
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

An Approach to Scheduling
in a Hardware-Software Co-Design
Toolchain
Master of Science Thesis
in the Programme Integrated Electronic System Design

NIKITA FROLOV

Chalmers University of Technology
University of Gothenburg
Department of Computer Science & Engineering
Göteborg, Sweden, October 2011

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-
commercial purpose make it accessible on the Internet. The Author warrants that
he/she is the author to the Work, and warrants that the Work does not contain
text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and
University of Gothenburg store the Work electronically and make it accessible on
the Internet.

An Approach to Scheduling in a Hardware-Software Co-Design Toolchain

NIKITA FROLOV

c© NIKITA FROLOV, October 2011.

Examiner: PER LARSSON-EDEFORS

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, October 2011

Abstract

Much like VLIW, statically scheduled architectures that expose all control signals

to the compiler offer much potential for highly parallel, energy-efficient perfor-

mance. A cornerstone to effective compilation for such architectures is an effective

solution to the phase ordering problem, i.e., planning the cooperation between

instruction scheduling and register allocation.

Existing heuristic algorithms that approach this problem are hard to analyze

and to break down to reusable concepts that might lead to better algorithms, which

is one of the major obstacles for adoption of VLIW architectures. An approach

based on a combination of a domain-specific language (DSL) embedded in a higher-

order language and a constraint satisfiability engine makes it possible to structure

the problem and abstract away from generic search space exploration methods.

Bau is a novel compilation infrastructure that leverages the LLVM compila-

tion tools and the MiniSAT solver to generate efficient code for one such exposed

architecture, FlexCore. A compiler construction library is built that allows the

compiler writer to express scheduling and resource constraints declaratively, as a

set of constraints in a DSL, each describing one property of a valid schedule. It

provides a framework to rapidly modify aspects of a backend and explore tradeoffs

between compilation time and quality of compiled code.

A compiler implemented using this library can generate programs that are

1.2–1.5 times more compact than ones generated either by a baseline MIPS R2K

compiler or a basic-block-based, sequentially phased scheduler. However, further

optimization of the instruction lowering pass is needed to improve performance.

Acknowledgments

Foremost, I’d like to thank Per Larsson-Edefors, Magnus Själander and Sally Mc-

Kee for supervision, guidance, ideas and insights they provided. Additionally, I’d

like to thank Tung Hoang, Kasyab Subramaniyan and Alen Bardizbanyan for shar-

ing their expertise of FlexCore internals, and John Hughes for a discussion that

helped me define the scope of this thesis.

Nikita Frolov, Göteborg, October 2011.

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Functional languages . 2

1.3 Hardware-software co-design . 4

1.4 Challenges . 6

2 Toolchain architecture 8

2.1 Compilation flow . 10

2.2 Target description . 13

2.2.1 Instruction lowering . 13

2.2.2 Interconnect configuration 15

2.3 FlexCore . 15

2.3.1 Binary operations . 15

2.3.2 Memory operations . 16

2.3.3 Control flow . 16

2.3.4 Printing the assembly . 18

3 Scheduling as CSP 19

3.1 Problem encoding . 20

3.2 Instruction placement . 21

3.3 Value placement . 21

3.4 Code insertion . 23

i

CONTENTS

3.5 Encoding with triples . 23

3.5.1 Execution unit properties 24

3.5.2 Dataflow properties . 25

3.5.3 Non-orthogonal datapath interconnect 26

3.5.4 Location properties . 26

3.5.5 Value path properties . 26

3.5.6 Value paths of globally live values 30

3.6 Encoding with pairs . 30

3.6.1 Execution unit properties 31

3.6.2 Instruction properties . 32

3.6.3 Value properties . 33

3.6.4 Location properties . 34

3.7 Solution interpretation . 35

4 Defining constraints 37

4.1 Translation to CNF . 38

4.2 Constraint templates . 38

4.3 Quantification . 39

4.3.1 Universal quantifiers . 39

4.3.2 Existential quantifiers . 40

4.3.3 Composition strategy . 41

5 Results 42

6 Conclusion and future work 44

7 Related work 47

A Bau source code 54

B Integration with LLVM 73

ii

List of Figures

1.1 Datapath interconnect . 6

2.1 Compiler source code layout . 10

2.2 Compilation flow . 11

2.3 Top-level organization of RTN assembly 11

2.4 Unscheduled and scheduled forms of assembly 12

2.5 Description of dataports before and after scheduling 12

2.6 Target type class . 13

3.1 A value should be stored after it is defined and at before it used. . . 27

3.2 Allocating memory in a SAT solver instance 31

3.3 Liveness in a data flow graph . 35

4.1 From problems to constraints . 39

4.2 Restricting constraint scope . 39

iii

List of Tables

5.1 Benchmark compilation times (in seconds) 42

5.2 Number of instruction words in innermost functions 43

5.3 Benchmark execution times (in FlexCore simulator cycles) 43

iv

1

Introduction

1.1 Overview

Engineering is an art of compromise. Beginning with requirements definition, the

design process of a technological artifact revolves around finding the best possible

trade-off between properties of tools and materials that engineers have at their

disposal. Implications to be considered belong to all stages of the artifact lifecycle:

design, production, use, maintenance and recycling. Computer systems are built

from many tightly coupled hardware and software components, and it is not only

the choice of components themselves that matters. It is not enough to design for

performance, power consumption, production, operation and service costs — the

time-to-market bears great importance in dynamic economies.

Domain-specific languages and hardware-software co-design, while perceived as

unrelated areas of research and belonging accordingly to fields of computer science

and computer engineering, have much in common in their incentives, methods

and goals. Both were conceived to provide the system designer with a simple

tool that will combine abstract expressiveness of a high-level language with fine-

grained resource management of a low-level language and elaborate the idea of

interface design in order to exploit the trade-off between abstraction and control

over implementation details, in the opposite ends of the hardware-software stack.

Functional languages are being increasingly adopted as the compiler technology

1

1.2. FUNCTIONAL LANGUAGES CHAPTER 1. INTRODUCTION

brings the performance on par with widespread imperative languages and emerging

DSLs reduce the learning curve. However, there is still room for improvement

because members of the functional programming community are mostly focused

on front-end optimizations, which are close to their area of expertise, and rely on

the infrastructure created for imperative languages in the first place to generate

machine code. Moreover, the targeted machines were designed to run imperative

languages, as well. From the compiler middle- and back-ends’ point of view and

from point of view of the hardware, functional languages still are second-class

citizens.

At the same time, the progress in microtechnology has made vast resources

available to computer engineers to work with. They are expected to build ma-

chines that will meet the ever-growing needs of software but continuous increase

of frequency has proven to be ineffective due to power and heat constraints. Ex-

ploitation of parallelism is one design approach that is widely studied. Another

approach is concerned with a shift from fixed, “one-size-fits-all” hardware to more

flexible architectures, involving decisions on portions of software to be implemented

in hardware. The area of hardware-software co-design studies what costs are as-

sociated with different variants of partitioning of the system into hardware and

software components, how coarse should the components be, and how to automate

these decisions.

Two problems stated above are, in fact, solutions for each other. Functional

languages lack extensive toolchain and hardware support, but flexible hardware

allows the system designer to choose what computational primitives to support.

This thesis has started as an attempt to connect the demand of imposed high-level

programming with supply of raw processing power. After conducting a pre-study

on what improvements should be made (Section 1.2) and what can be practically

implemented (Section 1.3), a particular problem was chosen that unites both areas

(Section 1.4).

1.2 Functional languages

Attempts to increase performance of functional programs by running them on

a machine designed for graph reduction as opposed to a von Neumann machine

2

1.2. FUNCTIONAL LANGUAGES CHAPTER 1. INTRODUCTION

were undertaken in early 1970s when the first LISP machines were built [1]. By

the end of 1980s the performance of commercially available computers designed

with imperative programs in mind was growing at a faster pace than university

research groups could design and fabricate innovative language-specific architec-

tures. The language technology community has moved on to studies of effective

implementation of functional languages on top of commodity hardware. Today,

with availability of rapid prototyping platforms, such as FPGAs, the interest has

renewed, and new experimental architectures appeared, for example, Reduceron

[2].

A number of abstract machines were designed to address the gap between mod-

els of computation based on term rewriting (utilized by functional languages) and

changing the memory state (utilized by mainstream, von Neumann-esque com-

puter architectures) and to serve as an intermediate representation in a compiler.

In the pure graph reduction approach, programs are transformed into sequences of

combinators, either belonging to a predefined set [3] or derived from the program

(supercombinators) [4]. The resulting code still retains much of the interpretative

behavior of a graph reduction machine. Influenced by the concept of supercombi-

nators, the approach of programmed graph reduction relies on static analysis more

than pure graph reduction to decrease need for dynamic dispatch. The control flow

(that is, the order in which expressions should be evaluated) is extracted from the

program graph, and the program is expressed with a fixed set of instructions that

are easy to translate to the native instruction set of a von Neumann architecture.

Implementations of this approach include the G-machine [5] and its variants and

successors [6], among them being the STG-machine used by the popular Glasgow

Haskell Compiler [7].

After a functional program is transformed from an expression graph to se-

quential code, it is compiled either for a virtual machine, such as JVM (Scala,

Clojure), .NET (F#) or BEAM (Erlang), or for hardware (Haskell, ML family).

This stage of compilation is commonly broken down into a middle-end, perform-

ing optimizations independent of the source language and the targeted hardware

architecture, and a back-end generating native code. From the middle-end point

of view, functional programs have the following differences from imperative ones:

3

1.3. HARDWARE-SOFTWARE CO-DESIGNCHAPTER 1. INTRODUCTION

• aggressive pointer chasing

Representation of functions and values as linked-list structures requires sev-

eral pointer dereferences for a single reduction step, which causes many

branch mispredictions and cache misses, especially with tagless abstract ma-

chines. The STG-machine design does not match superscalar processors well,

and ILP is not exploited. [8]

• data is immutable and is referenced almost immediately after allocation;

Due to short lifetimes of data, large cache associativity has less impact,

and different data layouts are required to exploit locality [9]. Prefetching

of frequently accessed data degrades performance, although it does decrease

L2 cache misses in some cases. Improved cache performance primarily comes

from an increase in L2 cache size [10], but caches that support runtime tuning

of associativity, line size and block replacement policies might be useful for

some applications [11].

1.3 Hardware-software co-design

An influential paper by Steele and Sussman [12] is an early example of putting the

problem of hardware-software partitioning into the context of language technology.

A LISP system is described as a hierarchy of virtual machines where a boundary

between hardware and software can be placed arbitrarily. In the 30 years that have

passed since the publication of this paper, the costs of hardware prototyping have

radically dropped, thanks to customer-reprogrammable devices such as FPGAs.

It is possible now to design and evaluate a new processor architecture completely

in the lab. However, a straightforward hardware implementation of a language

interpreter cannot compete with results of 30 years of improvements in computer

architecture and, especially, compiler technology.

A trade-off between versatility of “sea of gates”-like devices and maturity of

general purpose processors is found among template-based and reconfigurable pro-

cessors. Configurable architectures can trade generality for increased performance

and lower power for domain-specific applications [13]. For instance, the type and

number of functional units and application-specific accelerators can be selected at

4

1.3. HARDWARE-SOFTWARE CO-DESIGNCHAPTER 1. INTRODUCTION

design time (TCE[14], MOLEN[15]), and the datapath between these units can

then be specified to support the specific communication behaviors of applications

in the target domain. Both approaches are implemented by the FlexCore archi-

tecture [16].

Just as programmed graph reduction simplifies the execution-time planning of

computation, static instruction scheduling reduces the processor complexity and

can potentially provide better results than dynamic scheduling, because static com-

pilers have more resources at their disposal. Architectures that expose the control

signals for all execution units and the interconnect addresses to the compiler re-

quire wide control words (as in VLIW [17]). Customizing both computational units

and their communication medium can improve computational efficiency in terms

of performance and power, but allowing such flexibility complicates the compiler,

which must satisfy many more concurrent resource constraints and instruction de-

pendencies than typical, phase-based code generators. Nonetheless, transforming

dynamic instruction scheduling done with fixed-function logic into static instruc-

tion scheduling done by a compiler enables dramatically more compact schedules.

The FlexSoC scheme provides an architectural template, FlexCore, of a design-

time configurable (application-specific), exposed architecture whose datapath units

communicate through an interconnect that, in its most complex instantiation,

forms a crossbar switch. Figure 1.1 depicts the output of a particular datapath

unit (that is, an output port) connected to a register. The output of the register

is routed to several input multiplexers, each driving the input of a datapath unit

(that is, an input port).

Assuming there are M output ports and N input ports, the interconnect tem-

plate can, at most, support N ·M communication paths. To avoid area, delay,

and power dissipation overheads from additional wiring and multiplexers (muxes),

paths that turn out to be superfluous (not used in any of the intended applications)

should never be instantiated [18].

FlexSoC’s exposed architecture is not a conventional instruction set architec-

ture (ISA) and has no fixed set of assembly instructions. It is up to the designer to

decide what execution units will be connected to the datapath and what their func-

tionality would be. Operations at the machine level can instead be expressed in

register transfer notation (RTN) specifying operations to be performed on output

5

1.4. CHALLENGES CHAPTER 1. INTRODUCTION

MUX 1

Out

port 1

CLK

Datapath units

Out

port 2

CLK

MUX 2 MUX N

In
 p

o
rt

 1

In
 p

o
rt

 2

In
 p

o
rt

 N

Out

port M

CLK

.

.

log2 M� � log2 M� � log2 M� �

Instruction decompressor

Figure 1.1: In its most complex configuration the datapath interconnect acts as a
crossbar switch, supporting communication from each of M output ports to each of
N input ports.

port registers of the various datapath units. The output port from which a value

is read represents the address of the interconnect multiplexer, and the operation

represents the control signals (that is, the op-code) to a specific datapath unit. A

special RTN code reads a value from the register file without affecting any output

ports from the execution units. Decoded control words are simply concatenations

of the RTN operations of all datapath units for a given clock cycle. (Compact

representation of these control words along with the design of efficient decoders

represent an orthogonal path of research [19].)

1.4 Challenges

Mapping of high-level language primitives to dedicated hardware blocks demands

extensive support in the compiler back-end. Compiling for an architecture that

6

1.4. CHALLENGES CHAPTER 1. INTRODUCTION

is design-time configurable with an exposed datapath requires a flexible compiler

back-end. Even the simplest changes in microarchitecture, such as adding more

units of a known type (for example, more ALUs) and/or modification of the in-

terconnect, require changes in the instruction scheduler and the register allocator,

and adding support for application-specific accelerators with new semantics is not

trivial. Existing reconfigurable computing toolchains (including FlexSoC’s) do not

address these problems.

Traditional compilers rely on fixed algorithms to schedule for microarchitectures

with known interconnect and known numbers and types of functional units. For

instance, out-of-order architectures implement routines for assignment instructions

to units in microcode, so the ISA can remain unchanged when the number of

units changes. In contrast, in an exposed architecture the forwarding of data

between datapath units is explicitly compiler-controlled, and the compiler has to

be provided with information about available units.

In von Neumann architectures, instructions use the register file to read operands

and write results, but hardware forwarding is often introduced to reduce latency.

In an architecture with a flexible datapath template architectural registers belong

to output ports of datapath units, not to the register file, automatically storing the

“last computed value”. The name of a register where an operand can be found is

not known until the instruction computing the operand will be assigned to a unit.

Vice versa, an instruction cannot be assigned to a unit before the locations of its

operands are known. Thus, the compiler cannot perform instruction scheduling

and register allocation sequentially, as a traditional compiler would do.

The compilation issues arising from performing instruction scheduling and reg-

ister allocation are commonly known as the phase ordering problem. While partial

solutions for this problem in von Neumann architectures are used to find a better

trade-off between ILP and memory pressure, in exposed architectures a complete

solution is required just to get the programs run. This thesis researches a method

to perform instruction scheduling and register allocation concurrently, globally,

in a single phase. Section 2 discusses the general design of a flexible compiler.

Section 3 formulates the phase ordering problem as a constraint satisfaction prob-

lem. Section 4 introduces a domain-specific language for describing scheduling

problems.

7

2

Toolchain architecture

Two open source compiler infrastructures with wide community support — GCC [20]

and LLVM [21] — can be used to implement a language- and target-independent

parts of a language toolchain. Both implement complete compiler functionality

(from language front-ends, to multiple optimization passes, instruction sched-

ulers, and target-specific code generators) and are open to customization for non-

orthodox applications.

Modifying GCC can require daunting effort. On the other hand, the highly

modular LLVM uses a single intermediate representation for every compilation

step, making front-ends, back-ends, and optimization passes independent from

each other — they can be developed in separate source trees and even written in

different languages. Many languages can already be compiled to LLVM bytecode,

and many optimization techniques are implemented as LLVM passes. Although

there is much LLVM support for developing RISC or CISC back-ends (for example,

instruction selectors and schedulers, register allocators, and peephole optimizers),

these cannot be readily reused for an exposed architecture.

LLVM provides a DSL, TableGen, that is used for abstract target and machine

descriptions. Parts of a back-end can be automatically generated from TableGen

descriptions, but even for mainstream architectures, such as x86 or ARM, it is

not comprehensive. Some of machine instruction semantics still have to be given

as C++ code, and the glue code (also in C++) is still required to develop a

8

CHAPTER 2. TOOLCHAIN ARCHITECTURE

complete LLVM back-end[22]. Automatic compiler reconfiguration is not possible

with TableGen, and manual reconfiguration requires knowledge of both C++

and TableGen, which is not common among hardware developers who would most

likely have the knowledge of architecture and be involved in back-end writing.

Code generator components included with LLVM are not of great use with

exposed architectures, either, because they were designed for a sequential compila-

tion flow. LLVM instruction schedulers and register allocators are implemented as

separate passes, and a parallel approach is necessary, as explained in Section 1.4.

Code analyses implementations, such as liveness analysis, cannot be reused, as

well, because LLVM does not implement them in a way to work on the common

LLVM internal representation, but on machine-specific ones. Machine-specific rep-

resentations that are predefined by LLVM are not general enough to support some

essential features of exposed architectures, such as compiler-controlled value for-

warding. They are integrated with available register allocators too tightly. for

example, they are used to maintain a portion of the register allocator state[23].

Thus, Bau has to reimplement some of the functionality provided by Machine*

classes of LLVM.

The toolchain described in this thesis includes its own back-end infrastructure

independent from LLVM. LLVM still provides middle-end functionality and makes

it possible to reuse language front-ends targeting LLVM. Back-end infrastructure

is implemented as a Haskell library, Bau (Appendix A). Bau allows the compiler

writer to capture both target-independent functionality of a back-end and target-

specific hardware details. The compiler based on Bau is a standalone program that

that compiles LLVM bytecode files into RTN code. RTN code has to be assembled

then to the binary code of the target architecture. An example of compilation flow

integration is given in Appendix B.

Source tree layout of a complete compiler is shown in Fig. 2.1. The com-

piler is targeting variants of the FlexCore processor implementing the FlexSoC

scheme. Variant-independent code is organized into the Bau library. Section 2.1

describes proposed compilation flow. Section 2.2 introduces a DSL for target plat-

form description (modules RTN, Target and AsmWriter). Problems arising

when scheduling for an exposed architecture are elaborated in Sections 3 (modules

Schedule and Constraints) and 4 (module Primitives).

9

2.1. COMPILATION FLOW CHAPTER 2. TOOLCHAIN ARCHITECTURE

Bau
Options
RTN
Translate
Schedule
Constraints
Primitives

FlexCore
Arch
Target
AsmWriter

Main

Figure 2.1: Compiler source code layout

2.1 Compilation flow

A back-end targeting an exposed architecture has to implement instruction de-

coding and reordering, replacing the complicated control logic of a conventional

CISC/RISC-like pipeline. The output of such backend has the form of microin-

structions, or RTN. Compiling LLVM bytecode to RTN assembly requires two

steps: lowering the LLVM instructions to the RTN micro-operations (µops) sup-

ported by a given architectural instance, and allocating resources to assign µops to

particular execution units and to assign variables to registers. Figure 2.2 illustrates

the flow chart of activities implementing these steps.

The part of the RTN assembly definition that is specific to an architecture

variant has provided by the compiler writer. Variant-specific data types, such as

unit names (or unit types, not to be confused with Haskell types), unit modes

and dataports, should be declared as extensions of data type families, and a type

variable (arch) is used to enumerate members of these type families. In order

to separate instruction lowering from resource allocation, RTN assembly has two

forms — the unscheduled form and the scheduled form. Both forms share top-level

organization of the code into functions annotated with parameter lists [Name]

and information about global (Lives) and local (Edges) value dependencies and

basic blocks, as shown on Fig. 2.3.

The difference between unscheduled and scheduled forms is made at the BasicBlock

level. The unscheduled form uses unscheduled µops, not assigned to cycles (cor-

responds to the BBU constructor). In the scheduled form (BBS constructor), µops

are organized into instruction words, as shown on Fig. 2.4.

10

2.1. COMPILATION FLOW CHAPTER 2. TOOLCHAIN ARCHITECTURE

Template RTN

LLVM

RTN

SAT prepositions

SAT solution

instruction lowering

schedule finalizing

constraint generation

constraint solving

Figure 2.2: Compilation flow

data Target arch => Assembly arch = A Name [Function arch]
data Function arch = F Name [Name] [BasicBlock arch] (Lives, Edges)

Figure 2.3: Top-level organization of RTN assembly

A MicroOp defines a value with a Name that is computed on a unit of a given

UnitType in a particular Mode. Data dependencies of a value are expressed with

a list of operands [DataPort]. Every value name can be defined only once,

by one µop. This implies that RTN assembly is in static single assignment form

(SSA), like LLVM bytecode. An optionally non-empty list of control dependencies

[Name] can be provided.

In a scheduled BasicBlock µops are also mapped to unit instances. This

is done by setting the Int field of every MicroOp to a positive value. Lists of

operands ([DataPort]) are also rewritten after scheduling to refer to dataport

11

2.1. COMPILATION FLOW CHAPTER 2. TOOLCHAIN ARCHITECTURE

data BasicBlock arch = BBU Label [MicroOp arch]
| BBS Label [InstrWord arch]

data MicroOp arch = MO Name (UnitType arch) (Mode arch)
[(DataPort arch)] Int [Name]

newtype InstrWord arch = IW [MicroOp arch]

Figure 2.4: Unscheduled and scheduled forms of assembly

data DataPort arch = DP PortType (UnitType arch) Int Name | DPU ArgDesc
data PortType = In | Out deriving Show

Figure 2.5: Description of dataports before and after scheduling

names. A dataport name is defined as the name of a unit instance that computes

a given operand. When a µop becomes scheduled, LLVM SSA value names of its

operands (ArgDesc) are replaced with dataport names, as shown on Fig. 2.5.

Static single assignment form of LLVM bytecode is preserved in this transfor-

mation, and lowering can be accomplished by instantiating instruction templates

defined in terms of variant-specific µops and provided by the compiler writer. Be-

sides, SSA form has well-known benefits as the foundation for an intermediate

representation:

• resource allocation is delayed, therefore fewer false dependencies are intro-

duced, and better utilization of processor resources can be achieved;

• value names are never redefined, so every register transfer has a unique name,

and greater freedom is achieved in scheduling transfers through the intercon-

nect.

The second step is resource allocation — choosing units to map µops to, and the

dataports from which to read operands. Because every unit has a register for every

output dataport to store its result, the choice of dataports for a µop depends on the

unit used to compute a given operand, and allocation of registers has to consider

that values can be forwarded between units directly through the interconnect or

saved in pipeline buffers and not in the register file. Resource allocation can

be expressed as a constraint satisfaction problem, and recent progress in SAT

solver implementation makes such tools attractive building blocks for powerful

12

2.2. TARGET DESCRIPTIONCHAPTER 2. TOOLCHAIN ARCHITECTURE

class Target arch where
data UnitType arch
data Mode arch
constraints :: [Constraint arch]
lower :: (Name, InstrDesc) -> [MicroOp arch]

Figure 2.6: Target type class

schedulers, due to both the simplicity of formulating and refining problems and to

the impressive performance [24]. The scheduling problem can then be generalized

by expressing it as a set of constraint templates and then using a template engine

to produce constraints; a stand-alone SAT solver finds the solution for a given set

of resources.

2.2 Target description

Both LLVM and RTN code are represented with a hierarchy of Haskell abstract

data types, and the translator can be implemented by straightforward, recursive

pattern matching. While traversing the code tree, the translator calls a target-

specific, instruction lowering function for each leaf. The parts of the compiler

that are specific to a given architectural instance must then: 1) define abstract

datatypes that represent new execution units, and 2) define lowering functions

that transform LLVM instructions to RTN code by implementing the Target

type class (Fig. 2.6).

2.2.1 Instruction lowering

Most of LLVM instructions can be put into one of four groups: binary arithmetic

and logic operators, basic block terminators, memory operations and operations

with data structures (type conversion and vector modification). Two important

instructions that do not fall into these groups are phi (merges SSA values defined

in predecessor basic blocks) and call (performs a function call). Arithmetic,

logic and memory operators usually can be translated to a dataflow graph of µops,

because access to special-purpose registers is not required. However, terminator

13

2.2. TARGET DESCRIPTIONCHAPTER 2. TOOLCHAIN ARCHITECTURE

instructions often depend on precise placement of pipeline control µops (such as

register file operations or jumps), and control flow aspects have to be expressed in

lowered code. The [Name] field of MicroOp type should be used to list values

that have to be available for reading through the interconnect immediately before

a given instruction starts executing.

The matching is done for a specific LLVM instruction and operand type, and

generated code has to preserve the SSA form. The following example matches the

LLVM add instruction applied to 32 bit integer operands. The generated RTN

code consists of one ALU instruction with mode bits set for the addition operation,

and the SSA value name v defined in LLVM bytecode is used as the RTN SSA

value name, as well. The instruction does not have any control dependencies, hence

the list of additional dependencies is empty. Its data dependencies are operands

a and b for which dataports have to be defined by the scheduler (this is why the

DPU dataport constructor is used):

lower (v, IDBinOp BOAdd (TDInt U 32) a b) =

[MO v ALUOp AO_ADDU (DPU a) (DPU b) 0 []]

By matching on custom LLVM intrinsic functions, it is possible to generate

code for accelerators with arbitrary functionality. Because calls to intrinsics are

represented with function calls that can have an arbitrary number of arguments,

it is necessary to generate the list of operands for an accelerator instruction by

mapping the unscheduled dataport constructor to all intrinsic arguments:

lower (v, IDCall t "llvm.viterbi" args) =

[MO v VITERBI None (map (\a -> (DPU $ AV a)) args 0 [])]

This matching rule means that an LLVM instruction that calls (IDCall), which

is an intrinsic function named llvm.viterbi()1, is translated into a new RTN

µop defined as VITERBI. No mode bits (None) are set, and intrinsic arguments are

simply passed as µop operands. Complex translation rules can generate multiple

µops.

While being associated with the LLVM phi instruction, the function prologue

is generated by the scheduler that guarantees that φ-values defined in predecessor

1All intrinsics are defined in llvm.* namespace by convention.

14

2.3. FLEXCORE CHAPTER 2. TOOLCHAIN ARCHITECTURE

basic blocks are being placed in the same memory location that instructions using

the defined values will refer to. References to function arguments are also inserted

by the scheduler, so no explicit prologue code has to be generated by the instruction

lowering function.

As symbolic value names are preserved at this stage, value forwarding and

spilling between output port registers, the register file, and memory is not defined

until later. Forwarding and spilling code is produced by constraints described in

Section 3.7.

2.2.2 Interconnect configuration

An execution unit is characterized not only by its intended functionality, but also

by types of inputs and outputs and by latency. A configuration file contains a list

of triples, where every triple denotes a type of execution unit, the number of units

of this type available, and the unit type’s delay:

type Resources = forall arch . Map (UnitType arch) (Int, Int)

For example, a configuration file entry for a Viterbi accelerator might be written

like this:

(VITERBI, (1, 3))

Such entry would mean “this architecture variant has one (1) Viterbi accelera-

tor, and its delay is three (3) cycles”. The scheduler relies on this information to

avoid hazards when allocating resources.

2.3 FlexCore

The target description for the baseline variant of FlexCore is shipped as a part

of the Bau toolchain. It can be modified to create a new, accelerator-extended

variants or serve as a primer for writing descriptions.

2.3.1 Binary operations

Since the baseline FlexCore implementation includes a multiplier in addition to an

ALU, lowering of arithmetic and logic instructions requires two rules:

15

2.3. FLEXCORE CHAPTER 2. TOOLCHAIN ARCHITECTURE

lower (v, IDBinOp BOMul (TDInt False _) a b) =

[MO v Mult None [DPU a, DPU b] 0 []]

lower (v, IDBinOp m (TDInt False _) a b) =

[MO v ALUOp (mode m) [DPU a, DPU b] 0 []]

where mode m =

case m of {BOAdd -> ADDU ; BOSub -> SUBU ;

BOAnd -> AND ; BOOr -> OR ; BOXor -> XOR ;

BOShL -> SLL ; BOLShR -> SRL ; BOAShR -> SHR }

2.3.2 Memory operations

Lowering of memory access instructions has to consider LLVM pointer arithmetic.

Lowering of loads and stores is straightforward:

lower (v, IDLoad t a) = [MO v LSRead (LSW 4) [DPU a] 0 []]

lower (v, IDStore t a b) = [MO v LSWrite (LSW 4) [DPU b, DPU a] 0 []]

But LLVM assembly supports compound types too. Besides global variables

defined at compile time, it is possible to dynamically allocate data structures, as

well, with the alloca instruction:

lower (v, IDAlloca t tsize n) =

[MO (v) RegRead sp [] 0 []

, MO (v++"_0") PC Imm [(DPU $ AI $ tsize*n)] 0 []

, MO (v++"_1") ALUOp SUBU [(DPU $ AV v), (DPU $ AV (v++"_0"))] 0 []

, MO (v++"_2") RegWrite sp [(DPU $ AV (v++"_1"))] 0 []]

The GetElementPtr instruction, which is used for accessing members of

data structures, does not have to be lowered explicitly because pointer offsets

are calculated statically, and addresses are calculated in the value-reading code

inserted during scheduling.

2.3.3 Control flow

Every basic block in LLVM ends with an instruction that modifies the control flow

(the terminator instruction). Lowering of basic block terminator instructions is

straightforward:

16

2.3. FLEXCORE CHAPTER 2. TOOLCHAIN ARCHITECTURE

lower (v, IDRet t r) = [MO (v++"_0") RegWrite v1 [DPU r] 0 []]

++ lower (v, IDRetVoid)

lower (v, IDRetVoid) = [MO (v++"_10") RegRead ra [] 0 []

, MO (v++"_11") PC JumpSA [a v 10] 0 []]

lower (v, IDBrCond c l1 l2) =

[MO (v++"_t") PC BNEZA [DPU l1, DPU c] 0 []

, MO (v++"_f") PC BEQZA [DPU l1, DPU c] 0 [v++"_t"]]

lower (v, IDBrUncond l) = [MO v PC JumpSA [DPU l] 0 []]

Notably, there is no rule for the switch instruction. It does not need to be

implemented because LLVM optionally includes a pass that lowers it to ordinary

branches, which saves the backend developer’s effort.

A calling convention has to be implemented both by lowering rules and schedul-

ing constraints because passing arguments between functions belongs to register

allocation, which must be managed by the scheduler:

lower (v, IDCall t f args) =

[MO (v++"_0") RegRead sp [] 0 []

, MO (v++"_1") PC Imm [DPU $ AI 32] 0 []

-- push $fp

, MO (v++"_2") ALUOp SUB [a v 0, a v 1] 0 []

, MO (v++"_4") RegRead fp [] 0 []

, MO (v++"_6") LSWrite (LSW 4) [a v 2, a v 4] 0 []

-- push $ra

, MO (v++"_3") ALUOp SUB [a v 0, a v 2] 0 []

, MO (v++"_5") RegRead ra [] 0 []

, MO (v++"_7") LSWrite (LSW 4) [a v 3, a v 5] 0 []

-- save $sp in $fp

, MO (v++"_8") RegWrite fp [a v 0] 0 []

-- update $ra

, MO (v++"_9") PC GetPC [] 0 []

, MO (v++"_10") PC Imm [DPU $ AI 96] 0 []

, MO (v++"_11") ALUOp ADD [a v 9, a v 1] 0 []

, MO (v++"_12") RegWrite fp [a v 0] 0 []

17

2.3. FLEXCORE CHAPTER 2. TOOLCHAIN ARCHITECTURE

-- jump to entry point

, MO (v++"_13") PC JumpSA [DPU f] 0 [v++"_12"]

, MO (v) RegRead v1 [] 0 [v++"_13"]]

2.3.4 Printing the assembly

Assembler development is beyond the scope this thesis. We leverage the existing

FlexCore assembler to transform RTN assembly to FlexCore machine code.

18

3

Scheduling as CSP

Scheduling is a classical example of a constraint satisfaction problem (CSP). The

unscheduled RTN representation can be transformed into valid RTN by substitut-

ing full names of execution units and data ports. When the choice of an execution

unit instance is a matter of an instance number, the choice of data ports to read

operands from is not straightforward. Because of spilling, an operand might come

not only directly from another execution unit, but also from a buffer unit, from

the register file, or from the load/store unit (essentially, from memory). Thus,

two subsets of constraints can be identified — one to define the instruction place-

ment in space (units) and time (cycles) and another to define forwarding of values

between units and cycles.

Entries of the schedule can be represented with a tuple of parameters and con-

straints imposed on these parameters would define a valid schedule. Indexed vari-

ables assigned with true by the SAT solver will denote valid entries. Statements, as

shown in Section 3.2, can then be rewritten as propositional logic expressions [25].

The problem for a SAT solver to satisfy would be a conjunction of constraints for

every instruction, pair of instructions, or execution unit. We can only ban invalid

schedules, not mandate valid ones.

Besides two major sets of constraints, more can be thought of, for example,

to guide the scheduler towards a more power- or performance-optimized solution,

by casting away schedules that are suboptimal by given criteria. Additional con-

19

3.1. PROBLEM ENCODING CHAPTER 3. SCHEDULING AS CSP

straints will not require changes to the solution interpreter, since they will only

refine existing solutions, and not bring in a new class of solutions. The same holds,

for example, for trace scheduling — the interpreter will already have a generic pro-

cedure for code rearrangement.

After the solver returns relations, they can be used by a solution interpreter

that builds the actual RTN code. Interpretation of instruction schedules is one-

to-one template substitution — every µop is annotated with the ID number of a

unit instance it is scheduled on. Spilling code generation is performed when the

value schedule is interpreted — not only dataport names are supplied into a µop

instead of value names, but additional µops are inserted to ensure that values are

stored in memory after they are computed and read back when they are required

by other µops. Different spilling strategies can be implemented to either optimize

for access latency or for total number of transfers. Current version of Bau uses a

simple strategy that allocates faster memory for values that are to be used sooner.

3.1 Problem encoding

In order to encode a problem as a SAT constraint, it is necessary to identify

what is the meaning of a single SAT variable. The scheduler is supposed to find

a relationship between µops (or instructions) and values defined by them, unit

instances, memory locations and cycles. The simplest encoding would be using

four indices for each variable. But a four-dimensional array of variable would not

only grow fast in size together with growth of program sizes but also will require

many additional constraints to forbid obviously wrong combination of indices, such

as instances and locations with non-matching value types.

Memik and Fallah’s paper [25] uses three indices for denoting operations, units

and cycles, correspondingly, and the initial approach used in this thesis was to reuse

constraints defined by them for instructions and try to encode the problem of value

placement in a similar fashion. Section 3.5 describes this approach. However, the

unit instance index is only used for checking if an instance is not assigned with more

than one instruction at a time and if it is assigned with an instruction of matching

type. In all other constraints, it only increases complexity of a problem by an order

of magnitude. Three indices are also redundant for the value assignment problem.

20

3.2. INSTRUCTION PLACEMENT CHAPTER 3. SCHEDULING AS CSP

It became possible to encode the scheduling problem with tens of thousands

of variables and millions clauses instead of hundreds of thousands of variables and

tens to hundreds millions of clauses. The approach described in Section 3.6 does

not only reduce the solution time, but also the memory required.

3.2 Instruction placement

After the program has been expressed in terms of µops implemented by available

execution units, assignment of operations to units and values to registers (both

output port registers and register file) can be performed. The scheduling problem

can be defined as the following [25]:

• every instruction should be assigned to exactly one unit and exactly one

cycle;

• every execution unit performs just one instruction at a time;

• types of operands and result should match types of execution unit and reg-

isters;

• no instruction appears before its arguments have been defined; and

• no instruction appears after its result is used.

3.3 Value placement

FlexCore architecture establishes two major classes of registers — unit output

port registers and registers provided by units attached to the interconnect. Every

execution unit has a register that holds the output value1, and an implementation

of the FlexSoC scheme (for example, FlexCore) can have dedicated buffering units

that do not perform any computation but are used as scratch registers and can be

accessed faster than the regular register file. Different classes of registers do not

share a uniform interface — an RTN instruction can only reference output ports,

but in order to read or write a value from or to a buffer or register file additional

spilling code is required.

1A unit may compute more than one output value and have multiple output registers

21

3.3. VALUE PLACEMENT CHAPTER 3. SCHEDULING AS CSP

A value path is a set of slots in the value placement schedule that belong to con-

secutive cycles between slots where the defining (def) and using (use) instructions

are placed. A value can be passed between execution units in several ways:

• directly through the interconnect (only supported in the version of Bau cur-

rent to this thesis if def and use are placed on consecutive cycles)

• through the buffering unit

• through the register file

• through the stack (which is known as spilling in conventional compilers)

Template RTN still retains SSA form, so the number of users of every value is

finite and known. There should be a path between a value definition and a value

use, and for values with many users those paths may overlap. If a value has many

users across the program, the value path can become sophisticated. Value paths

define where a value will reside at a given point in time, and in the first iteration

the properties of a valid value placement schedule can be defined as following:

• a memory location can hold just one value at a time;

• types of a memory location and of a value should match; and

• a value should be stored continually at the same location after it is defined

and before it is used.

It should be noted that characteristics of different memory levels do not have

to be considered by the scheduler, so, for example, no preference between placing

a value in a register or on the stack is made. The task of the scheduler is to ensure

that resource conflicts are absent, but the differentiation between memories of low

(buffers and registers, available only in limited numbers) and high latency (the

stack) is coarse at this compilation step. The solution interpreter has to perform

further analysis and determine what placement of values suits the optimization

criteria better (Section 3.7).

Every basic block has its independent instruction schedule, because µops can-

not be moved between basic blocks without an analysis that will prove that code

movements will not change the semantics of a program. Currently, Bau does not

implement this kind of analysis. Nevertheless, values may be live across basic

22

3.4. CODE INSERTION CHAPTER 3. SCHEDULING AS CSP

blocks, and value placement constraints cannot consider independent basic blocks.

A limited form of liveness analysis has to be performed to determine what values

are live in a given basic block and, vice versa, in what basic blocks is a given

value live. More fine-grained analysis (cycle-relative, as performed in conventional

compilers) is not possible because instruction and value placements are interde-

pendent.

3.4 Code insertion

Some tasks in the compilation flow that are not related to resource allocation

still cannot be solved by lowering rules alone. Parts of template code have to be

inserted conditionally by the scheduler. They include:

• merging of φ-values by storing them in one location;

• choice between buffers, registers, or spilling;

• generation of code to read/write values from buffers, registers, or stack;

• passing arguments to a function on a call;

• reading function arguments;

• reading function return value.

3.5 Encoding with triples

The triple encoding described in this section results in a model by one order of

magnitude larger than one generated in the pair encoding described in Section 3.6

and was not ultimately used for implementation of Bau.

An instruction schedule consists of triples of microinstruction name (that is,

name of SSA value defined by it), name of an execution unit it is assigned to (that

is, unit type + unit number) and cycle number. Every possible schedule entry can

be encoded by a Boolean variable with three indexes xouc, where o corresponds

to value name, u to unit name, and c to cycle number. The maximum possible

number of cycles C in the schedule is equal to the sum of latencies of all instructions

in a basic block to be scheduled. Every µop and execution unit instance are also

given a numerical identifier with the maxima of O being equal to the number of

23

3.5. ENCODING WITH TRIPLES CHAPTER 3. SCHEDULING AS CSP

microinstructions in a basic block and U being equal to the number of all unit

instances regardless of their type.

A value schedule consists of triples of SSA value name, name of a memory

location (would that be a buffering unit, a register in the register file, or a memory

address) and cycle number in a basic block. Every possible schedule entry can

be encoded by a Boolean variable with three indexes yolc, where o corresponds

to value name, l to location name, and c to cycle number. Not surprisingly,

many constraints resemble the ones for instruction scheduling. Considerations for

numbering of locations and cycles are also the same (Section 3.2). The maximum

location index is calculated as the sum of the maximum number of values that

never are used outside of a basic block that defines them and the number of all

values that are transferred between basic blocks.

3.5.1 Execution unit properties

Every unit runs no more than one instruction at a time

For every unit instance u there should not be any pair of variables assigned with

true at the same cycle:

∀u ∈ U∀c ∈ C∀o1, o2 ∈ O 6 ∃((o1, u, c), (o2, u, c)) : o1 = o2 (3.1)

In basic Boolean operators:

o1 6= o2,
∧
u∈U
c∈C

(o1,u,c) ∧ (o2,u,c) (3.2)

Unit and instruction types match

If types of an instruction and an execution unit do not match (for example, an

ALU operation cannot be assigned to a load-store unit), corresponding variables

should never be assigned with true:

∀o ∈ O∀u 6∈ U(o)∀c ∈ C 6 ∃(o,u,c) (3.3)

24

3.5. ENCODING WITH TRIPLES CHAPTER 3. SCHEDULING AS CSP

In basic Boolean operators:

∧
o∈O

u6∈U(o)
c∈C

(o,u,c) (3.4)

3.5.2 Dataflow properties

Every instruction has exactly one entry in the schedule

As the instruction types are known, the search space can be reduced by limiting the

number of units where an instruction o can be placed to those of a corresponding

type. First, an instruction o should have no more than one entry in the schedule.

This is achieved by demanding impossibility of every pair of variables to be assigned

with true:

∀o ∈ O∀u1, u2 ∈ U(o)∀c1, c2 ∈ C

6 ∃((o, u1, c1), (o, u2, c2)) : (u1, c1) = (u2, c2)
(3.5)

In basic Boolean operators:

(u1, c1) 6= (u2, c2),
∧
o∈O

u1,u2∈U(o)
c1,c2∈C

(o,u1,c1) ∧ (o,u2,c2) (3.6)

Conjunction is commutative, and the order of variables in a pair is not impor-

tant, so redundant pairs have to be removed by imposing an additional restriction

on unit and cycle indices: u2 · cn + c2 > u1 · cn + c1.

Second, an instruction o should have no less than one entry, which is assured

by a disjunction of all possible places of i in the schedule:

∀o ∈ O∀u ∈ U(o)∀c ∈ C∃(o,u,c) (3.7)

In basic Boolean operators:

25

3.5. ENCODING WITH TRIPLES CHAPTER 3. SCHEDULING AS CSP

∧
o∈O

u∈U(o)
c∈C

(o,u,c) (3.8)

Data dependencies are not broken

Given a set LE of pairs of instructions (that is, local value dependency edges)

where instruction use depends on the result of instruction def and has a delay d,

it could be assumed that use should never be scheduled before cycle d after def :

∀def, use ∈ LE∀u1 ∈ U(def)∀u2 ∈ U(use)∀c1, c2 ∈ C

6 ∃((use, u1, c1), (def, u2, c2)) : c1 + d ≥ c2
(3.9)

In basic Boolean operators:

c1 + d ≥ c2,
∧

def,use∈LE
u1∈U(def)
u2∈U(use)
c1,c2∈C

(def,u1,c1) ∨ (use,u2,c2) (3.10)

3.5.3 Non-orthogonal datapath interconnect

Instructions in a def-use cannot be assigned to unit instances that lack a route in

a customized interconnect as defined in configuration file:

3.5.4 Location properties

Similarly to execution units, memory locations can process (that is, store) only

one value at a time and only values of corresponding types can be processed.

Constraints 3.1 and 3.3 can be applied to value schedules unchanged to enforce

these two properties.

3.5.5 Value path properties

A graphical illustration of the value path concept for a locally live value is given

on Fig. 3.1.

26

3.5. ENCODING WITH TRIPLES CHAPTER 3. SCHEDULING AS CSP

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

locations

cy
cl
es

Figure 3.1: A value should be stored after it is defined and at before it used.

Value path that spans inside of one basic block:

CV PL = {c : c ∈ C, cdef < c < cuse} (3.11)

A value path can’t include more than one location

For every assignment of def and use instructions to task slots on non-consecutive

cycles, a value path should exist such that def is always assigned to the same

memory location. For every possible cycle range between def and use all paths

that include more than one location should be forbidden:

∀[(def, udef , cdef), (use, uuse, cuse)]∀c ∈ C 6 ∃(use, li, c) :

{l1, l2 . . . ln} ⊆ L, l1 6= l2 6= . . . 6= ln, c ∈ C, cuse < c < cdef ,
(3.12)

In basic Boolean operators:

27

3.5. ENCODING WITH TRIPLES CHAPTER 3. SCHEDULING AS CSP

n = cuse − cdef − 1, l1 . . . ln ∈
(
n

L

)
, l1 6= l2 6= . . . 6= ln,∧

(def,use)∈LE

(def, udef , cdef) ∧ (use, uuse, cuse) ∧
∧

l∈(n
L)

c∈CV PL

(def, l, c)
(3.13)

Innermost NAND clauses in (3.13) are only false when all their member vari-

ables are true. For every value path that includes more than one location, the

constraint has one NAND clause forbidding it, so paths with just one location are

allowed.

A value path can’t have gaps

A value should never be overwritten in the middle of its value path. For every

combination of def-use cycle ranges and location

∀[(def, udef , cdef), (use, uuse, cuse)]∀l ∈ L∀c ∈ C∃(def, l, c) :

c > cdef , c < cuse
(3.14)

In basic Boolean operators:

∧
(def,use)∈LE

(
[(def, udef , cdef)∨

∨
l∈(n

L)
c∈CV PL

(def, l, c)]∧

∧[(use, uuse, cuse)∨
∨

l∈(n
L)

c∈CV PL

(def, l, c)]
) (3.15)

(3.15) is only true when all subexpressions (implications) are true, that is, the

value is placed at least one location in a cycle between def and use.

28

3.5. ENCODING WITH TRIPLES CHAPTER 3. SCHEDULING AS CSP

A value cannot be placed outside its value path

All placements of a value outside of its value path should be explicitly forbid-

den, because to store an undefined value is impossible and to store a used one is

unnecessary.

∀[(def, udef , cdef), (use, uuse, cuse)], 6 ∃(def, l, c) :

l ∈ L, c ∈ C, 1 ≤ c ≤ cdef , cuse < c ≤ |C|
(3.16)

In basic Boolean operators:

(use, def) ∈ LE, l ∈ L, c ∈ C, 1 ≤ c ≤ cdef

(def, udef , cdef) ∨ (def, l, c)
(3.17)

(use, def) ∈ LE, l ∈ L, c ∈ C, cuse < c ≤ |C|

(use, udef , cdef) ∨ (def, l, c)
(3.18)

Implication in (3.17) is only false when a placement appears before def, and

implication in (3.18) is only false when a placement appears after use.

Locally live values can be eligible for forwarding

If and only if def and use are placed in consequent cycles, then def can be for-

warded directly through the interconnect and does not have to be stored, in which

case there is no value path to be defined by (3.12), (3.14) and (3.16).

∀l ∈ L, c ∈ C, [(def, udef , cdef), (use, uuse, cdef + 1)]↔6 ∃(def, l, c) (3.19)

In basic Boolean operators:

29

3.6. ENCODING WITH PAIRS CHAPTER 3. SCHEDULING AS CSP

∧
(use,def)∈LE
udef ,uuse∈U
cdef∈C

(∧
l∈L,c∈C

[(def, udef , cdef) ∨ (use, uuse, cdef + 1) ∨ (def, l, c)]
)

(3.20)

The implication in (3.20) is only true when all member variables, that is, a

placement of a value in a location is forbidden when def and use are placed in

consecutive cycles, and, vice versa, placement of def and use in consecutive cycles

is forbidden, when a value is placed in a location.

3.5.6 Value paths of globally live values

A value path of a globally live value (global value path) spans across several basic

blocks and can include branches and loops. It can be modelled as a directed graph

with vertices representing basic blocks where the value is live and edges connecting

pairs of consecutive basic blocks if the value is live at the end of the predecessor,

and the successor is using the value or if its respective successors are.

Constraints defined in (3.12), (3.14) and (3.16) do not have to be modified to

ensure existence of global value paths. However, the exact method of quantifying

over individual cycles is implementation-specific (Section 4.3.1).

3.6 Encoding with pairs

An encoding that uses three indexes for every variable is excessive, as, for example,

in most cases every instruction has just one unit instance to be placed on, and the

choice of execution unit is obvious. Similarly with value placement, the beginning

of a value path always takes place on the cycle following the one where a value is

defined, which makes the value cycle index redundant.

The approach to encoding ultimately used in Bau uses two two-dimensional

tables, one to relate µops to cycles and another to relate values (which have one-

to-one relationship with µops) to memory locations. The upper estimate of cycle

lengths of a schedule is a sum of all µops’ latencies, and a better estimate is a topic

for future work. The upper estimate of location number is a sum of amounts of

30

3.6. ENCODING WITH PAIRS CHAPTER 3. SCHEDULING AS CSP

buffers and registers, and the number spill slots for the current scheduler iteration.

The code on Fig. 3.2 illustrates use of the relation function that allocates an

array of Boolean variables in the SAT solver.

(emptyISched, emptyVSched) :: Solver -> Resources arch
-> BasicBlock arch -> Relation Task Slot

emptyISched s res (BBU label ops) =
relation s ((0, 0), (length ops - 1, maxCycleIndex res ops - 1))

emptyVSched s res (BBU label ops) =
relation s ((0, 0), (length ops - 1, maxLocationIndex res - 1))

Figure 3.2: Allocating memory in a SAT solver instance

3.6.1 Execution unit properties

No more than N instructions of a given type can be executed in one

cycle

The choice of a unit instance to assign an instruction to can be made by the

solution interpreter provided no more instructions are scheduled in one cycle than

there are unit instances available that can run this type of instructions. This

constraint replaces both constraints that mandate assignment one instruction to a

unit instance and correspondence of instruction and instance types. It is sufficient

to check that at least N+1 instructions are not scheduled at the same time:

∀ut ∈ UT∀o ∈ O : ∀c ∈ C, o1...on ∈
(
n

O

)
type(o) = ut, n = units(ut), 6 ∃((o1, c),..., (on, c))

(3.21)

In basic Boolean operators:

type(o) = ut,
∧

ut∈UT
o∈O
c∈C

∧
i∈(n

O)

(oi,c) (3.22)

31

3.6. ENCODING WITH PAIRS CHAPTER 3. SCHEDULING AS CSP

3.6.2 Instruction properties

The properties of the dataflow graph remain the same with this approach except

that variables lack the unit instance index.

Every instruction has exactly one entry in the schedule

First, an instruction o should have no more than one entry in the schedule. This is

achieved by demanding impossibility of every pair of variables to be assigned with

true:

∀o ∈ O∀c1, c2 ∈ C 6 ∃((o, c1), (o, c2)) : c1 = c2 (3.23)

In basic Boolean operators:

c1 6= c2,
∧
o∈O

c1,c2∈C

(o,c1) ∧ (o,c2) (3.24)

Second, an instruction o should have no less than one entry, which is assured

by a disjunction of all possible places of i in the schedule:

∀o ∈ O∀c ∈ C∃(o,c) (3.25)

In basic Boolean operators:

∧
o∈O
c∈C

(o,c) (3.26)

Data dependencies are not broken

Given an instruction use dependent on the result of instruction def and a delay d,

it could be assumed that use should never be scheduled before cycle d after def :

∀def, use ∈ LE∀c1, c2 ∈ C 6 ∃((use, c1), (def, c2)) : c1 + d ≥ c2 (3.27)

32

3.6. ENCODING WITH PAIRS CHAPTER 3. SCHEDULING AS CSP

In basic Boolean operators:

c1 + d ≥ c2,
∧

def,use∈LE
c1,c2∈C

(def,c1) ∨ (use,c2) (3.28)

3.6.3 Value properties

Every instruction defining a value has exactly one entry in the schedule

First, every instruction def should have no more than one entry in the schedule.

This is achieved by demanding impossibility of every pair of variables to be assigned

with true:

∀(def,use) ∈ E∀l1, l2 ∈ L 6 ∃((def, l1), (def, l2)) : l1 = l2 (3.29)

In basic Boolean operators:

l1 6= l2,
∧

def,use∈E
l1,l2∈L

(def,l1) ∧ (def,l2) (3.30)

Second, an instruction def should have no less than one entry, which is assured

by a disjunction of all possible places of i in the schedule:

∀def, use ∈ E∀l ∈ L∃(def,l) (3.31)

In basic Boolean operators:

∧
def,use∈E

l∈L

(def,l) (3.32)

No instruction not defining a value has entries in the schedule

In order not to confuse the solution interpreter, all instructions that don’t define

values and can’t result in writing a value to a location should never be assigned

with a location:

33

3.6. ENCODING WITH PAIRS CHAPTER 3. SCHEDULING AS CSP

∀o 6∈ E∀l ∈ L 6 ∃(o,l) (3.33)

In basic Boolean operators:

∧
o 6∈E
l∈L

(o,l) (3.34)

3.6.4 Location properties

Don’t store values that can be forwarded

A location with index 0 is a virtual location used for values that can be forwarded

directly and thus don’t have to be assigned with a real location. If defining and

using instruction can be scheduled on consecutive cycles, then this virtual location

should be used:

∀(def,use) ∈ LE∀c1, c2 ∈ C, c1 + ddef = c2∃(def, 0) (3.35)

In basic Boolean operators:

c1 + ddef = c2
∧

def,use∈LE
c1,c2∈C

[(def,c1) ∨ (use,c2) ∨ (def,0)] (3.36)

No writes to a location before stored value is read

A location cannot be assigned to two values that can potentially be live at the same

time. Due to interdependency of instruction scheduling and register allocation

problems in architectures with a flexible datapath it is not possible to perform a

full-fledged liveness analysis, as it is impossible to calculate cycle precise liveness

ranges based on instruction placement alone, so this constraint forbids many valid

schedules. This is an area for future improvement, because register reuse decreases

and thus unnecessary spilling may be performed. A limited analysis is performed

to show that, for example, values dependent on each other, values never used

outside of their defining basic blocks and values live in non-overlapping loops and

34

3.7. SOLUTION INTERPRETATION CHAPTER 3. SCHEDULING AS CSP

E D

BA

C

Figure 3.3: Values A and C cannot compete for the same memory location at the
same time, but A and B or B and C could be competing. Despite belonging to the
same path, E can compete with C, because D depends on C.

branches are never live together and don’t have to be included in the constraint

(Fig. 3.3). S is a subset of O produced by this analysis.

∀l ∈ L∀(o1, o2) ∈ S 6 ∃((o1, l), (o2, l)) (3.37)

In basic Boolean operators: ∧
o1,o2∈S
l∈L

(o1,l) ∧ (o2,l) (3.38)

3.7 Solution interpretation

The schedule returned by the SAT solver contains the information about on what

cycles to place instructions generated by the lowering pass and memory access

instructions inserted by the scheduler, and names of memory locations to place

SSA values in. Indices of unit instances are missing, but it is guaranteed that

every cycle contains no more instructions than there are units of a given type

available. The solution interpreter has to choose numbers of instances and fill in

the names of dataports to read the values from.

35

3.7. SOLUTION INTERPRETATION CHAPTER 3. SCHEDULING AS CSP

It is possible that the solver is unable to find a schedule for a given number of

memory locations. In this case the solver is restarted with a different number of

allowed spills.

36

4

Defining constraints

A SAT solver interface DSL — satchmo library 1, which is is based on an ex-

tension to the State monad, was initially used as a foundation for this DSL for

description of scheduling constraints. It implements the SAT monad that performs

marshalling of SAT problems expressed as Haskell values into DIMACS format ac-

cepted by SAT solvers and unmarshalls solutions back to Haskell values. The basic

building block for SAT problems is assert, a monadic function that stores in-

dividual clauses (disjunctions of boolean variables, possibly negated) in the SAT

monad. A series of asserts makes a conjunction of clauses, allowing for repre-

sentation of a CNF expression. After the problem is constructed from clauses, the

SAT solver should be invoked with solve. Assignments to boolean variables can

be extracted from the SAT monad with decode.

satchmo implements a primitive for logical relations — assignments of truth

values to tuples. Elements of relations would correspond to indexed boolean vari-

ables that constitute boolean propositions representing the constraints, the data

structure representing the relation (a Haskell Array) can be then used to translate

unscheduled RTN code to its scheduled form (Section 3.7).

However, on large problems satchmo has shown to be a performance bot-

tleneck because problem representations have to be constructed twice — first, in

the SAT monad, and second, as an internal data structure of MiniSAT. It became

1http://dfa.imn.htwk-leipzig.de/satchmo/

37

http://dfa.imn.htwk-leipzig.de/satchmo/

4.1. TRANSLATION TO CNF CHAPTER 4. DEFINING CONSTRAINTS

impractical on problems with more than several millions of clauses. A minimalist

drop-in interface to MiniSAT Haskell wrapper was developed in form of assert

and solve functions behaving similarly to ones provided by satchmo. Also, this

interface can be more easily extended to support MiniSAT incremental solving

than satchmo, which will prove useful with one of the planned Bau extensions.

4.1 Translation to CNF

All-purpose algorithms for translation of logical operators to CNF often give an

exponential growth of the expression size, either in terms of clauses, or auxiliary

variables. The set of supported logical operators should be carefully designed, but

even a restricted operator set can be used to construct powerful constraints, for

example, translation of following operators to CNF is straightforward:

• AND: a1 ∧ a2 ∧ . . . ∧ an (already in CNF)

• OR = a1 ∨ a2 ∨ . . . ∨ an (already in CN)F

• NAND = a1 ∧ a2 ∧ . . . ∧ an = ā1 ∨ ā2 ∨ . . . ∨ an
• NOR: a1 ∨ a2 ∨ . . . ∨ an = ā1 ∧ ā2 ∨ . . . ∨ ān
• Exclusive OR: a⊕ b = a↔ b = (ā ∨ b) ∧ (b̄ ∨ a)

Constraints described in Sections 3.2 and 3.3 are built using only these simple

operators. However, resulting boolean expressions still cannot be trivially repre-

sented in Haskell code, which gives the use case for this DSL.

4.2 Constraint templates

Fig. 4.1 shows how a higher-level constraint is defined as a function of architecture

variant description, unscheduled RTN assembly and memory allocated in a SAT

solver instance.

Many constraints are intended to work on the level of a basic block, and the

environment binding code is the same in every such constraint. Such constraints

can make use of the combinator shown on Fig. 4.2 to setup their environment.

38

4.3. QUANTIFICATION CHAPTER 4. DEFINING CONSTRAINTS

type Relation a b = Array (a,b) Lit
type Schedule = (Relation Task Slot, Relation Task Slot)
type Problem = (Resources, [Schedule], [BasicBlock], Edges)
type Constraint = Problem -> IO ()

Figure 4.1: From problems to constraints

type BBProblem = [MicroOp arch], Resources arch, Schedule, [Edge]
bbConstr :: (BBProblem -> IO ()) -> Constraint

Figure 4.2: Restricting constraint scope

There is no need to have separate templates for instruction-only constraints

and constraints imposed on both instruction and value schedules. While not every

basic block has a value schedule (ones that do not define values do not have value

schedules), the template does not have to check if a basic block defines values.

Value constraints do not consider non-defining basic blocks because their top uni-

versal quantifier quantifies over def-use edges. Non-defining blocks have none, so

they are not affected.

4.3 Quantification

All constraints presented in Section 3 have similar structure. A basic operator (as

selected in Section 4.1) is applied to variables that belong to a defined domain.

Scheduling constraints are thus defined by nesting an operator that will enforce the

truth value for one variable, for a pair of variables, or more (existential quantifier)

inside of an operator that identifies variables, pairs of variables or larger collections

from the schedule (universal quantifier).

4.3.1 Universal quantifiers

Most commonly, quantification is performed over all elements of a set of tasks, re-

sources or cycles, and the ranges can be obtained with allTasks, allResources

and allCycles functions. Most constraints will need quantification over slots,

to enforce a task-related property, or tasks, to enforce a slot-related property.

39

4.3. QUANTIFICATION CHAPTER 4. DEFINING CONSTRAINTS

allSlots :: [Slot]

taskSlots :: -> Range -> Index -> [Entry]

taskSlotPairs :: Range -> Index -> [(Entry, Entry)]

A special case is when a subset of slots is selected to enforce properties of

dependency graphs:

depSlotPairs :: Range -> LEdge -> [(Entry, Entry])

brokenDepSlotPairs :: Range -> LEdge -> [(Entry, Entry)]

Or vice versa, properties can be enforced for execution units or locations:

slotTaskPairs :: Range -> Index -> [(Entry, Entry)]

defUsePairs :: [LEdge] -> [(LEdge, LEdge)]

consDepSlots :: Range -> LEdge -> [(Entry, Entry)]

4.3.2 Existential quantifiers

Most of the inner expressions include only a single variable or a pair of variables.

For single variables, implementations of OR and NOR are provided:

atLeastOne :: Schedule -> [Entry] -> IO ()

noOne :: Schedule -> [Entry] -> IO ()

Variable pairs are commonly used in NAND expressions:

neverBoth :: [(Entry, Entry)] -> IO ()

neverAll :: [Entry] -> IO ()

40

4.3. QUANTIFICATION CHAPTER 4. DEFINING CONSTRAINTS

4.3.3 Composition strategy

The following combinator implements nesting of a universal and an existential

combinator:

nest2 :: [a] -> (b -> IO ()) -> (a -> b) -> IO ()

A complete constraint could be written like following (3.27 is given as an ex-

ample):

defBeforeUse =

bbConstr $ \ (s, res, (isch, _), ops, l_deps) ->

nest2

l_deps

(brokenDepSlots (allSlots isch))

(neverBoth s isch)

41

5

Results

For comparison of two toolchains, FlexTools [26] and newly developed Bau, three

benchmarks were selected from EEMBC benchmarks suite — autocorrelation (Au-

tocor), fast Fourier transform (FFT) and Viterbi decoder (Viterbi). Toolchains are

compared in compilation speed, execution speed of compiled programs and result-

ing assembly code size.

Table 5.1 gives running times for scheduling passes. The reason not to measure

complete compilation times is that front- and middle-ends used (GCC and LLVM)

are third-party software not specific to FlexCore. A radical decrease in compilation

is speed is attributed to the use of a SAT solver for most of the scheduling instead

of a heuristic algorithm. Compilation speed may be improved by better estimates

of schedule lengths that will reduce SAT problem sizes.

Autcor FFT Viterbi

FlexTools 3 4 4

Bau 71 87 94

Table 5.1: Benchmark compilation times (in seconds)

Table 5.2 gives sizes of resulting assembly code. The sizes of scheduling pass in-

puts are given to show the difference in density of code the schedulers are working

with. A more verbose intermediate representation of LLVM keeps more informa-

42

CHAPTER 5. RESULTS

tion about the program that can be readily used by the Bau scheduler, which gives

an improvement from 20% to 50% in final assembly size.

Autcor FFT Viterbi

MIPS 38 337 324

FlexTools 42 392 307

LLVM 70 569 617

Bau 33 224 261

Table 5.2: Number of instruction words in innermost functions

Table 5.3 gives benchmark execution times. The current iteration of Bau does

not give much of improvement over FlexTools. The reason for this is absence of

certain microcode optimizations implemented by FlexTools, suboptimal estima-

tion of schedule length that may introduce many empty cycles and suboptimal

generated spilling code that may introduce unnecessary latencies.

Autcor FFT Viterbi

FlexTools 0.9k 33k 232k

Bau 1.0k 31k 214k

Table 5.3: Benchmark execution times (in FlexCore simulator cycles)

43

6

Conclusion and future work

Memik and Fallah’s work on expressing scheduling problems as satisfiability prob-

lems [25] has demonstrated the viability of the approach and inspired our own

work. Besides reducing efforts of developing compilers for new variants of config-

urable architectures by separating architecture-specific resource constraints from

the generic constraints, it is possible to separate the scheduling algorithm from the

scheduling engine (the SAT solver) and reduce the code base that has to be main-

tained by compiler developers. We have demonstrated that modularized design of

the scheduler establishes clear boundaries between loosely-related properties of the

schedule and allows for better utilization of hardware resources. However, the set

of constraint combinators is by no means exhaustive, and scheduler writers should

not limit their designs with the features available.

• RTN optimization. LLVM implements common subexpression elimination

and loop invariant code motion passes, but after LLVM instructions are

translated to RTN microinstructions, unnecessary duplicated code occurs

again. [27]

• Support for vector instructions. LLVM assembly can express vector oper-

ations natively, so back-ends can translate them to instructions for SIMD

units. FlexSoC’s compile-time reconfigurability makes it a good platform

for building SIMD units of arbitrary size, provided that the compiler can do

necessary scheduling, and instruction compression overhead is not too big.

44

CHAPTER 6. CONCLUSION AND FUTURE WORK

• Better estimates of basic block length. A straightforward approach to calcu-

lating schedule length, as described in Section 3.2, results in a larger search

space than necessary and potentially longer schedules, even if empty instruc-

tion words are eliminated. Weak constraints do not necessarily mean that the

search time would be big, since a suboptimal solution could still be found

fast [28]. But a more comprehensive approach to analyzing the schedul-

ing outcome will also help to coin constraints that would impact scheduling

speed, as well, which would become an important factor with bigger bench-

marks or applications.

• Iterative optimization of basic block length. The problem of finding a lower

bound of a schedule length is as hard as finding the schedule itself, so it

is unfeasible to try to estimate it. A viable approach to optimization is

finding a valid schedule of a length with a statically estimated upper bound

and iteratively adding new constraints to the SAT solver instance that will

forbid placement of instructions of increasing amount of cycles in the end of

basic blocks, which is quicker than solving the problem from scratch with new

scheduling bounds. After a number of iterations the problem will become

unsatisfiable, which would mean that a lower bound is found.

• Choice of optimization criteria. There are many schedules for one program

that have a valid behavior, but they have different outcomes in terms of

consumed power and execution time. After the solver returns a schedule,

it might be run through an analyzer to determine if it satisfies power and

performance requirements. To avoid blind searches across many possible

schedules, further constraints can be defined to explicitly focus on power

or performance, which would require a more clear mechanism for constraint

description.

• Better liveness analysis. A pipeline controlled by a compiler makes it impos-

sible to separate scheduling into two sequential phases, instruction scheduling

and register allocation. It means that existing liveness analysis techniques

are inapplicable, and a very basic approach to defining liveness has to be

taken to generate value placement constraints. Although, a constraint exists

that defines value schedule precisely, but it is too hard computationally to

be practically used. A trade-off has to be found.

45

CHAPTER 6. CONCLUSION AND FUTURE WORK

• Tighter integration between scheduler and spill code generator When memory

unit throughput is in deficit, and additional cycles are inserted to transfer

values, the performance suffers. In many cases, scheduling can be performed

to hide the latency of memory further, and additional constraints can be

written to capture such behavior. Assignment of value groups to registers

should not be random.

• Peephole optimization of jumps. LLVM does not rely on the lexical order of

basic blocks in the assembly code and demands explicit listing of basic block

successors. A straightforward lowering generates excessive jump code that

can be removed because FlexCore assembly does not require explicit jumps

to lexically following basic blocks.

• Direct forwarding of values across basic blocks. The simplest implementation

of the scheduler does not try to prove that a value can be directly forwarded

(and used) to all successors of basic blocks and always assigns a real location

to a value that is used globally. This might lead to a higher memory pressure

than necessary.

46

7

Related work

The presented work relies both on previous approaches to generalize the schedul-

ing problem and off-the-shelf tools for implementing a prototype scheduler. This

section lists sources that provide better insight into the domain.

Instruction reordering and register allocation are two interdependent scheduling

phases with opposite goals. During instruction reordering parallelism is exploited

at the cost of increasing register pressure and spilling. Optimization criteria of a

register allocator are exactly opposite — decreasing the number of spills at the cost

of parallelism. Many approaches to choosing an optimal scheduling phase sequence

were summarized by Norris and Pollock [29]. They have also proposed several

strategies for phase communication and making the instruction scheduler and the

register allocator mutually sensitive. Recent works on the topic [30, 31] have

not departed from the scheme of separate but iteratively communicating phases

but barely proposed alternative communication strategies. A notable exception

is [32] where serialization of a CFG is performed incrementally. However, neither

approach is directly applicable to an exposed architecture where the compiler has

control over instances of executions units and the forwarding paths that a value

can take.

A major reason not to unite instruction reordering and register allocation is

NP-hardness of a combined problem [33]. Building phase communication strategies

upon heuristics improves performance but makes it hard to guarantee a specific

47

CHAPTER 7. RELATED WORK

scheduling outcome in a larger number of cases than it was thought of during de-

sign of heuristics. While SAT solvers might still employ heuristics to find solution

quickly [24, 34], we gain in clarity of the problem definition directly by imposing

constraints on the schedule that do not change the optimization criteria and indi-

rectly with constraints that increase scheduling speed [28]. Improving performance

of SAT solvers is a topic of ongoing research, with proposed support for paralleliza-

tion of solvers to run on multicore and multinode computers [35, 36], GPUs [37]

and FPGAs [38]. As the scheduling problem definition is made separate from the

scheduling engine, it will benefit from future faster solvers without any changes.

48

Bibliography

[1] Richard D. Greenblatt, Thomas F. Knight, John T. Holloway, and David A.

Moon. A LISP machine. In Proc. of 5th Workshop on Computer Architecture

for Non-Numeric Processing, pages 137–138, 1980.

[2] M. Naylor and C. Runciman. The reduceron reconfigured. In Proc. of the

15th ACM SIGPLAN international conference on Functional programming,

pages 75–86, 2010.

[3] D. A. Turner. A new implementation technique for applicative languages.

Software: Practice and Experience, 9(1):31–49, 1979.

[4] R. J. M. Hughes. Super-combinators a new implementation method for ap-

plicative languages. In Proc. of the 1982 ACM symposium on LISP and func-

tional programming, pages 1–10, 1982.

[5] T. Johnsson. Efficient compilation of lazy evaluation. In Proceedings of the

1984 SIGPLAN symposium on Compiler construction, pages 58–69, 1984.

[6] L. Augustsson and T. Johnsson. Parallel graph reduction with the (v , g)-

machine. In Proc. of the 4th international conference on Functional program-

ming languages and computer architecture, pages 202–213, 1989.

[7] S. L. Peyton Jones. Implementing lazy functional languages on stock hard-

ware: the spineless tagless g-machine. Journal of Functional Programming,

2:127–202, 1992.

49

BIBLIOGRAPHY BIBLIOGRAPHY

[8] N. Nethercote and A. Mycroft. The cache behaviour of large lazy functional

programs on stock hardware. SIGPLAN Not., 38:44–55, June 2002.

[9] Langendoen K. and Agterkamp D.-J. Cache behaviour of lazy functional pro-

grams. In Proc. 4th Int. Workshop on Parallel Implementations of Functional

Languages, 1992.

[10] Ahmad A. and DeYoung H. Cache performance of lazy functional programs

on current hardware. Technical Report 15-740, Carnegie Mellon University,

November 2009.

[11] Moritz A., Frank M. I., and Amarasinghe S. FlexCache: A framework for

flexible compiler generated data caching. In Intelligent Memory Systems,

volume 2107 of Lecture Notes in Computer Science, pages 135–146. Springer

Berlin / Heidelberg, 2001.

[12] G. L. Steele, Jr. and G. J. Sussman. Design of a lisp-based microprocessor.

Commun. ACM, 23:628–645, November 1980.

[13] R.E. Gonzalez. Xtensa: a configurable and extensible processor. IEEE Micro,

20(2):60–70, March 2000.

[14] P. Jääskeläinen, V. Guzma, A. Cilio, and J. Takala. Codesign toolset for

application-specific instruction-set processors. In Proc. SPIE, volume 6507,

2007.

[15] E. Moscu Panainte, K.L.M. Bertels, and S. Vassiliadis. The molen compiler

backend for reconfigurable architectures. In Compiler and Architecture Sem-

inar 2005, December 2005.

[16] J. Hughes, K. Jeppson, P. Larsson-Edefors, M. Sheeran, P. Stenstrom, and

L. Svensson. FlexSoC: Combining flexibility and efficiency in SoC designs. In

Proc. IEEE NorChip Conference, pages 52–55, November 2003.

[17] J. Fisher, J. Ellis, J.C. Ruttenberg, and A. Nicolau. Parallel processing: A

smart compiler and a dumb machine. In Proc. ACM SIGPLAN Symposium

on Compiler Construction, pages 37–47, June 1984.

50

BIBLIOGRAPHY BIBLIOGRAPHY

[18] T.T. Hoang, U. Jälmbrant, E. der Hagopian, K.P. Subramaniyan, M. Sjä-

lander, and P. Larsson-Edefors. Design space exploration for an embedded

processor with flexible datapath interconnect. In Proc. IEEE International

Conference Application-Specific Systems, Architectures, and Processors, pages

55–62, July 2010.

[19] M. Thuresson, M. Själander, and P. Stenstrom. A flexible code compression

scheme using partitioned look-up tables. In Proc. High Performance Embedded

Architectures and Compilers, pages 95–109, January 2009.

[20] GNU Compiler Collection. http://gcc.gnu.org.

[21] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In Proc. 2nd IEEE/ACM International Symposium

on Code Generation and Optimization, pages 75–86, March 2004.

[22] The LLVM Target-Independent Code Generator. http://llvm.org/

docs/CodeGenerator.html.

[23] Writing an LLVM Pass. http://llvm.org/docs/

WritingAnLLVMPass.html.

[24] N. Een and N. Sörensson. An extensible SAT-solver. In Proc. International

Conference on Theory and Applications of Satisfiability Testing, number 2919

in Lecture Notes in Computer Science, pages 333–336. Springer, May 2003.

[25] S.O. Memik and F. Fallah. Accelerated SAT-based scheduling of control/data

flow graphs. In Proc. IEEE International Conference on Computer Design,

pages 395–400, September 2002.

[26] T. Schilling, M. Själander, and P. Larsson-Edefors. Scheduling for an em-

bedded architecture with a flexible datapath. In Proc. IEEE Symposium on

VLSI, pages 151–156, May 2009.

[27] Ian Finlayson, Gang-Ryung Uh, David Whalley, and Gary Tyson. Improv-

ing low power processor efficiency with static pipelining. Interaction between

Compilers and Computer Architecture, Annual Workshop on, 0:17–24, 2011.

51

http://gcc.gnu.org
http://llvm.org/docs/CodeGenerator.html
http://llvm.org/docs/CodeGenerator.html
http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html

BIBLIOGRAPHY BIBLIOGRAPHY

[28] J.M. Crawford and A.B. Baker. Experimental results on the application of

satisfiability algorithms to scheduling problems. In Proc. Conference on Ar-

tificial Intelligence (AAAI), pages 1092–1097, July 1994.

[29] C. Norris and L.L. Pollock. Experiences with cooperating register allocation

and instruction scheduling. International Journal of Parallel Programming,

26(3):241–284, 1998.

[30] I. Cutcutache and W.-F. Wong. Fast, frequency-based, integrated register

allocation and instruction scheduling. Software: Practice and Experience,

38(11):1105–1126, September 2008.

[31] D.R. Koes. Register allocation aware instruction selection. Technical Report

CMU-CS-09-169, Carnegie Mellon University School of Computer Science,

October 2009.

[32] N. Johnson and A. Mycroft. Combined code motion and register allocation

using the value state dependence graph. In Proc. of the 12th International

Conference on Compiler Construction, pages 1–16, April 2003.

[33] R. Motwani, K.V. Palem, V. Sarkar, and S. Reyen. Combining register alloca-

tion and instruction scheduling. Technical Report TR 698, Courant Institute,

July 1995.

[34] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

Engineering an efficient SAT solver. In Proc. 38th ACM/IEEE Design Au-

tomation Conference, pages 530–535, June 2001.

[35] M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT solving. In Proc.

of the 12th Asia and South Pacific Design Automation Conference, pages

926–931, January 2007.

[36] Y. Hamadi and L. Sais. ManySAT: a parallel SAT solver. Satisfiability,

Boolean Modeling and Computation, 6(12):245–262, June 2009.

[37] C.J. Thompson, S. Hahn, and M. Oskin. Using modern graphics architec-

tures for general-purpose computing: A framework and analysis. In Proc.

52

BIBLIOGRAPHY BIBLIOGRAPHY

IEEE/ACM 35th International Symposium on Microarchitecture, pages 306–

317, November 2002.

[38] A. Dandalis and V.K. Prasanna. Run-time performance optimization of an

FPGA-based deduction engine for SAT solvers. ACM Transactions on Au-

tomation of Electronic Systems, 7(4):547–562, October 2002.

53

A

Bau source code

The directory structure is shown on Fig. 2.1.

Listing A.1: Bau/RTN.hs

{-# LANGUAGE TypeFamilies, FlexibleContexts, ExistentialQuantification,

ImpredicativeTypes, StandaloneDeriving, UndecidableInstances #-}

module Bau.RTN where

import Data.Array

import qualified Data.Map as M

import qualified LLVM.Core as L

import MiniSat

-- RTN is an assembly language on its own, and it’s structure is not different

-- from other assemblies.

type Name =String -- for values and functions

type Label =String -- for BBs

data Target arch ⇒Assembly arch =A Name [Function arch] [L.GlobalDesc]

data Function arch =F Name [Name] [BasicBlock arch] LEdges

data BasicBlock arch =BBU Label [MicroOp arch] |BBS Label [InstrWord arch]

-- Every microinstruction defines one SSA value as output of an execution unit

-- of a particular type with given SSA values as inputs. There might be several

-- identical units attached to the interconnect. A unit may or may be not used

-- in a schedule. If the unit is referred before scheduling is performed, the

-- unit id field is 0 (blank unit). An optional list of ∗control∗ dependencies

-- can be provided.

54

APPENDIX A. BAU SOURCE CODE

data InstrWord arch =IW [MicroOp arch]

data MicroOp arch =MO Name (UnitType arch) (Mode arch) [(DataPort arch)] Int [Name]

-- instance

-- Operands are defined implicitly as a given execution unit can only read its

-- input registers, and an execution unit has to route the result into one of

-- pipeline registers through interconnect. Every pipeline register is

-- identified by its input and output dataports.

-- In order to keep assembly syntax similar to a more conventional one,

-- switching is expressed by listing output ports as arguments instead of

-- listing input ports as results. Ports are defined by variant-specific unit

-- type instances.

data DataPort arch =DP PortType (UnitType arch) Int Name |DPU L.ArgDesc

data PortType =In |Out deriving (Show, Eq)

deriving instance (Eq (UnitType arch), Eq (Mode arch)) ⇒Eq (MicroOp arch)

deriving instance (Eq (UnitType arch), Eq (Mode arch)) ⇒Eq (InstrWord arch)

deriving instance (Eq (UnitType arch)) ⇒Eq (DataPort arch)

-- Defines an interface for accessing architecture-specific translation rules

-- and constraints. Translator implementation chooses a set of rules by

-- specifying full type signature.

-- define value @ cycle or store value @ location

type Index =Int

type Entry =(Index, Index)

-- (instructions, values)

type Relation a b =Array (a,b) Lit

type Schedule =(Relation Index Index, Relation Index Index)

-- analysis-related

type Lives =M.Map Label [Name]

type LEdge =(Index, Index)

type LEdges =M.Map Label [LEdge]

type Resources arch =M.Map (UnitType arch) (Int, Int) -- unit type, amount, execution

latency (in cycles)

type Problem arch =(Solver, Resources arch, [Schedule], [BasicBlock arch], LEdges)

type BBProblem arch =(Solver, Resources arch, Schedule, [MicroOp arch], [LEdge])

type Constraint arch =Problem arch →IO ()

type BBConstraint arch =BBProblem arch →IO ()

class (Eq (Mode arch), Eq (UnitType arch), Ord (UnitType arch), Enum (UnitType arch),

Bounded (UnitType arch)) ⇒Target arch where

data UnitType arch

data Mode arch

isMemory :: UnitType arch →Bool

55

APPENDIX A. BAU SOURCE CODE

constraints :: [Constraint arch]

lower :: (Name, L.InstrDesc) →[MicroOp arch]

-- Hjelpfunksjoner

bblabel (BBU label _) =label

bbops (BBU _ ops) =ops

opname (MO name _ _ _ _ _) =name

opunittype (MO _ ut _ _ _ _) =ut

opargs (MO _ _ _ args _ _) =args

isDPValue (DPU (L.AV _)) =True

isDPValue _ =False

dpValue (DPU (L.AV x)) =x

dpValue _ =""

maxUnitIndex :: Resources arch →Int

maxUnitIndex =foldr ((+)◦fst) 0◦M.elems

-- 1 "special" location, 4 buffers, 32 registers sans 7 special registers

-- FIXME: should be defined in the variant configuration

maxLocationIndex res =1+4+32-7

Listing A.2: Bau/Translate.hs

{-# LANGUAGE FlexibleContexts #-}

module Bau.Translate(translateModule) where

import System.FilePath

import Data.List

import qualified Data.Map as M

import Data.Maybe

import Data.Tuple

import Control.Monad

import qualified LLVM.Core as L

import qualified LLVM.FFI.Core as FFI

import System.IO (stderr, hPutStrLn)

import Bau.RTN

import Bau.Schedule

translateModule :: (Target arch) ⇒Resources arch →String →IO (Assembly arch)

translateModule res file =do

m ←L.readBitcodeFromFile file

fs ←L.getFunctions m

renames ←mapM findRenamesInFunction fs

fRtn ←mapM translateFunction $ zip renames fs

sched ←mapM (scheduleFunction res 0) fRtn

56

APPENDIX A. BAU SOURCE CODE

globals ←L.getGlobalVariables m

globals2 ←mapM translateGlobalValue globals

return $ A (takeFileName file) sched globals2

translateFunction (renames, (fname, f)) =do

bbs ←L.getBasicBlocks f

params ←L.getParams f

(bbsRtn, dfg) ←mapAndUnzipM (translateBasicBlock renames) bbs

return $ F fname (map fst params) bbsRtn (M.fromList dfg)

translateBasicBlock renames (bblabel, bb) =do

is ←L.getInstructions bb

isRtn ←concatMapM (translateInstruction renames) is

l_deps ←return◦concat◦map (localuses isRtn) $ isRtn

return ((BBU bblabel isRtn), (bblabel, l_deps))

translateInstruction renames (v, i) =do

i2 ←L.getInstrDesc i

let v’ =case M.lookup v renames of

Just v’’ →v’’

Nothing →v

return $ lower (v’, i2)

translateGlobalValue (gname, v) =do

init ←FFI.getInitializer v

L.getGlobalDesc gname init

findRenamesInFunction :: (String, FFI.ValueRef) →IO (M.Map Name Name)

findRenamesInFunction (_, f) =do

bbs ←L.getBasicBlocks f

bbsRenames ←mapM findRenamesInBasicBlock bbs

return $ M.fromList $ concat bbsRenames

findRenamesInBasicBlock :: (String, FFI.ValueRef) →IO [(Name, Name)]

findRenamesInBasicBlock (_, bb) =do

is ←L.getInstructions bb

is2 ←filterM (λ x →liftM L.isValConvOp $ L.getInstrDesc◦snd $ x) is

renames ←mapM (λ x →do

old ←liftM L.getValConvArg $ L.getInstrDesc◦snd $ x

new ←L.getValueNameU◦snd $ x

return (old, new)) is2

return renames

-- Hjelpfunksjoner

localuses :: (Eq (UnitType arch), Eq (Mode arch)) ⇒[MicroOp arch] →MicroOp arch →
[LEdge]

localuses ops op =(map mkEdge)◦filter (isDefUse op) $ ops

where mkEdge use =fromMaybe (error "Translate: localuses: index not found")

(do defIndex ←elemIndex op ops

57

APPENDIX A. BAU SOURCE CODE

useIndex ←elemIndex use ops

return (defIndex, useIndex))

isDefUse (MO def _ _ _ _ _) (MO _ _ _ args _ _) =

(DPU $ L.AV def) ‘elem‘ args

concatMapM f xs =liftM concat (mapM f xs)

Listing A.3: Bau/Schedule.hs

{-# LANGUAGE ScopedTypeVariables, FlexibleContexts #-}

module Bau.Schedule(scheduleFunction) where

import Data.Array

import qualified Data.Map as M

import Data.Maybe

import Control.Monad (forM, forM_, filterM, zipWithM, liftM)

import MiniSat

import System.IO (stderr, hPutStrLn)

import Bau.RTN

import Bau.Primitives

import Bau.Constraints

--type Solution =A.Array Entry Bool -- +present in the schedule or not

-- a function is the optimal unit of program text to be scheduled because

-- schedules for basic blocks have to consider inter-BB data transfers at very

-- least, and module-wide and cross-module code moving was already done by LLVM

-- (inlining/linking)

scheduleFunction :: (Target arch) ⇒Resources arch →Int →Function arch →IO (Function

arch)

scheduleFunction res spills (F name params bbs l_deps) =do

hPutStrLn stderr $ name ++"()..."

-- construct and solve the problem

s ←newSolver

ischs ←mapM (emptyISched s res) bbs

vschs ←mapM (emptyVSched s res) bbs

hPutStrLn stderr $ "no more than " ++show spills ++" spill slots..."

num_vars ←minisat_num_vars s

hPutStrLn stderr $ "added variables: " ++show num_vars

forM_ constraints ($ (s, res, zip ischs vschs, bbs, l_deps))

num_clauses ←minisat_num_clauses s

hPutStrLn stderr $ "added clauses: " ++show num_clauses

b ←solve s []

-- interpret the solution

case b of

True →do

bbsScheduled ←zipWithM (buildBBS s res vschs) bbs ischs

deleteSolver s

58

APPENDIX A. BAU SOURCE CODE

return $ F name params bbsScheduled l_deps

_ →if spills ==20

then fail $ "F " ++name ++": scheduling failed"

else scheduleFunction res (spills+2) (F name params bbs l_deps)

-- Fill in the blanks in the schedule

buildBBS :: (Target arch) ⇒Solver →Resources arch →[Relation Int Int] →BasicBlock

arch →Relation Int Int →IO (BasicBlock arch)

buildBBS s res vschs (BBU label ops) isch =do

let entry2Op (o, _) es =op2Unit (ops !! o) (total (opunittype $ ops !! o) - left

(opunittype $ ops !! o) es) -- :: MicroOp arch

total =fst◦(res M.!)

left t =length◦filter ((== t)◦opunittype◦(ops !!)◦fst)
op2Unit (MO v ut m dp _ _) id =MO v ut m dp id []

cycle2Word (e:es) =(entry2Op e es) : (cycle2Word es)

cycle2Word [] =[]

sol2Cycles ←mapM (ops2Cycle s isch) [0..length ops-1] -- :: IO [[Entry]]

return $ (BBS label)◦(filter (/= (IW [])))◦(map (IW◦cycle2Word)) $ sol2Cycles

ops2Cycle :: Solver →Relation Int Int →Int →IO [Entry]

ops2Cycle s sch n =do

let cycleVars =filter (λ ((_, c), _) →c ==n) (assocs sch)

trueVars ←filterM (isVarTrue s) cycleVars

return $ map fst trueVars

isVarTrue :: Solver →(Entry, Lit) →IO Bool

isVarTrue s (_, t) =do

tv ←modelValue s t

case tv of

Just True →return True

_ →return False

-- Determine scheduling bounds

maxCycleIndex :: (Ord (UnitType arch)) ⇒Resources arch →[MicroOp arch] →Int

maxCycleIndex res =foldr ((+)◦latency◦opunittype) 0

where latency =snd◦(res M.!)

-- Instruction placement bounds

--emptyISched :: Solver →Resources arch →BasicBlock arch →Relation Task Slot

emptyISched s res (BBU label ops) =

relation s ((0, 0), (length ops - 1, maxCycleIndex res ops - 1))

--emptyVSched :: Solver →Resources arch →BasicBlock arch →Relation Task Slot

emptyVSched s res (BBU label ops) =

relation s ((0, 0), (length ops - 1, maxLocationIndex res - 1))

-- global unit index →unit instance number

59

APPENDIX A. BAU SOURCE CODE

unitId :: (Bounded (UnitType arch), Enum (UnitType arch), Ord (UnitType arch)) ⇒
Resources arch →Int →Int

unitId res n =seek (minBound :: Bounded (UnitType arch) ⇒UnitType arch) n 0

where seek ut n i |i +utCard res ut <n =seek (succ ut) n (i +utCard res ut)

|i +utCard res ut ≥n =i +utCard res ut - n +1

utCard res =fst◦(res M.!)

Listing A.4: Bau/Constraints.hs

{-# LANGUAGE FlexibleContexts, NoMonomorphismRestriction #-}

module Bau.Constraints(

defaultInstrConstrs, defaultValueConstrs

) where

import Control.Monad (forM_)

import Data.Array

import qualified Data.Map as M

import Data.List

import MiniSat

import Bau.RTN

import Bau.Primitives

-- Scheduling constraints that assign instructions to units

defaultInstrConstrs :: (Target arch) ⇒[Constraint arch]

defaultInstrConstrs =[nOpsAtATime, placeAtMostOnce, placeAtLeastOnce, defBeforeUse]

-- Execution unit properties

-- no more than N intructions of given type at a time

-- NAND N+1 vars in a cycle - no need to check larger subsets

-- will replace both oneTask and resourceType for instructions

-- placeAtMostOnce, placeAtLeastOnce, defBeforeUse stay

-- baseline FlexCore has ~11 unit instances, so there will be 11 times less

instruction vars

nOpsAtATime =

bbConstr $ λ(s, res, (isch, _), ops, _) →
-- forAll unit types

forM_ (M.keys res) $ λut →do

-- forAll ops in ut

let opsannotated =zip [0..length ops-1] $ ops

utops =map fst◦filter ((== ut)◦opunittype◦snd) $ opsannotated

overbook =1 +(fst◦(res M.!) $ ut)

--forAll ’ut’ op combinations of length ’available instances +1’

forM_ (subseqN overbook utops) $ λnn →
-- forAll cycles

forM_ (allSlots isch) $ λc →

60

APPENDIX A. BAU SOURCE CODE

neverAll s isch $ zip nn $ replicate (length nn) c

-- Dataflow properties

-- every value is computed only once ⇒every instruction is placed no more than

-- once, and only on instances of corresponding unit types

placeAtMostOnce =

bbConstr $ λ(s, res, (isch, _), ops, _) →
nest2

(allTasks isch)

(taskSlotPairs (allSlots isch))

(neverBoth s isch)

-- every value is computed only once ⇒every instruction is placed no less than

-- once

placeAtLeastOnce =

bbConstr $ λ(s, res, (isch, _), ops, _) →
nest2

(allTasks isch)

(taskSlots (allSlots isch))

(atLeastOne s isch)

-- no value is computed before its dependencies are available (one clause for

-- every def-misplaced use pair)

defBeforeUse =

bbConstr $ λ(s, res, (isch, _), ops, l_deps) →
nest2

l_deps

(brokenDepSlots (allSlots isch))

(neverBoth s isch)

defaultValueConstrs :: (Target arch) ⇒[Constraint arch]

defaultValueConstrs =[storeAtMostOnce, storeAtLeastOnce, dontStoreForwards,

respectLiveness]

-- Value properties

storeAtMostOnce =

bbConstr $ λ(s, res, (_, vsch), ops, l_edges) →
nest2

(map fst l_edges)

(taskSlotPairs (allSlots vsch))

(neverBoth s vsch)

storeAtLeastOnce =

bbConstr $ λ(s, res, (_, vsch), ops, l_edges) →
nest2

(map fst l_edges)

(taskSlots (allSlots vsch))

(atLeastOne s vsch)

61

APPENDIX A. BAU SOURCE CODE

-- Location properties

-- location 0 means "off-unit", i.e., direct forwarding or stack

dontStoreForwards =

bbConstr $ λ(s, res, (isch, vsch), ops, l_edges) →
forM_ l_edges $ λ(def, use) →

forM_ (consDepSlots (allSlots isch) (def, use)) $ λ((isd, isu)) →
assert s [neg $ isch ! isd, neg $ isch ! isu

, neg $ vsch ! (def, 0)]

-- if values can be live at the same time, they don’t share a location

-- computationally simpler, but bans valid schedules

-- !(def1, l) v !(def2, l) v !(def2, c1) v !(use1, c2), c1 <c2

respectLiveness =

bbConstr $ λ(s, res, (isch, vsch), ops, l_deps) →
forM_ (filter (not◦(edgesDependent ops)) $ defUsePairs l_deps) $

λ((def1, use1), (def2, use2)) →
forM_ (tail $ allSlots vsch) $ λl →

assert s [neg $ vsch ! (def1, l), neg $ vsch ! (def2, l)]

-- more precise, but the SAT problem becomes bigger

-- a location is not overwritten before stored value is used

-- !(def1, l) v !(def2, l) v !(def2, c1) v !(use1, c2), c1 <c2

-- readBeforeOverwrite =

-- bbConstr $ λ(s, res, (isch, vsch), ops, l_deps) →
-- forM_ (filter (not◦(edgesDependent ops)) $ defUsePairs l_deps) $

-- λ((def1, use1), (def2, use2)) →
-- forM_ (tail $ allSlots vsch) $ λl →
-- forM_ (depSlots (allSlots isch) (use1, def2)) $ λ(isu1, isd2) →
-- assert s [neg $ vsch ! (def1, l), neg $ vsch ! (def2, l)

-- , neg $ isch ! isu1, neg $ isch ! isd2]

Listing A.5: Bau/Primitives.hs

{-# LANGUAGE FlexibleContexts, NoMonomorphismRestriction #-}

module Bau.Primitives where

import Control.Monad (forM, forM_, void)

import Data.Array

import qualified Data.Map as M

import Data.List

import Data.Maybe

import MiniSat

import Bau.RTN

-- Schedules are relations between tasks and slots

62

APPENDIX A. BAU SOURCE CODE

relation s bnd =do

let indices =range bnd

pairs ←forM indices $ λindex →do

lit ←newLit s

return (index, lit)

return $ array bnd pairs

-- Quantification scopes

-- define a constraint local to a basic block

bbConstr :: BBConstraint arch →Constraint arch

bbConstr constr (s, res, schs, bbs, bbedges) =do

forM_ (zip bbs schs) $ λ((BBU label ops), sch) →do

constr (s, res, sch, ops, bbedges M.! label)

type Range =[Index]

-- Universal slot quantifiers

allSlots sch =let ((t0, s0), (tN, sN)) =bounds sch

in [s0..sN]

taskSlots :: Range →Index →[Entry]

taskSlots slots task =[(task, s) |s ←slots]

taskSlotPairs :: Range →Index →[(Entry, Entry)]

taskSlotPairs slots task =

[((task, s1), (task, s2)) |s1 ←slots, s2 ←slots, s1 <s2]

depSlots :: Range →LEdge →[(Entry, Entry)]

depSlots cycles (def, use) =

[((def, c1), (use, c2)) |c1 ←cycles, c2 ←cycles, c1 <c2]

brokenDepSlots :: Range →LEdge →[(Entry, Entry)]

brokenDepSlots cycles (def, use) =

[((def, c1), (use, c2)) |c1 ←cycles, c2 ←cycles, c1 ≥c2]

ruinedDepSlots :: Range →(Index, Index, Index) →[(Entry, Entry, Entry)]

ruinedDepSlots icycles (def1, def2, use1) =

[((def1, c1), (def2, c2), (use1, c3))

|c1 ←icycles, c2 ←icycles, c3 ←icycles, c1 <c2, c2 <c3]

consDepSlots :: Range →LEdge →[(Entry, Entry)]

consDepSlots icycles (def, use) =

[((def, c1), (use, c2))

|c1 ←icycles, c2 ←icycles, c1 <c2, c1 +1 ==c2]

nonConsDepSlots :: Range →LEdge →[(Entry, Entry)]

nonConsDepSlots icycles (def, use) =

63

APPENDIX A. BAU SOURCE CODE

[((def, c1), (use, c2))

|c1 ←icycles, c2 ←icycles, c1 <c2, c1 +1 /=c2]

-- Universal task quantifiers

allTasks sch =let ((t0, s0), (tN, sN)) =bounds sch

in [t0..tN]

slotTaskPairs :: Range →Index →[(Entry, Entry)]

slotTaskPairs ops slot =[((i1, slot), (i2, slot))

|i1 ←ops, i2 ←ops, i2 >i1]

defUsePairs :: [LEdge] →[(LEdge, LEdge)]

defUsePairs l_edges =[(le1, le2) |le1 ←l_edges, le2 ←l_edges, le1 <le2]

-- Existential entry quantifiers

-- ’and’ and similar from satchmo should be avoided because they create one

-- additional variable for ∗every∗ clause

-- 1) a clause of all-positive literals is an OR

-- 2) a clause of all-negative literals is a NAND

assert s =void◦(addClause s)

-- at least one entry (OR)

atLeastOne :: Solver →Relation Index Index →[Entry] →IO ()

atLeastOne s sch =void◦(addClause s)◦map (sch !)

-- none entries (NOR)

noOne :: Solver →Relation Index Index →[Entry] →IO ()

noOne s sch =mapM_ $ λ(i, j) →void $ addClause s [neg $ sch ! (i, j)]

-- not all entries (NAND)

neverAll :: Solver →Relation Index Index →[Entry] →IO ()

neverAll s sch =void◦(addClause s)◦map (neg◦(sch !))

-- no more than one of two conflicting entry (2-NAND-n-OR)

neverBoth :: Solver →Relation Index Index →[(Entry, Entry)] →IO ()

neverBoth s sch =mapM_ $ λ((i1, j1), (i2, j2)) →
void $ addClause s [neg $ sch ! (i1, j1), neg $ sch ! (i2, j2)]

-- Quantifier combinators

nest2 :: [a] →(a →b) →(b →IO ()) →IO ()

nest2 un ex constr =

forM_ un $ λo →do

constr (ex o)

-- Hjelpfunksjoner

64

APPENDIX A. BAU SOURCE CODE

subseqN :: Int →[a] →[[a]]

subseqN 1 xs =map (λ x →[x]) xs

subseqN n (x:xs) =(map (x :) (subseqN (n-1) xs)) ++subseqN n xs

subseqN _ _ =[]

edgesDependent :: [MicroOp arch] →(LEdge, LEdge) →Bool

edgesDependent ops ((def1, use1), (def2, use2)) =

if def2 ==use1

then True

else let args_def2 =map dpValue◦(filter isDPValue)◦opargs $ ops !! def2

args_def2’ =map fromJust◦filter (/= Nothing)◦map (λ x →findIndex ((==

x)◦opname) ops) $ args_def2

in if null args_def2’

then False

else or◦map (edgesDependent ops◦λ x →((def1, use1), (x, def2))) $ args_def2’

Listing A.6: Bau/Options.hs

module Bau.Options where

import System.Console.GetOpt

import System.Exit

import System.Environment

import System.IO

import System.IO.Unsafe

import Data.Char

import Data.Maybe(isJust,fromJust,isNothing)

import System.Directory(doesFileExist)

import Control.Arrow ((&&&))

import Bau.RTN

unsafeArgs :: (Options a, [String])

unsafeArgs =unsafePerformIO $ do

args ←getArgs

-- Parse options, getting a list of option actions

let (actions, files, _) =getOpt Permute options args

startOptions’ ←return startOptions

return (startOptions’, files)

files :: [String]

files =snd unsafeArgs

data Options a =Options

65

APPENDIX A. BAU SOURCE CODE

{ optDebug :: Bool

, optInterconnectFile :: Maybe FilePath

}

startOptions :: Options a

startOptions =

Options

{ optDebug =False

, optInterconnectFile =Nothing

}

options :: [OptDescr (Options a →(IO (Options a)))]

options =

[

Option "i" ["interconnect"]

(ReqArg (λarg opt →return opt { optInterconnectFile =Just arg })

"FILE")

"Load interconnect information from file"

, Option "" ["debug"]

(NoArg

(λopt →return opt { optDebug =True }))

"Disable compilation to rtn, used to produce output when normal compilaiton

fails"

, Option "V" ["version"]

(NoArg

(λ_ →do

hPutStrLn stderr "Version 0.01"

exitWith ExitSuccess))

"Print version"

, Option "h" ["help"]

(NoArg

(λ_ →do

prg ←getProgName

hPutStrLn stderr (usageInfo prg options)

exitWith ExitSuccess))

"Show help"

]

Listing A.7: Bau/RTN.hs

module FlexCore.Arch where

-- we are using this type to create instances of the Target class

data FlexCore =FlexCore deriving Show

66

APPENDIX A. BAU SOURCE CODE

Listing A.8: Bau/RTN.hs

{-# LANGUAGE TypeFamilies #-}

module FlexCore.Target where

import LLVM.Core

import Bau.RTN

import Bau.Constraints

import FlexCore.Arch

-- The naming convention for multi-microop instruction is:

-- 1) every microop should have a non-empty name

-- 2) result names shouldNa be equal to original SSA names

instance Target FlexCore where

data UnitType FlexCore =

-- PC unit

PC

-- ALU

|ALUOp
-- AGU

|AGUOp
-- Multiplier

|Mult |MultRegWrite
-- Buffers

|Buf
-- Register bank

|RegRead |RegWrite
-- Load/store

|LSRead |LSWrite -- addr value

deriving (Read, Enum, Bounded, Ord, Eq)

data Mode FlexCore =

-- Immediate values (PC)

Imm

-- Control flow (PC)

|GetPC |JumpSA |JumpSR |JumpDA
|BEQZR -- Equal to zero (relative jump)

|BNEZR -- Not equal to zero (relative jump)

|BEQZA -- Equal to zero (absolute jump)

|BNEZA -- Not equal to zero (absolute jump)

-- ALU

|ADD -- Add signed

|ADDU -- Add unsigned

|SUB -- Sub signed

|SUBU -- Sub unsigned

|AND -- Bitwise AND

|OR -- Bitwise OR

|NOR -- Bitwise NOR

67

APPENDIX A. BAU SOURCE CODE

|XOR -- Bitwise XOR

|SLL -- Shift left logical

|SRL -- Shift right logical

|SHR -- Shift right arithmetical signed

|SLT -- Set on less than

|SLE -- Set on less than or equal

|SEQ -- Set on equal

|SNE -- Set on not equal

|TEST -- Return operand 1

|DONTCARE -- Dont care. Useful for trinary output

-- Load/store

|LSW Int |LSWU Int |LSW_DONTCARE
-- Since amounts of register file read/write ports can differ, we choose

-- to make register number a "mode" instead of an "instance", so there

-- is no need in distinguishing between "computation" and "memory"

-- instructions.

|Reg Int

-- Quasi-mode bits

|Stall |None
deriving (Read, Eq)

isMemory Buf =True

isMemory RegRead =True

isMemory RegWrite =True

isMemory LSRead =True

isMemory LSWrite =True

constraints =defaultInstrConstrs ++defaultValueConstrs

-- control flow

-- don’t have to implement ’switch’ because LLVM can lower it to branches with opt

-lowerswitch

lower (v, IDCall t f args) =[MO (v++"_0") RegRead sp [] 0 []

, MO (v++"_1") PC Imm [DPU $ AI 32] 0 []

-- push $fp

, MO (v++"_2") ALUOp SUB [d v 0, d v 1] 0 []

, MO (v++"_4") RegRead fp [] 0 []

, MO (v++"_6") LSWrite (LSW 4) [d v 2, d v 4] 0 []

-- push $ra

, MO (v++"_3") ALUOp SUB [d v 0, d v 2] 0 []

, MO (v++"_5") RegRead ra [] 0 []

, MO (v++"_7") LSWrite (LSW 4) [d v 3, d v 5] 0 []

-- save $sp in $fp

, MO (v++"_8") RegWrite fp [d v 0] 0 []

-- update $ra

, MO (v++"_9") PC GetPC [] 0 []

, MO (v++"_10") PC Imm [DPU $ AI 96] 0 []

, MO (v++"_11") ALUOp ADD [d v 9, d v 1] 0 []

, MO (v++"_12") RegWrite fp [d v 0] 0 []

68

APPENDIX A. BAU SOURCE CODE

-- jump to entry point

, MO (v++"_13") PC JumpSA [DPU f] 0 [v++"_12"]

, MO (v) RegRead v1 [] 0 [v++"_13"]]

lower (v, IDRet t r) =[MO (v++"_0") RegWrite v1 [DPU r] 0 []]

++lower (v, IDRetVoid)

lower (v, IDRetVoid) =[MO (v++"_10") RegRead ra [] 0 []

, MO (v++"_11") PC JumpSA [d v 10] 0 []]

lower (v, IDBrCond c l1 l2) =[MO (v++"_t") PC BNEZA [DPU l1, DPU c] 0 []

, MO (v++"_f") PC BEQZA [DPU l1, DPU c] 0 [v++"_t"]]

lower (v, IDBrUncond l) =[MO v PC JumpSA [DPU l] 0 []]

-- arithmetic

-- FIXME: implement signed

lower (v, IDBinOp BOMul (TDInt False _) a b) =[MO v Mult None [DPU a, DPU b] 0 []

]

lower (v, IDBinOp m (TDInt False _) a b) =[MO v ALUOp (mode m) [DPU a, DPU b] 0

[]]

where mode m =case m of {BOAdd →ADDU ; BOSub →SUBU ; BOAnd →AND ; BOOr →OR ;

BOXor →XOR ; BOShL →SLL ; BOLShR →SRL ; BOAShR →SHR }

lower (v, IDICmp IntEQ a b) =[MO v ALUOp SEQ [DPU a, DPU b] 0 []]

lower (v, IDICmp IntNE a b) =[MO v ALUOp SNE [DPU a, DPU b] 0 []]

lower (v, IDICmp IntSLT a b) =[MO v ALUOp SLT [DPU a, DPU b] 0 []]

lower (v, IDICmp IntULT a b) =[MO v ALUOp SLT [DPU a, DPU b] 0 []]

lower (v, IDICmp IntSGT a b) =

[MO (v++"_0") PC Imm [DPU $ AI 4294967295] 0 []

, MO (v++"_1") ALUOp SLE [DPU a, DPU b] 0 []

, MO v ALUOp XOR [d v 0, d v 1] 0 []]

lower (v, IDICmp IntUGT a b) =

[MO (v++"_0") PC Imm [DPU $ AI 4294967295] 0 []

, MO (v++"_1") ALUOp SLE [DPU a, DPU b] 0 []

, MO v ALUOp XOR [d v 0, d v 1] 0 []]

-- memory

lower (v, IDAlloca t tsize n) =

[MO (v) RegRead sp [] 0 []

, MO (v++"_0") PC Imm [(DPU $ AI $ tsize∗n)] 0 []

, MO (v++"_1") ALUOp SUBU [(DPU $ AV v), d v 0] 0 []

, MO (v++"_2") RegWrite sp [d v 1] 0 []]

-- FIXME: implement different sizes

lower (v, IDLoad t a) =[MO v LSRead (LSW 4) [DPU a] 0 []]

lower (v, IDStore t a b) =[MO v LSWrite (LSW 4) [DPU b, DPU a] 0 []]

lower (v, i) =[]

-- special registers

zero =Reg 0

v0 =Reg 26

v1 =Reg 27

69

APPENDIX A. BAU SOURCE CODE

gp =Reg 28 -- global pointer

sp =Reg 29 -- stack pointer

fp =Reg 30 -- frame pointer

ra =Reg 31 -- return address

-- syntactic sugar for naming uops

d :: String →Int →DataPort arch

d v n =DPU $ AV (v++"_"++show n)

Listing A.9: Bau/RTN.hs

{-# LANGUAGE StandaloneDeriving, FlexibleInstances, TypeFamilies #-}

module FlexCore.AsmWriter where

import LLVM.Core (GlobalDesc(..), Field(..))

import Bau.RTN

import FlexCore.Arch

import FlexCore.Target

instance Show (Assembly FlexCore) where

show (A filename funcs globals) =

" ◦file 1, λ""

++ filename ++ "λ"λnλn"

++" ◦textλn"
++concatMap show funcs ++"λn"

++" ◦dataλn"
++concatMap show globals

instance Show (Function FlexCore) where

show (F funcname funcargs bbs _) =

" ◦align 2λn"

++" ◦globl " ++funcname ++"λn"

++funcname ++":λn" ++concatMap show bbs

instance Show (BasicBlock FlexCore) where

show (BBU bbname mops) =bbname ++":λn" ++concatMap ((" " ++)◦(++ "λn")◦show)
mops

show (BBS bbname iws) =bbname ++":λn" ++concatMap show iws

instance Show (InstrWord FlexCore) where

-- show (IW mops) =" " ++show (length mops) ++" microopsλn"

show (IW mops) =" rtn [" ++show mops ++"]λn"

instance Show (MicroOp FlexCore) where

show (MO v PC mode os _ _) ="PC" ++show mode ++" " ++concatMap ((++ " ")◦show)
os

show (MO v ALUOp mode os n _) ="ALUOp" ++show n ++" " ++show mode ++" " ++

concatMap ((++ " ")◦show) os

70

APPENDIX A. BAU SOURCE CODE

show (MO v LSRead mode os n _) ="LSRead" ++show n ++" " ++show mode ++" " ++

concatMap ((++ " ")◦show) os

show (MO v LSWrite mode os n _) ="LSWrite" ++show n ++" " ++show mode ++" " ++

concatMap ((++ " ")◦show) os

show (MO v RegRead mode os n _) ="RegRead" ++show n ++" " ++show mode ++" " ++

concatMap ((++ " ")◦show) os

show (MO v RegWrite mode os n _) ="RegWrite" ++show n ++" " ++show mode ++" " +

+concatMap ((++ " ")◦show) os

show (MO v t mode os n _) =show t ++show mode ++show n ++" " ++concatMap ((++

" ")◦show) os

deriving instance Show (UnitType FlexCore)

instance Show (Mode FlexCore) where

show (Reg n) ="Reg" ++show n

show (LSW n) ="LSW_" ++show n

show (LSWU n) ="LSWU" ++show n

show Stall ="Stall"

show None =""

show m =case m of { Imm →"Imm" ; GetPC →"GetPC" ; JumpSA →"JumpSA" ; JumpSR →
"JumpSR" ;

JumpDA →"JumpDA" ; BEQZR →"EQZR" ; BNEZR →"NEZR" ; BEQZA →"EQZA"

;

BNEZA →"NEZA" ; ADD →"ADD" ; ADDU →"ADDU" ; SUB →"SUB" ; SUBU →
"SUBU" ;

AND →"AND" ; OR →"OR" ; NOR →"NOR" ; XOR →"XOR" ; SLL →"SLL" ;

SRL →"SRL" ; SHR →"SHR" ; SLT →"SLT" ; SLE →"SLE" ; SEQ →"SEQ" ;

SNE →"SNE" ; TEST →"TEST" ; DONTCARE →"DONTCARE" }

instance Show (DataPort FlexCore) where

show (DP inout unittype n name) =show unittype ++show n ++show name

show (DPU arg) =show arg

instance Show GlobalDesc where

show (Collection "" fields) ="λn" ++concatMap show fields

show (Collection name fields) =name ++":λn" ++concatMap show fields

show (Constant name field) =show field

show (Zeroes name n) =name ++":λn ◦comm " ++name ++", " ++show n ++", 4λn"

show (Ascii "" s) =" ◦ascii " ++show s ++"λn"

show (Ascii name s) =name ++":λn" ++" ◦ascii " ++show s ++"λn"

instance Show Field where

show (Byte f) =" ◦byte " ++show f ++"λn"

show (Half f) =" ◦half " ++show f ++"λn"

show (Word f) =" ◦word " ++show f ++"λn"

show Undef =" ◦undefλn"

Listing A.10: Main.hs

import System.IO

71

APPENDIX A. BAU SOURCE CODE

import System.Exit

import System.Environment

import System.Console.GetOpt

import qualified Data.Map as M

import Bau.Options(files)

import Bau.RTN

import Bau.Translate

import Bau.Schedule

import FlexCore.Arch

import FlexCore.Target

import FlexCore.AsmWriter

main :: IO ()

main =do

-- Command arguments are being parsed with unsafeIO in Options.hs

if (null files)

then do

prg ←getProgName

hPutStrLn stderr "No arguments given"

--hPutStrLn stderr (usageInfo prg options)

exitWith (ExitFailure 1)

else do

let res =M.fromList [(PC,(1,2)), (ALUOp,(1,1)), (AGUOp,(1,1))

, (Mult,(1,2)), (MultRegWrite,(1,1))

, (Buf,(2,1)), (RegRead,(2,1)), (RegWrite,(1,1))

, (LSWrite,(1,1)), (LSRead,(1,1))]

assemblies ←mapM (translateModule res) files :: IO [Assembly FlexCore]

mapM_ print assemblies

exitWith ExitSuccess

72

B

Integration with LLVM

Listing B.1: An example of a Makefile to compile a benchmark to bitcode before

scheduling

BENCHMARK=fft00

CC=llvm-gcc

AS=llvm-as

CCFLAGS=-fplugin-arg-dragonegg-emit-ir -S

INCLUDE=-Ith_lite -Ial -Idatasets

common =al/usr.bc al/thal.bc th_lite/crc.bc th_lite/heap.bc th_lite/thlib.bc

benchmark =${BENCHMARK}.bc bmark_lite.bc

all: bmark-${BENCHMARK}.bc bmark-${BENCHMARK}.ll bmark-${BENCHMARK}.rtn

bmark-${BENCHMARK}.bc: $(common) $(benchmark)

llvm-ld $(common) $(benchmark) -o bmark-${BENCHMARK}

instnamer is required so temporary values will have names

lowerswitch is required because compiler writer wouldn’t have implement

IDSwitch

opt -instnamer -instcombine -lowerswitch -mergereturn -o $@ $@

bmark-${BENCHMARK}.ll:

llvm-dis bmark-${BENCHMARK}.bc

bmark-${BENCHMARK}.rtn:

scheduler bmark-${BENCHMARK}.bc >bmark-${BENCHMARK}.rtn

%.S: %.c

$(CC) $(INCLUDE) -o $@ $< $(CCFLAGS)

73

APPENDIX B. INTEGRATION WITH LLVM

%.bc: %.S

$(AS) -o $@ $<

clean:

rm -f ∗.S
rm -f ∗.bc
rm -f al/∗.bc
rm -f th_lite/∗.bc
rm -f bmark-${BENCHMARK}.ll

rm -f bmark-${BENCHMARK}

74

	Introduction
	Overview
	Functional languages
	Hardware-software co-design
	Challenges

	Toolchain architecture
	Compilation flow
	Target description
	Instruction lowering
	Interconnect configuration

	FlexCore
	Binary operations
	Memory operations
	Control flow
	Printing the assembly

	Scheduling as CSP
	Problem encoding
	Instruction placement
	Value placement
	Code insertion
	Encoding with triples
	Execution unit properties
	Dataflow properties
	Non-orthogonal datapath interconnect
	Location properties
	Value path properties
	Value paths of globally live values

	Encoding with pairs
	Execution unit properties
	Instruction properties
	Value properties
	Location properties

	Solution interpretation

	Defining constraints
	Translation to CNF
	Constraint templates
	Quantification
	Universal quantifiers
	Existential quantifiers
	Composition strategy

	Results
	Conclusion and future work
	Related work
	Bau source code
	Integration with LLVM

