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ABSTRACT

There are many tasks that humans for different reasons are unwilling or unfit to do. Examples are, for
instance, dangerous tasks such as handling toxic waste or monotonous tasks, like working in assembly lines.
The hope is that robots one day can do tasks like these for us. Even though a lot of progress has been made in
robotics in the last few decades, it is clear that a lot of work and research remains for this goal to be fulfilled.

This master thesis describes a process of upgrading Kondo, a small humanoid robot, from a basic robot
with no sensory capabilities to a more advanced robotic platform. The hope is that the improved platform can
be used to facilitate further research in several fields of robotics such as human-robot interaction, adaptive
control and evolutionary robotics.

In order to perform this upgrade, the servo controller of existing platform was replaced by a new pro-
grammable servo controller. Furthermore, a sensor module with an accelerometer and distance sensors was
designed and added to the platform, giving Kondo sensory capabilities. To complete the system, a two part
software interface was created. This included a graphical user interface to directly control the robot and create
motion sequences and a Python class interface for prototyping and more advanced programs.

The resulting platform was tested in order to ensure that it fulfilled the objectives stipulated in the project.
The tests included hardware testing, i.e. testing the actual motion of the robot and the communication between
to and from the electronic modules. The platform’s configurability was also tested by implementing three
common robotic features, including automated fall recovery and wall avoidance.

The results of these tests indicate that the basic functionality of the new platform, such as walking and
standing, is rather robust. The speed of the developed gait however, can be improved. The platform is
relatively easy to extend and modify therefore can be used in education or in robotic research. A weakness
of the current platform is the number of connections needed to power and communicate with the electronic
boards. Decreasing this number is something that could be worked on in future projects in order to increase
the robot’s autonomy.

Keywords: Humanoid robotics, Robotic research, Robot algorithm prototyping
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1 Introduction
There are many tasks that humans do not like doing or are simply unfit to do for different reasons. This could
be things that are dangerous, such as handling toxic waste or working in space, or tasks that are monotonous,
such as working in assembly lines or harvesting cashew nuts.

In factories, industrial robots have been introduced to reduce the number of such tasks and at the same
time increasing speed, precision and efficiency of assembly lines. The first industrial robot, called the Unimate,
was sold to General Motors in 1961. Since then the market has grown substantially and the total number of
industrial robots are now about 1.2 million worldwide. While industrial robots have been used heavily in
the industry for almost half a century, the use of robots in the rest of society have been limited. Since the
beginning of the new millennium however, many service robots such as vacuum cleaning and lawn mowing
robots have been introduced to the market in parallel to robots used for military applications. In 2007, the
number of service robots were about 5.5 million. This was expected to increase to 17 million until 2011 [1].

As the demand for robots in general has increased, there has also been an increased demand for more
advanced robots that can perform more than just mundane, domestic duties. The hope is that these robots
can aid in solving many of problems we face in a modern society. For example the problem with an ageing
population, and that the working portion of the population is decreasing. Many of the robots being designed
for this purpose are of the type humanoid robots.

A humanoid robot is a robot whose overall structure is based on the human body. Humanoid robots are
generally more complex, expensive and more difficult to control than their wheeled counterparts. In many
situations and environments however, humanoid robots have several advantages over traditional, wheeled
robots. Due to their structural similarity to humans, they are well suited to operate in human environments,
use tools and operate vehicles designed for humans. For example, they are well adapted to climbing stairs.
This makes humanoids suitable for tasks such as personal assistance, elderly care and other tasks in people’s
homes. However, even though a lot of progress has been made both in general and humanoid robotics in the
last decade, it is clear that a lot of work and research has to be done before robots can be released to roam free
in society.

At Chalmers university of technology, robotic research is being conducted by Adaptive systems research
group. Their main focus lies towards decision-making in autonomous agents, but robots are also used in
education to teach engineering students about a multitude of topics such as microcontroller programming,
signal treatment and the uncertainties when working with robotic systems in real life. One of the robots used
by group in the Humanoid robotics class is called Kondo KHR-1 and is a small humanoid robot.

This master thesis describes a process of upgrading Kondo, from a basic humanoid into a more advanced
robotic platform. The hope is that the improved platform will be used to facilitate further research in several
fields of robotics such as human-robot interaction (HRI), adaptive control and evolutionary robotics.

1.1 Objectives

The main objective of this project is to create a multi-level robotic platform that can be used in research of
robotic topics as well as education. To accomplish this, the existing servo controller will be replaced by a
new one that can be re-programmed if needed and extended with extra functionality. It is also relevant to
expand the existing robotic platform to include a sensory system. This would allow the robot a means of
direct interaction with the environment and could also potentially serve to improve the robot’s motion control
system. On top of this, a high-level software interface shall be created in order to tie the different parts of the
robot into a complete robotic system. This platform should be open for extension and modification.

These objectives can be divided into the following subobjectives:

1.1.1 Subobjectives
The platform should be able to:

• execute basic motion, such as walking and turning.

• detect if it has fallen to the ground.

• get up from horizontal position.

1



• be controlled by users of different level of experience with robots.

• be easy to modify and extend.

To do this several things need to be created:

• a servo controller with at least 17 output channels.

• a sensor module with a distance sensor and accelerometer.

• a high level software interface for all modules.

• a graphical user interface for direct control of the robot.

1.2 Limitations

What is not within the scope of this project is to alter the physical features of the existing platform. The only
actual hardware that will be replaced is the electronic modules on the back of the robot, while the actuators
and the aluminium frame will be kept. This project does not aim at developing advanced robotic features,
such as pattern recognition or a dynamic gait, but rather creating a general multi-functional robotic platform
that can later be extended and specialized if desired.

1.3 Reading guidance

This master thesis is organised in the following way:
Chapter 2 gives an overview of robotics in general and discusses common robot architectures, actuators,

sensors and processors. In chapter 3, the existing robot that served as a basis for the project is presented.
Chapter 4 describes the overall structure of the project; what has been done and why, and which tools that
were used for the development. Chapter 5 describes the design process of the new servo controller, sensor
module and software interface. The tests that were performed to ensure that the platform fulfilled the project
goals are described in chapter 6. The results from these tests, together with the final versions of the created
hardware and software are presented in chapter 7. Finally, chapter 8 discusses these results, while chapter 9
concludes the project and presents possible future work with the platform.
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2 Background
A basic definition of a robot is that it is a machine that can sense its environment in some way, process and act
on the received information. Examples of robots include the Electrolux Trilobite vacuum cleaning robot (in
fig.7.1.1). The Trilobite has ultrasonic sensors to sense its environment and a processor to plan and map the
apartment. It has motors that are used to move around and a vacuum cleaning-unit. Things generally not
considered as robots are for example a PC (fig.7.1.1) and a washing-machine [2, 3].

Figure 2.1.1: To the left, a PC, typically not considered being a robot. To the right, Electrolux Trilobite, typical robot
(courtesy Patrik Tschudin).

2.1 Autonomous robot

For a robot to be considered autonomous, there are a few extra criteria that it needs to fulfill. First of all, the
robot should be self-maintaining, for example it should detect when its batteries are running low, and then find
its charging station. The robot should also be able to learn from its environment, without human interference,
for example to adapt its strategies based on how the people in the room move around. The robot should be
able to move around in the environment and avoid crashing into or breaking things. The final criteria is that it
shall have the ability to safely interact with human beings and the environment [3].

2.2 Robotic paradigms

When designing autonomous agents, there are two fundamentally different approaches [4]. The first strategy,
used in traditional AI, is a top-down approach. The goal of this method is to create human-like intelligence
[5]. The structure of a traditional AI processing is shown in fig. 2.2.1. First, information is retrieved from the
sensors of the robot, information such as the distance to objects in front of it, the robot’s acceleration, etc. Next,
based on this information, a model of the world is created. From this model the robot reasons about actions
available and what the outcome of these actions would be. When various actions have been considered the
best action is chosen and executed in the physical world by the robot. Even though classical AI has had great
success in certain subareas, such as planning, pattern recognition, and chess playing (the best chess playing
computers normally beat the best human chess players [6]), the goal of creating human-like intelligence in an
autonomous robot is far from being reached.

An alternative approach to design intelligent behaviour is called Behaviour based robotics (BBR). BBR was
pioneered by among others, Rodney Brooks, a professor at Massachusetts Institute of Technology (MIT) in
the mid 1980s [7]. BBR is a bottom-up approach that tries to create intelligent behaviour from a set of basic
behaviours. The typical flow of information in a BBR-system can be seen in fig. 2.2.1. This approach is similar
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to how complex behaviour can emerge in many biological systems. An example of this is ant colonies, where
advanced, coordinated behaviour emerges from simple rules based on pheromones [5].

Both approaches have its strengths and weaknesses. BBR is a faster, more reflex-based approach, and can
used to generate advanced, organic looking behaviour. A feature such as pattern-recognition is very difficult
to design. At the same time, traditional AI can often be slow as a lot of processing has to take place before
action can be taken. This can limit, for example, more advanced control systems that could otherwise be used.

Therefore, a third alternative is to combine the previously mentioned approaches. When a combination is
used, the bottom-up approach is used to handle rudimentary tasks (roaming and avoiding hitting things),
and the top-down approach is used for high-level cognitive task (pattern recognition), thus combining the
strength of each paradigm [8]. Examples of this include the General-purpose robotic brain structure (GPRBS)
developed in the Adaptive systems research group at Chalmers [9].

Avoid Obstacles

Roam

...

Charge Batteries

Behaviours

Actuators

Sense

Model

Plan

Act

Sensors

Figure 2.2.1: Typical processing of a classical AI-system, top-down approach (left) and a bottom-up approach-system
(right)

The complete system, however is not only dependent of the intelligence of the robot, but also of the physical
system. The physical part of the robot is comprised of several different parts. Sensors provide information
about the environment and the robot. The analysing of sensory input and planning is treated a processor that
generates control signals. Subsequently the control signals are sent to the actuators that execute the motion in
the physical world.

2.3 Robotic motion

A central feature of any robotic platform is motion. Motion is created using actuators. Actuators are devices
that allows the robot to take action, i.e. to move or to manipulate something. The most important type of
motion is perhaps locomotion, e.g. motion that allows the robot to transport itself from one place to another.

Locomotion can be anything from wheeled transportation to walking, to jumping. Most mobile robots
use either wheels or a number of tracks. These robots are both relatively simple to design and use since they
generally do not need to be actively balanced. The wheels also make them rather energy efficient. Robots using
two or even only one wheel have been developed, such as the T.O.B.B and the single wheel robot BallIP [10,
11]. The robots with fewer wheels, while more difficult to balance, have the advantage of potentially reducing
the number of parts and increasing efficiency.

2.4 Locomotion in humanoid robotics

For humanoid robots the most common forms of locomotion are walking and running. Creating stable walking
patterns is a difficult task for several reasons. One of the reasons is that even though a bipedal robot is often
rather stable when standing on both feet, it has to lift one of its supports from the ground to take a step the
robot This temporarily places the robot in a unstable state, making it prone to fall over.

Another reasons is the complexity of the robot itself. In order to create a walking pattern, all the joints
of the robot have to be coordinated into one complete motion. In a multi-joint system, changing one of the
joints slightly can have great impact on the overall posture of the robot. This is why it is difficult to construct
a balancing system for such a robot. This problem is especially true for humanoids with a large number of
degrees of freedom (DOFs). This problem can be compared to that of the inverted pendulum [12].

4



o_O

Support region

o_O

COM COM

Figure 2.4.1: The robot stays statically stable as long as the COM, projected onto the horizontal plane, stays within the
support region.

In robotics, walking is usually divided into two different types, static walking and dynamic walking. Static
walking is created by forcing the robot to keep the vertical projection of its center of mass (COM) within its
support region at all times (Example shown in 2.4.1). Static gaits are relatively easy to produce, as they consist
of a sequence of poses that themselves are statically stable. The other type of walking, using dynamic gaits,
e.g. gaits where the robot COM not always is within the support region, are often more energy efficient, and
also allows higher speeds.

There are several techniques to generate dynamic gaits. One of the more popular algorithms is called Zero
Moment Point (ZMP). This algorithm keeps track of the point on the foot of the robot where no horizontal
moment is generated, that is the vertical inertia and the gravitational pull is equal to zero. To keep the robot
balanced, motion has to be planned as to keep this point should stay within a support region at all times [13].
ZMP has been used successfully in robots such as Honda’s ASIMO [14]. Another type of movement that is
quite common in many humanoid robotics is falling. Although this is rarely desirable, it is one of the things
that has to be considered when designing a humanoid robot. Most humanoids can only move when they are
in upright position. If the robot falls and can not get up again without interference of an operator the robot’s
autonomy is virtually lost.

2.4.1 Other motion

Besides locomotion there are several other types of movement patterns relevant to robotics. For example
moving arms to grasp objects, moving the head to track features detected with cameras, and more entertaining
motion like dancing.

2.5 Sensors

The sensory system of the robot is used to measure some aspect of the world around the robot or some aspect
of the robot itself. Just like the human sensory system, there are several different ways a robot can sense, which
will be discussed below.
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Figure 2.5.1: Two types of distance sensor. To the left, a Maxbotix Ultrasonic Rangefinder and to the right a Sharp
distance sensor.

2.5.1 Proximity and distance sensors

Most autonomous robots are equipped with some kind of proximity sensor. This is an important class of
sensors as it gives the robot the ability to detect and interact with objects around it. The two most common
types of proximity sensors are infrared (IR) and ultrasonic sensors. IR-sensors use IR-emitters to send light in
a direction, and IR-receiver to receive the reflected light. The intensity of the reflected light is then converted
to a proximity measure. There are also more advanced IR-sensors, such as the Sharp distance sensor (fig. 2.5.1).
It measures the returning angle of reflected light and can from that value estimate the distance to the object.

The ultrasonic sensor (an example shown in fig. 2.5.1) use sound instead of light. They send out a pulse
of sound and measure the time for the echo to return to the sensor. Using this value, and the fact that sound
travels at an almost constant speed (≈ 343m/s) in air, it is a simple task to calculate the distance to the object
[15].

Another type of sensor is the Laser Range Finder (LRF). An LRF is generally a lot more precise than infrared
and ultrasonic sensors, often able to produce measurements accurate down to millimetre level in several
directions. The downside is the extreme increase in data quantity that need to be processed. Another drawback
of LRFs are generally that they are much more expensive than the IR and ultrasonic counterpart. However,
in-expensive types of 3D-imaging cameras are becoming more common in robotic applications, such as the
Microsofts Kinect, originally an extension of the Xbox 360 [16, 17].

2.5.2 Inertial sensors

Another type of sensor sometimes used when mapping are inertial sensors, such as accelerometers, gyroscopes
and sometimes magnetic field sensors. Accelerometers measure the linear acceleration in 1,2 or 3 directions.
Accelerometers can be used to keep track of the orientation of a static robot, as it is known that the component
directed towards the earth centre is always 1g. Gyroscopes on the other hand, while also measuring accelera-
tion, measure the angular acceleration. Both accelerometers and gyroscopes are used to balance robots as they
can detect rapid accelerations and alert the control system to take action necessary to prevent a fall. These
sensors are generally affected by drift. This can be compensated for by using an absolute positioning system to
compare against, such as a IR beacon with a known location as a reference. Outdoors, satellite positioning
systems, such as GPS, can be used to determine the position within a meter [18]. However the accuracy of
such systems are drastically lowered when used in indoor environments and are therefore not as common in
those setting.

2.5.3 Other sensors

There are several other types of sensors that are relevant when creating autonomous robots. As mentioned in
the beginning of this chapter, sensors that measure how much power the robot has left in its batteries can be
a very important feature, as it can plan how long the robot can continue before it has to find somewhere to
recharge. Other sensors, such as temperature sensors, moisture sensors, and tactile sensors that alert the robot
about physical contact can be used to protect the robot from hazardous environments [19].
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2.6 Robot brain

The analysing and planning part of the robotic platform takes place in something that could be described as
the robot ”brain”. The brain analyses data from sensors and combines it with relevant information saved in
memory, such as estimated position. This information serves as a basis for decision-making for the next robot
action, i.e. turn around if it has detected an object in front of it. Next, control signals are sent to the actuators to
perform the action. The hardware that the brain runs on can vary [19]. Two common hardware solutions are
presented below.

2.6.1 PC
The benefit of using an ordinary PC is the relatively high computing power and computing speed, which
allows for complex control and signal processing. On the other hand, sending data to and from the computer
may introduce a delay to the system which might make it too slow for certain time-critical control applications.
If the PC is a laptop, it can be placed directly on the robot itself, if the robot is strong enough to carry it.

2.6.2 Microcontroller
Another common approach is to use a microcontroller as the platform for a robot brain. A microcontroller
is essentially a small single chip computer, with memory, processing capabilities, and input/output ports.
Microcontrollers are used in many embedded system applications as they are light-weight and small enough
to be mounted directly on the robot itself. It can be used to monitor signals from the sensors, treat them
and send control signals to the actuators. The complexity and calculating speed of microcontrollers can vary
greatly. From 4-bit version running at 4 kHz for low power consumption application, to 32-bit ARM controllers
running at over 1 GHz, often used in cellphones and portable computers.

2.6.3 Hybrid
In reality, the robot brain is often comprised of a combination of a PC and one or several microcontrollers [19].
The PC is used for high-level tasks that require a lot of processing, such as analysing data from a webcam,
planning, or simulation and generation of motion sequences. The microcontroller is used for the low level
tasks such as converting a voltage level from a distance sensor to a number, e.g. the distance measured. The
microcontroller can also be used to send control signals to actuators, such as servo motors. In a hybrid system,
the robotic brain is essentially distributed over the hardware platform parts.
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3 Existing platform

The robot used in this project is the Kondo KHR-1 and it was created and manufactured by the Japanese
company Kondo Kagaku Co. The company originally made products for RC-applications, such as servo
motors for model aeroplanes and cars. In 2002 however, it was observed that the demand for one of the
company’s high power servos had increased. They were sold in bulks of up to twenty at a time, instead of the
normal one or two at a time. After investigation they found out that there servos were being used to construct
humanoid robots. This led Kondo Kagaku to create their own humanoid robot, and the result was the Kondo
KHR-1 kit, which was introduced to the market in June 2004. The cost of the original platform averaged at
around $1600, which made it the first robot kit of its kind with a relatively low price [20]. One of the goals for
Kondo Kagaku was to create a robot that could compete in a Japanese contest for bipedal humanoid robots
called ROBO-ONE. The first part of competition is a demonstration part, where basic robot skills such as
walking and standing up is show-cased. Next, robots that qualifies for the next step can participate in the
fighting competition where robots face off one-on-one, trying to push each other out of a platform. Kondo
Kagaku have been relatively successful in this endeavour, as the Kondo KHR-1 is one of the most frequently
used robotic kits in the competition[21]. The particular robot being used in this project, shown in figure 3.1.1,
has been used in the humanoid robotic classes at Chalmers to teach the students about robotics and HRI. It has
also been used in several research projects [22].

Figure 3.1.1: Kondo in its original state.

3.1 Mechanical structure

The body of Kondo consists of 17 servo motors joined by an aluminium frame. There are five servos in each
leg, two in the hip, one in the knee, one in the ankle and one in the foot. The arms each have three servos, two
in the shoulder and one in the elbow. The last servo sits on top of the chest, serving as a sort of head, that can
move left to right. This gives Kondo a total of 17 degrees of freedom (DOF).
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3.2 Servo motors

The servo motors used by Kondo are of type KRS-784ICS, manufactured by Kondo Kagaku. They are capable
of delivering a torque of up to 0.85 Nm and rotate from 0 ◦ to 180 ◦ in 0.51 sec. The desired positions of the
servos are set using pulse width modulation (PWM). The PWM signal consists a periodic square wave pulse
and the width of the pulse decides the output of the servos (shown in figure 3.2.1). These servos also have a
few extra features that are not present in traditional servos. For example they can return the servo’s relative
position. The servos also have several parameters, such as maximum speed, damping and servo stiffness that
can be set using PWM signals.

PWM signal Servo output

180º

0º

Figure 3.2.1: A conceptual sketch of PWM signals (left) that controls the output of the servos (right).

3.3 Electronics

The main electronic components of the Kondo KHR-1 are the servo controllers, the two RCB-1 boards also from
Kondo Kagaku, that come with the kit (shown in fig. 3.3.1). The RCB-1:s are based around the PIC 16F873A
microcontroller from Microchip Technology. The servo controllers receives commands from the main program
and executes them. Its main task is to send control signals to the individual servo motors. The board and the
servo motors operate at 6 volts and are powered either by batteries, mounted inside the chest frame of Kondo,
or by an external power supply [23].

Figure 3.3.1: The two RCB-1 boards from the existing platform linked together to work as a single servo controller.
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3.4 Software

Motion patterns for Kondo are normally created using the program HeartToHeart (H2H), shown in fig. 3.4.1.
H2H lets the user specify the desired position of on up to 24 output channels (corresponding to the 24 output
channels the two RCB-1 boards). The range of the servos is values between 0 and 180, corresponding to the
servo output angle. As Kondo only has 17 servo motors, channels 4,5,10,11,12,18 and 24 are not used. The
program can be run in synchronized mode, which relays signals directly from H2H to Kondo (via the serial or
USB-port), synchronizing the real servo position to that in the program and thereby giving direct feedback
when creating poses. Created poses can be saved in a list, and sequences of poses are put together to create
motion patterns. The initial position the servos take Kondo is started, called the home position, can be set by
the interface.

Figure 3.4.1: HeartToHeart graphical user interface. The channels are linked to the corresponding output channels on
the RCB-1 boards.
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When a motion has been created in H2H, the sequence can be replayed and tested the motion on Kondo
itself. The entire sequence can also be saved onto the RCB-1 boards, to be played in its entirety. Created servo
setups and motion sequences can also be saved as .csv-files for later use. The first few lines from one of these
files is shown in table 3.4.1. The only official release of the communication protocol used to communicate with
RCB-1 is written in Japanse. However, a roboticist named Daniel Albert published a partial English translation
online [24]. Tests have verified that Albert’s protocol is working.

Table 3.4.1: The three first lines from a motion file created with the HeartToHeart interface. Each line represent
a pose. The first column is the pose index, the second the pose name, and the third the transition speed
between poses. Columns 4 to 24 represent the output channels of the RCB-1 board.

1 POSITION 1 5 18 64 0 0 -18 -64 0 -90 0 0 0 0 -4 0 0 0 -3 0 4 0 0 0 3 0
2 POSITION 2 4 19 14 0 -10 0 -64 0 -90 0 0 0 0 -40 0 0 0 3 0 4 0 0 0 3 0
3 POSITION 3 7 19 64 0 -10 0 -64 0 -90 0 0 0 0 10 0 0 0 3 0 -4 0 0 0 3 0
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4 Method
The work of creating the platform itself can be divided into three main parts: (1) upgrading and extending the
hardware of the robot, (2) developing the software interface, and (3) platform testing and evaluation. The first
two parts were developed in parallel, while the evaluation took place after the platform had been completed.

4.1 Hardware upgrade

Preceding the development of the new hardware, the existing platform was evaluated. The RCB-1 boards and
the servos were mapped using oscilloscopes and signal generators and the translated communication protocol
(section 3.4) was tested using RealTerm (see section 4.4).

While the existing Kondo performs well in many situations, there are a few situations when the design
does not fulfill the needs of a research platform. In its original setup the servo controller is not made for user
modification. For the platform to be usable both in research and educational settings, it should be adaptable
and modifiable. For these reasons, a new servo controller had to be developed so that it fulfills these demands.
An important aspect was that the new servo controller could be reprogrammed if needed and extended with
extra functionality.

Another weakness of the existing platform is that it does not have any sensory capabilities. This limits the
robots capabilities of interacting with and adapting to the environment. To address this, a sensor board was
designed as to help increase the autonomy of the robot. This was also important for creating the fall recovery
procedure. To achieve the goal of creating a platform that can be used to create autonomous behaviour.

4.2 Software development

In the original setup, motion is created using the H2H interface. The interface simplifies the creation of such
motion by giving the user direct control over the servo output. It is therefore desirable to create a similar
implementation for the re-designed electronic system. While simplicity of the control is important, creating
more advanced algorithms using the GUI is not possible. As one of the goals of this project is to be able to
prototype and test robotic algorithms rapidly, it is of interest to create an environment where control of the
robot can be scripted, modularised and reused. For this purpose, a class interface was created. The interface
should serve the purpose of bringing the different parts of the system (servo controller, sensor module and
host PC) into one complete system.

4.3 Platform evaluation

Once the platform is set up and electronic modules and software interface created, extensive testing should be
performed in order to ensure that the system satisfied the project specifications. It is therefore relevant to test
the hardware and how easy the platform is to extend and modify.

4.4 Development tools

Circuit design were performed in the EAGLE, a program used to create electronic schematics and to CAD
corresponding PCB layouts. PCBs from these blue prints were created in the lab. To test and develop the
PC-to-Circuit-communication systems, the terminal program RealTerm was used to send and receive byte
data over the serial port [25].

All of the programming in the project was performed in the Eclipse IDE. The programs for the mi-
crocontrollers were written in C in Eclipse extended with the AVR Eclipse Plugin, and transferred to the
microcontrollers using a USBtinyISP-programmer [26].

For the developed software interface, created in Python 2.6, the Eclipse-plugin PyDev was used [27]. The
main external Python libraries used were pySerial, used to send and receive byte data over the serial port,
wxPython used to create the GUI for the ASI, and OpenCV, used in the evaluation stage to implement the
facial detection and tracking [28, 29, 30].
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5 Design and implementation

This chapter discusses the design and implementation of the electronic and software systems of the robot
platform.

5.1 Servo controller

Developing the circuits used for the servo controller, the setups were first tested on a breadboard. To serve
as the programmable unit of the servo controller, an Atmega88 from Atmel was used. The Atmega88 is a
relatively low cost micro controller with 8 kB memory and a clock frequency of up to 20 MHz using an external
clock source [31]. When the setup on the breadboard was deemed good enough, a first prototype circuit board
was created. To create the circuit board, the schematic model of the setup on the breadboard was transferred to
the EAGLE. The PCB layout for the 18 channel servo controller can be seen in figure 5.1.1. The PCB layout was
then printed and used to create a etching mask for the chemical etching.

Figure 5.1.1: The screenshot EAGLE where the servo controller is being designed.

The servo controller was first implemented with a more flexible control of the PWM than what can be
produced by the H2H with a larger span of possible pulse widths and with a higher PWM-resolution. The
idea was that this would allow for a more customized behaviour if, for example, the robot later were to be
extended with other types of servos. However, once the servo controller had been created, and Kondo was
trying its first steps, it was clear that this hindered the use of motion sequences developed for the RCB-1
boards. Therefore, the decision was made to rework the entire system to mimic the input/output-behaviour of
the initial platform. After several revisions of the final 18 channel servo controller was complete. The result is
presented in section 7.1.

5.1.1 Protocol

The protocol developed to communicate with the ASC was inspired by the RCB-1 protocol, partially described
in section 3.4. The protocol is based on a string of bytes, with a start command, data bytes and a checksum.
When the command is complete a comparison of the received data and the checksum is performed in the ASC.
If they match, the command is executed, otherwise it is discarded. A successful command is followed by a
success-acknowledgement transmitted from the ASC. A flow chart of how the communication in the ASC
microcontroller is shown in fig. 5.1.2. The complete ASC Protocol and featured functions are described in
appendix A.
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Figure 5.1.2: Flow chart of protocol handling in the microcontroller of the servo controller

5.2 Sensor module

The hardware needed for the sensory system was an accelerometer and a distance sensor. To simplify
communication and decrease the number of cables from the computer to Kondo, the decision was made to
merge the two sensor modules into a single, larger module. The adopted name of this module was Awesome
Sensor Module (ASM). The systems was created using an Atmel Atmega88, just as the servo controller. The
microcontroller gets data from the distance sensors using its AD-converter and from the accelerometer using a
digital interface.

5.2.1 Accelerometer

The accelerometer chosen for this project was a MMA7455L from Freescale Semiconductor. The MMA7455L
is an accelerometer which measures 3mm x 5mm x 1mm, operates at 3.3V and can be set to operate at
acceleration modes of ±2 g, ±4 g or ±8 g. The accelerometer uses either one of the two protocols Serial
Periphial Interface Bus (SPI) and i2c [32]. SPI was deemed suitable for this project. The normalized output
data from the accelerometer is shown in fig. 6.2.1

5.2.2 Distance sensor

For this project, two of the Sharp Distance Sensors were used, namely GP2D120XJ00F and GP2Y0A21YK0F (the
latter is shown in figure 2.5.1). The Sharp sensor is a popular choice for projects where distance measurement
is needed. It comes in a variety of ranges, GP2D120XJ00F has a detection range of 4-30 cm and GP2Y0A21YK0F
has a detection range of 10-80 cm [33, 34]. The sensors can be used independently, or in combination for a more
accurate estimate of the distance measure.
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5.2.3 Protocol

The style of the protocol used to communicate with the ASM is identical to that of the protocol of the ASC
(section 5.1.1) and is described in full in appendix B.
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Figure 5.2.1: Flow chart of protocol handling in the sensor module

5.3 Python interface

An interface for the servo controller and the sensor module was written in Python. Python is a high-level,
object-oriented programming language, suitable for the task of connecting the modules, hardware and software.
It is relatively easy to learn, compact and can be used directly as a command line interpreter. It is suitable for
both fast prototyping and more extensive projects. Python can easily be extended with code written in several
other common programming languages, such as Java or C. This increases the flexibility and extendibility of
the interface.

5.3.1 SerialCommunicator class

The main communicator class is called SerialCommunicator (SC) and contains the most basic functions needed
for communicating with peripheral units over a computer’s serial port. The SC is basically an extension of
the PySerial which simplifies access to the serial port [35]. When an entity of the SC is created, the user can
specify which serial port and which baudrate to use. The SC has two main methods, namely send bytes and
recieve bytes. These methods can be used to send and receive a certain number of bytes respectively. A third
method, send bytes any, is used to combine these two. There are also a number of auxiliary methods such as
scan which scans for active serial ports and flush buffer which flushes the input and output buffers of the port.
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5.3.2 ServoControllerCommunicator class
The ServoControllerCommunicator (SCC) implements the SC-class and extends it to form a link to the
Awesome Servo Controller. The SCC lets the user send any of the functions available in the ASC, such as
set servo position, get servo position and set speed. SCC also controls the error handling, and resubmits any
command until it gets an success-acknowledgement together with the correct checksum from the servo
controller, or a maximum number of attempts have been reached. The complete command list can be found in
the appendix A.

5.3.3 SensorModuleCommunicator class
This module is another implementation of the SC-class. It was created with the intent of serving as an interface
to the ASM. The main methods of this module are thus get acceleration x, get acceleration y, get acceleration z and
get distance 1,get distance 2. Just as the SCC, the SMC has built-in error handling systems for the communication.
The complete command list can be found in the appendix B.

5.3.4 Kondo class
The Kondo class is the highest level class created in the project. It is mainly made up by a SensorModuleCom-
municator object and a ServoControllerCommunicator object to allow control over both the ASC and the ASM.
The Kondo-class keeps track of the low level information such as what pose the robot is currently in and which
speed the servo controller is set to, but also higher level information such as which foot is foward, or which
sequence of motion that is needed before Kondo can start executing one of the higher level motion patterns.
The Kondo interface includes several motion functions such as walk, turn left and turn right, that simplifies
the control of the robot’s motion. It also features information methods such as has fallen, and is standing. This
class also has methods for loading sequences of motions for the Kondo and storing them, for future use. For
example load motion(’fast walk.ss’,’walk2’) can be executed by run motion(’walk2’).

5.3.5 Awesome servo interface
A GUI called the Awesome Servo Interface (ASI) was created on top of the SCC-class and has similar function-
ality to H2H. ASI uses wxPython which is a wrapper for the wxWidget toolkit, often used in Python to create
graphical interfaces, to display the graphical components.
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6 Platform testing
After the basic functionality of the robot had been implemented, further test were carried out in order to make
sure that the platform fulfilled the objectives in section 1.1. This chapter describes the process of testing the
new system and its parts. The test result are presented in chapter 7.

6.1 Hardware testing

An important aspect of this project is that the basic functionality, such as motion and communication between
the separate parts of the research platform, work in a satisfactory manner. The developed hardware were
tested to ensure that the developed motion (i.e. the walking, the fall recovery) and the communication worked.

6.1.1 Test of gait

To test the developed gait, the robot was made to walk a distance of 30 centimetres on a flat hardwood floor.
The total time and the number of falls were recorded. If the robot fell during the course, time was stopped and
it was recovered to upright position and no penalty was given. The test was run 20 times and the result can be
seen in table 7.3.1.

6.1.2 Standing up-test

As stated earlier, a working fall recovery procedure is very important to increase the level of autonomy of
the robot. When the robot has detected a fall (further described in 7.3.2) it has to stand up. Two aspects of
the standing up-procedure were tested. The first one aspect is how reliable the procedure is, that is, does it
manage to get up from lying position or does it fall down again. This is important as extra falls could put
unnecessary strain on the robot, and thus wearing it out more easily and also consuming more time.

6.1.3 Communication test

To measure the reliability of the communication between the PC and the servo controller, and the PC and the
sensor module, another test was designed. The test was performed by taking operations from each modules
respective command-list, and send these commands to the modules. An error is defined as when a command is
sent and the answer bytes are incorrect or not returned at all. When an error occurs, the interface automatically
resends the data (up to 10 times). Fatal error is defined as the command has not been completed after the
maximum number of resends. The result of the test is shown in section 7.3.1.

6.2 Extendibility testing

Another important aspect of this project was to test the developed robotics platform to see whether it actually
made prototyping easier. To test this, three different test cases were introduced and evaluated. The first one
is called Fall recovery and tested the servo controller in combination with the accelerometer. The second test
was called Face detection and tracking to test the webcam and the third one Wall avoidance and uses one of the
distance sensors.

6.2.1 Wall avoidance

A common requirement in robotic application is obstacle avoidance, and in particular wall avoidance. This is
important because if the robot walks into something, it runs the risk of damaging itself or the object. This test
aims at giving Kondo this ability. The robot is to walk forward in a straight line until it finds a wall, then turn
away from said wall, and continue walking. The results of the test case is presented in section 7.3.2.

17



6.2.2 Automated fall recovery
As specified in section 1.1, a desirable feature of any autonomous robotic platform is the ability to recover
from falls. In this test, the robot was to fall over (pushed by the author), and detect that it was no longer in
vertical position, and then stand up again. To complete the test, two things are needed. To detect that it is
not in upright position the robot has to analyse accelerometer data. The total acceleration on the x-, y and
z-axis is about 1g (due to the gravity of the Earth) when Kondo is not moving. From this, the direction towards
the Earth’s center relative the accelerometer can be obtained. Fig. 6.2.1 shows that when the acceleration on
the z-axis is about ±1g, then the torso of Kondo is parallel to the ground, and thus lying down. Once a fall is
detected the robot has to be able execute a motion to return to upright position. The results of the test case is
presented in section 7.3.2.

Figure 6.2.1: Output from accelerometer-board

6.2.3 Face detection and following
In this test, the robot is extended with a webcam mounted on its head. The robot is to stand still on a fixed
position, while using its head and the webcam to scan the room for faces. To treat the webcam data, the image
processing library OpenCV is be used[30]. If a face is detected, the robot should try to focus the webcam
towards it by moving it’s head. The results of the test case is presented in section 7.3.2.
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7 Results
In this chapter, an overview of the created hardware modules and the software interface is presented together
with the results of the tests described in chapter 6.

7.1 Developed hardware

The front and backside of the ASC is shown in fig. 7.1.1. The communication with the ASC is performed
using a 8-bit UART, 1 stop-bit and no checksum with a baudrate of 57600 B/s. The ASC Communication
Protocol on top is described in section 5.1.1 and in appendix A. Up to 18 servos can be controlled with the 18
PWM-channels. The PWM-signals have a period of 20 ms (50 Hz) and has a pulse-width from ranging from
730 µs to 2230 µs. The pulse-width of a channel can be set with integer steps from 0 to 180 using the ASC
protocol. This corresponds directly to 0-180 degrees on the KRS-784ICS-servos.

Figure 7.1.1: Frontside (left) and backside (right) of the Awesome servo controller.

7.2 Developed software

The interface is written in Python and consists of a total of five classes. An overview of the classes is shown in
fig. 7.2.1. The first class, SerialCommunicator (SC) features most basic functions needed for communicating
with periphial units over a the serial port of a PC, with commands such as connect (to a serial port), send byte
(to the serial port), recieve byte (from the serial port), flush buffer (of the serial port). There are two classes
that extend this class, the ServoControllerCommunicator (SCC) and the SensorModuleCommunicator (SMC)
which serves as interfaces to the two created electronic modules, the ASC and the ASM. The SCC contains
all the commands available in the ASC, such as set servo position, get servo position, set speed, and so on,
while the SMC implements the ASM, with functions that retrieve the acceleration and the distance to objects
from the module. The highest abstraction level in the interface is implemented in the Kondo class. This class
includes both a SCC and SMC, and can thus communicate both with a servo controller and a sensor module.
The Kondo class also has functions that save the current setup, loaded moves, etc, that can be restored later.
The final part of the interface is the GUI, described in section 7.2.1 below.

7.2.1 Graphical interface

The GUI is shown in fig.7.2.2. The features of ASI include adding and naming servos, The user can add and
name individual servos or use the ”default setup”-button, that loads the standard 17 servo setup normally
used for Kondo. The user can control the position of the servo motors connected to the ASC either by typing
numbers into the controller or stepping up or down with the arrows. Once the desired position has been
attained, the current position of all servos can be stored into a post list. The user can also overwrite and delete
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Figure 7.2.1: A class diagram of the created interface, showing the main class interface, the ASI, and the external libraries
used.

poses. Poses in the list can then be run, either all of them in sequence, or selected poses, to create complete
motion patterns for the robot. To allow setups to be saved and reused at later times, the ASI also has the
features save and load from Servo Setup-files (file ending .ss). These files contain all necessary information
such as servo names and home positions, and the current pose list. For users who wish to use files created for
the original H2H interface, there is an import RCB-1 files command that reads files saved in H2H (.csv), and
translates them into the ASI data.

7.3 Test results

7.3.1 Hardware test results

Test of gait

The test was run 20 times with the outcome shown in table 7.3.1. The average time it took to complete the
track was 72 seconds which is about 0.42 cm/s. The robot fell on average 0.15 times per run.

Table 7.3.1: Results from gait-test.

Time (s) Speed (cm/s) Falls
Fastest 61 0.49 0
Mean 72 0.42 0.15
Slowest 79 0.38 1
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Figure 7.2.2: A screenshot of the Awesome Servo Interface

Standing up

The robot started out positioned face down and the recovery motion was executed from the ASI to make the
robot stand up. This was repeated 50 times and the elapsed time from horizontal to upright position was
timed using a stopwatch. Next, the same procedure was performed, but with the robot starting on its back. In
total, the robot managed to get up 99 times out of a 100 on its first attempt. The complete result can be seen in
table 7.3.2.

Table 7.3.2: Results the standing up test

Initial pose Completed Average time (s)
Face down 50/50 5.59
Face up 49/50 9.12

Communication test

The communication test was performed using an automated test written in Python. The commands sent were
chosen at random from the six (five for the ASM) most commonly used commands, and the sent databytes
were generated randomly within the allowed ranges. Before the commands were sent, all the PWM-channels
were turned of using the stop command as not to put unnecessary strain on the robot. This was repeated
10,000 times for each module, and the result of the test is shown in table 7.3.3. Errors and fatal errors are
defined in section 6.1.3.

7.3.2 Extendability tests

The following section presents the result of the extendibility tests described in section 6.2. The code extracts
shown in the following sections excludes basic things such as importing the necessary libraries and setting up
a Kondo-object.
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Table 7.3.3: Results from the ASC communication test

Command Attempts Errors Fatal Errors
Set servo position 1646 32 0
Get servo position 1630 40 0
Set servo position many 1718 46 0
Get servo position many 1697 52 0
Set speed 1614 24 0
Get speed 1695 21 0
Total: 10,000 215 0

Table 7.3.4: Results from the ASM communication test

Command Attempts Errors Fatal Errors
Get acceleration X 2066 26 0
Get acceleration Y 2000 19 0
Get acceleration Z 1955 19 0
Get distance, sensor 1 2002 24 0
Get distance, sensor 2 1977 21 0
Total: 10,000 109 0

Wall avoidance

To implement the behaviour of wall avoidance, three abilities are necessary. First of all, the ability to walk
forward, next the ability to detect walls, and finally the ability to turn. The first and the third are already an
integrated part of the upgraded research platform. The second was implemented using the sensor module
and the sensory output from one of the two Sharp distance-sensors (shown in fig. 7.3.1). The main loop of the
wall avoidance program is shown in table 7.3.5. The development time of this was fairly short, as most of the
features needed were already implemented in the platform. The total development time was about 30 minutes.
In the end Kondo could avoid walls, even though the created program a very crude sketch of how a good
wall-avoidance behaviour would be implemented in a real robotic application (it only turns to to the left for
example).

#Infinite loop
while(True):

#Wall detected?
if(robot.get_distance(0) < 30):

#Turn
robot.run_move('turn_left')

else:
#Walk forward
robot.run_move('walk_forward')

Table 7.3.5: Main loop of the wall-avoidance test case Figure 7.3.1: Kondo ready to avoid walls!

Automated fall recovery

The fall detection procedure was developed by reading data from the accelerometer. Due to the fact that
the robot never will be exactly parallel to the ground and that accelerometer output is subdued to noise, the
trigger level was set to |AccelerationZ | > 0.7g. Two functions called on stomach and on back were created to
return which side the robot has fallen on (decided by the sign of the accelerometer). Since there are two initial
conditions (face down or face up), two separate motions were developed using the ASI. One that takes the
robot from a lying on its back to an upright position and the other one from a position of lying down on its
stomach to an upright position. The main loop of the program is shown in table 7.3.6 and the setup with the
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accelerometer on the back of Kondo is shown in fig 7.3.2.
The development time for the fall recovery ability was about 3 hours. Most of the time was needed to

create the two standing up-procedures.

#Infinite loop
while(True):

#Has the robot fallen over?
if(robot.has_fallen()):

#Which side is the robot on?
if(robot.on_stomach()):

robot.run_move('stand_up_front')
elif(robot.on_back()):

robot.run_move('stand_up_back')
else:

robot.run_move('walk_forward')

Table 7.3.6: The main loop of the fall recovery proce-
dure.

Figure 7.3.2: The accelerometer mounted on the back
of Kondo.

Face detection and tracking

A simple face detection algorithm was implemented using openCV. For each face detected, the center coordi-
nates for the largest one is chosen and a simple feedback loop is used to steer the head of the robot towards the
detected face (a screenshot of the output of the program is shown in fig. 7.3.3).

The total development time for the face detection and tracking procedure was about 3.5 hours. Two hours
were spent downloading, installing and understanding the OpenCV library and about an hour and a half was
used to implement and test the code.

Figure 7.3.3: The face detection algorithm at work. The cyan square denotes a face found (the face of the author).
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8 Discussion
The platform has been upgraded with complementary systems, including a servo controller and a sensor
module has been created. The actual improvement in performance of the servo controller is relatively small.
However, most significant improvement from changing from the RCB-1 boards to the ASC board is that it
opens up the entire platform to extension and modification, as it is reprogrammable. Features can be added or
removed from the servo controller using a simple Atmel-compatible programmer.

The most important new feature of the upgraded platform is probably the addition of a sensory system.
This has opened up a whole range of possibilities for Kondo, such as interacting with and adapting to an
unstructured environment. The sensory system has also been important for the creation of the fall recovery
procedure.

The testing of the standing up procedure indicates that it is robust and relatively fast (section 7.3.1). The
motion for walking forward and turning are quite slow and can be improved 7.3.1. However, they can serve as
a basis for the development for faster, more robust gaits.

The objective of making the platform more easily accessible to both people with low robotic experience,
and more experienced users, this has also been achieved. The programs created in the extendibility testing
(section 7.3.2) are very crude sketches of how these features would be implemented in real robotic applications
(in the wall avoidance program, the robot only turns to the left, for example). However, the created examples
shows that new features can easily be added to and integrated with the new system.
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9 Conclusion and future work
9.1 Conclusion

An upgrade and extension of Kondo been performed. The project was in large successful and the objectives
stipulated in the project have been fulfilled. The robot has been equipped with a reprogrammable servo
controller with an extended set of instructions, giving the user increased control over the platform. Furthermore,
a sensor module with an accelerometer and distance sensors was designed and added to the platform, giving
Kondo basic sensing capabilities. To tie everything together into a working system, a software interface has
been created for control of the modules.

9.2 Future work

The communication with the servo controller and the sensor module are treated separately through the two
serial ports of the host computer. A way of improving this architecture could be to create another circuit
board that takes input from the computer, and then sends the information either to the ASI or the ASM. This
module could also potentially serve as the main processor of the platform, directly analysing sensory data and
sending appropriate control signals to the servo controller. This would increase the autonomy of the robot, as
no external PC would be needed.

Taking it a step further, this communication board can be replaced with an on-board computer like a Beagle
Board or a Chumby Hacker Board [36, 37]. The increase in computing speed and power, and diversifying the
available peripheral connectors with connectors such as USB and Ethernet would make Kondo even more
modification friendly, and opening up the possibility of very advanced autonomous behaviour.

A useful and interesting feature to include would be a auditory system. This would be especially interesting
for studying HRI. The system could include a microphone and speakers to allow for auditory human-robot
interaction, with the ability to for example, use voice commands to control the robot.

The servo controller can also be improved/extended in several ways. A feature that is often implemented
in commercial servo controllers is acceleration in the control of the PWM pulse width. This could potentially
result in even smoother transition between poses. Another extension that could be made is to directly connect
the accelerometer to one of the interrupt pins on the servo controllers, giving the robot a chance to directly
respond to rapid accelerations, and thereby avoid falling over when being pushed or walking into something.
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A ASC protocol
The ASC communicates using UART[38]. Baudrate is 57600 B/s, 8 data bits and 1 stop bit. Each command
consists of a command byte (second column in table A.0.1) and 0-18 databytes. Commands which are not get
commands are ended by a checksum of the preceding bytes. If transmission is complete and the checksum is
ok, and the servo controller returns an OK-byte (DEC = 13, HEX = 0D). If the checksum is NOT ok, and an
ERROR-byte (DEC = 23, HEX = 17) is returned. If the command sent was a get command, the corresponding
data is returned, followed by a checksum of the preceding bytes.

Table A.0.1: The ASC protocol command list.

Command Hex Databytes Checksum Description
Set Servo Position FD 2 X Sets a servo position
Get Servo Position FC 1 Get a servo position
Set Many Servo Positions FB 2-18 X Sets position of all servos
Get Many Servo Position FA 0 Gets position of all servos
Start Controller F9 0 X Start PWM on all channels
Stop Controller F8 0 X Stop PWM on all channels
Start Servo F7 1 X Start PWM on a servo channel
Stop Servo F6 1 X Stop PWM on a servo channel
Set Home Position F5 2 X Set a new servo home position
Get Home Position F4 1 Get the servo home position
Go Home Position F3 1 Set servo position to it’s home
Go Home Position Many F2 0 Set several servo positions to their home
Set Speed EF 1 X Sets controller step-size
Get Speed EE 0 X Gets controller step-size
”Hello Servo Controller!” C0 0 A simple connection acknowledgement
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B ASM protocol
The ASM is very similar to the ASC protocol (appendix A). Baudrate is 57600 B/s, 8 data bits and 1 stop bit.
Each command consists of a single byte (second column in table B.0.1). If the command exists in the command
list, the corresponding data is transmitted together a checksum. and. If the command is not ok an ERROR-byte
is transmitted (DEC = 23, HEX = 17).

Table B.0.1: The ASM protocol command list.

Command Hex Description
Get Acceleration X FE Returns the accelerometer reading of the x-axis
Get Acceleration Y FD Returns the accelerometer reading of the y-axis
Get Acceleration Z FC Returns the accelerometer reading of the z-axis
Get Distance Sensor 1 EE Gets the reading from distance sensor 1
Get Distance Sensor 2 ED Gets the reading from distance sensor 2
”Hello ASM!” C8 Returns a simple connection acknowledgement
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