
σ

Predicting the elasto-plastic response of short
fiber composites using deep neural networks

trained on micro-mechanical simulations
Master’s thesis in Applied Mechanics

JOHAN FRIEMANN

Department of Industrial and Materials Science

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

MASTER’S THESIS 2021

Predicting the elasto-plastic response of short fiber
composites using deep neural networks trained on

micro-mechanical simulations

JOHAN FRIEMANN

Department of Industrial and Materials Science
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2021

i

Predicting the elasto-plastic response of short fiber
composites using deep neural networks trained on
micro-mechanical simulations

JOHAN FRIEMANN

© JOHAN FRIEMANN, 2021.

Master’s Thesis 2021
Department of Industrial and Materials Science
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Cover: An abstraction of the proposed neural network based material model. A short fiber
composite material is homogenized and used as training data for a neural network that predicts
the stress given a strain history.

ii

Predicting the elasto-plastic response of short fiber
composites using deep neural networks trained on

micro-mechanical simulations

JOHAN FRIEMANN

Department of Industrial and Materials Science

Chalmers University of Technology

Abstract

The mechanical modeling of short fiber composites has proven to be difficult. This is partly owing to
the high degree of anisotropy and fiber discontinuity. Being able to accurately predict the behavior
of short fiber composites with varying fiber orientations and fiber volume fractions is highly relevant
in the design and production of injection molded parts. It has therefore become popular to abandon
classical constitutive models in favor of data driven models. Artificial neural networks is a popular
and efficient method of using large amounts of data to teach an algorithm the underlying rules of
a phenomenon, enabling it to make predictions for data it has never before encountered. In this
work a recurrent deep neural network model utilizing Gated Recurrent Units (GRU) is trained to
predict the elasto-plastic stress response of a short fiber composite material given the strain path.
The model is designed to have the ability to make predictions for arbitrary fiber orientations and
varying fiber volume fractions. The training data is generated by performing micro-mechanical
simulations utilizing mean field methods in the commercially available software digimat-mf. The
strain data is generated by a random walk scheme in strain space. The finished model performs
well, and the mean error for a typical load cycle usually stays below 10% of the matrix yield stress.

Keywords: Composite mechanics, Short fiber composites, Material mechanics, Micro mechanics,
Elasto-plasticity, Mean field homogenization, Artificial neural networks, Deep neural networks,
Recurrent neural networks

iii

Acknowledgements

I want to begin by thanking my supervisor Mohsen Mirkhalaf, Assistant Professor at the University
of Gothenburg, The Faculty of Science, Department of Physics, for his continuous advice and by
always challenging me to improve my research. I also want to thank my co-supervisor Behdad Dasht
Bozorg, University Researcher at Eindhoven University of Technology, Department of Biomedical
Engineering, Medical Image Analysis group, for his advice concerning artificial neural networks.
Many times when I could not make progress with my network implementation a discussion with
Behdad cleared out the issues.

I want to express my gratitude to the examiner of this thesis, Martin Fagerström, Associate Professor
at the Division of Material and Computational Mechanics, Department of Industrial and Materials
Science, Chalmers University of Technology. He offered many helpful comments when revising my
thesis drafts, and has been invaluable to the project by arranging for computational resources.

I want to offer my thanks to Aykut Argun of the University of Gothenburg, Department of Physics,
for a fruitful discussion on recurrent neural networks.

I want to extend my most heartfelt thanks to Professor Jun Takahashi of the University of Tokyo,
Graduate School of Engineering, Department of Systems Innovation, for hosting me as an exchange
student between the fall of 2019 and summer of 2020. The seed of this project was sown while still
attending his laboratory. Additionally, I learned many things during my time at the laboratory
that has been of great use for this thesis.

I want to thank e-Xstream for supplying me with a digimat-license. They also deserve to be
acknowledged for quickly transferring said license when my computer broke down at two different
occasions.

Finally, I want to thank my family for their everlasting support. They valiantly endured listening
to me explaining my work at best, and my complaints about the perils of academic writing at worst.

The training of the artificial neural network was enabled by resources provided by the Swedish
National Infrastructure for Computing (SNIC) at Chalmers Center for Computational Science and
Engineering (C3SE) partially funded by the Swedish Research Council through grant agreement
no. 2018-05973.

Johan Friemann 2021-01-31 Gothenburg, Sweden

iv

Contents

1 Introduction 1

1.1 Purpose . 2

1.2 Limitations . 3

2 Theory 4

2.1 Material Mechanics . 4

2.1.1 Flow Plasticity Theory . 5

2.1.2 Flow Rules Derived from the Principle of Maximum Dissipation 5

2.1.3 1-Dimensional Plasticity . 5

2.1.4 Isotropic J2-Hardening Plasticity . 7

2.2 Micro-mechanics and Homogenization . 10

2.2.1 The Eshelby Tensor . 10

2.2.2 Equivalent Inclusions and the Strain Concentration Tensor 12

2.2.3 Mean Field Homogenization . 13

2.2.4 Mori-Tanaka Theory . 15

2.2.5 Orientation Tensor . 16

2.3 Machine Learning . 17

2.3.1 Artificial Neurons . 17

2.3.2 Feed Forward Neural Networks . 18

v

2.3.3 Training Feed Forward Neural Networks 20

2.3.4 Network Hyperparameters . 22

2.3.5 Recurrent Neural Networks . 22

2.3.6 Training Recurrent Neural Networks . 23

3 Methodology 26

3.1 Generation of Training Data . 26

3.1.1 Generation of Strain Paths . 26

3.1.2 Random Sampling of Orientation Tensors 28

3.1.3 Chosen Material Model . 29

3.1.4 Computing the Stress Response . 31

3.1.5 Implementation . 32

3.2 Selection of Artificial Neural Network . 33

3.2.1 Network Implementation . 35

3.3 Model Testing . 36

3.3.1 General Testing . 37

3.3.2 Repeated Cyclical Loading . 37

3.3.3 Testing of Extrapolation Ability . 38

3.3.4 Hydrostatic Loading . 38

3.3.5 Evaluation Metrics . 38

4 Results 39

4.1 Model Design and Training . 39

4.1.1 Final Network Used as Model . 40

4.2 Model Performance . 41

4.2.1 General Testing . 41

vi

4.2.2 Cyclical Loading . 45

4.2.3 Testing of Extrapolation Ability . 47

4.2.4 Hydrostatic Loading . 49

5 Discussion 50

5.1 Prospects of FEM Implementation . 51

5.2 Physics Aware Neural Networks . 52

6 Conclusions 54

References 55

A Tensors and Index Notation I

B Continuum Solid Mechanics IX

C Fundamental Solution of Elasticity XIX

D julia code XXIII

E matlab code XXXI

vii

1 Introduction

Classical laminate theory has long been proven to accurately model the elastic behavior of con-
tinuous laminated fiber composite materials. These composites have many excellent mechanical
properties and have seen widespread application in the aerospace and automotive industry. Ease
of modeling the material stiffness enables engineers to quickly test new designs without relying on
computationally expensive and time consuming computer simulations. There are however draw-
backs with long continuous fibers. For example, they are typically expensive and can be difficult to
work with. Long fiber sheets are difficult to form into complex geometries, an issue that hampers
their utilization for intricately designed car bodies, among others. It may be more suitable to use
injection molding for such applications, where short fibers are used. In addition to be being easier
to manufacture, short fiber composite production also have the potential to be more sustainable
since they are recyclable. In an age where environmental concerns are a high priority, materials
used in mass production must have further use at the end of their life cycle. Furthermore, recycled
materials can be very cost effective fetching prices as low as a quarter of virgin material [1]. It is
possible to reuse the materials in continuous composites, the fibers will however break into shorter
pieces that can be used as short fiber reinforcement.

Short fiber composites have great potential to be used in high performance materials. As mentioned
before, it is a suitable material for injection molding which enables faster and more cost efficient
production [2]. The molding process itself also tends to align fibers with the material flow direction,
creating a preferential fiber orientation. This gives engineers the ability to control the material
properties. A useful computational model describing such a material must therefore be able to
account for the varying orientation of fibers and their volume fraction.

Furthermore, short fibers are also suitable for use in additive manufacturing. Recent developments
enables printing complex geometries with excellent mechanical properties [3]. One of the issues that
stops the short fiber materials from being readily available to engineers is the difficulty of accu-
rately modeling them. Homogenization schemes and subsequent experiments can give macroscopic
material parameters such as stiffness and strength. However, the discontinuous and often random
nature of the materials gives a large variance in test results. For design purposes, high accuracy
is key and thus design engineers need accurate material data and models. Especially in industries
such as the automotive industry where repeated prototyping isn’t feasible.

In the quest to find constitutive material models describing the behavior of short fiber composites,
homogenization schemes have been thoroughly investigated (see e.g. [4]). Homogenization seeks to

1

1.1. PURPOSE CHAPTER 1. INTRODUCTION

describe the composite material based on the mechanical properties of its constituents. Using mate-
rial data for the matrix and the reinforcing elements, a macroscopic material property is calculated
through homogenization techniques. These material models may be very case specific, complex,
or computationally expensive. Currently, the most accurate homogenization technique is computa-
tional homogenization. One such approach is creating a numerical Representative Volume Element
(RVE), which reflects the typical micro-structural features of the material, and subsequently per-
forming finite element simulations to compute the macroscopic properties of the material. This
approach faces several issues. To begin with, such computations can be very expensive to perform.
Secondly, the generation of adequate RVE’s themselves can be expensive and difficult [5][6]. As an
alternative, data driven modeling approaches are being investigated. One such approach is machine
learning utilizing deep neural networks.

Deep Neural Networks (DNN) have recently gained mainstream popularity for a wide variety of
big data applications such as making stock market predictions [7], natural language processing,
and image recognition [8]. DNN consists of a large network of artificial neurons whose individual
properties are very simple, but their connected behavior can give rise to very complex phenomena.
The network is trained (i.e. calibrated) to accomplish a task by feeding it large amounts of data
and adjusting the internal parameters as to minimize the error between the predicted outcome
and the data that it has been fed. Once trained, the computational speed of predictions is very
high. A novel use is to train DNN to be used as constitutive models for composite materials. By
performing micro-mechanical simulations, strain stress data can be generated. A DNN is then
trained to learn the behavior of the material to give accurate stress predictions given the strain
(and its history). This approach has been tested for nonlinear elasticity [9] and path dependent
plasticity [10] and shows a great promise. While the referred works are great proofs of concept, they
are developed with only one specific material in mind and do not necessarily generalize. To really
show the benefit of the computational speed of the DNN approach when compared with classical
constitutive modeling, generality is key. A model that can take micro-mechanical descriptors into
account to be able to generalize to a family of materials needs to be developed. A general model
could outperform standard methods where the micro-structure varies highly, such as for injection
molded parts. For short fiber composites, descriptors of the micro-structure are fiber length and
aspect ratio, the distribution of fiber orientations, and the volume fraction of fibers among others.

1.1 Purpose

The purpose of this project was to develop a DNN model that can replicate the path dependent
general 3D elasto-plastic response of a Short Fiber Reinforced Composite (SFRC). The model is
trained on the results of micro-mechanical simulations, utilizing a mean-field approach, of an SFRC
with different fiber orientations and fiber volume fractions. The DNN model should be able to
describe the elasto-plastic response of the SFRC for an arbitrary fiber distribution, and for fiber
volume fractions within a small range.

The success of the DNN implementation relies on three major factors. First, the implementation
needs to accurately capture the correct physical features of the underlying micro-mechanical model.
This includes accurate yielding, hardening, and a clear difference of loading/unloading. Secondly,

2

1.2. LIMITATIONS CHAPTER 1. INTRODUCTION

it must possess an ability to display the proper rate independence that the underlying micro-
mechanical model requires. Finally, it should be able to make elasto-plastic predictions of fairly
complex loading with an acceptably small prediction error.

1.2 Limitations

The project was limited to implementing the model for only one set of composite constituents.
Specifically, the model was developed for a material with a matrix that obeys isotropic J2-hardening
plasticity and has fibers that are linearly elastic. The volume fraction of fibers was kept below 15%.
The model was only trained through results from mean field simulations, there were no comparison
with a model trained from homogenized materials via finite element simulations of RVE’s. No
physical experiments was performed, neither for creating training data nor for validating the model.
It was also outside the scope of this project to validate the developed model through structural
simulations, for example through utilization of finite elements.

3

2 Theory

The underlying theory concerning the current work is divided into three parts. The first part
entails describing the constitutive behavior of an elasto-plastic material based on fundamental
thermodynamical considerations, while the second part consists of how to describe the complex
micro-structure of an SFRC material as a continuum. The final part however, leaves the realm of
mechanics and concerns the workings of artificial neural networks. The chapter concludes with a
description of recurrent neural networks, whose ability to classify time dependent data make them
suitable to predict path dependent plasticity.

The present work utilizes index notation with covariant and contravariant indices to describe tensors
and variants. A reader unfamiliar with these concepts is referred to Appendix A for a comprehensive
introduction. It is assumed in this work that the treated strains are small enough that infinitesimal
strain theory may be applied. That is, the second order displacement gradient is negligible. For
a review of topics in continuum solid mechanics and continuum thermodynamics, the reader is
referred to Appendix B.

2.1 Material Mechanics

In linear elasticity the strain energy density has no dependence on any other internal variables
except the mechanical strain, i.e. the strain energy density is equivalent to the free energy density.
The energy density follows

ψ(ε) =
1

2
Cijklεijεkl, (2.1)

and the stress is obtained easily through differentiation with respect to ε. A material only obeying
this energy density will always return to its original shape after unloading. Moreover, it would
continue to behave linearly for infinite stresses and strains. In reality, most materials deform
permanently, in process called plasticity, when stressed sufficiently. The constitutive model is
extended to allow yielding, where permanent deformation starts taking place when the applied
stress is greater or equal to some yield stress. Subsequently, internal variables need to be introduced
that store the information of the deformation history. To account for any non-linearity, the energy
density functional needs to be modified to depend on these new internal variables.

4

2.1. MATERIAL MECHANICS CHAPTER 2. THEORY

2.1.1 Flow Plasticity Theory

The fundamental assumption of flow plasticity theory is that the strain inside a material can be
additively decomposed into an elastic component and plastic component as

ε = εe + εp. (2.2)

The elastic strain εe is the strain that results in the stress through Hooke’s law. The stress is
assumed to only depend on the elastic strain. The plastic strain εp is a new internal variable
that records the irreversible deformation due to plasticity. The condition that is chosen to control
whether the elastic or plastic strain is changing for a given loading situation is a yield function. The
yield function Φ is typically dependent on the stress and decides the current mode of deformation
through

Elastic deformation if Φ(σ) < 0,

Plastic deformation if Φ(σ) = 0.
(2.3)

The evolution of the elastic strain is coupled with the evolution of the stress state. However,
the plastic strain needs its own equation of evolution. It is not sufficient to directly describe the
current plastic strain as it does not include information whether the material is currently yielding
or undergoing elastic deformation. Instead the plastic strain rate ε̇p, or plastic flow, is considered.
This leads to the name flow plasticity theory. Similarly, the evolution of other internal variables
is also viewed as flows. The rules that govern these flows can be found through thermodynamic
considerations.

2.1.2 Flow Rules Derived from the Principle of Maximum Dissipation

The principle of maximum dissipation is a postulate that states that the dissipation rate is max-
imized with respect to the dissipative stresses [11]. It is an equivalent problem minimizing the
negative dissipation rate. If the yield function Φ and the dissipation rate is convex, the Karush-
Kuhn-Tucker theorem states that a global minimum of the negative dissipation rate −D(κ) that
adheres to the yield function Φ ≤ 0 is found through solving [12]

∇κ(L(κ, λ)) = 0 where L = −D(κ) + λΦ(κ)

such that λ ≥ 0, Φ(κ) ≤ 0 and λΦ = 0,
(2.4)

where λ is a Lagrangian multiplier. Due to the appearance of D, which is shown in the end of
Appendix B, ∇κL = 0 will give a direct relationship between the rate of change of the internal
variables and λ and Φ. In other words, it is possible to find the complete flow equations and loading
conditions for any admissible potential ψ and associated yield function Φ by solving Equation (2.4).

2.1.3 1-Dimensional Plasticity

Perfect plasticity is the most basic flow plasticity model. The model follows the familiar elastic stress
strain relation with Young’s modulus E until some critical yield stress σy is reached. When the
yield stress is reached the plastic strain starts changing under constant stress. It can be visualized
as a spring attached to a slider, as in Figure 2.1, where the slider is open if and only if σ = σy. The
free energy and yield function for such a material takes the form

ψ(ε) =
1

2
E(ε− εp)2, Φ(σ) = |σ| − σy ≤ 0. (2.5)

5

2.1. MATERIAL MECHANICS CHAPTER 2. THEORY

E
σy

Figure 2.1: A schematic of a 1-dimensional perfect plasticity model is displayed.

The stress then follows as
σ =

∂ψ

∂ε
= E(ε− εp) = Eεe, (2.6)

and the dissipative stress as

σd = − ∂ψ
∂εp

= E(ε− εp) = σ. (2.7)

Then, Equation (2.4) implies that

ε̇p = λ
∂

∂σ
(|σ| − σy) = λ sgn(σ), (2.8)

where λ ≥ 0 and λΦ = 0. To fully determine the evolution of the plastic strain it remains to find an
expression for λ. As Φλ = 0, it is possible to draw the conclusion that λ must be 0 when Φ < 0, i.e
during elastic loading. The value of λ during plastic loading is determined by realizing that when
plastic loading occurs Φ = 0 and subsequently ˙(λΦ) = 0̇ = Φ̇λ + λ̇Φ = 0 ⇒ Φ̇ = 0 since λ 6= 0.
Thus λ during plastic loading is found through

Φ̇ =
∂Φ

∂σ
σ̇ = sgn(σ)E(ε̇− ε̇p) = sgn(σ)E(ε̇− λ sgn(σ)) = 0 =⇒ λ = ε̇ sgn(σ). (2.9)

It is thereby possible to state the complete equations of evolution in terms of the strain rate ε̇ as

Elastic loading/unloading (Φ < 0) : ε̇p = 0, σ̇ = Eε̇

Plastic loading (Φ = 0) : ε̇p = ε̇, σ̇ = 0.
(2.10)

Most real yielding engineering materials allow the stress to increase further after the yield stress
is reached. This phenomenon is called hardening. A hardening material behaves linearly elastic
with Young’s modulus E until the yield stress σy is reached. After yielding the stiffness changes
and the stress may increase further. This model can be visualized as a spring attached to a spring
with stiffness H and a slider in parallel, which can be seen in Figure 2.2. When the yield stress is
reached, the two springs are in series and the combined stiffness, called tangent stiffness, becomes
ET = EH/(E+H). For an isotropic hardening material, the yield stress increases when the material
is stressed beyond its yield limit. In the context of the spring-slider model, it can be thought of that
the slider friction increases the further it slides. The free energy and yield function for an isotropic
hardening material is given by

ψ =
1

2
(ε− εp)2 +

1

2
Hk2, Φ(σ, κ) = |σ| − (σy + κ) ≤ 0. (2.11)

6

2.1. MATERIAL MECHANICS CHAPTER 2. THEORY

E

σy

H

Figure 2.2: A schematic of a 1-dimensional hardening plasticity model is displayed.

Here k is a newly introduced internal variable that describes how the hardening of the material
influences the stored free energy. The stress and dissipative stress related to εp are identical to
the ones for perfect plasticity. However isotropic hardening plasticity has an additional dissipative
stress, called micro hardening stress

κ = −∂ψ
∂k

= −Hk. (2.12)

Equation (2.4) then sets the flow rules for the internal variables as

ε̇p = λ sgn(σ), k̇ = −λ. (2.13)

where λ ≥ 0 and λΦ = 0. Using the exact same reasoning as for perfect plasticity, λ = 0 when the
material behaves elastically. It also still holds that Φ̇ = 0 when plastic loading occurs, so in plastic
loading λ obeys

Φ̇ =
∂Φ

∂σ
σ̇ +

∂Φ

∂κ
κ̇ = sgn(σ)E(ε̇− ε̇p) +Hk̇ = sgn(σ)E(ε̇− λ sgn(σ))−Hλ = 0. (2.14)

Thus the plastic multiplier is obtained as

λ = sgn(σ)
E

E +H
ε̇. (2.15)

The complete equations of evolution in terms of ε̇ then follows

Elastic loading/unloading (Φ < 0) : ε̇p = 0, σ̇ = Eε̇, k̇ = 0

Plastic loading (Φ = 0) : ε̇p =
E

E +H
ε̇, σ̇ =

EH

E +H
ε̇, k̇ = −sgn(σ)

E

E +H
.

(2.16)

By considering plasticity in one dimension, the flow rules can be understood conceptually through
the introduced spring-slider models. Based on the understanding of the equations of evolution in
one dimension the models may be generalized to three dimensions. This is done by basing the yield
condition on a scaled norm of the deviatoric stress. This is known as the equivalent von Mises
stress.

2.1.4 Isotropic J2-Hardening Plasticity

The deviatoric stress tensor is defined by

σdev = σ − 1

3
tr(σ)I, (2.17)

7

2.1. MATERIAL MECHANICS CHAPTER 2. THEORY

where tr(σ) is the trace, defined by

tr(σ) = tr(σijeiej) = σijei · ej = σijgij = σ : I. (2.18)

In Equation (2.18), gij is the metric tensor and I is the second order identity. The trace consists of
fully contracted tensors, and is as a consequence an invariant quantity (independent of the choice
of coordinates). It follows from the definition given in Equation (2.17) that the trace of σdev is
zero, since the trace of the second order identity tensor is 3. The tensor

σvol =
1

3
tr(σ)I (2.19)

is referred to as the volumetric stress. It follows from the definition that tr(σvol) = tr(σ) =√
3σvol : σvol. Another invariant quantity related to deviatoric stress is

1

2
σdev : σdev = (σ − 1

3
tr(σ)I) : (σ − 1

3
tr(σ)I) =

1

2
σ : σ − 2

6
tr(σ)σ : I +

1

6
tr(σ)2 =

1

2
(tr(σ · σ)− 1

3
tr(σ)2) = J2.

(2.20)

J2 is called the second invariant of the stress tensor. Experiments on the yielding behavior of ductile
materials indicates that yielding is tied to a critical value of J2. This gives the plasticity model
its name. Typically the value of the yield stress of materials is investigated in a one dimensional
setting where a uniaxial stress state arises. If a uni-axial stress σy leads to yielding, the second
invariant at yielding is

2J2 = σdev : σdev = tr(σ · σ)− 1

3
tr(σ)2 = σ2

y −
1

3
σ2

y =
2

3
σ2

y. (2.21)

Thereby the yield stress can be related to the deviatoric stress and the von Mises equivalent stress
is thus defined by

σM =

√
3

2
σdev : σdev =

√
3J2. (2.22)

If the von Mises equivalent stress reaches the yield stress σy, yielding occurs. This reproduces the
correct yielding behavior in the uni-axial loading situation as required.

Inspired by the one-dimensional isotropic hardening yield function, the J2-hardening yield function
is stated using the von Mises equivalent stress as

Φ(σ, κ) = σM − (σy + κ) ≤ 0. (2.23)

The deviatoric and volumetric strain can be defined analogously as for the stress through

εdev = ε− 1

3
tr(ε)I, εvol =

1

3
tr(ε)I, ε = εdev + εvol. (2.24)

It follows directly from the definition that εdev : εvol = 0, and as for the stress tr(εdev) = 0 and
tr(εvol) = tr(ε) =

√
3εvol : εvol. Using these properties and the isotropic Hooke’s law,

Cijkl = λgijgkl + µ(gikgjl + gilgjk), (2.25)

8

2.1. MATERIAL MECHANICS CHAPTER 2. THEORY

the free energy is stated as

ψ(σ, k) =
1

2
Cijklεeijε

e
kl +

1

2
Hk2 = µεedev : εedev +

1

2
3Kεevol : εevol +

1

2
Hk2. (2.26)

Here K = (λ + 2
3µ) is the bulk modulus (in this equation λ is the first Lamé parameter, not to

be confused with the Lagrange multiplier). Moreover εeij = εij − εpij is the elastic strain where εpij
is the plastic strain. εedev and εevol are the deviatoric and volumetric parts of the elastic strain
respectively. The stress can be computed as before through

σ =
∂ψ

∂ε
= Cijklεekleiej = 2µεedev + 3Kεevol. (2.27)

The dissipative stress coupled to the plastic strain is computed analogously to the one-dimensional
situation through

σd = − ∂ψ

∂εp = σ, (2.28)

and the micro hardening stress is computed as

κ = −∂ψ
∂k

= −Hk. (2.29)

Now equation (2.4) leads to

ε̇p = λ
∂

∂σ
(σM − (σy + κ)) = λ

3

2

σdev

σM
, k̇ = −λ, (2.30)

with the conditions λ ≥ 0 and Φλ = 0. Equation (2.30) shows that the change in the plastic strain
is purely deviatoric. By the exact same reasoning as for the one dimensional case λ = 0 when
Φ 6= 0. It also still holds that plastic loading requires that

Φ̇ =
∂Φ

∂σ
: σ̇ +

∂Φ

∂κ
κ̇ =

3

2

σdev

σM
: (2µ(ε̇dev − ε̇p) + 3Kε̇vol)−Hλ = 0. (2.31)

Equation (2.31) can be rewritten as

3

2

σdev

σM
: (2µε̇dev + 3Kε̇vol − 2µλ

3

2

σdev

σM
)−Hλ = 0⇒ λ =

3µ

(3µ+H)

σdev

σM
: ε̇, (2.32)

where the fact that σdev : ε̇vol = σdev : (1
3Iε̇ : I) = 0 and σdev : ε̇dev = σdev : ε̇ has been used. The

complete equations of evolution for isotropic J2-hardening plasticity in terms of ε̇ then becomes

Elastic loading/unloading (Φ < 0) : ε̇p = 0, σ̇ = 2µε̇dev + 3Kε̇vol, k̇ = 0

Plastic loading (Φ = 0) : ε̇p =
9µ

2(3µ+H)

σdev

σM

σdev

σM
: ε̇,

σ̇ = 2µε̇dev + 3Kε̇vol − 9µ2

(3µ+H)

σdev

σM

σdev

σM
: ε̇, k̇ = − 3µ

(3µ+H)

σdev

σM
: ε̇.

(2.33)

9

2.2. MICRO-MECHANICS AND HOMOGENIZATION CHAPTER 2. THEORY

2.2 Micro-mechanics and Homogenization

Micro-mechanics is the study of heterogeneous materials where the microscopic structure of the ma-
terial is taken into account. On the macro-level the material may seem to behave as a homogeneous
material, but if the micro-structure is resolved the interplay between the material constituents be-
comes apparent. Examples could be the grain structure of steel, or the micro-structure of short fiber
reinforced composites. By utilizing the fundamental solution of isotropic elasticity, it is possible
to describe the mechanics of a microscopic inclusion in an otherwise homogeneous material. The
mechanical response of one inclusion may later be generalized to yield the response of a general par-
ticulate micro-structure. Mean-field homogenization aims to describe the properties of the material
through an averaging scheme of the properties of the individual constituents. After homogenizing
a composite material the micro-structure does not need to be resolved in the constitutive equations
explicitly, and the material may be treated as a solid continuum.

2.2.1 The Eshelby Tensor

Imagine an infinite homogeneous isotropic elastic medium that contains a subregion which changes
its shape or size, for example due to a phase change or thermal expansion. The Eshelby tensor
is a mechanical tensor that relates the strain the subregion would posses if it was unconstrained
by the rest of the medium to the elastic strain of the constrained subregion. The problem can be
further generalized to let the subregion posses different elastic properties to its parent medium. The
tensor was first introduced by J.D Eshelby in his to composite mechanics legendary 1957 paper:
The determination of the elastic field of an ellipsoidal inclusion, and related problems [13].

Let the infinite medium have the linear elastic constitutive tensor C0, and let the subregion have
the surface Γ with outward facing unit normal n and surface element dS. Consider an imaginary
loading cycle acting on the subregion, hereby called the inclusion. To begin with the inclusion that
has undergone a change is extracted from the infinite medium, hereby referred to as the matrix,
by making a virtual cut. Since the inclusion now is unconstrained by the matrix, it will be subject
to a constant strain εeig referred to as the eigenstrain (for example free thermal expansion). By
removing the inclusion the matrix becomes stress- and strain-free. In the next step of the cycle,
the inclusion is restored to its actual shape by applying a surface traction t on its boundary, that
gives rise to an elastic strain that is equal but opposite to the eigenstrain. The strain inside the
inclusion is now 0 and the stress, only dependent on the elastic strain, is

σ = −C0 : εeig = −σeig. (2.34)

The stress σeig in Equation (2.34) is referred to as the eigenstress. The traction on the surface
can then be expressed as t = −σeig · n. Next, the inclusion is reattached to the matrix. Finally,
the inclusion is restored to its original state by applying an opposite body force per unit volume
F such that F dV = −tdS inside the now combined matrix and inclusion. A schematic of the
imagined cycle can be seen in Figure 2.3. The applied traction gives rise to the constrained strain
and stress fields in the matrix denoted by εc and σc. Equally, the principle of superposition carries
with it that the constrained fields are superimposed on pre-existing strains and stresses inside the
inclusion. It is now possible to express the complete strain and stress state of the matrix and the

10

2.2. MICRO-MECHANICS AND HOMOGENIZATION CHAPTER 2. THEORY

(a) (b)

(d) (c)

Figure 2.3: The imaginary loading cycle is displayed, beginning in the schematic (a). The first step of the
cycle displays an imaginary extraction of the inclusion. Unconstrained by the matrix the inclusion takes a
constant eigenstrain εeig, as seen in (b). In the second step a traction t is applied to the boundary of the
inclusion as to restore it to its original shape, which is displayed in (c). In the third step, which is shown
in (d), the inclusion is reattached to the matrix. The final step entails applying an equal but opposite force
to the combined inclusion and matrix thus restoring the system to its original state as seen in (a).

inclusion as
Matrix: ε = εc, σ = σc

Inclusion: ε = εc,σ = σc − σeig.
(2.35)

The displacement of an arbitrary point x can be stated by using the fundamental solution of
isotropic elasticity of a point force applied in the point x′

Gjk(x,x′) =
1

4πµ|x− x′|
gjk −

µ+ λ

8π(2µ+ λ)µ
|x− x′|,jk, (2.36)

and by taking the integral

ui(x) =

∫ ∞
−∞

Gij(x,x
′)bj(x′)dx′. (2.37)

For a derivation of the fundamental solution refer to Appendix (C). Since the applied traction
−t = σeig ·n is non-zero only on the boundary Γ between the inclusion and the matrix, the integral
turns into the surface integral

uc
i (x) =

∫
Γ

(
1

4πµ|x− x′|
gij −

µ+ λ

8π(2µ+ λ)µ
|x− x′|,ij

)
σjkeignkdS

′, (2.38)

where uc
i is the displacement field giving rise to the constrained strain through

εcij =
1

2
(uc
i,j + uc

j,i). (2.39)

By using Gauss’ divergence theorem, the fact that the derivative with respect to x is equal to the
negative derivative with respect to x′ for both the functions, and by utilizing that σeig is constant,

11

2.2. MICRO-MECHANICS AND HOMOGENIZATION CHAPTER 2. THEORY

Equation (2.38) can be rewritten as

uc
i (x) =

µ+ λ

8π(2µ+ λ)µ
σjkeig

(∫
Ω

|x− x′|dV ′
)
,ijk

− 1

4πµ
gijσ

jk
eig

(∫
Ω

1

|x− x′|
dV ′

)
,k

, (2.40)

where Ω is the domain of the inclusion. By naming the first integral I and the second integral J
and by rewriting σeigjk = Cjkmn0 εeigmn the displacement gradient becomes

uc
i,j(x) =

µ+ λ

8π(2µ+ λ)µ
Cklmn0 εeigmnI,ijkl −

1

4πµ
gilC

klmnεeigmnJ,kj . (2.41)

The constrained strain easily follows

εcij =

(
µ+ λ

8π(2µ+ λ)µ
I,ijkl −

1

8πµ
(gilJ,jk + gjlJ,ik)

)
Cklmnεeigmn. (2.42)

It becomes apparent that there is a fourth order tensor that maps the eigenstrain on the constrained
strain. This is the Eshelby tensor

εcij = Smnij εeigmn. (2.43)

It is clear that S is minor symmetric, it is however not major symmetric. Eshelby showed that if the
inclusion is an ellipsoid, the strain- and stress fields are uniform inside the inclusion. Additionally
an ellipsoid inclusion results in a closed form solution for S. The integrals in Equation (2.42) can
be be rewritten on a form where closed form solutions exist, where explicit expressions for the
components of S for ellipsoidal inclusions has been stated by Mura [14].

2.2.2 Equivalent Inclusions and the Strain Concentration Tensor

Consider another inclusion inside an infinite matrix. This time the inclusion has elastic properties
C that is different to the the stiffness C0 of the matrix. A constant traction is applied in the far field
of the matrix giving rise to the far field stress σ0, and strain ε0. Is there a possibility to determine
the stress and strain state inside the inclusion? If the inclusion is swapped for an inclusion with
stiffness C0 and an imagined eigenstrain εeig, it may be possible to pick an εeig such that the strain
and stress state matches the one of the inclusion with stiffness C. In that case the solution may be
stated in terms of the known Eshelby tensor. Since the solid has constant stiffness in the case of the
swapped inclusion, the solution can be viewed as the superposition of the far field stress and the
constrained stress state from the previous section. The stress inside the swapped inclusion using
Equation (2.43) becomes

σ = σc − σeig + σ0 = C0 : ((S − I) : εeig + ε0), (2.44)

where I is the fourth order identity tensor. In the original problem the stress inside the inclusion
of stiffness C is the superposition of the far field stress and some disturbance due to the jump in
stiffness

σ = σ0 + σd = C : ε. (2.45)

The strain inside the swapped inclusion, using the Eshelby tensor, is

ε = ε0 + S : εeig. (2.46)

12

2.2. MICRO-MECHANICS AND HOMOGENIZATION CHAPTER 2. THEORY

The strain inside the original inclusion is like for the stress, the far field contribution and a distur-
bance

ε = ε0 + εd. (2.47)

If the imagined eigenstrain, called an equivalent eigenstrain, is picked adequately the stress and the
strain states inside the inclusion must be identical for both situations. By equating Equation (2.46)
and (2.47) it immediately follows that the strain disturbance must be equal to the constrained
strain from the modified problem. For ellipses the strain and stress states are constant inside the
inclusion. As consequence, since ε0 is constant, ε = εd + ε0 = S : εeig + ε0 must be constant inside
the inclusion. It is therefore possible to express the strain inside the original inclusion as a tensor
relation

ε = A : ε0, (2.48)

where A is fourth order tensor called the strain concentration tensor. The equivalence of the strain
states further requires that A : ε0 = ε0 + S : εeig, so the correct choice of εeig is

εeig = S−1 : (A− I) : ε0. (2.49)

For this equivalent eigenstrain to be valid, the stresses must also be identical in the original and
modified problem. This is ensured by equating Equations (2.44) and (2.45)

C : A : ε0 = C0 : ((S − I) : εeig + ε0) = C0 : (A + S−1 − S−1 : A) : ε0. (2.50)

Equation (2.50) can be rewritten as

((C −C0) +C0S−1) : A : ε0 = C0 : S−1 : ε0, (2.51)

which in turn is rewritten as

(S : C−1
0 : (C −C0) + I) : A : ε0 = ε0. (2.52)

The only way for equation (2.52) to hold is if the two fourth order tensors on the left hand side are
each others inverses. The strain concentration tensor then follows as

A =
(
I + S : C−1

0 : (C −C0)
)−1

. (2.53)

The complete strain and stress response of the inclusion with stiffness C due to the applied far field
traction then follows by insertion into Equations (2.45) and (2.47).

2.2.3 Mean Field Homogenization

The Eshelby solution, and subsequently the equivalent inclusion method, gives an exact closed
form stress-strain relation for a single ellipsoidal inclusion perfectly bonded to an infinite matrix. A
natural next step is to study materials with many inclusions, but then the assumptions of Eshelby
no longer hold. In order to find analytical descriptions of general composite materials consisting of
many inclusions mean field approaches need to be utilized.

From here on index M denotes a matrix property, index I denotes an inclusion property and lack
of index denotes a property of the entire material. The total volume of the composite is given by
the sum of the matrix- and inclusion volumes as

V = VM + VI. (2.54)

13

2.2. MICRO-MECHANICS AND HOMOGENIZATION CHAPTER 2. THEORY

The volume fraction v of a constituent is defined as the ratio between the constituent volume to
the total volume. It follows directly from Equation (2.54) that the volume fractions must adhere to

vM + vI = 1. (2.55)

The average of a quantity f over a volume V is defined by

f = 〈f〉 =
1

V

∫
V

fdV. (2.56)

If the volume V is divided into n subvolumes, the linearity of the integral implies that Equation
(2.56) takes the form

〈f〉 = v1f1 + ...vnfn, (2.57)

where f1, ..., fn are the averages over the respective subvolumes. In other words, the average is the
sum of averages of the different constituents weighted by their respective volume fractions.

The goal of mean field homogenization is to relate the average stress of a material to its average
strain, i.e

σ = C : ε. (2.58)

By adequately choosing the volume to average over, the micro-structure can be viewed as a homo-
geneous continuum on the macro scale. It is said that the material has been homogenized. Refer
to Figure 2.4 for a visualization. In order to be able to explicitly state a homogenized stiffness

Figure 2.4: A representative volume element that captures the micro-structure of the material is shown as
a dashed box. The material properties on the macro level can be computed point-wise by averaging over
such elements.

C, certain assumptions on the mean stress and/or strain fields needs to be made. The two most
simple models are the Voigt- and Reuss estimates. The Voigt estimate assumes that the mean
strain is constant throughout the composite. The homogenized stiffness tensor of a composite with
n constituents then simply becomes

C = C1 + ...+Cn. (2.59)

On the other hand, the Reuss estimate assumes that the mean stress is constant. Under that
assumption the stiffness tensor is given by

C =
(
C−1

1 + ...+C−1
n

)−1
(2.60)

14

2.2. MICRO-MECHANICS AND HOMOGENIZATION CHAPTER 2. THEORY

The accuracy of these estimates is very poor, however it turns out that the Voigt and Reuss
estimates will give upper and lower bounds respectively of the stiffness [15]. It is possible to make
assumptions that lead to more sophisticated and accurate homogenized stiffness tensors. One such
model is the Mori-Tanaka model.

2.2.4 Mori-Tanaka Theory

Consider a composite material consisting of an isotropic matrix and elliptical inclusions. The
inclusions and matrix are perfectly bonded. The inclusions have identical shape, size, and material
properties, but their orientation varies. Mori and Tanaka [16] showed that the average stress inside
the matrix σM is uniform, under the assumption that there is no direct interaction between the
inclusions but only through the mean fields. Benveniste [17] realized that it is possible to reformulate
the Mori-Tanaka result as a direct relationship between the mean strain of one of the inclusions
and the matrix mean strain. Under the assumption of no interaction between the inclusions, the
constant average strain in the matrix carries with it that the average strain inside one arbitrarily
picked inclusion can be related to the average matrix strain through the procedure of Section 2.2.2.
As the average strain is constant in the matrix, it must be equal to the matrix far field strain. As
a consequence

εI = A : εM. (2.61)

The inclusion may be picked arbitrarily and therefore any result that follows must apply to all the
inclusions. The average strain over the entire material (including the inclusions) is equal to the far
field strain ε = ε0 since it is assumed that the average of the disturbances of all inclusions cancel.
A new strain concentration tensor A that relates the inclusion average strain to the total average
strain is introduced

εI = A : ε0 = A : ε. (2.62)

The total average strain can be expressed in terms of the matrix and inclusion averages

ε = vMε
M + vI

〈
εI〉 , (2.63)

where the average of the mean inclusion strain is computed over all inclusion orientations. Com-
bining Equations (2.61) and (2.63) results in

ε = (vMI + vI 〈A〉) : εM. (2.64)

By inverting the tensor in Equation (2.64) and inserting Equation (2.61) again, comparison with
Equation (2.62) yields a relationship between the strain concentration tensors

A = A : (vMI + vI 〈A〉)−1. (2.65)

The stiffness tensor that relates the total average strain to the total average stress can be expressed
as [15]

C = CM + vI(CI −CM) : 〈A〉 . (2.66)

A closed expression of the homogenized stiffness tensor is then finally found by combining Equations
(2.65) and (2.66)

C = CM + vI(CI −CM) : 〈A〉 : (vMI + vI 〈A〉)−1. (2.67)

It remains to compute the average over inclusion orientations. In order to achieve this an orientation
tensor is introduced.

15

2.2. MICRO-MECHANICS AND HOMOGENIZATION CHAPTER 2. THEORY

2.2.5 Orientation Tensor

Imagine a matrix material with many ellipsoid inclusions of different orientations. Let the composite
material be dilute, i.e the volume fraction of inclusions is small enough to neglect inclusions from
interacting with each other. Furthermore the inclusions are restricted to being long and thin and
possess cylindrical symmetry.

Define the vector p as the unit vector aligned with an inclusion. In Cartesian coordinates

p = sin θ cosϕe1 + sin θ sinϕe2 + cos θe3, (2.68)

where θ is the angle measured from the axis aligned with e3 and ϕ is the angle in the plane spanned
by e1 and e2 measured from the axis aligned with e1. Refer to Figure 2.5 for a visualization. The

ϕ

θ

p

Figure 2.5: The vector p for an ellipsoidal inclusion is shown.

fiber orientation distribution ψ(p(ϕ, θ)) is defined as the probability of finding an inclusion with a
direction between p and p + dp. As every fiber must have some orientation, ψ must satisfy the
normality condition ∫ 2π

0

∫ π

0

ψ(ϕ, θ)dθdϕ =

∮
ψ(p)dp = 1. (2.69)

Additionally, an inclusion is indistinguishable if it is flipped. That is, if p is swapped for −p.
Therefore ψ must be π periodic for single axis rotations of p on the unit sphere and can thus be
expanded in a Fourier series of spherical harmonics of even degree. It can be shown that it in turn
is possible to rewrite the Fourier series expansion of ψ as a series of the deviatoric part of the even
powers of p [18]. The Fourier coefficients of this series expression is given by the deviatoric part of
the so called orientation tensors. The orientation tensor of rank 2n (n = 1, 2, 3, ...) is defined by

a =

∮
p...pψ(p)dp, (2.70)

where there are 2n factors of p in the integral.

Advani and Tucker introduced the concept of orientation averaging [19]. The orientation average
of a tensor T is defined by

< T >=

∮
T (p)ψ(p)dp. (2.71)

Advani and Tucker showed that the orientation average of a symmetric tensor of even rank is fully
determined by the corresponding orientation tensor of similar rank. This is due to the fact that

16

2.3. MACHINE LEARNING CHAPTER 2. THEORY

T can, similarly to ψ, be expanded as a series in terms of powers of p, where the orthogonality of
Fourier basis functions may be exploited. It is thereby enough to determine the orientation tensors
of appropriate rank to enable the computation of the average over inclusion orientations.

2.3 Machine Learning

Machine learning, or more particularly, supervised machine learning, is the study of using vast
amounts of data to train computers to make classifications or predictions. Machine learning has
recently exploded in popularity and is now used in an array of fields. The theoretical framework of
the artificial neural networks that constitute contemporary machine learning has been understood
for many years, but the large computational cost thereof has made widespread application unfea-
sible. However, in the present day, powerful Graphical Processing Units (GPU) that can perform
many parallel computations are readily available. This has enabled the rapid growth of the field of
machine learning. The underlying mode of operation of artificial neural networks is simple, and is
an excellent example of an emergent algorithm.

2.3.1 Artificial Neurons

The artificial neuron is the fundamental building block of an artificial neural network. Its mode
of operation is inspired by the neurons of the human brain. Every artificial neuron has a number
of inputs and an output which in turn connects to other neurons. The output signal is decided
by studying the sum of the inputs. The neuron of the brain is thought to fire only if a certain
threshold potential is reached at its input. The threshold potential is modeled in the artificial
neuron by letting one of the inputs be a fixed value called a bias. To determine if the artificial
neuron fires or not, the sum z of the bias and the inputs is fed through an activation function. One
of the most common activation functions is the logistic function

f(z) =
1

1 + e−z
. (2.72)

The logistic function in Equation (2.72) takes values between 0 and 1. The derivative of the logistic
function is easily found to be

df(z)

dz
= f(z)(1− f(z)). (2.73)

If the bias is a large negative value, the logistic function will return values close to zero as long as
the sum isn’t large enough. In the analogy of the human brain, the neuron won’t fire if the total
signal from the connecting input neurons is smaller than the threshold potential. A schematic of
an artificial neuron can be seen in Figure 2.6.

17

2.3. MACHINE LEARNING CHAPTER 2. THEORY

y1

y2

y3

b

z f(z) x

Figure 2.6: A schematic of an artificial neuron with 4 inputs (of which one is a bias), and one output. The
output signal x = f(z) is determined through the sum of the inputs z = y1 + y2 + y3 + b passed through
the logistic activation function f .

2.3.2 Feed Forward Neural Networks

An Artificial Neural Network (ANN) consists of many connected artificial neurons. One of the sim-
plest, but very useful, network structures is the Feed Forward Artificial Neural Network (FFANN).
The FFANN consists of an ordered layer structure where outputs from the neurons of one layer
makes up the inputs of the subsequent layer’s neurons, hence the name feed forward. The first
layer is the input layer and consists of nin neurons. Following the input layer, Nh so called hidden
layers follow. Each hidden layer has n1, ..., nNh number of neurons respectively. The final layer is
the output layer and has nout number of neurons. Each neuron of any one layer is connected to
every neuron of the following layer. Every connection in the network is supplied with a weight. The
weights scale the respective outputs before they are being fed as input to the following neurons.
The final component that makes up the basic structure of the network is the bias signals. There is
a set of bias signal between every layer of the network. Every set of biases connects to the neurons
of the layer directly following it, and is added to the inputs. As an example, a simple network
structure with nin = 4, Nh = 2, n1 = 3, n2 = 3, and nout = 2 is shown in Figure 2.7.

Figure 2.7: The structure of a simple Feed Forward Artificial Neural Network (FFANN) is displayed. This
network has an input layer with four neurons, two hidden layers with three neurons each, and an output
layer with two neurons. There are also bias signals being introduced between every layer. The input signal
enters on the left side and the output signal exits on the right side of the diagram.

The output from every neuron in every layer is described with a single variable. The information
can be presented even more compactly if every layer is represented by a vector where the length
is the number of neurons in that layer. If the weights between every pair of subsequent layers are

18

2.3. MACHINE LEARNING CHAPTER 2. THEORY

gathered in matrices and the biases are gathered as vectors, the structure of the network allows the
feed-forward of signals to be treated as repeated matrix-vector multiplications and additions. After
every multiplication followed by a summation, the resulting vector is furthermore passed through
the activation function. The weight matrices and vectors of neural networks are often incorrectly
referred to as tensors. The matrices and vectors in the basic formulation of neural networks doesn’t
necessarily transform in the required way under a change of coordinates. It would be more correct
to call them arrays, but index notation may be used to describe them nonetheless.

When using index notation, and the Einstein summation convention, to describe the network it is
important to note that the range of the indices is not always the same. Let the vector representing
the input layer be denoted by xi0, then i = 1, ..., nin. On the other hand, the vector representing
the output layer is xjout, and j = 1, ..., nout. The remaining layers are represented by the vectors
xi1, ..., x

i
Nh

and i ranges between 1 and n1, ..., nNh respectively. Let wi0j be the matrix of weights
connecting the input layer and the first hidden layer and let bi0 be the bias signal. The input to the
first hidden layer is then given by

yi1 = wi0jx
j
0 + bi0, (2.74)

and the first layers output follows as

xi1 = f(yi1) = f(wi0jx
j
0 + bi0), (2.75)

where f is the logistic activation function. Let wik′j be the matrix connecting the k′th and k′+ 1th
layers1, and let bik′ be the corresponding vector of biases. The inputs and outputs of the hidden
layers then follow the form

yik′+1 = wik′jx
j
k′ + bik′ and xik′+1 = f(yik′+1), (2.76)

where k′ = 1, ..., Nh − 1. Finally, the matrix connecting the last hidden layer and the output layer
is wiNhj

and the bias is biNh
. The network output is thus computed as

xiout = yiout where yiout = wiNhj
xjNh

+ biNh
. (2.77)

Note that there is no activation function for the output layer, which would constrict the components
of xiout between 0 and 1. This choice is made to enable the output signal to span any range of
outputs.

It has been shown by Cybenko [20] that an FFANN with one hidden layer, containing a sufficient
amount of neurons, and logistic activation functions can approximate any n-dimensional continuous
function with support in the unit n-hypercube, i.e. the function is only 0 on a set of measure 0
inside the unit hypercube. This fact is often called the Universal approximation theorem. Recent
mathematical developments have resulted in a similar result but for networks with a sufficient
number of hidden layers each containing a set amount of neurons [21]. These types of networks,
with more than one hidden layer, are what is referred to as Deep Neural Networks (DNN). The
consequences of the approximation theorems is that it is possible to map any input on any chosen
output. This enables the network to make data classification. There is however an issue with how
to chose all the weights and biases to achieve the desired mapping. Luckily, it is possible to train
a network with arbitrary weights that is making incorrect predictions. By training the network it
learns how to adjust the weights and biases to make accurate predictions.

1It is important to note that k′ is not an index in the index-notation sense. It is distinguished from other indices
by the prime symbol.

19

2.3. MACHINE LEARNING CHAPTER 2. THEORY

2.3.3 Training Feed Forward Neural Networks

Consider an FFANN as stated in the previous section where all the weights and biases have some
initial arbitrary values. Let x̂iout be the desired output for a given input xi0. However, since the
weights and biases are arbitrary, the actual output xiout most certainly differs from the desired
output. The error-, or cost function, is defined by

C = (x̂iout − xiout)(x̂
j
out − x

j
out)gij , (2.78)

and measures how much the calculated output differs from the correct output. Here gij is a positive
definite symmetric matrix of weights inspired by the metric tensor, and allows to put emphasis on
the importance of certain entries of the output. If the accuracy of all outputs are equally important,
gij simply is the identity matrix. Since the square of the error is computed, C ≥ 0. Therefore if
one were to minimize C the actual output would be as close as possible to the desired one.

For any fixed input, the cost function C is a function of all the weights and biases of the entire net-
work. Accordingly, the error is minimized if C is minimized with respect to wi0j , bi0, wi1j , bi1, ..., wiNhj

,

and biNh
. The naive approach would to simply solve for gradw,bC = 0 by Newton iteration. However

the data vectors of ANN are usually very large and would result in enormous data structures of
second derivatives which simply is not feasible to store. As an alternative, gradient descent methods
are employed.

The change in the cost function with respect to the weights wiNhj
is computed through the chain

rule
∂C

∂wkNhl

= −2
∂yiout

∂wkNhl

(x̂jout − x
j
out)gij . (2.79)

Similarly, the change with respect to the bias bNi
h
is computed as

∂C

∂bkNh

= −2
∂yiout

∂wkNh

(x̂jout − x
j
out)gij . (2.80)

All the remaining partial derivatives can be computed iteratively through repeated application of
the chain rule. The change with respect to the weight matrix wik′j is

∂C

∂wkk′l
= −2

∂yiout

∂xk1Nh

∂xk1Nh

∂yl1Nh

∂yl1Nh

∂xk2Nh−1

...
∂xkmk′+1

∂ylmk′+1

∂ylmk′+1

∂wkk′l
(x̂jout − x

j
out)gij , (2.81)

where m = Nh − k′. The change with respect to bias bik′ is

∂C

∂bkk′
= −2

∂yiout

∂xk1Nh

∂xk1Nh

∂yl1Nh

∂yl1Nh

∂xk2Nh−1

...
∂xkmk′+1

∂ylmk′+1

∂ylmk′+1

∂bkk′
(x̂jout − x

j
out)gij . (2.82)

It is thereby clear that if one has computed the change with respect to wik′j and bik′ , the change
with respect to wk(k′−1)l and b

k
k′−1 can be found by computing just 4 new derivatives. Specifically

∂y
km+1

k′+1

∂x
lm+1

k′

,
∂x

lm+1

k′

∂y
km+2

k′

,
∂y

km+2

k′

∂wk(k′−1)l

, and
∂y

km+2

k′

∂bkk′−1

. (2.83)

20

2.3. MACHINE LEARNING CHAPTER 2. THEORY

The individual factors in the chains of derivatives above are easily evaluated. The derivative of the
activation may be computed by using Equation (2.73):

∂xik′

∂yjk′
=
∂f(yik′)

∂yjk′
= f(yi

′

k′)(1− f(yi
′

k′))δ
i
j = xi

′

k′(1− xi
′

k′)δ
i
j . (2.84)

Here a slight deviation is made from the established index notation. Namely, the index i′ in Equation
(2.84) always takes the same value as the index i of the Kronecker delta. All the remaining factors
follow the forms

∂yik′+1

∂xjk′
= wik′j ,

∂yik′+1

∂wkk′l
= δikx

l
k′ , and,

∂yik′+1

∂bjk′
= δij . (2.85)

The workflow for calculating all the weight and bias derivatives at their current value is called
Backpropagation. A forward pass is first made by letting the input signal pass through the network,
and all the x-vector components are computed. Thereafter the derivatives are propagated backwards
through the network following the procedure established in Equations (2.80) through (2.85).

Once the gradient ∇w,bC is computed, it is possible to take a step in a gradient descent scheme.
One of the simplest available methods is to simply change all the wij and bi in the gradient direction.
A parameter α, called the learning rate, is introduced. The updated weights and biases become

winewj = wioldj − α ∇w(Cold)ij and binew = biold − α ∇b(Cold)i. (2.86)

It’s possible to iterate on this scheme until the parameters converge and C is minimized. However,
there is a major issue. All the steps in the algorithm stated in this section build on choosing a
fixed xin with a corresponding x̂out. Minimizing the error doesn’t necessarily imply that the error
is minimized for other inputs. The network might be over-fit in order to ensure that xin maps to
x̂out, an analogy would be using an nth degree polynomial as a curve fit for n data points. The
remedy is to modify the cost function to account for several different xin with corresponding x̂out.

Let Ndata be the total number of available input vectors xiin with corresponding desired outputs
x̂iout. The data points can further be divided into Nbatch batches of size N = Ndata/Nbatch. The
cost function is modified to be the average of the batch cost functions:

C(w0, b0, w1, b1, ..., wNh , bNh) =
1

N

N∑
n=1

Cn, (2.87)

where Cn is the cost function for one individual data point in the current batch. The gradient of
this modified cost function follows directly from the previously derived gradient due to the linearity
of the derivative. The iteration scheme is changed into the following algorithm:

1 : Compute gradient of C at the current value of wij and b
i for the first batch.

2 : Take a gradient descent step according to Equation (2.86).
3 : Repeat 1 and 2 for all remaining batches.

(2.88)

Running the algorithm presented in Equation (2.88) one time (one gradient step per batch) is called
training the network for one epoch. The network may need to be trained for many epochs before
the cost function, and subsequently the prediction error, is satisfyingly small.

21

2.3. MACHINE LEARNING CHAPTER 2. THEORY

The optimization algorithm gradient descent is quite primitive and has several shortcomings. One
major issue is the fact that it quite easily converges to local minima instead of the global minimum.
A possible remedy for convergence to early local minima is to add momentum to the gradient.
Simply put, the actual gradient step is calculated by averaging the current gradient with the gradient
of one or several of the previous steps. By possesing momentum the gradient more easily avoids
local minima by making it less sensitive to small local fluctuations. Additionally, momentum can
mitigate to rapid gradient updates due to noisy data. A very popular momentum algorithm is
ADAM [22]. Using ADAM can increase the probability of convergence to an appropriate minimum.
Another technique that can improve the prospects of convergence is the normalization of input data.
Convergence is usually faster if the average of the input variables is close to zero and that the input
variance is close to one [23]. Therefore it might be beneficial to pre-process the input data by
subtracting the input mean and dividing by the input variance. The normalization of the inputs
may be carried out using the population statistics. A more novel and possibly superior method is
to introduce a few extra trainable parameters and normalize the inputs batch-wise [24].

2.3.4 Network Hyperparameters

In the previous sections, several parameters that are not directly trainable with the gradient descent
method have been introduced. Some examples are the number of hidden layers Nh, the number
of nodes per layer n1, ..., nNh , and the learning rate α. These parameters are referred to as hyper-
parameters which add a new layer of complexity in network optimization. A lot of contemporary
research is dedicated to finding out how to choose hyperparameters optimally. Having said that,
hyperparameters are very often picked heuristically and a considerable amount of valid network
structures are discovered through trial and error.

2.3.5 Recurrent Neural Networks

The architecture of the FFANN described in Sections 2.3.2 and 2.3.3 has one major limitation. Any
given network is designed and trained for a fixed number of input- and output neurons. Ideally,
some time dependent phenomenon could be modeled by an FFANN with N · NT input neurons,
where N is the number of variables that are fed to the network and NT is the number of time
steps. However, this network would not be able to predict what happens at time step NT + 1, or
even predicting the behavior for a time series shorter than NT since that would require a different
number of input neurons. For many areas of application the phenomenon that is to be predicted has
a changing number of time steps. Examples could be stock market predictions where the amount of
available market data grows with time, or path-dependent plasticity with different possible loading
conditions. One solution is introducing ANN with internal variables that update every time data
is fed to the network. Such networks are called Recurrent Neural Networks (RNN).

A layer of an RNN is very similar to those of FFANN. The major difference is that it has two inputs
that vary with time. One input is the regular input of the FFANN, the second input is however
dependent on the output of the previous time step. Let an index inside square brackets [t] denote
the time step, where t = 1 is the first time step. A new hidden state variable hik′[t] for the k′th
hidden layer and time step [t] is introduced. As before, let wik′j be the matrix of weights connecting
the k′th and the k′+ 1th hidden layers, and let bik′ be the bias between the k′th and k′+ 1th layers.
In addition, let uik′j be the matrix of weights connecting the k′th layer in the current time step to

22

2.3. MACHINE LEARNING CHAPTER 2. THEORY

the previous time step. While uik′j connects layers through time it is independent of time itself.
The input, output, and updated hidden state variable of such a layer is then given by

xik′+1[t] = hik′[t] = f(yik′+1[t]) and yik′+1[t] = wik′jx
j
k′[t] + uik′jh

j
k′[t−1] + bik′ . (2.89)

Here k′ = 0, 1, ..., Nh − 1. The weights and biases following the input layer corresponds to k′ = 0.
The weights and biases connecting the final hidden layer to the output is in a conventional RNN
chosen to have no dependence on a hidden state, but more novel implementations may use recurrent
output layers [25]. The activation before the output layer is furthermore chosen as the identity
function like for the FFANN. This is to allow the components of the output vector to span an
arbitrary range. The output of the RNN is given by

xiout[t] = yiout[t] = wiNhj
xjNh[t] + biNh

. (2.90)

The hidden state of acting as input in the first time step i.e. hik′[0], is most often chosen as the zero
vector.

The function f in Equation (2.89) is generally not chosen as the logistic function due to the vanishing
gradient problem, which will be explained in more detail later. As an alternative activation the
hyperbolic tangent is used, which is defined by

f(x) = tanh (x) =
ex − e−x

ex + e−x
. (2.91)

The hyperbolic tangent has a similar shape to the logistic, but has an output range of −1 to 1. The
derivative of the hyperbolic tangent is

df(x)

dx
= 1− f(x)2. (2.92)

The derivative of the hyperbolic tangent typically has a larger magnitude than the derivative of the
logistic activation function. This motivates its use in RNN, as one of the countermeasures to the
vanishing gradient problem.

The weights and biases of an RNN is like for a regular FFANN decided by minimizing a cost
function. However, the minimization problem needs to be modified to account for the fact that the
outputs of previous time steps influence the future predictions. This modified procedure is called
Backpropagation Through Time (BPTT) [26].

2.3.6 Training Recurrent Neural Networks

The RNN as stated here takes an input, and gives an output for every time step. The total output
will be time series data. As the desired output also is a time series, the cost function needs to be
formulated as the average of the discrepancies at every time step. Let x̂i[t] be the desired output at
time t and let NT be the total number of time steps (), the cost function for one time series is then
given by

C =
1

NT

NT∑
t=1

C[t] =
1

NT

NT∑
t=1

(x̂iout[t] − x
i
out[t])(x̂

j
out[t] − x

j
out[t])gij . (2.93)

23

2.3. MACHINE LEARNING CHAPTER 2. THEORY

To investigate how the error changes with the adjustment of the weights and biases of the network,
backpropagation through time is employed. The derivative of the cost function with respect to the
weight wik′j is found through the chain rule as before. However, every instance of yik′+1[t] not only
has a dependence on the previous layers through xik′[t] but also on the previous time step through
hik′[t−1]. The derivatives are branching. The derivatives with respect to uik′j and bik′ are found
analogously and are not stated here explicitly.

The change in the cost functions C[t] due to the change in wiNhj
and biNh

is computed the same way
as in the FFANN case through equations (2.79) and (2.80). The derivatives with respect to some
arbitrary layer’s weights wik′j however displays a more complicated behavior. The first branching
follows as

∂C[t]

∂wkk′l
= −2

∂yiout[t]

∂xk1Nh[t]

∂xk1Nh[t]

∂yl1Nh[t]

(
∂yl1Nh[t]

∂xk2Nh−1[t]

∂xk2Nh−1[t]

∂wkk′l
+

∂yl1Nh[t]

∂hk2Nh−1[t−1]

∂hk2Nh−1[t−1]

∂wkk′l

)
(x̂jout[t] − x

j
out[t])gij .

(2.94)
The derivatives inside the parentheses are expanded as

∂xk2Nh−1[t]

∂wkk′l
=
∂xk2Nh−1[t]

∂yl2Nh−1[t]

(
∂yl2Nh−1[t]

∂xk3Nh−2[t]

∂xk3Nh−2[t]

∂wkk′l
+

∂yl2Nh−1[t]

∂hk3Nh−2[t−1]

∂hk3Nh−2[t−1]

∂wkk′l

)
, (2.95)

and as

∂hk2Nh−1[t−1]

∂wkk′l
=
∂hk2Nh−1[t−1]

∂yl2Nh[t−1]

(
∂yl2Nh[t−1]

∂xk3Nh−1[t−1]

∂xk3Nh−1[t−1]

∂wkk′l
+

∂yl2Nh[t−1]

∂hk3Nh−1[t−2]

∂hk3Nh−1[t−2]

∂wkk′l

)
. (2.96)

The derivative splits into two branches at every layer. The first branch is the recognized derivative
of regular backpropagation. The second branch is new to RNN. It is a backpropagation through
time. It is evident that the first type of branching keeps occurring until the k′th layer is reached,
and that second type repeats until [t] = [0]. Once the derivatives pertaining one set of wik′j are
computed the derivatives for bik′ follow by just computing a few additional derivatives. However,
the amount of derivatives that needs to be evaluated increase by a multiplication of t. Similarly,
once the wik′j derivative of the cost function C[t] is known the derivative of C[t+1] is received by the
additional evaluation of the derivatives along the first type of branching only. The newly presented
BPTT scheme can be summarized as follows: Start backpropagating C[1] and then use previous
information as the derivatives for following C[t] are computed.

Identically to the FFANN case, the cost function needs to be some type of average of the available
data to yield representative results. The procedure of dividing the desired outputs (now time
series) into batches is the same as stated previously. That is, the cost function in Equation (2.93) is
computed for all points in a batch and averaged through the scheme presented in Equation (2.87).
The length of the different time series NT making up the data do not need to have the same length.
Once the cost function is received gradient descent can be carried out as presented in Equation
(2.88), with the modification that the gradient with respect to the uik′j is furthermore computed.
Due to the rapid branching in the computation of the RNN cost function derivatives it becomes
evident that RNN are computationally expensive. Therefore, the number of RNN layers are usually
kept to a minimum. The network doesn’t need to be shallow though, as regular time independent
FFANN layers can be inserted into an RNN.

24

2.3. MACHINE LEARNING CHAPTER 2. THEORY

An issue that optimization of RNN faces is the vanishing gradient problem. The derivative of the
activation function is less than 1, so repeated differentiation through the chain rule tends toward
zero. For an RNN that is propagating through many time steps this problem makes training the
network very difficult. This problem applies to both the logistic function and the hyperbolic tangent,
but the derivative of the hyperbolic tangent tends to be of greater magnitude and therefore a little
bit less affected. As a way to circumvent the issue of vanishing gradients the RNN architecture is
modified to allow for derivative truncation. The idea is to let the network only pass information a
finite distance in time before forgetting it. A successful implementation of a mechanism enabling
forgetting information is Long Short Term Memory (LSTM) networks introduced by Hochreiter
and Schmidhuber [27], and later refined by Gers and Cummins [28]. The LSTM architecture
introduces a new hidden state which keeps track of which information is relevant for long term
behavior. By forgetting things that have no influence on long term behavior, the predicament
of vanishing gradients is mitigated. Another RNN implementation that remedies the vanishing
gradient problem is the Gated Recurrent Unit (GRU) introduced by Cho et al. [29]. The GRU
contains two gate functions that determine how much of the information contained in the hidden
state from previous time steps remains, and how much new information from the current time step
is introduced respectively. The GRU implementation is computationally quicker than the LSTM
one, however it is difficult to know which one suits a certain task better. In general both methods
need to be tried.

25

3 Methodology

The method adopted in this project consists of three parts. The first part entails generating a large
number of stress-strain curves that are representative of the mechanical response of the composite
being studied. One pair of composite constituents is chosen for modeling, while the volume fraction
of fibers and their orientation is left as free variables used for prediction. The second part consists
of designing an artificial neural network, and training said network to predict the macroscopic stress
inside a composite material given the strain history. The final part comprises the validation of the
created model on a representative group of loading conditions. The first and third part of the work
contains all the physical considerations, while the second part is purely data-scientific. The first
part contains the material modeling considerations and the final part encompasses investigating the
viability of the generated model by considering the physicality of model responses. The composite
materials investigated in the current work are assumed to be completely rate independent, therefore
all simulations are quasi-static. The strains are assumed small enough to be able to use small strain
theory, i.e there is a linear relation between displacement gradient and stress for materials in their
elastic regime.

3.1 Generation of Training Data

The generation of training data for the artificial neural network is divided into two main parts.
The first part consists of generating strain paths that cover a representative spectrum of loading
conditions. Additionally, for each strain path a second order orientation tensor with a corresponding
fiber volume fraction is also generated. The second part entails in using the strain paths as input
data to perform strain controlled micro-mechanical simulations of various fiber distributions using
a suitable material model. The simulations result in the macroscopic stress of the investigated
composites. When training the network, the generated strain paths, orientation data, and fiber
volume fractions are fed as inputs, and the corresponding stress responses pose as the quantity
being predicted.

3.1.1 Generation of Strain Paths

In order to be able to build a network that can learn the proper path dependency of plasticity,
representative strain paths need to be generated. The paths used for training need to be varied

26

3.1. GENERATION OF TRAINING DATA CHAPTER 3. METHODOLOGY

enough for the network to be able to recognize complicated paths without losing the ability to
predict common simple situations such as uni-axial stress. As an example, if the strain fed to the
network is white noise, it is very likely that the network won’t consider uni-axial stress states as a
possibility. Randomly sampled data is however useful in ensuring a good distribution of data. The
problem transforms into generating data that is random enough to capture a large enough family of
load paths without sacrificing accuracy in typical load cases. Random sampling has been used by
other authors to generate adequate strain data. One example is sampling a set of random points in
strain space and subsequently using an interpolator to connect the points to form paths radiating
from the origin [30]. In this present work, an alternative but similar approach is taken.

First, the components of a 6-dimensional vector representing a direction in the space of independent
strain are sampled independently from each other. The samples are normal distributed with mean
µ = 0 and standard deviation σ = 1. The vector is normalized such that its magnitude is 1. The
resulting probability density function of the vector will be uniform on the 6-dimensional unit sphere.
The direction of this vector is hereby referred to as the drift direction.

Secondly, a number of steps nstep is chosen, and an ordered set of nstep additional random vectors
are generated in the same fashion. These new random vectors are scaled by some factor γ between
0 and 1. The additional vectors are from now on called noise vectors. As a third step, the drift
direction is added to the noise vectors. The result is nstep randomly distributed vectors with a clear
bias in the drift direction. The strain path may then be generated by taking the cumulative sum
of the 6-dimensional vectors. The cumulative sum will be a time series consisting of small steps in
6-dimensional strain space.

As a final part of the algorithm, a number of drift directions ndrift are chosen. The previously
described process of picking a drift direction, adding noise, and taking the cumulative sum is
repeated ndrift times. The total strain path is taken as the cumulative sum of all the individual
paths. The length of the time series is (nstep · ndrift) + 1, where the first entry is the zero vector.
As a normalizing measure, the largest entry of the time series, denoted by M , is identified and the
entire time series is then scaled by εmax/M where εmax is the largest admissible strain component.
In order to ensure that also uni-axial strain states may arise, an option is added to isolate one strain
component before the scaling step and set all the other time series components to 0. A flowchart
clarifying the steps of the generation algorithm is presented in Figure 3.1.

The presented algorithm is motivated by several considerations. To begin with, the algorithm is
quite simple and can be implemented with just a few lines of code. Moreover, it allows for a large
range of possible strain paths by varying the parameters, nstep, ndrift, γ, and εmax. By generating
the strain paths from picking drift directions and adding noise, the strain paths are enabled to
consist of long term trends with local fluctuations. It is thus assumed to be able to capture any
type of reasonable loading path. The strain paths can thereby be generated randomly without
forgoing the ability to capture behavior such as uni-axial loading. The normal components of a
typical strain path generated by the presented algorithm can be seen in Figure 3.2. Since the shear
components are generated identically to the normal components they are left out of the visualization
for readability.

27

3.1. GENERATION OF TRAINING DATA CHAPTER 3. METHODOLOGY

Start.
Sample
parameters.

i=1

Finish.

true

false

i=i+1

i==n_drift
if:

Drift direction.

n_step noise vectors.

Scale by γ

Add to cumulative sum.

Figure 3.1: A flowchart demonstrating the proposed method of generating strain paths.

(a) Influence of drift (b) Influence of noise

Figure 3.2: The normal strain components of a typical strain path generated according to the presented
algorithm is displayed. Subfigure (a) shows the complete time evolution of the strain path and demonstrates
how the drift directions influence the paths. Subfigure (b) on the other hand, which contains only the first
20 ms of the path, demonstrates the influence of the added noise.

3.1.2 Random Sampling of Orientation Tensors

The trace of the second order orientation tensor must be unity [19], and its eigenvalues must
be non-negative. To uniformly sample from the set of all possible orientation tensors, one may
uniformly sample triplets of eigenvalues and thereafter perform a coordinate transformation through
a randomly chosen rotation. Uniform sampling of three eigenvalues between 0 and 1 that sum to 1
can be achieved by sampling uniformly from the standard 2-simplex. Algorithmically, this can be

28

3.1. GENERATION OF TRAINING DATA CHAPTER 3. METHODOLOGY

implemented by sampling 2 points uniformly in (0, 1) and using the length of the three segments
these two points make up together with 0 and 1 as the three eigenvalues [31]. To ensure the
generation of single axis fiber distributions a special case is added to the algorithm where one
eigenvalue is set to 1 randomly while the others are set to 0. Arbitrary rotations may be sampled
uniformly in a computationally efficient manner through an algorithm proposed by Arvo [32]. First,
a single-axis rotation with the rotation matrix R(θ) is performed, where the angle θ is sampled
uniformly in [0, 2π]. Thereafter, the axis of rotation is in turn reflected to an arbitrary point on the
unit sphere with uniform probability through a negatively scaled Householder transformation

−H = 2vvT − I. (3.1)

The vector v is given by

v =

cosϕ
√
z

sinϕ
√
z√

1− z

 , (3.2)

where ϕ is sampled uniformly from [0, 2π] and z is sampled uniformly from [0, 1]. The total rotation
matrix M = −HR, which is sampled uniformly from the set of all possible rotations, is the
composition of the two transformations. As the orientation tensor is of the second order, it requires
two transformation tensors to achieve a change of coordinates. In matrix notation this is written
as

a = MãMT, (3.3)

where ã is the matrix representation of the diagonal tensor whose entries are the uniformly sampled
eigenvalues, and a is the matrix representation of the resulting uniformly sampled orientation tensor.
A flowchart visualizing the steps of the generation algorithm is shown in Figure 3.3.

Start.

Finish.θ

v

Figure 3.3: A flowchart demonstrating the proposed algorithm for uniform sampling of orientation tensors.

3.1.3 Chosen Material Model

The material chosen for modeling has linearly elastic fibers and an isotropic J2 elasto-plastic matrix.
The hardening is however of a linear exponential type. The free energy of such a material is given

29

3.1. GENERATION OF TRAINING DATA CHAPTER 3. METHODOLOGY

by

ψ(σ, k) =
1

2
Cijklεeijε

e
kl +

1

2
Hk2 +H∞

(
1

m
emk − k − 1

m

)
, (3.4)

where H∞ and m are new material parameters. From now on H∞ is is referred to as the hardening
modulus while H is called the linear hardening modulus. The parameter m is called the hardening
exponent. The yield function is still given by

Φ(σ, κ) = σM − (σy + κ), (3.5)

and the expressions for k̇ and ε̇p also remains unchanged. However, the micro hardening stress is
modified and takes the appearance

κ = −∂ψ
∂k

= −Hk +H∞
(
1− emk

)
. (3.6)

The plastic multiplier is as before received from the plastic loading condition

Φ̇ =
∂Φ

∂σ
: σ̇ +

∂Φ

∂κ
κ̇ = 0, (3.7)

but since κ is modified λ takes the form

λ =
3µ

(3µ+H +H∞memk)

σdev

σM
: ε̇. (3.8)

The complete equations of evolution for the state variables become

Elastic loading/unloading (Φ < 0) : ε̇p = 0, σ̇ = 2µε̇dev + 3Kε̇vol, k̇ = 0

Plastic loading (Φ = 0) : ε̇p =
9µ

2(3µ+H +H∞memk)

σdev

σM

σdev

σM
: ε̇,

σ̇ = 2µε̇dev + 3Kε̇vol − 9µ2

(3µ+H +H∞memk)

σdev

σM

σdev

σM
: ε̇,

k̇ = − 3µ

(3µ+H +H∞memk)

σdev

σM
: ε̇.

(3.9)

The material model has several layers of complexity which is a good stress test for the machine
learning model. If the model can capture phenomena like saturation of the micro hardening stress
(the exponential part vanishes when |k| grows) it is a good indications that machine learning is a
suitable method to accurately model complex composite materials.

In an article by Kammoun et al. [33], the proposed hardening law was used to accurately describe
a Polyamide 6,6 matrix reinforced with short glass fibers. This composite is manufactured through
injection molding which makes it relevant in the context of the current project. The values of the
elastic parameters and inclusion dimensions are here taken directly from the mentioned article. The
plastic material parameters however are only stated in the article as the relative values in terms of
initial yield stress. The numerical value of the initial yield stress is classified information. In the
present work the initial yield stress is therefore taken as σy = 25 MPa which is a typical value for

30

3.1. GENERATION OF TRAINING DATA CHAPTER 3. METHODOLOGY

the used type of material, for example see [34]. All the numerical values used for modeling can be
seen in Table 3.1.

Table 3.1: The material parameters used for modeling the SFRC.

Parameter Value

Fiber E 76 GPa
ν 0.22

Matrix

E 3.1 GPa
ν 0.35
σy 25 MPa
H 150 MPa
H∞ 20 MPa
m 325

3.1.4 Computing the Stress Response

The stress response pertaining a given strain path and fiber distribution is computed via micro-
mechanical simulations. The simulations are performed using a mean-field approach where Mori-
Tanaka theory, as described in Section 2.2.4, is used for homogenization. The volume averages are
computed using orientation averaging via orientation tensors as presented in Section 2.2.5. The
software digimat-mf [35] is utilized for the simulations.

Eshelby’s theory, and by extension Mori-Tanaka theory, makes the assumption of linear elasticity.
When the prerequisites for these theories are fulfilled, the strain and stress fields are uniform inside
inclusions. This is not necessarily true for non-linear material models. In order to generalize the
Mori-Tanaka homogenization scheme, the inclusion state variables first need to be homogenized.
From there the non-linear model may be linearized and mean field homogenization can be carried
out. digimat handles eventual non-uniformities in the relevant fields by introducing a comparison
material at every time step. The comparison material is defined through volume averaging of
the composite phases, such that the tangent operators used for solving the equations of elasto-
plasticity numerically are uniform inside every phase. digimat allows for a first and second order
homogenization. In first order homogenization the actual material model is used, but the volume
average of the strain field is used in computing the tangent operators. Second order homogenization
uses higher order information of the strain field to evaluate the comparison material. Second order
homogenization shows a significant improvement in accuracy over first order homogenization when
there is a large difference between matrix and inclusion stiffness and the matrix exhibits little
hardening [35]. In the present work these conditions are fulfilled and second order homogenization
is therefore chosen.

In digimat the material micro-structure and loading is defined by the user, and the software
subsequently computes the response of the material under study. Each phase of the micro-structure
is defined through picking a material model and entering the appropriate material parameters. The
micro-structure is built by entering the volume fractions of the different phases and the geometry
of inclusions. In the present work only one type of inclusion is used, that is, all inclusions use the

31

3.1. GENERATION OF TRAINING DATA CHAPTER 3. METHODOLOGY

same material and geometry but may have different orientations. The inclusions are are set as an
isotropic linearly elastic material and the matrix is set to an isotropic elasto-plastic (J2-plasticity)
material with an exponential linear hardening law. The geometry of the inclusions is determined by
defining an ellipsoid radius and length to diameter aspect ratio. As a final step in defining the micro-
structure, the orientation distribution of the inclusions is determined by defining the second order
orientation tensor. The fourth order orientation tensor is also required to compute the orientation
average of fourth order tensors like the stiffness tensor. Since the user only enters the second order
tensor (which in general is the information available after an injection molding simulation) the
fourth order tensor needs to be approximated. In digimat, the fourth order orientation tensor is
approximated from the second order orientation tensor via the orthotropic closure approximation
following Cintra and Tucker [36]. Strain controlled loading is chosen for the simulations and is
entered as a user defined strain history. After a digimat simulation is completed, each of the
macroscopic stress components corresponding to the time stamps of the input strain path is saved
as training data.

3.1.5 Implementation

The generation of training data is controlled via a small program written in the programming
language julia [37]. The process of running digimat simulations can be automated by calling a
pre-made .bat file through Windows PowerShell, with the path to a .mat file containing all the
analysis parameters as an argument.

The julia program first generates the strain data and orientation tensors used as input according
to the presented algorithms. The total number of steps in the strain paths are set to N = 2000. A
pseudo-time variable is also created that starts at 0 s and ends at 1 s with N increments. The time
range is completely arbitrary due to the rate independence of the plasticity, and is simply chosen
to match the default settings of digimat.

The motivation for long time sequences as training data is that an LSTM network trained on long
sequences would be able to make accurate predictions on shorter input sequences. This follows
from the fact that the short sequences are contained in the long ones owing to the construction of
the generation algorithm. However, the length of the sequences is a trade-off between generality
and computational cost. The chosen number of time steps results in a ∆t of 0.5 ms, which may be
considered fine enough for many engineering applications. As pointed out, the mechanics are rate
independent. It is therefore possible to re-scale any engineering problem to be contained between
the bounds 0 and 1 s. The ∆t should accordingly be interpreted as the level of dynamics in the
load paths that the model can handle.

For each generated strain path the generation parameters are sampled randomly. The noise mul-
tiplicative factor γ is chosen between 0 and 1 from a uniform distribution. The number of drift
directions ndrift is chosen uniformly from the set (1, 2, 5, 10, 20, 25, 50, 100, 200), and the number of
steps nstep per direction is subsequently chosen such that ndrift · nstep = N . This set of number
of drift directions is chosen arbitrarily, motivated only by allowing a fairly large range of path
complexities, where ndrift = 1 would mean essentially a perturbed linear function and ndrift = 200
would result in a highly complex path. Furthermore, the maximum admissible strain component
εmax is sampled uniformly between 0.01 and 0.05. This range captures a full range of reasonable

32

3.2. SELECTION OF ARTIFICIAL NEURAL NETWORK CHAPTER 3. METHODOLOGY

loading conditions. The lower bound allows loading that does not lead to plasticity and the upper
range of 0.05 is kept since failure is extremely likely to occur beyond that point.

For every strain path a corresponding orientation tensor is generated. The case of uni-axial fiber
alignment is chosen with a probability of 10% during generation. As an additional parameter
associated with the fiber distribution, the fiber volume fraction vF is chosen randomly between 10
and 15%. The volume fraction is allowed to vary as volume fraction will be dependent on position
after injection molding. The range of volume fraction is kept small to make training the network
easier.

Finally, the strain paths and orientation tensors are written into .mat files together with the
material parameters. All the remaining required parameters are left as their default values. The
.mat analysis files are subsequently sent as argument to the .bat program through a PowerShell
extension to julia. The output stress data is parsed for the data points that matches the time
stamps of the input strain signal and saved. As a final measure the .mat files and the unprocessed
solution files are deleted to conserve hard drive space. The full workflow for the generation of
training data is as follows:

1 : Generate strain paths and orientation tensors
2 : Write .mat files
3 : Run digimat simulations
4 : Post-process and clean-up.

(3.10)

A data set with 40,000 samples is generated. Every sample consists of one strain path, one orienta-
tion tensor, and the resulting stress path. The computations are carried out on a personal computer
with an 8 core 3.8 GHz processor and 16 GB of memory. The entire generation process takes about
two weeks. The vast majority of the computational time is dedicated to the micro-mechanical sim-
ulations that compute the stresses. The file size of the generated data set becomes approximately
14 GB. The complete julia code used for data generation can be found in Appendix D.

3.2 Selection of Artificial Neural Network

To capture the path dependency of plasticity, RNN are utilized. Both LSTM and GRU network
architectures are investigated. The input signals of the network consist of time series of length
NT = 2001, with F = 13 different features x̂iout[t], where i = 1, ..., F . The features comprise the 6
independent components of the second order orientation tensor, the fiber volume fraction, and the 6
independent components of the strain tensor. The time independent features are simply fed to the
network at every time step without modification, while the strain tensor components are changing
with time. The output signals are the 6 independent components of the stress tensor. The cost is
computed by comparing the output to the stress time series corresponding to the input signal. For
the optimization of the cost function, the ADAM optimizer is employed. The optimizer specific
parameters are left as matlab’s default values, and are not considered as hyperparameters to be
optimized in this work. The default optimizer settings are known to be good for machine learning

33

3.2. SELECTION OF ARTIFICIAL NEURAL NETWORK CHAPTER 3. METHODOLOGY

applications [22]. The number of epochs Nepoch on the other hand, is one of the hyperparameters
that are optimized. A list of all the hyperparameters optimized in this work is displayed in Table
3.2.

Table 3.2: An exhaustive list of the hyperparameters that are subject to optimization is displayed.

Parameter Symbol
Initial learning rate α0

Learning rate decay period τ
Learning rate decay factor γ
Number of hidden layers Nh

Number of neurons per hidden layer n1, n2, ..., nNh

Mini-batch size Nbatch
Number of epochs Nepoch

Both network types were tested with a varying number of hidden layers and number of neurons per
layer.

In order to improve the prospects of convergence piecewise learning rate decay is used. Three
hyperparameters are introduced: the initial learning rate α0 > 0, the decay period τ ≥ 1, and the
learning rate decay factor 0 < γ < 1. The learning rate is made to decrease as training progresses
through updating: αn+1 = αn · γ every τ epochs. The scheduling is motivated by the following: By
setting the learning rate too low from the beginning, convergence may be to slow, or the optimizer
gets stuck in a local minimum early. On the other hand, setting a high learning rate might help the
optimizer arrive in the vicinity of the global minimum. However, the large step size may prevent
the optimizer from making the final stretch without overstepping the minimum, that may be in a
small dip in an otherwise flat area of the cost function. By scheduling the learning rate one may
get the best of both worlds.

The 40,000 generated data samples are randomly split into three groups; a training set, a validation
set, and a test set. The training set receives 80% (Ntrain = 32, 000) of the data, whereas the
validation and test sets make up 19.75% (Nvalid = 7900) and 0.25% (Ntest = 100) of the data
respectively. The training set is the actual data that is used for training. The training data
is shuffled every epoch during training to ensure that the training process is independent of the
structure of the training set.

The validation set on the other hand, is used to monitor if the network over-fits or not. The
validation set is not used for training. The validation set is fed through the network every epoch,
and a cost is calculated. However, backpropagation is not performed, and the weights and biases
are subsequently not affected by this data. The validation set cost indicates if the model generalizes
its prediction capability to data outside the training set. A validation cost that stops decreasing,
or starts to increase, indicates that the network is over-fit.

The test set is used to evaluate the network performance after the training has finished. The test
set does like the validation set not affect the weights and biases. The test set is intentionally kept
very small, since it is only to be used as a final check up of the results before proper model testing

34

3.2. SELECTION OF ARTIFICIAL NEURAL NETWORK CHAPTER 3. METHODOLOGY

is carried out. The random nature of the generated paths is not representative of the model use
cases, instead the model is rigorously tested on more meaningful data specifically generated for
testing. The batch size Nbatch is a very important hyperparameter that influences the convergence
rate substantially. Simply taking as large mini-batch size as possible doesn’t necessarily guarantee
convergence to a good minimum [38]. It is therefore optimized to suit the task at hand.

The input features are subjected to z-score normalization to improve odds of convergence. Thereby,
the feature mean µi is subtracted from the feature and the difference is divided by the feature
standard deviation σi. The mean and standard deviation of each of the 13 features is computed
individually by summing through time and over all the time series in the training set. If x̂iout[t](n)
is the value of the ith feature at time step t in sample number n, then

µi =
1

NTNtrain

Ntrain∑
n=1

NT∑
t=1

x̂iout[t](n), and σi =

√√√√ 1

NTNtrain

Ntrain∑
n=1

NT∑
t=1

(x̂iout[t](n)− µi)2. (3.11)

As a measure to avoid numerical difficulties, the output stress signal is divided by 106, effectively
changing the units from Pa to MPa.

The network structure begins with an input layer of time sequence data. After the input layer
a number of recurrent layers follows. Networks consisting of either LSTM or GRU neurons are
investigated. All the network weights and biases use the default initialization. The number of hidden
layers Nh, and the number of neurons in the hidden layers n1, n2, ..., nNh are hyperparameters that
are investigated. The output layer consists of a standard feed forward layer, without an activation
function, with 6 neurons. The role of this layer is to ensure that the output signal is of correct size,
namely 6. In addition, the layer also scales the output to match the magnitude of the target data. To
prevent overfitting a Dropout layer is placed between the final RNN layer and the feed forward layer
at the end. A dropout layer temporarily cuts a random set of connections between its neighboring
layers for one training iteration with a predetermined probability. They thus introduce noise into
the network and is a simple but efficient method for preventing overfitting. The probability is
chosen as 50% and is not optimized as a hyperparameter. A 50% dropout probability is empirically
shown to have the best performance for many applications [39], possibly due to the fact that it
maximizes the regularization effects of the layer [40].

3.2.1 Network Implementation

The computational programming language matlab [41] is used for the implementation of artificial
neural networks. Specifically, the Deep Learning and Parallel Computing Toolboxes are employed.
The program is designed to perform parallel computations on a GPU. The complete matlab code
utilized for the network implementation is found in Appendix E.

A function first reads all the text files containing the generated data. The data is saved in cell arrays
as required for use in matlab’s deep learning routines. Every member of the input data cell array
is formatted as F by NT matrices, where the first 7 rows are the orientation tensor components and
fiber volume fraction repeated NT times. The remaining rows are the different strain components’
time evolution. The output data cell array is populated by 6 by NT matrices where every row is
the stress components’ time evolution. The script shuffles the data to remove dependence on file

35

3.3. MODEL TESTING CHAPTER 3. METHODOLOGY

reading order. The script furthermore divides the data into training, validation, and test sets as
defined earlier. The network structure is easily defined by listing the layers in an array, where the
number of neurons per layer is given as arguments. Options for training are defined through an
options object. The input is defined as a sequence input layer, the output is defined as a regression
output layer, and the network is configured as sequence to sequence regression by flagging the RNN
layers accordingly. The cost function that matlab uses for sequence to sequence regression is a
mean squared error:

C =
1

N
Cn, where Cn =

1

2NT

NT∑
t=1

F∑
i=1

(x̂iout[t](n)− xiout[t](n))2, (3.12)

where N = Ntrain, Nvalid, or Ntest depending on the situation.

matlab by default uses L2-regularization to prevent overfitting. L2-regularization modifies the cost
function such that it penalizes weights of large magnitude. The penalty term is the squared sum
of all the weights multiplied by a factor λ that controls the amount of regularization. The default
value of λ = 0.0001 is used in the training of the current network. The idea is that weights with
large magnitude make the model more complex and reduces its ability to generalize and is therefore
penalized. The matlab documentation suggests using gradient clipping when training RNN for
regression in order to counteract exploding gradients that lead to numerical issues. Gradient clipping
re-scales a gradient if the gradient norm is larger than a set threshold value. The default norm that
matlab employs is the L2 norm computed on each gradient individually. That is, all gradients are
not scaled the same way. The gradient threshold is in the current work set to 1.

3.3 Model Testing

It is of great importance to have an understanding of the model accuracy. Future users of the
model need to know the limitations on use cases in order to not draw erroneous conclusions. The
measure of the model accuracy should be based on properly chosen evaluation metrics that bear
some physical significance. In order to guarantee that the model accurately predicts a wide range
of feasible use cases, representative loading situations need to be explored. The range of time
independent inputs (orientation tensor and fiber volume fraction) that yield reasonable results also
needs to be investigated. Neural network models are generally good at interpolating, but lack
ability to extrapolate. It is therefore of interest to investigate how the error behaves when the
parameters approaches, and crosses, the bounds of the range used for training. Moreover, in order
to be widely applicable, the model needs to be functional for a wide range of sequence lengths. That
is, it shouldn’t only be accurate for loading of similar length to the training data. This condition
is equivalent to rate independence.

Testing of the model comprises simulating the mechanical response of different material samples in
digimat-mf. The strain from the simulation and the orientation tensor and fiber volume fraction
of sample is subsequently used as input for the neural network model. The predicted stress is
compared with the stress output from digimat-mf, and the prediction error can be computed.
Four types of tests are conducted, which are presented below.

36

3.3. MODEL TESTING CHAPTER 3. METHODOLOGY

3.3.1 General Testing

General testing of the model is performed by running representative load cases against uniformly
sampled fiber orientations and volume fractions within the training range. In order to test the rate
independence, the general tests are also performed with varying input sequence length.

Five orientation tensors are uniformly sampled according to the previously proposed rules, and
corresponding fiber volume fractions are uniformly sampled from the admissible parameter range.
The six independent components of the generated tensors, together with the corresponding fiber
volume fractions, are shown in Table 3.3.

Table 3.3: The second order orientation tensors and fiber volume fractions for the general testing samples
are presented.

Sample a11 a22 a33 a12 a13 a23 vF

1 0.477 0.188 0.335 -0.080 -0.071 -0.183 0.130
2 0.094 0.692 0.214 -0.103 0.012 -0.255 0.144
3 0.649 0.139 0.212 0.011 -0.117 -0.154 0.131
4 0.392 0.225 0.382 -0.142 0.080 0.152 0.139
5 0 0.919 0.081 0.015 0.005 0.273 0.109

Five different types of loading conditions are simulated for every sample. All loading’s are strain
controlled load cycles where the control strains are set to change piecewise monotonically from 0 to
0.035 to−0.035 to 0, where digimat-mf computes the other strain components such that the desired
stress state is achieved. However, for plane strain loading, the out of plane strain components simply
are set to constant 0. The first type of loading is a uniaxial stress in the σ11-direction, controlled by
imposing ε11. The second type of loading is a pure shear stress state in the σ12-direction, controlled
by imposing ε12. The third type is a biaxial stress state in the σ11-σ22-directions, controlled by ε11

and ε22. The fourth type of loading is a bi-axial stress state in the σ11-σ23-directions, controlled by
ε11 and ε23. The final loading condition is plane strain in the ε11-ε22-plane.

The rate independence of the model is investigated by repeating all the above described tests on
the five samples with different degrees of linear interpolation/extrapolation.

3.3.2 Repeated Cyclical Loading

To test how complex the load histories can be without forgoing too much accuracy, a test with an
increasing number of load cycles is performed.

Cyclical uniaxial loading of three different samples is simulated. The three investigated samples are:
unidirectional fibers along the loading axis, a uniform 2D fiber distribution in the loading plane,
and a uniform random 3D fiber distribution. All the samples have a fiber volume fraction of 12%.
A load cycle consists of changing the strain along the load axis piecewise monotonically from 0 to
0.04 to −0.04 to 0, where digimat-mf computes the other strain components such that uni-axial
stress is achieved. Tests consisting of 1 to 5 cycles are performed.

37

3.3. MODEL TESTING CHAPTER 3. METHODOLOGY

3.3.3 Testing of Extrapolation Ability

As a test of the extrapolation ability of the created model, uniaxial loads beyond the maximum
strain of the training data are applied. Similarly, the volume fraction of fibers is pushed outside
the training range in order to investigate the interdependence on the parameter extrapolation.

Uniaxial loading of a uniform 3D fiber distribution for volume fractions and maximum strains
beyond the permissible range is simulated. Fiber volume fractions of 0.1% 2.5%, 5%, 7.5%, 10%,
12.5%, 15%, 17.5%, and 20% were investigated. For every volume fraction 3 tests consisting of one
load cycle is performed, where the maximum strain εM is set to 5%, 7.5%, and 10% respectively. A
load cycle consists of changing the strain along the load axis piecewise monotonically from 0 to εM
to −εM to 0, where digimat-mf computes the other strain components such that uni-axial stress
is achieved.

3.3.4 Hydrostatic Loading

The final test consists of an investigation of the model performance under hydrostatic loading
conditions. This test is performed to test if the correct yield behavior has been learned by the
model, i.e zero deviatoric stress results in no yielding.

The mechanical response of a uniform 3D fiber distribution with 12% fiber volume fraction is
simulated. The simulation is stress controlled where the pressure is set to change monotonically
starting at 0 and ending at 1 GPa.

3.3.5 Evaluation Metrics

Simply referring to the cost as an error metric doesn’t give a fair estimate. A numerically small cost
doesn’t necessarily imply a small error if the scale of the output is small. To give the error physical
significance, some dimensionless quantity needs to be introduced. To remove the dimensionality,
the root mean square error is divided by the yield stress of the matrix σy. This is done for every
feature individually. This metric is from here on referred to as the Mean Relative Error (MeRE).
This metric gives an overall estimate of the model accuracy, it does however not account for large
localized errors. As a consequence the Maximum Relative Error (MaRE) is introduced. The MaRE
is defined by the maximum absolute error divided by the yield stress of the matrix σy. As for the
MeRE, the MaRE is also computed over the features individually. The two error metrics of a time
series of length T are computed through the equations

MeRE =

√
1
NT

∑NT

t=1(σt − σ̂t)2

σy
and MaRE =

max
t
|σt − σ̂t|

σy
(3.13)

where σt is the predicted stress at step t and σ̂t is the desired stress at step t.

38

4 Results

The result is divided into two parts. The first part explains the design and training results of the
DNN model. Contrarily, the second part describes the results concerning the model performance
during elasto-plastic prediction of representative test cases.

4.1 Model Design and Training

For the problem at hand it turned out that GRU neurons outperformed LSTM neurons. The
GRU neurons both displayed better convergence and numerical stability. LSTM networks had a
tendency to experience GPU errors when using the entire training set on larger networks (the order
of magnitude 3 hidden layers containing above 400 neurons each). The inclusion of the dropout
layer assisted convergence significantly. For networks without dropout the validation cost stopped
decreasing even though the training cost kept decreasing, which is a typical sign of over fitting.
Normalization also proved to improve the chances of convergence.

The initial learning rate was decreased from the default value α0 = 0.001 until satisfyingly steady
convergence was achieved. It proved to be more effective to let the learn rate decay in larger chunks
rather than setting the period to τ = 1 and having a slow but continuous decay. For example
setting the learn rate decay factor to γ = 0.9 and the decay period to τ = 10 proved more effective
than setting γ = 0.99 and τ = 1, even though 0.9910 ≈ 0.9.

As there is an interaction between the number of layers and the neurons per layer, it is impossible
to investigate the effects of these hyperparameters independently from each other. A systematic
optimization procedure would therefore require testing a large number of combinations of Nh, and
n1, n2, ..., nNh to be certain that the network is optimal. This was deemed unfeasible for this
project since the network training time was very long, and access to computational hardware was
limited. From the tests that were carried out the following results were arrived at: There was a
significant increase in performance when adding a second and third GRU layer. However, more than
3 GRU layers did not result in any significant performance increases in contrast to the increase in
training time. Once the number of layers was decided, different configuration of the numbers of
neurons were tested. The results of the test were that simply using more neurons yielded better
performance. Training time was thus the limiting factor, as adding more neurons make forward- and
backpropagation take more time. There was no noticeable influence of having a different number

39

4.1. MODEL DESIGN AND TRAINING CHAPTER 4. RESULTS

of neurons in the different hidden layers.

Very large batch sizes often resulted in a steady decrease in validation error at first, but led to
premature convergence to a sub-optimal minimum. A very small batch size on the other hand
made the gradient vary too much between batches such that convergence was unfeasible. Batch
sizes that gave promising results were seen in the range starting from approximately 20 and ending
with a few hundred. These batch sizes yielded steady enough convergence, but with enough gradient
variation to prevent getting stuck in local minima. The network did not suffer from overfitting when
trained for many epochs. The only constraint imposed on the number of epochs was therefore the
time it would take to train the network.

To summarize: the network structure and the hyperparameters were chosen quite arbitrarily, and
performance was improved mostly through trial and error. It can not be claimed that the network
architecture and set of hyperparameters that were chosen as the final result were the optimal ones.
However, after many iterations of different designs, the performance was deemed good enough for
the intents of this project.

4.1.1 Final Network Used as Model

The final network architecture consisted of three hidden layers with 500 GRU neurons each. This
resulted in a total of 3,777,006 trainable parameters. The initial learn rate was set to α0 = 0.0005,
the learn rate decay period was set to τ = 10, and the learn rate decay factor was set to γ = 0.9.
The network was trained for Nepoch = 500 epochs with a mini-batch size of Nbatch = 32. The model
was trained on an Nvidia V100 GPU with 32 GB of VRAM. The training took just above 81 hours.

At the first training epoch, the model yielded a cost of 12981.8057 MPa2 on the validation set,
which reduced to a final cost of 7.4021 MPa2 when the training session terminated. A log-log plot
of the training- and validation set cost functions is displayed in Figure 4.1. It may look pathological
that the validation cost becomes smaller than the training cost. It is however correct and has to do
with the way matlab computes the cost. It computes the cost with dropout on the training data
but without dropout on the validation data. If a quadratic fit (y = 0.1542x2 − 1.98x + 8.36, with
coefficient of determination R2 = 0.9905) is utilized on the log-log data it is possible to conclude
that the validation cost function, for the current set of hyperparameters, decreases like

C(E) = E(0.1542 lnE−1.98)e8.36, (4.1)

where E is the epoch number. This function has a minimum at E ≈ 614.

The average of the MeRE and MaRE is computed over the 100 time series inside the test set. The
time to make a prediction was less than 1 s for all time series, with the typical time to make a
prediction being around 0.1 s. The averages for all 6 stress components are displayed in Table 4.1.
The errors are small, which indicates that the model doesn’t suffer from overfitting and generalizes
well.

40

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS

Table 4.1: This table displays the average MeRE and the average MaRE computed over the test set.

σ11 σ22 σ33 σ12 σ23 σ13

MeRE 0.0582 0.0528 0.0487 0.0469 0.0378 0.0431
MaRE 0.1255 0.1137 0.1121 0.1020 0.0874 0.0980

Figure 4.1: A log-log plot of the training- and validation cost functions is shown. The training cost flattens
out quite early while the validation cost keeps decreasing.

4.2 Model Performance

The tests described in Section 3.3 were carried out using the network architecture presented in
Section 4.1.1. The matlab-code used for testing and visualization is found in it’s entirety in
Appendix E. The results for the different test types are presented in the same order as they are
introduced in Section 3.3, starting with the performance of the model when subject to representative
load cases, where the rate independence of the model also is demonstrated.

4.2.1 General Testing

The resulting stress-strain curves from the tests described in Section 3.3.1 show good agreement
between the network prediction and the output of digimat-mf. Two stress-strain curves represen-
tative of the results are presented in Figure 4.2. These curves highlight how the developed neural
network model capture the fundamental characteristics of the underlying model well. Specifically,
the model correctly displays a hardening process that saturates for large plastics strains, and the
correct loading/unloading behavior.

41

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS

(a) (b)

Figure 4.2: Two stress-strain curves consisting of the network prediction compared to the output of digimat-
mf. Subfigure (a) shows the the results from the uniaxial test performed on sample 1, while subfigure (b)
shows the results of the σ11-σ23 biaxial test performed on sample 5.

A demonstrative stress time series of all six stress components for a plane strain test is presented
in Figure 4.3. This figure also shows good agreement between the network prediction and the
digimat-mf output. The prediction of the σ13 looks poor, however by noting the scale of the stress
it is apparent that the relative error still is small.

Figure 4.3: The time series data of all 6 stress components for a plane strain state load cycle on sample 5
is shown. The output of digimat is compared to the network output.

42

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS

The exhaustive results of all the tests of the five samples is found in the form of the MeRE in Table
4.2 and MaRE in Table 4.3. The model shows great promise with a MeRE that never surpasses
25% of the matrix yield stress during the tests. The feature wise average MeRE is also low, less
than 7% of the matrix yield stress. The largest recorded MaRE was less than 50% of the matrix
yield stress, while the feature wise average was less than 15%.

Figure 4.4 shows the typical behavior of the MeRE and MaRE when the number of steps in the time
series is varied. As is seen in the Figure the errors seem to stay constant in the range 200 to 20000,
but quickly growing for sequences shorter or longer than these bounds. This holds true for most
of the tests, but some tests showed stricter bounds for constant error. None of the performed tests
showed errors that varied to a significant degree when loaded with sequences of lengths between
500 and 8000 steps.

The limits on the sequence lengths can be explained by the structure of the training data. As the
algorithm that was used to generate training data has a theoretical maximum strain rate, and an
average strain rate that is considerably lower than the maximum, it’s reasonable that there is a
minimum sequence length for which the neural network model can make accurate predictions. This
explains the lower bound. Since the sequence length of the training data is fixed, the network is
not trained to remember the accumulated plastic strain forever. The loss of accuracy for very long
sequences can possibly be explained by the network forgetting about plastic strain accumulated
early in the sequence when it approaches the sequence’s end. Bearing this in mind, it may still be
said that the network model displays rate independence for a large range of sequence lengths.

Figure 4.4: The figure displays the dependency between sequence length and the error. The horizontal axis
consists of the 10-logarithm of the sequence length. The data corresponds to a plane strain load cycle on
sample 1.

43

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS

Table 4.2: The MeRE of every stress component for the five samples and five loading conditions. The
feature wise average and maximum MeRE over all tests is shown in the bottom of the table.

Sample Load Steps σ11 σ22 σ33 σ12 σ23 σ13

1

Uniaxial 804 0.0971 0.0301 0.0391 0.0124 0.0080 0.0155
Pure shear 808 0.0117 0.0123 0.0177 0.0247 0.0068 0.0077

Biaxial (σ11-σ22) 804 0.0624 0.0510 0.0667 0.0403 0.0481 0.0297
Biaxial (σ11-σ23) 810 0.0955 0.0384 0.0571 0.0805 0.0553 0.1232

Plane strain 810 0.1217 0.0424 0.0889 0.0683 0.0318 0.0709

2

Uniaxial 804 0.0308 0.0346 0.0288 0.0299 0.0273 0.0148
Pure shear 802 0.0163 0.0258 0.0226 0.0410 0.0106 0.0329

Biaxial (σ11-σ22) 802 0.0612 0.0781 0.0881 0.0584 0.0456 0.0331
Biaxial (σ11-σ23) 812 0.0552 0.1168 0.0731 0.0443 0.1030 0.0566

Plane strain 810 0.0143 0.0417 0.0130 0.0285 0.0440 0.0357

3

Uniaxial 808 0.1515 0.0359 0.0503 0.0144 0.0151 0.0144
Pure shear 804 0.0279 0.0101 0.0139 0.0225 0.0167 0.0209

Biaxial (σ11-σ22) 803 0.1136 0.0515 0.0515 0.0250 0.0357 0.0381
Biaxial (σ11-σ23) 806 0.0953 0.0373 0.0457 0.0449 0.0449 0.1059

Plane strain 810 0.1252 0.0324 0.0370 0.0792 0.0197 0.0428

4

Uniaxial 804 0.0644 0.0249 0.0265 0.0309 0.0147 0.0190
Pure shear 805 0.0237 0.0131 0.0208 0.0415 0.0119 0.0062

Biaxial (σ11-σ22) 803 0.0666 0.0630 0.1209 0.0423 0.0549 0.0577
Biaxial (σ11-σ23) 805 0.1073 0.0624 0.0475 0.2442 0.0091 0.0806

Plane strain 810 0.0473 0.0356 0.0255 0.0320 0.0336 0.0279

5

Uniaxial 802 0.0459 0.0301 0.0349 0.0142 0.0278 0.0079
Pure shear 808 0.0140 0.0121 0.0220 0.0242 0.0100 0.0237

Biaxial (σ11-σ22) 809 0.0862 0.2027 0.1096 0.0922 0.0825 0.0347
Biaxial (σ11-σ23) 807 0.0417 0.0307 0.0297 0.0180 0.0377 0.0119

Plane strain 810 0.0423 0.0570 0.0323 0.0262 0.0725 0.0134
Average 0.0648 0.0468 0.0465 0.0472 0.0347 0.0370

Maximum 0.1515 0.2027 0.1209 0.2442 0.1030 0.1232

44

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS

Table 4.3: The MaRE of every stress component for the five samples and five loading conditions. The
feature wise average and maximum MaRE over all tests is shown in the bottom of the table.

Sample Load Steps σ11 σ22 σ33 σ12 σ23 σ13

1

Uniaxial 804 0.1764 0.0541 0.0843 0.0375 0.0336 0.0503
Pure shear 808 0.0225 0.0305 0.0477 0.0614 0.0166 0.0230

Biaxial (σ11-σ22) 804 0.2109 0.1195 0.1520 0.0795 0.1030 0.0643
Biaxial (σ11-σ23) 810 0.1340 0.0980 0.1809 0.1605 0.1789 0.2246

Plane strain 808 0.0225 0.0305 0.0477 0.0614 0.0166 0.0230

2

Uniaxial 804 0.0621 0.0706 0.0534 0.0640 0.0426 0.0394
Pure shear 802 0.0434 0.0689 0.0434 0.0823 0.0254 0.0699

Biaxial (σ11-σ22) 802 0.1998 0.1842 0.2319 0.1377 0.0841 0.0963
Biaxial (σ11-σ23) 812 0.1140 0.2093 0.1177 0.1073 0.1977 0.1199

Plane strain 810 0.0418 0.1026 0.0335 0.0485 0.0746 0.0709

3

Uniaxial 808 0.2652 0.0795 0.0968 0.0386 0.0370 0.0267
Pure shear 804 0.0524 0.0309 0.0418 0.0532 0.0298 0.0397

Biaxial (σ11-σ22) 803 0.3613 0.1071 0.1443 0.0512 0.0738 0.0792
Biaxial (σ11-σ23) 806 0.1742 0.0764 0.0936 0.0974 0.1523 0.1741

Plane strain 810 0.2292 0.0751 0.0804 0.1409 0.0357 0.0822

4

Uniaxial 804 0.1288 0.0513 0.0686 0.0523 0.0305 0.0336
Pure shear 804 0.0525 0.0374 0.0443 0.0948 0.0224 0.0108

Biaxial (σ11-σ22) 803 0.2014 0.1659 0.3256 0.0822 0.1505 0.1411
Biaxial (σ11-σ23) 805 0.2184 0.1374 0.0942 0.4278 0.0304 0.1527

Plane strain 810 0.0982 0.0631 0.0672 0.0580 0.0766 0.0559

5

Uniaxial 802 0.0849 0.0991 0.1197 0.0313 0.0592 0.0164
Pure shear 808 0.0262 0.0378 0.0488 0.0700 0.0174 0.0556

Biaxial (σ11-σ22) 809 0.1745 0.4861 0.2483 0.1759 0.2170 0.0649
Biaxial (σ11-σ23) 807 0.1111 0.1050 0.0705 0.0455 0.1024 0.0250

Plane strain 810 0.1129 0.1654 0.0640 0.0783 0.1540 0.0355
Average 0.1327 0.1074 0.1040 0.0935 0.0785 0.0712

Maximum 0.3613 0.4861 0.3256 0.4278 0.2170 0.2246

4.2.2 Cyclical Loading

The calculated MeRE corresponding to each of the six strain components as a function of the
number of load cycles is displayed in Figure 4.5, while the MaRE is found in Figure 4.6. The
error is found to approximately increase linearly with the number of load cycles. It can be seen
that the uniaxial fiber distribution typically suffers from the greatest error. The sequence length is
proportional to the number of cycles, where one cycle consists of approximately 800 steps. Since
it was shown in the previous section that the error of sequences between approximately 500 and
8000 steps is not affected by changing the sequence length, it can be concluded that the error stems
from the complexity of the load path. Two representative stress-strain curves from the conducted
test are displayed in Figure 4.7. It is possible to see how the prediction error increases slightly for
every additional cycle. It interesting to see that once yielding has occurs, the error seems to say

45

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS

fairly constant. This speaks in favor of the model accurately capturing material properties such as
the tangent modulus.

Figure 4.5: The MeRE of a cyclical test as a function of the number of cycles is presented. The component
wise errors for a uniaxial fiber distribution, a uniform 2D distribution, and a uniform 3D distributions are
given.

Figure 4.6: The MaRE of a cyclical test as a function of the number of cycles is presented. The component
wise errors for a uniaxial fiber distribution, a uniform 2D distribution, and a uniform 3D distributions are
given.

46

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS

(a) (b)

Figure 4.7: Two stress-strain curves consisting of the network prediction compared to the output of digimat-
mf. Subfigure (a) shows the the results from a uniaxial test performed on a sample consisting of unidi-
rectional fibers, while subfigure (b) shows the results of a uniaxial test performed on a uniform 3D fiber
distribution.

4.2.3 Testing of Extrapolation Ability

The computed error in the prediction of the σ11 component is found in Figure 4.8. It seems like
for fiber volume fractions in the permissible range (10%-15%), strains between 5% and 7.5% do not
lead to a very significant increase in the error. However, strains between 7.5% and 10% leads to
more significant increase in the error for admissible fiber volume fractions. It can also be seen that
the model generalizes very well to fiber volume fractions lower than 10% and between 15% and 20%
for strains in the admissible range (≤ 5%). The impressive extrapolation ability of the model for
the admissible strains can be seen in the plot of two representative stress-strain curves in Figure
4.9. On the other hand, the detrimental effects on the prediction error for maximum strains larger
than 5% are amplified for fiber volume fractions outside the admissible range.

47

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS

(a) (b)

Figure 4.8: The error in the σ11 component is plotted as a function of strains and fiber volume fractions
beyond the admissible range. The graph in subfigure (a) shows the MeRE, while the graph in subfigure (b)
shows the MaRE.

(a) (b)

Figure 4.9: Two stress-strain curves consisting of the network prediction compared to the output of digimat-
mf. Subfigure (a) shows the the results from a uniaxial test performed on a sample with fiber volume
fraction 2.5%, while subfigure (b) shows the results of a uniaxial test performed on a sample with fiber
volume fraction 20%.

48

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS

4.2.4 Hydrostatic Loading

AThe difference in the σ11 component is presented in Figure 4.10. The predicted stress seems to
agree with the expected result up until about 560 MPa, where the model erroneously predicts what
looks like perfect plasticity. This behavior starts at almost exactly 4% strain. It can therefore
probably be explained by the fact that the network was trained with a maximum allowed strain
component of 5%. Since hydrostatic loading was not explicitly included in the training data it is
reasonable that the breakpoint occurs earlier than 5% since only a quarter of the training data had
a maximum strain in the range 4% to 5%.

Figure 4.10: The stress-strain curve of a hydrostatic loading test conducted in digimat-mf is compared
with the network prediction. The knee in the dashed curve occurs at a stress of approximately 560 MPa.

49

5 Discussion

The acquired neural network, albeit exhibiting good performance, can not without doubt be said to
be optimal. In order to achieve an optimal network architecture the hyperparameters would need
to be investigated more systematically. The complexity of the problem however results in very long
network training times. A detailed survey of the hyperparameters would require more dedicated
hardware to enable parallel training of networks with multiple sets of parameters. Nevertheless, the
number of epochs that the network was trained for can be consider sufficient. This is motivated by
the fact that the loss decreased according to Equation (4.1). The trend of the cost had a minimum
at epoch E = 614, and the cost at the minimum compared to the cost at epoch E = 500 is
insignificant. It is also possible to argue for the number of layers and neurons being appropriate.
Previous attempts at predicting elasto-plasticity with GRU’s showed that networks with more than
3 layers and 500 neurons per layer didn’t display any significant improvement in performance [30].

One possibility of reducing the prediction error of the network is modifying the cost function used
during training. The cost as stated in Equation (3.12) puts the same emphasis on every time step.
Since stresses largely vary in magnitude, it becomes apparent that the cost function used in this
project puts more emphasis on large stresses. An alternative would be to use a cost function with
some sort of normalization. One possible cost function to investigate in a future work would be

C =
1

N
Cn, where Cn =

1

2NT

NT∑
t=1

F∑
i=1

(
x̂iout[t](n)− xiout[t](n)

x̂iout[t](n)

)2

, (5.1)

where the same notation as the one used in (3.12) is employed.

The chosen method of generating training data may be deemed successful. The created network
shows good performance, and it seems that it is able to accurately predict the response to a
wide variety of mechanical loads. There is however room for improvement. One obvious thing
to investigate is the inclusion of characteristic training data that represent physically relevant
phenomena such as hydrostatic loading. It was shown that the model struggled in predicting
hydrostatic loading beyond a certain stress. It is possible that introducing hydrostatic loading in
the training data could remedy this. Similarly, the model displayed a surprisingly large MeRE
when predicting uniaxial stress in sample 3 of the general testing samples (see Tables 3.3 and
4.2). While uniaxial strain states were included in the training data, uniaxial stress states were not.
Any subsequent iteration of the network should therefore include specific stress states in addition to
strain states to properly capture the mechanics. Alternatively, in future investigations it would be of

50

5.1. PROSPECTS OF FEM IMPLEMENTATION CHAPTER 5. DISCUSSION

interest to consider more smooth strain paths for training. This has been successfully implemented
by others, using Gaussian processes [42].

The tests on cyclical loading shows that the network model has a propensity to accurately predict
complex load paths. Seeing that the error approximately increases linearly with the increase in
complexity, it is possible for the user to estimate the error of complex loading. Subsequently
the user can make a decision if the results are accurate enough. This would however need to
be investigated in more detail before any definite conclusion can be drawn. In light of the poor
extrapolation ability of DNN models, it was also a positively surprising result that the model could
make accurate predictions for fiber volume fractions outside the range it was trained on (10%-
15%). As is always the case, the user of a model needs to be aware of the model’s limitations. It
is however reassuring that the model manages to operate with success outside it’s intended area of
use. A similar statement can to some extent be made about strains beyond 5%. This is however
less useful since failure/damage most definitely would start to occur beyond this point, rendering
the model useless anyway.

A natural question to ask is what the proposed neural network model offers that the traditional
constitutive model that it was trained on does not. To begin with, the proposed model offers the
ability to change fiber orientation, and fiber volume fraction without having to perform additional
simulations to homogenize the composite for the new set of parameters. This is important in the
context of injection molding where the fiber density and orientation varies highly throughout the
molded part. Secondly, the neural network model offers computational speed. As an example, using
digimat-mf to compute the response to complex general 3D-loading (like the ones in the training
data) may take up to a minute. In contrast, the network model makes the prediction in less than
a second. Finally, the network contains all the information on loading/unloading and accumulated
plastic strain/hardening purely through the strain history. Therefore, the process of determining
these quantities repeatedly through Equation (3.9) is not necessary. As a consequence, a lot of
time is saved if the model is used in a framework where iterative calculations are required. This is
important when implementing the network as a constitutive model in an FEM setting.

5.1 Prospects of FEM Implementation

Consider the domain Ω with boundary Γ = Γh
⋃

Γg. Let t be the traction acting on Γ and u be
the displacement of a material point in Ω. In addition, a body force b is acting inside Ω. The
displacement is imposed as u = g on Γg, while the traction is imposed as t = h on Γh. The FE
formulation of the equilibrium boundary value problem over the domain is given by [43]∫

Ω

BTσ(Ba)dΩ =

∫
Ω

NTbdΩ +

∫
Γh

NThdΓ +

∫
Γg

NTtdΓ, (5.2)

where N is a matrix of the basis shape functions (u ≈ Na), and B is a matrix containing the
spatial derivatives of N . The objective is to solve for the vector a such that the equation holds.
Since the relation between the stress and strain, and in extension the stress and displacement, is
non-linear for plasticity, the FE equation needs to be solved through some iterative scheme such as
Newton-Raphson. By calling the left hand side the internal force fint, and the right hand side the

51

5.2. PHYSICS AWARE NEURAL NETWORKS CHAPTER 5. DISCUSSION

external force fext, the problem can be reformulated as:

Find a such that: fint(a)− fext = 0. (5.3)

In order to solve this equation through Newton-Raphson, the derivative of fint with respect to a
is required. This quantity is called the tangent stiffness matrix. Using the fact that ε ≈ Ba, the
derivative is computed as

d

da
fint =

∫
Ω

d

da
σ(Ba)dΩ =

∫
Ω

∂σ

∂(Ba)

dBa

da
dΩ =

∫
Ω

∂σ

∂ε
dΩa. (5.4)

The neural network constitutive model takes the orientation tensor, volume fraction, and current
strain state as inputs and uses the strain history to predict the current stress. The neural network
model is differentiable with respect to the input signal, so it is differentiable with respect to the
strain. The strain history is a known quantity, it is therefore always possible to carry out the
computation in Equation 5.4 and receive the tangent stiffness. The derivative is easily evaluated with
the help of automatic differentiation as is standard for machine learning applications. Automatic
differentiation has already successfully been used for DNN based constitutive models to find tangent
stiffness matrices [9].

Solving Equation 5.3 iteratively requires that the constitutive model can handle a wide variety of
step sizes in a, and by extension ε, to ensure convergence. It has been shown that the procured ANN
model is rate independent for a quite large range of loading rates. It can therefore be considered
robust enough to handle FEM implementation. Additionally, as the model is time-independent
there is no inherent limitations on adjusting the loading to match the network. The limiting factor
that decides the maximum time step in a non-linear FEM solver is getting the solution of Equation
5.3 to converge. It is therefore always possible to interpolate/extrapolate the load-stepping path
such that the step size matches the admissible range of the network.

It has here been made plausible that the developed model is suitable for FEM implementation.
There is however no guarantee that derived quantities from a FEM simulation, such as energy or
work rate, will adhere to fundamental physical constraints. For instance, there are situations where
the model erroneously predicts and increase in stress when the strain is decreasing, which in turn
leads to a negative work rate. In order to rectify this, an alternative neural network approach may
be taken.

5.2 Physics Aware Neural Networks

In the present work, a DNN model has been trained on micro-mechanical simulations with the
hope of the model being able to infer the physics elasto-plasticity purely by observing stress-strain
relations. As an alternative, a network may be trained with physically motivated constraints in
order to ensure laws such as energy conservation. Linka et al. [44] introduced Constitutive Artificial
Neural Networks (CANN). These networks first compute the variants of the strain tensor and
combine them with micro-mechanical descriptors to compute a set of generalized invariants. The
generalized invariants are in turn used to compute a strain energy functional. The stress and

52

5.2. PHYSICS AWARE NEURAL NETWORKS CHAPTER 5. DISCUSSION

constitutive tensor are then easily obtained from the strain energy through differentiation. By
computing the stress from an energy functional it is ensured that certain physical laws remain
unviolated. The network is trained as usual with a strain input, with the goal of matching a
predetermined stress-strain relation. One perk with this approach in addition to certain laws of
physics already being built into the network structure is the reduced need for training data. The
results in the referred study look incredibly promising and it is very likely that it will inspire
many similar research projects. As the model proposed in the present work yield some clearly
physically dubious results, such as accumulating plastic strain during hydrostatic loading, it would
be of interest investigating the possibility of introducing mechanically motivated constraints into a
future implementation of the network.

53

6 Conclusions

In this project a deep neural network model that predicts the elasto-plastic response of a short
fiber composite material was developed. The material consists of elastic fibers with a J2 elasto-
plastic matrix obeying a linear exponential hardening law. The network was trained on data from
micro-mechanical simulations utilizing the Mori-Tanaka mean field method for homogenization.
The strain-paths used as input to the simulations were generated by utilizing a random walks in
6D-strain space with bias directions. The created model allows for an arbitrary fiber distribution
by defining the second order fiber orientation tensor. Additionally, it is possible to vary the fiber
volume fraction between 10% and 15%, but it is possible to go slightly outside these bounds without
introducing significant error.

The proposed model shows promise and seems to give accurate predictions for a wide range of
fiber orientation distributions and loading types. The average Mean Relative Error (MeRE) in the
stress prediction for typical applications is below 10% of the matrix yield stress most of the time.
In addition the MeRE never exceeded 25% of the matrix yield stress during one cycle tests. The
highest recorded Maximum Relative Error (MaRE) in the general testing was below 50% of the
matrix yield stress. The model displays accurate yielding behavior with the appropriate hardening
law (including saturation), and shows a clear difference in loading/unloading. It was furthermore
demonstrated that the model correctly possesses rate independence for a large range of loading
rates. Judging from these properties of the created artificial neural network model, it may be
stated that the purpose of this project has been fulfilled.

It was determined that GRU based networks outperformed LSTM networks for the current appli-
cation. Another very important takeaway from the design process was the importance of adding
dropout to the network. It was one of the network components that improved convergence sig-
nificantly. An additional valuable lesson was the fact that a bigger batch size didn’t necessarily
improve convergence, which may seem counter-intuitive and thus be overlooked by inexperienced
network designers.

As a future outlook, a finite element implementation of the model is of interest. A true test of the
model validity is the ability to make predictions of the behavior of a structural component under
operating load. It is also of interest to implement the current model for different types of hardening
laws to further test the applicability of DNN’s on constitutive modeling. Finally, the possibility of
improving the modeling by utilizing physical constraints in the model seems very promising.

54

References

[1] M. Holmes, “Recycled carbon fiber composites become a reality,” Reinforced Plastics, vol. 62,
no. 3, pp. 148 – 153, 2018.

[2] B. Agarwal, L. Broutman, and K. Chandrashekhara, Analysis and Performance of Fiber Com-
posites. Wiley, 2017.

[3] N. Nawafleh and E. Celik, “Additive manufacturing of short fiber reinforced thermoset com-
posites with unprecedented mechanical performance.,” Additive Manufacturing, vol. 33, 2020.

[4] S. Mirkhalaf, T. van Beurden, M. Ekh, F. Larsson, and M. Fagerström, “A finite element based
orientation averaging model for predicting elasto-plastic behaviour of short fiber reinforced
composites,” 2021. (under review).

[5] S. Mirkhalaf, E. Eggels, A. Anantharanga, F. Larsson, and M. Fagerström, “Short fiber com-
posites: Computational homogenization vs orientation averaging,” in Proceedings of the 2019
International Conference on Composite Materials (A. Mouritz, C. Wang, and B. Fox, eds.),
RMIT University, Melbourne, Australia, Aug 2019.

[6] S. Mirkhalaf, E. Eggels, T. van Beurden, F. Larsson, and M. Fagerström, “A finite element
based orientation averaging method for predicting elastic properties of short fiber reinforced
composites,” Composites Part B: Engineering, vol. 202, p. 108388, 2020.

[7] H. Liu and Z. Long, “An improved deep learning model for predicting stock market price time
series,” Digital Signal Processing, vol. 102, p. 102741, July 2020.

[8] M. Alam, M. Samad, L. Vidyaratne, A. Glandon, and K. Iftekharuddin, “Survey on deep neural
networks in speech and vision systems,” Neurocomputing, vol. 417, pp. 302–321, Dec. 2020.

[9] D. Huang, J. N. Fuhg, C. Weißenfels, and P. Wriggers, “A machine learning based plasticity
model using proper orthogonal decomposition.,” Computer Methods in Applied Mechanics and
Engineering, vol. 365, 2020.

[10] A. Zhang and D. Mohr, “Using neural networks to represent von mises plasticity with isotropic
hardening.,” International Journal of Plasticity, vol. 132, 2020.

[11] J. C. Simo, Computational inelasticity. New York: Springer, 1998.

55

REFERENCES REFERENCES

[12] L. Råde and B. Westergren, Mathematics handbook for science and engineering. Lund: Stu-
dentlitteratur, 2004.

[13] J. D. Eshelby and R. E. Peierls, “The determination of the elastic field of an ellipsoidal inclusion,
and related problems,” Proc. R. Soc. Lond. A, vol. 241, no. 1226, p. 376–396, 1957.

[14] T. Mura, Micromechanics of defects in solids. Dordrecht, Netherlands Boston Hingham, MA,
USA: M. Nijhoff Distributors for the U.S. and Canada, Kluwer Academic Publishers, 1987.

[15] R. Hill, “Elastic properties of reinforced solids: Some theoretical principles,” Journal of the
Mechanics and Physics of Solids, vol. 11, pp. 357–372, Sept. 1963.

[16] T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with
misfitting inclusions,” Acta Metallurgica, vol. 21, pp. 571–574, May 1973.

[17] Y. Benveniste, “A new approach to the application of mori-tanaka’s theory in composite ma-
terials,” Mechanics of Materials, vol. 6, pp. 147–157, June 1987.

[18] E. T. Onat and F. A. Leckie, “Representation of mechanical behavior in the presence of changing
internal structure,” Journal of Applied Mechanics, vol. 55, pp. 1–10, Mar. 1988.

[19] S. G. Advani and C. L. Tucker, “The use of tensors to describe and predict fiber orientation in
short fiber composites,” Journal of Rheology, vol. 31, pp. 751–784, Nov. 1987.

[20] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Con-
trol, Signals, and Systems, vol. 2, pp. 303–314, Dec. 1989.

[21] P. Kidger and T. Lyons, “Universal approximation with deep narrow networks,” in Proceedings
of Machine Learning Research, vol. 125, pp. 2306–2327, PMLR, 09–12 Jul 2020.

[22] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Con-
ference on Learning Representations, 2015.

[23] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient BackProp,” in Neural Networks:
Tricks of the Trade, vol. 7700 of Lecture Notes in Computer Science, pp. 9–48, Springer Berlin
Heidelberg, 2012.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” in International Conference on Machine Learning, 2015.

[25] H. Zen and H. Sak, “Unidirectional long short-term memory recurrent neural network with re-
current output layer for low-latency speech synthesis,” in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Apr. 2015.

[26] R. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent networks and
their computational complexity,” in Back-propagation: Theory, Architectures and Applications
(Y. Chauvin and D. Rumelhart, eds.), pp. 433—-486, Lawrence Erlbaum Publishers, Hillsdale,
NJ, 1995.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
pp. 1735–1780, Nov. 1997.

56

REFERENCES REFERENCES

[28] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with
LSTM,” Neural Computation, vol. 12, pp. 2451–2471, Oct. 2000.

[29] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Ben-
gio, “Learning phrase representations using RNN encoder–decoder for statistical machine trans-
lation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), (Doha, Qatar), pp. 1724–1734, Association for Computational Linguistics,
Oct. 2014.

[30] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, and M. A. Bessa, “Deep learning
predicts path-dependent plasticity,” Proceedings of the National Academy of Sciences, vol. 116,
pp. 26414–26420, Dec. 2019.

[31] L. Devroye, Non-uniform random variate generation. New York: Springer-Verlag, 1986.

[32] J. Arvo, “FAST RANDOM ROTATION MATRICES,” in Graphics Gems III (IBM Version),
pp. 117–120, Elsevier, 1992.

[33] S. Kammoun, I. Doghri, L. Adam, G. Robert, and L. Delannay, “First pseudo-grain failure
model for inelastic composites with misaligned short fibers,” Composites Part A: Applied Sci-
ence and Manufacturing, vol. 42, pp. 1892–1902, Dec. 2011.

[34] S. Wu, B. Wang, G. Zheng, S. Liu, K. Dai, C. Liu, and C. Shen, “Preparation and charac-
terization of macroscopically electrospun polyamide 66 nanofiber bundles,” Materials Letters,
vol. 124, pp. 77–80, June 2014.

[35] eX stream, digimat user’s manual. MSC Software, Belgium SA., 2020.

[36] J. S. Cintra and C. L. Tucker, “Orthotropic closure approximations for flow-induced fiber
orientation,” Journal of Rheology, vol. 39, pp. 1095–1122, Nov. 1995.

[37] “The julia programming language.” https://julialang.org/. Accessed: 2020-01-27.

[38] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On large-batch
training for deep learning: Generalization gap and sharp minima,” 2017.

[39] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A sim-
ple way to prevent neural networks from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, 2014.

[40] P. Baldi and P. J. Sadowski, “Understanding dropout,” in Advances in Neural Information
Processing Systems (C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, eds.), vol. 26, pp. 2814–2822, Curran Associates, Inc., 2013.

[41] The Mathworks, Inc., Natick, Massachusetts, MATLAB version 9.9.0.1538559 (R2020b) Up-
date 3, 2020.

[42] H. J. Logarzo, G. Capuano, and J. J. Rimoli, “Smart constitutive laws: Inelastic homogeniza-
tion through machine learning,” Computer Methods in Applied Mechanics and Engineering,
vol. 373, p. 113482, Jan. 2021.

57

REFERENCES REFERENCES

[43] N. Saabye Ottosen and H. Petersson, Introduction to the finite element method. New York:
Prentice Hall, 1992.

[44] K. Linka, M. Hillgärtner, K. P. Abdolazizi, R. C. Aydin, M. Itskov, and C. J. Cyron, “Con-
stitutive artificial neural networks: A fast and general approach to predictive data-driven
constitutive modeling by deep learning,” Journal of Computational Physics, p. 110010, Nov.
2020.

[45] P. Grinfeld, Introduction to tensor analysis and the calculus of moving surfaces. New York:
Springer, 2013.

58

A Tensors and Index Notation

Let V be an n-dimensional vector space equipped with the scalar product (·). The scalar product
is a symmetric bilinear form. To be a symmetric bilinear form (·) has the requirement that for any
three vectors u,v,w ∈ V and scalar λ the following must hold true:

(u+ v) ·w = u ·w + v ·w
(λu) · v = λu · v
u · v = v · u.

(A.1)

The magnitude of a vector u ∈ V is defined by

|u|2 = u · u, (A.2)

Consequently, the angle θ between any two vectors u,v ∈ V is defined as

cos (θ) =
u · v
|u||v|

. (A.3)

Any element of V can be expressed as a linear combination of n linearly independent basis vectors
ei, where i = 1, 2, ..., n. The element v can be accordingly be written as

v =

n∑
i=1

viei, (A.4)

where vi is a scalar and is called the ith coordinate of v in the basis ei. Using the properties from
Equation (A.1), the scalar product between two vectors u and v in V expressed in the basis ei is
computed as

u · v =

(
n∑
i=1

uiei

)
·

 n∑
j=1

vjej

 =

n∑
i=1

n∑
j=1

uivjei · ej =

n∑
i=1

n∑
j=1

uivjgij . (A.5)

Here ei ·ej is defined to be gij and is called the metric tensor. The scalar product is positive definite
and symmetric. As a consequence the metric tensor also possess those properties, and by extension
has an inverse. For a basis that is orthonormal the metric tensor is the identity.

I

A.1 Index Notation

The summands in Equation (A.4) contains two of the indices i, while the ones in Equation (A.5)
contains two of indices i and two of j. What these equations have in common is that every
summation symbol has two counts of its index associated with it, one superindex and one subindex.
Therefore it superfluous to use the summation symbol. Instead index-notation, also often called
Einstein-notation, is used. Whenever an index appears twice in a term, once as superindex and
once as a subindex, a sum is implied according to

n∑
i=1

aibi = aibi. (A.6)

Moreover, this notation requires that every index only can appear twice in every term to avoid
ambiguities. The components of the vector v = viei can be written on its own as vi. The index
i is then called a free index and takes the value i = 1, 2, ..., n. When an object with a free index
is multiplied with an object containing the same letter index in the opposite position, summation
is carried out as described above. This sum arising from multiplying a subindex factor with a
superindex factor is called taking the contraction of the index.

A.2 Change of Basis

The vector v ∈ V can be expressed in a second basis ẽi with coordinates ṽi. Since the vector
is independent on which basis it is expressed in the following relationship between the bases is
established

viei = ṽiẽi. (A.7)

Similarly, the ith basis vector in the old basis can be expressed as a linear combination of the new
basis vectors as

ei = Jji ẽj , (A.8)

where Jji is the jth component in the new basis of the ith basis vector in the old basis. Multiplying
both sides of Equation (A.8) with ẽk yields

ei · ẽk = Jji g̃jk, (A.9)

where g̃jk is the metric tensor for the basis ẽi. Multiplying both sides of Equation (A.7) with ẽk
and inserting the result from Equation (A.9) the following is obtained

viJji g̃jk = ṽig̃ik. (A.10)

Since all the indices are summation indices, the specific symbol that is used is irrelevant and can be
modified freely as long as it is modified in all places simultaneously (aibi = ajbj). Equation (A.10)
is thus rewritten as

viJji g̃jk = ṽj g̃jk. (A.11)

II

As stated previously the metric tensor has an inverse, so

ṽj = viJji . (A.12)

In Equation (A.8) the change from the new basis to the old is carried out by the tensor Jji , on
the other hand the coordinates are transformed in the reverse direction by the same tensor Jji in
Equation (A.12). This fact shows that the coordinates and the bases are of a different nature. The
basis vectors are called covariant tensors and denoted by a subindex. As the coordinates transform
opposite to the basis vectors they are called contravariant and are denoted with a superindex.

A.3 The Bases ei, ẽj and their Jacobian

Let R ∈ V be the position vector. For some system of coordinates xi that describes R the basis
vectors are defined as

ei =
∂R

∂xi
, (A.13)

i.e. the direction R shifts when one of the coordinates are perturbed. At the same time R is also
able to be expressed in the alternative system of coordinates x̃j . The derivative in Equation (A.13)
is rewritten via the chain rule as

ei =
∂R(x̃(x))

∂xj
=
∂R

∂x̃j
∂x̃j

∂xi
= ẽjJ

j
i . (A.14)

The derivative of R with respect to x̃j in Equation (A.14) is the basis vector ẽj by definition.
Thereby it follows that the coordinates of one system derived with the respect to the coordinate
of another system is the object that transforms the basis vector. This is the object Jji introduced
earlier and it is recognizable as the Jacobian of the basis change x̃ to x. Similarly, by beginning
with the vector ẽj the following must hold

ẽj =
∂R(x(x̃))

∂x̃j
=
∂R

∂xi
∂xi

∂x̃j
= eiJ̃

i
j , (A.15)

where J̃ ij is the Jacobian of the basis change x to x̃. By comparing Equation (A.14) and (A.15) it
becomes evident that Jji and J̃ ij must be each others inverses. This can be expressed as

J ikJ̃
k
j = J̃ ikJ

k
j = δij , (A.16)

where δij is the object that simply renames an index when contracted as follows

δijTi = Tj or δijT
j = T i. (A.17)

δij is called the Kronecker delta and is analogous to the identity matrix in linear algebra.

III

A.4 The Dual Basis ei

As remarked earlier the metric tensor gij pertaining the basis ei has an inverse. Following the
formalism in Equation (A.16) the inverse should be of the form

gikgkj = δij . (A.18)

The tensor gik in Equation (A.18) is called the inverse, or contravariant metric tensor. Similarly,
gjk is also called the covariant metric tensor. As the covariant metric tensor, the contravariant
metric tensor is positive definite and symmetric (gij = gji). Using the contravariant metric tensor
the following definition can be made:

ei = gijej . (A.19)

The object ei is called the dual basis of ei, or the contravariant basis. Analogously, the original
basis ei is referred to as the covariant basis. A benefit of introducing the dual basis is that the scalar
product of a basis vector and its dual always results in the Kronecker delta, even for non-orthogonal
coordinate systems. This easily follows from inserting the definition from Equation (A.19),

ej · ei = ej · ekgik = gjkg
ik = δij . (A.20)

Furthermore, by similar manipulations of Equation (A.19), the contravariant metric tensor can be
computed through the scalar product ei · ej = gij through

ei · ej = gikek · elglj = gikgklg
lj = δilg

lj = gij . (A.21)

The result in Equation (A.21) is analogous to the definition of the covariant metric tensor. One
useful consequence of Equation (A.20) is that the coordinates vi of a vector v can be simply
extracted through scalar multiplication with the dual basis elements as

v · ei = vjej · ei = vjδij = vi. (A.22)

The exact same reasoning can be used when extracting the covariant coordinates vj from the tensor
v = vje

j through scalar multiplication with the covariant basis ei.

A.5 Formal Definition of Tensors

A quantity T̃ i1...inj1...jm
is said to be a tensor of covariant rank m and and contravariant rank n if it

transforms to a different coordinate system through the rule

T k1...knl1...lm
= T̃ i1...inj1...jm

Jj1l1 ...J
jm
lm
J̃k1i1 ...J̃

kn
in
. (A.23)

In other words, an object is a tensor of covariant rank m and contravariant rank n (more briefly
rank(m,n)) if it in a change of coordinates needs to be multiplied by m forward transforming
Jacobians and n inverse Jacobians. Since it is completely unambiguous what type of Jacobian that
is required to transform the object based on the position of the indices, the tilde can be dropped

IV

without loss of clarity. For example, the metric tensor of rank(2, 0) would transform with two
forward transforms (contracting the upper index of the Jacobian) like

gij = g̃klJ
k
i J

l
j , (A.24)

while the inverse metric tensor of rank(0, 2) would transform with two inverse Jacobians (contracting
the lower index of the Jacobian) like

gij = g̃klJ ikJ
j
l . (A.25)

A.6 Raising and Lowering Indices

If the components of some covariant tensor Tj are known, the components of the contravariant
tensor T i is defined by

T i = gijTj . (A.26)

The opposite holds for the known components of a contravariant tensor T ′j ,

T ′i = gijT
′j . (A.27)

This act is known as raising and lowering indices, and makes the notation short and concise since
it erases the need to explicitly write down the metric tensors.

A.7 Tensors and Invariance

One of the most important concepts in physics is invariance, the property of independence of the
choice of coordinates. An example of invariant objects are vectors. The actual position of an object
in space is independent on the way its position is described. The position vector is given by the
contraction of the chosen coordinates and their basis vectors as

R = Riei = Rie
i. (A.28)

However, since this must hold for every possible choice of valid coordinates, the act of contracting
two tensors seem to generate an invariant object. To show this is a fact for the contraction of two
tensors of arbitrary rank consider the contraction of the rank(m,n) tensor T and the rank(n,m)
tensor S:

T i1...inj1...jm
Sj1...jmi1...in

= T̃ k1...knl1...lm
J i1k1 ...J

in
kn
J l1j1 ...J

lm
jm
Sj1...jmi1...in

= T̃ i1...inj1...jm
S̃j1...jmi1...in

. (A.29)

The act of contracting two tensors thus gives the same result in every system of coordinates. This
fact carries some tremendous consequences. If the contraction of two tensors give the correct result
in one system of coordinates, the result is correct in all systems. By extension, it is sufficient to prove
tensor relations involving contractions in the most convenient set of coordinates. Furthermore, if a
tensor T k1...knl1...lm

is shown to be 0 in on set of coordinates it must be 0 in all sets of coordinates. This
is true since

T̃ i1...inj1...jm
= T k1...knl1...lm

J i1k1 ...J
in
kn
J l1j1 ...J

lm
jm

= 0k1...knl1...lm
J i1k1 ...J

in
kn
J l1j1 ...J

lm
jm

= 0i1...inj1...jm
. (A.30)

V

A.8 The Christoffel Symbol Γijk

Consider the set of basis vectors ei. In general, these vectors are dependent on the position in space,
like in the case of cylindrical, spherical, or toroidal coordinates. To get a measure of how each of
the i = 1, ..., n basis vectors varies with every different coordinate, the derivative with respect to
a new independent index j = 1, ..., n is computed. Every resulting vector from this derivative can
in turn be expressed as combination of k = 1, ..., n components in the treated basis. The following
holds

∂ei
∂xj

= Γkijek, (A.31)

where Γkij is called the Christoffel symbol of the coordinate system xj . The Christoffel symbol given
explicitly by taking the scalar product with el on both sides of Equation (A.31) and renaming the
indices,

Γkij =
∂ei
xj
· ek. (A.32)

The Christoffel symbol is symmetric with respect to the lower indices. This is easily seen through
the definition of the basis vectors,

Γkij =
∂ei
xj
· ek =

∂2R

∂xj∂xi
· ek =

∂ej
∂xi
· ek = Γkji. (A.33)

The derivative of the contravariant basis ek is computed through

−Γkije
i = −(

∂ei
xj
· ek)ei = −

(
∂(ei · ek)

∂xj
− ∂ek

∂xj
· ei
)
ei =

∂ek

∂xj
· eiei =

∂ek

∂xj
. (A.34)

where the derivative of the product of basis vectors is zero since the Kronecker delta is a constant.
The final equality in Equation (A.34) holds since

∂ek

∂xj
· eiei =

(
∂ek

∂xj

)
i

ei. (A.35)

The Christoffel symbols are incredibly important in defining a derivative that returns tensors when
acting on tensors. It is important to note that the Christoffel symbols are not tensors themselves
since they transform under a change of coordinates according to

Γkij =
∂ei
∂xj
· ek =

(ẽlJ
l
i)

∂xj
· ẽmJkm =

∂ẽl
∂x̃n

· ẽmJkmJnj J li + δml J
k
m

∂J li
∂xj

= Γ̃mlnJ
k
mJ

n
j J

l
i +

∂J li
∂xj

Jkl . (A.36)

A.9 The Covariant Derivative

The usual derivative of a tensor is generally not a tensor. One example is the naive definition of
the divergence of a tensor T i given by

∂T i

∂xi
=
∂(T̃ kJ ik)

∂xi
=
∂(T̃ kJ ik)

∂x̃l
J li =

∂T̃ k

∂x̃l
J ikJ

l
i +

∂J ik
∂x̃l

J li T̃
k =

∂T̃ i

∂x̃i
+
∂J il
∂x̃k

J li T̃
k, (A.37)

VI

which doesn’t transform as a tensor due to the extra term. The given definition of the divergence
obviously isn’t valid in all choices of coordinates. Thus there arises a need to redefine the derivative
for tensors in general. Consider the derivative of the vector v = viei. Through the product rule of
derivatives the following is obtained

∂v

∂xj
=
∂vi

∂xj
ei + vi

∂ei
∂xj

=
∂vi

∂xj
ei + viΓkijek =

(
∂vi

∂xj
+ Γijkv

k

)
ei. (A.38)

The quantity in the parenthesis in Equation (A.38) keeps track of the rate of change of both
the coordinates and the basis vectors. Using the result of Equation (A.38) as inspiration, a new
derivative ∇j of the tensor T i is defined by

∇jT i =
∂T i

∂xj
+ ΓijkT

k, (A.39)

and is called the covariant derivative. The covariant derivative coincides with the classical derivative
in cartesian coordinates. Contracting the indices i and j in Equation (A.39) gives a new correct
divergence operation

∇iT i =
∂T i

∂xi
+ ΓiikT

k. (A.40)

Combining the results from Equation (A.36) and Equation (A.37) a change of coordinates of the
properly defined divergence takes the form

∇iT i =
∂T̃ i

∂x̃i
+
∂J il
∂x̃k

J li T̃
k +

(
Γ̃mlnJ

i
mJ

n
k J

l
i +

∂J li
∂xj

Jkl

)
T k =

∂T̃ i

∂x̃i
+ Γ̃iikT̃

k +
∂J il
∂x̃k

J li T̃
k +

∂J li
∂xk

J il T
k =

∂T̃ i

∂x̃i
+ Γ̃iikT̃

k = ∇̃iT̃ i.
(A.41)

The last equality in Equation (A.41) follows from the fact that

∂J li
∂xk

J il T
k =

∂J liJ
i
l

∂xk
T k − ∂J il

∂xk
J liT

k = − ∂J
i
l

∂x̃n
J liJ

n
k T

k = − ∂J
i
l

∂x̃k
T̃ kJ li . (A.42)

These calculations show that the divergence defined in Equation (A.40) has the same appearance in
all coordinate systems, and therefore motivates the use of the covariant derivative. The covariant
derivative of an arbitrary tensor of rank(m,n) is defined as

∇kT i1...inj1...jm
=
∂T i1...inj1...jm

∂xk
+ Γi1klT

l...in
j1...jm

+ ...+ ΓinklT
i1...l
j1...jm

− Γlkj1T
i1...in
l...jm

− ΓlkjmT
i1...in
j1...l

, (A.43)

and is also a tensor [45]. The covariant derivative has all the properties one expects of a derivative
such as product-, sum-, and chain-rule and it commutes with contraction. In addition the covariant
derivative of several common tensors is zero, a property called the metrinilic property. These tensors
include the covariant and contravariant basis vectors, the covariant and contravariant metric tensors,
and the Kronecker delta [45]. To make notation more compact, a subscript comma followed by an
index denotes covariant differentiation and is written as

∇jT i = T i,j , ∇jTi = Ti,j . (A.44)

VII

A.10 The Levi-Civita Tensor εijk

The permutation symbol of order n is defined by

ei1...in = ei1...in =


1 if i1, ..., in is an even permutation of 1, ..., n

−1 if i1, ..., in is an odd permutation of 1, ..., n

0 if any indices are repeated,
(A.45)

Using the permutation symbol the determinant of a second order tensor T ij can be concisely defined
as

T =
1

n!
ei1...inej1...jnT

i1j1T i2j2 ...T injn , (A.46)

where the determinant of a covariant tensor is computed analogously using the permutation symbol
with superindices. The permutation symbol is itself not a tensor, but it can be turned into the
Levi-Civita tensor by scaling with the square root of the determinant of the metric tensor as [45]

εi1...in =
√
gei1...in (A.47)

for the covariant version or
εi1...in =

1
√
g
ei1...in (A.48)

for the contravariant version. In three dimensions the vector-, or cross-product between two vectors
u and v can be defined with the Levi-Civita tensor as

u× v = εijku
ivjek. (A.49)

An interest consequence of this definition is that it makes it apparent that the cross product yields a
pseudo-vector since it turns two vectors with contravariant coordinates into a vector with covariant
coordinates.

VIII

B Continuum Solid Mechanics

In solid mechanics there is a need to relate the displacements inside a continuous body to the
forces acting on it to be able to solve the equations of equilibrium. However, simply trying to
find a direct relationship between the displacement and forces contradicts the physics of reality, a
rigid body displacement doesn’t give rise to internal forces. Not even the displacement gradient
is a sufficient measure as rigid body rotations also requires a state of non-existent internal forces.
Thus a more sophisticated concept, which is called strain, is required. The concept of force also
requires generalization. Simply considering the force balance of a point inside the solid will lead to
ambiguous results. Therefore stress, which is more general, is introduced. Elasticity is a special, but
very common, material behavior where a deforming body will return to its original shape when any
external forces or boundary displacements are removed. The equations of elasticity is the bridge
between strain and stress. From now on, all tensors are three dimensional. In other words, indices
have the range i = 1, 2, 3.

B.1 Strain

Consider a continuum body occupying some region in space Ω with boundary Γ. Let the body
be deformed and denote the region and its boundary after deformation by Ω′ and Γ′ respectively.
Refer to Figure B.1 to see a visualization of the deforming process. Pick an arbitrary point inside
Ω and call it r. Furthermore, pick a point in the vicinity of r, and let its position be denoted by
r + ∆r. After deformation the first point takes the location r′ = r + u(r), while the second point
moves to r′+∆r′ = r+∆r+u(r+∆r). In this context u is the displacement field that shows how
every point of Ω moves to its place in Ω′ seen from a Lagrangian viewpoint. The line segment that
connects the two points in Ω is ∆r by construction, while it is ∆r′ = ∆r+u(r+ ∆r)−u(r) in Ω′.
If the two points are sufficiently close together during the course of the displacement, u(r + ∆(r))
can be Taylor expanded to the first order as

∆r′ = ∆r + u(r) +∇u(r) ·∆r − u(r) = (I +∇u(r)) ·∆r, (B.1)

where I is the second order identity tensor. It is thus evident that ∆r′ can be expressed as a linear
mapping of ∆r involving the second order displacement gradient tensor. This tensor is often called
the deformation tensor F . Written on index notation it reads

F = Fije
iej = (gij + ui,j)e

iej . (B.2)

IX

Ω

Γ Ω′

Γ′

r

∆r

r′

∆r′

Figure B.1: A continuum body occupying a region Ω with boundary Γ is deformed and until it occupies
the region Ω′ with boundary Γ′. An arbitrary pair of points r and r + ∆r in Ω is mapped on the points r′

and r′ + ∆r′ inside Ω′ respectively.

X

The line segment in Ω′ is written in index notation as

∆r′iei = Fije
iej ·∆rkek = Fijδ

j
k∆rkei = Fij∆r

jei, (B.3)

and its squared length of thus follows as

|∆r′|2 = ∆r′ ·∆r′ = Fij∆r
jei · Fkl∆rlek = FijFklg

ik∆rj∆rl. (B.4)

The ratio of the length of the line segment after deformation to its length before deformation is
defined as the stretch and is denoted by λ = |∆r′|/|∆r|. The normal strain is defined by the ratio
between the change in length to the original length as

εn =
|∆r′| − |∆r|
|∆r|

= λ− 1. (B.5)

The difference of the squared length before and after the deformation can be expressed as

|∆r′|2 − |∆r|2 = (FijFklg
ik − gjl)∆rj∆rl = ((gij + ui,j)(gkl + uk,l)g

ik − gjl)∆rj∆rl =

((gijgkl + gijuk,l + ui,jgkl + ui,juk,l)g
ik − gjl)∆rj∆rl = (uj,l + ul,j + ui,juk,lg

ik)∆rj∆rl.
(B.6)

If n = niei is the unit vector in the direction of ∆r = ∆riei the strain of the line segment is written
as

|∆r′|2 − |∆r|2

|∆r|2
= (ui,j + uj,i + uk,iul,jg

kl)ninj = niei · ek2Ekle
l · njej . (B.7)

The strain tensor is followingly defined as

E = Eije
iej =

1

2
(ui,j + uj,i + uk,iul,jg

kl)eiej . (B.8)

The strain tensor is related to the normal strain of a line with direction n through

εn =
√
n · 2E · n+ 1− 1, (B.9)

and to the stretch through
λ =
√
n · 2E · n+ 1. (B.10)

E is a second order tensor and is symmetric. Now consider two line segments ∆r and ∆s with unit
directions n and m respectively, which can be seen in Figure B.2. If the line segments share their
origin the angle that between them is given by

θ = arccos(n ·m) (B.11)

After deformation the two line segments satisfy the scalar product

cos (θ)|∆r′||∆s′| = gil∆rj∆skFijFlk = (2Ejk + gjk)∆rj∆sk = n · (E + I) ·m|∆r||∆s|, (B.12)

and the angle between by the deformed segments is thus given by

θ′ = arccos

(
n · (2E + I) ·m√

n · 2E · n+ 1
√
m · 2E ·m+ 1

)
. (B.13)

XI

Ω

Γ Ω′

Γ′

∆r

θ∆s

θ′

Figure B.2: The shearing of the angle θ between by the line segments ∆r and ∆s is displayed. After
deformation the angle between by the line segments change into θ′.

In Equation (B.13) the fact that |∆r′| = |∆r|λ is utilized. The change of the angle can then be
easily computed as ∆θ = θ′ − θ. It is evident that the strain tensor E contains all information
required to describe the stretch of line segments through Equation (B.10) and the shearing of angles
through Equations (B.11) and (B.13). Since these processes are measures of actual deformation in
a material, i.e. excluding rigid body rotations, the strain is a natural choice of material kinematics.
To conclude the discussion on strain the strain tensor is adapted for linear elasticity. As long as the
studied deformation is small, the second order term uk,iul,jg

lk contained in E becomes negligible
and the strain tensor becomes the small strain tensor which is defined by

ε = εije
iej =

1

2
(ui,j + uj,i)e

iej . (B.14)

This is also often refereed to as engineering strain and is the most common strain measure for most
engineering applications where the deformations may be assumed small.

B.2 Stress

An infinitesimal tetrahedral region of a solid in equilibrium is constructed by intersecting three
mutually orthogonal intersecting lines with a plane. Let the largest of the four faces be called dA0

and have the normal vector n0. Let the three remaining faces have areas dA1, dA2, and dA3, and

XII

Figure B.3: An infinitesimal right angled tetrahedral sub-region of some solid material. The tetrahedron
is in force equilibrium. The black arrows denote the normals of the tetrahedron faces while the red arrows
represent the surface traction acting on each of the faces.

let them have the normals n1, n2, and n3 respectively. The tetrahedron can be seen in Figure
(B.3). Any region of the solid must be in equilibrium, so the tractions acting on the tetrahedron
must be self equilibrating if no other forces are acting on the body. As the faces of the tetrahedron
are very small, the traction acting on the tetrahedron may be considered constant on each face.
Equilibrium of the tetrahedron requires that

dA0t(n0) + dA1t(n1) + dA2t(n2) + dA3t(n3) = 0, (B.15)

where t is the traction (force per unit area) as a function of the outward facing normal. The
relationship between the different face areas and the normals can be obtained by considering Gauss
divergence theorem where the function being integrated is the normal vectors:∫

S

nα · ndS =

∫
V

∇ · nidV α = 1, 2, 3

dA0n1 · n0 + dA1 = 0

dA0n2 · n0 + dA2 = 0

dA0n3 · n0 + dA3 = 0.

(B.16)

By combining Equations (B.15) and (B.16) and canceling dA0 the following equilibrium condition
is received

t(n0) + n1 · n0t(n1) + n2 · n0t(n2) + n3 · n0t(n3) = 0. (B.17)

Newtons third law requires that t(n) = −t(−n), thus the traction on the surface dA0 is given by

t(n0) = t(−n1)n1 · n0 + t(−n2)n2 · n0 + t(−n3)n3 · n0, (B.18)

or written more compactly as

t(n0) = (t(−n1)n1 + t(−n2)n2 + t(−n3)n3) · n0. (B.19)

Let the traction be written on index notation as

t(−nα) = tiαei α = 1, 2, 3 (B.20)

XIII

and let the normal vectors be written as

nα = niαei α = 1, 2, 3. (B.21)

Using Equations (B.20) and (B.21) the equilibrium condition is written on index form as

t(n0) = (ti1n
j
1eiej + ti2n

j
2eiej + ti3n

j
3eiej) · nk0ek. (B.22)

Following this the Cauchy stress tensor is defined as

σ = σijeiej = (ti1n
j
1 + ti2n

j
2 + ti3n

j
3)eiej , (B.23)

which reduces to a simple expression in a coordinate system aligned with the lines used to construct
the tetrahedron. In such a coordinate system the ijth component of the stress tensor becomes the
ith component of the reaction to the traction vector acting on the jth face. The diagonal components
become the normal tractions and the off-diagonal components becomes the shears. In other words,
if the traction is known on three orthogonal surfaces intersecting in a point, the traction on an
arbitrary surface intersecting that point is known. By letting the tetrahedron shrink to a point, the
stress tensor extracts the traction on an arbitrary cross section with normal n anywhere inside the
solid through

t(n) = σ · n = σijnjei. (B.24)
Consider force equilibrium inside an arbitrary subregion of a solid. The forces acting on the region
is some force per unit volume b = biei and a surface traction. The equilibrium condition reads∫

V

bieidV +

∫
S

σijnjeidS = 0. (B.25)

Using Gauss’ divergence theorem yields∫
V

(bi + σij,j)eidV = 0. (B.26)

However, since this must be true for any subregion, the quantity under the integral sign must be
zero. Thus, the general equilibrium relation reads

σij,j = −bi. (B.27)

Now consider moment equilibrium. Moment equilibrium is stated by integrating the cross product
of forces and position like ∫

V

bixjεijke
kdV +

∫
S

σilnlx
jεijke

kdS = 0, (B.28)

which by using Gauss’ theorem turns into∫
V

(bixj + σil,lx
j + σilxj,l)εijke

kdV = 0. (B.29)

By inserting the result from Equation (B.27) into Equation (B.29) and using the fact that xj,l = δjl
it follows that ∫

V

σijεijke
kdV = 0. (B.30)

Using the same reasoning as for the force equilibrium, the quantity under the integral sign must
equate to zero. The Levi-Civita tensor is anti-symmetric, thus it follows that the stress tensor must
be symmetric since the product of a symmetric and anti-symmetric tensor is zero.

XIV

B.3 Linear Elasticity

The reason of introducing the concepts of strain and stress is to be able to relate displacements
of a continuum to the internal forces. The forces are subsequently used to establish equations of
equilibrium. One final concept is required to bridge strain and stress, a constitutive relationship. In
linear elasticity the linear small strain tensor is related to the stress. Since the small strain tensor
is linear in displacements by definition, the equations of elasticity inherits this property.

The most general assumption is that every component of the strain tensor influences every compo-
nent of the stress tensor. This is accomplished by a linear transformation through a fourth order
tensor

σ = C : ε, (B.31)

where the : symbol refers to the double contraction eiej : ekel = ei · ekej · el. In index notation
Equation (B.31) becomes

σijeiej = Cijkleiejek · emel · enεmn. (B.32)

The tensor C is called the stiffness tensor and the relation in Equation (B.31) is called the general-
ized Hooke’s law. The stiffness tensor seem to have 34 = 81 independent components, but that can
immediately be reduced to 36 by using the symmetries of σ and ε. That is Cijkl = Cjikl = Cjilk =
Cijlk, and this is called the minor symmetry of C. It is possible to reduce the degrees of freedom
of C further to 21. If it assumed that there is a strain energy density ψ, differentiation yields

∂ψ

∂εij
= σij , (B.33)

By inserting Hooke’s law the stifness tensor can be derived from the strain energy like

Cijkl =
∂2ψ

∂εij∂εkl
. (B.34)

Since order of differentiation is arbitrary, so called major symmetry of the stiffness tensor Cijkl =
Cklij becomes apparent.

There is a particularly easy way to express the Hooke’s law if the solid being treated is isotropic.
In orthogonal coordinate systems the stiffness tensor then takes the form

Cijkl = λgijgkl + µ(gikgjl + gilgjk), (B.35)

which only have 9 non-zero components. Here λ and µ are the Lamé parameters and are related
to the engineering elasticity constants (Young’s modulus E and Poisson’s ratio ν) through

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)
. (B.36)

The presented theory on linear elasticity relies on the fact that the stress is given by the derivative
of an energy density with respect to the strain. To support this claim a thermodynamic inquiry is
necessary.

XV

B.4 Continuum Thermodynamics

Consider a subregion V with boundary S of a solid under deformation. The region has an original
configuration V0 and S0 before it is deformed. Let M be the mass of the region. Conservation of
mass requires that the integral of the density is constant for any configuration of the solid,

M =

∫
V

ρdV =

∫
V0

ρ0dV, (B.37)

where ρ(t) is the mass density of the current configuration and ρ0 is the time independent mass
density of the original configuration. The integral over the current configuration V can be mapped
on the initial configuration V0 through a change of coordinates. Therefore,

M −M = 0 =

∫
V0

ρ0 − JρdV, (B.38)

where J is the Jacobian of the coordinate change. This must be true for any initial configuration
V0, which implies that

ρ0 = ρJ. (B.39)

The kinetic energy of V is given by

K =
1

2

∫
V

u̇ · u̇ρdV, (B.40)

where ρ is the mass density of the solid and the dot denotes time differentiation. The change in
kinetic energy follows as

K̇ =

∫
V

ü · u̇ρdV =

∫
V

üiu̇jg
ijρdV. (B.41)

The time derivative doesn’t act on ρ since conservation of mass requires that ρdV is constant. If it
assumed that there is an internal energy per unit mass e, then the change of internal energy is

U̇ =

∫
V

ρėdV. (B.42)

The external work rate acting on the solid is

W =

∫
V

b · u̇dV +

∫
V

t · u̇ =

∫
V

biu̇idV +

∫
S

σijnj u̇idS. (B.43)

Using the divergence theorem, (B.43) is rewritten on the form

W =

∫
V

(bi + σij,j)u̇i + σij u̇i,jdV. (B.44)

The heat transfer is given by

Q =

∫
V

ρhdV −
∫
S

q · ndS, (B.45)

XVI

where h is the heat production per unit mass and q is the heat flow vector. Gauss theorem once
again yields

Q =

∫
V

(ρh− qi,i)dV. (B.46)

The first law of thermodynamics states that the total energy must be conserved, therefore the
change of kinetic energy and internal energy summed must be equal to the sum external workrate
and heat transfer

K̇ + U̇ = W +Q. (B.47)

All the quantities from Equations (B.41), (B.42), (B.44), and (B.46) are written as volume integrals,
so their sum can be written as∫

V

ρė+ üiu̇jg
ijρ− (bi + σij,j)u̇i − σij u̇i,j − ρh+ qi,idV = 0. (B.48)

By using Newton’s second law, the second and third terms of (B.48) cancel. Besides, the integral
can be mapped on the initial configuration through a change of coordinates and becomes∫

V0

ρ0ė− σij u̇i,jJ − ρ0h+ Jqi,idV = 0 (B.49)

Using the argument that this relation must hold for arbitrary regions of the solid, it is localized
and Equation (B.49) becomes the balance law for energy:

ρ0ė = σij u̇i,jJ + ρ0h− Jqi,i. (B.50)

The second law of thermodynamics states that the global change in entropy is non-negative

dS − dQ

T
≥ 0, (B.51)

where T is the absolute temperature of the surroundings of the studied piece of solid. The change
in entropy therefore obeys

Ṡ −QT =

∫
V

ρṡdV −
∫
V

ρh

T
dV +

∫
S

1

T
q · ndS ≥ 0, (B.52)

where s is the entropy per unit mass of the solid. By Gauss’ divergence theorem Equation (B.52)
transforms into

Ṡ −QT =

∫
V

ρṡ− ρh

T
+

1

T
qi,i −

1

T 2
T,iqjg

ijdV ≥ 0. (B.53)

The final term in the integral of Equation (B.53) can absorbed by the inequality since it is always
greater than 0. This follows from the fact that the heat flow is always parallel to the temperature
gradient. By using the localization argument as for the other balance equations and by exploiting
Equation (B.39), the energy dissipation rate is received

ρ0ṡT − ρ0h+ Jqi,i ≥ 0. (B.54)

Combining Equations (B.50) and (B.54) results in

ρ0ṡT − ρ0ė+ σij u̇i,jJ ≥ 0. (B.55)

XVII

If the strains are assumed small the product of the Kirchoff stress Jσij and the gradient of the
displacement rate u̇i,j , will be equal to the product of the Cauchy stress σij and the small strain
rate tensor ε̇ij . Morover, if the Helmholtz free energy density is defined as

ψ = ρ0e− ρ0sT, (B.56)

Equation (B.55) then reads
σij ε̇ij − ρ0sṪ − ψ̇ ≥ 0. (B.57)

If the Helmholtz free energy is taken as a function of the strain, temperature, and an arbitrary
number of other internal variables ψ(ε, T, k) Equation (B.57) takes the form

(σij − ∂ψ

∂εij
)ε̇ij − (ρ0s+

∂ψ

∂T
)Ṫ − ∂ψ

∂k
k̇ ≥ 0. (B.58)

This inequality needs to be valid for any strain rate ε̇ij , rate of temperature change Ṫ , and rate of
change relating the internal variables k̇, regardless of the current stress- or strain state or entropy
density. The only possibility for this to hold is that the expressions in the parenthesis are zero, and
that the final term is non-negative. Therefore the assumption on the existence of an energy density
made in section (B.3) is motivated through

σij =
∂ψ

∂εij
. (B.59)

In addition, the entropy density is given by

s = − 1

ρ0

∂ψ

∂T
, (B.60)

and the change in the other internal variables must adhere to

−∂ψ
∂k

k̇ ≥ 0. (B.61)

As this inequality pertains to the energy dissipation rate, it follows that the dissipation rate for a
solid where the Helmholtz free energy is dependent on n internal variables (excluding elastic strain
and temperature) is

D = Ṡ −QT =

n∑
i=1

− ∂ψ
∂ki

k̇i =
n∑
i=1

κik̇i ≥ 0. (B.62)

The factors
κi = − ∂ψ

∂ki
, (B.63)

look very similar to how the stress was computed in Equation (B.59). As a consequence they are
called dissipative stresses. The dissipation rate is important for the theoretical basis of plasticity.

XVIII

C Fundamental Solution of Elasticity

A fundamental solution G pertaining a linear differential operator L is the function that satisfies

LG(x,x′) = −δ(x− x′). (C.1)

Here δ is the Dirac delta-distribution that is zero for all non-zero arguments and satisfies∫ ∞
−∞

δ(x)dV = 1. (C.2)

An important property of the Dirac distribution is that it is the identity element of convolution,
i.e. ∫ ∞

−∞
f(x′)δ(x− x′)dV ′ = f(x). (C.3)

Equation (C.3) implies that if G(x,x′) is the fundamental solution of the operator L then

F (x) =

∫ ∞
−∞

G(x,x′)f(x′)dV ′ (C.4)

is the solution of LF (x) = −f(x). This is easily verified by differentiation under the integral sign
in Equation (C.4) and using the definition of G given in Equation (C.1).

The concept of fundamental solutions can be generalized to vector-valued differential equations. If
the linear differential operator Lik acts on a vector object Fk, the fundamental solution is taken to
be a second order tensor as follows:

LikGjk(x,x′) = −δ(x− x′)δij . (C.5)

Note that one of the deltas in Equation (C.5) is the Dirac delta, while the other is the Kronecker
delta. Analogously to Equation (C.4) the solution to the equation LikFk(x) = −f i(x) is then given
by

Fk(x) =

∫ ∞
−∞

Gjk(x,x′)f j(x′)dV ′, (C.6)

and is verified in the exact same fashion as earlier through differentiation under the integral sign.

XIX

C.1 Response of an Infinite Medium Due to a Point Force

The response of an infinite, linearly elastic medium due to a point force is the fundamental solution
of the Cauchy-Navier equation of a linearly elastic isotropic medium. The Cauchy-Navier equation
is easily derived by combining the equilibrium condition of a continuum, the definition of the
infinitesimal strain, and Hooke’s law. The computations in this section assumes a coordinate
system whose metric tensor gij is constant in space. The equilibrium of a continuum is stated by
the relation

σij,j = −bi. (C.7)

The infinitesimal strain tensor is defined by

εij =
1

2
(ui,j + uj,i) . (C.8)

Hooke’s law is given by
σij = Cijklεkl, (C.9)

where Cijkl has major and minor symmetry. By insering Equation (C.8) into Equation (C.9) and
by exploiting the minor symmetry of Cijkl the stress is expressed by

σij = Cijkluk,l. (C.10)

By inserting Equation (C.10) into Equation (C.7) the Cauchy-Navier equation is attained, and takes
the appearance (

Cijkluk,l
)
,j

= −bi. (C.11)

By finally using the fact that the stiffness tensor of a linearly elastic isotropic medium is given by

Cijkl = λgijgkl + µ(gikgjl + gilgjk), (C.12)

the isotropic Cauchy-Navier is then ultimately obtained as(
λgijgkl + µ(gikgjl + gilgjk)

)
uk,lj = −bi. (C.13)

The differential operator of the isotropic Cauchy-Navier equation is

Lik =
(
λgingkl + µ(gikgnl + gilgnk)

)
∇l∇n, (C.14)

where the summation index j has been switched to n to free up the symbol j. Insertion of this
differential operator into defining Equation (C.5) yields the equation(

λgingkl + µ(gikgnl + gilgnk)
)
Gjk,ln = −δ(x− x′)δij . (C.15)

This equation is most easily solved in the Fourier domain. The Fourier transform is defined by

f̂(k) = F(f(x)) =

∫ ∞
−∞

f(x)e−ik·xdx, (C.16)

XX

while the inverse Fourier transform is defined through

f(x) = F−1(f̂(k)) =
1

(2π)3

∫ ∞
−∞

f̂(k)eik·xdk, (C.17)

where i2 = −1 is the imaginary unit. A Fourier transformed quantity f is denoted with a hat like
f̂ . The following convenient properties of the Fourier transform are employed [12]:

F(f(x− x′)) = e−ik·x
′

F(∇jf(x)) = ikj f̂(k)

F(δ(x)) = 1

F(F(f(x))) = (2π)3f(−x).

(C.18)

The Fourier transform of Equation (C.15) (remembering that gij is assumed constant in space)
leads to (

λgingkl + µ(gikgnl + gilgnk)
)
klknĜjk = δije

−ik·x′ . (C.19)

This simplifies considerably to(
(µ+ λ)kikk + µgikknkn

)
Ĝjk = δije

−ik·x′ , (C.20)

where the tensor multiplied with Ĝjk often is called the Acoustic tensor. To proceed, an inverse
of the acoustic tensor needs to be found. Equation (C.20) can be further simplified to reveal some
useful properties of the acoustic tensor. The equation becomes

µk2

(
2µ+ λ

µ
nink + (gik − nink)

)
Ĝjk = δije

−ik·x′ , (C.21)

where ni = ki/k and k is the norm of ki. The tensor nink called the projection tensor has the
property

ninkninl = nknl (C.22)

while tensor (gik − nink) has the property

(gik − nink)(gil − ninl) = δkl − nknl − nknl + nknl = (δkl − nknl) (C.23)

In addition, they are orthogonal through

nink(gkl − nknl) = nknl − nknl = 0kl . (C.24)

Exploiting the properties presented in Equations (C.22), (C.23), and (C.24) it is easy to see that
the inverse of the acoustic tensor is

1

µk2

(
µ

2µ+ λ
ninl + (gil − ninl)

)
, (C.25)

and the solution in the Fourier domain follows as

Ĝjk =
gjk
µ

e−ik·x
′

k2
− µ+ λ

(2µ+ λ)µ

e−ik·x
′
kjkk

k4
. (C.26)

XXI

Taking the inverse Fourier transform of Equation (C.26) leads to the fundamental solution of the
Cauchy-Navier equation.

To compute the inverse Fourier transform of k−2 one utilizes the fundamental solution of the Laplace
operator [12]

G∆(x) =
1

4π|x|
, (C.27)

and the derivative property of the Fourier transform:

F(∇k∇kG∆) = F(−δ(x)) =⇒ F(G∆) =
1

k2
= F

(
1

4π|x|

)
. (C.28)

The inverse of kjkkk−4 is slighly more involved to derive. Using the final property listen in Equation
(C.18) on the Laplacian fundamental solution one obtains

F
(

1

|x|2

)
=

2π2

|k|
. (C.29)

By applying the derivative property on the result in Equation (C.29) the following is produced

F
(
xj
|x|4

)
= − iπ

2kj
|k|

, (C.30)

which in turn can be rewritten (using the final property of Equation (C.18) once again) as

F
(

xj
8π|x|

)
= − ikj

k4
. (C.31)

By applying the derivative property once again on Equation (C.31) and using the first property of
Equation (C.18) the final result follows:

Gjk(x,x′) =
1

4πµ|x− x′|
gjk −

µ+ λ

8π(2µ+ λ)µ
|x− x′|,jk, (C.32)

where the chain rule of differentiation has been used backwards on the final term.

To recapitulate: the fundamental solution Gij will return the displacement response ui due to an
applied point force bj(x) = δ(x − x′)P j in the point x′ of an infinite isotropic elastic medium
through

ui(x) = Gij(x,x
′)P j . (C.33)

This is easily seen by applying the Cauchy-Navier differential operator to Equation (C.33) and
recalling the definition of the vector valued fundamental solution. By integrating the contribution
of an arbitrary distribution of point forces, i.e. any type of body force, the general solution of the
infinite linearly elastic isotropic body is given by

ui(x) =

∫ ∞
−∞

Gij(x,x
′)bj(x′)dx′. (C.34)

This is very important result in micro-mechanics and can be utilized in the treatment of inhomo-
geneities.

XXII

D julia code

Note that file paths have to be modified to match the file structure of the current user.

D.1 generateTrainingData_main.jl

� �
1 using Distributions, Random, DelimitedFiles, Shell, LinearAlgebra
2 include("C:/Users/Johan/Documents/Julia/strainPathGenerator.jl")
3 include("C:/Users/Johan/Documents/Julia/writemat.jl")
4 include("C:/Users/Johan/Documents/Julia/stressPostprocess.jl")
5 include("C:/Users/Johan/Documents/Julia/orientationTensorGenerator.jl")
6
7 ##----Parameters----##
8 # Number of files is n_end - n_start
9 n_start = 1 # Start number

10 n_end = 1000 # End number
11 # Ensure that counter is increasing!
12 if n_start > n_end
13 n_start = 1
14 n_end = 10
15 end
16
17
18 timeSteps = 2000;
19 # Number of time steps in strain paths must be divisible by 1000!
20 if timeSteps%1000 != 0
21 timeSteps = 1000
22 end
23
24 t = LinRange(0,1,timeSteps+1) # Time variable
25
26 strainPath = "C:/Users/Johan/Documents/Julia/StrainData/"
27 strainNameFormat = "strainData_"
28 stressPath = "C:/Users/Johan/Documents/Julia/StrainData/"
29 stressNameFormat = "stressData_"
30 orientationPath = "C:/Users/Johan/Documents/Julia/StrainData/"
31 orientationNameFormat = "orientationData_"
32
33 matPath = "C:/Users/Johan/Documents/Julia/StrainData/"
34 matNameFormat = "analysis_"
35 outputNameFormat = "output_"
36
37 finalTime = "1.0e+00"
38 maxTimeInc = "1.0e-01"
39 minTimeInc = "1.0e-02"
40 integrationParameter = "5.0e-01"

XXIII

41 numberAngleIncrements = "12"
42 outputPrecision = "5"
43
44 PlaneConditionInitialGuess = "off"
45 OTtraceTol = "1.0e-01"
46
47 youngFiber = "76e+09"
48 poissonFiber = "2.2e-01"
49 fiberVolumefraction = "1e-01" # This value if random_3D orientation.
50 fiberAspectratio = "2.4e+01"
51 fiberOrientation = "tensor" # "tensor" or "random_3D"
52
53 youngMatrix = "3.1e+09"
54 poissonMatrix = "3.5e-01"
55 yieldMatrix = "2.5e+07"
56 hardeningModulusMatrix = "2e+07"
57 hardeningExponentMatrix = "3.25e+02"
58 hardeningModulus2Matrix = "1.5e+08"
59 matrixVolumefraction = "9.0e-01" # This value if random_3D orientation.
60 # Must be equal to 1-fiberVolumefraction!
61 ##
62
63 # IMPORTANT! Match significant digits of time vector to outputPrecision!
64 t = round.(t,sigdigits=parse(Int,outputPrecision))
65
66 # Generate strain path data. Optionally also generates orientation tensors.
67 for i = n_start:n_end
68 noise = rand()
69 n_drift = rand([1 2 5 10 20 25 50 100 200])
70 # Calculate n_step by dividing timeStep by n_drift to ensure
71 # constant length of time series
72 n_step = div(timeSteps,n_drift) # div(x,y) to ensure int.
73 EPS = 0.01 + rand()*0.04 # Maximum admissible component in 0.01 to 0.05
74 if rand() > 0.9
75 uni = true
76 else
77 uni = false
78 end
79 strainPathGenerator(noise,n_step,n_drift,EPS,t,
80 strainPath*strainNameFormat*string(i),uni)
81 if fiberOrientation != "random_3D"
82 if rand() > 0.9
83 fullyAligned = true
84 else
85 fullyAligned = false
86 end
87 orientationTensorGenerator(fullyAligned, fiberVolumefraction,
88 orientationPath*orientationNameFormat*string(i))
89 end
90 end
91
92 # Write *.mat files for every strain path.
93 for i = n_start:n_end
94 local inPath = strainPath*strainNameFormat*string(i)*".txt"
95 local outPath = matPath*matNameFormat*string(i)*".mat"
96 outputName = outputNameFormat*string(i)
97 if fiberOrientation == "random_3D"
98 writemat(inPath,outPath,outputName,finalTime,maxTimeInc,minTimeInc,
99 integrationParameter,numberAngleIncrements,outputPrecision,

100 PlaneConditionInitialGuess,OTtraceTol,youngFiber,poissonFiber,
101 fiberVolumefraction,fiberAspectratio,fiberOrientation,
102 youngMatrix,poissonMatrix,yieldMatrix,hardeningModulusMatrix,
103 hardeningExponentMatrix,hardeningModulus2Matrix,matrixVolumefraction)
104 else
105 local inPath2 = orientationPath*orientationNameFormat*string(i)*".txt"
106 writemat(inPath,outPath,outputName,finalTime,maxTimeInc,minTimeInc,
107 integrationParameter,numberAngleIncrements,outputPrecision,
108 PlaneConditionInitialGuess,OTtraceTol,youngFiber,poissonFiber,
109 fiberVolumefraction,fiberAspectratio,fiberOrientation,

XXIV

110 youngMatrix,poissonMatrix,yieldMatrix,hardeningModulusMatrix,
111 hardeningExponentMatrix,hardeningModulus2Matrix,matrixVolumefraction,
112 inPath2)
113 end
114 end
115
116 # Run DIGIMAT simulation for every *.mat file.
117 for i = n_start:n_end
118 digimatPath = "C:/MSC.Software/Digimat/2020.0/DigimatMF/exec/"
119 digimatInput = "input="*matPath*matNameFormat*string(i)*".mat"
120
121 Shell.run(digimatPath*"DigimatMFPlugin.bat"*" "*digimatInput)
122
123 # Delete unnecessary files to save space!
124 rm(strainPath*"analysis_"*string(i)*".log")
125 rm(strainPath*"analysis_"*string(i)*".eng")
126 end
127
128 # Postprocess DIGIMAT output to match the generated strain data.
129 for i = n_start:n_end
130 local inPath = matPath*matNameFormat*string(i)*".mac"
131 local outPath = stressPath*stressNameFormat*string(i)*".txt"
132 stressPostprocess(inPath,outPath,t)
133
134 # Remove *.mac and *.mat files to save space!
135 rm(matPath*matNameFormat*string(i)*".mac")
136 rm(matPath*matNameFormat*string(i)*".mat")
137 end� �

D.2 strainPathGenerator.jl

� �
1 #
2 # Generates a path in 6D strain space and prints to a tab delimited file.
3 # Picks n_drift directions and walks n_step steps in those directions with
4 # added noise. The noise vector is multiplied by the variable noise.
5 # The directions and noise is sampled from a normal distribution with mean
6 # 0 and standard deviation 1. The output data file is formatted column wise
7 # given in the order "time" "e11" "e22" "e33" "2*e12" "2*e23" "2*e13".
8 #
9 # noise: Noise multiplicative factor

10 # n_step: Number of random steps per directions
11 # n_drift: Number of drift directions
12 # EPS: Maximum admissible strain component
13 # t: Time variable
14 # path: File path including file name and number (will append .txt).
15 # uni: If true; sets all but one random strain component to 0.
16
17 function strainPathGenerator(noise,n_step,n_drift,EPS,t,path,uni)
18 X = repeat(rand(Normal(0,1),(n_drift,6)),inner=[n_step, 1])
19 X = X./sqrt.(sum((X).ˆ2,dims=2))
20
21 Y = rand(Normal(0,1),(n_drift*n_step,6))
22 Y = noise.*Y./sqrt.(sum((Y).ˆ2,dims=2))
23
24 Eps = vcat(zeros(1,6),cumsum(X+Y,dims=1))
25
26 # For unidirectional strain, delete all components except for one.
27 if uni
28 zeroIndex = [1;2;3;4;5;6]
29 deleteat!(zeroIndex,rand(1:6))
30 Eps[:,zeroIndex] .= 0

XXV

31 end
32
33 s = maximum(abs.(Eps))
34 eps = Eps.*EPS./s
35 # Input format is shearstrain*2, therefore those components are scaled.
36 eps[:,4:end] = eps[:,4:end]*2
37
38 header = ["time" "e11" "e22" "e33" "2*e12" "2*e23" "2*e13"]
39 currentPath =path*".txt"
40 open(currentPath, "w") do io
41 writedlm(io, vcat(header,hcat(t,eps)))
42 end
43
44 return nothing
45 end� �

D.3 writemat.jl

� �
1 #
2 # Writes *.mat for analysis of linear exponential isotropic hardening matrix
3 # with elastic fibers. The loading conditions are loaded from a strain path
4 # file. The loading conditions are general 3D loading, prescribed 6D strain.
5 #
6 # inPath: The path of the input strain file.
7 # outPath: The path of the output *.mat file.
8 # finalTime: Final time of the analysis.
9 # maxTimeInc: Maximum integration time step.

10 # minTimeInc: Minimum integration time step.
11 # integrationParameter: Integration parameter.
12 # numberAngleIncrements: Number of angle increments.
13 # outputPrecision: Output number of significant figures.
14 # PlaneConditionInitialGuess: Is the initial guess plane conditions?
15 # OTtraceTol: Orientation tensor trace tolerance.
16 # youngFiber: Young's modulus of fiber.
17 # poissonFiber: Poisson's ratio of fiber.
18 # fiberVolumefraction: Volume fraction of fiber.
19 # fiberAspectratio: Fiber aspect ratio.
20 # fiberOrientation: Fiber orientation.
21 # youngMatrix: Young's modulus of matrix.
22 # poissonMatrix: Poisson's ratio of matrix.
23 # yieldMatrix: Yield stress of matrix.
24 # hardeningModulusMatrix: Hardening modulus R_inf of matrix.
25 # hardeningExponentMatrix: Hardening exponent m of matrix.
26 # hardeningModulus2Matrix: Linear hardening modulus of matrix.
27 # matrixVolumefraction: Volume fraction of matrix.
28 # orientationTensor: 2nd order orientation tensor on Voight form.[OPT]
29 #
30 function writemat(inPath,outPath,outputName,finalTime,maxTimeInc,minTimeInc,
31 integrationParameter,numberAngleIncrements,outputPrecision,
32 PlaneConditionInitialGuess,OTtraceTol,youngFiber,poissonFiber,
33 fiberVolumefraction,fiberAspectratio,fiberOrientation,
34 youngMatrix,poissonMatrix,yieldMatrix,hardeningModulusMatrix,
35 hardeningExponentMatrix,hardeningModulus2Matrix,matrixVolumefraction,
36 inPath2 = "")
37
38 analysisName = outPath[findlast("/",outPath)[1]+1:end-4]
39
40 separator = "##"
41
42 # Begin by reading strain data file.
43 strainData = open(inPath, "r") do io

XXVI

44 readdlm(io, '\t')
45 end
46 # Read orientation tensor if applicable.
47 if fiberOrientation == "random_3D"
48 a = ["" "" "" "" "" ""]
49 else
50 orientationTensor = open(inPath2, "r") do io
51 readdlm(io, '\t')
52 end
53 a = string.(orientationTensor[2,:])
54 end
55
56 # Define entries for sections of *.mat
57 fiberMATERIAL = [""; separator; "MATERIAL"; "name = Fiber"; "type = elastic";
58 "elastic_model = isotropic"; "Young = "*youngFiber; "Poisson = "*poissonFiber;
59 ""]
60
61 matrixMATERIAL = [separator; "MATERIAL"; "name = Matrix";
62 "type = J2_plasticity"; "consistent_tangent = on"; "elastic_model = isotropic";
63 "Young = "*youngMatrix; "Poisson = "*poissonMatrix;
64 "yield_stress = "*yieldMatrix; "hardening_model = exponential_linear";
65 "hardening_modulus = "*hardeningModulusMatrix;
66 "hardening_exponent = "*hardeningExponentMatrix;
67 "hardening_modulus2 = "*hardeningModulus2Matrix; "isotropic_method = spectral";
68 ""]
69
70 if fiberOrientation == "random_3D"
71 fiberPHASE = [separator; "PHASE";"name = InclusionPhase";
72 "type = inclusion"; "volume_fraction = "*fiberVolumefraction;
73 "behavior = deformable_solid"; "material = Fiber";
74 "aspect_ratio = "*fiberAspectratio;
75 "orientation = "*fiberOrientation; "coated = no"; ""]
76 else
77 fiberPHASE = [separator; "PHASE";"name = InclusionPhase";
78 "type = inclusion"; "volume_fraction = "*a[7];
79 "behavior = deformable_solid"; "material = Fiber";
80 "aspect_ratio = "*fiberAspectratio;
81 "orientation = "*fiberOrientation;
82 "orientation_11 = "*a[1]; "orientation_22 = "*a[2];
83 "orientation_33 = "*a[3]; "orientation_12 = "*a[4];
84 "orientation_13 = "*a[5]; "orientation_23 = "*a[6];
85 "closure = orthotropic"; "coated = no"; ""]
86 end
87
88 if fiberOrientation == "random_3D"
89 matrixPHASE = [separator; "PHASE";"name = MatrixPhase"; "type = matrix";
90 "volume_fraction = "*matrixVolumefraction; "material = Matrix"; ""]
91 else
92 matrixPHASE = [separator; "PHASE";"name = MatrixPhase"; "type = matrix";
93 "volume_fraction = "*string(1-parse(Float64,a[7])); "material = Matrix"; ""]
94 end
95
96 MICROSTRUCTURE = [separator; "MICROSTRUCTURE"; "name = TheMicrostructure";
97 "phase = MatrixPhase"; "phase = InclusionPhase"; ""]
98
99 LOADING = [separator; "LOADING"; "name = Mechanical"; "type = strain";

100 "load = General_3D"; "initial_strain_11 = 0.0e+00"; "strain_11 = 1.0e+00";
101 "initial_strain_22 = 0.0e+00"; "strain_22 = 1.0e+00";
102 "initial_strain_33 = 0.0e+00"; "strain_33 = 1.0e+00";
103 "initial_strain_12 = 0.0e+00"; "strain_12 = 1.0e+00";
104 "initial_strain_23 = 0.0e+00"; "strain_23 = 1.0e+00";
105 "initial_strain_13 = 0.0e+00"; "strain_13 = 1.0e+00";
106 "history = user_defined"; "history_component_11 = e11";
107 "history_component_11_value = relative";
108 "history_component_22 = e22"; "history_component_22_value = relative";
109 "history_component_33 = e33"; "history_component_33_value = relative";
110 "history_component_12 = e12"; "history_component_12_value = relative";
111 "history_component_23 = e23"; "history_component_23_value = relative";
112 "history_component_13 = e13"; "history_component_13_value = relative";

XXVII

113 "quasi_static = on"; ""]
114
115 RVE = [separator; "RVE"; "type = classical";
116 "microstructure = TheMicrostructure"; ""]
117
118 ANALYSIS = [separator; "ANALYSIS"; "name = "*analysisName; "type = mechanical";
119 "loading_name = Mechanical";
120 "final_time = "*finalTime; "max_time_inc = "*maxTimeInc;
121 "min_time_inc = "*minTimeInc; "finite_strain = off";
122 "output_name = "*outputName; "load = DIGIMAT"; "homogenization = on";
123 "homogenization_model = Mori_Tanaka"; "second_order = on";
124 "integration_parameter = "*integrationParameter;
125 "number_angle_increments = "*numberAngleIncrements;
126 "output_precision = "*outputPrecision; "stiffness = off";
127 "plane_condition_initial_guess = "*PlaneConditionInitialGuess;
128 "OT_trace_tol = "*OTtraceTol; "hybrid_methodology = off";
129 "hybrid_failure_criteria = off"; "FPGF_refinement = on"; ""; ""; ""]
130
131 OUTPUT = [separator; "OUTPUT"; "name = "*outputName;
132 "RVE_data = Custom,time,S.11,S.22,S.33,S.12,S.13,S.23";
133 "Phase_data = InclusionPhase,None"; "Phase_data = MatrixPhase,None";
134 "Engineering_data = Default"; "Log_data = Default"; "Dependent_data = Default";
135 "Fatigue_data = Default"; "Composite_data = None"; ""]
136
137 point = repeat(["point = "],outer=length(strainData[2:end,1]))
138
139 e11FUNCTION = [separator; "FUNCTION"; "name = e11"; "type = piecewise_linear";
140 point.*string.(strainData[2:end,1]).*",".*string.(strainData[2:end,2]); ""]
141
142 e22FUNCTION = [separator; "FUNCTION"; "name = e22"; "type = piecewise_linear";
143 point.*string.(strainData[2:end,1]).*",".*string.(strainData[2:end,3]); ""]
144
145 e33FUNCTION = [separator; "FUNCTION"; "name = e33"; "type = piecewise_linear";
146 point.*string.(strainData[2:end,1]).*",".*string.(strainData[2:end,4]); ""]
147
148 e12FUNCTION = [separator; "FUNCTION"; "name = e12"; "type = piecewise_linear";
149 point.*string.(strainData[2:end,1]).*",".*string.(strainData[2:end,5]); ""]
150
151 e23FUNCTION = [separator; "FUNCTION"; "name = e23"; "type = piecewise_linear";
152 point.*string.(strainData[2:end,1]).*",".*string.(strainData[2:end,6]); ""]
153
154 e13FUNCTION = [separator; "FUNCTION"; "name = e13"; "type = piecewise_linear";
155 point.*string.(strainData[2:end,1]).*",".*string.(strainData[2:end,7])]
156
157 open(outPath, "w") do io
158 writedlm(io,fiberMATERIAL)
159 writedlm(io,matrixMATERIAL)
160 writedlm(io,matrixPHASE)
161 writedlm(io,fiberPHASE)
162 writedlm(io,MICROSTRUCTURE)
163 writedlm(io,LOADING)
164 writedlm(io,RVE)
165 writedlm(io,ANALYSIS)
166 writedlm(io,OUTPUT)
167 writedlm(io,e11FUNCTION)
168 writedlm(io,e22FUNCTION)
169 writedlm(io,e33FUNCTION)
170 writedlm(io,e12FUNCTION)
171 writedlm(io,e23FUNCTION)
172 writedlm(io,e13FUNCTION)
173 end
174 end� �

XXVIII

D.4 stressPostprocess.jl

� �
1 #
2 # Postprocesses the *.mac file to match the timestamps of the input
3 # strainData_*.txt file.
4 #
5 # inPath: File path for *.mac file.
6 # outPath: File path for output file.
7 # t: Vector of time stamps.
8 # precision: Number of significant figures of indata.
9 #

10
11 function stressPostprocess(inPath,outPath,t)
12
13 # Read stress data file
14 preData = readdlm(inPath,skipstart=2)
15
16 # Find indices matching timestamps available in strainData files.
17 index = zeros(length(t),1)
18 for i = 1:length(t)
19 index[i] = findall(preData[:,1].==t[i])[1]
20 end
21 index = convert.(Int64,index)[:]
22
23 # Extract matching stress data
24 postData = preData[index,:]
25
26 header = ["time" "s11" "s22" "s33" "s12" "s23" "s13"]
27 open(outPath, "w") do io
28 writedlm(io,header)
29 writedlm(io,postData)
30 end
31 end� �

D.5 orientationTensorGenerator.jl

� �
1 #
2 # Generates the second order orientation tensor from a random uniform
3 # distribution. Will also randomly sample the base volume fraction + 0-50%.
4 #
5 # fullyAligned: Special case to ensure representation of fully aligned.
6 # fibervf: Base volume fraction of fiber in the composite material.
7 # path: File path including file name and number (will append .txt).
8 #
9 function orientationTensorGenerator(fullyAligned,fibervf,path)

10 # Generate a random diagonal matrix with trace 1 where components
11 # uniformly randomly sampled. See Non-uniform random variate generation by
12 # Devroye page 568 for details.
13 if fullyAligned
14 x = [0;0;0]
15 index = rand([1 2 3])
16 x[index] = 1
17 L = diagm(x)
18 else
19 x = diff(sort([0;rand(2);1]))
20 L = diagm(x)
21 end

XXIX

22 # Random sampling of rotation parameters.
23 theta = 2*pi*rand()
24 phi = 2*pi*rand()
25 z = rand()
26
27 # Generate rotation matrix around z-axis.
28 R = [cos(theta) sin(theta) 0;
29 -sin(theta) cos(theta) 0;
30 0 0 1]
31
32 # Generate mirrored householder matrix.
33 v = [cos(phi)*sqrt(z); sin(phi)*sqrt(z); sqrt(1-z)]
34 P = 2*v*v' - Matrix(I,3,3)
35
36 # Total rotation matrix which is sampled uniformly from SO(3)
37 M = P*R
38 # Uniformly random sampled orientation tensor.
39 a = M*L*M'
40
41 # Randomly sample a volume fraction between initial volume fraction + 0-50%
42 vf = string(parse(Float64,fibervf) + parse(Float64,fibervf)*0.5*rand())
43 # Write to file!
44 header = ["a11" "a22" "a33" "a12" "a13" "a23" "vf"]
45 currentPath =path*".txt"
46 open(currentPath, "w") do io
47 writedlm(io,vcat(header,hcat(a[1,1],a[2,2],a[3,3],a[1,2],a[1,3],a[2,3],
48 vf)))
49 end
50 return nothing
51 end� �

XXX

E matlab code

Note that file paths have to be modified to match the file structure of the current user.

E.1 trainGRU.m

1 % LOAD DATA
2 load (’GRU_inData_1 . mat ’)
3
4 % DEFINE PARAMETERS
5 maxEpochs = 500; % Maximum number o f t r a i n i n g epochs .
6 miniBatchSize = 32 ; % Mini batch s i z e .
7 alpha0 = 0 .0005 ;
8 tau = 10 ;
9 gamma = 0 . 9 ;

10 VBfreq = f l o o r (s i z e (X_train , 1) /miniBatchSize) ; % Verbose frequency
11
12 % CREATE NEURAL NETWORK
13 l ay e r s = [. . .
14 sequenceInputLayer (13 , ’ Normal izat ion ’ , ’ z s co r e ’)
15 gruLayer (500 , ’OutputMode ’ , ’ sequence ’)
16 gruLayer (500 , ’OutputMode ’ , ’ sequence ’)
17 gruLayer (500 , ’OutputMode ’ , ’ sequence ’)
18 dropoutLayer (0 . 5)
19 fu l lyConnectedLayer (6)
20 r eg r e s s i onLaye r] ;
21
22 opt ions = tra in ingOpt ions (’adam ’ , . . .
23 ’ ExecutionEnvironment ’ , ’ gpu ’ , . . .
24 ’MaxEpochs ’ ,maxEpochs , . . .
25 ’ Shu f f l e ’ , ’ every−epoch ’ , . . .
26 ’ ResetInputNormal izat ion ’ , f a l s e , . . .
27 ’ MiniBatchSize ’ , miniBatchSize , . . .
28 ’ GradientThreshold ’ ,1 , . . .
29 ’ In i t i a lLea rnRate ’ , alpha0 , . . .
30 ’ LearnRateSchedule ’ , ’ p i e c ew i s e ’ , . . .
31 ’ LearnRateDropPeriod ’ , tau , . . .
32 ’ LearnRateDropFactor ’ ,gamma, . . .
33 ’ Verbose ’ , true , . . .
34 ’ VerboseFrequency ’ , VBfreq , . . .
35 ’ P lots ’ , ’ t ra in ing−prog re s s ’ , . . .
36 ’ Val idat ionFrequency ’ , VBfreq , . . .
37 ’ Val idat ionData ’ ,{X_valid , Y_valid }) ;
38
39 % TRAIN NETWORK!
40 net = trainNetwork (X_train , Y_train , l ayer s , opt ions) ;
41
42 % SAVE NETWORK
43 save (’ gru500Net . mat ’ , ’ net ’)

XXXI

E.2 testNetwork.m

1 load (’ gru500Net . mat ’)
2 load (’GRU_inDATA_1. mat ’)
3
4 % CALCULATE ERROR!
5 L = length (X_test) ;
6 MaRE = zero s (L , 6) ;
7 MeRE = zero s (L , 6) ;
8 T = length (X_test {1}) ;
9

10 f o r i = 1 :L
11 pred = pred i c t (net , X_test{ i }) ;
12 e r r o r = pred−Y_test{ i } ;
13 MeRE(i , :) = sq r t (sum(e r r o r .^2 ,2) /T) /25 ;
14 MaRE(i , :) = max(abs (e r r o r) , [] , 2) /25 ;
15 end
16
17 AvMeRE = sum(MeRE, 1) /L ;
18 AvMaRE = sum(MaRE, 1) /L ;

E.3 testPerformance_main.m

1 % LOAD NET
2 load (’ gru500Net . mat ’)
3 % LOAD CURRENT TEST
4 load (’ sample_5_uni1_strain . mat ’)
5 load (’ sample_5_uni1_stress . mat ’)
6
7 % SET PARAMETERS
8 a_11 = 0 ;
9 a_22 = 0 . 919 ;

10 a_33 = 0 . 081 ;
11 a_12 = 0 . 015 ;
12 a_13 = 0 . 005 ;
13 a_23 = 0 . 273 ;
14
15 v = 0 . 109 ;
16
17 % PUT PLOT TITLES HERE
18 txt1 = ’ Sample 5 : Uni−ax i a l s t r e s s s t a t e ’ ;
19 txt2 = ’ Sample 5 : Uni−ax i a l s t r e s s s t a t e (804 s t eps) ’ ;
20
21 % CHOSE WHICH STRESS−STRAIN CURVE TO PLOT!
22 s i g = 1 ;
23
24 % r>0 INTERPOLATE OR r<0 EXTRAPOLATE, r=0 USE DEFAULT
25 r = 0 ;
26
27 % RUN TEST
28 testRateDependency (net , DefaultJobNameanalysis1 , DefaultJobNameanalysis2 , . . .
29 a_11 , a_22 , a_33 , a_12 , a_13 , a_23 , v , txt1) ;
30
31 [MeRE, MaRE] = modelVal idator (net , . . .
32 DefaultJobNameanalysis1 , DefaultJobNameanalysis2 , . . .
33 r , a_11 , a_22 , a_33 , a_12 , a_13 , a_23 , v , s ig , txt2) ;

XXXII

E.4 modelValidator.m

1 funct i on [MeRE,MaRE,L]=modelVal idator (net , . . .
2 s t ra in , s t r e s s , r , a_11 , a_22 , a_33 , a_12 , a_13 , a_23 , v , n , txt)
3
4 s t r a i n = st ra in ’ ;
5 s t r e s s = s t r e s s ’/10^6 ;
6 % INTERPOLATE OR EXTRAPOLATE!?
7 i f r > 0
8 L = length (s t r a i n) ;
9 STRAIN = zero s (6 ,L∗ r) ;

10 STRESS = zero s (6 ,L∗ r) ;
11 t = l i n spa c e (0 ,1 ,L) ;
12 s = l i n spa c e (0 ,1 ,L∗ r) ;
13 f o r i = 1 :6
14 STRAIN(i , :) = inte rp1 (t , s t r a i n (i , :) , s) ;
15 STRESS(i , :) = inte rp1 (t , s t r e s s (i , :) , s) ;
16 end
17 s t r a i n = STRAIN;
18 s t r e s s = STRESS ;
19 e l s e i f r < 0
20 s t r a i n = s t r a i n (: ,1 :− r : end) ;
21 s t r e s s = s t r e s s (: ,1 :− r : end) ;
22 e l s e
23 % DO NOTHING!
24 end
25
26 L = length (s t r a i n) ;
27 % INSERT ORIENTATION TENSOR AND VOLUME FRACTION!
28 s t r a i n = [repmat (a_11 , 1 ,L) ; repmat (a_22 , 1 ,L) ; repmat (a_33 , 1 ,L) ; . . .
29 repmat (a_12 , 1 ,L) ; repmat (a_13 , 1 ,L) ; repmat (a_23 , 1 ,L) ; . . .
30 repmat (v , 1 ,L) ; s t r a i n] ;
31
32 % DO PREDICTION!
33 pred = pred i c t (net , s t r a i n) ;
34 e r r o r = pred−s t r e s s ;
35
36 % COMPUTE ERRORS!
37 MeRE = sqr t (sum(e r r o r .^2 ,2) /L) /25 ;
38 MaRE = max(abs (e r r o r) , [] , 2) /25 ;
39
40 i f nargin == 13
41 % INFORMATION FOR PRETTY PLOTS!
42 switch n
43 case 1
44 eps = s t r c a t (’ $\ vareps i lon_ {11}\ $ ’ , ’ [−] ’) ;
45 s i g = s t r c a t (’ $\sigma_{11}\ $ ’ , ’ [MPa] ’) ;
46 case 2
47 eps = s t r c a t (’ $\ vareps i lon_ {22}\ $ ’ , ’ [−] ’) ;
48 s i g = s t r c a t (’ $\sigma_{22}\ $ ’ , ’ [MPa] ’) ;
49 case 3
50 eps = s t r c a t (’ $\ vareps i lon_ {33}\ $ ’ , ’ [−] ’) ;
51 s i g = s t r c a t (’ $\sigma_{33}\ $ ’ , ’ [MPa] ’) ;
52 case 4
53 eps = s t r c a t (’ $2\ vareps i lon_ {12}\ $ ’ , ’ [−] ’) ;
54 s i g = s t r c a t (’ $\sigma_{12}\ $ ’ , ’ [MPa] ’) ;
55 case 5
56 eps = s t r c a t (’ $2\ vareps i lon_ {23}\ $ ’ , ’ [−] ’) ;
57 s i g = s t r c a t (’ $\sigma_{23}\ $ ’ , ’ [MPa] ’) ;
58 case 6
59 eps = s t r c a t (’ $2\ vareps i lon_ {13}\ $ ’ , ’ [−]) ’) ;
60 s i g = s t r c a t (’ $\sigma_{13}\ $ ’ , ’ [MPa] ’) ;
61 end
62
63 % PLOT!
64 f i g u r e (3) ;
65 hold on ;
66 p lo t (s t r a i n (7+n , :) , pred (n , :) , ’−−r ’ , ’ LineWidth ’ ,2) ;
67 p lo t (s t r a i n (7+n , :) , s t r e s s (n , :) , ’−b ’ , ’ LineWidth ’ ,1) ;
68
69 ax = gca ;
70 ax . Gr idLineSty le = ’− ’ ;
71 ax . GridColor = ’k ’ ;
72 ax . GridAlpha = 1 ;
73 gr id on ;
74
75 s e t (gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
76 t i t l e (txt , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
77 x l abe l (eps , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
78 y l abe l (s ig , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
79 legend (’Network ’ , ’DIGIMAT ’ , ’ I n t e r p r e t e r ’ , ’ l a t ex ’ , . . .
80 ’ Locat ion ’ , ’ southeast ’) ;
81
82 f i g u r e (4) ;
83 s e t (gcf , ’ Pos i t i on ’ , [100 , 100 , 1200 , 600])
84 s g t i t l e (txt , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
85
86 l a b e l s = [’ σ_{11} ’ ; ’ σ_{22} ’ ; ’ σ_{33} ’ ; . . .
87 ’ σ_{12} ’ ; ’ σ_{23} ’ ; ’ σ_{13} ’] ;

XXXIII

88 f o r i = 1 :6
89 subplot (2 ,3 , i) ;
90 hold on ;
91 p lo t (pred (i , :) , ’−−r ’ , ’ LineWidth ’ ,2) ;
92 p lo t (s t r e s s (i , :) , ’−b ’ , ’ LineWidth ’ ,1) ;
93 ax = gca ;
94 ax . Gr idLineSty le = ’− ’ ;
95 ax . GridColor = ’k ’ ;
96 ax . GridAlpha = 1 ;
97 gr id on ;
98 s e t (gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
99 x l abe l (’ Step [−] ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;

100 y l abe l (s t r c a t (l a b e l s (i , :) , ’ [MPa] ’) , . . .
101 ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
102 legend (’Network ’ , ’DIGIMAT ’ , . . .
103 ’ I n t e r p r e t e r ’ , ’ l a t ex ’ , ’ Locat ion ’ , ’ best ’) ;
104 end
105 end

E.5 testRateDependency.m

1 funct i on testRateDependency (net , s t ra in , s t r e s s , . . .
2 a_11 , a_22 , a_33 , a_12 , a_13 , a_23 , v , txt)
3 r = [−32 −16 −8 −4 −2 0 2 4 8 16 32 64 1 2 8] ;
4
5 % COMPUTE
6 l = length (r) ;
7 MeRE = zero s (6 , l) ;
8 MaRE = zero s (6 , l) ;
9 s t eps = ze ro s (1 , l) ;

10 f o r i = 1 : l
11 [Me,Ma,L]=modelVal idator (net , s t ra in , s t r e s s , r (i) , a_11 , a_22 , . . .
12 a_33 , a_12 , a_13 , a_23 , v) ;
13 MeRE(: , i) = Me;
14 MaRE(: , i) = Ma;
15 s t eps (i) = L ;
16 end
17
18 % −−−PLOT ERROR−−−
19 f i g u r e (1) ;
20 s e t (gcf , ’ Pos i t i on ’ , [100 , 100 , 1200 , 600])
21 s g t i t l e (txt , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
22 f o r i = 1 :4
23 subplot (2 ,2 , i) ;
24 hold on ;
25 p lo t (log10 (s t eps) ,MeRE(1 , :) , ’ xb ’ , ’ MarkerSize ’ ,10) ;
26 p lo t (log10 (s t eps) ,MeRE(2 , :) , ’ s r ’ , ’ MarkerSize ’ ,10) ;
27 p lo t (log10 (s t eps) ,MeRE(3 , :) , ’^g ’ , ’ MarkerSize ’ ,10) ;
28 ax = gca ;
29 ax . Gr idLineSty le = ’− ’ ;
30 ax . GridColor = ’k ’ ;
31 ax . GridAlpha = 1 ;
32 gr id on ;
33 s e t (gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
34 s e t (gca , ’YTick ’ , 0 : 0 . 2 : 3) ;
35 x l abe l (’ log$_{10}$ (s t eps) ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
36 i f i <3
37 y l abe l (’MeRE ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
38 e l s e
39 y l abe l (’MaRE’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
40 end
41 i f i == 1 | i == 3
42 legend (’ σ_{11} ’ , ’ σ_{22} ’ , ’ σ_{33} ’ , . . .
43 ’ I n t e r p r e t e r ’ , ’ l a t ex ’ , ’ Locat ion ’ , ’ north ’) ;
44 e l s e
45 legend (’ σ_{12} ’ , ’ σ_{23} ’ , ’ σ_{13} ’ , . . .
46 ’ I n t e r p r e t e r ’ , ’ l a t ex ’ , ’ Locat ion ’ , ’ north ’) ;
47 end
48 end
49 end

XXXIV

E.6 cycleTest.m

1 load (’ gru500Net . mat ’)
2
3 a_11 = 0 ;
4 a_22 = 0 ;
5 a_33 = 0 ;
6 a_12 = 0 ;
7 a_13 = 0 ;
8 a_23 = 0 ;
9

10 v = 0 . 1 2 ;
11
12 r = 0 ;
13
14 l a b e l s = [’ σ_{11} ’ ; ’ σ_{22} ’ ; ’ σ_{33} ’ ; . . .
15 ’ σ_{12} ’ ; ’ σ_{23} ’ ; ’ σ_{13} ’] ;
16
17
18 MeRE = zero s (6 ,15) ;
19 MaRE = zero s (6 ,15) ;
20 k=1;
21
22 f o r i = 1 :3
23 switch i
24 case 1
25 a_11 = 1 ;
26 a_22 = 0 ;
27 a_33 = 0 ;
28 case 2
29 a_11 = 0 . 5 ;
30 a_22 = 0 . 5 ;
31 a_33 = 0 ;
32 case 3
33 a_11 = 0 . 3 3 ;
34 a_22 = 0 . 3 3 ;
35 a_33 = 0 . 3 3 ;
36 end
37 f o r j = 1 :5
38 load (s t r c a t (num2str (i) , ’ D_cycletest ’ , num2str (j) , ’ _strain . mat ’))
39 load (s t r c a t (num2str (i) , ’ D_cycletest ’ , num2str (j) , ’ _stres s . mat ’))
40
41 [Me, Ma] = modelVal idator (net , . . .
42 DefaultJobNameanalysis1 , DefaultJobNameanalysis2 , . . .
43 r , a_11 , a_22 , a_33 , a_12 , a_13 , a_23 , v) ;
44
45 MeRE(: , k) = Me;
46 MaRE(: , k) = Ma;
47
48 k = k +1;
49 end
50 end
51
52 f i g u r e (1)
53 s e t (gcf , ’ Pos i t i on ’ , [100 , 100 , 1200 , 600]) ;
54 s g t i t l e (’MeRE as funct i on o f load cy c l e s ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
55
56 f i g u r e (2)
57 s e t (gcf , ’ Pos i t i on ’ , [100 , 100 , 1200 , 600]) ;
58 s g t i t l e (’MaRE as funct i on o f load cy c l e s ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
59 f o r p = 1:6
60 f i g u r e (1)
61 subplot (2 ,3 , p)
62 hold on
63 ax = gca ;
64 ax . Gr idLineSty le = ’− ’ ;
65 ax . GridColor = ’k ’ ;
66 ax . GridAlpha = 1 ;
67 gr id on ;
68 t i t l e (l a b e l s (p , :) , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
69 p lo t (MeRE(p , 1 : 5) , ’ xk ’)
70 p lo t (MeRE(p , 6 : 1 0) , ’ or ’)
71 p lo t (MeRE(p , 1 1 : 1 5) , ’b^ ’)
72 s e t (gca , ’XTick ’ , 0 : 1 : 5) ;
73 s e t (gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
74 x l abe l (’ Cycles ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
75 y l abe l (’MeRE ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
76 legend (’ 1D ’ , ’ 2D ’ , ’ 3D ’ , ’ I n t e r p r e t e r ’ , ’ l a t ex ’ , ’ Location ’ , ’ best ’) ;
77
78 f i g u r e (2)
79 subplot (2 ,3 , p)
80 hold on
81 ax = gca ;
82 ax . Gr idLineSty le = ’− ’ ;
83 ax . GridColor = ’k ’ ;
84 ax . GridAlpha = 1 ;
85 gr id on ;
86 t i t l e (l a b e l s (p , :) , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
87 p lo t (MaRE(p , 1 : 5) , ’ xk ’)

XXXV

88 p lo t (MaRE(p , 6 : 1 0) , ’ or ’)
89 p lo t (MaRE(p , 1 1 : 1 5) , ’b^ ’)
90 s e t (gca , ’XTick ’ , 0 : 1 : 5) ;
91 s e t (gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
92 x l abe l (’ Cycles ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
93 y l abe l (’MaRE’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
94 legend (’ 1D ’ , ’ 2D ’ , ’ 3D ’ , ’ I n t e r p r e t e r ’ , ’ l a t ex ’ , ’ Location ’ , ’ best ’) ;
95 end

E.7 extrapolateTest.m

1 load (’ gru500Net . mat ’)
2
3 a_11 = 0 . 3 3 ;
4 a_22 = 0 . 3 3 ;
5 a_33 = 0 . 3 3 ;
6 a_12 = 0 ;
7 a_13 = 0 ;
8 a_23 = 0 ;
9

10 v = 0 ;
11
12 r = 0 ;
13
14
15 s t r 1 = ’ ’ ;
16 s t r 2 = ’ ’ ;
17
18 MeRE = zero s (6 ,27) ;
19 MaRE = zero s (6 ,27) ;
20 k=1;
21
22 f o r i = 1 :3
23 switch i
24 case 1
25 s t r 2 = ’e5_ ’ ;
26 case 2
27 s t r 2 = ’ e7−5_’ ;
28 case 3
29 s t r 2 = ’ e10_ ’ ;
30 end
31 f o r j = 1 :9
32 switch j
33 case 1
34 v = 0 . 001 ;
35 s t r 1 = ’0−1_’ ;
36 case 2
37 s t r 1 = ’2−5_’ ;
38 v = 0 . 025 ;
39 case 3
40 v = 0 . 0 5 ;
41 s t r 1 = ’ 5_’ ;
42 case 4
43 v = 0 . 075 ;
44 s t r 1 = ’7−5_’ ;
45 case 5
46 v = 0 . 1 ;
47 s t r 1 = ’ 10_’ ;
48 case 6
49 v = 0 . 125 ;
50 s t r 1 = ’12−5_’ ;
51 case 7
52 v = 0 . 1 5 ;
53 s t r 1 = ’ 15_’ ;
54 case 8
55 v = 0 . 175 ;
56 s t r 1 = ’17−5_’ ;
57 case 9
58 s t r 1 = ’ 20_’ ;
59 v = 0 . 2 ;
60 end
61 load (s t r c a t (’ ext rapo la te te s t_v ’ , str1 , str2 , ’ s t r a i n . mat ’))
62 load (s t r c a t (’ ext rapo la te te s t_v ’ , str1 , str2 , ’ s t r e s s . mat ’))
63
64 [Me, Ma] = modelVal idator (net , . . .
65 DefaultJobNameanalysis1 , DefaultJobNameanalysis2 , . . .
66 r , a_11 , a_22 , a_33 , a_12 , a_13 , a_23 , v) ;
67
68 MeRE(: , k) = Me;
69 MaRE(: , k) = Ma;
70
71 k = k +1;
72 end
73 end
74
75 f i g u r e (1)

XXXVI

76 s e t (gcf , ’ Pos i t i on ’ , [100 , 100 , 1200 , 600]) ;
77 s g t i t l e (’ E f f e c t o f Parameter Extrapo lat ion on Error ’ , ’ i n t e r p r e t e r ’ , . . .
78 ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
79
80 X = [0 . 0 5 0 .05 0 .05 0 .05 0 .05 0 .05 0 .05 0 .05 0 . 0 5 ;
81 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0 . 0 75 ;
82 0 .10 0 .10 0 .10 0 .10 0 .10 0 .10 0 .10 0 .10 0 . 1 0] ;
83 Y = [0 . 0 01 0.025 0 .05 0 .075 0 .10 0 .125 0 .15 0 .175 0 . 2 ;
84 0.001 0.025 0 .05 0 .075 0 .10 0 .125 0 .15 0 .175 0 . 2 ;
85 0.001 0.025 0 .05 0 .075 0 .10 0 .125 0 .15 0 .175 0 . 2] ;
86
87 Z1 = [MeRE(1 , 1 : 9) ; MeRE(1 , 10 : 18) ; MeRE(1 , 19 : 27)] ;
88 Z2 = [MaRE(1 , 1 : 9) ; MaRE(1 , 10 : 18) ; MaRE(1 , 19 : 27)] ;
89
90 subplot (1 , 2 , 1)
91 stem3 (X,Y, Z1 , ’b ’ , ’ LineWidth ’ ,2)
92 ax = gca ;
93 ax . Gr idLineSty le = ’− ’ ;
94 ax . GridColor = ’k ’ ;
95 ax . GridAlpha = 1 ;
96 gr id on ;
97
98 s e t (gca , ’XTick ’ , 0 . 0 5 : 0 . 0 2 5 : 0 . 1) ;
99 s e t (gca , ’YTick ’ , [0 . 0 0 1 0.025 0 .05 0 .075 0 .1 0 .125 0 .15 0 .175 0 . 2]) ;

100 s e t (gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,13) ;
101 x l abe l (’ $\ vareps i lon_ {\mathrm{M}}$ [−] ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , . . .
102 ’ f o n t s i z e ’ ,15) ;
103 y l abe l (’v_{F} [−] ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
104 z l a b e l (’MeRE ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
105
106 subplot (1 , 2 , 2)
107 stem3 (X,Y, Z2 , ’b ’ , ’ LineWidth ’ ,2)
108 ax = gca ;
109 ax . Gr idLineSty le = ’− ’ ;
110 ax . GridColor = ’k ’ ;
111 ax . GridAlpha = 1 ;
112 gr id on ;
113
114 s e t (gca , ’XTick ’ , 0 . 0 5 : 0 . 0 2 5 : 0 . 1) ;
115 s e t (gca , ’YTick ’ , [0 . 0 0 1 0.025 0 .05 0 .075 0 .1 0 .125 0 .15 0 .175 0 . 2]) ;
116 s e t (gca , ’ ZTick ’ , 0 : 0 . 2 : 2) ;
117 s e t (gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,13) ;
118 x l abe l (’ $\ vareps i lon_ {\mathrm{M}}$ [−] ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , . . .
119 ’ f o n t s i z e ’ ,15) ;
120 y l abe l (’v_{F} [−] ’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;
121 z l a b e l (’MaRE’ , ’ i n t e r p r e t e r ’ , ’ l a t ex ’ , ’ f o n t s i z e ’ ,15) ;

XXXVII

