

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Göteborg, Sweden, June 2009

Formal Verification of UML-RT Capsules using

Model Checking

Master of Science Thesis in Secure and Dependable Computer Systems

MATS CARLSSON

LARS JOHANSSON

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet. The Author war-
rants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about
this agreement. If the Author has signed a copyright agreement with a third
party regarding the Work, the Author warrants hereby that he/she has obtained
any necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

Formal Verification of UML-RT Capsules using Model Checking

Mats Carlsson

Lars Johansson©Mats Carlsson, June 2009.©Lars Johansson, June 2009.

Examiner: Wolfgang Ahrendt

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, June 2009

Abstract

Formal verification methods have successfully been used to ensure correctness
of both hardware and software systems. In contrast to testing methods, that
can demonstrate the presence of faults in a system, formal methods can prove
their absence.

A department of the telecommunications company Ericsson AB in Gothen-
burg, Sweden, uses the UML-RT language to model software used in WCDMA
radio base stations. These concurrent and reactive systems can be modeled in
the Eclipse-based RSARTE environment.

Previous work underlines a need of narrowing the gap between software
development tools used in industry and formal verification tools. This thesis
examines the feasibility of using model checking to verify properties of UML-
RT capsules. We present a prototype tool for generating verification models
in the Promela language for the model checker Spin. The tool is implemented
as a model-to-text transformation using the JET tool and is integrated into
RSARTE.

The result of the work establishes that it, for a subset of constructs in
UML-RT, is possible to automate generation of verification models that can be
used to demonstrate properties of the original UML-RT capsules. We demon-
strate this with example models created in RSARTE.

Keywords formal verification, model checking, model-to-text, Promela,
RSARTE, Spin, UML-RT.

Sammanfattning

Formella verifieringsmetoder har med framg̊ang använts för att säkerställa kor-
rekthet av b̊ade h̊ardvaru- och mjukvarusystem. Till skillnad fr̊an testmetoder,
vilka enbart kan visa förekomst av fel i system, kan formella metoder bevisa
fr̊anvaron av dessa.

En avdelning p̊a telekommunikationsföretaget Ericsson AB i Göteborg an-
vänder modelleringsspr̊aket UML-RT för att modellera mjukvara för användning
i radiobasstationer för WCDMA. Dessa parallella och reaktiva system kan mo-
delleras i den Eclipse-baserade utvecklingsmiljön RSARTE.

Tidigare arbeten understryker ett behov av att minska avst̊andet mellan in-
dustriella mjukvaruutvecklingsverktyg och verktyg för formell verifiering. Detta
arbete utforskar möjligheten att använda model checking för att verifiera egen-
skaper hos UML-RT-kapslar. Vi presenterar ett prototypverktyg för att gene-
rera verifieringsmodeller i spr̊aket Promela, som används av model checking-
verktyget Spin. Prototypverktyget är implementerat i form av en model-to-text -
transformation med hjälp av verktyget JET och är integrerat i RSARTE.

Resultatet av arbetet fastställer att det, för en delmängd av byggstenarna i
UML-RT, är möjligt att automatisera framställning av verifieringsmodeller, som
därefter kan användas för att p̊avisa egenskaper hos de ursprungliga UML-RT-
kapslarna. Vi demonstrerar detta med hjälp av ett antal exempelmodeller som
skapats med RSARTE.

Sökord formell verifiering, model checking, model-to-text, Promela,
RSARTE, Spin, UML-RT.

Preface

This report is the result of a Master of Science thesis project in the program Se-
cure and Dependable Computer Systems at Chalmers University of Technology
in Gothenburg, Sweden. The work has been conducted between February and
June of 2009 for Ericsson AB, at a department developing application software
for WCDMA radio base stations.

The examiner for the thesis has been Dr. Wolfgang Ahrendt from the De-
partment of Computer Science and Engineering at Chalmers University of Tech-
nology, whose advice and support we gratefully acknowledge. Our supervisors
at Ericsson have been Anders Borghed, Peter Eriksson and Sebastian Holmgren,
all of whom have provided much appreciated support, guidance and encourage-
ment throughout our work.

v

Contents

Preface v

1 Introduction 1
1.1 Background . 2
1.2 Aim . 3
1.3 Limitations . 3
1.4 Disposition . 4

2 Theory 5
2.1 Formal Verification . 5
2.2 Model Checking . 6

2.2.1 Model checking workflow 6
2.3 The Spin model checker . 7

2.3.1 The Promela specification language 8
2.3.2 A Promela example . 8
2.3.3 Property specification in Spin using LTL 10
2.3.4 LTL property verification 11
2.3.5 Problem space reduction 11

3 Method 13
3.1 Configuration of test system . 14

4 Description of modeling environment 15
4.1 Historic context . 15

4.1.1 Modeling reactive systems 15
4.2 Modeling constructs in UML-RT 16
4.3 UML-RT tools at the department 17

5 Previous work and tools for software model verification 19
5.1 vUML . 19
5.2 Hugo . 20
5.3 VIP and v-Promela . 20
5.4 TABU . 20

vi

5.5 SMARRT . 21
5.6 Summary and conclusions of review 21

6 Prototype system integrating RSARTE with Spin 22
6.1 Verification model extraction options 22

6.1.1 Code generation in RSARTE using JET 23
6.2 Verification model overview . 25

6.2.1 Modeling capsule interaction with the environment 25
6.2.2 Mapping concepts in UML-RT to Promela 26
6.2.3 Signal producers and consumers 27
6.2.4 Embedded Promela code 28
6.2.5 Property verification . 28

6.3 Verification model options . 28
6.4 JET transformation structure . 29

7 Property specification 30
7.1 Internally specified properties . 30
7.2 Externally specified properties 31
7.3 Properties of primary interest . 32

7.3.1 Signal handling guarantee 32
7.3.2 Trap detection . 32

7.4 Limitations in property specification 33

8 Model examples 34
8.1 A model of a traffic light system 34

8.1.1 Model description . 34
8.1.2 Properties . 35
8.1.3 First version . 35
8.1.4 Second version . 36
8.1.5 Third version . 37

8.2 A model of an electronic lock . 42
8.2.1 Model description . 42
8.2.2 Properties . 43
8.2.3 First version . 43
8.2.4 Second version . 44

8.3 The dining philosophers . 45
8.3.1 Problem scenario . 45
8.3.2 Model description . 47
8.3.3 Properties . 47
8.3.4 Model implementation . 48

8.4 A model with intentional errors 49
8.4.1 Model description and properties 49

8.5 A complexity experiment . 50

9 Results 55
9.1 Traffic light system . 55

9.1.1 First version . 55
9.1.2 Second version . 57
9.1.3 Third version . 59

9.2 Electronic lock . 61

9.2.1 First version . 61
9.2.2 Second version . 64

9.3 Dining philosophers . 64
9.4 Model with intentional errors . 70
9.5 Complexity experiment . 70

10 Conclusions 73
10.1 Answers to questions . 73
10.2 Discussion . 77

10.2.1 Benefits and drawbacks 77
10.2.2 Primary application areas 77
10.2.3 Important verification issues 78

10.3 Future work . 79
10.3.1 Properties . 79
10.3.2 Model transformation . 79
10.3.3 Scalability . 80

A Promela model example 85

B JET transformation templates 95

List of Figures

2.1 Outline of a general model checking workflow. 7

4.1 Example of actors in ROOM . 16

6.1 Prototype system outline . 24
6.2 Illustration of capsule interaction 25
6.3 JET transformation project structure 29

8.1 Traffic light capsule state machine and structure diagram 38
8.2 Original controller capsule state machine and structure diagram . 39
8.3 Traffic light system sequence diagram 40
8.4 Intersection capsule structure diagram 40
8.5 Controller capsule modified state machine diagram 41
8.6 Lock capsule state machine and structure diagram 44
8.7 Lock capsule modified state machine diagram 45
8.8 The Dining philosophers . 45
8.9 Table capsule structure diagram 48
8.10 Philosopher capsule state machine and structure diagram 51
8.11 Butler capsule state machine and structure diagram 52
8.12 Chopstick capsule state machine and structure diagram 53
8.13 Demonstration capsule state machine and structure diagram . . . 54

9.1 Error scenario: first traffic light system model, property 1 56
9.2 Error scenario: second traffic light system model, property 3 . . . 60
9.3 Error scenario: first electronic lock model, property 2 63
9.4 Error scenario: first electronic lock model, property 4 65
9.5 Error scenario: second electronic lock model, property 1 66
9.6 Error scenario: demonstration model, property 1 71
9.7 Results: Complexity experiment 72

ix

Listings

2.1 Promela model vulnerable to a data race situation. 9
2.2 Spin output showing an assertion violation 10
8.1 Transition effect code of the first traffic light system controller . 36
8.2 Stimulus process for the electronic lock capsule 42
9.1 Results: first traffic light system model, property 1 56
9.2 Results: second traffic light system model, property 1 57
9.3 Results: second traffic light system model, property 2 58
9.4 Results: second traffic light system model, property 3 58
9.5 Results: third traffic light system model, property 1 59
9.6 Results: third traffic light system model, property 2 61
9.7 Results: third traffic light system model, property 3 62
9.8 Results: first electronic lock model, property 1 62
9.9 Results: first electronic lock model, property 2 63
9.10 Results: first electronic lock model, property 3 64
9.11 Results: first electronic lock model, property 4 65
9.12 Results: second electronic lock model, property 1 66
9.13 Results: dining philosophers model, property 1 67
9.14 Results: dining philosophers model, property 2 68
9.15 Results: dining philosophers model, property 3 69
9.16 Results: dining philosophers model, property 4 69
9.17 Results: demonstration model, property 1 70
9.18 Results: demonstration model, property 2 71
A.1 Promela code for a demonstration capsule model. 86
B.1 Main transformation template . 96
B.2 State machine generation template 97

x

Terminology

Acronyms

CTL Computation Tree Logic

FSM Finite State Machine

JET Java Emitter Template

LTL Linear Time Logic

OTD ObjecTime Developer

OTI Object Technology International

Promela Process Meta Language

PSL Property Specification Language

ROOM Real-Time Object-Oriented Methodology

RoseRT IBM Rational Rose RealTime

RSARTE Rational Software Architect Real Time Edition

SMARRT Static Model checking and Analysis for Rose RealTime

SMV Symbolic Model Verifier

Spin Simple Promela Interpreter

TABU Tool for the Active Behaviour of UML

UML-RT UML Real Time

UML Unified Modeling Language

VIP Visual Interface to Promela

WCDMA Wideband Code Division Multiple Access

xi

XMI XML Metadata Interchange

XML Extensible Markup Language

XPath XML Path Language

CHAPTER 1

Introduction

The presence of errors in computer systems, both originating from incorrect
design choices as well as from implementation mistakes, remains a challenge in
the industry. Despite traditional validation and verification counter measures,
such as simulation and testing, mistakes are costly. Figures released in 2002
estimated that the industry cost of software faults in the United States alone,
approached 60 billion dollars (NIS 2002).

Faults may be present in the design or implementation of a system and
certain conditions may activate a fault, causing an error to be produced. Unless
such an error is properly handled, it may propagate and cause the system output
to deviate from the specified output, resulting in a failure (Avizienis, Laprie,
Randell & Landwehr 2004).

Software and hardware testing can expose faults that may exist in the sys-
tem, provided that a test case has been constructed, which activates the fault
and exposes the resulting error. The task of constructing suitable test cases is
not trivial and attempting to ensure that all faults are found by testing the sys-
tem exhaustively is often an impossible task (Clarke, Grumberg & Peled 1999,
p. 2). As will be illustrated by the following two examples, gathering even over-
whelming amounts of empirical evidence to support a claim does not prove its
correctness.

The first example is the floating point unit of Pentium processors which was
found to be flawed in 1994. The fault lay in a lookup table used for division
operations and was due to entries missing from the table. This, in turn, caused
certain instructions related to floating point division to produce results deviating
from the correct output. The probability of activating the fault by applying one
of the affected instructions to a randomly chosen value from the input space
was 1 to 9 billion, according to analysis by Intel (Int 1994).

A more theoretical example of a problem which is difficult to analyze cor-
rectly using testing is the following: We can claim that there exists no positive
integer n such that 991 · n2 + 1 is a perfect square, apart from the trivial solu-
tion of n = 0. This claim happens to be incorrect, but the first positive integer

1

Chapter 1. Introduction

solution does not occur until

n = 12, 055, 735, 790, 331, 359, 447, 442, 538, 767

(Rotman 1998), suggesting that it is difficult to falsify the hypothesis using
testing. The only feasible method of refuting the hypothesis is to use a method
that relies on proofs rather than on an exhaustive search.

Formal verification methods rely on techniques from logic and mathemat-
ics, in practice usually supported by computer tools, to prove properties about
systems. Such methods have been used successfully in the development of sys-
tems that require a very high degree of confidence that the product meets its
specification.

There are many reasons to why a system may demand rigorous design valida-
tion. Safety requirements, such as in air traffic control systems or flight control
systems; security requirements, such as in implementations of cryptographic
protocols; or the cost of failure may all motivate the use of formal verifica-
tion. Legal requirements, such as in digital signing of programs or documents
to ensure authenticity and non-repudiation; certification requirements; or legal
implications of failure in any of the above scenarios may also warrant the use
of formal methods (Elamkulam, Glazberg, Rabinovitz, Kowlali, Gupta, Kohli,
Dattathrani & Macia 2006).

1.1 Background

The telecommunications company Ericsson AB develops software for radio base
stations for the Wideband Code Division Multiple Access (WCDMA) standard
at a department at Lindholmen in Gothenburg (hereinafter referred to only as
the “department”). The software is developed with visual tools that support
modeling in a dialect of UML and C++ code is then generated directly from
the models. The modeling language in use at the department is UML Real
Time (UML-RT), currently supported by the tool IBM Rational Rose RealTime
(RoseRT) but being superseded by the Rational Software Architect Real Time
Edition (RSARTE) tool.

UML-RT, described in more detail in Chapter 4, is for example used at
the department to model hierarchies of concurrently operating system compo-
nents called capsules, whose behaviors are defined using state machines and that
communicate with each other using message passing. The behavior of a single
capsule can be very complex and the combined behavior of several capsules even
more so.

Testing of both normal and failure cases is performed at the department.
However, there is always a possibility that faults in capsules remain undiscovered
and appear when least expected. In the words of Dijkstra (1970, p. 7), “Program
testing can be used to show the presence of bugs, but never to show their
absence!” For this reason, the department is interested in understanding and
exploring the possibility of using formal verification methods as a complement
to the testing procedures in current use.

2

1.2. Aim

1.2 Aim

The purpose of the thesis is to evaluate how formal verification can be integrated
in the model based development process used for developing the application
software for WCDMA base stations at the department. This thesis aims to
provide answers to the following questions:

1. What methods and tools for formal verification of software models are
available in the academic, industrial or open source communities? We
decompose this question into the following sub-questions:

(a) What approach could be used as a basis for verification of models
developed at the department?

(b) Are there existing tools for formal verification that can be directly
used to verify properties of models in the development environment
at the department? If this is not the case, are there existing tools
that can serve as a foundation for implementing such a tool?

(c) Can these tools be integrated into the development environment at
the department?

2. What properties are of interest to the department to verify?

3. How should models be developed to allow such properties to be formally
verified using the chosen method?

4. What can be gained from applying formal verification methods to the
department’s software models?

Furthermore, since it is of interest to the department that the viewpoints of
the software designer are considered throughout the work, decisions regarding
the verification approach, tool selection and design choices will be made with
the potential future user of the tool in mind.

1.3 Limitations

Any prototypical tool implemented is intended to serve as a proof of concept,
outlining a possible method for property verification. For this reason, it is not
an aim to handle models of the same size or complexity as can be found in
the department’s products. In addition to varying greatly in complexity, the
models developed at the department are produced with tools that support a
large number of modeling constructs. The scope of this thesis is limited to a
subset of the available constructs (see Section 6.2.2).

The verification is intended to target only properties of the model and not to
make any claims about correctness of code embedded in the model. Therefore,
no code analysis methods for extracting information from embedded code are
considered. This in turn implies that any fully automated verification procedure
is beyond the scope of this thesis.

Any model properties related to time (in the sense that can be measured
numerically, not in the sense of ordering of events) will be either treated on an
abstract level or be completely disregarded. This is a common practice when
modeling concurrent or distributed systems, because as Ben-Ari (2008, p. 173)
explains,

3

Chapter 1. Introduction

“Algorithms for these systems are designed to be independent of the
speed of execution of a process or the speed at which a message is
delivered, so it is sufficient to know that there are no errors caused
by interleaving statements and messages.”

1.4 Disposition

Abbreviations, terminology and names used in this disposition are explained as
they are later introduced. The remainder of this thesis is ordered as follows:

Chapter 2 presents an introduction to the field of formal verification, as well
as a brief introduction to the verification tool Spin, which is used in the
prototype tool.

Chapter 3 presents the method chosen for addressing the questions that this
thesis aims to answer.

Chapter 4 presents the background of UML-RT and a description of the mod-
eling tools used at the department. A presentation of modeling concepts
and building blocks of UML-RT is also given, together with an explana-
tion of the link between UML-RT and the two modeling tools RoseRT and
RSARTE.

Chapter 5 presents a survey of previous work in the field of software model
verification. An assessment of previous work and existing verification tools
as they relate to the modeling language used at the department is also
given.

Chapter 6 presents a description of a prototype tool implemented for integrat-
ing the model checker Spin with the modeling tool RSARTE.

Chapter 7 presents a categorization of system properties and a description
of how such properties may be specified. The two properties that are of
primary interest to the department are also presented.

Chapter 8 describes the models and presents the properties that are verified
using the prototype tool.

Chapter 9 presents verification results for each model and property.

Chapter 10 presents answers to the questions that the thesis aims to answer.
A discussion on the limitations of the chosen verification approach and
prototype tool is presented, together with suggestions for possible future
extensions and improvements of the work.

Appendix A presents the verification model for a capsule discussed in Sec-
tion 8.4.

Appendix B contains two sample JET templates that are part of the proto-
type tool.

4

CHAPTER 2

Theory

This chapter provides an introduction to the use of model checking tools, to
formally verify systems. We describe formal specification languages using the
model checker Simple Promela Interpreter (Spin) and its input languages as the
example.1

2.1 Formal Verification

The objective of formal verification is to extend beyond what is possible to
achieve using testing procedures, by providing a formal proof that a system
conforms with design specifications. The system in question can, for example,
be a hardware circuit or communication protocol (Clarke et al. 1999), or a
software design (Holzmann 2003). The two major methods used to formally
verify systems are deductive verification and model checking (Clarke et al. 1999).

Deductive verification relies on using a system of axioms and application of
inference rules, to prove a system correct. This can be, and was originally done,
manually, but generally requires expertise in both the area of the target system
and in mathematics or logic. Tools such as KeY2 and HOL Light3 have been
developed to aid the user by automatically providing a complete proof, or by
serving as a proof assistant that guides the user’s interaction with a theorem
prover. According to Ben-Ari (2008, p. 23), one advantage of deductive methods
is that they may allow verification of systems where the size of the state space
would otherwise be limiting.

1Spin is used as the example since it is used in later parts of this thesis. A motivation for
this choice is given in Section 5.6.

2http://www.key-project.org
3http://www.cl.cam.ac.uk/~jrh13/hol-light/

5

http://www.key-project.org
http://www.cl.cam.ac.uk/~jrh13/hol-light/

Chapter 2. Theory

2.2 Model Checking

The model checking field originated in the early 1980s as a method for addressing
the problem of verifying concurrent programs (Clarke 2008). Such programs are
hard to debug due to the frequent difficulty of reproducing errors (Clarke 2008).
If the tasks executing concurrently in the program communicate or otherwise
depend upon each other, it can very quickly become problematic to establish
under what conditions deadlocks may occur or mutual exclusion constraints may
be violated, due to the large number of possible ways in which multiple tasks
may interleave.

Clarke et al. (1999) partition the process of model checking a design into
three steps; modeling, specification and verification.

Modeling The design must be represented or encoded in some formal lan-
guage. This can be done by directly writing code in the language of the
model checker, or by transforming some other description, such as source
code, into the language of the model checker. This transformation can be
done manually, or by using some automated pre-processor (see for exam-
ple Beyer, Henzinger, Jhala & Majumdar (2007) and Holzmann & Smith
(1999)).

Specification The properties that the model should satisfy must also be stated
in an unambiguous, formal notation. This requires firstly an understand-
ing of what properties are of interest to verify, and secondly a language
sufficiently expressive to capture those properties. Examples of such lan-
guages are Linear Time Logic (LTL)4 and Computation Tree Logic (CTL),
both members in the temporal logic family.

Verification The tool will accept the model and the specification and deter-
mine whether the design meets the requirements. The tool will determine
if, for every possible path through an algorithm or for every possible state
of a hardware circuit, the model satisfies the specification.

This task is not performed with brute-force methods since that would be
infeasible for most target systems. For example, circuits with more than
1090 states have been verified using model checking (Emerson 2008) which
is far beyond the reach of any brute-force algorithm.

The two dominating model checking methods are divided by Holzmann
(2003) into those using symbolic verification methods and those using ex-
plicit verification methods. An example falling into the first category is
the Symbolic Model Verifier (SMV) tool that is based on Ordered Bi-
nary Decision Diagram manipulation techniques (Clarke et al. 1999). The
Spin tool falls into the second category and uses partial order reduction
(see section 2.3.5) as part of its strategy to cope with the state explosion
problem (Holzmann 2003).

2.2.1 Model checking workflow

The practical usage of a model checker will typically follow the workflow outlined
in Figure 2.1. A design is transformed into a description suitable for the model

4LTL is described in more detail in Section 2.3.3.

6

2.3. The Spin model checker

checker, either manually or with the aid of tools, and a specification of a wanted
or unwanted behavior is captured as a property. The result produced by the
model checker on the basis of this information is either confirmation that the
property has been verified to hold, or an error trace showing how the property
can be invalidated (Clarke 2008, pp. 2–3). If given sufficient resources, the
model checking tool will always terminate with an answer (Clarke 2008, pp. 3).

D e s i g n o f
p r o g r a m o r

c i rcu i t

P r e - p r o c e s s o r P r o p e r t y

M o d e l c h e c k e r

O K

T r a c e o r
c o u n t e r -
e x a m p l e

Y e s

N o

P r o p e r t y
h o l d s ?

S p e c i f i c a t i o n

Figure 2.1: Outline of a general model checking workflow.

2.3 The Spin model checker

The Spin model checker was originally developed at Bell Labs in the begin-
ning of the 1980s (Holzmann 1997) and has since been continuously developed.
Spin has been available since 1991 and can be used freely for educational pur-
poses (Holzmann 2003). Commercial use of Spin does not command a fee but
requires a license agreement to be accepted (LIC 2001).

Spin is a system for proving properties of software systems by enabling a
designer to create abstract models of the target system, specify properties that
must hold for the model and verify if this is in fact the case or not.5 Spin allows
the designer to explore — through simulation or verification — system behavior
which results from interaction between processes.

Spin uses verification models specified in Process Meta Language (Promela)
(Holzmann 1997) and can be used in several ways including random, interac-
tive or guided simulation mode, and verification mode. When used as random
simulator, Spin will follow one randomly chosen execution path of the modeled
system. In interactive simulation mode, the user is called upon to decide how
to proceed when a choice must be made between possible execution paths. In
guided simulation mode, Spin follows a trail file that describes a specific execu-
tion path through the system.

5For the underlying theory of how models and properties are handled by Spin to perform
the verification, see Holzmann (1997).

7

Chapter 2. Theory

Note that no amount of repeated random simulation guarantees that every
execution path is eventually taken. The results from a simulation run is only
applicable to the particular execution path through the system selected in that
specific simulation run. A verification run is therefore necessary to verify claims
about all of the possible simulation runs, i.e., about every possible execution
path of the system. If Spin finds that a model does not satisfy a particular
property, then a trail file is generated. The file details the exact steps that
produces a violation of the property and can be used in guided simulation mode
to replay the execution (Holzmann 2003, pp. 245–252).

2.3.1 The Promela specification language

Promela is a specification language, visually resemblant of C, for describing
models of concurrent systems. The number of constructs supported by the
language is intentionally small and the focus of those constructs is on describing
behavior and interaction between system components, rather than computation.
The reason for this is that, “Promela is not meant to be an implementation
language but a systems description language.” Holzmann (2003, p. 8)

The Promela language provides features for describing concurrently execut-
ing processes and communication between such processes using message passing
over buffered or unbuffered message channels. Promela also makes it easy to
model indeterministic choice through the use of control statements similar to
Dijkstra’s guarded commands (Holzmann 2003, p. 407).6 However, there are no
features for returning values from function calls, no support for floating point
numbers and no notion of time beyond event ordering.(Holzmann 2003, p. 8)

2.3.2 A Promela example

It is beyond the scope of this thesis to describe details of Spin and Promela, but
Listing 2.1 serves to give an impression of syntax and concepts of the Promela
language. For a complete description of Spin, Promela and further examples
see, e.g., Holzmann (2003), Ben-Ari (2008) and Holzmann (1997).

The example models a scenario with two bank tellers and two bank cus-
tomers, communicating in pairs using message passing over a channel. The
customers share one bank account with an initial balance of 60 currency units.
The customers both carry out three transactions, choosing indeterministically
between attempting to withdraw or to deposit 50 currency units. When a bank
teller receives an order to withdraw money, the balance of the account is checked
to ensure that it holds sufficient funds. If this is the case then the balance is
decreased and the teller then verifies that the balance has not somehow fallen
below zero (see lines 14–15 in Listing 2.1). When a bank teller receives an order
to deposit money, the balance is increased.

A verification run with Spin can be used to find a process interleaving that
can cause the account balance to fall below zero. The resulting trail file can
in turn be used to playback the execution and locate the error. Listing 2.2
presents condensed output from the execution playback. It demonstrates that
the assertion violation occurs when the first teller is interrupted in the with-
drawal procedure after checking the account balance, but before recording the

6See for example lines 28–31 in Listing 2.1.

8

2.3. The Spin model checker

Listing 2.1: Promela model vulnerable to a data race situation.

1 short ba lance = 60 ;
2

3 mtype = {withdraw 50 , depo s i t 50 } ;
4

5 chan channe l a = [0] of { mtype } ;
6 chan channe l b = [0] of { mtype } ;
7

8 proctype t e l l e r (chan in) {
9 end :

10 do
11 : : in ? withdraw 50 −>

12 i f
13 : : ba lance >= 50 −>

14 ba lance = ba lance − 50 ;
15 assert (ba lance >= 0) ;
16 : : else −> skip ;
17 f i
18 : : in ? depo s i t 50 −>

19 ba lance = ba lance + 50 ;
20 od
21 }
22

23

24 proctype customer (chan out) {
25 byte t r a n s a c t i o n s = 3 ;
26 do
27 : : t r a n s a c t i o n s > 0 −>

28 i f
29 : : out ! withdraw 50 ;
30 : : out ! depo s i t 50 ;
31 f i ;
32 t r a n s a c t i o n s = t r an s a c t i o n s − 1 ;
33 : : else −> break ;
34 od
35 }
36

37

38 in i t {
39 atomic {
40 run t e l l e r (channe l a) ;
41 run customer (channe l a) ;
42 run t e l l e r (channe l b) ;
43 run customer (channe l b) ;
44 }
45 }

9

Chapter 2. Theory

Listing 2.2: Condensed Spin output demonstrating a process interleaving re-
sulting in an assertion violation.

1 proc 2 (customer 1) [out ! withdraw 50]
2 proc 1 (t e l l e r 1) [in ?withdraw 50]
3 proc 1 (t e l l e r 1) [((ba lance >=50))]
4

5 proc 4 (customer 2) [out ! withdraw 50]
6 proc 3 (t e l l e r 2) [in ?withdraw 50]
7 proc 3 (t e l l e r 2) [((ba lance >=50))]
8

9 proc 3 (t e l l e r 2) [ba lance = (balance−50)]
10 proc 3 (t e l l e r 2) [a s s e r t ((balance>=0))]
11

12 proc 1 (t e l l e r 1) [ba lance = (balance−50)]
13 sp in : Error : a s s e r t i o n v i o l a t ed
14 sp in : t ex t o f f a i l e d a s s e r t i o n : a s s e r t ((balance>=0))
15 proc 1 (t e l l e r 1) [a s s e r t ((balance>=0))]

new balance. The consequence is that the tellers are able to make a withdrawal
each, based on the same account balance, incorrectly causing a final negative
balance.

2.3.3 Property specification in Spin using LTL

The properties that we wish to prove or refute for a given Promela model must
be specified in some formal notation. The example in Section 2.3.2 showed a cor-
rectness claim specified using an assertion statement, but Spin also supports ver-
ification of correctness claims specified in LTL (Holzmann 1997). This temporal
logic allows specifications that refer to the future (Huth & Ryan 2004, p. 175) by
extending propositional logic formulas with temporal connectives (Ben-Ari 2008,
pp. 71–72).

The operators inherited from propositional calculus are: negation, conjunc-
tion, disjunction, implication and equivalence. In addition to this, LTL provides
the temporal operators always, eventually, (strong) until, the dual of until (com-
monly referred to as release) and next. These allow us to state claims about the
behavior of the Promela model and to use Spin to assert or refute those claims.
See Holzmann (2003, pp. 135–136) for a complete description of the semantics
of the operators and the syntax used in Spin.

Always (�) captures properties that are related to invariance, e.g., the formula
� p specifies that condition p always holds true. The operator is written
[] in Promela.

Eventually (♦) captures properties related guaranteed behavior, e.g. the for-
mula ♦ p specifies that the condition p holds in the current state or will
hold in some future state. The operator is written <> in Spin.

Until (U) captures properties of relative behavior, e.g. p U q specifies that
the condition p must hold until q becomes true (now or in the future).

10

2.3. The Spin model checker

The definition of weak until does not require that q ever becomes true,
while the definition of strong until does require that q at some point holds
true. Spin uses the strong definition of until (Ben-Ari 2008, p. 91). The
operator is written U in Spin.

Release (R) is the dual of the strong until operator, e.g., p R q specifies that
q holds true until p becomes true, which releases q. If p never becomes
true, then q must hold forever. The operator is written V in Spin.

Next (X) captures properties that relate a state to its successor, e.g., X p

holds in the current state iff p holds in the next state. The operator is
written X in Spin.

The next operator requires caution because of the restrictions on its use that
are imposed by Spin. The default behavior of Spin is to disallow the use of the
next operator, due to the possibility of conflicts with the state space reduction
method used by Spin (see Section 2.3.5).

2.3.4 LTL property verification

Spin can be used both to prove desired behaviors (i.e., properties that should
always hold) or error behaviors (i.e., properties that should never hold). For
reasons of verification efficiency, Spin does not attempt to prove that a behavior
is guaranteed; instead Spin attempts to show how a behavior claimed to be
impossible can in fact be achieved (Holzmann 1997, p. 97).

This means that to prove a desired behavior, an LTL formula that captures
that behavior is specified and then negated. Spin then attempts to show a run of
the system in which the negated formula holds. If Spin succeeds, then the desired
behavior can be violated; but if Spin determines that the negated claim cannot
be refuted, then the model must exhibit the desired behavior. We can conclude
that Spin is used “to check for violations of requirements.” (Holzmann 2003,
p. 149)

The challenge for any designer using model checking is to construct a small
yet sufficiently detailed verification model that ideally only captures the fea-
tures of the design that “must be considered to establish correctness” (Clarke
et al. 1999, p. 13). Unnecessary details that make the model more complicated
without affecting the “correctness of the checked properties” (Clarke et al. 1999,
p. 13) should be omitted.

2.3.5 Problem space reduction

Holzmann (2003, p. 191) writes that Spin makes use of two types of strategies for
addressing the state space explosion problem, the aims of which are either “to
reduce the number of reachable states that must be searched to verify properties,
or to reduce the amount of memory that is needed to store each state.”

One method used by Spin is called partial order reduction. According to
Clarke et al. (1999) partial order reduction relies on selecting and examining
only a subset of all possible execution paths. One example of how this is achieved
is by detecting interleaving of processes such that the relative ordering of the
processes’ execution steps do not affect the final outcome of the execution, with

11

Chapter 2. Theory

regards to the property being verified. This reduces the problem size because,
as Clarke et al. (1999) writes,

“When a specification cannot distinguish between two interleaving
sequences that differ only by the order in which concurrently exe-
cuted events are taken, it is sufficient to analyze only one of them.”

Another means of reduction is to exploit stutter equivalence, in that,

“a pair of sequences are considered to be equivalent if they differ in
at most the number of times a state may adjacently repeat.” (Peled,
Wilke & Wolper 1995)

Spin’s partial order reduction strategy assumes that stutter equivalence can
be used and is therefore only guaranteed to be valid for stutter invariant proper-
ties. Although it is not impossible to write stutter invariant properties that make
use of the next operator (Holzmann 2003), an LTL formula which does not con-
tain the next operator is guaranteed to be stutter invariant (Peled et al. 1995).
It is therefore also guaranteed not to invalidate the results of the partial order
reduction algorithm (Holzmann 2003). Nonetheless, Ben-Ari (2008) comments
that the abstract treatment of time explains why it would be of limited benefit
to allow the next operator,

“For example, in a client-server system, we want to specify that a
client process eventually receives a service from a server process but
it doesn’t really matter if that occurs in the next state or ten states
later.”

Lamport (1983, p. 661) also argues against the inclusion of a next operator in a
temporal logic with the motivation that this allows requirements to be specified
that distinguish between models on the basis of properties that are irrelevant in
an abstract specification.

12

CHAPTER 3

Method

In order to address the questions posed in Section 1.2, this project is divided
into two phases:

Phase 1: An initial study of previous work describing methods and tools for
formal verification of state machines and UML-RT models is carried out. The
purpose of this is to provide an understanding of what verification approach
can be suitable in the modeling environment at the department. We assess the
applicability of existing work in the context of this environment, based on two
factors:

1. The ability of the tool to verify properties that are of current interest, but
also of possible future interest to the department.

2. The potential for integrating the proposed approach (and possibly already
existing tool) into the department’s tool environment.

The findings of the initial study determine if

1. a tool considered suitable is available, or if

2. a prototype tool based on principles suggested by previous work has to be
implemented.

The results of the first phase determined that the second phase was directed
towards the latter possibility, i.e., towards implementing a prototype tool.

Phase 2: We then demonstrate the chosen verification approach by conduct-
ing a case study, exploring the use of model checking in the setting of an
RSARTE environment. In the case study, we

1. model selected problems with the modeling tools used at the department,
and

13

Chapter 3. Method

2. apply the selected verification approach and tool to demonstrate how prop-
erties of those models can be verified.

The problems studied and modeled are chosen mainly from training material
for the modeling tools used at the department. Starting with models from train-
ing material is suitable since such models introduce fundamental building blocks
and important constructs used in the modeling environment. Avoiding complex
models is also suitable for a prototype demonstration, since the intended focus
is on the feasibility of verification rather than on tool performance.

In addition to problems from training material, the problem of the dining
philosophers — which is well-known within verification and concurrent program-
ming — is also modeled.

3.1 Configuration of test system

The experiments with verifying the properties of modeled problems are con-
ducted on a test system running a 64-bit GNU/Linux operating system, using
version 5.1.7 of the Spin model checker. Each experiment is restricted to using
a maximum of 3200 MB of memory, and has a maximum time limit set to two
hours.

14

CHAPTER 4

Description of modeling environment

The department develops software using the modeling language UML-RT, sup-
ported by modeling tools such as RoseRT and RSARTE. RoseRT is the tool
in current use at the department but it is in the process of being replaced by
RSARTE. This chapter gives a historic perspective on UML-RT and provides
an introduction to modeling constructs that are important in UML-RT and that
should be supported by a verification tool.

4.1 Historic context

To give a better understanding of UML-RT, and how it relates to the tools
evaluated in Chapter 5, we present a brief historical overview of some of the
standards, concepts and tools that have influenced UML-RT and that have
been used to model reactive systems1 over the past two decades.

4.1.1 Modeling reactive systems

Statecharts were introduced by Harel in the 1980s as a visual formalism for spec-
ifying complex reactive systems, such as, “telephones, automobiles, communi-
cation networks, computer operating systems, missile and avionics systems, and
the man-machine interface of many kinds of ordinary software.” (Harel 1987)

Statecharts form an extension to state diagrams that can be used to represent
Finite State Machines (FSMs), that were in turn already being used to describe
reactive components. Harel’s work allowed specification of systems that were
larger compared to those that could be conveniently described using FSMs.
This was achieved by the introduction of, e.g., hierarchy and concurrency or

1A component which performs a fresh computation for each invocation is called transfor-

mational. A component which may rely on prior computations, in addition to new values, to
perform a practically continuous computation is called reactive (Drusinsky 2006). For such
components there is some notion of memory and they may therefore be called stateful, whereas
the transformational components are stateless.

15

Chapter 4. Description of modeling environment

orthogonality (Drusinsky 2006). Classic FSMs are flat and sequential and for
these reasons they do not scale well to larger systems. This limitation was
reduced by the introduction of Harel’s extensions (Drusinsky 2006).

The next modeling formalism was Real-Time Object-Oriented Methodology
(ROOM) and its ROOM charts, a modified variant2 of Harel’s statecharts.
ROOM was supported by the ObjecTime Developer (OTD) tool, developed
by the Canadian company ObjecTime Limited.3

The ROOM language introduced the actor as a primary element (Selic 1996).
The actor concept has propagated through the evolution of languages and re-
mains in UML-RT, where it is referred to as a capsule. An actor is a concurrent
object that communicates with its environment through interfaces known as
ports. The ports are instances of protocol classes that define the message pass-
ing communication between actors. Figure 4.1 shows a ROOM example with
two Client actors connected via ports to a FileSystem actor.

F i l e S y s t e m

C l i e n t 1

C l i e n t 2

Figure 4.1: Example of actors in ROOM. Figure adapted from Selic (1996,
p. 215).

The behavior of an actor is completely defined by a ROOM chart and the
hierarchical modeling made possible by ROOM charts permits a gradual refine-
ment of complex behavior (Selic 1996). Actors, or capsules, ports and protocols
are described in more detail in Section 4.2.

4.2 Modeling constructs in UML-RT

This section gives an overview of some of the constructs that have been inherited
by UML-RT from its ancestors. The components covered are capsules, ports,
protocols, and state machines.

A capsule object corresponds to a logical execution thread and is defined
by its structure and its behavior. The structure of the capsule describes its
relation to other objects in the system and the behavior describes how the
capsule reacts to its environment. A capsule has precisely one state machine
that defines its behavior, but may contain any number of sub-capsules, referred
to as capsule roles, and any number of connections to other capsules in its
environment. The behavior and internal structure are completely contained

2For example, ROOM charts do not support concurrent states, as a result of a trade-off
decision between modeling power and code generation efficiency (Selic 1996).

3In the year 2000, the Rational Software Corporation acquired ObjecTime, after which
their products Rational Rose and OTD, respectively, where merged into the tool RoseRT.
The Rational Software Corporation was in turn purchased by IBM in 2003 and RoseRT
became part of IBM’s product portfolio.

16

4.3. UML-RT tools at the department

within a capsule, allowing other objects in the system to view the capsule as a
black box.

Capsules communicate exclusively through message passing. Messages that
are delivered to the capsule (by a run-time service library) will be received
by its structure and are then processed according to its behavior. The run-
to-completion semantics of capsules ensure that no more than one message at
a time is delivered from the capsule’s structure to its behavior. “When the
capsule receives a message, a transition chain is triggered. The entire transition
chain must be executed before the run-time service library delivers the next
message.” (Rat 2003)

The messages sent and received by capsules are defined by sets of signals
grouped into protocols. A signal has a name, a direction (in or out) and can
optionally be associated with a payload that is delivered in the message along
with the signal.

The interface for communication with a capsule is called a port. A public
port is an interface between a capsule and its environment, and a private port is
an interface between a capsule and its capsule roles. Ports are associated with
protocols, ensuring that only specific signals can be sent and received by the
capsule using that particular port. The association also restricts how capsules
can be connected to each other, e.g., by requiring that one of the connected
ports is conjugated so that the out signals sent by one capsule correspond to
the in signals received by the other, and vice versa.

A state machine defines the behavior of a capsule by describing how the
capsule responds to stimuli, i.e., signals sent from other capsules. Signal recep-
tion may trigger a transition from one state to another, which in turn causes
a sequence of actions to be executed. Each state may define entry and exit
actions and each transition may define a transition action. In a situation where
a signal received in state a triggers a transition t to state b, the exit action of
a will be executed, followed by the transition action of t, followed by the entry
action of b.

4.3 UML-RT tools at the department

RoseRT is the currently used tool at the department, but migration to RSARTE
is in progress. The RSARTE tool is built on top of the Eclipse platform, which
originated as a development platform at IBM’s subsidiary Object Technology
International (OTI) in 1998 (Cernosek 2005). Eclipse has since been released
as an open source project. In 2004, IBM announced that several of its products
such as Rational Software Modeler and Rational Software Architect would be
built on top of the Eclipse platform, under the name IBM Rational Software
Development Platform (Cernosek 2005).

RoseRT and RSARTE are both used for modeling in UML-RT. Even though
both tools are based on Unified Modeling Language (UML), there are differences
between the two. UML-RT models created in RoseRT are based on the 1.4
standard of UML, with custom extensions to provide the constructs that have
been inherited from ROOM, e.g., capsules. The current version of RSARTE
uses UML version 2.1 with a UML profile called UMLRealTime, which provides
the necessary constructs.

Differences between model representations means that models are not in

17

Chapter 4. Description of modeling environment

practice trivially interchangeable between different tools. These compatibility
issues also become clear in Chapter 5, wherein existing tools for software model
verification are evaluated in relation to the UML-RT tools used at the depart-
ment.

18

CHAPTER 5

Previous work and tools for software model verification

Previous work exists in the area of property verification of UML models and
this chapter presents a selection1 of such research projects and tools. Each tool
is presented with a short description of important features and an assessment
of the tool’s potential for use at the department. The assessment is based on
compatibility with the modeling tools and modeling language at the department,
and in some cases the availability of the tool.

5.1 vUML

The vUML tool, for automated property verification of state machines in UML
models, is presented in (Lilius & Porres Paltor 1999a) and (Lilius & Porres Paltor
1999b). The tool translates a given UML model into a Promela model for use
in the Spin model checker. Feedback to the user is given in the form of sequence
diagrams generated from the error trails produced by Spin. The process of model
transformation, verification and interpretation of error trails is fully automated,
which frees the user from having to know Promela or interact with Spin directly.

vUML provides support for automatically verifying a set of pre-defined prop-
erties. These properties are specified by assigning special meaning to certain
states of the state machine, by marking those states with labels. An example
of such a label is the invalid label, which signifies that the marked state should
never be reached. The labels are recognized in the transformation to Promela,
automatically creating a verification model that includes these properties.

vUML lacks support for user specified properties, which may be limiting if
properties beyond the default set are of interest. Moreover, the input language
to vUML is non-standard (Lilius & Porres Paltor 1999b, p. 12) and vUML no
longer appears to be distributed.

1In addition to the tools discussed in more detail in this chapter, previous work has also
been presented by, e.g., Mikk, Lakhnech, Siegel & Holzmann (1998), Shen, Compton & Hug-
gins (2002) and Jussila, Dubrovin, Junttila, Latvala & Porres (2006).

19

Chapter 5. Previous work and tools for software model

verification

5.2 Hugo

The Hugo2 tool (Schäfer, Knapp & Merz 2001, Knapp & Wuttke 2007) allows
transformation of UML models diagrams, such as state machines and collabora-
tion diagrams, into the modeling languages of several different model checkers,
including Spin. The main purpose of Hugo is to “to verify whether certain speci-
fied collaborations are indeed feasible for a set of UML state machines.”(Schäfer
et al. 2001, p. 9) This is achieved by producing a Promela model from the state
machines and by making the claim to Spin that the behavior described by the
collaboration diagram is impossible. Spin then attempts to refute this claim and
will, if successful, produce an “error” trail demonstrating that the collaboration
is in fact possible.

As in the case of vUML, Hugo relieves the user from direct interaction with
the model checker and from using LTL for specifying properties. Unfortunately,
Hugo does not appear to provide necessary support for UML-RT specific con-
structs, such as capsules.

5.3 VIP and v-Promela

The Visual Interface to Promela (VIP) (Kamel & Leue 2000) is a tool for cre-
ating models visually and verifying properties using the Spin model checker
as a back-end. The models created in VIP are based on v-Promela (Leue &
Holzmann 1999), which is a modeling language that resembles UML-RT in sev-
eral aspects, e.g., by supporting constructs such as capsules, ports and protocols,
very similar to those that are found UML-RT.

The model transformation into Promela is automatic, but the verification
process requires direct interaction with Spin and no information from the ver-
ification results is fed back into VIP. The exclusive use of v-Promela models
in VIP also means that manipulation or verification of models created at the
department is not immediately accessible. Nonetheless, the Promela code pro-
duced by VIP is interesting from a perspective of demonstrating principles for
how modeling of state machines, protocols and interaction between capsules can
be achieved in Promela.

5.4 TABU

The work of Beato, Barrio-Solórzano, Cuesta & de la Fuente (2005) presents
the Tool for the Active Behaviour of UML (TABU), an automatic verification
tool for UML. The tool accepts UML models stored in the XML Metadata
Interchange (XMI) format and performs an automated transformation into the
modeling language of the SMV model checker. An interesting feature of TABU
is that the tool provides a property writing assistant based the work of Dwyer,
Avrunin & Corbett (1999), that aids the user in specifying model properties in
temporal logic.

TABU does not appear to provide support for necessary UML-RT constructs.

2Hugo has been released in several versions and is now called Hugo/RT. It is available at
http://www.pst.ifi.lmu.de/projekte/hugo/.

20

http://www.pst.ifi.lmu.de/projekte/hugo/

5.5. SMARRT

5.5 SMARRT

The Static Model checking and Analysis for Rose RealTime (SMARRT) tool,
presented in (Elamkulam et al. 2006), permits verification of properties for
UML-RT models by integrating the modeling tool RoseRT with IBM’s model
checker RuleBase.3 SMARRT is capable of automatically translating a UML-RT
model into Property Specification Language (PSL), a very expressive language
understood by RuleBase. It also provides functionality that aids the user in
specifying model properties by using a variant of UML sequence diagrams. Ver-
ification results are presented in the form of sequence diagrams within RoseRT,
making error interpretation simpler for the user.

5.6 Summary and conclusions of review

The SMARRT tool is closely integrated with the development tool already in
use at the department but further evaluation of SMARRT and its potential for
use in the future RSARTE environment is abandoned in this work, since the
tool is not publicly available. The VIP tool supports several constructs similar
to the ones available in UML-RT and is closely integrated with the Spin model
checker. However, the tool is too restricted in its support of input models.
TABU provides an interesting property assistant but does not support capsules.
Neither does Hugo, although it demonstrates an interesting method for proving
the feasibility of certain state machine behaviors. The vUML tool, finally, is
not used for further evaluation since it appears to have become unavailable.
Nonetheless, it does feature an interesting method for verifying a certain set of
properties by extending an input model with special state labels.

The majority of the examined tools target some subset of UML or UML-RT
models. No available tool has been found that provides sufficient support for im-
portant modeling constructs such as capsules, combined with being compatible
with either RoseRT or RSARTE. The review suggests that a general approach
for verifying properties of the types of models that are of interest, is to extract
a verification model from the original model and to use a model checking tool
to perform the verification. This corresponds to the general model checking
workflow, as outlined in Figure 2.1.

Although the conclusion is that none of the reviewed tools can be integrated
and used directly at the department, they highlight important concepts and
interesting features that should be considered in an implementation of a pro-
totype tool for property verification of UML-RT models. Chapter 6 describes
such a prototype tool, based on the findings of this review. Spin is the model
checker which dominates in reviewed previous work and it is also widely used in
software model checking. It is therefore used as the back-end of the prototype
tool.

3http://www.haifa.ibm.com/projects/verification/RB_Homepage/

21

http://www.haifa.ibm.com/projects/verification/RB_Homepage/

CHAPTER 6

Prototype system integrating RSARTE with Spin

This chapter presents design decisions for the prototype tool and outlines its
implementation. The prototype tool is intended to integrate Spin with the
modeling environment RSARTE, used at the department.

6.1 Verification model extraction options

The pre-processor step in Figure 2.1 corresponds to extraction of a verification
model from the original model. Since the proof of concept prototype tool of this
thesis is implemented using Spin as the model checking back-end, the verification
model must be specified in Promela based on the original model from RSARTE.
The extraction can be performed in several ways, each with advantages and
disadvantages:

Manual translation A verification model can be extracted by manual imple-
mentation in Promela. Choosing this option eliminates the need to imple-
ment a transformation tool, but would be very impractical for targeting
anything beyond a small number of simple capsules.

There is also a risk of losing or overlooking information when the verifi-
cation model must be manually extracted and kept synchronized with a
possibly changing original model. As a consequence, this option does not
sufficiently consider the viewpoints of a designer and is therefore discarded.

Re-modeling The VIP tool supports visual modeling constructs similar to
those of RSARTE. Using VIP, it is possible to model an equivalent or
more abstract version of the original model, and then rely on VIP’s ability
to export the new model to Promela.

Compared with the previous option, the likelihood of losing information
can be considered slightly lower, but the impracticalities of manually main-
taining two versions of the same model disqualifies also this option.

22

6.1. Verification model extraction options

Parsing generated C++ code The department uses code generation to pro-
duce compilable C++ code from models and Holzmann & Smith (1999)
describes work done to allow automatic extraction of verification models
from source code. Generating source code from a model results in a loss of
abstraction, which is both unnecessary and undesirable when producing a
verification model. Furthermore, verification of code is beyond the scope
of this thesis and for these reasons the option is not considered further.

Parsing an exported model RSARTE allows models to be exported in XMI
format. An external tool capable of parsing Extensible Markup Language
(XML) could then be used to traverse the XMI file structure and generate a
verification model based on the structure of the original mode. This option
could spare the designer much unnecessary work required for maintaining
two model versions but does not provide full integration with RSARTE.

Code generation RSARTE is built on the Eclipse framework and can as such
be extended with tools and plug-ins for Eclipse, e.g., tools for model trans-
formation and code generation. This option provides close integration with
RSARTE and a high degree of automation, which is desirable from the
viewpoint of a designer.

Code generation is selected for extracting a verification model in the proto-
type tool, since it automates much of the necessary work. The Eclipse platform’s
Model to Text1 project provides support for transforming models into textual
artifacts. The Java Emitter Template (JET)2 tool is part of this project and can
be used to generate source code in any language and is therefore used for code
generation in the prototype tool. The resulting tool chain for model verification
is illustrated in Figure 6.1.

The extraction of a verification model is performed within RSARTE using
JET and the resulting Promela model is handed over to the Spin model check-
ing workflow. The verifier, generated from the verification model and optional
LTL property, produces verification statistics and an error trail if a property or
assertion violation is detected. Holzmann (2003, pp. 245–246) provides more
detailed information about Spin’s verification process.

6.1.1 Code generation in RSARTE using JET

JET uses a template system similar to Java ServerPages to describe the trans-
formation from model to text files. The template system allows textual artifacts
to be produced by mixing plain text with dynamic content extracted from the
model using control tags. For example, the tags allow iteration over model el-
ements, conditional branching and retrieval of model information. A collection
of templates are combined to form a JET transformation project and can be
applied to a model, producing text files where the dynamic content of the tem-
plates is expanded with information from the model (Ackerman, Elder, Busch,
Lopez-Mancisidor, Kimura & Balaji 2008, p. 474).

JET uses model loaders that allow different kinds of models to be manipu-
lated and navigated in a transformation project. The two model loaders bun-
dled with JET do not provide sufficient support for loading models created in

1http://www.eclipse.org/modeling/m2t/
2http://www.eclipse.org/modeling/m2t/?project=jet#jet

23

http://www.eclipse.org/modeling/m2t/
http://www.eclipse.org/modeling/m2t/?project=jet#jet

Chapter 6. Prototype system integrating RSARTE with Spin

R S A R T E

m o d e l
J E T

t r a n s f o r m a t i o n

L T L
f o r m u l a

L T L
f o r m u l a

L T L
f o r m u l aP r o m e l a

m o d e l

P r o m e l a
m o d e l

S p i n

V e r i f i e r g e n e r a t i o n

g c c Ver i f i e rS p i n c o m p i l e r
(g c c)

C
c o d e

V e r i f i e r e x e c u t i o n

ver i f i e r

ve r i f i e r

o kn o t o k

in fo
e r r o r
t ra i l

i n fo

resu l t

Figure 6.1: Illustration of the verification procedure in the prototype system.

24

6.2. Verification model overview

RSARTE, and the prototype tool therefore uses a customized model loader that
is not part of JET by default.3

Once a model is loaded, JET allows navigation of the model structure using
XML Path Language (XPath)4 expressions. Information from the model, such
as the names of elements, is also retrieved and inserted into the text artifacts
using XPath expressions, as the template is expanded (Ackerman et al. 2008,
p. 490).

6.2 Verification model overview

The prototype tool transforms elements from the model into a verification model
in Promela. This section outlines choices made for closing the generated verifi-
cation model and for transforming concepts of UML-RT to Promela.

6.2.1 Modeling capsule interaction with the environment

A capsule can use public ports to interact with its environment. Spin requires
that a verification model “must always contain all the information that could
possibly be required to verify its properties.” (Holzmann 2003, p. 68) Therefore,
if the top-level capsule in the model has public ports and is expected to interact
with its environment, then the environment of the capsule must also be included
in the verification model.

A capsule’s only interface for interaction is its ports. The internals of a
capsule is hidden from the environment’s point of view and, conversely, the
capsule’s view of its environment is restricted to the reception and transmission
of signals. Modeling a capsule’s environment from the capsule’s point of view
can therefore be done by sending signals to the capsule’s ports, and by receiving
signals sent from the capsule’s ports. An illustration is found in Figure 6.2,
where components modeling the environment are connected to a capsule with
three ports.

C a p s u l e

Por t 1 (i n)

P o r t 3 (i n + o u t)

P o r t 2 (o u t)

C o n s u m e r

P r o d u c e rP r o d u c e r

C o n s u m e r

Figure 6.2: Illustration of a capsule that has public ports. Producer and con-
sumer components are attached to the capsule in the verification model to model
the behavior of the environment and close the verification model.

It is possible that the behavior of the environment is somehow restricted.
However, if no restrictions are imposed on the signal sequences that can be sent

3The customized model loader has been provided by Paul Elder, IBM.
4http://www.w3.org/TR/xpath

25

http://www.w3.org/TR/xpath

Chapter 6. Prototype system integrating RSARTE with Spin

to the system (by ensuring that the choice of signals is non-deterministic) then
any behavior of the environment is in effect modeled, including what would be
controlled and intentional signal sequences. One benefit of modeling the envi-
ronment in this way is that erratic and unexpected behavior of the environment
can be precisely that which causes failure in a real system (Holzmann 2003,
p. 5).

6.2.2 Mapping concepts in UML-RT to Promela

The structure of the Promela code is based to a large extent on the structure of
verification models generated using the VIP tool. This section explains the more
important points of the mapping between RSARTE models and the verification
models. Section 8.4 contains a description of a UML-RT model created in
RSARTE. The state machine of the only capsule in the model is found in
Figure 8.13(a). The Promela code generated to verify that model is available
in its entirety in Appendix A and is referred to for comparison throughout the
remainder of this section.

The prototype system does not provide a complete mapping of all available
UML-RT constructs. The recognized subset excludes, for example, hierarchical
states, payloads carried by signals, and multiplicity values for model elements
exceeding one. Moreover, no guard conditions in state machines are recognized,
and neither are pseudostates (such as choice points) except the initial state.

Capsules� Each capsule is modeled as a Promela process. The example verification
model contains one such process called DemonstrationCapsule (line 63).� Each process uses the run operator to start the processes that correspond
to its capsule roles. The DemonstrationCapsule does not contain capsule
roles, so it runs no other processes (lines 71–76).� The top-most capsule is started by the init process. The Demonstra-
tionCapsule is the top-most capsule and is started at line 257.� There are no assumptions made on the scheduling of processes or priorities
between them.

Protocols and signals

While v-Promela and UML-RT distinguish between in and out signals in a
protocol, the VIP tool does not support this distinction (Kamel & Leue 2000,
p. 474). The prototype system does, and generates a Promela model in which
this in and out signals are treated separately.� Protocols are modeled using a user-defined structured data type (using

the typedef declarator). The original model in the example contains one
protocol called DemonstrationCommunication (line 20).� All protocol signals are modeled with mtype declarations. The Demon-
strationCommunication protocol has three in signals (lines 24–28).� The in and out signals of a protocol are separated into two typedefs.

26

6.2. Verification model overview

Ports and connectors� A connector joins two capsules and is modeled with Promela channels;
one channel for in signals and one channel for out signals.� A capsule communicates over one or more ports that are connected to
other capsule ports with a connector. The channels used by a process are
passed as arguments to the process when it is started. The name, used in
the process to refer to the channel, corresponds to the port name to which
the connector is connected (line 64).� Each process creates the channels needed for communication both between
its capsule roles, and between the capsule itself and its capsule roles.� Channels required for communication between the top-most capsule and
the environment are created by the init process (line 253).

State machines� Each state in a capsule’s state machine is modeled as a labeled, atomically
executed code block (e.g., lines 99, 153 and 207).� Transitions are modeled using goto jumps to the label of the destination
state.� A process modeling a capsule is blocked in execution until a signal message
is sent to it on one of its channels. For StateA in DemonstrationCapsule,
this corresponds to the if block spanning lines 101–150.� A received signal (line 103) is compared to the signals handled by the state
as defined in the UML-RT model and if a match is found, the correspond-
ing transition is taken (lines 106, 117 and 128 for signals goA, goB and
goC respectively in StateA).� When a signal is received that triggers a transition to a new state, the exit
code for the first state is executed, followed by the transition code and the
entry code for the second state. Finally, the jump to the new label is taken
(lines 105–114 for the StateA having received goA). These action chains
are obtained in the transformation and corresponding Promela code blocks
are generated for each trigger in a state.

6.2.3 Signal producers and consumers

Producer and consumer processes are generated for each protocol, based on the
signals that are part of that protocol. A producer process continuously sends
signals, nondeterministically chosen from the available signals in the protocol,
while a consumer process consumes all protocol signals received. The producer
process for the in signals of the DemonstrationCommunication protocol is de-
fined on lines 30–47.

Producer and consumer processes can be automatically connected to a top-
most capsule that has public ports. Lines 253–258 show how a channel for
communication between the DemonstrationCapsule and the signal producing
process is established.

27

Chapter 6. Prototype system integrating RSARTE with Spin

6.2.4 Embedded Promela code

In the UML-RT models at the department, communication between capsules is
performed by sending signals using action code written in C++. The action
code can be embedded as an entry or exit action for a state, or as an action in
a transition between states. Since the action code in the models is written in
the C++ language it cannot be directly transferred to the Promela verification
model.

This problem is addressed by separating C++ code from Promela code with
pre-processor directives. This allows the C++ code to coexist with the equiv-
alent Promela code directly in the model created in RSARTE. An example
of this separation is found in Listing 8.1, which contains action code from the
traffic light system model.

6.2.5 Property verification

The LTL formulas used for verifying properties of the Promela models consist of
operators (see Section 2.3.3) and propositional symbols. A propositional symbol
used in Promela is a “boolean expression that can be evaluated in a single state
independently of a computation” (Ben-Ari 2008, p. 72).

As described in Section 6.2.2, a state in the state machine of a capsule in the
UML-RT model corresponds to an atomic code block in the Promela verification
model. The block is uniquely labeled with the name of the state. To be able
to specify properties about a state machine in the original model, it must be
possible to specify properties that depend on the equivalent construct in the
verification model.

This can be accomplished in Promela using remote label references. It is
possible to define a propositional symbol by a boolean expression that evaluates
to true if and only if the location counter of a certain process is currently at
precisely such a specific labeled atomic block. Listing A.1 (line 10) shows how a
propositional symbol stateA is defined using a remote label reference to a label
in the process DemonstrationCapsule.

The propositional symbols are not defined automatically by the prototype
tool and must therefore be added manually to the verification model.

6.3 Verification model options

In addition to the various options available to customize simulation and verifi-
cation in Spin5, the verification model generated by the prototype tool can be
parameterized by the following macros:

-DPROMELA Selects the Promela code which is separated from C++ code in the
modeling tool.

-DXU In and out signals are sent on different channels which means that a
Promela process in practice exclusively reads from certain designated
channels and exclusively writes to other channels. The -DXU option spec-
ifies that this separation is recognized in the verification model, using

5See for example Holzmann (2003) or http://spinroot.com/spin/Man/index.html

28

http://spinroot.com/spin/Man/index.html

6.4. JET transformation structure

Promela’s channel assertions, which improves the performance of the ver-
ification (Holzmann 2003, pp. 69-70). Using the option requires that the
standard Spin -DXUSAFE directive is used when compiling the verifier.

-DVERBOSE Specifies that each process should print the name of each state it
enters in simulation runs, and that this information should be included
in generated message sequence diagrams (visual representations of error
trails).

-DCHANLEN=n Alters the channel length, used for all communication channels,
from the default value of 1 to n.

6.4 JET transformation structure

The JET transformation project is hierarchically organized and the transforma-
tion of the main model concepts, such as capsules and protocols, are sectioned
into different templates. This allows for a clear project structure and also fa-
cilities the process of introducing modifications or extensions to the existing
project.

Figure 6.3: Structure of the JET transformation project.

Figure 6.3 illustrates the general structure of the transformation project.
The emxTransform template is the main project template and includes other
template files, such as the genProtocols template which transforms model pro-
tocols into Promela equivalents.

Appendix B shows an excerpt of the transformation project and contains
two template files: the main project template emxTransform (see Listing B.1),
and the genStatemachine template (see Listing B.2).

29

CHAPTER 7

Property specification

The Promela model produced by the transformation is uninteresting, unless it
can be shown that the verification model does or does not satisfy properties that
pertain to the original UML-RT model. Correctness properties can be specified
directly in the Promela model using, e.g., assertions or labels, and they can also
be generated from LTL formulas (Holzmann 2003, p. 75). In previous work (see
Chapter 5), several approaches are presented for achieving verification of model
properties.

Temporal properties can be classified in several ways; such as Lamport’s
(1977) separation between safety and liveness properties,1 or Manna & Pnueli’s
(1992) classification, which is based on the structure of LTL formulas. In this
chapter we describe and categorize properties on the basis of how specification
and verification can be achieved in the prototype system.

7.1 Internally specified properties

The properties in the first category share the feature that they are not specified
outside2 the generated verification model, but are instead expressed as part
of the structure of the Promela code. Since such properties are part of the
Promela structure itself, they will be automatically included in any verification
of the model.

The objective of the prototype tool is to transform UML-RT capsules into a
Promela representation, and this means that certain properties can be identified
that should hold for any UML-RT capsule, regardless of other constraints on
its behavior. An example of such a property — one that can be considered an
error in any UML-RT capsule — is the presence of deadlocks.

A deadlock occurs in a situation “in which control is in the middle of the
program, yet no part of the program is able to proceed.” (Manna & Pnueli 1992,

1Safety properties are those that specify that something will not happen whereas a liveness
properties specify that something must happen. (Lamport 1977)

2For example by using LTL formulas.

30

7.2. Externally specified properties

p. 309) The absence of deadlock is checked by default by Spin (Holzmann 2003,
p, 75), which means that a standard verification run of a verification model
of communicating UML-RT capsules will automatically detect if a deadlock
situation between the capsules is possible. If, for example, a UML-RT model
contains only two communicating capsules and they are both permitted to enter
a state where they wait for a signal from the other party, then the verification
model will be able to reach a point where no process can continue, causing a
deadlock.

Other properties that are not quite as general as deadlock absence can be
automatically reflected in the verification model if particular states in the orig-
inal model are given a role that can be recognized by Spin. An example of this
is the option, available both in vUML (Lilius & Porres Paltor 1999b, pp. 6–7)
and VIP (Kamel & Leue 2000, p. 483) but not in the prototype tool3, to mark
certain states with a progress4 label. The use of the label in the UML-RT model
can be interpreted thus: entering the marked state signifies that some goal has
been accomplished or that useful work is performed by the state machine. This
is a liveness property and if the model can exhibit cyclic behavior, wherein no
state machine performs useful work, then Spin is able to detect this possibility.

A third example of a correctness properties encoded automatically in the
Promela model is discussed in Section 7.3.1.

7.2 Externally specified properties

The second category contains those properties that are specified outside the
generated model (for example by writing LTL formulas) in contrast to the cor-
rectness properties from the previous category. There are several possible ways
of constructing properties that can be used to verify models. We highlight three
possible options discussed in previous work.

First, LTL formulas can be specified manually. LTL allows a wide variety
of properties to be captured in a notation with a very simple syntax (see Sec-
tion 2.3.3). Still, formalizing even quite basic requirements in LTL can become
challenging (Dwyer et al. 1999).

The second option is therefore to use a tool for guiding a user in specifying
properties and aiding the user in writing correct syntax, but more importantly
in writing properties that capture the intended meaning of the requirement.
This approach is used by the TABU tool (see Section 5.4).

The third option is to avoid direct use of LTL altogether and specify prop-
erties in some visual notation. This approach is used by the Hugo tool (see
Section 5.2). The property can then be translated from visual notation to an
LTL formula.

The prototype tool does not provide an option for external property speci-
fication beyond manually written LTL formulas.

3The possibility of extending the prototype tool with such an option is discussed in Sec-
tion 10.3.1.

4Both tools utilize the progress label (see Holzmann (2003, p. 459)) that already exists in
the Promela language.

31

Chapter 7. Property specification

7.3 Properties of primary interest

The example models in Chapter 8 will be used to demonstrate verification of
several properties from the two categories. The two properties that are of pri-
mary interest to the department are related to the behavior of a single capsule.
Informally stated, they are that,

1. a capsule’s state machine must, regardless of state, handle every signal
that it can receive; and

2. it must be detectable if leaving some state becomes impossible, once it has
been entered.

The LTL formula and mechanisms of the Promela model that enable verifi-
cation of these two properties are described in the following sections.

7.3.1 Signal handling guarantee

Every state of a capsule’s state machine is associated with a set of transitions
leading to other states and a transition is taken when it is triggered. This
triggering occurs when a signal, received at a port of the capsule, is delivered
to the behavior of the capsule. If a particular signal can arrive at a particular
port and be delivered to the state machine when it is in a certain state which
has no outgoing transition triggered by that signal, then this must be detected
in the verification model.

Verification of this property is achieved by taking advantage of Promela’s
assertion statement in the verification model. Section 6.2.2 outlines how signals
and transition triggering is modeled in Promela. If no match for a received
signal is found then an assertion statement is intentionally violated.

The property becomes part of the verification model itself and is therefore
considered to be one of the properties that are internally specified.

7.3.2 Trap detection

It is possible that entering a particular state makes it impossible to leave that
state. This can for example be caused by a lack of outgoing transitions. If
complete signal handling has been guaranteed by the previous property, then a
trap can still exist if the outgoing transitions from the state lead back to the
same state.

We let the propositional symbol s0 denote that the Promela process is at
a point in the code corresponding to the capsule’s state machine being in the
state State 0. The property that State 0 is trapping is then captured by the
LTL formula

�(s0 → �s0) (7.1)

Manna & Pnueli (1992, p. 192) refers to such a property (for the symbol p) as
“once p, always p.”

To show that State 0 is trapping in all executions, the LTL formula supplied
to Spin is the negation of Property 7.1. This negated LTL formula formalizes vi-
olations of the original property. In Spin syntax it is written ! [](s0 -> []s0).

If Spin is able to show a violation of the original property, then an error trail
will be produced that demonstrates how to leave State 0 once entered. If Spin

32

7.4. Limitations in property specification

is unable to show a violation of the original property then State 0 must in fact
be trapping.

7.4 Limitations in property specification

Although LTL is expressive, there are limitations on the kinds of properties that
can be stated in the language. One such limitation of LTL is that it does not
allow quantification over paths, which means that it cannot be used to express
properties that are related to the possible existence of paths. Huth & Ryan
(2004, p. 184) gives examples of properties that consequently are impossible to
express in LTL, such as:

“From any state it is possible to get to a restart state (i.e., there
is a path from all states to a state satisfying restart).”

Such properties may instead be expressed in other logics that allow quan-
tification, such as CTL. CTL∗, which is a superset of both CTL and LTL,
allows any formula in the two, and additionally permits formulas that can be
expressed in neither CTL nor LTL alone. See Huth & Ryan (2004, pp. 217-221)
for examples and a comparison of the expressive powers of these logics.

33

CHAPTER 8

Model examples

This chapter presents a number of models created with RSARTE together with
the properties that have been used in verification. The models have been se-
lected from tool training material (Rat 2003) in addition to Dijkstra’s well-
known problem of the dining philosophers. A model illustrating the problem
of verification model complexity is presented, as well as a model intended to
illustrate verification of the two properties found to be of primary interest (see
Section 7.3).

8.1 A model of a traffic light system

The traffic light system model illustrates concepts of capsule communication
using channels, as well as hierarchically constructed capsules (capsules contain-
ing capsule roles). The model is implemented in RSARTE using capsules, state
machines and a communication protocol. We present three versions of the traf-
fic light system to illustrate how properties can be proven and refuted, leading
to modifications of the design. The initial model is based on an exercise from
training material for RoseRT (Rat 2003) but differs in certain behavioral char-
acteristics, as discussed later. The traffic light system example also illustrates
how design mistakes can be introduced in a system when the design is based
solely on sequence diagrams.1

8.1.1 Model description

Two roads meet at an intersection and traffic through the intersection is guarded
by traffic lights facing in the four directions of the compass. A central traffic
light controller sends directives to the traffic lights, signaling which states they
should enter. The states of the controller correspond to its view of how the
lights facing in the intersecting directions should behave.

1A sequence diagram is a graphical notation describing the behavior of a particular system
scenario.

34

8.1. A model of a traffic light system

The behavior of the controller is cyclic and the transitions between its control
states are triggered by reception of timing events.

8.1.2 Properties

For an implementation of a traffic light system to be correct, the following list
of properties should, at minimum, be fulfilled:

1. The signal handling guarantee property (see Section 7.3.1) must hold for
all states in the model.

2. In an infinite run of the system, all traffic lights should display green
infinitely often.

This liveness property specifies that the system should be starvation free,
which is of interest since it proves that a car approaching the intersection
will eventually be allowed to pass through it, regardless of when the car
arrives or from which direction.

We let the propositional symbol northGreen denote that the north traffic
light is in state Green. The property for the north traffic light is expressed
in LTL as:

�♦northGreen (8.1)

3. The system may never simultaneously signal green in such a way that
traffic can collide.

This safety property is an example of using mutual exclusion to control
access to a shared resource (the part of the intersection where traffic meets)
and where a violation of the mutual exclusion property could have severe
consequences.

We let the propositional symbol northGreen denote that the north traffic
light is in state Green and analogously for the remaining three traffic lights.
The mutual exclusion property for the traffic light system is expressed in
LTL as:

� ¬((northGreen ∨ southGreen) ∧ (eastGreen ∨ westGreen)) (8.2)

8.1.3 First version

The first implementation is based directly on diagrams from the training mate-
rial (Rat 2003). The state machines describing the behavior of both the traffic
lights and the controller (see Figure 8.1(a) and Figure 8.2(a), respectively) are
transferred directly from this material.

Model elements

The model consists of the three capsules TrafficLight, Controller and Intersec-
tion, and the protocol LightControl.

35

Chapter 8. Model examples

Listing 8.1: Initial transition effect code for the state machine of the Controller
capsule in the first version of the traffic light system.

1 #ifde f PROMELA
2 nContro l out ! green ;
3 sCont ro l out ! green ;
4 eContro l out ! red ;
5 wContro l out ! red ;
6 #else
7 myTiming . informIn (RTTimespec (greenTime)) ;
8 nControl . green () . send () ;
9 sContro l . green () . send () ;

10 eContro l . red () . send () ;
11 wControl . red () . send () ;
12 #endif

The behavior of the traffic light capsule is defined by its state machine (see
Figure 8.1(a)). The capsule also has a port control (see Figure 8.1(b)) through
which it receives signals from the controller. Each transition is triggered by a
specific signal from the controller capsule, e.g., the transition goGreen is trig-
gered by the signal green. A traffic light always starts in its Red state.

The purpose of the Controller capsule is to cycle the traffic lights through
their different states according to a given pattern (see Figure 8.2(a)). The signals
sent to the traffic lights, using action code in the transitions of the Controller
capsule state machine, are derived from the message sequence diagram from
the training material (see Figure 8.3). Although the sequence diagram only
describes the signals sent to the north and west traffic lights, the action code
is extended to include also the south traffic light (being sent the same signal as
north) and the east traffic light (being sent the same signal as west). The action
code of the Controller ’s transition from its initial state to the state nsGreen is
found Listing 8.1.

The Intersection capsule contains all other capsules in the model and es-
tablishes how the Controller capsule is connected to each TrafficLight capsule.
The structure of the Intersection is visible in Figure 8.4.

The LightControl protocol defines the control signals green, yellow and red
that can be sent to the traffic lights.

8.1.4 Second version

The difference between the first model and the second lies in the state machine
of the Controller capsule. Considering that a traffic light always enters the Red
state when it is started, it is unnecessary for the Controller to send the red
signal to the two traffic lights east and west, as Figure 8.3 suggests.

Modifications to model elements

The Controller capsule state machine is altered so that it does not send the red
signal to the east and west traffic lights in the initial transition. The consequence

36

8.1. A model of a traffic light system

is that lines 4, 5, 10 and 11 are removed from the transition effect code (see
Listing 8.1) in second version.

8.1.5 Third version

The third version continues to build on the second version and introduces an
acknowledgement scheme so that the Controller capsule also requires a response
for each control signal sent to the traffic lights.

Modifications to model elements

An acknowledgment signal, ack, is added to the existing communication protocol
LightControl and a message with this signal is sent by a TrafficLight in each of
the transitions goGreen, goYellow and goRed.

The state machine of the Controller capsule is modified to require ack signals
to be received from the traffic lights for each control signal they are sent. This
is accomplished by adding intermediary states whose outgoing transitions are
triggered on reception of the ack signal. The Controller is no longer allowed to
enter its new control state until it has received ack messages from the correct
traffic lights.

The prototype tool does not support hierarchical states or transitions trig-
gered by multiple signals, which explains why the new state machine of the
Controller capsule (see Figure 8.5) becomes quite large.

37

Chapter 8. Model examples

(a) TrafficLight state machine

(b) TrafficLight structure diagram

Figure 8.1: State machine diagram and structure diagram of the traffic light
capsule.

38

8.1. A model of a traffic light system

(a) Controller state machine

(b) Controller structure diagram

Figure 8.2: State machine diagram and structure diagram of the original con-
troller capsule.

39

Chapter 8. Model examples

Figure 8.3: Sequence diagram of the traffic light system model illustrating in-
teractions between the controller and two traffic lights. Figure from Rat (2003).

Figure 8.4: Structure diagram of the intersection capsule.

40

8
.1

.
A

m
o
d
e
l

o
f

a
t
r
a
f
f
ic

l
ig

h
t

s
y
s
t
e
m

Figure 8.5: Modified state machine of the controller capsule.

4
1

Chapter 8. Model examples

Listing 8.2: Promela code for the stimulus producer process of the electronic
lock model.

1 /* Producer proces s f o r the LockCommunication s i g n a l s */
2 proctype LockCommunication prod (chan com) {
3 #ifde f XU
4 xs com ;
5 #endif
6 send :
7 do
8 : : true −> send one : com ! one ;
9 : : true −> send two : com ! two ;

10 : : true −> s end que s t i on : com ! que s t i on ;
11 : : true −> s end o the r : com ! other ;
12 : : true −> s end lo ck : com ! l o ck ;
13 od
14 }

8.2 A model of an electronic lock

Training material for RoseRT (Rat 2003) describes a passive class2 that models
the behavior of a simple electronic combination lock. The model has a state
machine that changes state based on input in the form of characters. Entering
the correct sequence of characters (1, 2) unlocks the lock, the character L locks
the lock and the character ? causes a help message to be printed.

8.2.1 Model description

The prototype tool does not support signals that carry a payload (such as a
character), so we implement the model as a capsule that reacts to a set of in-
put signals grouped into a protocol. This is a form of data type abstraction
(Holzmann 2003, p. 236) where the entire input space (all characters) are re-
duced to a set of signals. Such a change “can be justified if the correctness
properties of a model do not depend on detailed values, but only on the chosen
value ranges.”(Holzmann 2003, p. 236) The protocol signals are named one, two,
question, lock and other.

Closing the model

The Lock capsule has a public port (see Figure 8.6(b)), which means that the
verification model must be closed using a stimulus process to simulate non-
deterministic behavior of its environment. The generated Promela code model-
ing the signal producer is available in Listing 8.2.

2Unlike an active object, such as a capsule, a passive class does not have its own logical
thread of execution. While capsules are restricted to message passing for communication,
passive classes communicate by procedure or function invocations.

42

8.2. A model of an electronic lock

8.2.2 Properties

A correct implementation of the lock model should satisfy the following prop-
erties:

1. The signal guarantee property (see Section 7.3.1) must hold for all states
in the model.

2. The trap detection property (see Section 7.3.2) must be refuted for all
states in the model.

3. Ordering the lock to lock must always result in the lock eventually being
locked, regardless of its current state.

We define propositional symbols as follows: snd lock denotes that the
environment sends the signal lock, and locked denotes that the lock is
currently in the state Locked. The property specifying the desired behavior
is then expressed in LTL as:

�(snd lock → ♦locked) (8.3)

The property used by Spin to describe a violation of this behavior is the
negation of Property 8.3.

4. It should be possible to unlock the electronic lock when it is locked.

We define propositional symbols as follows: locked denotes that the lock
currently is in state Locked, and unlocked denotes that that the lock is
in state Unlocked. We demonstrate that this behavior is feasible by in-
tentionally claiming that it is impossible, and using Spin to produce the
counterexample (Schäfer et al. 2001). We make the intentionally incorrect
claim that: it is always the case that when the lock is locked, it will not
eventually become unlocked.

This property is expressed in LTL as:

�(locked → ¬(♦unlocked)) (8.4)

If Spin can refute this claim, then a trail will be produced demonstrating
how to unlock the locked lock.

8.2.3 First version

Model elements

The model consists of the capsule Lock and the protocol LockCommunication.
During the transformation process into Promela the verification model is ex-
tended with the stimulus process whose task is to provide the lock with input
signals.

The Lock capsule has a state machine consisting of three states (see Fig-
ure 8.6(a)). The states signify the lock being either locked, in the state when
the first correct signal of the unlocking sequence has been received, or unlocked.
The Lock capsule receives input through the port lockCom (see Figure 8.6(b))
and is always initialized in the Locked state.

The LockCommunication protocol defines the set of abstract signals that can
be sent to the electronic lock.

43

Chapter 8. Model examples

(a) Lock state machine

(b) Lock structure diagram

Figure 8.6: State machine diagram and structure diagram of the lock capsule.

8.2.4 Second version

The faulty model of the electronic lock is identical to the first model version
except for an intentional error introduced in the state machine of the Lock
capsule. The purpose of the second model is to demonstrate how such an error
in the model can be detected in the verification model.

Modifications to model elements

The Lock capsule’s state machine is modified (see Figure 8.7) by removing the
transition triggered by the signal other in the Unlocked state.

44

8.3. The dining philosophers

Figure 8.7: Modified state machine diagram of the lock capsule.

8.3 The dining philosophers

The problem of the dining philosophers (Dijkstra 1977) is a commonly used
illustration of how deadlocks can occur in the context of concurrently operating
computer systems. We model the problem using capsules, state machines and
communication channels in RSARTE, and transform it into a verification model
in Promela.

p1

p2

p3p4

p5

Figure 8.8: Illustration of the problem of the dining philosophers, with five
philosophers (labeled p1, . . . , p5) that sit around a table, sharing five chopsticks.

8.3.1 Problem scenario

Five philosophers each sit with a bowl of food around a circular table and
spend their lives eating and thinking, without communicating with each other.
Between each philosopher pair lies one chopstick (see Figure 8.8) and to be
able to eat, a philosopher must use the two chopsticks that are shared with the
philosopher on either side.

45

Chapter 8. Model examples

One possible scheme for each philosopher to follow is described by Algo-
rithm 1. However, the consequence of using this scheme is that an error sit-
uation can occur if the philosophers time their actions such that they all pick
up their left chopstick and then all turn their attention to the right chopstick,
which is then forever unavailable. This can happen since the scheme introduces
a situation that fulfills all of the four necessary conditions (Coffman, Elphick &
Shoshani 1971) for a potential deadlock:

Mutual exclusion condition Every chopstick is shared by two philosophers.

Wait for condition After obtaining one chopstick the philosopher must ob-
tain yet another one.

No preemption condition The philosophers do not communicate and cannot
forcibly take chopsticks from each other.

Circular wait condition The philosophers are arranged around a table so
that each philosopher can hold a chopstick that is required by a neighbor.

Algorithm 1: Näıve procedure for acquiring and releasing resources in
the problem of the dining philosophers.

while true do
begin Thinking

Wait for some time
end
begin Hungry

Request(left chopstick)

Request(right chopstick)

begin Eating
Wait for some time

end
Release(left chopstick)

Release(right chopstick)
end

Consequently, the problem of the dining philosophers is to establishing a
scheme or protocol for the philosophers to follow that is both deadlock free and
starvation free (ensuring that all philosopher eventually are permitted to eat).
There are several possible solutions to the problem.

One solution is to introduce a butler at the table that regulates how many
philosophers can attempt to acquire chopsticks at the same time. The dead-
lock situation can then be avoided by having the philosophers stand up (they
cannot obtain chopsticks or eat standing up) and requiring the philosophers to
be granted permission from the butler before being seated at the table. After
finishing a meal, a philosopher will stand up again and notify the butler. The
butler will not allow all of the philosophers to be seated at once; one chair is
always kept empty, which breaks the circular wait condition.

46

8.3. The dining philosophers

8.3.2 Model description

We present an RSARTE model of the problem based on the butler solution.
The model has only four philosophers instead of the usual five, since a model
with five philosophers produces a verification model that exhausts the resources
of the test machine (see Section 3.1). The reduced number of philosophers does
not affect the principle behind the solution.

8.3.3 Properties

The following properties should hold in a correct solution to the problem of the
dining philosophers:

1. The signal handling guarantee property (see Section 7.3.1) must hold for
all states in the model.

2. If a philosopher is eating, the philosopher’s two neighbors cannot also be
eating.

We let the propositional symbol p1Eating denote that philosopher one is
currently eating, and analogously for philosophers two and three. This
safety property is expressed in LTL as:

� (p2Eating → ¬(p1Eating ∨ p3Eating)) (8.5)

The property used to describe a violation of the property to Spin is the
negation of Property 8.5.

3. If a philosopher is eating, then the chopsticks lying immediately to the
left and right must be in use.

We define propositional symbols as follows: c2TakenRight denotes that
chopstick two is acquired by the philosopher to its right and c2TakenRight-
ReqLeft denotes that chopstick two is both acquired by the philosopher to
its right and requested by the philosopher to its left (see Figure 8.9 and
Figure 8.12(a)).

The property is expressed in LTL as:

� (p2Eating → ((c1TakenLeft ∨ c1TakenLeftReqRight)

∧ (c2TakenRight ∨ c2TakenRightReqLeft)))
(8.6)

The property used to describe a violation of the property to Spin is the
negation of Property 8.6.

4. In an infinite run of the model, a philosopher must be allowed to eat
infinitely often. This property specifies that model is starvation free and
must hold for all philosophers.3

The property is expressed in LTL as:

� ♦ p2Eating (8.7)

The property used to describe a violation of the property to Spin is the
negation of Property 8.7.

3The property does not hold for the model, as will be demonstrated and explained in
Section 9.3.

47

Chapter 8. Model examples

8.3.4 Model implementation

Model elements

The model consists of the four capsules Table, Butler, Philosopher, and Chop-
stick ; and the protocol ResourceAllocation.

The Table capsule has no purpose other than to contain capsule roles and to
define the relationships and communication channels between the capsule roles
(see Figure 8.9).

Figure 8.9: Structure diagram of the table capsule.

The behavior of a philosopher is defined by the state machine (see Fig-
ure 8.10(a)) of the Philosopher capsule. The primary tasks for a philosopher
are to think and eat, captured by the states Thinking or Eating, respectively.
Before a philosopher can eat it must first be allowed a place at the table and
then acquire two chopsticks. The Philosopher capsule has three communication
ports: butler, through which requests for a seat at the table is made and granted;
and left and right, through which the philosopher requests and is granted access
to the chopsticks to the left and right (see Figure 8.10(b)).

The butler determines when a philosopher is allowed a seat. This behavior
is defined in the Butler capsule’s state machine, see Figure 8.11(a). Commu-
nication with the philosophers is conducted through four4 ports, one for each
philosopher (see Figure 8.11(b)).

A chopstick can be acquired or returned by a philosopher sitting either to
the left or to the right of the chopstick (see Figure 8.12(a)). The signal to
grant the philosopher on the left access to a chopstick is sent in the transition
leftReq (because the chopstick was available and then requested by left) and the
transition rightRet (because the chopstick was taken by right, requested by left

4The prototype tool does not support replicated ports, which are possible to use in
UML-RT.

48

8.4. A model with intentional errors

and then returned by right), and vice versa for the philosopher on the right.5

The ResourceAllocation protocol defines the different signals of the model,
used for either requesting or returning a resource and notifying if a request
is granted. The signals are req, ret and grant, respectively. The protocol is
both used for communication between a philosopher and a chopstick, and for
communication between a philosopher and the butler.

8.4 A model with intentional errors

The model described in this section is indented to demonstrate the results of
verifying only the two properties that are of primary interest to the department
(see Section 7.3). The model is therefore very simple and contains two deliberate
errors of the types that must be found during model verification. The Promela
model produced for this model is available in Appendix A.

8.4.1 Model description and properties

The model is verified with respect to the following properties:

1. The signal handling guarantee property (see Section 7.3.1) must hold for
all states in the model.

2. The trap detection property (see Section 7.3.2) must be refuted for all
states in the model.

Model elements

The model consists of a single capsule DemonstrationCapsule (see Figure 8.13)
and the protocol DemonstrationCommunication. In the transformation process
into Promela, the model is extended with a stimulus process whose task it is
to close the verification model by simulating an indeterministic environment of
the DemonstrationCapsule.

The demonstration capsule’s behavior is defined by a state machine contain-
ing three states: StateA, StateB and StateC. The DemonstrationCommunication
protocol defines the signals that can be sent to the demonstration capsule. Each
signal is intended to trigger a transition being taken to the state whose name
corresponds to the name of the signal. The signals of the protocol are: goA,
goB and goC.

StateA and StateC both handle all signals correctly, triggering transitions
to the other states upon reception of the signals, whereas StateB contains two
errors. The transition named goToA, triggered by the signal goA, is a self-
transition leading back to StateB. The transition named goToC is missing com-
pletely from StateB.

The consequence is that StateB is both a trapping state, in violation of
property 2, and fails to handle all signals, in violation of property 1.

5It is also possible to sent the signals directly in the entry action of the two states TakenLeft

and TakenRight.

49

Chapter 8. Model examples

8.5 A complexity experiment

While it is beyond the scope of this thesis to cope with models of the size or
complexity as of those used at the department, it is nonetheless of interest to
give an idea of how fast a verification model can grow. The complexity of the
verification model depends on the complexity and modeling constructs used in
the original model. It is necessary to control the complexity of the verification
model to avoid exhausting memory resources or exceeding the time available
for verification. Holzmann (2003, p. 119) writes “the worst-case computational
expense of verifying any type of correctness property with a model checker
increases with the number of reachable system states R of a model.”

A UML-RT capsule typically has many public ports sending and receiving
many possible signals. This communication diversity introduces complexity in
the verification model attributable to three factors:

1. The number of Promela channels in the verification model, which corre-
sponds to the number of ports in the original model.

2. The number of different message types in the verification model, which
corresponds the number of different signals of the protocols in the original
model.

3. The length of the Promela channels. This parameter must be fixed in
order to close the verification model.

The complexity introduced by a set of message channels in a verification
model can be understood by the number of states that such a set of objects can
be in. Holzmann (2003, pp. 119-120) gives the number of states RQ in terms of
the number of channels q, the number of different messages m and the length
of the channel s:

RQ =

(

s
∑

i=0

mi

)q

(8.8)

We illustrate the complexity introduced by communication channels by mod-
eling a UML-RT capsule with one state and one port that receives messages of
a protocol with one signal. All signals from all ports are handled by triggering
a transition back to the same single state.

The effects in practice of increasing the number of possible signal are com-
pared with the effect of increasing the number of ports receiving those signals.
Those are the parameters in Equation 8.8 that are derived directly from the
original UML-RT model. The length of a channel is a restriction in Promela
which does originate from the UML-RT model, and is therefore fixed in all mod-
els. The comparison is made by performing a verification of the signal handling
guarantee property (see Section 7.3.1) for each model version and obtaining the
number of global system states stored in the state space for each verification
run.

50

8.5. A complexity experiment

(a) Philosopher state machine

(b) Philosopher structure diagram

Figure 8.10: State machine diagram and structure diagram of the philosopher
capsule.

51

Chapter 8. Model examples

(a) Butler state machine

(b) Butler structure diagram

Figure 8.11: State machine diagram and structure diagram of the butler capsule.

52

8.5. A complexity experiment

(a) Chopstick state machine

(b) Chopstick structure diagram

Figure 8.12: State machine diagram and structure diagram of the chopstick
capsule.

53

Chapter 8. Model examples

(a) Demonstration capsule state machine

(b) Demonstration capsule structure diagram

Figure 8.13: State machine diagram and structure diagram of the demonstration
capsule.

54

CHAPTER 9

Results

This chapter presents verification results for the sample models described in
Chapter 8.

9.1 Traffic light system

The properties listed in Section 8.1.2 are verified one by one for each version of
the model. In those cases where a property is proven not to hold, any remaining
properties for that model version are excluded from verification. In some cases
the number of errors for a particular property and model version exceeds one.
This is due to an iterative search used to find the shortest path to the error.

9.1.1 First version

Property 1 (Signal handling guarantee)

The verification results in errors (see Listing 9.1), demonstrating that there is
at least one state in the model which does not handle every possible input sig-
nal. The generated error trail demonstrates how an assertion due to unhandled
signals can be violated and can be illustrated visually using a message sequence
diagram (see Figure 9.1).

We can see that as the controller capsule makes its initial transition (lines
27–35) it sends signals to all four traffic lights (lines 31–34). The east traffic
light receives the red signal (line 39) even though it is already in the Red state
(line 16). The red signal is not handled in the Red state (see Section 8.1.3)
which causes an assertion violation (line 41).

55

Chapter 9. Results

Listing 9.1: Verification results for property 1 (signal handling guarantee) for
the first version of the traffic light system model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim - (none specified)

6 assertion violations +

7 cycle checks - (disabled by -DSAFETY)

8 invalid end states +

9

10 State -vector 76 byte , depth reached 32, errors: 2

11 15 states , stored

12 8 states , matched

13 23 transitions (= stored+matched)

14 26 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

0 0::init:
1 1:Intersection

2 2:Controller

3 3:TrafficLight

4 4:TrafficLight

5 5:TrafficLight

6 6:TrafficLight

9 _initial

11 Red

12 TrafficLight: entering Red state

14 _initial

16 Red

17 TrafficLight: entering Red state

19 _initial

21 Red

22 TrafficLight: entering Red state

24 _initial

26 Red

27 TrafficLight: entering Red state

29 _initial

31 nControl_out!green

32 sControl_out!green

33 eControl_out!red

34 wControl_out!red

35 nsGreen

36 _initial

38 State1

39 control?red

41 Unhandled signal red in Red

Figure 9.1: Error scenario for property 1 (signal handling guarantee) for the
first version of the traffic light system model.

56

9.1. Traffic light system

Listing 9.2: Verification results for property 1 (signal handling guarantee) for
the second version of the traffic light system model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim - (none specified)

6 assertion violations +

7 cycle checks - (disabled by -DSAFETY)

8 invalid end states +

9

10 State -vector 76 byte , depth reached 202, errors: 0

11 325 states , stored

12 493 states , matched

13 818 transitions (= stored+matched)

14 945 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

9.1.2 Second version

Property 1 (signal handling guarantee)

The verification produces no errors (see Listing 9.2), proving that assertion
violations due to unhandled signals cannot occur.

Property 2 (recurrence)

The property is verified for all four traffic lights in the model and does not
produce any errors, proving that all traffic lights exhibit a cyclic behavior and
enter the Green state infinitely often in an infinite run of the model. The
property also holds for the Yellow state and Red state for each traffic light.

Only the result from the verification of the north traffic light’s green state
is presented (see Listing 9.3). The remaining eleven out of twelve verification
runs (four traffic lights and three states) produce near-identical results and are
omitted.

Property 3 (mutual exclusion)

The verification produces errors (see Listing 9.4), proving that the mutual exclu-
sion property does not hold for the four traffic lights guarding the intersection.
It is therefore possible that two traffic lights guarding intersecting roads can si-
multaneously be in their respective Green states, which could lead to collisions
in a real system.

The visual representation (see Figure 9.2) of the error trail illustrates a
message sequence by which the property claim can be refuted. The root cause
of the error is that the controller capsule is allowed to switch between control
states without first establishing that its previously sent messages have been
received by the traffic lights.

57

Chapter 9. Results

Listing 9.3: Verification results for property 2 (recurrence) for the second version
of the traffic light system model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations + (if within scope of claim)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 80 byte , depth reached 288, errors: 0

11 615 states , stored (905 visited)

12 2054 states , matched

13 2959 transitions (= visited+matched)

14 3157 atomic steps

15 hash conflicts : 12 (resolved)

16

17 2.501 memory usage (Mbyte)

Listing 9.4: Verification results for property 3 (mutual exclusion) for the second
version of the traffic light system model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations + (if within scope of claim)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 80 byte , depth reached 157, errors: 18

11 318 states , stored (324 visited)

12 671 states , matched

13 995 transitions (= visited+matched)

14 1191 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

58

9.1. Traffic light system

Listing 9.5: Verification results for property 1 (signal handling guarantee) for
the third version of the traffic light system model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim - (none specified)

6 assertion violations +

7 cycle checks - (disabled by -DSAFETY)

8 invalid end states +

9

10 State -vector 104 byte , depth reached 155, errors: 0

11 283 states , stored

12 421 states , matched

13 704 transitions (= stored+matched)

14 1063 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

Figure 9.2 shows a situation in which the north, east and west traffic lights
simultaneously are in the Green state. The chain of events leading to this
situation is the following:

1. The north traffic light is in state Red (line 77), the east traffic light is in
state green (line 72) and the west traffic light is in state Green (line 82).

2. The controller transitions from the state ewGreen to the state ewYellow
(lines 68–88) and sends the signal yellow to both the east and west traffic
lights (lines 86–87).

3. Those signals have not yet been received when the controller transitions to
its next state and sends the signal Green to the north traffic light (line 91).

4. The north traffic light receives the green signal (line 92) and enters its
Green state (line 95).

This causes green lights in intersecting directions, which is a violation of the
mutual exclusion property.

9.1.3 Third version

Property 1 (signal handling guarantee)

The verification produces no errors (see Listing 9.5), proving that assertion
violations due to unhandled signals cannot occur. This is the same result as for
the first and second versions of the traffic light system.

Property 2 (recurrence)

The property is verified for all four traffic lights in the model and does not
produce any errors. This is the same result as for the second version of the

59

Chapter 9. Results

49 nControl_out!yellow

50 sControl_out!yellow

51 nsYellow

52 control?yellow

54 TrafficLight: exiting Green state

55 Yellow

56 TrafficLight: entering Yellow state

57 control?yellow

59 TrafficLight: exiting Green state

60 Yellow

61 TrafficLight: entering Yellow state

64 nControl_out!red

65 sControl_out!red

66 eControl_out!green

67 wControl_out!green

68 ewGreen

69 control?green

71 TrafficLight: exiting Red state

72 Green

73 TrafficLight: entering Green state

74 control?red

76 TrafficLight: exiting Yellow state

77 Red

78 TrafficLight: entering Red state

79 control?green

81 TrafficLight: exiting Red state

82 Green

83 TrafficLight: entering Green state

86 eControl_out!yellow

87 wControl_out!yellow

88 ewYellow

91 nControl_out!green

92 control?green

94 TrafficLight: exiting Red state

95 Green

96 TrafficLight: entering Green state

97 control?red

99 TrafficLight: exiting Yellow state

Figure 9.2: Error scenario for property 3 (mutual exclusion) for the second
version of the traffic light system model.

60

9.2. Electronic lock

Listing 9.6: Verification results for property 2 (recurrence) for the third version
of the traffic light system model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations + (if within scope of claim)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 108 byte , depth reached 214, errors: 0

11 527 states , stored (771 visited)

12 1784 states , matched

13 2555 transitions (= visited +matched)

14 3574 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

traffic light system. Listing 9.6 presents the result from the verification run of
the north traffic light’s green state.

Property 3 (mutual exclusion)

The verification produces no error (see Listing 9.7), proving that the mutual
exclusion property holds for the traffic system. The traffic lights for the in-
tersecting roads do not enter their Green states in such a way that traffic can
collide.

9.2 Electronic lock

The properties listed in Section 8.2.2 are verified one by one for each version of
the model. In those cases where a property is proven not to hold, any remaining
properties for that model version are excluded from verification. In some cases
the number of errors for a particular property and model version exceeds one.
This is due to an iterative search used to find the shortest path to the error.

9.2.1 First version

Property 1 (signal handling guarantee)

The verification produces no error (see Listing 9.8), proving that assertion vio-
lations due to unhandled signals cannot occur.

Property 2 (trap detection)

The property is verified for all states in the model and produces counterexamples
in every case. This demonstrates that no state in the model is a trapping state.

61

Chapter 9. Results

Listing 9.7: Verification results for property 3 (mutual exclusion) for the third
version of the traffic light system model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations + (if within scope of claim)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 108 byte , depth reached 214, errors: 0

11 283 states , stored

12 421 states , matched

13 704 transitions (= stored+matched)

14 1063 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

Listing 9.8: Verification results for property 1 (signal handling guarantee) for
the first version of the electronic lock model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim - (none specified)

6 assertion violations +

7 cycle checks - (disabled by -DSAFETY)

8 invalid end states +

9

10 State -vector 28 byte , depth reached 169, errors: 0

11 424 states , stored

12 245 states , matched

13 669 transitions (= stored+matched)

14 302 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

62

9.2. Electronic lock

Listing 9.9: Verification results for property 2 (trap detection) for the first
version of the electronic lock model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations + (if within scope of claim)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 32 byte , depth reached 20, errors: 2

11 125 states , stored

12 216 states , matched

13 341 transitions (= stored+matched)

14 78 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

0 0::init:
1 1:LockCommunication_prod

2 2:Lock

4 _initial

6 Locked

7 Lock is locked.

9 com!one

10 lockCom?one

12 FirstCorrect

14 com!one

Figure 9.3: Error scenario for property 2 (trap detection) for the first version of
the electronic lock model.

We present only the result for state Locked (see Listing 9.9) since the results for
the other states are near-identical.

The visual representation of the error trail (see Figure 9.3) produced by
Spin shows a counterexample to the claim that state Locked is trapping. In the
counterexample, we can see that the lock is in state Locked (line 6). This state
can be exited by following the transition triggered on reception of the signal one
(line 10), leading into state FirstCorrect.

Property 3 (locking the lock)

The verification produces no error (see Listing 9.10). This proves that if the
environment sends the signal lock, the lock will eventually become locked.

63

Chapter 9. Results

Listing 9.10: Verification results for property 3 (the lock can be locked) for the
first version of the electronic lock model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations + (if within scope of claim)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 32 byte , depth reached 296, errors: 0

11 484 states , stored (531 visited)

12 472 states , matched

13 1003 transitions (= visited+matched)

14 464 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

Property 4 (unlocking the lock)

The verification produces errors (see Listing 9.11) and a trail, refuting the claim
that a locked lock is impossible to unlock.

The message sequence diagram (see Figure 9.4) illustrating the error trail
demonstrates a counterexample to the claim. As expected, the lock can indeed
be unlocked (line 24) if the environment provides the correct sequence of input
signals, i.e., by sending signal one (line 9), followed by signal two (line 14).

9.2.2 Second version

Property 1 (signal handling guarantee)

The verification produces errors (see Listing 9.12) demonstrating that there is
at least one state in the model that does not handle all types of input signals.

The message sequence diagram (see Figure 9.5) illustrating the error trail
demonstrates a signal sequence that causes an assertion violation, due to an
unhandled signal. The violation occurs in state Unlocked (line 23) on reception
of the signal other, sent by the environment (line 20).

9.3 Dining philosophers

The properties listed in Section 8.3.3 are verified one by one for the model of
the dining philosophers.

Property 1 (signal handling guarantee)

The verification produces no errors (see Listing 9.13), proving that no assertion
violations due to unhandled signals can occur.

64

9.3. Dining philosophers

Listing 9.11: Verification results for property 4 (the lock cannot be unlocked)
for the first version of the electronic lock model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations + (if within scope of claim)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 32 byte , depth reached 41, errors: 4

11 485 states , stored

12 818 states , matched

13 1303 transitions (= stored+matched)

14 574 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

0 0::init:
1 1:LockCommunication_prod

2 2:Lock

4 _initial

6 Locked

7 Lock is locked.

9 com!one

10 lockCom?one

12 FirstCorrect

14 com!two

15 lockCom?two

17 Unlocked

18 Lock is unlocked!

20 com!one

Figure 9.4: Error scenario for property 4 (the lock cannot be unlocked) for the
first version of the electronic lock model.

65

Chapter 9. Results

Listing 9.12: Verification results for property 1 (signal handling guarantee) for
the second version of the electronic lock model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim - (none specified)

6 assertion violations +

7 cycle checks - (disabled by -DSAFETY)

8 invalid end states +

9

10 State -vector 28 byte , depth reached 58, errors: 11

11 389 states , stored

12 805 states , matched

13 1194 transitions (= stored+matched)

14 1013 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

0 0::init:
1 1:LockCommunication_prod

2 2:Lock

4 _initial

6 Locked

7 Lock is locked.

9 com!one

10 lockCom?one

12 FirstCorrect

14 com!two

15 lockCom?two

17 Unlocked

18 Lock is unlocked!

20 com!other

21 lockCom?other

23 Unhandled signal other in Unlocked

Figure 9.5: Error scenario for property 1 (signal handling guarantee) for the
second version of the electronic lock model.

66

9.3. Dining philosophers

Listing 9.13: Verification results for property 1 (signal handling guarantee) for
the dining philosophers model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim - (none specified)

6 assertion violations +

7 cycle checks - (disabled by -DSAFETY)

8 invalid end states +

9

10 State -vector 248 byte , depth reached 480492 , errors: 0

11 1493090 states , stored

12 6997300 states , matched

13 8490390 transitions (= stored+matched)

14 11225119 atomic steps

15 hash conflicts : 5920646 (resolved)

16

17 394.554 memory usage (Mbyte)

Property 2 (simultaneous eating)

The property is verified for all four philosophers in the model and does not
produce errors in any case. This proves, for all philosophers, that if a philosopher
is eating then the two neighboring philosophers are not eating (since they share
chopsticks). We present only the verification result for philosopher one (see
Listing 9.14) since the results for the other philosophers are near-identical.

Property 3 (chopstick usage)

The property is verified for all four philosophers in the model and does not pro-
duce errors in any case. This proves, for all philosophers, that if a philosopher
is eating, it uses the chopsticks on both sides. We present only the verifica-
tion result for philosopher one (see Listing 9.15) since the results for the other
philosophers are near-identical.

Property 4 (recurrence)

Verification of the property produces a counterexample for each philosopher
in the model. Listing 9.16 shows the verification result for philosopher one
and contains an error, which proves that there exists an infinite execution of
the model in which it is not the case that philosopher one is allowed to eat
infinitely many times. The reason for this is that the Butler process has a
separate communication channel for each Philosopher and there is no facility in
the verification model to force the Butler to choose fairly between Philosophers.

67

Chapter 9. Results

Listing 9.14: Verification results for property 2 (simultaneous eating) for the
dining philosophers model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations + (if within scope of claim)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 252 byte , depth reached 657968 , errors: 0

11 1493090 states , stored

12 6997300 states , matched

13 8490390 transitions (= stored+matched)

14 11225119 atomic steps

15 hash conflicts : 5929190 (resolved)

16

17 Stats on memory usage (in Megabytes):

18 381.611 equivalent memory usage for states

(stored *(State -vector + overhead))

19 325.017 actual memory usage for states (compression :

85.17%)

20 state -vector as stored = 212 byte + 16 byte

overhead

21 2.000 memory used for hash table (-w19)

22 21.362 memory used for DFS stack (-m700000)

23 348.265 total actual memory usage

68

9.3. Dining philosophers

Listing 9.15: Verification results for property 3 (chopstick usage) for the dining
philosophers model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations + (if within scope of claim)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 252 byte , depth reached 657968 , errors: 0

11 1493090 states , stored

12 6997300 states , matched

13 8490390 transitions (= stored+matched)

14 11225119 atomic steps

15 hash conflicts : 5929190 (resolved)

16

17 Stats on memory usage (in Megabytes):

18 381.611 equivalent memory usage for states

(stored *(State -vector + overhead))

19 325.016 actual memory usage for states (compression :

85.17%)

20 state -vector as stored = 212 byte + 16 byte

overhead

21 2.000 memory used for hash table (-w19)

22 21.362 memory used for DFS stack (-m700000)

23 348.265 total actual memory usage

Listing 9.16: Verification results for property 4 (recurrence) for the dining
philosophers model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations + (if within scope of claim)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 252 byte , depth reached 129, errors: 1

11 26596 states , stored (39893 visited)

12 199034 states , matched

13 238927 transitions (= visited +matched)

14 359188 atomic steps

15 hash conflicts : 2200 (resolved)

16

17 29.319 memory usage (Mbyte)

69

Chapter 9. Results

Listing 9.17: Verification results for property 1 (signal handling guarantee) for
the demonstration model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim - (none specified)

6 assertion violations +

7 cycle checks - (disabled by -DSAFETY)

8 invalid end states +

9

10 State -vector 28 byte , depth reached 38, errors: 7

11 79 states , stored

12 89 states , matched

13 168 transitions (= stored+matched)

14 138 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

9.4 Model with intentional errors

The properties listed in Section 8.4.1 are verified for the model. In some cases
the number of errors for a particular property exceeds one. This is due to an
iterative search used to find the shortest path to the error.

Property 1 (signal handling guarantee)

The verification produces errors (see Listing 9.17) which proves that there is at
least one state in the model that does not handle all input signals.

The message sequence chart (see Figure 9.6) generated from the error trail
demonstrates how an assertion can be violated as a result of a signal not being
handled. The figure illustrates that when the capsule is in StateB (line 11) and
the environment sends the signal goC (line 13) which is received while still in
StateB (line 14), the result is an assertion violation (line 16).

Property 2 (trap detection)

The verification is performed for every state in the model and produces a coun-
terexample in all cases except for StateB, proving that StateB is the only trap-
ping state in the model. The verification result in Listing 9.18 shows that Spin
cannot refute the claim that specifies that stateB is a trapping state.

9.5 Complexity experiment

The results of the complexity experiment for comparing the state space effects
of increased number of ports and signals are presented in Figure 9.7. We see
that the behavior predicted by Equation 8.8 is exhibited by the verified models.

70

9.5. Complexity experiment

0 0::init:
1 1:DemonstrationCommunication_prod

2 2:DemonstrationCapsule

4 _initial

6 StateA

8 com!goB

9 demoCom?goB

11 StateB

13 com!goC

14 demoCom?goC

16 Unhandled signal goC in StateB

Figure 9.6: Error scenario of property 1 (signal handling guarantee) for the
demonstration model.

Listing 9.18: Verification results for property 2 (trap detection) for the demon-
stration model.

1 (Spin Version 5.1.7 -- 23 December 2008)

2 + Partial Order Reduction

3

4 Full statespace search for:

5 never claim +

6 assertion violations - (disabled by -A flag)

7 acceptance cycles + (fairness disabled)

8 invalid end states - (disabled by never claim)

9

10 State -vector 32 byte , depth reached 89, errors: 0

11 139 states , stored

12 121 states , matched

13 260 transitions (= stored+matched)

14 137 atomic steps

15 hash conflicts : 0 (resolved)

16

17 2.501 memory usage (Mbyte)

71

Chapter 9. Results

The number of stored states increases exponentially when the number of ports
is increased, but more slowly when the number of signals is increased.

We can also observe a plateau effect in Figure 9.7 which is due to insufficient
memory resources. For larger values for the number of states or ports, the
memory required to perform the verification exceeds the available memory of
the test machine (see Section 3.1).

1 2 3 4 5 6 7 8 9 10

1
2

3
4

5
6

7
8

9
10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

SignalsPorts

S
to

re
d

st
at

es

Figure 9.7: Number of stored states used for verifying the signal handling guar-
antee property (see Section 7.3.1) depending on the number of ports and signals
used. Note that the plateau effect is due to insufficient memory resources which
results in incomplete verification.

72

CHAPTER 10

Conclusions

This chapter presents answers the questions posed in Section 1.2 and a discussion
on the verification approach, the prototype tool and their limitations.

10.1 Answers to questions

Question 1

What methods and tools for formal verification of software models are available
in the academic, industrial or open source communities?

This question is addressed by decomposition into sub-questions.

Sub-question 1a

What approach could be used as a basis for verification of models developed at
the department?

Previous work for verifying properties of UML state machines and a visual
formalism similar to UML-RT has been found in the literature. The reviewed
tools all use a transformational approach, in the sense that UML models, often
consisting of a subset of the available model constructs, are transformed to the
input language of a general model checker. Properties of the transformed model
are then verified with the model checker and the results of the verification are
interpreted in the context of the original model.

The model checkers used as back-ends for the verification include Spin, SMV
and RuleBase. Spin is a dominating tool in the domain of software model
checking. A majority of the previous work transforms the original model into a
verification model specified in Promela, the input language of Spin, and this is
also the case in our work.

73

Chapter 10. Conclusions

Sub-question 1b

Are there existing tools for formal verification that can be directly used to verify
properties of models in the development environment at the department? If
this is not the case, are there existing tools that can serve as a foundation for
implementing such a tool?

No commercial or industrial strength tool has been found, tailored to the prob-
lem of verifying properties of UML state machines in general, and of UML-RT
or RSARTE models in particular. The majority of previous work is at a research
stage and targets earlier versions of UML that do not incorporate the capsule
concept. Not all tools have been available for evaluation or experimentation;
conclusions about the applicability of those tools have had to be drawn from
presented tool descriptions only.

For these reasons, a prototype tool has been implemented which draws heav-
ily on ideas from tools such as vUML, Hugo and VIP, e.g., the Promela output
of the prototype tool is similar to that which is produced by the VIP tool.

Sub-question 1c

Can these tools be integrated into the development environment at the depart-
ment?

The prototype tool for transforming RSARTE models into Promela models,
demonstrates that it to a large degree is possible to automate the transforma-
tion procedure. The implementation of the prototype tool using the JET tool,
demonstrates that it is possible to integrate a verification tool in the RSARTE
environment.1

Question 2

What properties are of interest to the department to verify?

Two properties have been identified in discussions with Ericsson engineers as
being of primary interest to the department (see Section 7.3). They can be
stated informally as:

1. guaranteed handling of all possible signals sent to a capsule, and

2. detection of trapping states that are impossible to exit.

The second of these two primary properties is specified in LTL, a formalism
which allows great flexibility in the kinds of properties that can be expressed.
Other properties that are of potential interest to verify can therefore also be
specified, such as the mutual exclusion property verified for the third version of
the traffic system model.

1Previous work integrating a model checker in a development environment exists. See e.g.
Beyer, Henzinger, Jhala & Majumdar (2004) where an Eclipse plug-in for model checking is
described.

74

10.1. Answers to questions

Question 3

How should models be developed to allow such properties to be formally verified
using the chosen method?

State machines and states

The properties that are specified by LTL formulas specify behaviors of a cap-
sule’s state machine, or the combined behaviors of several capsules’ state ma-
chines. To be able to specify meaningful properties, the states of the state
machine must be selected so that the behavior of the capsule is visible in the
structure of the state machine itself.

This means that although it is entirely possible to camouflage statefulness
of a UML-RT model through constructs below the visible surface of the state
machine, this possibility should be avoided. Values of capsule attributes can,
for example, be modified in action code and then be used to determine which
transition to take when a signal is received. This complicates automatic trans-
formation to a verification model, since the transformation must then depend
not only on the structure of the state machine, but also on analysis of the
embedded action code.

Using only a few or even only one state also makes it difficult to specify
properties of interest, since the LTL properties describe paths through the states
of the state machine. Similarly, adding unnecessary states should be avoided
since it increases the complexity of the generated verification model without
increasing the potential for specifying meaningful properties.

The current version of the transformation tool recognizes a limited subset
of the model constructs in UML-RT (see Section 6.2.2). Until more constructs
are recognized, the UML-RT model must be restricted to this limited subset.
Support for more constructs can be added by creating additional templates that
capture the transformation rules for those features.

Embedded code

The prototype tool is built to automatically generate verification models in
Promela code, capturing state machines of capsules and simple structural rela-
tionships between capsules. As stated in the limitations of this thesis, behavior
described by the action code embedded in the state machines is not subject to
automatic transformation.

Nonetheless, since signal sending is necessary to enable communication be-
tween state machines, a facility to combine C++ code with Promela code is
discussed in Section 6.2.4. It allows a Promela model of the action code to be
stored within the UML-RT model without affecting the generated C++ code,
and consequently allows the verification model to capture signal sending. The
separation is achieved using directives recognized by both the C pre-processor
used by Spin and the pre-processor used before compiling the generated C++
code at the department.

Signal reception is handled automatically by the transformation tool. This
is possible since signals trigger transitions in a way which is captured by the
UML-RT model structure.

75

Chapter 10. Conclusions

Question 4

What can be gained from applying formal verification methods to the depart-
ment’s software models?

The chosen formal verification method is model checking. Applying model
checking to the department’s software models has the potential of providing
several benefits in the development process.

Firstly, the department uses test cases that target both normal and failure
cases. Constructing suitable test cases is difficult and always carries with it
the risk of overlooking hazardous scenarios. Holzmann (2003, p. 5) writes, “For
every one failure scenario that is considered, there are a million others that may
have been overlooked.” For this reason, it can be beneficial to the department
to use methods that can provide confidence that no failure scenario has been
neglected.

Whalen, Cofer, Miller, Krogh & Storm (2007, pp. 72–73) observe an impor-
tant difference in the verification process between test-based verification and
verification by model checking and write, “Instead of focusing on the creation
of test vectors, the focus is on the creation of properties and environmental as-
sumptions.” Rather than attempting to construct ways in which to demonstrate
a behavior, whether required or prohibited, the objective in model checking is
to specify exactly the property that is of interest and leave the task of demon-
stration to the tool.

Secondly, a capsule may be constructed with preconceived ideas on how it
will be used. This means that faults may remain latent in the capsule, due to
assumptions on its future environment. If the environment changes or if the pre-
conceptions were incorrect, signals may be sent to the capsule in patterns that
were not originally considered and latent faults may be activated and trigger
errors. Since the model checker makes no such assumptions, unless explicitly
instructed, faults that could otherwise have been missed can be discovered.
Holzmann (2003, p. 5) writes, “Automated tools have no trouble constructing
the bizarre scenarios that no sane human could imagine — just the type of sce-
nario that causes real-life systems to crash.” Ensuring correct capsule behavior
without assumptions on the environment can therefore increase the robustness
of the department’s product.

Thirdly, the test methods in current use at the department generally target
an already implemented version of a software model, which means that they
are used at a late stage in development. Detecting errors early in the lifecycle
can have significant cost benefits, but can be difficult unless behavior of early
models can be tested. This is the domain of model checking; allowing abstract
verification models to be verified and errors to be detected even at an early
stage (Holzmann 2003, p. 6).

Finally, model checking has the potential of discovering errors that occur as
a result of emergent behavior of interacting system components, such as com-
municating capsules. The two primary properties (see Section 7.3) do not focus
directly on such behavior. The detection of the mutual exclusion violation in
the second version of the traffic light system, followed by the correct verification
of this property in the third version of the traffic light system, demonstrates
that the method proposed in this thesis can be used also to verify properties of
such emergent behavior.

76

10.2. Discussion

10.2 Discussion

This section presents a discussion of some benefits and limitations of the imple-
mented prototype tool. We also present cautionary advice on how results of the
verification can be interpreted in the context of the original UML-RT model.

10.2.1 Benefits and drawbacks

We consider the main benefit and novelty of the prototype tool to be that it
narrows the gap between the visual modeling tool RSARTE and the model
checker Spin. Although the VIP tool is a predecessor and supports a wider
range of constructs, e.g., hierarchical states, VIP is a separate environment,
whereas the prototype tool is directly integrated in RSARTE.

The use of a template system to carry out the transformation is convenient
since it permits further refinement and extension of the prototype tool. Support
for more UML-RT constructs can be added with relative ease.

The main drawback, apart from the limited set of supported UML-RT model
constructs, is the rapid growth of the verification models. The Promela mod-
els that are created have large state spaces, even for UML-RT models that are
seemingly relatively small. One cause is the channel communication between
processes, which follows from the communication between capsules. Channel
communication, a known source of complexity (Holzmann 2003, p. 125), is used
extensively, not only between processes resulting from capsule transformations,
but also between such processes and generated stimulus processes. It may be
possible to reduce complexity when verifying capsules with public ports, by mov-
ing the generated stimulus processes into the target process, thereby removing
what Holzmann (2003, p. 106) calls sink and source processes.

10.2.2 Primary application areas

This work suggests and exemplifies two applications of model checking in the
development of UML-RT models at the department. Correctness properties that
depend directly on action code are considered outside the structure of the model
and are therefore also beyond the scope of this thesis. Interesting correctness
properties can very well still be studied.

The first application concerns the capability to specify properties of a capsule
that interacts with a non-deterministic environment. This can be used to verify
properties that have been identified to be of interest to the department, as has
previously been discussed. This is also demonstrated, e.g., in the example model
of the electronic lock. The robustness of a capsule can be improved by verifying
properties without assumptions on its environment.

The second application is to use the model checker to verify properties of
a UML-RT model at an early design stage. The prototype tool supports the
basic UML-RT construct for specifying concurrency and the basic constructs
that relate to interaction. We propose that the prototype tool could be used
to verify the interaction between several capsules, before the action code that
implements the work performed by the capsule is added.

The prototype tool can then provide a means to ensure that communication
between capsules is correctly implemented, and consistency in the combined
behavior of several capsules. Spin stems from early tools designed for protocol

77

Chapter 10. Conclusions

analysis (Holzmann 1997, p. 6), and the prototype tool brings this capability
into RSARTE.

The model of the traffic light system (see Section 8.1) can be used as an
argument supporting this. It is, for example, not necessary to implement the
details of how the traffic light interacts with hardware to actually turn on the
correct light, in order to verify interesting properties of the system. The possible
violation of the mutual exclusion property is a problem with the model that
should be addressed, regardless of how hardware interaction is later implemented
within a specific traffic light.

10.2.3 Important verification issues

Fixed channel lengths

The necessity of using fixed-length buffers for communication between processes
in Promela is a restriction that is not imposed in UML-RT. A Promela pro-
cess will be blocked if it attempts to send messages on a full channel, or on a
rendezvous channel2 when the receiving process is not ready to receive. This
can cause an unintentional breach of atomicity in the verification model. If this
happens, verification results can be produced that are difficult to interpret, since
the process in the verification model will be blocked in an intermediate state
that does not have a direct counterpart in the UML-RT model.

Using oversized3 channels to avoid blocking has the obvious negative effect
of dramatically increasing the state space of the verification model. A fixed
value is necessary to obtain a closed verification model, but it is very easy to
create a model that is far too large to verify by setting this value too high.

Environment dependent results

It is necessary to consider how to interpret results from a verification run of a
Promela model in the context of the original UML-RT model. If a verification
model is generated from a capsule that contains capsule roles, e.g., the traffic
light system model, then the results obtained by verification reflect only the
properties of that particular configuration.

For example, the change between the first and the second version of the
traffic light system — the change that allowed the signal guarantee property to
be verified — was not implemented by ensuring that all traffic lights handled all
signals in all states. Instead, a restriction was made on the behavior of the Con-
troller to ensure that it took into consideration the incomplete implementation
of the TrafficLight capsule.

Consequently, the results of the verification should not be interpreted to show
that a TrafficLight capsule always handles all signals in all states. The correct
interpretation is that in the context of the Intersection capsule (which is the
capsule that was verified), all capsule roles handled all signals that they could
possibly receive. The Intersection capsule is not an indeterministic environment,
which explains why the property held when verifying the Intersection capsule.

2A rendezvous channel in Promela has a buffer capacity of zero messages, which means
that it forces synchronous message exchange.

3Leue, Mayr & Wei (2004) present work in the area of determining upper bounds on the
number of messages in communication channels.

78

10.3. Future work

If we wish to verify the signal guarantee property for the TrafficLight capsule
as a standalone unit, it must be verified outside the Intersection capsule. We
would then find that the TrafficLight capsule’s state machine contains states
that do not handle all signals that can be received in an indeterministic envi-
ronment.

10.3 Future work

This thesis shows that model checking can be used to verify properties of
UML-RT models created in RSARTE and more work can be done to further
explore the possibilities and limitations of the approach.

10.3.1 Properties

Two important property related areas that can be further developed are: how
to specify properties and how to link properties with models.

In addition to the properties addressed in this thesis, we believe that there
would be no shortage of interesting properties to verify for the department’s
models. The LTL formalism supported by Spin and consequently also by the
prototype tool is very expressive and has a simple syntax, but can still be
challenging to use correctly.

Dwyer et al. (1999) have presented work to address this by showing that
over 90 % of properties targeted in finite-state verification conform to certain
patterns.4 An analysis of properties that can be extracted from specification
documents at the department could be used for developing pattern repositories
in the style of Dwyer et al.. It could also prove useful to integrate a tool in
RSARTE for repository access, and for assisting in LTL property specification.

The practical aspects of linking properties with models should also be ex-
plored. UML can be extended using profiles and stereotypes (Booch, Rumbaugh
& Jacobson 2005), and it could therefore be of interest to develop notation to
supplement a capsule with LTL properties.

10.3.2 Model transformation

The prototype implementation should be extended to support a larger subset
of common modeling constructs, such as hierarchical states. This will facilitate
creation of more realistic models, which would be useful for future scalability
tests. More modeling constructs will not necessarily lead to more complicated
verification models; on the contrary, more compact model constructs, e.g., tran-
sitions that trigger on more than one signal, can reduce the number of required
states in the original model as well as in the verification model.

The problem of having to create two versions of the action code to enable
signal sending in the verification model should also be addressed. We speculate
that specifying the action code in a higher-level action language could be useful
in this respect. This type of specification could then be used both to generate

4The most common pattern found in the study was the response pattern, defined in the
authors’ classification by, “A state/event P must always be followed by a state/event Q within
a scope.”(Dwyer et al. 1999, p. 415) The property can be specified in LTL, and we verify a
property that follows this pattern in the Electronic lock example model (see Section 8.2.2,
property 3).

79

Chapter 10. Conclusions

C++ code and to generate Promela code for use in the verification model,
ensuring consistency between the two.

10.3.3 Scalability

Based on our experience with actual UML-RT models at the department, re-
alistic models widely surpass the example models in terms of complexity. The
feasibility of verifying properties of such models must be examined, and we find
it likely that the problem of targeting more complex models will need to be
addressed from several angles.

It could be of interest to evaluate scalability potential by increasing the
memory and computational capacity of the machine running the verification.
An approach that could be interesting in this context is that of parallelizing
the verification on multiple cores or even multiple machines. The swarm tool5

divides a large verification task into smaller tasks that can be run in paral-
lel (Holzmann, Joshi & Groce 2008).

Since increased resources alone will most likely not be sufficient, more sup-
port for abstraction methods should be considered and perhaps also Spin’s lossy
state compression methods that can provide significant memory reduction at the
expense of no longer guaranteeing complete coverage.

5http://www.spinroot.com/swarm

80

http://www.spinroot.com/swarm

Bibliography

Ackerman, L., Elder, P., Busch, C., Lopez-Mancisidor, A., Kimura, J. & Balaji,
R. S. (2008). Strategic reuse with asset-based development, IBM/Redbooks,
IBM Corp., Riverton, NJ, USA.

Avizienis, A., Laprie, J. C., Randell, B. & Landwehr, C. (2004). Basic concepts
and taxonomy of dependable and secure computing, Dependable and Secure
Computing, IEEE Transactions on 1(1): 11–33.

Beato, M. E., Barrio-Solórzano, M., Cuesta, C. E. & de la Fuente, P. (2005).
UML automatic verification tool with formal methods, Electronic Notes in
Theoretical Computer Science 127(4): 3–16.

Ben-Ari, M. (2008). Principles of the Spin Model Checker, Springer.

Beyer, D., Henzinger, T. A., Jhala, R. & Majumdar, R. (2004). An Eclipse
plug-in for model checking, Proceedings of the 12th IEEE International
Workshop on Program Comprehension (IWPC’04), pp. 251–255.

Beyer, D., Henzinger, T. A., Jhala, R. & Majumdar, R. (2007). The software
model checker Blast, International Journal on Software Tools for Technol-
ogy Transfer (STTT) 9(5–6): 505–525.

Booch, G., Rumbaugh, J. & Jacobson, I. (2005). The Unified Modeling Language
User Guide, 2 edn, Addison-Wesley.

Cernosek, G. (2005). A brief history of Eclipse, IBM Software Group, IBM.
http://www.ibm.com/developerworks/rational/library/nov05/

cernosek/, retrieved on March 30, 2009.

Clarke, E. M. (2008). The birth of model checking, in Grumberg & Veith (2008),
pp. 1–26.

Clarke, E. M., Grumberg, O. & Peled, D. A. (1999). Model Checking, MIT
Press.

Coffman, E. G., Elphick, M. & Shoshani, A. (1971). System deadlocks, ACM
Computing Surveys 3(2): 67–78.

81

http://www.ibm.com/developerworks/rational/library/nov05/cernosek/
http://www.ibm.com/developerworks/rational/library/nov05/cernosek/

Bibliography

Dijkstra, E. W. (1970). Notes on Structured Programming. http://www.cs.

utexas.edu/users/EWD/ewd02xx/EWD249.PDF, retrieved on 20 May 2009.

Dijkstra, E. W. (1977). Two starvation-free solutions of a general exclusion
problem. http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD625.PDF,
retrieved on 30 April 2009.

Drusinsky, D. (2006). Modeling and Verification Using UML Statecharts:
a working guide to reactive system design, runtime monitoring, and
execution-based model checking, Newnes.

Dwyer, M. B., Avrunin, G. S. & Corbett, J. C. (1999). Patterns in property
specifications for finite-state verification, ICSE, pp. 411–420.

Elamkulam, J., Glazberg, Z., Rabinovitz, I., Kowlali, G., Gupta, S. C., Kohli,
S., Dattathrani, S. & Macia, C. P. (2006). Detecting design flaws in UML
state charts for embedded software, in E. Bin, A. Ziv & S. Ur (eds), Haifa
Verification Conference, Vol. 4383 of Lecture Notes in Computer Science,
Springer, pp. 109–121.

Emerson, E. A. (2008). The beginning of model checking: A personal perspec-
tive, in Grumberg & Veith (2008), pp. 27–45.

Grumberg, O. & Veith, H. (eds) (2008). 25 Years of Model Checking — His-
tory, Achievements, Perspectives, Vol. 5000 of Lecture Notes in Computer
Science, Springer.

Harel, D. (1987). Statecharts: A visual formalism for complex systems, Science
of Computer Programming 8(3): 231–274.

Holzmann, G. J. (1997). The model checker SPIN, IEEE Transactions on Soft-
ware Engineering 23: 279–295.

Holzmann, G. J. (2003). The Spin Model Checker: Primer and Reference Man-
ual, Addison-Wesley Professional.

Holzmann, G. J., Joshi, R. & Groce, A. (2008). Swarm verification, ASE, IEEE,
pp. 1–6.

Holzmann, G. J. & Smith, M. H. (1999). Software model checking, in J. Wu,
S. T. Chanson & Q. Gao (eds), FORTE, Vol. 156 of IFIP Conference
Proceedings, Kluwer, pp. 481–497.

Huth, M. & Ryan, M. (2004). Logic in Computer Science: Modelling and Rea-
soning about Systems, 2nd edn, Cambridge University Press.

Int (1994). Statistical analysis of floating point flaw, White paper, Intel Corpora-
tion. http://support.intel.com/support/processors/pentium/fdiv/

wp/, retrieved on February 12, 2009.

Jussila, T., Dubrovin, J., Junttila, T., Latvala, T. & Porres, I. (2006). Model
checking dynamic and hierarchical UML state machines, MoDeV2a: Model
Development, Validation and Verification; 3rd International Workshop,
Genova, Italy, pp. 94–110.

82

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD625.PDF
http://support.intel.com/support/processors/pentium/fdiv/wp/
http://support.intel.com/support/processors/pentium/fdiv/wp/

Bibliography

Kamel, M. & Leue, S. (2000). VIP: A visual editor and compiler for v-Promela,
in S. Graf & M. I. Schwartzbach (eds), TACAS, Vol. 1785 of Lecture Notes
in Computer Science, Springer, pp. 471–486.

Knapp, A. & Wuttke, J. (2007). Model checking of UML 2.0 interactions, Models
in Software Engineering, Vol. 4364 of Lecture Notes in Computer Science,
Springer, pp. 42–51.

Lamport, L. (1977). Proving the correctness of multiprocess programs, IEEE
Transactions on Software Engineering 3(2): 125–143.

Lamport, L. (1983). What good is temporal logic?, in R. E. A. Mason (ed.), In-
formation Processing 83, Elsevier Science Publishers B.V. (North-Holland),
pp. 657–668.

Leue, S. & Holzmann, G. J. (1999). v-Promela: A visual, object-oriented lan-
guage for SPIN, ISORC, IEEE Computer Society, pp. 14–23.

Leue, S., Mayr, R. & Wei, W. (2004). A scalable incomplete test for the bound-
edness of UML RT models, in K. Jensen & A. Podelski (eds), TACAS, Vol.
2988 of Lecture Notes in Computer Science, Springer, pp. 327–341.

LIC (2001). Spin commercial license. http://www.spinroot.com/spin/spin_
license.html, retrieved on 12 May 2009,.

Lilius, J. & Porres Paltor, I. (1999a). vUML: a tool for verifying UML models,
Automated Software Engineering, 1999. 14th IEEE International Confer-
ence on. pp. 255–258.

Lilius, J. & Porres Paltor, I. (1999b). vUML: a tool for verifying UML models,
TUCS Technical Report 272, Turku Centre for Computer Science.

Manna, Z. & Pnueli, A. (1992). The Temporal Logic of Reactive and Concurrent
Systems, Vol. 1, Springer-Verlag.

Mikk, E., Lakhnech, Y., Siegel, M. & Holzmann, G. (1998). Implementing
statecharts in PROMELA/SPIN, Industrial Strength Formal Specification
Techniques. Proceedings. 2nd IEEE Workshop on, pp. 90–101.

NIS (2002). The economic impacts of inadequate infrastructure for software
testing, Planning Report 02-3, National Institute of Standards and Tech-
nology, Program Office Strategic Planning and Economic Analysis Group.

Peled, D., Wilke, T. & Wolper, P. (1995). An algorithmic approach for checking
closure properties of ω-regular languages, Proceedings of CONCUR ’96:
7th International Conference on Concurrency Theory, Springer-Verlag,
pp. 596–610.

Rat (2003). DEV470 Mastering Rational Rose RealTime using C++, Student
Manual. Part # 800-026285-000.

Rotman, J. J. (1998). Journey into mathematics: an introduction to proofs,
Prentice Hall, Upper Saddle River, N.J.

83

http://www.spinroot.com/spin/spin_license.html
http://www.spinroot.com/spin/spin_license.html

Bibliography

Schäfer, T., Knapp, A. & Merz, S. (2001). Model checking UML state ma-
chines and collaborations, Electronic Notes in Theoretical Computer Sci-
ence 55(3): 357–369. Workshop on Software Model Checking (in connection
with CAV ’01).

Selic, B. (1996). Real-time object-oriented modeling (ROOM), Real-Time and
Embedded Technology and Applications Symposium, IEEE 0: 214–217. Ob-
jecTime Limited.

Shen, W., Compton, K. & Huggins, J. (2002). A toolset for supporting UML
static and dynamic model checking, Computer Software and Applications
Conference, 2002. COMPSAC 2002. 26th Annual International., pp. 147–
152.

Whalen, M. W., Cofer, D. D., Miller, S. P., Krogh, B. H. & Storm, W. (2007).
Integration of formal analysis into a model-based software development
process, in S. Leue & P. Merino (eds), FMICS, Vol. 4916 of Lecture Notes
in Computer Science, Springer, pp. 68–84.

84

APPENDIX A

Promela model example

This appendix presents the complete Promela code for a verification model. The
original model (see Section 8.4) is the UML-RT model for demonstrating the
two properties of primary interest to the department, identified in Section 7.3.

85

A
p
p
e
n
d
ix

A
.

P
r
o
m
e
l
a

m
o
d
e
l

e
x
a
m
p
l
e

Listing A.1: Promela code for a demonstration capsule model.

1 /* */
2 /* This code was au toma t i ca l l y generated by the JET trans f ormat i on */
3 /* emxtransform . pml . j e t */
4 /* */
5 /* Model name : unknown */
6 /* Package name : Propert i esDemonstrat ion */
7 /* */
8

9 /* De f i n i t i on s */
10 #define stateA (

Demonstrat ionCapsu le@Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateA)
11 #define stateB (

Demonstrat ionCapsu le@Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateB)
12 #define stateC (

Demonstrat ionCapsu le@Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateC)
13

14 /* Options */
15 #ifndef CHANLEN
16 #define CHANLEN 1
17 #endif

18

19 /* Protoco l s */
20 /* Protoco l : DemonstrationCommunication */
21 typedef DemonstrationCommunication {
22 mtype i d
23 } ;
24 mtype = {
25 goA
26 , goB
27 , goC

8
6

28 } ;
29 #ifde f STIMULUS
30 /* Producer process f o r the DemonstrationCommunication s i g na l s */
31 proctype DemonstrationCommunication prod (chan com) {
32 #ifde f XU
33 xs com ;
34 #endif

35 send :
36 do

37 : : true −>

38 send goA :
39 com ! goA ;
40 : : true −>

41 send goB :
42 com ! goB ;
43 : : true −>

44 send goC :
45 com ! goC ;
46 od

47 }
48 /* Consumer process f o r the DemonstrationCommunication s i g na l s */
49 proctype DemonstrationCommunication cons (chan com) {
50 #ifde f XU
51 xr com ;
52 #endif

53 recv :
54 do

55 : : com ? [goA] −> recv goA : com ? ;
56 : : com ? [goB] −> recv goB : com ? ;
57 : : com ? [goC] −> recv goC : com ? ;
58 od

8
7

A
p
p
e
n
d
ix

A
.

P
r
o
m
e
l
a

m
o
d
e
l

e
x
a
m
p
l
e

59 }
60 #endif

61

62 /* Capsu les */
63 proctype Demonstrat ionCapsule (
64 chan demoCom
65) {
66 #ifde f XU
67 xr demoCom ;
68 #endif

69 /* Incoming message v a r i a b l e s */
70 DemonstrationCommunication demoCom msg ;
71 /* Inter−connect ing channel s f o r contained cap su l e s */
72 /* Local por t s */
73 /* I n i t i a l i z a t i o n o f a l l contained cap su l e s . */
74 atomic {
75 skip

76 } ;
77

78 Proper t i e sDemonst rat i on Demonst rat ionCapsu le S tat e Mach ine Reg ion1 in i t i a l :
79 atomic {
80 #ifde f VERBOSE
81 printf (”MSC: i n i t i a l \n”) ;
82 #endif

83 i f

84 /* Take t r an s i t i o n I n i t i a l (shor t name) */
85 : : true −>

86 /* Trans i t i on code f o r t r a n s i t i o n I n i t i a l */
87 /* Entry code f o r s t a t e StateA (shor t name) */
88 #ifde f VERBOSE
89 printf (”MSC: StateA \n”) ;

8
8

90 #endif

91 /* Jump to next s t a t e StateA (shor t name) */
92 goto Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateA
93

94 /* Dummy guard f o r s t a t e s w i thou t ou tgo ing t r a n s i t i o n s */
95 : : fa l se

96 f i

97 }
98

99 Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateA :
100 atomic {
101 i f

102 /* Acquire message on por t demoCom */
103 : : demoCom?demoCom msg −>

104 i f

105 /* Take t r an s i t i o n goToA (shor t name) */
106 : : demoCom msg . i d == goA −>

107 /* Exi t code f o r s t a t e StateA (shor t name) */
108 /* Trans i t i on code f o r t r a n s i t i o n goToA */
109 /* Entry code f o r s t a t e StateA (shor t name) */
110 #ifde f VERBOSE
111 printf (”MSC: StateA \n”) ;
112 #endif

113 /* Jump to next s t a t e StateA (shor t name) */
114 goto Propert iesDemonst rat ion Demonstrat ionCapsu le State Machine Region1 StateA
115

116 /* Take t r an s i t i o n goToB (shor t name) */
117 : : demoCom msg . i d == goB −>

118 /* Exi t code f o r s t a t e StateA (shor t name) */
119 /* Trans i t i on code f o r t r a n s i t i o n goToB */
120 /* Entry code f o r s t a t e StateB (shor t name) */

8
9

A
p
p
e
n
d
ix

A
.

P
r
o
m
e
l
a

m
o
d
e
l

e
x
a
m
p
l
e

121 #ifde f VERBOSE
122 printf (”MSC: StateB \n”) ;
123 #endif

124 /* Jump to next s t a t e StateB (shor t name) */
125 goto Propert iesDemonst rat ion Demonstrat ionCapsu le State Machine Region1 StateB
126

127 /* Take t r an s i t i o n goToC (shor t name) */
128 : : demoCom msg . i d == goC −>

129 /* Exi t code f o r s t a t e StateA (shor t name) */
130 /* Trans i t i on code f o r t r a n s i t i o n goToC */
131 /* Entry code f o r s t a t e StateC (shor t name) */
132 #ifde f VERBOSE
133 printf (”MSC: StateC \n”) ;
134 #endif

135 /* Jump to next s t a t e StateC (shor t name) */
136 goto Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateC
137

138 : : else −>

139 #ifde f VERBOSE
140 printf (”MSC: Unhandled s i g n a l %e in StateA \n” , demoCom msg . i d) ;
141 #endif

142 assert (fa l se) ;
143 /* Run the pan v e r i f i e r wi th ’−A’ to suppress a s s e r t i on v i o l a t i o n s */
144 goto Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateA
145 f i

146

147 /* Trans i t i ons below l a c k t r i g g e r and are t h e r e f o r e d i s a b l e d by d e f a u l t */
148 /* Dummy guard f o r s t a t e s w i thou t ou tgo ing t r a n s i t i o n s */
149 : : fa l se

150 f i

151 }

9
0

152

153 Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateC :
154 atomic {
155 i f

156 /* Acquire message on por t demoCom */
157 : : demoCom?demoCom msg −>

158 i f

159 /* Take t r an s i t i o n goToC (shor t name) */
160 : : demoCom msg . i d == goC −>

161 /* Exi t code f o r s t a t e StateC (shor t name) */
162 /* Trans i t i on code f o r t r a n s i t i o n goToC */
163 /* Entry code f o r s t a t e StateC (shor t name) */
164 #ifde f VERBOSE
165 printf (”MSC: StateC \n”) ;
166 #endif

167 /* Jump to next s t a t e StateC (shor t name) */
168 goto Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateC
169

170 /* Take t r an s i t i o n goToA (shor t name) */
171 : : demoCom msg . i d == goA −>

172 /* Exi t code f o r s t a t e StateC (shor t name) */
173 /* Trans i t i on code f o r t r a n s i t i o n goToA */
174 /* Entry code f o r s t a t e StateA (shor t name) */
175 #ifde f VERBOSE
176 printf (”MSC: StateA \n”) ;
177 #endif

178 /* Jump to next s t a t e StateA (shor t name) */
179 goto Propert iesDemonst rat ion Demonstrat ionCapsu le State Machine Region1 StateA
180

181 /* Take t r an s i t i o n goToB (shor t name) */
182 : : demoCom msg . i d == goB −>

9
1

A
p
p
e
n
d
ix

A
.

P
r
o
m
e
l
a

m
o
d
e
l

e
x
a
m
p
l
e

183 /* Exi t code f o r s t a t e StateC (shor t name) */
184 /* Trans i t i on code f o r t r a n s i t i o n goToB */
185 /* Entry code f o r s t a t e StateB (shor t name) */
186 #ifde f VERBOSE
187 printf (”MSC: StateB \n”) ;
188 #endif

189 /* Jump to next s t a t e StateB (shor t name) */
190 goto Propert iesDemonst rat ion Demonstrat ionCapsu le State Machine Region1 StateB
191

192 : : else −>

193 #ifde f VERBOSE
194 printf (”MSC: Unhandled s i g n a l %e in StateC\n” , demoCom msg . i d) ;
195 #endif

196 assert (fa l se) ;
197 /* Run the pan v e r i f i e r wi th ’−A’ to suppress a s s e r t i on v i o l a t i o n s */
198 goto Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateC
199 f i

200

201 /* Trans i t i ons below l a c k t r i g g e r and are t h e r e f o r e d i s a b l e d by d e f a u l t */
202 /* Dummy guard f o r s t a t e s w i thou t ou tgo ing t r a n s i t i o n s */
203 : : fa l se

204 f i

205 }
206

207 Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateB :
208 atomic {
209 i f

210 /* Acquire message on por t demoCom */
211 : : demoCom?demoCom msg −>

212 i f

213 /* Take t r an s i t i o n goToB (shor t name) */

9
2

214 : : demoCom msg . i d == goB −>

215 /* Exi t code f o r s t a t e StateB (shor t name) */
216 /* Trans i t i on code f o r t r a n s i t i o n goToB */
217 /* Entry code f o r s t a t e StateB (shor t name) */
218 #ifde f VERBOSE
219 printf (”MSC: StateB \n”) ;
220 #endif

221 /* Jump to next s t a t e StateB (shor t name) */
222 goto Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateB
223

224 /* Take t r an s i t i o n goToA (shor t name) */
225 : : demoCom msg . i d == goA −>

226 /* Exi t code f o r s t a t e StateB (shor t name) */
227 /* Trans i t i on code f o r t r a n s i t i o n goToA */
228 /* Entry code f o r s t a t e StateB (shor t name) */
229 #ifde f VERBOSE
230 printf (”MSC: StateB \n”) ;
231 #endif

232 /* Jump to next s t a t e StateB (shor t name) */
233 goto Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateB
234

235 : : else −>

236 #ifde f VERBOSE
237 printf (”MSC: Unhandled s i g n a l %e in StateB\n” , demoCom msg . i d) ;
238 #endif

239 assert (fa l se) ;
240 /* Run the pan v e r i f i e r wi th ’−A’ to suppress a s s e r t i on v i o l a t i o n s */
241 goto Propert iesDemonstrat ion Demonstrat ionCapsu le State Machine Region1 StateB
242 f i

243

244 /* Trans i t i ons below l a c k t r i g g e r and are t h e r e f o r e d i s a b l e d by d e f a u l t */

9
3

A
p
p
e
n
d
ix

A
.

P
r
o
m
e
l
a

m
o
d
e
l

e
x
a
m
p
l
e

245 /* Dummy guard f o r s t a t e s w i thou t ou tgo ing t r a n s i t i o n s */
246 : : fa l se

247 f i

248 }
249 }
250

251 in i t {
252 #ifde f STIMULUS
253 chan DemonstrationCapsule demoCom = [CHANLEN] of { DemonstrationCommunication } ;
254 /* Run top process and requ i red s t imu lus processes to c l o s e the model */
255 atomic {
256 run DemonstrationCommunication prod (DemonstrationCapsule demoCom) ;
257 run Demonstrat ionCapsule (DemonstrationCapsule demoCom)
258 }
259 #else

260 run Demonstrat ionCapsule ()
261 #endif

262 }

9
4

APPENDIX B

JET transformation templates

This appendix presents two of the templates that are part of the JET transfor-
mation project. Listing B.1 contains the top-most template in the transforma-
tion project and Listing B.2 contains the template that produces Promela code
for representing a state machine.

95

A
p
p
e
n
d
ix

B
.

J
E
T

t
r
a
n
s
f
o
r
m
a
t
io

n
t
e
m
p
l
a
t
e
s

Listing B.1: Main template for model transformation.

1 <%−−
2 Main template f o r model t ran s fo rmat ion .
3 Inc ludes a l l templates nece s sary f o r generat ing a Promela model .
4

5 Variab le dependenc ies : −
6 −−%>

7

8 /* */
9 /* This code was automat i ca l ly generated by the JET trans fo rmat ion */

10 /* emxtransform . pml . j e t */
11 /* */
12 /* Model name : <c : get s e l e c t =”/Model/@name” de f au l t=”unknown”/> */
13 /* Package name : <c : get s e l e c t =”/Package/@name” de f au l t=”unknown”/> */
14 /* */
15

16 <%−− Generate d e f i n i t i o n s f o r Promela model . −−%>

17 <c : in c lude template=”templates / de f in i t i onTemp la t e s / genDe f i n i t i on s . pml . j e t ” />
18

19 <%−− Generate ex t ra opt ion s f o r Promela model . −−%>

20 <c : in c lude template=”templates / optionTemplates /genOptions . pml . j e t ” />
21

22 <%−− Generate communication p ro t o co l s f o r Promela model . −−%>

23 <c : in c lude template=”templates / protocolTemplates / genProtoco l s . pml . j e t ” />
24

25 <%−− Generate a l l cap su l e p r o c e s s e s f o r Promela model . −−%>

26 <c : in c lude template=”templates / capsuleTemplates / genCapsules . pml . j e t ” />
27

28 <%−− Generate i n i t i a l p roce s s f o r Promela model . −−%>

29 <c : in c lude template=”templates / in i tTemp lat e s/ gen In i t . pml . j e t ” />

9
6

Listing B.2: Template for state machine generation.

1 <%−−
2 Template f o r generat ion o f a capsu le ’ s s t a t e machine .
3 Separates the generat ion o f the s t a t e machine ’ s p seudos tat e s
4 and ord inary s t a t e s .
5

6 Variab le dependenc ies : cap su l e
7 −−%>

8

9 <c : s e tVar i ab l e s e l e c t=”$capsu l e /StateMachine ” var=”statemach ine” />
10

11 <%−− Pseudostates generat ion . −−%>

12 <c : i t e r a t e s e l e c t=”$statemach ine/ reg ion /Pseudostate [@kind = ’ i n i t i a l ’] ” var=”pseudostate ”>
13 <f : r ep l a c eA l l value =”[ˆ\\w]” replacement=” ” regex=”t rue”><c : get s e l e c t=”$pseudostate /owner/

@qualifiedName” /></ f : r ep laceA l l > i n i t i a l :
14 atomic {
15 #i f d e f VERBOSE
16 p r i n t f (”MSC: i n i t i a l \n”) ;
17 #end i f
18 i f
19 /* Take t r an s i t i o n <c : get s e l e c t=”$pseudostate / outgoing /@name” /> (shor t name) */
20 : : t rue −>

21 /* Trans i t i on code f o r t r a n s i t i o n <c : get s e l e c t=”$pseudostate / outgoing /@name” /> */
22 <c : get s e l e c t=”$pseudostate / outgoing/ e f f e c t /@body” d e f au l t =””/>
23

24 /* Entry code f o r s t a t e <c : get s e l e c t=”$pseudostate / outgoing / t a r g e t /@name” /> (shor t name) */
25 #i f d e f VERBOSE
26 p r i n t f (”MSC: <c : get s e l e c t=”$pseudostate / outgoing/ t a r g e t /@name” /> \n”) ;
27 #end i f
28 <c : get s e l e c t=”$pseudostate / outgoing/ t a r g e t / entry /@body” d e f au l t =””/>
29

9
7

A
p
p
e
n
d
ix

B
.

J
E
T

t
r
a
n
s
f
o
r
m
a
t
io

n
t
e
m
p
l
a
t
e
s

30 /* Jump to next s t a t e <c : get s e l e c t=”$pseudostate / outgoing/ t a r g e t /@name” /> (shor t name) */
31 goto < f : r ep l a c eA l l value =”[ˆ\\w]” replacement=” ” regex=”t rue”><c : get s e l e c t=”$pseudostate /

outgoing / t a r g e t /@qualifiedName” /></f : r ep laceA l l >

32 /* Dummy guard f o r s t a t e s without outgoing t r a n s i t i o n s */
33 : : f a l s e
34 f i
35 }
36 </c : i t e r a t e >

37

38 <%−− Ordinary s t a t e s generat ion . −−%>

39 <c : i t e r a t e s e l e c t=”$statemach ine/ reg ion / State ” var=”s t a t e ”>
40 < f : r ep l a c eA l l value =”[ˆ\\w]” replacement=” ” regex=”t rue”><c : get s e l e c t=”$ s t a t e /@qualifiedName” /></f :

r ep laceA l l >:
41 atomic {
42 i f
43 <c : i t e r a t e s e l e c t=”$capsu l e /ownedPort [
44 (s t e r e o t yp e (. , ’UMLRealTime : : RTPort ’) /@isConjugate = ’ f a l s e ’
45 and count (. / type /owner/CallEvent [s t e r e o t yp e (. , ’UMLRealTime : : InEvent ’)]) \> 0
46)
47 or
48 (s t e r e o t yp e (. , ’UMLRealTime : : RTPort ’) /@isConjugate = ’ true ’
49 and count (. / type /owner/CallEvent [s t e r e o t yp e (. , ’UMLRealTime : : OutEvent ’)]) \> 0
50)
51] ” var=”port”>
52 /* Acquire message on port <c : get s e l e c t=”$port /@name” /> */
53 : : <c : get s e l e c t=”$port /@name” />?<c : get s e l e c t=”$port /@name” /> msg −>

54 i f
55 <c : i t e r a t e s e l e c t=”$ s t a t e / connect ionPoint [. / outgoing / t r i g g e r / port /@name = $port /@name] ” var=”cp”>
56 /* Take t r an s i t i o n <c : get s e l e c t=”$cp/ outgoing/@name” /> (shor t name) */
57 : : <c : get s e l e c t=”$port /@name” /> msg . i d == <c : get s e l e c t=”$cp/ outgoing/ t r i g g e r / event /

operat ion /@name” /> −>

9
8

58

59 <%−− Generate s t a t e / t r an s i t i o n act ion b lock . −−%>

60 <c : in c lude template=”templates / capsuleTemplates / genActionBlock . pml . j e t ” pas sVar iab l e s=”stat e
, cp” />

61

62 </c : i t e r a t e >

63 : : e l s e −>

64 #i f d e f VERBOSE
65 p r i n t f (”MSC: Unhandled s i g n a l %e in <c : get s e l e c t=”$ s t a t e /@name” />\n” , <c : get s e l e c t=”$port

/@name” /> msg . i d) ;
66 #end i f
67 a s s e r t (f a l s e) ;
68 /* For RSARTE behav ior s imu lat ion : */
69 /* Run the pan v e r i f i e r with ’−A’ to suppre s s a s s e r t i o n v i o l a t i o n s */
70 /* i gn o r i n g the unhandled s i g n a l and cont inu ing the execu t ion */
71 goto < f : r ep l a c eA l l value =”[ˆ\\w]” replacement=” ” regex=”t rue”><c : get s e l e c t=”$ s t a t e /

@qualifiedName” /></ f : r ep laceA l l >

72 f i
73 </c : i t e r a t e >

74

75 <%−− Separate handl ing o f t r a n s i t i o n s without a t r i g g e r . −−%>

76 /* Tran s i t i on s below lack t r i g g e r and are t h e r e f o r e d i s ab l ed by de f au l t */
77 <c : i t e r a t e s e l e c t=”$ s t a t e / connect ionPoint [count (. / outgoing / t r i g g e r) = 0]” var=”cp”>
78

79 /* Take t r an s i t i o n <c : get s e l e c t=”$cp/ outgoing /@name” /> (shor t name) */
80 : : f a l s e −>

81

82 <%−− Generate s t a t e / t r an s i t i o n act ion b lock . −−%>

83 <c : in c lude template=”templates / capsuleTemplates / genActionBlock . pml . j e t ” pas sVar iab l e s=”stat e ,
cp” />

84 </c : i t e r a t e >

9
9

A
p
p
e
n
d
ix

B
.

J
E
T

t
r
a
n
s
f
o
r
m
a
t
io

n
t
e
m
p
l
a
t
e
s

85

86 /* Dummy guard f o r s t a t e s without outgoing t r a n s i t i o n s */
87 : : f a l s e
88

89 f i
90 }
91 </c : i t e r a t e >

92

1
0
0

	Preface
	Introduction
	Background
	Aim
	Limitations
	Disposition

	Theory
	Formal Verification
	Model Checking
	Model checking workflow

	The Spin model checker
	The Promela specification language
	A Promela example
	Property specification in Spin using LTL
	LTL property verification
	Problem space reduction

	Method
	Configuration of test system

	Description of modeling environment
	Historic context
	Modeling reactive systems

	Modeling constructs in UML-RT
	UML-RT tools at the department

	Previous work and tools for software model verification
	vUML
	Hugo
	VIP and v-Promela
	TABU
	SMARRT
	Summary and conclusions of review

	Prototype system integrating RSARTE with Spin
	Verification model extraction options
	Code generation in RSARTE using JET

	Verification model overview
	Modeling capsule interaction with the environment
	Mapping concepts in UML-RT to Promela
	Signal producers and consumers
	Embedded Promela code
	Property verification

	Verification model options
	JET transformation structure

	Property specification
	Internally specified properties
	Externally specified properties
	Properties of primary interest
	Signal handling guarantee
	Trap detection

	Limitations in property specification

	Model examples
	A model of a traffic light system
	Model description
	Properties
	First version
	Second version
	Third version

	A model of an electronic lock
	Model description
	Properties
	First version
	Second version

	The dining philosophers
	Problem scenario
	Model description
	Properties
	Model implementation

	A model with intentional errors
	Model description and properties

	A complexity experiment

	Results
	Traffic light system
	First version
	Second version
	Third version

	Electronic lock
	First version
	Second version

	Dining philosophers
	Model with intentional errors
	Complexity experiment

	Conclusions
	Answers to questions
	Discussion
	Benefits and drawbacks
	Primary application areas
	Important verification issues

	Future work
	Properties
	Model transformation
	Scalability

	Promela model example
	JET transformation templates

