listed in Table 4.1. Depending on the configuration, the density of the
bracket changes to account for the mass of the bolts. If the hub is in an uncoupled configuration, the bolts are
removed, lowering the density as can be seen in Table 4.2. Furthermore, the number of elements and nodes of
the FE models is specified in that table.

The interfaces; bracket - blade, shaft - bracket, and shaft - hub; are modelled as flexible connections using
the CWELD element of NASTRAN [47] which tends to overestimate the stiffness of the actual connection

Component Nodes Elements ρ (kg/m3)

Hub 18246 11036 2095
Bracket and shaft without bolts 33443 20126 4050
Bracket and shaft with bolts 33443 20126 5000
Blade 20517 95897 see [46]

Table 4.2: Properties of the FE models. The densities are calculated such that the FE models match the
measured weights listed in Table 4.1.
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Figure 4.2: FE model of the one-bladed hub showing the sensor locations both on the blade and the hub. Sensors
11 to 19 are mounted on the back side of the hub and the sensors 1 to 10 are triaxial.

Model number Sensitivity transverse sensitivity (%) m (g)

Uniaxial sensor PCB 352C22/NC 1 mV/(m/s2) < 5 0.5
Triaxial sensor PCB 356A03 1.02 mV/(m/s2) < 5 1.0
Impact hammer PCB 086C03 2.25 mV/N - -
Force transducer Brüel & Kjær 8203 3.3 pC/N - 3.2

Table 4.3: Specifications of the measurement equipment including sensors, impact hammer and force transducer.

between blade and hub. Damping is not included in the FE models. Figure 4.2 shows the one-bladed hub FE
model, while the the hub itself and the three-bladed hub are shown in Figures 4.3 and 4.4.

4.4 Experimental Setup

The measurements were performed at the Chalmers Vibration and Smart Structures Lab using a data acquisition
system which was developed by National Instruments. Simulating free-free boundary conditions, the structure
was hung with fishing lines (see Figure 4.5). It was attempted to have the fishing lines as long as possible in
order to reduce the resonance frequency of the rigid body modes. Furthermore, the lines were connected to the
suspending structure with springs. Since the edge of the hub hole is sharp, metal wire was used to attach the
fishing lines to the structure. The blades were assembled to the bracket applying a bolt tightening torque of
16 lbf-ft (21.69Nm) according to the the assembly specifications [48].

The three-bladed hub was equipped with 9 triaxial sensors and 24 uniaxial sensors and the one-bladed hub
with 10 triaxial and 25 uniaxial sensors. From these configurations, the mass loading was 21 g and 22.5 g for the
one-bladed and three-bladed hub, respectively, which was considered negligible. Table 4.3 lists the specifications
of the measurement equipment including sensors, impact hammer and force transducer. Great care was taken
to align the triaxial sensors with the local FE coordinate system, and the sensors were glued to the structure.

The conditioning of the mode shape matrix is greatly influenced by the sensor placement on the transmission
simulator [14]. Therefore, the placement was tested beforehand using numerical models, considering sensor
configurations on either bracket, hub, or both. It was found that the sensor placement in Figures 4.2 to 4.4 was
best with respect to both the condition number and the results using simulated data considering the number of
available sensors. Three triaxial sensors were placed on the front side of each bracket close to the bolts and
three uniaxial were mounted at the same locations on the bracket’s opposite side (see Figure 4.3). Sensors
labelled with a number from 1 to 9 are triaxial sensors. The sensor locations on the blade were chosen among
the positions defined by Harvie and Avitabile [38] and, for the the whole three-bladed hub, distributed over the
structure such that the symmetry is not disturbed.

31



Figure 4.3: FE model of the hub with sensor locations as used in the measurements of the one-bladed hub. On
the front side of the hub, three triaxial sensors are mounted on each bracket (sensors 1 to 9). Nine uniaxial
sensors are placed at the same locations on the opposite side (sensors 11 to 19).

Figure 4.4: FE model of the three-bladed hub showing the sensor locations both on the blades and the hub.
Sensors 11 to 19 are mounted on the back side of the hub and the sensors 1 to 9 are triaxial.
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(a) Three-bladed hub without shaker

(b) One-bladed hub with shaker

Figure 4.5: Measurement setup. The shaker is hung in strings while the structure is hung utilizing a metal wire
and fishing lines.

(a) Three-bladed hub (b) One-bladed hub

Figure 4.6: Attachment of the stinger. The stinger is mounted via a fastener and a force transducer to the
bracket next to the sensor. For the three-bladed hub, three input locations were measured, whereas only one
input was applied to the one-bladed hubs.
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For the excitation, both a shaker and an impact hammer with a hard metal tip were utilized. First, hammer
testing was performed to find the best driving-point locations. All tested locations were chosen to be on, or
close to, the bracket since excitation close to the tip of the blade may evoke measurement errors like double
hammering due to large deflections [17]. The best input locations were found at positions 3, 6 and 9 for the
three-bladed hub and 1, 4 and 7 for the three one-bladed hubs A, B, and C, respectively. For the first structure,
three input locations were chosen in order to excite symmetric mode shapes, whereas for the latter, one input
per blade was considered to be sufficient. Only out-of-plane excitation was applied.

The shaker used, model K2007E01 purchased from The Modal Shop Inc., was hung in strings. Its threaded
nylon stinger of approximately 85mm length was attached via a fastener and force transducer glued to the
bracket as shown in Figure 4.6. Great care was taken to align the stinger. Since the measurements were
performed using a force cell and a set of accelerometers only, the fastener needed to be mounted next to the
sensor. In fact, the location was in the direction of the hub as can be seen in Figure 4.6. Impact hammering
was performed using the same location as for the fastener before the latter was attached.

Shaker testing was carried out with chirp, multisine, and random excitation. Chirps with different amplitude
levels were generated to find the linear range in the system and ensure repeatability of the tests. Low level
multisine excitation was then performed to obtain the lowest noise level possible. For the sake of comparing
different input types, the structure was also excited with low level random signals.

In the following, the specifications of the generated signals are listed. All measurements were sampled
with 10 kHz. For the rotor, the frequency range of interest was chosen from 5 Hz to 400 Hz whereas data in
the range of 10 Hz to 800 Hz was recorded for the one-bladed hub. The multisine was performed with 2500
frequency lines, distributed as suggested by Khorsand et al. [49]. Ten frequencies are superposed at a time, and
ten complete cycles of the largest period are collected after stationarity is reached, again after Khorsand et
al. Chirp signals are rapid sine sweeps [29] and were applied for 15 s. A 5 s pause was set between two chirps.
For each curve, 15 repeats were averaged. The random signal was normally distributed and averaged over 60
measurements with a signal duration of 8 s and a pause time of 10 s, while the impact signal was recorded over
10 s.

4.5 Analysis of the Measurements

When comparing the different excitation types, it was observed that impact testing yielded the highest noise
level. Especially the phase captured by the bracket sensors in the in-plane direction were very noisy since the
measured acceleration of the brackets was rather small, thus the low signal to noise ratio. In contrast, the noise
level for the sensors mounted on the blade was lower. Moreover, impact testing presumably caused overloading
in sensors 20 and 21 for all one-bladed hubs. However, this type of impact excitation is fairly easy and quick to
perform since no stinger has to be attached, avoiding the cumbersome stinger alignment. Furthermore, the
system is not changed by attaching the stinger. Several driving-points were excited and the system was found
to be reciprocal.

One drawback of impact hammering is the limited force control which restricts the suitability for non-linearity
checks. Thus, these checks were made with chirps which provoked less noise than impact testing. Chirps as
well as random signals require a significantly shorter measurement time compared to the multisine. However,
the results of the random testing suffer from noise which could be prevented by a higher number of repeats.
Therefore, the measurements of the bracket sensors were impaired with noise and outliers, comparable with
impact testing. The fourth applied excitation type, multisine, yielded almost noise-free signals, although the
chosen settings caused a minimum measurement duration of 90 minutes to perform one measurement. Hence,
only one multisine was applied per blade.

In the following, observations made during the measurements are reported. Figure 4.7 shows the direct
accelerance FRF of all three one-bladed hubs obtained with the multisine. A large spread is observed which
resembles the deviations found by Gibanica et al. [40]. The first two modes correlate rather well but then, the
FRFs start to deviate. Especially structure A differs from the other two one-bladed hubs. Note the large spread
between 400 Hz and 600 Hz, which will be elaborated on later in the section.

The system changes due to the stinger attachment are assessed based on the information in Figure 4.8,
which shows multisine and impact measurements for the three one-bladed hubs. The resonance frequencies shift
to higher frequencies as a result of the added stiffness of the stinger. This effect is most pronounced for the
bracket sensors and, according to Figure 4.8, for structure A. In total, the stiffening is regarded to be negligible
in the frequency range of interest.
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Figure 4.7: Multisine measurement FRFs of all one-bladed hubs. The direct accelerance FRFs reveal the spread
between the blades and deviation between 400 Hz and 600 Hz. Multisine excitation is applied at the input
locations 1z, 4z, and 7z, for the structures A, B, and, C, respectively, which are indicated in the sketch of the
wind turbine.
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Figure 4.8: Direct accelerance FRFs for all blades to show the effect of the stinger. Multisine and impact
measurements are compared at the input locations 1z, 4z, and 7z, for the structures A, B, and, C, respectively.
The effect is most pronounced for structure A.
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Figure 4.9: Impassivity due to noise. The phase of the direct accelerance for the structure B indicates impassivity
for every frequency line with a negative phase as shown by example of a chirp measurement.
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Figure 4.10: Non-linearities in the blades shown by means of chirp measurements with different amplitude levels
for all blades. Here, the minor frequency range 80 Hz - 200 Hz is shown with direct accelerance FRFs at the
input locations 1z, 4z, and 7z.

Noise is present and was found to be one cause of measurement distortion as can be seen in Figure 4.9. For
low frequencies, the phase oscillates around 0◦, turning the system impassive for every frequency line with a
negative phase. Recall that the phase of an accelerance FRF for passive systems should be between 0◦ and
180◦. Later, passivity will be enforced on the identified models to overcome the measurement errors.

Moderate non-linear effects were found in the measurements using chirp excitation with different amplitude
levels. Figure 4.10 shows a FRF detail including the second and third flexible mode of all three one-bladed
hubs. At the different force levels, the peak height as well as the resonance frequency changes, especially for
the third mode. Similar non-linear behaviour was found at driving-points on the blade close to the bracket, e.g.
next to sensor 22. Hence, it was concluded that excitation near the bolts on the brackets is comparable to
excitation locations on the blade close to the brackets. Furthermore, the lowest force level was chosen as the
amplitude for the multisine measurements to suppress non-linearities as much as possible.

As noted earlier, the chirp measurements revealed large deviations in the frequency range between 400 Hz and
600 Hz which becomes evident in the comparison of different amplitude levels. Above 600 Hz, the measurements
coincide again. By way of example, Figure 4.11 shows the direct accelerance FRF of the one-bladed hub C.
The deviations are most pronounced for this blade. Here, not just results from different excitation levels differ
but also two measurements, both taken at the medium level. For the other blades, the deviations seem to be a
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Figure 4.11: Direct accelerance chirp FRFs for structure C (input/output location 7z) exemplifies the found
deviations between 400 Hz and 600 Hz, both for different amplitude levels and for repeated measurements. Below
and above this frequency range, the curves coincide.

function of the amplitude level, possibly indicating a non-linearity. With impact excitation, these effects are
significantly reduced, appearing only for sensors mounted on the blade. Random tests provoke no deviations but
a higher noise level for this frequency range which in turn yields impassivity. Note that random excitation was
only performed at one amplitude level and hammering was performed such that the force level is approximately
equal for all measurements. A possible explanation will be given in Section 4.8.

Similar issues were also observed for the three-bladed hub. Figure 4.12 shows a comparison of chirp
excitations with different amplitude levels. Non-linear effects are indicated by the peak height around 70 Hz,
and larger deviations between the measurements are present between 250 Hz and 270 Hz.

4.6 System Identification

System identification is a crucial factor in experimental dynamic substructuring since the models need to be
valid representations of the physical structures. Otherwise, errors amplify during the coupling procedure. In
order to compare the coupling results and to choose the best model possible, different models were identified
from the measurements in this thesis. Both measurement data obtained from different excitation types and
different system identification procedures were utilized.

4.6.1 The One-bladed Hub

Most one-bladed hub models were identified using a manual procedure. First, the influence of the rigid body
modes was removed from the measurement data using a synthesised FRF stemming from the FE model. Then,
the measurements of the one-bladed hub obtained with multisine excitation were plotted as in Figure 4.7.
Initial models were identified by varying the number of states which is the only user-defined input in the system
identification procedure n4sid. These models were compared to the FE model and any modes that occurred
neither in any of the other experimental models nor in the FE model, were discarded. At the end, 14 modes
from 10 Hz to 800 Hz were retained. However, one of these modes at around 400 Hz is believed to be potentially
spurious. A distinct peak can be found in all measurements but the MAC value for the three experimental
models and the FE model is poor. To identify models that do not include any spurious modes, the measurement
data was split in smaller frequency ranges and the number of modes in each interval was predefined.

Since the measurements proved to be unreliable above 400 Hz, the focus during system identification was
on data up to 400 Hz. Therefore, a model including only eight modes was identified. The eighth mode is
added to account for the high frequency residuals, such that the FRFs match well within the chosen frequency
range. Subsequently, this model will be referred to as multi. Another model, dubbed multi300, was identified
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Figure 4.12: Accelerance FRFs of the three-bladed hub’s chirp measurements for different amplitude levels. The
input location is at location 6z, the output sensor at position 22. Deviations between the measurements can be
found around 70 Hz and between 250 Hz and 270 Hz.

using only data up to 300 Hz in order to investigate the number of modes included in one-bladed hub models
necessary for good substructuring results. Accordingly, the models using the full data set are denoted multi800w
and multi800wo including and excluding the mode around 400 Hz, respectively. They were identified to judge
the influence of the deviations between 400 Hz and 600 Hz for high frequencies.

The other system identification method used is the automated procedure by Yaghoubi and Abrahamsson
[32]. To obtain the model auto, data up to 400 Hz was taken into account. However, the method identified few
spurious modes which were removed manually.

To compare the different excitations, models from impact and random testing were manually identified, again
with data up to 400 Hz, dubbed impact and random. Finally, the state-space model multi was transformed to
second-order modal form to enable CMS as sketched in Section 2.4.

During system identification, deficiencies in signals for certain sensors were revealed. For instance, the first
two modes were missing in the data of sensor 24 for the one-bladed hub C. Based on the visual inspection of
the mode shapes, sensors 24, 27, and 31 of structure A were discarded, while sensors 24, 26, 28, and 31 were
discarded for the structures B and C. Then, system identification was repeated which substantially improved
the identified models and their mode shapes.

The identification procedure described above was done with accelerance data, since it yielded the best
model for the overall range. The models were then transferred to mobility data, and Maxwell’s reciprocity
theorem was used to obtain the unmeasured FRFs, using the information of one input and all output channels.
Subsequently, all models were assessed with respect to their physical properties. More precisely, passivity and
the product CB were analysed. Especially the high frequency modes may disobey these properties, since they
do not necessarily have a physical meaning but rather account for high frequency residuals. Passivity was
enforced for all channels following the method mentioned in Section 2.5.

Afterwards, the models were transformed to receptance outputs, and the adherence to Newton’s second law
was checked. Since D was enforced in the system identification procedure, this checks includes the condition
CB = 0 only. The absolute value of the maximum entry of CB was of order 10−4, which was found to be
small enough to obtain physical results after coupling. Finally, the rigid body modes of the FE model of the
one-bladed hub were added. Therefore, the eigenvalue problem for the FE models was solved, and the resonance
frequencies and mode shape vectors corresponding to the six rigid body modes were extracted. Since damping
is not included in the FE models, it was chosen to be ξ = 0.1 % for all rigid body modes.

Figure 4.13 exemplifies the identified models using multisine and impact data for the structure C. The
multisine measurement yields a smooth curve which simplifies identification. However, the rather high noise
level of impact testing is levelled out during system identification as long as the noise is random. Moreover,
the very noisy signals of the bracket sensors, as mentioned in the previous section, do not affect identification
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Figure 4.13: Comparison of measurement and identified models of structure C, using impact and multisine
excitation. Receptance FRFs are shown for the input at position 7 in z-direction and output sensor at location
11 at the back side of the bracket. The measurements are well represented by both models.

FE A B C description

multi impact multi impact multi impact
fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz)

7 30.32 33.11 33.06 31.38 31.41 31.51 31.48 1st bending mode
8 89.72 87.57 87.24 89.75 89.48 90.42 90.25 2nd bending mode
9 180.90 165.27 164.58 164.89 161.59 165.40 163.44 3rd bending mode plus edgewise
10 191.46 190.72 189.02 176.01 180.25 178.87 181.52 1st edgewise bending mode
11 234.06 208.83 207.69 199.36 197.62 201.68 200.28 3rd bending mode plus in-plane
12 330.78 300.84 299.99 301.14 296.91 302.01 300.93 4th bending mode
13 341.88 316.97 315.88 317.94 315.70 314.53 313.41 2nd edgewise bending mode
14 475.64 450.42 422.89 410.54 379.99 448.20 384.80 5th bending mode

Table 4.4: Identified resonance frequencies for the one-bladed hubs. The models impact and multi are compared
to the FE model. Furthermore, a brief description of the FE mode shapes is given.

significantly, since the procedure gives more weight to channels with larger signal amplitudes. In conclusion,
both models represent the measurement data well.

The identified modal parameters of the two models can be found in Tables 4.4 and 4.5. A comparison of all
identified models can be found in the Appendix B in Tables B.1 to B.6. As expected, the identified resonance
frequencies with impact testing are lower than with shaker testing probably due to the added stiffness of the
stinger, yielding a maximum difference of about 2 %. The only exception is the tenth mode which has a higher
resonance frequency in the impact model. However, this mode is highly damped and almost not visible in
the FRFs, hampering correct identification. Starting from the third flexible mode, the identified resonance
frequencies are lower than their FE counterparts. This may be due to the over-estimated stiffness in the
interfaces between brackets and hub.

A MAC value comparison for the first eight flexible modes is shown in Figure 4.14. Here, the multisine
models for the one-bladed hubs as well as the FE model and the impact model of structure A are plotted. Since
the impact and the multisine model exhibit high correlation for all one-bladed hubs and all modes, the MAC
plots of the other impact models are not shown here. It can be seen that all identified models correlate well.
Furthermore, the first four measured modes are well captured, whereas higher modes are not well represented
in the FE model.
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A B C

multi impact multi impact multi impact
ξi (%) ξi (%) ξi (%) ξi (%) ξi(%) ξi (%)

7 1.34 1.07 1.33 1.12 1.50 1.21
8 1.24 1.37 1.32 1.17 1.22 1.23
9 1.71 1.76 1.69 2.29 1.59 1.71
10 2.30 2.41 4.84 2.75 3.24 2.46
11 1.68 1.62 1.52 1.61 1.48 1.47
12 1.79 1.93 2.35 3.21 2.21 2.45
13 1.89 1.88 1.77 1.82 1.48 1.41
14 12.90 3.94 14.65 2.46 12.47 0.46

Table 4.5: Identified modal damping for the one-bladed hubs. The models impact and multi are compared.
Damping was not included in the FE model. The mode 14 is an unphysical mode, added to account for high
frequency residuals.
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Figure 4.14: MAC value comparison for the one-bladed hubs including the first eight flexible modes. The
multisine models are compared to one impact model and the FE model. The identified models correlate well for
all modes but only the first four modes are captured by the FE model.
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Figure 4.15: Comparison of the measurement and the identified models for the three-bladed hub, using impact
and multisine excitation. Direct receptance FRFs are shown for the input/output at position 9 in z-direction.

4.6.2 The Three-bladed Hub

Lastly, models for the three-bladed hub were identified using both multisine and impact testing and the
procedure explained in the previous section. The measurement data obtained with the three inputs were
combined and identified together in order to enable identification of the symmetrical modes. Figure 4.15 shows
again a comparison of multisine and impact measurement with the corresponding identified models by means
of one representative channel. The measurements are well captured up to 200 Hz which corresponds to twelve
flexible modes. For higher frequencies, the models start to deviate. Figure 4.16 shows a MAC value comparison
for the two identified models with the FE model. Here, the first 15 flexible modes are plotted.

Due to the symmetry of the structure, these modes can be batched in groups of three. The modes in the
second and fourth group are all close in frequency corresponding to symmetric mode shapes, whereas only two
modes are close in frequency for the other groups. As explained in Section 2.6, the angle between subspaces is
more informative for these modes than the MAC metric. The coloured frames added to the MAC plots take
these angles into consideration. The colour is based on the squared cosine of the angle and corresponds to the
intervals of the MAC values.

Applying this metric, the first twelve flexible modes of the multisine model correlate well with the FE model,
although all symmetric FE modes are mixed up compared to the identified model. Only the first nine modes
are captured with the impact model. Furthermore, the two identified models are alike except for the fourth
mode shape group. In Tables 4.6 and 4.7, the identified modal parameters and the associated errors for the
three-bladed hub are listed. Note that the order of the FE modes is changed taking into account the mode
mix-up. Interestingly enough, the resonance frequency of the identified models matches the first FE resonance
frequency almost perfectly, even though the first resonance frequency of each one-bladed hub is higher than in
the corresponding FE model. The second and third resonance frequencies are slightly higher than in the FE
model, whereas all other modes are stiffer in the FE model compared to the identified models. This might be
due to the overestimated stiffness in the connection between brackets and hub. In the following, the multisine
model will be used as the reference for the true system and referred to as measurement in the plots.

4.7 Substructuring Results

The first flexible mode of the FE hub is above 1700 Hz, which is far above the frequency range of interest.
Therefore, the transmission simulator is treated as rigid, which yields a full rank mode shape matrix with six
columns. The number of rows is 36 which corresponds to nine triaxial and nine uniaxial sensors. The condition
number is 1.9 for this matrix. In the following, the substructuring results with state-space coupling will be
presented.
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Figure 4.16: MAC value comparison for the identified three-bladed hub including the first 15 flexible modes. The
multisine and impact models are compared to the FE model. The coloured frames are connected to the angles
between the subspaces spanned by the mode shape groups.
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To assess the results, direct accelerance FRFs of the coupled and identified models will be used. If the
substructuring is successful, the FRFs should resemble each other over the whole frequency range. Moreover, the
curves must overlay for low frequencies, since Ha(ω = 0) for direct FRFs corresponds to the inertia properties
of the system, which are essential for a valid model. The latter criteria is fulfilled for all investigated models.

One of the most defective substructuring results was obtained for channel 20. Here, the differences between
the coupled modes is visualized clearly, as done in Figure 4.17a. Investigating the substructuring results, this
channel reveals problems for the models multi800w and multi800wo. Both models show an upward trend in the
FRFs associated with this channel which is not present in the measurements of the assembled system. Note
that only the model multi800wo is shown since the two models yield very similar FRFs. The same trend is also
present in the model auto, whereas the model multi follows the true FRF. A possible explanation might be the
influence of torsional or in-plane motion which is likely to be larger for this sensor location than for locations
closer to the blade’s axis. These motions are difficult to capture with the chosen measurement setup. Recall
that the sensor location at the upper right corner of the blade has already been identified as fault-prone from
the measurements and is sensitive to torsional and in-plane motion,.

The model multi as well as the other investigated models impact and random capture the higher frequencies
better, even though they differ substantially above 200 Hz (see Figure 4.17b). The model multi300 is able
to replicate the motion up to 220 Hz. Then, the FRF differs significantly indicating that too few modes are
included in the model.

If channels closer to the blade tip are investigated, the substructuring results are remarkably better as
shown in Figure 4.18a. Even with the model multi300, satisfying results for channel 24 are obtained up to 400
Hz. In the figure, the models multi800w, multi800wo, and auto are not shown. However, the results obtained
with these models are also satisfying for this channel.

The best results are obtained with the models multi and impact which yield equally good FRFs. In fact,
Figure 4.18a indicates that the impact model yields the best results since it deviates the least up to 150 Hz.
This conclusion can be drawn for most channels. However, for the upper right blade corner as shown in Figure
4.17b, the multi model replicates the identified system better.

Table 4.6 compares the modal parameters of these two models with the identified and FE system for the first
15 flexible modes, while the calculated errors are listed in Table 4.7. The predicted parameters for the other
models can be found in the appendix in Table B.7. In general, all coupled models represent physical systems
since they are passive and CB is sufficiently small. Furthermore, no complex resonance frequencies of the
substructured system were found. Thus, the mass and stiffness matrix are positive definite and semi-definite,
respectively, after coupling.

Compared to the true, identified system, all resonance frequencies are estimated satisfactorily with a
maximum error of 8 %. However, damping is clearly overestimated. It seems as if the impact model can
reproduce the real damping slightly better since the errors of most modal damping ratios is smaller compared
to the multi results. Moreover, the maximum modal error for the multi results is 124 %, compared to 59 % for
the impact model.

The resonance frequencies obtained with substructuring are closer to the true system than the nominal FE
model, except the first resonance frequency. Thus, using experimental models to build up the model of the
assembled structure is shown to be superior to the nominal FE model used for the present substructuring task.

The MAC value comparison between the two substructured models and the identified system is shown in
Figure 4.19. Again, the frames indicate the angle between the subspaces. The first three groups are captured
well for both models. The multi results are also able to replicate the fourth mode group. In Figure B.1 in the
appendix, the mode shapes obtained with the substructured models multi are shown. Here, the symmetric
mode shapes become apparent.

So far, all presented results are obtained using state-space synthesis. To prove that all methods yield the
same results, the model multi was transformed to second-order modal form, and a FRF was synthesized. Then,
both CMS and FBS were used to repeat the substructuring task. As can be seen in Figure 4.18b, the methods do
indeed yield the same FRF. Minor deviations in the estimated resonance frequencies or modal damping between
CMS and state-space were found but are put down to numerical errors. Note that FBS was only performed with
synthesised data, not with measured FRFs, since only one input was used for the measurements. Reciprocity
could be used to retrieve all necessary FRFs of the measurement points on the transmission simulator needed
for the coupling procedure but was here only applied on the identified system. Furthermore, the FRF of the
FE model is shown in Figure 4.18b. Again, it becomes evident that the substructured model estimates the true
system better than the nominal FE model. To plot the FE FRF, the identified damping rations of the model
multi are applied to the FE model.
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(a) Models multi, auto, and multi800wo
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(b) Models multi, multi300, impact, and random

Figure 4.17: Direct accelerance FRF of the three-bladed hub for the input/output location 20. The identified
measurement model is compared to the models multi, auto, and multi800wo in the upper figure and to the
models multi, multi300, impact, and random on the lower figure. The models auto, and multi800wo show a
wrong upward trend, while this does not hold for the models in the lower figure. The model multi300 cannot
capture the whole frequency range.
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(b) Different substructuring methods

Figure 4.18: Direct accelerance FRF of the three-bladed hub for the input/output location 24. The identified
measurement model is compared to the models multi, multi300, impact, and random in the upper figure. All
models correlate very well with the identified system. The lower plot shows a comparison between the methods
state-space coupling, CMS, and FBS for the model multi together with the nominal FE model. All methods
yield the same results when based on the same data, which is a better replication of the true system than the FE
model.
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FE identified substructured

multi impact multi impact

fi fi ξi fi ξi fi ξi fi ξi
(Hz) (Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)

22.91 22.91 0.80 22.89 0.30 24.57 1.37 24.64 0.93
30.34 30.69 0.85 30.60 0.40 30.97 1.40 30.95 1.13
30.34 31.57 0.89 31.52 0.51 31.94 1.40 31.89 1.09

83.01 71.34 1.23 70.87 1.40 75.63 1.05 74.47 1.32
83.02 72.71 1.10 72.21 1.26 78.05 1.16 76.82 1.18
79.12 76.19 0.86 75.94 0.81 82.41 1.11 81.40 1.16

134.52 110.62 1.39 109.45 1.18 118.60 1.44 113.81 1.45
134.49 114.93 1.27 113.59 1.48 120.46 1.39 117.18 1.37
176.45 163.46 1.03 163.00 1.04 168.26 1.56 167.82 1.55

189.63 179.78 1.90 179.06 1.97 174.19 4.26 174.92 2.19
188.85 181.36 1.89 184.01 2.08 176.26 2.94 179.36 2.40
189.63 185.50 2.43 187.78 0.60 185.37 2.00 185.28 2.13

205.45 198.12 1.24 197.31 1.22 195.44 1.83 194.43 1.87
205.45 200.24 1.42 199.73 1.39 199.44 1.76 198.81 1.62
246.91 221.58 1.37 218.51 1.68 212.97 2.29 215.19 2.18

Table 4.6: Modal parameters of first five flexible mode groups for the three-bladed hub including the FE model,
the identified, and the substructured models multi and impact. Note that the FE modes are sorted to match the
identified models.

error fi error ξi
FE - ident ident - substr ident - substr

FE - FE - multi - multi - multi - multi -
multi impact multi impact multi impact
(%) (%) (%) (%) (%) (%)

0.01 -0.05 7.24 7.55 70.32 16.52
1.17 0.88 0.90 0.85 65.08 33.80
4.07 3.91 1.18 1.01 55.98 21.63

-9.84 -10.43 6.02 4.39 -14.53 7.73
-12.41 -13.01 7.34 5.65 5.09 7.16
-8.23 -8.52 8.16 6.84 28.29 34.51

-17.75 -18.62 7.21 2.88 3.64 5.04
-14.57 -15.56 4.81 1.96 8.85 7.42
-7.36 -7.62 2.94 2.67 51.23 50.60

-4.80 -5.18 -3.11 -2.71 124.11 15.39
-4.36 -2.96 -2.81 -1.10 55.38 26.80
-2.17 -0.97 -0.07 -0.12 -17.50 -12.34

-3.57 -3.96 -1.35 -1.86 47.37 50.77
-2.54 -2.79 -0.40 -0.72 23.86 13.49
-10.26 -11.51 -3.89 -2.88 69.69 58.93

Table 4.7: Errors of the modal parameters of first five flexible mode groups for the three-bladed hub. Comparisons
between the FE model and the identified models as well as between the identified model and the substructuring
results are drawn for the resonance frequencies. Furthermore, the damping errors between the identified and
substructured models are compared. For the identified and substructured models, the results obtained with multi
and impact are contrasted. Note that the FE modes are sorted to match the identified models in accordance
with Table 4.6.
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Figure 4.19: MAC value comparison for the three-bladed hub including the first 15 flexible modes. The
substructured multisine and impact models are compared to the identified multisine model. The coloured frames
are connected to the angles between the subspaces spanned by the mode shape groups.
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4.8 Discussion

In order to judge the satisfaction of the constraint equations, the motion of the hub of the three substructures
and the transmission simulator were plotted similar to the plots by Rohe and Mayes [17]. If the constraints are
fulfilled perfectly, there should be no difference in the motion. However, for low frequency flexible modes, the
motion of some sensors differs, which may stem either from the modal relaxation of the constraints or from
measurement errors.

So far, this check cannot be performed with state-space synthesis. The physical coordinates describing
the measurement points’ motion are transformed to modal coordinates using the matrix (Φ

(ts)
meas)

+
. Then, a

reduced set of modal coordinates is chosen to represent the coupled system. In CMS, the choice allows for a
transformation back to physical coordinates using the mode shape matrices of the substructures. In state-space
coupling, the modal coordinates of only the transmission simulator are chosen as the reduced set assuming that
all modal coordinates are exactly equal. After this choice, the physical motion can no longer be deduced in a
direct way.

To improve the constraints, it was attempted to add flexible modes to the transmission simulator mode
shape matrix. This results in higher errors in the modal parameters however, and the predicted resonance
frequencies do not match the true ones any longer. In fact, the first resonance frequency is lowered, whereas the
second is increased substantially for one added flexible mode. If three flexible modes are included to account for
the symmetry of the hub, the first resonance frequency is increased significantly to over 40 Hz. This observation
is even more pronounced for six added flexible modes. Although, the mass and stiffness matrices are still
positive definite and semi-definite.

One possible explanation is that adding more modes increases the condition number, which is believed to be
crucial for the transmission simulator technique’s applicability in experimental coupling [14]. Yet, other effects
may also have influenced the results, since the increase is not substantial. The condition number of the mode
shape matrix including only rigid body modes is 1.90 and increases to 2.81 for one flexible mode and to 3.01
for three flexible modes.

In order to lower the condition number, more sensors have to be included along with more modes. However,
this approach is limited by the number of sensors available. Still, the effect of equipping the brackets with
only triaxial sensors on the same locations was investigated by means of FE models only. The numerical study
indicated that the aforementioned stiffening effect can be reduced, although only to a limited extent.

The high damping errors could be a sign of an inappropriate damping model. The main source of dissipation
is likely to be in the joints, which is probably unsatisfactorily represented by modal damping [18].

Finally, the obtained substructuring results are compared to the results achieved by Roettgen and Mayes
[18]. Both the errors for the resonance frequencies and the modal damping ratios are comparable. However, the
absolute values of the resonance frequencies are lower for the structure of Roettgen and Mayes revealing that
the blades used in the present thesis are stiffer. The MAC values here are lower, yet the angles between the
subspaces indicate equally good results.

The results may be influenced by the chosen measurement setup. For instance, non-linearities might become
more apparent by measuring close to the joints since the bolts are known to introduce non-linearities to the
interface [50]. Still, the brackets were chosen as sensor locations, since mounting the sensors on the brackets
enables excitation and measuring in the same direction due to the plain surface.

Other possible sources of errors related to the measurement setup include the suspension. The highest rigid
body mode should be less than 20 % of the lowest flexible mode [29]. However, in the measurements, a small
peak was found at around 15 Hz which might be a suspension mode influencing the substructuring results. It
was found that stinger resonance has no impact on the frequency range of interest. To judge this, the stinger’s
mass was increased with additional nuts. Since no influence on the measurement was found, the stinger was
removed from the list of potential sources of errors. However, no further investigation on shaker or suspension
resonances was performed.

The pronounced differences in the measurements above 400 Hz, reported earlier, could also be due to
resonance in the suspension. However, the modes in this frequency range are dominated by an in-plane motion
which might be particularly sensitive to the input direction. A slight misalignment of the stinger could then
cause large deviations. Similar issues were reported in the work of Gibanica et al. [40].

Furthermore, Maxwell’s reciprocity theorem is used in order to retrieve the unmeasured FRFs, based
on the assumption that one co-located input/output pair is known. Due to the offset between sensor and
fastener location, this pair is no longer strictly co-located which may introduce errors during the system
identification procedure. The effect was considered negligible. Yet another source of error may be caused
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by system identification. Liljerehn and Abrahamsson [13] found that the peak value of the identified FRF
has a large influence on the substructuring results. In fact, a lower peak causes an increase in the predicted
resonance frequencies after substructuring. Even though the identified models replicate the measurements well,
a maximum difference between the peak heights was found to be -4.5%, which might be an explanation for the
higher resonance frequencies. Moreover, the absolute value of the error for the first mode in the receptance FRF,
which are used for coupling, is larger than for the other modes due to the larger displacements for this mode.
Thus, the first mode may be influenced the most, explaining the rather high error in the first substructure
mode.

Lastly, in total eleven sensors, listed in section 4.6.1, turned out to be defective and where removed from
the system identification procedure. Repeating the measurements to achieve a full set of measured points could
possibly improve the substructuring results.

Despite the aforementioned causes for errors, the results of the substructuring are satisfying over a large
frequency range. Thus, the transmission simulator with least squares constraints is indeed capable of levelling
out such kinds of measurement errors.
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5 Conclusion and Future Work
The goal of this thesis was to transfer the transmission simulator to state-space synthesis and to verify the
method by experiments.

The transmission simulator was developed in the last years to overcome hindrances connected to experimental
dynamic substructuring. Problems often encountered are related to the experimental setup in free-free
configuration and the measurement of interface DOFs. By applying new, relaxed coupling conditions along
with the transmission simulator, measurement errors can be levelled out. So far, this technique was applied to
the well-known methods CMS and FBS in the modal and frequency domain, respectively.

However, a third substructuring method exists in the state-space domain, allowing for the wide field of
first-order system identification methods. Here, state-space models are coupled directly, hence the name
state-space synthesis. To combine the advantages that stem from both the transmission simulator technique
and the state-space synthesis, these methods were combined in the thesis at hand.

To achieve this, subtraction of state-space models was derived first theoretically. Moreover, the transmission
simulator was transferred to the state-space domain. Both the constraints CPT and MCFS were applied,
followed by a verification of the newly developed state-space transmission simulator. To this end, a simple
theoretical example as well as an experimental structure were utilized. With the obtained results, it was shown
that the methods CMS, FBS and state-space synthesis are equivalent. The FRFs of all three methods as well
as the estimated resonance frequencies and damping ratios of CMS and state-space synthesis are identical if
the same models are used.

The theoretical example was built up by two plane beams. With the help of this example, important
requirements for the transmission simulator involving the design, sensor placement and the included mode
shapes were illustrated.

Furthermore, the state-space transmission simulator was tested with an experimental structure. The
comparison of the results showed that the substructured models replicate the true system well for the full
frequency range of interest. In general, these models are better representations than the nominal FE model
used. The resonance frequencies of the subtructured models are closer to the true values than the FE prediction.
Moreover, damping can be estimated by dynamic substructuring but was not included in the FE model at
hand. Hence, dynamic substructuring outperforms FE modelling for this application.

Experimental substructuring was performed on the Ampair wind turbine benchmark structure. Three
one-bladed hubs were measured and the hub as transmission simulator was removed twice to arrive at a model
of the three-bladed hub. The results were compared with the measured true system.

By applying different excitation types, using both a shaker and an impact hammer, it showed that the
models based on multisine and impact testing yielded the best results. They were comparable in their quality.
Based on the experimental data, different models were identified in a thorough system identification procedure.
After the enforcement of physical properties in the models, the substructured results obtained with different
measurement data were compared to the true system.

Still, there are numerous challenges related to state-space coupling with the transmission simulator. This
includes a verification of the coupling constraints, i.e. MCFS, by means of the measurement points’ physical
motion. So far, this information is not available in state-space synthesis. Therefore, derivations in state-space
domain are required in order to enable this helpful check.

Moreover, the method formulation could be modified such that more than two state-space models can be
coupled at a time. At last, the prerequisites of state-space synthesis hamper coupling of continuous interfaces.
Further research on such interfaces could provide an alternative approach to the transmission simulator. Another
research topic involves an investigation regarding the robustness of the transmission simulator or a sensitivity
study related to the transmission simulator design.
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A Appendix to the Theory Chapter
This chapter is the appendix to the theory chapter. First, Jetmundsen’s formulation for FBS will be derived
and then, one special case of the Woodbury matrix identity is given.

A.1 Jetmundsen’s formulation

The derivation of this formula uses the FRF of the substructures 1 and 2, respectively[
Q

(s)
c

Q
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b

]
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and the coupling conditions for two substructures

F (1)
c + F (2)

c = Fc (A.3)

and
Q(1)
c = Q(2)

c = Qc. (A.4)

The derivation starts with rewriting equation (A.4) using the FRFs of the substructures,
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with the abbreviation Hc =
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. Comparing this to the first equation of the coupled FRF
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The missing FRF entries are found by the equation Qc = Q
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which ends the derivations.

A.2 Woodbury matrix identity

Here, a special case of the Woodbury matrix identity is derived.
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B Appendix to the Experimental Results
In this appendix, more experimental results of the substructuring in Chapter 4 are given. First, the identified
modal parameters for all one-bladed hub models are listed, followed by the substructuring results of these
models. At the end, the mode shapes of the substructured model are depicted.

B.1 Identified Modal Parameters for the One-Bladed Hubs

Here, all the identified resonance frequencies and modal damping ratios for all one-bladed hub models are given,
including the models multi800w, multi800wo, multi, multi300, auto, impact, and random. Furthermore, the
resonance frequencies of the FE model are listed.

FE multi800wo multi800w multi multi300 auto impact random
fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz)

7 30.32 33.11 33.11 33.11 33.11 33.11 33.06 33.15
8 89.72 87.57 87.57 87.57 87.57 87.56 87.24 87.46
9 180.90 165.27 165.27 165.27 165.23 165.33 164.58 166.08
10 191.46 190.72 190.72 190.72 190.79 190.68 189.02 190.98
11 234.06 208.83 208.83 208.83 208.66 208.90 207.69 209.69
12 330.78 301.35 301.45 300.84 301.06 301.16 299.99 301.07
13 341.88 318.07 317.94 316.97 317.56 315.88 317.73
14 475.64 406.68 450.42 422.89
15 517.88 448.25 448.76
16 522.78 492.94 492.94
17 636.54 540.50 540.61
18 694.37 621.63 621.67
19 736.72 681.38 681.34
20 865.59 782.74 782.64

Table B.1: Identified resonance frequencies for structure A and all models.

multi800wo multi800w multi multi300 auto impact random
ξi (%) ξi (%) ξi (%) ξi (%) ξi (%) ξi (%) ξi (%)

7 1.34 1.34 1.34 1.34 1.33 1.07 1.60
8 1.24 1.24 1.24 1.24 1.22 1.37 1.37
9 1.71 1.71 1.71 1.70 1.67 1.76 1.76
10 2.30 2.30 2.30 2.44 2.70 2.41 2.85
11 1.68 1.68 1.68 1.65 1.61 1.62 1.50
12 1.74 1.65 1.79 1.35 1.78 1.93 1.86
13 1.71 1.53 1.89 1.84 1.88 2.14
14 0.36 12.90 3.94
15 2.24 2.13
16 1.12 1.12
17 2.67 2.68
18 1.67 1.67
19 2.82 2.82
20 2.35 2.36

Table B.2: Identified damping for structure A and all models.
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FE multi800wo multi800w multi multi300 auto impact random
fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz)

7 30.32 31.38 31.38 31.38 31.38 31.39 31.41 31.25
8 89.72 89.75 89.75 89.75 89.75 89.74 89.48 89.84
9 180.90 164.89 164.89 164.89 164.84 164.38 161.59 165.67
10 191.46 176.01 176.01 176.01 177.76 179.20 180.25 184.21
11 234.06 199.36 199.36 199.36 199.38 199.71 197.62 199.83
12 330.78 301.14 301.14 301.15 301.11 301.01 296.91 302.27
13 341.88 317.94 317.94 318.16 317.97 315.70 319.12
14 475.64 394.10 410.54 379.99 402.78
15 517.88 434.30 433.62
16 522.78 471.06 471.07
17 636.54 523.30 523.14
18 694.37 610.97 610.78
19 736.72 683.19 682.91
20 865.59 789.38 789.21

Table B.3: Identified resonance frequencies for structure B and all models.

multi800wo multi800w multi multi300 auto impact random
ξi (%) ξi (%) ξi (%) ξi (%) ξi (%) ξi (%) ξi (%)

7 1.33 1.33 1.33 1.33 1.36 1.12 1.18
8 1.32 1.32 1.32 1.32 1.22 1.17 1.62
9 1.69 1.69 1.69 1.69 1.81 2.29 1.54
10 4.84 4.84 4.84 4.70 3.91 2.75 2.04
11 1.52 1.52 1.52 1.54 1.47 1.61 1.39
12 2.34 2.34 2.35 2.10 2.34 3.21 2.45
13 1.76 1.76 1.77 1.73 1.82 1.73
14 1.67 14.65 2.46 8.87
15 1.89 2.14
16 2.37 2.44
17 1.44 1.35
18 2.61 2.59
19 2.57 2.57
20 0.55 0.56

Table B.4: Identified damping ratios for structure B and all models.
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FE multi800wo multi800w multi multi300 auto impact random
fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz) fi (Hz)

7 30.32 31.51 31.51 31.51 31.51 31.51 31.48 31.28
8 89.72 90.42 90.42 90.42 90.42 90.39 90.25 90.42
9 180.90 165.40 165.40 165.40 165.36 165.05 163.44 165.78
10 191.46 178.87 178.87 178.87 179.43 180.53 181.52 179.40
11 234.06 201.68 201.68 201.68 201.72 201.68 200.28 201.58
12 330.78 302.04 302.04 302.01 302.30 301.90 300.93 302.42
13 341.88 314.58 314.58 314.53 314.52 313.41 314.59
14 475.64 391.24 448.20 384.80 395.09
15 517.88 435.70 435.82
16 522.78 476.11 477.22
17 636.54 524.24 524.24
18 694.37 633.42 633.42
19 736.72 683.18 683.18
20 865.59 791.45 791.45

Table B.5: Identified resonance frequencies for structure C and all models.

mutli800wo multi800w multi multi300 auto impact random
ξi (%) ξi (%) ξi (%) ξi (%) ξi (%) ξi (%) ξi (%)

7 1.50 1.50 1.50 1.50 1.51 1.21 1.56
8 1.22 1.22 1.22 1.22 1.15 1.23 1.09
9 1.59 1.59 1.59 1.57 1.58 1.71 1.53
10 3.24 3.24 3.24 3.32 3.00 2.46 2.14
11 1.48 1.48 1.48 1.50 1.46 1.47 1.50
12 2.25 2.25 2.21 1.98 2.21 2.45 2.35
13 1.46 1.46 1.48 1.47 1.41 1.40
14 7.73 12.47 0.46 183.27
15 1.89 1.84
16 1.48 1.51
17 1.84 1.84
18 1.31 1.31
19 2.17 2.17
20 1.38 1.38

Table B.6: Identified damping ratios for structure C and all models.
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B.2 Substructuring Results

Here, results obtained with substructuring the models multi800w, multi800wo, multi300, auto, and random are
listed.

multi800wo multi800w auto random multi300

fi ξi fi ξi fi ξi fi ξi fi ξi
(Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)

7 24.56 1.17 24.56 1.19 24.55 1.29 24.68 1.24 24.57 1.37
8 30.96 1.40 30.96 1.40 30.96 1.42 30.83 1.34 30.97 1.40
9 31.93 1.39 31.93 1.40 31.93 1.39 31.95 1.55 31.94 1.40
10 74.49 1.02 74.78 1.01 75.16 1.05 75.95 1.26 75.63 1.05
11 77.53 1.06 77.68 1.06 78.16 1.09 78.19 1.43 78.05 1.16
12 81.79 1.05 81.79 1.04 82.10 1.16 82.73 1.00 82.41 1.11
13 113.46 1.58 114.95 1.55 116.65 1.41 120.68 1.29 118.60 1.44
14 118.54 1.32 119.00 1.28 118.32 1.38 121.49 1.25 120.46 1.39
15 167.03 1.52 167.16 1.45 166.96 1.61 169.05 1.45 168.26 1.56
16 171.83 3.49 172.42 3.69 174.52 2.47 177.34 2.03 174.19 4.26
17 174.77 2.79 175.60 2.87 175.04 2.31 181.19 2.24 176.26 2.94
18 183.32 1.98 182.97 1.95 178.53 3.54 182.21 2.01 185.37 2.00
19 195.57 1.84 195.41 1.79 194.96 1.70 195.19 1.74 195.44 1.83
20 200.89 1.79 200.97 1.81 203.01 1.87 201.32 1.89 199.44 1.76
21 219.22 2.34 216.69 2.21 212.21 2.09 211.00 1.85 212.97 2.29

Table B.7: Modal parameter for the other substructured models of the three-bladed hub

B.3 Mode Shapes of the Three-Bladed Hub

Figure B.1 shows the first twelve flexible mode shapes of the three-bladed hub obtained with substructuring.
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1st flexible mode at 24.57 Hz 2nd flexible mode at 30.96 Hz 3rd flexible mode at 31.94 Hz

4th flexible mode at 75.62 Hz 5th flexible mode at 78.04 Hz 6th flexible mode at 82.40 Hz

7th flexible mode at 118.57 Hz 8th flexible mode at 120.44 Hz 9th flexible mode at 168.23 Hz

10th flexible mode at 174.01 Hz 11th flexible mode at 176.18 Hz 12th flexible mode at 185.33 Hz

Fig. B.1: The first twelve flexible mode shapes of the coupled system are shown here. Symmetric mode shapes
that are close in frequency are framed. The first flexible mode is a bending mode with all blades in phase
followed by two symmetric first bending modes where one blade is out of phase. The modes in the second row
are second bending modes whereas the third row shows the third bending motion. Here, the seventh and eighth
modes are symmetric, and in the ninth mode all blades are in phase. The next three modes combine bending
with torsional motion where one blade is dominated by the latter. Not all nodes measured are plotted here and
only out-of-plane displacements of the triaxial sensors are considered for the sake of visualization. The gray
lines indicate the undeformed structure.
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