Implementation and Verification
of a 7-Stage Pipeline Processor

Master’s Thesis in Embedded Electronic System Design

KARTHIK MANCHANAHALLI RAJENDRA
PRASAD

Department of Computer Science & Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

Master’s Thesis 2015:3

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose to make it accessible on the Internet. The Author warrants that he is the author to
the Work, and warrants that the Work does not contain text, pictures or other material
that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he has obtained any necessary permission from this third
party to let Chalmers University of Technology and University of Gothenburg store the
Work electronically and make it accessible on the Internet.

Implementation and Verification of a 7-stage Pipeline Processor

Karthik Manchanahalli Rajendra Prasad

(© Karthik Manchanahalli Rajendra Prasad, March 2015.

Examiner: Per Larsson-Edefors

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone +46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden March 2015

Abstract

This report details the implementation of a 7-stage processor pipeline using VHDL.
The report excludes discussion on instruction and data caches. The pipeline stages
are balanced with respect to timing. The pipeline design is verified using embedded
microprocessor benchmarks. The synthesized pipeline design is evaluated in terms of
timing, area, and power. Implementation and evaluation of the branch predictors are
emphasized, as they are vital part of a processor pipeline. Prior to branch predictor
implementation, several branch predictor configurations have been evaluated, for their
performance, through simulations using SimpleScalar tool. Based on the simulation re-
sults, few best performing predictors have been implemented and verified by integrating
them into a processor pipeline.

The pipeline design is synthesized using Cadence Encounter RTL compiler in order to ex-
tract area and power estimates. Based on the synthesis results, evaluation of the pipeline
and its function units has been carried out. The multiplier and the branch predictor unit
are identified as the most critical with respect timing. Solutions have been suggested
to improve the timing balance between the pipeline stages. It has also been evaluated
that even though the branch predictors contribute for a significant improvement in the
performance of a pipeline, they also account for ~ 45 % of total area and = 65 % of total
power of the pipeline. The effect of caches on the pipeline timing, area, and power is
not considered for evaluations.

Acknowledgments

I would like to thank the following people for their contribution and support.

e My examiner and supervisor, Per Larsson-Edefors, at Chalmers University of Tech-
nology for his constant support throughout my thesis.

e My supervisor, Alen Bardizbanyan, at Chalmers University of Technology for his
technical support throughout my thesis.

e My classmates, Fredrik Brosser, Christoffer Fougstedt, and Jesper Johansson, for
their contribution towards implementing certain parts of the pipeline design.

Karthik Manchanahalli Rajendra Prasad, Gothenburg, 2015/03/25

Contents

List of Figures

List of Tables

1

Introduction

1.1 Motivation e e
1.2 Problem Statement
1.3 Thesis Objective« . . e
1.4 Related Work
1.5 Report Outline
Technical Background

2.1 MIPS Instruction Set Architecture
2.2 Instruction Format
2.3 7-Stage Pipeline
2.4 Hazards e e e e
Branch Predictor Simulation

Pipeline Implementation

4.1 Instruction Fetch
4.2 Instruction Decode e
4.3 Execute e
4.4 Memory ACCESS v v i e e e e
4.5 Write Back e
Pipeline Verification

5.1 Verification Process e
5.2 Testbench Setup
5.3 Result e

ii

iv

11

17
17
23
25
27
28

CONTENTS

6 Pipeline Evaluation 33
6.1 Timing. e 33
6.2 Area s, 35
6.3 Power 37

7 Conclusion 40
7.1 Future Work 41

Bibliography 43

ii

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

3.5

3.6

3.7

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

5.1

5.2

6.1

List of Figures

Register (R-type) instruction format 6
Immediate (I-type) instruction format 7
Jump (J-type) instruction format 7
Block diagram of a 7-stage processor pipeline 8
Branch predictor integrated into the front end of a processor pipeline . . . 11
Algorithm of a bimodal predictor 13
Two-Level predictor e 13
Execution time ratio and prediction accuracy of selected branch predictors

obtained using MiBench benchmark suite 14
Standard deviation and estimated power (Wattch) of selected branch pre-

dictors obtained using MiBench benchmark suite 15
Execution time ratio of different branch predictors obtained using SPEC

benchmark suite. 15
Performance for different BTB table sizes and associativities. 16
VHDL model of a 7-stage in-order processor pipeline 18
Block diagram of instruction fetch stages 19
Branch predictor module block diagram 20
Block diagram of a bimodal branch predictor 21
Generic two-level adaptive branch predictor 21
BTB block diagram. 22
Block diagram of instruction decode stage 23
Block diagram of register file 25
Block diagram of an execution stage L. 26

Branch predictor module integrated into a 5-stage pipeline, which has
been modified to accommodate two-cycle access to the predictor. 31
Schematic of the test bench used to verify the 7-stage pipeline. 31

Post-synthesis area estimate of the pipeline and its functional units 35

iii

LIST OF FIGURES

6.2
6.3
6.4
6.5
6.6

Post-synthesis results with respect to area for different direction predictors. 36
Post-synthesis results with respect to area for different BTB configurations 37
Post-synthesis power estimate of the pipeline and its functional units . . . 38
Post-synthesis results with respect to power for different direction predictors. 38
Post-synthesis results with respect to power for different BTB configurations. 39

v

2.1

3.1

4.1

6.1
6.2
6.3

List of Tables

Description of the fields in the instruction format 7
Two-Level Predictor Configurations 14
Encoding ALU Operation 24
Multiplier time slack Lo o 34
Branch predictor time slack o L. 34
Synthesis Settings L 35

Introduction

OWER DISSIPATION in a processor has been a concern for computer architects in
recent times. Since the power is directly proportional to the frequency of oper-
ation, increasing the speed of a processor will in turn result in increased power
dissipation. The generated heat will have a negative impact on the electrical

characteristics of a semiconductor. Increasing temperature will decrease the operating
speed and increase the leakage in a transistor. For instance, a super computer consumes
an average power of 6 ~10MW [1]. A lot of heat is generated when several of these
computers are operating simultaneously. This scenario is very common in data centers.
The heat generated needs to be disposed of, because it can adversely affect the func-
tionality and the lifetime of the circuit components. Money is spent not only to power
these devices, but also to keep them cool. Hence power dissipation is one of the major
limiting factors in improving the performance of a processor.

In recent years, computer architects have moved towards multi-core processor architec-
ture to combat the increasing power dissipation and still improve the performance of a
processor at the same time. Multi-core processors have achieved this goal by limiting
the clock speed and executing the instructions in parallel. Even though the multi-core
architecture has contained the power dissipation to an extent, it poses new challenges
of its own such as power dissipation in inter-processor communication. Currently, a lot
of research is going on in the field of multi-core architecture in order to make future
processors energy-efficient. The power efficiency of a multi-core architecture is mainly
determined by the power efficiency of a individual cores [2].

1.1 Motivation

Efficiency is an important factor when designing a processor pipeline. A pipeline is said
to be efficient with respect to timing when each of its stages takes almost the same time

1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

to execute. A classic example of an in-order processor pipeline is a 5-stage pipeline [3].
One of the major drawbacks of this pipeline is that its pipeline stages are not evenly
balanced with respect to timing. For instance, since the instruction fetch stage needs
to access the memory to fetch the instructions, this stage takes twice as much as time
the decode stage or the write back stage takes to execute. This drawback limits the
clock speed of the pipeline because the clock speed of a pipeline is determined by the
stage with the longest delay. Hence, a 5-stage pipeline is not efficient with respect to
timing. This issue can be overcome by further pipelining the stages with longest delays
such as the instruction fetch and data memory access stage. This will result in increased
clock speed and a uniform time balance between the pipeline stages. Hence, in order to
achieve a timing balance between the pipeline stages, a pipeline with additional number
of stages as compared to the 5-stage pipeline is necessary.

1.2 Problem Statement

Currently, the VLSI research group at Computer Science and Engineering department of
Chalmers University of Technology uses a 5-stage processor pipeline to make evaluations
on implementation aspect such as area and power consumption. As described before,
the 5-stage pipeline has its own limitations. In addition to these limitations, the 5-stage
pipeline doesn’t include a branch predictor. A branch predictor is necessary in order
to eliminate the branch misprediction penalties and to improve the performance of the
pipeline. In order to carry out the evaluations a pipeline with an additional number of
stages such as a 7-stage pipeline is necessary. This pipeline design will allow instruction
and data cache accesses to happen across two cycles, which in turn will lead to higher
clock rates.

Since there is no publicly available design of a 7-stage processor pipeline, the pipeline
needs to be designed form the ground up. Several design issues need to be addressed while
building a pipeline from scratch. By doing so, a better understanding on the internal
working of the pipeline is gained. This insight can be used to fine tune the pipeline to
achieve better performance. Customization is another reason why the pipeline needs to
be built from scratch. The pipeline can be designed, implemented, and optimized for
the required purpose. This report will present the implementation of a 7-stage processor
pipeline, which will be used in future research studies.

Project Background

The implementation of the 7-stage processor pipeline started with the implementation
of the branch predictors, as part of a project course in Embedded Electronic System
Design (MPEES) program. Prior to my master’s thesis, I and Fredrik Brosser were part
of this project course. We had simulated different branch predictor configurations and
implemented a configurable VHDL model of a branch predictor. In the same project
course, Christoffer Fougstedt and Jesper Johansson were involved in implementing the

1.3. THESIS OBJECTIVE CHAPTER 1. INTRODUCTION

backend of a 7-stage processor pipeline. This thesis work will include some of their work
to implement a 7-stage processor pipeline.

1.3 Thesis Objective

The goals for this masters thesis work are as follows

e Integration and verification of the branch predictor module in an existing 5-stage
processor pipeline.

e Implementation and verification of a 7-stage processor pipeline.
e Balancing the 7-stage pipeline with respect to timing.

e Evaluation of the pipeline in terms of timing, area, and power.

1.4 Related Work

The implementation of processor pipelines has been dealt with since long time. One well
known MIPS processor is R4000 [4], based on a 64-bit architecture and eight pipeline
stages. The R4000 has three pipeline stages dedicated to data memory access as com-
pared two pipeline stages in a 7-stage pipeline. OpenRISC [5] project is an open source
community providing implementations of RISC instruction set architecture. The pro-
cessor architectures provided by this community are advanced and used for commercial
(derivatives of OpenRISC architecture) and academic research purposes. For instance,
OpenRISC 1000 is a full 32/64-bit architecture with support for DSP and floating-point
instructions.

The branch predictors have a huge impact on the performance of the pipeline. The design
of the branch predictors is a well explored area in the processor community, with notable
research being done in the early 1990’s. Trade-offs related to the BTB (Branch Target
Buffer) design and implementations were explored early on [6]. Yeh et al. [7, 8] focused
on describing and investigating two-level adaptive branch predictors and their imple-
mentation, discussing the possible variations of two-level branch predictors and defining
the different types according to the manner in which the table content is kept (Global-
Private-Set). This classification yielded variations of the two-level adaptive predictor,
e.g., GAg (Global-And-global) or PAg (Private-And-global). These variations will be
discussed more in detail in Chapter 2. McFarling looked at more complex predictors
and the possibility of combining global and local predictors for improved accuracy [9].
Later, Jimenez concluded that the hardware cost of many complex predictors do not
show a proportionate performance increase [10]. Instead Jimenez presented a simple
branch predictor design approach.

1.5. REPORT OUTLINE CHAPTER 1. INTRODUCTION

1.5 Report Outline
The remaining of the report is organized in the following manner.

Chapter 2 details some of the basic concepts in the field of computer architecture.
It also describes the terminology used in this report.

Chapter 3 gives a brief description of the method used to carry out the branch
predictor simulations at an architectural level using SimpleScalar tool. The results
of the simulation are also presented and discussed in this chapter.

Chapter 4 describes the implementation of the 7-stage pipeline. Implementation
of each stage of the pipeline is described in detail.

Chapter 5 describes the verification process involved in verifying the implementa-
tion of the Branch predictor and the 7-stage pipeline. It details the testbench setup,
which is the 5-stage pipeline, used to initially verify the implementation of the branch
predictor. It also describes the method and tools used in the verification process.

Chapter 6 presents the post-synthesis results of the 7-stage pipeline. The evalua-
tion of the pipeline in terms of timing, area, and power is described.

Chapter 7 presents the conclusion of the thesis work. It also presents few future
work on the pipeline that can be carried out in order to improve the performance of
the pipeline.

Technical Background

Pipeline is a vital part of a processor that performs data processing. A pipeline con-
sists of instruction and data memories, registers, and functional units such as ALU. The
pipeline implemented here is based on a MIPS 32-bit Instruction Set Architecture (ISA).
A pipeline is basically a hardware implementation of an ISA.

An ISA can be classified into two main categories, Reduced Instruction Set Computer
(RISC) and Complex Instruction Set Computer (CISC) [2]. A RISC architecture is
built with an intention to simplify the decoding process of the instructions, thereby
reducing its cycle time. In RISC architecture, the instruction size is kept constant, with
regular formats, which makes the pipelining of the instruction easier. All instructions
are executed in a single cycle. In contrast to RISC architecture, the instructions in CISC
architecture are designed for variable length and formats. The intention is to make the
instructions more compact and use fewer instructions to execute a fragment of code.
This results in better utilization of the caches. The MIPS ISA used here is a RISC
architecture developed by MIPS Technologies [11]. There are multiple versions of MIPS
ISA available, but MIPS32 version is used.

2.1 MIPS Instruction Set Architecture

According MIPS ISA, the length of a instruction is constant, which is 32-bit in this case.
Based on functionality, the instructions can be classified into following groups [2].

e Arithmetic/Logic Instructions
e Memory Access Instructions

e Control Instructions

2.2. INSTRUCTION FORMAT CHAPTER 2. TECHNICAL BACKGROUND

Arithmetic/Logic Instructions

Arithmetic instructions include addition, subtraction, and multiplication operations. De-
pending on the operands the arithmetic operation can be either signed or unsigned.
Currently, the pipeline is designed to handle only integer arithmetic operations. Logic
operations include bit-wise AND, OR, NOR, and XOR. All arithmetic and logic in-
structions, except for multiplication, take one clock cycle to execute. Multiplication
instructions, depending on the design of the multiplier, take two or more clock cycles to
execute.

Memory Access Instructions

Memory access instructions include load and store operations. A load operation will
load a word/byte of a data from the memory. A store operation will store a word/byte
of data to the memory. Depending on the availability of the requested data in the cache,
the memory instructions take several clock cycles to execute.

Control Instructions

Control instructions include the conditional branch and jump operations. These instruc-
tions break the sequential execution of the instructions and jump to a target address and
starts executing instructions from there. In case of branch instructions, the breaking of
the sequence is based on a condition. For instance, if the value in a register is equal
to (less than, greater than) zero then break the sequence. Whereas jump instructions
break the sequence unconditionally. The target address is encoded in the instruction.

2.2 Instruction Format

The size of the instructions in MIPS architecture is constant. All instructions are encoded
into a 32-bit word format. The format of the instructions can be classified into three
groups, Register (R-type), Immediate (I-type), and Jump (J-type) instructions formats.
These formats are shown in Figure 2.1, 2.2, and 2.3. The description of the fields in
these instruction formats are given in Table 2.1. All ALU instructions operate on the
registers, results written to the registers. Memory instructions such as Load and Store
transfer data between the memory and the register.

31 26 25 21 20 16 15 11 10 6 5 0

OPCODE RS RT RD SA FUNCTION

Figure 2.1: Register (R-type) instruction format

2.3. 7-STAGE PIPELINE CHAPTER 2. TECHNICAL BACKGROUND

31 26 25 21 20 16 15 0

OPCODE RS RT IMMEDIATE

Figure 2.2: Immediate (I-type) instruction format

31 26 25 0

OPCODE INDEX

Figure 2.3: Jump (J-type) instruction format

2.3 T7-Stage Pipeline

Figure 2.4 shows the block diagram of a 7-stage processor pipeline. The operations such
as branch prediction, instruction/data cache access, and multiplication, are pipelined
for two-cycle access. Since these operations consume more time, pipelining them into
more number of stages will reduce the delay in each stage. The following paragraphs
will briefly describe each stage of the pipeline.

Instruction Fetch (IF)

This stage mainly includes the branch prediction and the instruction cache access. The
branch predictor consists of a Branch Target Buffer (BTB) and Branch Direction Pre-
dictor (BDP). The BTB stores the address of the branch target. The structure of the
BTB is similar to a cache (set-associative) and can be implemented using SRAM cells.
The operation of the BTB is pipelined for two clock cycles, starting with indexing the
BTB in the first clock cycle followed by the tag comparison in the second clock cycle.
The branch direction predictor operates in the second clock cycle and predicts whether
the branch should be taken or not. The results from both the BTB and the direction

Table 2.1: Description of the fields in the instruction format

Field Description
Opcode 6-bit code, which defines the operation of the instruction
RS 5-bit index used to access the source register
RD 5-bit index used to access the destination register
RT 5-bit index used to access the target (source/destination) register
SA 5-bit code, which specifies the shift amount
Function 6-bit code, which defines the functionality of the operation
Immediate 16-bit signed operand used for immediate operations
Index 26-bit index used to form the target address for jump instructions

2.3. 7-STAGE PIPELINE CHAPTER 2. TECHNICAL BACKGROUND

predictor is used to determine the direction of the branch. The branch misprediction
penalty is 2 clock cycles, considering that the branch instruction is followed by the branch
delay slot instruction as per MIPS. The instruction cache will be implemented for two
cycle access with way prediction. In the first clock cycle, one of the ways, predicted
by a way-predictor, of a set-associative cache is indexed. In the second clock cycle, tag
comparison is carried out to determine the data hit or miss. In case of way mispredic-
tion, the pipeline will be stalled and all other remaining ways of the instruction cache is
accessed.

IF1-Stage IF2-Stage ID-Stage EX-Stage MEM1-Stage MEM2-Stage WB-Stage

I I I 1 I I
L : REGISTER FILE : MULTIPLIER UNIT : :
BRANCH PREDICTOR | | T | |
: CONTROL LOGIC : ALU : ! :
| | HAZARD | | I

| | AGU | DATA CACHE I| WRITE BACK
INSTRUCTION CACHE i| DETECTION | | I
| | BRANCH | T |
| : FORWARDING : EVALUATION : : :

Figure 2.4: Block diagram of a 7-stage processor pipeline

Instruction Decode (ID)

This stage mainly deals with decoding the instructions and handling the data dependen-
cies between the instructions. The control unit decodes the instruction and generates
the necessary control signals. The hazard detection unit detects the data hazards in the
pipeline and stalls the pipeline if necessary. For instance, an instruction following a load
instruction and using the result of the load instruction can cause a data hazard, because
the result of a load instruction is obtained only in MEM2-stage. So the instruction in
the decode stage waiting for this result needs to be stalled. The forwarding unit detects
data dependencies and controls the forwarding multiplexers. The register file contains
32 general purpose registers.

Execute (EX)

This stage mainly consists of an ALU, an Address Generation Unit (AGU), a multiplier
unit and a branch evaluation unit. All arithmetic instructions are executed in this stage.
The memory address for the load and store instructions is calculated by the AGU. The
multiplier unit is one of the units with longest delay, so it is pipelined into two stages.
All branch instructions are evaluated in this stage. In case of a branch misprediction,
the speculative instructions in the pipeline are flushed and the program counter is loaded
with the correct target address.

2.4. HAZARDS CHAPTER 2. TECHNICAL BACKGROUND

Data Memory Access (MEM)

In this stage the data cache is accessed to read/write data. The access to the data cache
is pipelined for two cycle access.

Write Back (WB)

This is the final stage of the pipeline and it handles the writing to the registers.

2.4 Hazards

Hazard is a situation when an instruction cannot be executed in a pipeline. Hazards in
a pipeline can be classified into three categories.

Structural Hazard It occurs in case of a single instruction and data L-1 cache,
when two pipeline stages are trying to access the same cache in the same clock cycle.
As per the MIPS ISA there is a separate instruction and data cache, hence there will
be no structural hazard.

Data Hazard It occurs when an instruction cannot be executed because of its de-
pendency on previous instruction result.

Control Hazard It occurs when the instruction fetched cannot be executed because
of the change in flow of the instructions.

Data Hazard

There is always a data dependencies on register or memory operands. Since in the 7-
stage pipeline the load and the store instructions are executed in the memory stage and
they arrive at the memory stage in the process order, data dependencies on the memory
operand don’t cause data hazard. In case of register operands the data is written to the
register in the write back stage and read from the registers in the decode stage, hence
in some cases it might lead to data hazards. Data hazards on the register operands can
be classified into following four types.

Read After Write (RAW) A current instruction to be executed needs the result
of the previously executed instruction. If the current instruction doesn’t wait until
the result of the previous instruction is written into the register file then the value
read by the current instruction will be wrong.

Write After Read (WAR) A current instruction writes a value to a register loca-
tion before the previous instruction reads the value from this register location. This
scenario is not possible in the 7-stage pipeline as the instructions flow in the process
order.

2.4. HAZARDS CHAPTER 2. TECHNICAL BACKGROUND

Write After Write (WAW) A current instruction writes a value to a register lo-
cation before the previous instruction writes a value to the same register location.
This scenario is similar to WAR hazard scenario. Since the instructions are executed
in the process order, a current instruction can’t write to a register location before its
previous instruction does.

RAW data hazard can be solved by forwarding the results from the intermediate stages.
Forwarding will be discussed in detail in Chapter 4.

Control Hazard

Control hazard is the caused by branch or jump instructions. Branch instructions change
the instruction flow based on a condition. In the 7-stage pipeline all the branch instruc-
tions are evaluated in the execute stage of the pipeline. Evaluating a branch instruction
includes determining the branch direction and calculating the branch target address.
Until the branch instruction is evaluated, the instructions are fetched assuming that
the branch is not taken. In case the branch is taken, then the instruction in the previ-
ous stages will be flushed. Branch predictors are used to overcome the control hazard.
Branch predictors predict the branch direction and target address. Branch predictors
will be dealt in detail in Chapter 3 and Chapter 4.

10

Branch Predictor Simulation

Branch predictors are used to predict the direction and target address of a branch in-
struction. Branch predictors are a vital part of a processor pipeline. Figure 3.1 shows the
block diagram of a part of a processor pipeline with a branch predictor integrated into
the front end of the pipeline. When a branch instruction is mispredicted the instructions
in the front end (IF and ID stages) of the pipeline is discarded. This results in increased
execution time and wastage of power. For instance, in a classic 5-stage pipeline two
instructions are discarded when a branch is mispredicted. Hence mispredicting branch
instructions will give rise to severe processor performance penalties.

Branch Target— BRANCH PREDICTOR
Branch Taken/NotH _) .
— pC-BTB CONTROL [e——Valid/Invalid Branch Prediction
| DIRECTION PREDICTOR
| BRANCH TARGET BUFFER
1 [[—
4
/{\ | | Register File Branch
pC N F E I [Evaluation
1 —Branch Prediction— 2 Control Unit D
/ / / ALU
Instruction Cache | Instruction Cache | E
Access 1 F Access 2 D X
2 - AGU

Figure 3.1: Branch predictor integrated into the front end of a processor pipeline

On the bright side, branch instructions, such as loops, often display patterns in the
branch direction, which can be detected and used by the branch predictors. Further-
more, branch instructions often branch to the same target address repeatedly. By storing
the target address in a buffer, it is possible to predict the target address. By doing this it
is possible to design branch predictors with a high prediction accuracy. A typical branch
predictor consists of a Branch Direction Predictor (BDP) and a Branch Target Buffer

11

CHAPTER 3. BRANCH PREDICTOR SIMULATION

(BTB). BDP predicts the direction of the branch instruction and BTB is used to store
the previous target address of the branch instruction.

Simulations were carried out in order to determine the best branch predictor config-
uration for the 7-stage pipeline. The SimpleScalar simulator [12] is an open source
pipeline simulator written in C. SimpleScalar is able to simulate the PISA and Alpha
instruction set architectures and produces simulation statistics and results used to eval-
uate the pipeline configuration. SimpleScalar with the PISA instruction set along with
the MiBench [13] and SPEC [14] benchmarks were used. The MiBench benchmark suite
comprises 35 benchmarks written in C, representing typical embedded applications. The
SPEC benchmark suite comprises 21 benchmarks. In addition to MiBench benchmarks
SPEC benchmarks are used for evaluation because the SPEC benchmarks are bigger
than the MiBench benchmarks. Evaluation of the branch predictor configurations using
bigger benchmark is done in order to make sure that the branch predictors performance
is independent of benchmark size.

Parameters of BDP, such as type and table size, and BTB, such as associativity and
table size, are varied to determine their impact on the performance of the processor.
In total 74 branch predictor configurations were simulated and evaluated. The results
were compared to a theoretically perfect predictor with 100 % accuracy. To extract and
compile the results perl scripts were used for automation. In these simulations we have
chosen to limit our exploration to predictor table sizes in the range 64-4,096 branch
entries. It is a tedious process to simulate all the branch predictor configurations using
SPEC benchmarks. Hence a few of the best performing branch predictor configurations
are selected by evaluating them using the MiBench benchmark suite and then the se-
lected configurations are reevaluated using the SPEC benchmark suite.

Performance metrics used in the evaluation of the branch predictors are the Execution
Time Ratio (ETR) and the prediction accuracy. Execution time is defined as the time
taken to execute a benchmark in terms of clock cycles. To normalize the execution time
a perfect branch predictor with 100 % accuracy is considered. Hence the ETR is defined
as the ratio of the execution time using a particular branch predictor to the execution
time using a perfect predictor. A branch predictor with a prediction accuracy of 100 %
will have an ETR of 1. Hence in practice a branch predictor can have an ETR of >1.
Besides ETR and prediction accuracy, standard deviation of the ETR and power is
also considered as a performance metric. The standard deviation is considered in order
to determine whether the branch predictor performance is consistent throughout the
benchmarks. The power is obtained by using Wattch tool [15], which is tightly integrated
with SimpleScalar. The power values given by the Wattch tool are not accurate, hence
the power values are only used for elimination purpose.

12

CHAPTER 3. BRANCH PREDICTOR SIMULATION

Branch Direction Predictor

BDP predicts the direction of a branch instruction, whether the branch is taken or not.
Two different kinds of BDP are evaluated, Bimodal and Two-Level predictor. Figure 3.2
shows the algorithm of a bimodal predictor. A bimodal predictor is a 2-bit counter - the
Most Significant Bit (MSB) is used to predict the direction of the branch instruction,
branch is taken if the MSB is 1 else not taken. The prediction is evaluated in the EX
stage. Based on the evaluation result the counter is incremented if the branch is taken
else decremented. An array of such 2-bit counters is implemented and indexed using the

Program Counter (PC).
NT Not Taken (NT)
Taken (T——

T
@ghken (T))
Not Taken (NT)

Figure 3.2: Algorithm of a bimodal predictor

NT

A two-level predictor is similar to a bimodal predictor except for an additional level.
Figure 3.3 shows a block diagram of a two-level predictor. The first level is an array of
shift registers and the second level is an array of 2-bit counters. Two-level predictors will
be discussed in detail in Chapter 4. Based on the size of the level-1 table (Branch History
Table (BHT)) and level-2 table (Pattern History Table (PHT)), two-level predictors can
be classified in several subtypes, as given in Table 3.1.

BHT PHT

<«—11Siz
“——12 Size—>

«—>
History Width

Figure 3.3: Two-Level predictor

The naming convention used in the plots are as follows, {Predictor Type}/{Level-1 Ta-
ble Size}/{Level-2 Table Size}. Figure 3.4 shows the plot of ETR and the prediction
accuracy of the selected branch predictor configurations using MiBench benchmarks. It

13

CHAPTER 3. BRANCH PREDICTOR SIMULATION

Table 3.1: Two-Level Predictor Configurations

Predictor L1 Size | History Width | L2 Size | XOR
Global-And-global (GAg) 1 AW 2w 0
Global-And-private (GAp) 1 W > 2W 0
Private-And-global (PAg) N W 2w 0
Private-And-private (PAp) N W oN+W 0

Gshare 1 W 2w 1

is clear from the plot that the two-level predictors perform better than the bimodal
predictors in terms of ETR and prediction accuracy. Figure 3.5 shows the plot of the
standard deviation and estimated power of the selected branch predictor configurations.
The standard deviation seems to be lower, hence the selected branch predictor config-
urations perform evenly over all the benchmarks. Even though the performance of the
two-level predictors is better than the bimodal predictors, the estimated power of the
two-level predictors is higher than the bimodal predictors.

I Execution Time RatiollDPrediction Accuracy

].2 [~ : | |
1.144
1.109 1.110 1.117 1.117 1.134

1.1}
1 |
J0.962 |0-963 0.951 0.949 0.940
W I 11 NN N N
o ®

Figure 3.4: Execution time ratio and prediction accuracy of selected branch predictors
obtained using MiBench benchmark suite

Figure 3.6 shows the plot of the ETR of selected branch predictor, which are reevaluated
using SPEC benchmark suit. Comparing Figure 3.4 and Figure 3.6 it can be observed
that the selected branch predictor performance is independent of size of the application.
The two-level predictors still perform better than the bimodal predictors. Note that the
BTB size and associativity are kept constant while only the BDP parameters are varied.

14

CHAPTER 3. BRANCH PREDICTOR SIMULATION

’ liStandard Deviation 0 Estimated Power (W) ‘

017 017
0.15
151 0.15 15
0.15 1z O 140
0. 12
0.1} 0.09 |
\@

\%@ x@?’ \@?’ x@?‘ q}@;

v b;\ \,\ \,\ b\ 0
S S

Q?" Q, ‘50

Figure 3.5: Standard deviation and estimated power (Wattch) of selected branch predictors
obtained using MiBench benchmark suite

I8 Execution Time Ratio ‘

1.05 | .
1.045
Loal 1.040 1 039 |
' 1.
1.03 a l |
N >
Y %
Q N
N
@\ @b,\ \\\ \\\ Sk 'Qob\
v‘ﬁo\x & Cﬁ?’% J’@ ¢ 9
R) 4 &

Figure 3.6: Execution time ratio of different branch predictors obtained using SPEC bench-
mark suite.

Branch Target Buffer

A BTB stores the target addresses of the branch instruction. The implementation of
a BTB is similar to a cache. The table size and associativity of the BTB is varied in
order to determine its influence on the performance of a processor. Figure 3.7 shows the
variation in ETR with respect to different BTB table size and associativity. The Least
Recently Used (LRU) is used as a replacement policy. Note that the BDP parameters

15

CHAPTER 3. BRANCH PREDICTOR SIMULATION

are kept constant while the BTB parameters are varied.

From Figure 3.7 it can be observed that the large BTB table size and high BTB associa-
tivity will result in the best performance in terms of ETR. On the other hand, increased
table size and associativity will also results in significant increase in circuit complexity,
area, and power. The predictor group that performed best in terms of accuracy and
ETR in simulations are the large PAp-type predictors. However, it comes at a signifi-
cant hardware cost compared to simpler predictors and the performance increase is not
proportional to the increase in hardware cost. Bimodal, GAg, and Gshare predictors
perform well in relation to the estimated hardware cost and power values. Based on the
simulations results, large bimodal predictors (table size 2,048-4,096 entries) saturate at
around 94 % direction prediction accuracy.

)

,_.
[oe]
PR

11|

Execution Time Ratio =

Figure 3.7: Performance for different BTB table sizes and associativities.

16

Pipeline Implementation

A VHDL model of a 7-stage in-order processor pipeline is implemented. The pipeline
implementation is based on a MIPS32 ISA. It should be noted that the implementation
of the instruction and data L-1 cache is not included in this report. This chapter will give
a detailed description on the implementation aspect of each stage of the pipeline. Each
stage is separated by pipeline registers, which are usually implemented using flip-flops.
All pipeline registers are updated on the positive rising edge of the clock. There is no
feedback within a single clock cycle in any of the pipeline stages.

Figure 4.1 shows the VHDL model of a 7-stage pipeline. Every clock cycle the PC is
incremented and a new instruction is fetched from the instruction cache. The instruction
and data caches used here are ideal, hence there will be no cache misses. The instruction
is decoded, operands are fetched from the register file and appropriate control signals are
generated. Generated control signals and fetched operands are propagated through the
following stages. The control signals will determine the operation to be performed on the
operands. Finally, the result of the operation will be written back to the register file if
necessary. All instructions will go through all the stages of the pipeline even though some
instructions will not include any specific operation related to that stage. For instance,
an add instruction will not have anything to do with memory transfer, but still it will go
through that stage. Even though it is a waste of clock cycles, the design of the pipeline
will be simple and predictable.

4.1 Instruction Fetch

The instruction fetch (IF) stage is implemented as two stages in the 7-stage pipeline.
Figure 4.2 shows the block diagram of the IF stage. It mainly includes an instruction
cache and a branch predictor module. In a 5-stage pipeline, an instruction is fetched
from the instruction cache (I-cache) in a single clock cycle. The operation includes in-

17

CHAPTER 4. PIPELINE IMPLEMENTATION

4.1. INSTRUCTION FETCH

auredid 10ss9001d Iep1o-ul a8v)s-) © JO [Ppowl T(THA 1'% o2InSiq

C-3HOVD
— viva -

Ih

T3H0YD || |
viva

2y NV

—

g

NOILVNIVAI
HONVYg

nov

nv

" 43ndiLinin

vdo-

-0 ~uwX

le-vdo.

esieuss .

1INN"13a
QYVvzZvH

ERlE]
Y¥31S193Y

[T oK |

L1INN aM4 _AI_

115U[-Yd g

¢ - 3HOVD
NOILONYLSNI

47 d.

l«—youeigs|-ydg
l—Aem-ala.

]

[€—Jd-4d&—

T-3HOVD
NOILONYLSNI

74Jd

D>
i

Ssalppy 198.e].

193181 pljeA

uonI3.IQ pleA:

¥0L101d3¥d HONVYHE

le—d18-0d—]
uddie] youelg:
|——98.e] youeug
1le3s uasjel youesg—

18

4.1. INSTRUCTION FETCH CHAPTER 4. PIPELINE IMPLEMENTATION

dexing the cache line, comparing tags, and generating hit signals. Since this operation is
purely combinatorial, fetching instruction from the I-cache will have a long path delay.
This path delay is almost twice the path delay of instruction decoding or writing to
registers. Since the longest path delay of the pipeline determines the maximum clock
speed at which the pipeline can be operated, the path delay of IF stage in the 5-stage
pipeline limits the clock speed. Hence by dividing the instruction fetch operation into
two stages, the path delay can be reduced and the clock speed of the pipeline can be
increased.

—Branch Taken Stall
Branch Target—

[«Valid Direction—

Branch Taken BRANCH PREDICTOR [€—Valid Target—
—PC-BTB—] [«—Target Address—
l —; _
4 a BTB-Hit—>
|l & —BTB-Way—>
PC PCH—>| £ BPR-IsBranch—>{ |
A 1 pCH4——> F
/ —BPR-Inst 2
I /
F I
INSTRUCTION 2 INSTRUCTION b
N CACHE -1] CACHE -2
LA A

Figure 4.2: Block diagram of instruction fetch stages

The implementation of a BTB in the branch predictor module is similar to the imple-
mentation of a cache. Hence even the BTB will also have a long combinatorial path.
By adding a pipeline register in the path, the path delay can be reduced. Since the
implementation of caches is not discussed in this report, the main emphasis is given to
the implementation of branch predictor.

The input to the program counter is either a target address from a branch instruction
or an incremented value of the previous program counter value. Since the implementa-
tion is based on a 32-bit architecture and byte addressing method is used, the program
counter is incremented by 4 bytes to address the next instruction. The multiplexer which
feeds the program counter is controlled by the branch predictor. If the branch predic-
tor encounters a branch instruction and predicts that the branch instruction should be
taken, it switches the multiplexer to select the target address predicted by the branch
predictor. The branch predictor also forwards its prediction results such as direction
and target address, which will be used by the branch evaluation unit in the EX stage to
determine the correctness of the prediction.

The BTB and the I-cache are implemented using SRAM cells. SRAM operates syn-
chronously with the rising edge of the clock, hence all input data to the SRAM should
be available (stable) before the rising edge of the clock. The rising edge of the clock
to the SRAM latches the input data. In order to meet this requirement and respect

19

4.1. INSTRUCTION FETCH CHAPTER 4. PIPELINE IMPLEMENTATION

the setup time, the combinatorial value of the program counter is fed as a input to
the branch predictor (BTB) and to the instruction cache. All branch instructions are
evaluate in the EX stage. In case of a branch mis-prediction, the instruction in IF1,
IF2, and ID stage, need to be flushed. Hence a multiplexer, controlled by the branch
predictor, is implemented to flush the instruction. The following subsection will give a
brief description on the implementation aspect of the branch predictor.

Branch Predictor

A configurable VHDL model of a branch predictor module is implemented. The mod-
ule is designed with modularity and reconfigurability in mind. Configuration is done
by setting generics at design time. Figure 4.3 shows the block diagram of the branch
predictor module. The branch predictor module uses information from the IF stage to
make a prediction in every clock cycle. It includes a Branch Direction Predictor (BDP),
a Branch Target Buffer (BTB), a control, and a comparator module.

l«——Valid Target:
<«—Branch T/NTH [¢——EXx. IsBranch———
[e—Ex. Hit:

CONTROL LOGIC Valid Pred—
-Ex. Stage Target—

Target Update Hit
|

<«—Target:

l L Hit -
[———— Ex. Way—|— —_—
s BRANCH Je————|—Ex Stage Target:
% TARGET
IS — Ex Stage PC— —_—
< BUFFER _I= toee =
§ < X Valid Pred— g
5 5= g
i T
L BRANCH] COMPARATOR |
le—
DIRECTION [
« L
PREDICTOR Te

Figure 4.3: Branch predictor module block diagram

Control Logic

The control logic module is purely combinatorial. It takes the input from the BDP,
BTB, and the comparator to make a prediction. The BDP predicts the direction of the
branch. The BTB stores the target address. The comparator determines whether the
instruction is a branch instruction or not. The input to the comparator is the instruction
from the IF2 stage. The branch is taken only if all the following conditions are met.

e If the instruction is a branch instruction

20

4.1. INSTRUCTION FETCH CHAPTER 4. PIPELINE IMPLEMENTATION

e If BDP predicts that the branch should be taken
e If the target address is available in the BTB

The control module also receives the feedback information from the branch evaluation
module in the EX stage. The feedback includes information such as whether the predic-
tion is correct in terms of direction and target address and the correct target address,
which is calculated in the EX stage. Based on this information the control module de-
termines validity of the previous prediction. In case of invalid prediction, it flushes the
instructions in the IF1, IF2, and ID stage, and loads the correct target address into the
program counter register.

Branch Direction Predictor

Two types of branch predictors are considered in this work, Bimodal and Two-Level.
Figure 4.4 and Figure 4.5 shows the implementation of a bimodal and a two-level branch
predictor. A bimodal branch predictor is implemented as an array of 2-bit saturating
counters. The working of a 2-bit counter is described in Chapter 3. The array is indexed
using the program counter from the IF2 stage. Hence each branch instruction will have
its own 2-bit counter. The MSB of the 2-bit counter is used for prediction.

BIMODAL BHT oHT
2-bit counter | 4 Shift Register | 4 2-bit Counter | 4
,_> —[-MSB—> |
x L L
} o}
2 2 - |-MsB—>
J] '5 J}
& & &
b b !
v v ¥
— —>
History Width History Width

Figure 4.4: Block diagram of Figure 4.5: Generic two-level adaptive branch
a bimodal branch predictor predictor

As the name suggests, a two-level branch predictor has two levels (tables), Branch History
Table (BHT) and Pattern History Table (PHT). The implementation of a two-level
branch predictor is similar to a bimodal branch predictor except for an additional level.
A BHT is an array of shift registers. The BHT is indexed using the program counter
from the IF2 stage. The shift register entry is left shifted every time a branch instruction
is encountered. A ’1’ is inserted if the branch is taken else a ’0’ is inserted. The PHT
is an array of 2-bit saturating counter and it is similar to bimodal branch predictor in
functionality. The PHT is indexed using the content of the shift register. The branch

21

4.1. INSTRUCTION FETCH CHAPTER 4. PIPELINE IMPLEMENTATION

predictor design can be configured for type (two-level or bimodal branch predictor) and
table sizes at design time. The branch predictor implementation uses register-based
tables.

PC
| TAG | INDEX | BO | é—> REPLACEMENT POLICY
S T T T
Q = Read WayEn
Index | |
v — 1 ¥
V | TAG DATA V | TAG DATA
Tag . o '
. .
. .

| ------
—>
! MULTIPLEXER
[

Hit Data

| l

Figure 4.6: BTB block diagram.

Branch Target Buffer

The Branch Target Buffer (BTB) is used to store the target address of the branch in-
struction. As previously mentioned, the implementation of a BTB is similar to the
implementation of a cache. Figure 4.6 shows the block diagram of a BTB. The BTB is
implemented using SRAM cells and can be configured at design time. The configura-
tion parameters are the number of sets and the set associativity. There are a number
of fixed size SRAM blocks available, in sizes 32x32b, 128x32b, 512x32b, 1024x32b and
2048x32b. When synthesized, the BTB implementation will select the smallest SRAM
block possible with the given configuration. For instance, both the BTB size 16 and
32 will use the 32x32b SRAM configuration. There is also a configuration variable for
changing the replacement policy when using a set-associative BTB; selecting between
LRU and Random replacement policy.

The BTB is indexed using the program counter from the IF1 stage. Each entry contains

three fields, a Valid (V) bit field, Tag field, and a Data field. The valid bit field identifies
the validity of the data present in the entry. Initially all valid bits will be cleared, after

22

4.2. INSTRUCTION DECODE CHAPTER 4. PIPELINE IMPLEMENTATION

which the valid bit field is set when a new data and tag is written into the entry. In case
of multiple data stored within a data block then the Block Offset (BO) is used to select
individual data from the block. Here data is the target address of the branch instruction.
Since extracting data from the BTB will result in a long combinatorial path, BTB is
implemented to operate in two stages. In the first stage the BTB is indexed using the
program counter and in the second stage the data and the hit signals are generated.

4.2 Instruction Decode

The instructions fetched in the IF stage are decoded in the Instruction Decode (ID) stage.
Figure 4.7 shows the block diagram of the ID stage. The inputs to the ID stage are the
instruction, program counter and the prediction values from the branch predictor, which
needs to be forwarded to the EX stage. The ID stage includes a control unit, forwarding
unit, hazard detection unit, and register file. Besides these units, there is also a unit to
sign extend the immediate value. The functionality of each of these units are described
in the following subsections.

["" FWD UNIT I . N
| CONTROL 'Sha_mt*l —l— —Ctrl Signals>} |
F M UNIT , 5
2

/
/ SIGN EXT opa| £
: X
D REGISTER
FILE OpB—]
A [A
HAZARD
DET. UNIT Mult Res Fwd——
——ALU/Mult Res Fwd—
Data Mem Fwd——

Write Back Result—

Figure 4.7: Block diagram of instruction decode stage

Control Unit

The control unit generates the control signals based on the instruction opcode. These
generated control signals determine the operation to be performed by the different func-
tional units. One such control signal is the ALU opcode as shown in Table 4.1. Based
on the opcode and functional field in the instruction word the control unit encodes ALU
operations into opcodes. The control unit also generates control signals such as register
write, memory read, memory write, etc.

23

4.2. INSTRUCTION DECODE CHAPTER 4. PIPELINE IMPLEMENTATION

Table 4.1: Encoding ALU Operation

ALU Opcode ALU Operation
0000 Addition (Signed)
0001 Addition (Unsigned)
0010 Subtraction (Signed)
0011 Subtraction (Unsigned)
0100 Bitwise AND
0101 Bitwise OR
0110 Bitwise XOR
0111 Bitwise NOR
1000 Shift Left
1001 Shift Right (Logical)
1010 Shift Right (Arithmetic)
1011 Set on less than

Forwarding Unit

Forwarding is used to overcome the stalling of the pipeline because of data dependencies
between instructions. Figure 4.7 shows the two four-input multiplexers controlled by
the forwarding unit. There are three forwarding paths from the different stages of the
pipeline connected to the three inputs of these multiplexers. The first path (Mult Res
Fwd) is the output of the multiplier. The second path (ALU/Mult Res Fwd) is the
output of the multiplexer in the MEM1 stage, which outputs either the result from the
ALU or the multiplier. The third path (Data Mem Fwd) is the output of the multiplexer
in the MEM2 stage, which outputs either the result from the MEM1 or the data loaded
from the data cache. The forth input to one of the multiplexers is the shift amount and
to the other multiplexer is the sign extended immediate value. Even though forwarding
paths reduce pipeline stalls due data hazards, they introduce long path delays which
might limit the clock speed of the pipeline.

Hazard Detection

Adding forwarding paths in the pipeline will not eliminate all data dependencies. For
instance, a load instruction, whose destination register is R3, followed by an addition
instruction, whose source register is R3, will lead to a pipeline stall because the data is
fetched from the data cache in MEM?2 stage. Hence the pipeline needs to be stalled for
at least 2 clock cycles in this scenario. If a load instruction is followed by a load delay
slot instruction then the stalling of the pipeline can be reduced to a single cycle. It is
a similar case when a multiplication instruction is followed by an instruction that uses

24

4.3. EXECUTE CHAPTER 4. PIPELINE IMPLEMENTATION

the result of the multiplication, then the pipeline needs to be stalled. The multiplication
operation is usually pipelined for 2 stages. Hence the pipeline should be stalled for
at least 2 clock cycles. It needs to be noted that when a pipeline is stalled only the
instructions in the front end of the pipeline (IF1,IF2,ID) are stalled, but the instructions
in back end of the pipeline (EX, MEM1, MEM2) will continue to execute.

Register File

The register file contains 32 General Purpose Registers (GPR), where each register is
32-bit wide. Figure 4.8 shows the block diagram of the register file. It also includes
two read ports and one write port. The data is written to the register file at the rising
edge of the clock and if the write enable is set. Writing to the register happens when
an instruction reaches the write-back stage of the pipeline. As per MIPS ISA, GPR-0 is
hard-wired to zero.

——R1 Addr—>,
—R2 Addr—> —R1 Data—>
—Write Addr—>; REGISTER
—Write En—>; FILE

—Write Data—>; __R2 Data—>
Clk—>

Figure 4.8: Block diagram of register file

4.3 Execute

All instructions are executed in the Execute (EX) stage of the pipeline. Figure 4.9
shows the block diagram of the EX stage of the pipeline. It includes a multiplier unit,
an Address Generation Unit (AGU), an Arithmetic and Logic Unit (ALU), and a branch
evaluation unit. The inputs to the EX stage are the two operands, the forwarding sig-
nals, and the control signals, which are used to enable the multiplier and to identify the
specific operation that needs to be carried by the ALU.

Besides these functional units, there are two multiplexers which are used to select either
the operands from the ID stage or the forwarding path, which is the previous result of
the ALU. This forwarding path is necessary in case the current instruction needs the
result of the previous instruction.

Multiplier

Several multiplier designs with different pipelined stages such as 2-stage and 3-stage
pipelined multipliers have been evaluated for timing constraint. Multipliers are not
implemented in this thesis work. Existing multiplier designs are integrated into the

25

4.3. EXECUTE CHAPTER 4. PIPELINE IMPLEMENTATION

| muLTipLEr | | |
I IR L —
D | Aw El
/ X
x|] Acu "
e
BRANCH "l mi
A EVALUATION »| 1
(A

—ALURes ewd—————

Figure 4.9: Block diagram of an execution stage

pipeline. The multiplier designs evaluated also include the DesignWare IP blocks from
Synopsys [16]. Even though the preferred timing constraint can be achieved by using
multipliers with more number of pipeline stages, adding more stages to the multiplier
will result in more number of stall cycles due to data dependencies. Hence a trade-off is
necessary between the preferred timing constraint and the performance penalty due to
stall cycles. The final multiplier design chosen for the 7-stage pipeline will be based on
timing constraint.

There are two special purpose register, LO and HI, which are specific to Multipliers.
After multiplication, the higher word of the product is written to HO and the lower
word of the product to LO register.

Arithmetic and Logic Unit

Table 4.1 shows the operations performed by the Arithmetic and Logic Unit (ALU) on
the operands. The operation to be performed is selected by the control signals from the
ID stage. The output of the ALU is fed back in the next clock cycle as a forwarding
path and can be used as one of its operands.

The AGU unit calculates the memory address for the load and store operations. The
AGU also receives the previously calculated ALU results as one of its operands. This
forwarding path is controlled by the forwarding signals from the ID stage.

Branch Evaluation

All branch instructions are evaluated in EX stage. The branch evaluation unit receives
the predicted signals such as predicted direction and target from the branch predictor. It
evaluates the branch instruction and determines the correct branch direction and branch
target address. This information is sent to branch predictor as a feedback. This feed-
back information is used by the branch predictor to determine the validity of its previous

26

4.4. MEMORY ACCESS CHAPTER 4. PIPELINE IMPLEMENTATION

prediction. In case the previous prediction by the branch predictor was an invalid pre-
diction, the branch predictor reroutes the direction of the instruction flow to the correct
direction. In case of valid prediction, the pipeline execution continues without any in-
terruption.

The feedback information can be either fed back from the EX stage or it can be delayed
and fed back in the next cycle, that is from the MEM]1 stage. If the fed back path is from
the EX stage then the path from the output of the ID/EX pipeline register to the input
of the program counter, through the branch predictor, will be completely combinatorial.
It will affect the timing of the pipeline because this path will have a long path delay.
If the feedback path is from the MEM1 stage then the path from the output of the
EX/MEMI1 pipeline register to the input of the program counter, through the branch
predictor, will be completely combinatorial. But, the path delay in case of feedback path
from MEMI1 stage will be less than the path delay in case of feedback path from EX
stage. On the other hand, if the feedback path is set from the MEM1 stage, this will
result in an addition of one clock cycle to the branch misprediction penalty.

The branch evaluation unit evaluates both the conditional and unconditional branch in-
struction, including unconditional jump, jump and link, and jump register instructions
[17]. In case of conditional branch instruction, the effective target address is calculated
by adding the 16-bit sign extended immediate value to the program counter value point-
ing to the instruction following the branch instruction. In case of unconditional jump
instructions, the effective target address is calculated by left shifting the 26-bit index
value by 2 bits and concatenating the resulting 28-bit value with the upper 4 bits of the
program counter value pointing to the instruction following the jump instruction. In
case of jump and link instruction, the effective target address is calculated in a similar
way to the unconditional instruction and the return address, which is the address of the
second instruction following the branch instruction, is written to GPR-31. In case of
jump register instruction, the target address is in the register pointed out by the source
register (RS).

4.4 Memory Access

The data memory access stage is implemented for two-cycle access. Since the implemen-
tation of the data caches is not discussed in this report, the implementation part of the
memory access mainly includes the Load-Store (LS) logic. According to MIPS ISA the
load instruction includes loading a byte, half-word, or a word. LS logic mainly handles
the addressing errors when accessing the data memory. For instance, if a word from the
memory needs to be loaded and the calculated address is pointing to an odd address, it
means that the address calculated is wrong.

Besides LS logic, the memory stage also includes two two-input multiplexers, one in
MEMI1 and the other in MEM2 stage. Both the multipliers are controlled by the control

27

4.5. WRITE BACK CHAPTER 4. PIPELINE IMPLEMENTATION

signals from the ID stage. The multiplexer in the MEM1 stage selects either the result
from ALU or the multiplier. The multiplexer in the MEM2 stage selects either the result
from the previous stage or the data loaded from the data memory. The output from
both multiplexers are fed back as forwarding paths to the ID stage.

4.5 Write Back

All register writes happen in the write back stage of the pipeline. The register write
signal is generated by the control unit in the ID stage and propagated to the write back
stage through the pipeline registers. In case of register data dependencies, the register
is first written and then the result is the register is accessed to be used as operands.
Writing to registers is synchronous to clock, that is the result is written to the register
at the rising edge of the clock.

28

Pipeline Verification

Verification is an important part of a design process. Verification is carried out to en-
sure that required functionality is implemented and bug free. This chapter describes
the verification of a 7-stage processor pipeline. The verification process usually involves
verifying the functionality of a design against its specification. In this case the specifica-
tion is a set of predetermined data, for a respective benchmark, written to the memory
during the MEM2-stage of the pipeline.

This chapter is divided into three sections. Section 5.1 describes the process and steps
involved in the verification of the pipeline. Section 5.2 describes the testbench setup
used for verifying the implementation of the pipeline. Section 5.3 concludes the result
of the verification process.

5.1 Verification Process

The verification of the pipeline is divided into two steps. In the first step the branch
predictor design is verified by integrating it into the 5-stage pipeline, because the branch
predictor was implemented prior to the implementation of the 7-stage pipeline - target
architecture was not available for verification. In the second step the branch predictor
is integrated into the 7-stage pipeline and the verification of the pipeline is carried out.

Cadence Incisive (ncsim) simulator along with embedded microprocessor benchmarks
(EEMBC) [18] are used to verify the functionality of the pipeline. Five EEMBC bench-
marks were used for verification purpose. Each benchmark has a predetermined check-
sum of the data written to the memory during the MEM2-stage of the pipeline and this
is used as a reference for verification of the pipeline.

The process involved in verifying the branch predictor and the 7-stage pipeline is similar.

29

5.2. TESTBENCH SETUP CHAPTER 5. PIPELINE VERIFICATION

The steps involved in the verification process are as follows.

1. The design is compiled and simulated using the ncsim simulator for a particular
benchmark.

2. The data written to the memory in the MEM2-stage of the pipeline is stored into
a file.

3. A python script is used to parse the file and calculate the checksum.

4. If the calculated checksum matches the expected checksum, then the verification
is successful.

5.2 Testbench Setup

Testbenches are set up in order to verify the functionality of a design. A 5-stage pipeline
is used as a testbench to verify the functionality of the branch predictor. To verify the
functionality of the 7-stage pipeline a testbench is set up with ideal instruction and data
caches. These testbenches are further described in detail in the following subsections.

Branch Predictor

Figure 5.1 shows the branch predictor module integrated into the 5-stage pipeline. Since
the branch predictor is designed for two-cycle access, the existing 5-stage pipeline had to
modified to accommodate this feature. The instruction fetch (IF) stage is divided into
two stages, IF1 and IF2. Since the BTB is designed for two-cycle access, the program
counter from the IF1 stage is used to index the BTB. In the IF2 stage the tag comparison
in the BTB is carried out and the hit signal is generated. The BDP is indexed using
the program counter from the IF2 stage. The instruction from the IF2 stage is fed into
the predictors to determine whether it is a branch instruction or not. The result from
branch predictor is obtained during the IF2 stage.

All the branch instructions are evaluated in instruction decode stage of the 5-stage
pipeline. The feedback from the evaluation is sent to the branch predictor. The branch
predictor uses this feedback to determine the correctness of the prediction, both direc-
tion and target. In case of valid prediction there will be no disruption in the instruction
flow. In case of invalid prediction the program counter is loaded with the new value and
the instructions in the IF1 and IF2 stage are cleared. According to MIPS ISA all branch
instructions are followed by a branch delay slot instruction, which needs to be executed.
Hence, in case of misprediction only the instruction in the IF1 stage is cleared. The
branch misprediction penalty is only one clock cycle. Once the integration of the branch
predictor is successful then the verification is carried out. The verification process is
similar to the one described in the section 5.1.

30

5.2. TESTBENCH SETUP CHAPTER 5. PIPELINE VERIFICATION

Branch Target: BRANCH PREDICTOR Valid Target
Branch Taken/NotTaken—| Valid Direction
oC . BTB CONTROL
K . DIR. PREDICTOR Target Address—
Mispred. Stall | BRANCH TARGET BUFFER
[— T _ _
4 PC T—Instr.— P P
i P | | C|
—PC+4 it
PC H— C —V\I;Ialy B Branch — Ct
1 L —IsBranch Pr Evaluation | « |1l
PC+4— | T e M
N N i i 5
- N N
[_0x00000000 |— s Instruction Cache s | "l Instruction j S
L, Instruction Cache T Access 2 T Decode T
Access 1 R R | Instr: R
IF1/IF2 IF2/ID ID/EX

Figure 5.1: Branch predictor module integrated into a 5-stage pipeline, which has been
modified to accommodate two-cycle access to the predictor.

7-Stage Pipeline

Figure 5.2 shows the schematic of the testbench setup for the verification of the 7-
stage pipeline. The branch predictor module which is successfully verified in the 5-stage
pipeline setup is integrated into the 7-stage pipeline. Since the instruction and data
caches are not implemented as part of the pipeline, ideal caches are used for verification
purpose. The signals such as program counter and data are wired for instruction cache.
The signals such as data, address, read and write signals are wired for the data cache.

The verification process is similar to the one described in the section 5.1. At the start of
the simulation the PC is updated with address pointing to the selected benchmark. The
instructions are read from the benchmark and data is written to the memory, which is
stored in a text file. There were situations when it was difficult to identify the problem
in the pipeline, because of which the verification failed. In that case the 5-stage pipeline
was used as a reference to pinpoint the problem - comparing the register values at each
clock cycle.

TEST BENCH

l«<—Data;
DUT ——Write
7-STAGE PIPELINE _Read—l

l’Addr_ —Addr—l

IDEAL I-CACHE IDEAL D-CACHE

Instruction—>

Figure 5.2: Schematic of the test bench used to verify the 7-stage pipeline

31

5.3. RESULT CHAPTER 5. PIPELINE VERIFICATION

5.3 Result

The verification of the 7-stage pipeline design, including the branch predictor, is suc-
cessful. The pipeline design is verified using the following five EEMBC benchmarks.

e Autocorrelation

e Convolutional Encoder

e Fast Fourier Transform

e Viterbi Decoder

e RGB to CMYK Conversion

Once the verification is successful, the design is synthesized and evaluated for area,
power, and timing. The evaluation of the pipeline is discussed in detail in Chapter 6.

32

Pipeline Evaluation

Area, power, and timing are considered as metrics in order to evaluate the 7-stage
pipeline. The VHDL implementation of the pipeline is synthesized using Cadence En-
counter RTL compiler (Cadence RC). Synopsys Design Compiler (Synopsys DC) is used
to evaluate the pipeline in terms of timing. Even though both the tools, Cadence RC and
Synopsys DC, are similar in functionality, Synopsys DC provides DesignWare multiplier
IP blocks with different pipelined stages that can be used for timing evaluation. The
performance impact of the instruction and data cache on the pipeline is not considered
in this evaluation.

6.1 Timing

The longest combinatorial path delay between the stages in a pipeline determines the
operating clock frequency of a processor. Hence it is important to balance the pipeline
stages with respect to path delay. In order to identify the longest combinatorial paths,
the pipeline is synthesized for different timing constraints using Synopsys DC with 65 nm
Low-Power, Low Vt cell library. Based on the synthesis result two main combinatorial
paths were identified which are critical with respect to delay. The identified critical paths
are as follows.

Path 1 Path from the output of the ID/EX to the internal pipeline register of the
multiplier, assuming that the multiplier is pipelined.

Path 2 Path from the output of the MEM1/EX, through the branch predictor, to
the input of the program counter.

Multiplier

Two multiplier designs, Booth-recoded and Synopsys DesignWare block IP, with different
pipeline stages are evaluated for the timing constraint. Table 6.1 gives the time slack for

33

6.1. TIMING CHAPTER 6. PIPELINE EVALUATION

these multiplier designs synthesized with different timing constraints. Both the multiplier
designs pipelined for 2-stages meet the 1.5 ns timing constraint with zero time slack. But
when the timing constraint is reduced to 1.25ns, both the 2-stage pipelined multiplier
designs fail to meet this timing constraint, with negative time slack as given in Table 6.1.
In order to meet 1.25ns timing constraint, a 3-stage pipelined DesignWare multiplier IP
is integrated. Even though the 3-stage design meets the timing constraint, it affects
the pipeline performance by introducing an additional clock cycle to the stall penalty
due to data dependencies. The timing constraint can still be reduced and met by using
multipliers with higher pipelined stage, but it will increase the stall penalty and the gain
might not be worth it, as other paths might get critical in the meanwhile.

Table 6.1: Multiplier time slack

Design Timing Constraint
1.5ns 1.25ns
Booth-recoded (2-stage) 0 -0.16
DesignWare IP (2-stage) 0 -0.13
DesignWare IP (3-stage) 0 0

Branch Predictor

Two branch direction predictor designs, bimodal and two-level predictor, are evaluated
for timing. For the evaluation of bimodal predictor a table size of 128 is used. For
the evaluation of two-level predictor a table size 128 is used for both the levels, L1 and
L2. Table 6.2 gives the time slack for these branch predictor designs synthesized with
different timing constraints. The bimodal predictor meets the 1.5 ns timing constraint,
but fails to meet the 1.25ns timing constraint, whereas the two-level predictor fails to
meet both the 1.5ns and 1.25ns timing constraint. Initially the feedback path from the
branch evaluation unit was provided from the EX stage, because of the long path delay
the feedback path has been moved to MEM1 stage. Hence it can concluded that the
bimodal predictor is better than the two-level predictor in terms of timing.

Table 6.2: Branch predictor time slack

Timing Constraint

Design
1.5ns 1.25ns
Bimodal 0 -0.06
Two-Level | -0.40 -

34

6.2. AREA CHAPTER 6. PIPELINE EVALUATION

6.2 Area

Area is one of the important metrics in determining the performance of an integrated
circuit. In this section, the 7-stage pipeline design is synthesized using Cadence in order
to extract the area occupied by different functionals units in the pipeline. Table 6.3 gives
the setting used during the synthesis of the pipeline.

Table 6.3: Synthesis Settings

Compiler Cadence Encounter RTL Compiler
Clock period 1400 ps

Toggle rate (on primary inputs) | 0.1

Cell library 65nm LP, 1.2V, Standard Vt Library
SRAM library 65nm LP, 1.2V

Optimization Effort Medium

7-Stage Pipeline

Figure 6.1 shows the plot of the area occupied by the 7-stage pipeline and the functional
units in the pipeline. From the plot it can be deduced that the branch predictor design
occupies =~ 45 % of the total area of the pipeline. A bimodal predictor with table size of
128 and a BTB with table size of 32 and 2-way set associativity are used in the synthesis.
In a branch predictor with this configuration, BTB accounts for = 86 % of the total area
of the branch predictor. The table size of the BTB used for the synthesis is the minimum
available SRAM configuration. If the size of the BTB is increased further, the branch
predictor will account for most of the silicon area of the pipeline. Hence care should be
taken while choosing the branch predictor configuration.

| Pipeline Area (um?)

Register File |- 1‘5,246 -
Multiplier |- I 17,227 .
Branch Predictor |- NI 42,543 -
Pipeline - I 93,740 -

0 0.2 0.4 0.6 0.8 1
-10°

Figure 6.1: Post-synthesis area estimate of the pipeline and its functional units

35

6.2. AREA CHAPTER 6. PIPELINE EVALUATION

Branch Predictor

From the plot in Figure 6.1, it is clear that the branch predictor plays a significant role
when it comes to silicon area of a pipeline. In order to determine the effect of different
branch predictor configurations on the area, several branch predictor configurations are
synthesized and evaluated. Figure 6.2 shows the plot of the area occupied by different
BDP configurations. It needs to be noted that the size and the configuration of the
BTB is kept constant. From the plot it can be deduced that the large two-level (PAp)
predictors occupy huge area as compared to bimodal predictors, whereas the smaller
two-level predictors such as GAg and Gshare are in close range to bimodal predictors.
The prediction accuracy of these two-level predictors is &~ 3 % higher than the bimodal
predictors.

OPredictor Area (mm?) B Total Area (mm?)

|
0.2 a

0.1} A

,m B 0 0

| |
) ™ » ™
P Y Y Y
60\\9 e\\/Q by\\/%
& N

Na
Figure 6.2: Post-synthesis results with respect to area for different direction predictors.

Figure 6.3 shows the plot of the area occupied by different BTB configuration. It needs
to be noted that the size and the configuration of the BDP are kept constant. The BTB
is implemented using SRAM cells. Based on the simulation results obtained, Chapter 3,
it is clear that higher the BTB size and associativity, better the performance of the
branch predictor. However, from the plot it is clear that a high cost in terms of area
needs to be paid for better performance. Hence a trade-off is necessary between the area
and the performance of the BTB.

36

6.3. POWER CHAPTER 6. PIPELINE EVALUATION

OBTB Area (um?)BTotal Area (um?)

-10°
1 [|
[|
0.8 - .
0.6 y
0.4 y
0.2 D H :
q,\\’ q,\q’ q,\by cb\\’ oo\% oo\by
&fb\ &fb\ &fb\ Q,\ q,\\/% Q)\\'%
DA MR N

Figure 6.3: Post-synthesis results with respect to area for different BTB configurations

6.3 Power

Similar to evaluation in terms of area, the evaluations are carried out in terms of power
as well. The pipeline is synthesized with the settings as given in Table 6.3. The power
values are obtained by using static switching probability on all the primary inputs, hence
the power values are not accurate.

7-Stage Pipeline

Figure 6.4 shows the power consumption of the pipeline and its functional units. From
the plot is can be deduced that the branch predictors account for the maximum power
consumption in a pipeline, with a consumption rate of ~ 65 % of the total power con-
sumed by the pipeline. From the plots in the Figure 6.1 and Figure 6.4, it is clear that
the branch predictor has a huge impact on the pipeline area and power consumption.

Branch Predictor

Figure 6.5 shows the plot of the power consumption of different BDP configurations
with respect to the power consumption of the branch predictor. It needs to be noted
that the size and the configuration of the BTB is kept constant. Previously it has been
shown that the larger two-level predictors such as PAp occupy more area. From the plot
in Figure 6.5 it can be observed that they also consume more power when compared
to smaller two-level (GAg, Gshare) and bimodal predictors. The prediction accuracy

37

6.3. POWER CHAPTER 6. PIPELINE EVALUATION

| Pipeline Power (mW)

Register File- Bl 7.6 R
Multiplier - 6.1 B
Branch Predictor - I 16.3 =
Pipeline |- I 7.3

0 20 40 60 80

Figure 6.4: Post-synthesis power estimate of the pipeline and its functional units

of PAp predictor is ~ 1% higher than a GAg/Gshare predictor and 4 % higher than a
bimodal predictor. Hence it can be deduced that the performance gain obtained from
the bigger two-level predictors is not worth the cost that needs to be paid in terms of
area and power.

OPredictor Power (mW) B Total Power (mW) ‘

I I I
150 B
100 | |
50 | .
-0
| | | |
% 5 5 %
Q) Vv Vv Vv
N S S N
06\ 60\\/ &Q)\}\' q}by\\/
S N
D R Q
Q?’

Figure 6.5: Post-synthesis results with respect to power for different direction predictors.

Figure 6.6 shows the plot of the power consumption of different BTB configurations
with respect to the power consumption of the branch predictor (BTB and BDP). The
size and the configuration of the BDP is kept constant in this case. From the plot it
is clear that the BTB accounts for more than 90 % of the total power consumed by the
branch predictor. In this case the table size of BDP is kept small. In case of bigger
BDP table size the power consumed by the BTB still dominates. It is been shown from
the branch predictor simulations that, besides BDP, a good BTB configuration can have

38

6.3. POWER CHAPTER 6. PIPELINE EVALUATION

huge impact on the performance of a processor. Hence it is important to make a good
trade-off between the size of a BDP and BTB. It needs to be noted that the difference
in area and power between the BTB configurations with 32 and 128 table size is not
proportional to the increase in the table size, because for the small SRAM blocks the
peripheral circuitry is dominant. When the size of the SRAM is increased from 32 to 128,
only the number of cells will increase. The area and power of the BTB scales linearly
with respect to the table size only when the table size has increased more than ~ 4k
(words).

OBTB Power (mW) B Total Power (mW) ‘

100 | - .
80 | a
60 |- 1
40 - |
20 | ﬂ ﬂ .

@\@\; %&@\@\B \QSO\x \@OO@ \@OO\B

PP SRS Q)@b @&@ @@b

Figure 6.6: Post-synthesis results with respect to power for different BTB configurations.

39

Conclusion

Implementation and evaluation of a 7-stage processor pipeline has been carried out. Im-
plementation of instruction and data cache are not discussed. More emphasis is given
to the branch predictors than any other functional units, because they play a vital role
in determining the performance of a pipeline. The pipeline is verified using EEMBC
benchmarks and well balanced with respect to timing. Ideal caches were used during
the verification of the pipeline. Implementation of multipliers are also not discussed.
Existing multiplier designs are integrated into the pipeline and evaluated.

Several branch predictor configurations, of BDP and BTB, are simulated in order to
identify a few good configurations in terms of execution time and prediction accuracy.
Based on the simulation results, it can deduced that the larger two-level predictor such
as PAp perform better than a bimodal or a smaller two-level predictors such as a GAg
or a Gshare predictor. But, when the designs are synthesized the larger PAp predictors
consume more area and power than the bimodal or smaller two-level predictors. The
performance gain in using a large PAp predictor is not worth the cost to be paid for
the area and power it consumes. Hence a smaller two-level or a bimodal predictor is
preferable in terms of area and power. Furthermore, when it comes to timing constraint,
two-level predictors fails to meet the required timing constraint. Two-level predictors
have longer path delay than the bimodal predictors. Hence a bimodal predictor is prefer-
able over the two-level predictors in terms of timing, area, and power.

Since the results from both the BDP and the BTB are used in order to predict a branch
instruction, they are equally important in determining the performance of a branch pre-
dictor. Based on the simulation results, it can be deduced that the bigger table size and
higher associativity of a BTB in turn leads to better performance of a branch predictor.
But, the price to be paid in terms of area and power for better BTB performance is also
higher. Based on the BTB area and power plots, it is clear that the increase in asso-

40

7.1. FUTURE WORK CHAPTER 7. CONCLUSION

ciativity will have a huge impact on area on power than the increase in number of sets
(table size). Hence a trade-off is required between the BTB table size and associativity.
A good branch predictor performance can be achieved with a BTB table size of 128 and
a 2-way associativity.

The multiplier and the branch predictor are the two main critical paths which affect
the timing of the pipeline. The pipeline meets the timing constraint of 1.5ns with the
DesignWare 2-stage multiplier and a bimodal predictor. The pipeline can be pushed to
meet the 1.25ns timing constraint by integrating a DesignWare 3-stage multiplier, but
the current branch predictor design will fail to meet the timing constraint. By further
pipelining the feedback path of the branch predictor, 1.25ns timing constraint can be
achieved.

The impact of integrating an instruction and a data cache into the pipeline is not con-
sidered in this evaluation. Introduction of caches will have a huge impact on the timing,
area, and power of the pipeline. Some of the conclusions, based on the results of the
pipeline evaluation, made above might not be valid when the caches are integrated and
evaluated as part of the pipeline. For instance, the area occupied by the caches will be
so huge that either using a bimodal or a two-level predictor will have negligible impact
on the total area of the pipeline. Hence these evaluations need to be reconsidered after
integrating the caches into the pipeline.

7.1 Future Work

An instruction and a data cache with two-cycle access will be implemented and integrated
in the 7-stage pipeline. The caches implemented will be way-predicting set-associative,
because the way-predicting caches reduce the energy consumption by about 70 % as
compared to conventional caches [19]. The pipeline will be verified and re-balanced
with respect to timing. The verified pipeline will then be synthesized and re-evaluated
with respect to area and power. The performance of the branch predictors can further
be improved by optimizing the content of the BTB, that is to store the branch target
instruction instead of branch target address. This technique will help in reducing fetch
cycles in case of valid prediction.

41

1]

Bibliography

Power Consumption of Top 10 Super Computers.
URL http://www.top500.0rg/lists/2011/06/press-release/#.USALYRbAGBU

M. Dubois, M. Annavaram, P. Stenstrém, Parallel Computer Organization and
Design, Cambridge University Press, 2012.

D. A. Patterson, J. L. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface, Fourth Edition, 4th Edition, Morgan Kaufmann Publishers
Inc., 2008.

S. Mirapuri, M. Woodacre, N. Vasseghi, The MIPS R4000 Processor, in: IEEE
Micro, Volume 12, Issue 2, 1992, pp. 10-22.

OpenRISC - Free and open RISC instruction set architecture.
URL http://opencores.org/orlk/Main_Page

C. Perleberg, A. Smith, Branch target buffer design and optimization, IEEE Trans-
actions on Computers 42 (4) (1993) 396-412.

T.-Y. Yeh, Y. Patt, A comparison of dynamic branch predictors that use two levels
of branch history, in: Proceedings of the 20th Annual International Symposium on
Computer Architecture, 1993, pp. 257-266.

T.-Y. Yeh, Y. Patt, Alternative implementations of two-level adaptive branch pre-
diction, in: Proceedings of the 19th Annual Int’l Symposium on Computer Archi-
tecture, 1992, pp. 124-134.

S. McFarling, Combining branch predictors, Western Research Laboratory Techni-
cal Note TN-36 (1993).

D. Jimenez, Reconsidering complex branch predictors, in: Proceedings of the 9th
International Symposium on High-Performance Computer Architecture, 2003, pp.
43-52.

42

http://www.top500.org/lists/2011/06/press-release/#.U5ALYRbA5BU
http://opencores.org/or1k/Main_Page

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. T. Inc., MIPS32 architecture for programmers volume i: Introduction
to the MIPS32 architecture, http://www.imgtec.com/mips/architectures/
mips32.asp, accessed: 2010-09-30.

T. Austin, E. Larson, D. Ernst, SimpleScalar: An infrastructure for computer sys-
tem modeling, Computer 35 (2) (2002) 59-67.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B. Brown,
MiBench: A free, commercially representative embedded benchmark suite, in: Proc.
Int. Workshop on Workload Characterization, 2001, pp. 3—14.

J. L. Henning, SPEC CPU2000: measuring CPU performance in the new millen-
nium, Computer 33 (7) (2000) 28-35.

D. Brooks, V. Tiwari, M. Martonosi, Wattch: a framework for architectural-level
power analysis and optimizations, in: Proceedings of the 27th annual international
symposium on Computer architecture, 2000, pp. 83-94.

S. Inc., Designware building block IP dcumentation overview, http://www.
synopsys.com/dw/dwlibdocs.php, accessed: 2010-09-30.

M. T. Inc., MIPS32 architecture for programmers volume ii: The MIPS32 instruc-
tion set, http://www.imgtec.com/mips/architectures/mips32.asp, accessed:
2010-09-30.

EEMBC, Embedded microprocessor benchmarks: System benchmarks, http://
www . eembc . org/benchmark/products.php, accessed: 2010-09-30.

K. Inoue, T. Ishihara, K. Murakami, Way-predicting set-associative cache for high
performance and low energy consumption, in: Proceedings, 1999 International Sym-
posium on Low Power Electronics and Design, 1999, pp. 273-275.

43

http://www.imgtec.com/mips/architectures/mips32.asp
http://www.imgtec.com/mips/architectures/mips32.asp
http://www.synopsys.com/dw/dwlibdocs.php
http://www.synopsys.com/dw/dwlibdocs.php
http://www.imgtec.com/mips/architectures/mips32.asp
http://www.eembc.org/benchmark/products.php
http://www.eembc.org/benchmark/products.php

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Thesis Objective
	Related Work
	Report Outline

	Technical Background
	MIPS Instruction Set Architecture
	Instruction Format
	7-Stage Pipeline
	Hazards

	Branch Predictor Simulation
	Pipeline Implementation
	Instruction Fetch
	Instruction Decode
	Execute
	Memory Access
	Write Back

	Pipeline Verification
	Verification Process
	Testbench Setup
	Result

	Pipeline Evaluation
	Timing
	Area
	Power

	Conclusion
	Future Work

	 Bibliography

