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A comparative study between different forecasting methods
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Abstract

This thesis covers the investigation of electricity price forecasts and the effect they have
on production plans and production costs in the district heating system. Four different
forecasts were tested on four different models representing district heating systems. The
forecasts were investigated in terms of error between the forecast and the actual spot
price and the DH-models were optimized in GAMS to find the minimum cost. The first
forecast is the naive benchmark which copies previous events. The second forecast is
a rolling average performed on the naive benchmark. These two simpler forecasts are
compared with a linear regression forecast and a random forest forecast which both are
constructed using machine learning-algorithms. The first model of the district heating
system contains a combined heat and power plant coupled with a heat pump. In the
second model heat storage was added since that is a fundamental equipment in many
heat producing plants today. In the two last models an electric boiler and a bio-oil boiler
were added respectively. The different units were added to make the system more reality-
like and for the purpose of investigating different features and how they were affected
by the forecasts. The simple models with few units are less dependent on the forecasts
since they have less options of how to produce heat. Thus a limit in the electricity price
decides if the electricity producer or the electricity consumer should produce the heat.
The linear regression outperformed the other forecasts in terms of error and cost for all
models of the district heating plant. Also, a rolling average on a benchmark forecast can
make the outcome in form of production cost better. When thermal energy storage (TES)
was implemented the production costs were decreased and the difference in cost between
the forecasts were larger. The hypothetical future system, using danish electricity prices
with more fluctuations which can be expected in electricity systems with more renewable
electricity generation, was harder to predict.

Keywords: Forecast, reference, electricity price, production cost, production plan, naive,
rolling average, regression, random forest
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1
Introduction

The district heating system is supplying heat through pipelines connected to heat produc-
ing plants. The system is a mix of combined heat & power plants (CHP), waste heat from
the industry and heat plants consisting of boilers and heat pumps [1]. The idea of district
heating is to move individual heating, originally fueled by fossil fuels, into a centralized
network. In that way the production of heat can be optimized and the usage of fuel can
be controlled. District heating, compared to traditional heating, lowers carbon dioxide
emissions, provides high energy security and efficient use of resources [2]. Sweden, es-
pecially, fuels many of the heat producing plants with renewables and waste.

To minimize the cost and resources for the producers, is it important with a reliable pro-
duction plan to decide which units to operate, when and how much. The production plan
can be made from optimization models that takes into account several factors including
the conditions and constraints of the plant, the heat demand and the electricity price [3].
The electricity market today is unpredictable and as the share of variable renewable en-
ergy is increasing the market gets even more volatile and thus harder to predict [4]. An
inaccurate forecast can affect plants with different features in a varying amount. A missed
opportunity to produce electricity at high electricity prices might for example mean a great
loss in income for a CHP plant.

A possible way to improve electricity price forecasting is with artificial intelligence (AI)
and Machine learning (ML), an approach within AI. ML-models are algorithms that learn
from the input data in order to perform better in the future without external inputs and
might be better at handling the non-linear fluctuations in the electricity price[5].
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1. Introduction

1.1 Aim & research questions

The aim with this thesis is to research forecasts computed with AI/ML. Will these com-
pared to more simple forecasts used as benchmark, not only result in lower errors in
forecast, but also in lower production costs for the plants in the district heating system?
Premade forecasts are received and the project investigates the dependency of an accurate
forecast by looking into the production plans resulting from different forecasts and the
resulting costs.

• At what time periods do the forecasts perform well and why? Which variables are
the main contributors to the biggest errors? Does external factors affect?

• What is the most difficult for the forecasts to predict? Is it amplitude, time or
duration?

• What is the relation between forecast and production cost? Does an accurate fore-
cast (accurate in terms of the average error) result in a low production cost?

• Does certain forecasting methods result in better production plans for certain plants
in the district heating system?

• Can the usage of ML-models contribute to more accurate forecasts and more spe-
cialized production plans, adapted to the conditions of the plant?

• Does heat storage make it possible to be less dependent on the electricity price
forecast?

• How will more renewables in the system affect the accuracy of the electricity price
forecasts?

2



2
Background

This section aims to provide necessary knowledge and background information about the
district heating system and electricity market in preparation to investigate how they are
correlated.

2.1 District heating system

Heat is produced in thermal plants and distributed throughout the city through a net-
work of pipes to industrial and commercial buildings, apartment blocks, and single-family
households. A visualization of a hypothetical system is presented in Figure 2.1. The dis-
trict heating system may also use waste heat from industrial plants or waste water.

Figure 2.1: A simplified figure showing the principle of a district heating system where
the plant is the figure to the left and the three other symbols in the systems presents where
the plant provides and get fuel from.

District heating could be built using combined heat and power technology [3]. The figure
is showing the production facility to the left. The distribution network is presented by the
lines that distributes the heat to the customers.

3



2. Background

2.1.1 Combined heat and power
Steam turbine based combined heat and power plants (CHP) are widely used in the in-
dustry and the district heating sector. They consist of boilers that burns fuel into heat that
in turn heats water into steam. The water passes turbines that create power and then con-
densers that exchange heat with the water returning to the district heating system. Heat
is always created as a by-product of electricity production. Combined heat and power
transfer this heat to the district heating system, compared to traditional power generation
who let the heat go to waste. Thus, the advantage of CHP is that it maximizes the energy
utilization. A CHP plant have an efficiency of around 90-93% [6].

2.1.2 Thermal energy storage
Thermal energy storage, TES, is what it sounds like, a reservoir to store energy that could
be used later. TES helps to reduce the time or rate mismatch between energy supply
and demand, which is essential for better energy management [7]. By reducing waste
energy, TES will save premium fuels and make a plant more cost-effective. Since the
transition from fossil fuels to renewable energy sources are on going, TES becomes of
more importance. Renewable energy sources such as wind is intermittent and TES will
increase its importance with the energy source shift. There exists multiple versions of TES
and is a component that has been implanted as a fundamental equipment in systems today.
The TES works in that way that when electricity prices are high and the heat demand is
high, it is possible to take energy from the heat storage to avoid buying electricity for a
high price. When the electricity prices are high but the heat demand is low, it is possible
to charge the heat storage again [8].

2.1.3 Heat pumps and electric boilers
The purpose of having a heat pump or an electric boiler is to have a electricity consumer
in the system. A heat pump uses energy, or electricity, to produce heat. The ratio of
heat output to work input is used to measure a heat pump’s efficiency and is called the
coefficient of performance, COP [9]. The typical value of COP for a heat pump is usually
around 3. By adding a heat pump to the system provides more flexibility to the plant
[10]. During low electricity prices, the plant can run the heat pump at low cost instead
of producing electricity with low profit. Electric boilers, EB, use electricity to heat water.
Since the conversion from electricity to thermal energy are made from resistance. All of
the electricity goes through the heating device in an electric boiler which has a resistance
on the way which will create the heat. This will make the transformation from electricity
to heat almost 1:1 and the efficiency can reach 100% [11]. Electric boilers have lower
investment costs than heat pumps.

2.1.4 Bio-oil boilers
Bio-oil boilers, OB, are used as peak boilers. Instead of using fossil fuels, it is possible
to use bio-oil that emits less carbon dioxide [12]. Oil boilers can be a cheaper solutions
than electric boilers at some occasions, example during high electricity prices and high
heat demand. The oil boiler works in that way that the fuel is fired up and warms up the

4



2. Background

cold water. For an oil boiler to be in usage, they must have at least an efficiency at 86%
[13]. This is an equipment in plants that turns on when the CHP is insufficient of meeting
the demand [14].

2.2 Electricity market and link to district heating

The electricity price depends on the demand and supply of electricity. The supply in the
Nordic countries consists mainly of hydro, nuclear, wind and thermal power plants. The
producers supply electricity in the order of increasing production costs until the demand
is met [15]. The supply mix depends on several factors such as hydrological conditions,
weather, occasional shutdowns, imported electricity and fuel prices. The demand depend
mostly on human activity level and the temperature. It varies in the short term from hour
to hour and on longer term on season. Low electricity prices occur when there is a lot
of wind, hydropower reservoirs are full and high temperatures. High electricity prices
occurs during opposite conditions [16].

On the day-ahead market the hourly electricity spot price for the next 24 hours of the
following day is decided every day at noon. The spot price is an aggregate where the bids
and offers of electricity is matched together to form the market clearing price. Figure 2.2
explains the bidding process.

Figure 2.2: The bidding process for the electricity spot price on the day-ahead market
[17].

Production plans in heat and power plants are made in advance, before knowing the spot
price, for planning purposes. The planned production and consumption of electricity is a
part of the buy- and sell bids that forms the basis for the prices that are set for the com-
ing days on the market [17]. This means that the producers are obligated to produce the
planned amount of electricity for the next day if the spot price is to apply. If they deviate
from the plan, regulatory prices apply that are set on a shorter time scale on the intra-day
market. This means that it is important to have a good electricity price forecast when the
electricity plan is to be laid [18].
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2. Background

2.3 Electricity price forecasting

Electricity price forecasting has been attempted using a large number of approaches and
concepts. The electricity price depends on a wide set of unpredictable variables which
lead to sudden changes in the price and makes it hard to predict. The electricity market is
special since electricity is economically non-storable and a constant balance is required
between supply and demand. Electricity price forecasting is an important tool in decision
making for the companies in the heat and power market [17].

2.3.1 Statistical time series modeling
Statistical times series forecasting uses a set of historical data values from a given time
period to predict future values. This is widely used within electricity price forecasting
[19]. Statistical models are often chastised for their inability to model the usually non-
linear behaviour of energy rates and associated fundamental variables. Yet, in practice,
their results are comparable to nonlinear alternatives [17]. Linear regression is a common
method that can be used within statistical times series modeling.

2.3.2 Artificial intelligence and machine learning models
Machine learning models are able to understand non-linear relations from data and can
therefore be more flexible when it comes to electricity price forecasting. In this category,
the forecasts models are described as "perfect" for short-term forecasting and at handling
non-linear problems [17]. In machine learning you split the data set into a training set on
which the algorithm can perform its training and a validation set.
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3
Methodology

The methodology section aims to explain forecast modelling, optimization models, input
data, the evaluation method and limitations made in this thesis. The fundamentals of the
forecasts and how they were modelled are described, however, the main focus is the anal-
ysis of the forecasts and not the construction of them.

3.1 Forecast models in Python

When doing time series forecasting it is common to use a benchmark method. When
using a benchmark, simple models are created for comparison purposes. The performance
of the simple models are set as baseline and should be outperformed by the forecast of
interest for it to be any good [20]. Four different forecasts are analyzed in this project, two
benchmark forecasts and two forecasts modelled with ML-algorithms. The benchmark
forecasts used are the Naive and the Rolling average. Naive is a common benchmark
method along others [21]. The rolling average makes weekly mean values of the naive
forecast. Since the naive lags in time compared to the actual spot price, the naive won’t
properly predict the peaks in time. An expectation is to see if a flattened curve of the naive
(the rolling average) will result in a better outcome. These two models are created during
this thesis. The other two forecasts used are a linear regression model and a random
forest model. The modelling of the ML-forecasts are not performed by the authors since
the focus of this thesis is not the construction of ML-forecasts.

3.1.1 Modelling of benchmark forecasts
The benchmark forecasts are constructed in Jupyter Notebook using Python.

3.1.1.1 Naive

The naive creates a prediction for day d by copying the electricity price from the same
weekday one week before d-7.

3.1.1.2 Rolling average

The rolling average creates a forecast for day d and hour h by guessing on an average
of the electricity price for 24 hours around that hour one week before (d-7) and repeats
this every following hour (h+1, h+2...). As mentioned above the rolling average is imple-
mented on the naive forecast.
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3.1.2 Modelling of ML-forecasts
The ML-models were implemented using the Python framework Scikit-learn. The models
used are ARX-models (Auto-regressive models with an exogenous variable). The ARX-
model use lag-features (past values of the time-series data) and the temperature as input
to predict future values. Lagged electricity prices and temperatures are added as features
for every hour of the training data. The lag-features used are presented in Table A.1.
These features are used in both the linear regression and the random forest forecasts.
Different models apply to the different days of the week since they show different patterns.
Indicator variables are used to add weight to each hour of the day since the price has daily
seasonality. The regression is made in a recursive manner where the predicted output is
used again as input to the next time step.

3.1.2.1 Linear regression

The linear regression makes an equation system for the price every hour, this can be seen
in Equation 3.1.

price(t) = a0 + a1 ∗ price(t− 1) + a2 ∗ price(t− 2) + ... + an ∗ T18(t) (3.1)

The regression finds values of a0, ..., an to minimize the error presented in Equation 3.2.
T18(t) is the corrected temperature min(18°C-T, 0), this is used instead of the actual tem-
perature to take into account that temperatures above 18°C results in a low heat demand
that will have negligible impact on the produced amount of heat. Also, the variable can
not be negative when constructed this way.

error =
∑

(price(t)−(a0+a1∗price(t−1)+a2∗price(t−2)+...+an∗T18(t))2 (3.2)

This method assumes that the price the hour before is known. However, in the electric-
ity market there is a lack of data for the previous 24 hours. This can result in a better
prediction than reality.

3.1.2.2 Random forest

Random forest is a supervised machine learning algorithm made up of decision trees [22].
A random subset of the features described above are used for every decision tree to make
predictions and then an average value of these results is used as prediction output.

3.1.3 Input data
Historical electricity price data from Nord pool was used as input data in the models.
Data from year 2017 to 2020 was found in the historical market data database where it is
possible to find hourly electricity prices in SEK/MWh. Data from year 2017, 2018 and
2019 was used as input data to the forecasts models and data from year 2019 and 2020
was used as validation. The analysis was made from the 1st of January to the 21st of
October and every forecast period starts at 10:00. A forecast period consists of 168 hours
and a new forecast period is made once every 48 hours. The time periods was chosen
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since the ML-forecasts were received in that format. The electricity system is changing
as larger amounts of variable renewable energy takes place in the electricity mix [7]. A
sensitivity analysis was made to investigate how well the results apply to a future system.
In this analysis, Danish electricity prices were used as input to the GAMS-model. The
Danish electricity system has a high penetration level of wind power and other renewables
compared to the Swedish system [23].

3.2 GAMS models

The models representing the district heating system were modelled in GAMS, a linear pro-
gramming and optimization modeling software. The purpose was to minimize the total
cost, Ctot, of the system by optimizing the heat and electricity production. This results in
a production plan including all units with an hourly resolution. The GAMS model makes
an optimization for one week at a time using forecasts as input, but in the analysis the first
48 hours of every 168 hour period is picked out. The optimization is made on 168 hours
because doing an optimization on 48 hours can cause unwanted effects. An example of
that is that the system might decide to use all heat from the TES if the time period is
limited.

Four different models with different features (electricity producer, electricity consumer,
heat only producers) are tested to see how the features are affected by different forecasts.
Model 1 contains a CHP plant with bypass and a heat pump. Bypass is the possibility to
condense heat in a direct condenser without passing the turbine. Thus, the model contains
units that are electricity producer and consumer. In model 2 TES was added to model 1 to
test the flexibility of the system. In model 3 an electric boiler (electricity consumer) was
added as a complement to the heat pump and CHP as a peak unit. Model 4 also has a peak
unit but in this case it is a bio-oil boiler (heat producer). Standard models representing a
CHP plant, a heat pump, TES and a bio-oil boiler was given to the authors, who in turn
made different combination of these models. Parameters and constraints were chosen by
the authors as well. The standard models contained equations stating relationships be-
tween parameters, as well as energy and mass balances. The different units are described
more in detail in later sections. The models are presented in Table 3.1.

Table 3.1: Table containing all the models created in GAMS.

Model 1 CHP+heat pump
Model 2 CHP+heat pump+TES
Model 3 CHP+heat pump+electric boiler
Model 4 CHP+heat pump+oil boiler

The models use Mixed Integer Programming (MIP), a type of optimization problems
which include integer variables [24]. A solver named Cplex is added that solves lin-
ear problems by using several alternative algorithms. The objective function is the cost of
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the system Ctot and is the sum of the cost variables given by Equation 3.3 to 3.13.

Equation 3.3 calculates the fuel price [SEK] for the CHP by multiplying the fuel price
[SEK/MWh] with the production of heat in the direct condensers (Pdv [MWh]), tur-
bine condensers (Pvk [MWh]) as well as the produced electricity from the turbines (Pel
[MWh]).

FuelpriceCHP = fuelprice · (Pdv(I) + Pvk(I) + Pel(I)) (3.3)

Equation 3.4 calculates the start cost of the CHP [SEK] by multiplying the start cost
[SEK/MWh] with the binary variable Vth that indicates if the CHP is producing or not.

StartcostCHP = startcostchp · V th(I) (3.4)

Equation 3.5 calculates the sold electricity [SEK]. The produced electricity (Pel [MWh])
is multiplied with the spot price [SEK/MWh].

Electricitysold = −(Pel(I) · spotprice(I)) (3.5)

Equation 3.6 calculates the load change cost [SEK] by multiplying the load change cost
[SEK/MWh] with either the increase change rate (k1th [MWh]) or the decrease change
rate (k2th [MWh]) of the CHP.

Loadchangecost = loadchangecost · (k1th(I) + k2th(I)) (3.6)

Equation 3.7 have the same principle as Equation 3.4. It multiplies the start cost for the
HP [SEK/MWh] with the binary variable Vhp that indicates if the HP is running or not.

Startcostheatpump = startcosthp · V hp(I) (3.7)

Equation 3.8 is the opposite of Equation 3.5. The cost of electricity consumed in the
HP [SEK] is calculated by taking the spot price [SEK/MWh] multiplied with electricity
consumption in the HP (Pelhp [MWh]).

Electricityconsumed,heatpump = spotprice(I) · Pelhp (3.8)

Equation 3.9 calculates the charge cost of the TES. This cost is calculated by multiplying
the 0.2 [SEK/MWh], which is the cost of charge and discharge of the TES, with either the
charge rate (Psin [MWh]) or the discharge rate (Psout[MWh]).

ChargecostT ES = 0.2 · (Psin(I)− Psout(I)) (3.9)

The start cost of the EB [SEK] is calculated by taking the start cost of the EB [SEK]
multiplied with the binary variable indicating the start of the EB (VEB) seen in Equation
3.10.

StartcostEB = StartcostEB · V EB(I) (3.10)

As in Equation 3.8, the electricity consumption is calculated in equation 3.11. Where in
this case the spot price is multiplied with the electricity consumption in the EB (PelEB
[MWh]).
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Electricityconsumed,EB = spotprice(I) · PelEB (3.11)

The start cost for the oil boiler is calculated by multiplying the start cost of the oil boiler
[SEK] with the binary variable indicating the start of the HOB in Equation 3.12.

StartcostOB = StartcostOB · V OB(I) (3.12)

The production cost of the heat only boiler is calculated by multiplying the fuel price
[SEK/MWh] with the amount of produced heat from the oil boiler [MWh] seen in Equa-
tion 3.13. Where 0.9 indicates the efficiency of the conversion from fuel to heat.

ProductioncostOB = fuelpriceoil · POB(I)
0.9 (3.13)

The equations considering the TES, EB and OB are only added to the full equation in the
models they are included.

3.2.1 Input data

The electricity price, the heat load and the forecasts that were modeled in Python are used
as input data in all the models as well as the electricity tax, that is applied when electricity
is consumed from the grid. The electricity tax is set to 350 SEK [25]. A numerous of
parameters are also set for the individual GAMS models. The ones of most importance
are described below.

The heat load for the system was used to plot the load curve and load duration curve
shown in Figure 3.1a and 3.1b for year 2019. The heat load has a large impact on the
system. The heat load was used in the design of the GAMS models when choosing many
of the parameters.

(a) Load curve 2019. (b) Load duration curve 2019.

Figure 3.1: Load curve and load duration curve for the heat demand year 2019.

The same load curve and load duration curve were made for year 2020 and are shown in
Figure 3.2a and 3.2b.
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(a) Load curve 2020. (b) Load duration curve 2019.

Figure 3.2: Load curve and load duration curve for the heat demand year 2020.

These load curves shows the demand of heat during the year. The load curves show how 
much the load fluctuates during the year and the load duration curves shows the load 
during the year in a decreasing order and for many hours that load is needed.

3.2.2 CHP
Some of the parameters were introduced in the equations in section 3.2. Combinations of 
the parameters described below were tested to achieve a feasible solution in GAMS and 
reasonable production in the heat producing units. An optimization was not made where 
all parameters were regulated and assessed. Some of the parameters are standard values. 
The thermal heat from the CHP boiler, in this thesis called Pth was given the values of 
minimum 10 MW and maximum 90 MW. The CHP is a base-load unit and is therefore 
expected to operate at most hours, hence the minimum load. The power to heat ratio, 
the alpha value is an important parameter to decide for the CHP plant. Alpha decides 
how much electricity that can be converted into heat in the system and is set to 0.4 in this 
thesis. This was set since it is a standard value in CHP. The heat production in the turbine 
condensers, shortened Pvk, has a limitation of minimum and maximum production of heat 
set to 0 and 65 MW. These effects are decided based on the heat load mentioned in the 
previous chapter. In this way the CHP plant is able to deliver the full heat load if necessary.

Next parameter is the heat production in the direct condensers, Pdv. Production of heat 
in the direct condensers means that the steam is bypassing the turbines and only produces 
heat instead of both heat and power. The minimum and maximum value of the bypass is 
set to 0 and 80 MW. The maximum value says that the direct condenser is able to produce 
more heat than the turbine produce electricity due to less losses. The load change rate 
in the CHP decides how fast the plant can shift load. This parameter is set to 10 MW, a 
reasonable value of this is up to 25% of the maximum load. Another parameter is  
minimum up time and down time. Those values are set to 3 hours and 10 hours 
respectively. The minimum down time represents the time the unit, if taken out of 
operation, needs to stay out of operation before it can be available for production again. 
The minimum up time is the time the unit has to stay in operation once it is started.
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The maximum and minimum load of the turbine is automatically decided as a result of the
constraints considering the maximum load of the boiler. All the parameters mentioned
above are presented with their set value in Table 3.2.

Table 3.2: Table containing all the input parameters for the CHP used in the GAMS
models.

Parameters Chosen values [unit]
Fuel price 200[SEK]

Alpha 0.4
Pvk min./max. 0/65[MW]
Pdv min./max. 0/80[MW]
Pth min./max. 10/90[MW]

Load change rate 10 [MW]
Min. up time/downtime 3/10 [h]

Turbine max. load/min. load 10/40 [MW]

3.2.3 Heat pump

The COP mentioned in section 2.1.3 is set for the heat pump to be as sufficient as possible.
This value is set to three which mean that it is possible to create three times more heat
than the electricity input. A COP value of three is a standard value. All the values for the
heat pump are presented in Table 3.3. The physical constraints which limits the maximum
and minimum heat production, are decided in a similar way as the parameter presented
for the CHP, shortened Php.

Table 3.3: Table containing all the input parameters for the heat pump used in the GAMS
models.

Parameters Chosen values [unit]
COP 3

Php min./max. 0/30 [MW]
Load change rate 10 [MW]

Min. uptime/downtime 1/1 [h]

3.2.4 Thermal energy storage

For the model with TES all parameters previously mentioned still apply. The volume of
the storage is decided as the maximum and minimum storage in tank. The flow of energy
into and out of the storage is limited by the maximum charge and discharge parameters.
In Table 3.4 are all parameters for the heat storage listed with their values. These values
were decided after being tested in GAMS to obtain a reasonable usage of TES compared
to the load of the other units.
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Table 3.4: Table containing all the input parameters for the TES used in the GAMS
models.

Parameters Chosen values [unit]
Max. storage level 800 [MWh]
Min. storage level 200 [MWh]

Max charge 50 [MW]
Max discharge 50 [MW]

In [26] large-scale hot water tanks capacity is set to around 175 MWh for one unit, the
large capacity was decided so that there would be no limiting constraint. The levels in
TES after running GAMS never reached as high as 800 MWh.

3.2.5 Electric boiler
The electric boiler is modelled in the same way as the heat pump but with a COP value of
1 and a reduced capacity to 15 MW since the boiler is not a base-load unit.

3.2.6 Bio-oil boiler
The bio-oil boiler is not dependent on the electricity spot price, but instead pays a fuel
price. Since the oil boiler is producing when the CHP and heat pump don’t have the
capacity to cover the demand, the maximum production does not have to be large and an
investment in a relatively small oil boiler is reasonable. It also needs to be flexible to turn
on and off so the minimum heat production can be set to zero. This is to avoid the start-up
cost from zero to minimum production that can occur. Table 3.5 shows all the parameters
decided for the oil boiler.

Table 3.5: Table containing all the input parameters for the oil boiler used in the GAMS
models.

Parameters Chosen values [unit]
Fuel price 700 [SEK/MWh]

Max./min. heat prod. 10/0 [MW]
Load change rate 500 [MW]

Another way to make the oil boiler flexible is the load change rate. By having a high value
on this parameter, the boiler can adapt to the fluctuation that occurs in demand.

3.2.7 Output
The output variables of interest are used in the the objective function, which provides the
minimal cost and optimal running plan, the heat production in the direct condenser, the
turbine condenser and the condenser in HP. Also the electricity production of the turbine
and the electricity consumption of the heat pump. These and other performance outputs
depends on the electricity price.
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3.3 Evaluation of forecast models

The most common way of evaluating electricity price forecasts is to look at the error
between the forecasted electricity price and the actual spot price set on Nord Pool. For
the purpose of this thesis the evaluation also considers how the forecasted price affected
the resulting production plan and the total production cost over the year.

3.3.1 Model runs
The results were analysed in Jupyter Notebook using Python. All the forecasts with elec-
tricity price for 168 hours where manually saved for every other date starting at the 1st
of January. The following data set was iterated 48 hours at a time and so on until the
21st of October with a script that loops through all the dates. The loop takes the different
forecasts and insert them into the different GAMS models, the optimization is made and
result files are opened in Python.

3.3.2 Forecast error
An error measure was used to evaluate the prediction accuracy. It is called the Mean
absolute error or MAE. The forecast electricity price Pfh is subtracted from the actual
electricity price Ph. The absolute value of this is then divided by the amount of hours of
interest (T). The formula is shown below in equation 3.14.

MAE = Σ|Ph − Pfh|
T

(3.14)

3.3.3 Total production cost
The real electricity price was used as input in GAMS to obtain the reference cost of the
plant. This is the total production cost that results from following a production plan if
knowing the spot price. However, plants that use forecasting today do not have access to
the real electricity price in advance. The forecasted electricity prices are used to obtain
production plans for all the cases where it it possible to see which units to run and on
which effect. The objective function of these optimizations presents the cost that would
result if the forecasted electricity prices were correct with no errors. To obtain the real cost
the actual electricity price must be used in a cost equation (same as the objective function)
together with the electricity consumption, production and heat production obtained from
the production plan.
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3.4 Limitations

• A hypothetical DH system consisting of different plants was constructed. The hy-
pothetical plant does not completely reflect on reality.

• the rolling average was made on the naive forecast. The method could be imple-
mented on the regression and random forest as well in future studies.

• The modelling of ML-forecasts is not performed in this study.

• The project handles Swedish district heating and Swedish data from Nord pool.
SE3 was chosen as the electricity price area to investigate since this is the section
in Sweden with the highest variability in electricity price and therefore the most
interesting.

• The forecasts were modelled and analyzed for year 2019 and 2020. 2019 is seen as
a common year and 2020 is analyzed as a special case that does not represent the
usual patterns in electricity prices.

• The assumption is made that the production plants follow the production plan made
from the forecast and therefore costs from the intra-day market are not added.

• The temperature used in the modelling of forecasts is the actual temperature and
not the forecasted temperature.

• The electricity demand is not used as input to GAMS, since the electricity system
is much larger and more complex, the effect of the electricity demand is negligible.
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4
Results and discussion

In this section the results regarding the different forecasts and the effect they have on
production plans and costs are presented and discussed. The different forecast methods
are compared using prediction errors and production costs. The production plans are
investigated to learn more about how the different features of the DH system are affected
by the different forecasts. All the forecasts are compared after being used as input to the
four different models explained in Table 3.1.

4.1 Electricity price forecasts overview

In this section the resulting electricity price forecasts are plotted together with the actual
electricity price for year 2019. In Figure 4.1 is the naive forecast plotted with the actual
price.

Figure 4.1: The figure shows the naive forecast plotted together with the actual electricity
spot price for year 2019.

The naive forecast copies previous events and therefore a peak in the electricity price
always reappears as a peak in the naive forecast one week later. In Figure 4.2 is the
rolling average forecast plotted with the reference electricity price.

Figure 4.2: The figure shows the rolling average forecast computed plotted together with
the actual electricity spot price for year 2019.
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The rolling average forecast is the flattened curve compared to the actual price last week,
since it is a mean value of the previous electricity prices which also results in less data
points. The rolling average is also the mean value of the naive forecast for the week be-
fore. This forecast do not properly predict the altitude of the peaks nor the exact position
of the peaks. These two forecasts are the benchmark forecast and have fundamental con-
structions compared to the next two forecasts. In Figure 4.3 is the regression forecast
plotted with the reference price.

Figure 4.3: The figure shows the regression forecast plotted together with the actual
electricity spot price for year 2019.

The regression works on a smaller time interval (linear regression on points in time close
to one another) than the benchmark forecasts. This forecast does not manage to properly
predict the altitude of the peaks and off-peaks. However, the timing of the predicted
peaks is relatively better for the regression than for the naive and rolling average. The
regression has access to electricity price data from the same day, which is not the case in
reality. Since the electricity data from the past hours says a lot about the current situation,
the forecast might be a bit more precise than it would be if only using data from the day
before and longer back in time. In Figure 4.4 is the last forecast method, the random
forest, plotted with the actual price.

Figure 4.4: The figure shows the random forest forecast plotted together with the actual
electricity spot price for year 2019.

The random forest forecast has almost the same pattern as the regression forecast. In the
beginning of the year there is a high peak. This peak is the consequence of lack of capac-
ity in hydropower, higher price of raw material and little wind [27]. During this peak, the
random forest is predicting an even higher peak then the actual spot price but during the
right time.
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In Table 4.1 is the average electricity price presented for the reference and the four fore-
casts.

Table 4.1: The average electricity price for the reference (which is the electricity price
for year 2019) and the forecasts in the unit SEK/MWh.

Forecast Electricity price (SEK/MWh)
Reference 407.2

Naive 409.2
Rolling average 407.1

Regression 408.8
Random forest 417.6

It is clear from Table 4.1 that there are not a lot of differences between the reference price
and forecasted prices when looking at the average for a whole year. However, the average
price might not be that eloquent when looking at the performance of forecasts. When
looking at specific time periods there are significant differences between them. The result
of some specific time periods from year 2019 are presented in section 4.3.1.2.

4.2 Errors in forecast overview

In order to see how well the different forecasts performed compared to one another the
errors between the actual electricity prices and the predicted electricity prices were cal-
culated. Time periods with large and small errors were compared to see at what time the
forecasts performed well and when they didn’t. Table 4.2 shows the mean absolute errors
calculated for 2019.

Table 4.2: The MAE for all forecasts calculated for year 2019.

Forecast Average MAE
Naive 59.1

Rolling average 63.3
Regression 41.5

Random forest 48.2

The table shows that the regression forecast has the smallest mean absolute error com-
pared to the rest. The rolling average has the largest MAE, as mentioned before it is a
flattened curve of the reference price, therefore it is not a surprise. Figure 4.5 and 4.6 dis-
plays the MAE calculated for 48h at a time for the forecasts during the year. This confirms
what was shown in Table 4.2, the naive and the rolling average shows significantly larger
error measures over the year compared to the regression and random forest forecasts.
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Figure 4.5: The MAE for naive and rolling average shown for the entire year.

Figure 4.6: The MAE for regression and random forest shown for the entire year.

These figures explains the theory about how the benchmark forecasts have larger devia-
tions from the reference price compared to the ML-models presented in Figure 4.6. The
random forest forecast has a large MAE value in the beginning of the year. This is when
a large electricity price is occurring. However, it is yet to see what this error does for the
production cost.

The figures above shows that overall the largest errors occur during summer and winter. In
summer the actual spot price is really low, as can be seen from the figures of the reference
and the forecasts in section 4.1, while the forecasts are predicting some higher values.
This result can occur since a lot of external factors are decisive during summer such as
temperature and vacation. The summer of 2019 was a warmer summer than usual [28].
The pattern during summer vary from year to year which makes it hard to predict with
historical data.
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4.3 Production costs overview model 1

The forecasts have been investigated in terms of error. The goal here was to see the effect
of such errors on the production costs after the optimization in GAMS. Figure 4.7 and 4.8
shows the total production costs resulting from the reference and all the forecasts.

Figure 4.7: The production cost for the reference, naive and rolling average forecasts for
the entire year 2019.

Figure 4.8: The production cost for the reference, regression and random forest forecasts
for the entire year 2019.

Even though the naive and the rolling average showed high errors in forecast through-
out the year, the production costs are the similar to the reference for large parts of the
year. There is a visible cost difference during the summer between the reference and the
benchmark forecasts, which also was where the largest MAE values occurred. The rea-
sons for the difference in costs are explained further in section 4.3.1.2. The same patterns
can be seen for the ML-forecasts, the error measurements of the forecasts didn’t seem to
effect the production cost as much as expected. In Figure 4.9 are the naive and the rolling
average heat production plotted together with the reference.

Figure 4.9: The total heat production from CHP for the reference, naive and rolling
average forecasts for the entire year 2019.
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The heat production from the CHP has a clear pattern, where the production decreases
when it gets to the warmer months. In Figure 4.10 are the reference heat production
plotted with the regression and random forest.

Figure 4.10: The total heat production from CHP for the reference, regression and ran-
dom forest forecasts for the entire year 2019.

The production of heat has some differences from the forecast during the summer, when
also the production cost has it biggest differences. The heat production comes mostly
from bypass during summer sine the turbine is not operating during the low electricity
price period. The total production costs values for the entire year are presented in Table
A.2 in Appendix A.3. The difference in total production cost between the reference and
the forecasts for model 1 is presented in Figure 4.11.

Figure 4.11: The total production costs for model 1.

In model 1 where the CHP and the heat pump are the only units, the difference in cost
between the forecasts and the reference is significant. The regression forecasts (the purple
staple) is the closest one in cost compared to the reference (the blue staple), Here is it also
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possible to see that the cost resulting from the rolling average forecast has less deviation
from the reference cost than the naive forecast. One reason for testing the rolling average
forecast was to see if it would improve the outcome of the naive forecast. These results
correspond well with the errors in forecast results. In this case it seems like, overall during
the year, a large error in forecast results in a larger production cost.

4.3.1 Production patterns analysis

To get a better insight of how the production plan and production cost depends on the
electricity price and the forecasts, some time periods have been picked to explain the
results further with some examples. The results shown are examples of general patterns
that can be seen throughout the year.

4.3.1.1 Period with same production costs

Even though large differences in errors between forecasts occur during large parts of the
year, the production costs are the same during many of these periods. Figure 4.12 shows
the production costs resulting from the reference and all the forecasts for a short period in
the end of January 2019.

Figure 4.12: Production costs for the reference and all the forecasts for a period in Jan-
uary.

The production cost is the same for all the cases, during this period, even though the
errors in forecast that can be seen in Figures 4.5 and 4.6 are not the same. An especially
large difference can be seen during the beginning of the year. The cost between the 24th
and 26th of January is a negative cost. Since the electricity price has a high peak at this
period, the system will not run the heat pump. The production plan is to produce as much
electricity as possible and make profit. In Figure 4.13 is the electricity production for the
reference and all the forecasts.
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Figure 4.13: Electricity production for the reference and all the forecasts during a period
in January.

This figure states that all the forecasts are producing electricity at the same amount as the
reference. The variations in production are determined by the heat demand. By looking
at the electricity price during this period these results can be explained. In Figure 4.14 is
the spot price plotted together with the naive and the rolling average forecast during this
period.

Figure 4.14: Forecast for the reference, naive and rolling average for a period in January.

This period has a high peak between 24th and 25th which is the same time as the pro-
duction cost was negative. However, the naive and the rolling average do not reach the
altitude of the peak but still predict relatively high electricity price. In Figure 4.15 is the
reference plotted with the regression and random forest.

Figure 4.15: Forecast for the reference, regression and random forest for a period in
January.

Here both the regression and random forest predicted electricity prices higher than for the
benchmark methods. However, the random forest forecast is predicting a higher price than
the reference. This distribution of different prices do not seem to affect the production cost
for any of the cases. It is also clear from the figure that the regression and random forest
forecasts predict the daily seasonality of the price well. From this period it is possible to
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state that, during a high price peak, the important quality of the forecast is to time the peak,
not to reach the peak in altitude. The system consists of only two plants and therefore the
options of how to produce heat are not that many. Since the profit occurs from production
of electricity all the forecasts and the reference results in running the CHP. Also, all of the
forecasts resulted in a negative cost during this period which is auspicious for the system.

4.3.1.2 Periods with different production costs

There where also periods with difference in production costs. The biggest errors were
seen during the summer months. Figure 4.16 shows the production costs resulting from
the reference, rolling average and the naive forecast during a period in the beginning of
June.

Figure 4.16: Production costs resulting from the naive and rolling average forecast at a
period in June.

This is a period when the forecasts have higher production costs than the reference. In
Figure 4.17 is the same period plotted for the reference, regression and the random forest
forecasts.

Figure 4.17: Production costs resulting from the regression and random forest forecasts
at a period in June.

Also here the costs are lower for the reference case. These high costs can be explained
by looking at the production patterns resulting from the forecasts. Figure 4.18 shows the
electricity consumption in the heat pump resulting from the reference, rolling average and
naive forecasts.
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Figure 4.18: Electricity consumption in heat pump resulting from the naive and rolling
average forecasts at a period in June.

Here is a visible image showing that different forecasts results in different production
patterns. When the spot price is low the heat pump consumes electricity, but this is not
the case for the naive and rolling average. Similar patterns are shown in Figure 4.19
where the electricity consumption is plotted for the reference, regression and random
forest forecasts.

Figure 4.19: Electricity consumption in heat pump resulting from the regression and
random forest forecasts at a period in June.

This mismatch can in turn be explained by looking at the electricity price forecasts during
this period. Figure 4.20 and 4.21 shows how all the forecasts fail to predict the low
electricity price.

Figure 4.20: Forecasts for the reference, naive and rolling average for a period in June.
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Figure 4.21: Forecasts for the reference, regression and rolling average for a period in
June.

The actual electricity price is lower than the prediction for all the forecasts. This is why,
in the reference case, the heat pump produces more than the cases with the forecasts.
The production costs gets higher than the reference since the production of electricity is
expensive during this period and the consumption of electricity is cheap. In this example
it is possible to state that to not mange to predict low electricity hours can be crucial for
the production cost.

4.4 Production costs overview model 2

In model 2 TES was added to the system to see how it would affect the production plan
and total production cost compared to model 1. Figure 4.22 shows the production cost for
the reference, rolling average and the naive forecast.

Figure 4.22: Production cost for naive and rolling average with TES for year 2019.

In Figure 4.23 are the production cost for the reference, regression och random forest
plotted together when TES is added to the system.

Figure 4.23: Production cost for regression and random forest with TES for year 2019.

It is clear that there is a larger variation in costs between the reference and the different
forecasts when TES is added to the system. From the figures of the MAE in section 4.2 the
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largest errors in forecast (besides the peak in the early year) occur during summer. This
is also when the production cost result in larger deviations from the reference, which can
be seen in Figures 4.22 and 4.23. In Figure 4.24 are the total production costs resulting
from the reference and the forecasts.

Figure 4.24: Total production costs for the reference and all forecasts for model 2.

The figure shows a remarkable decrease in the total production cost compared to model
1. This is because the TES makes the system more flexible and can help avoid running
the heat pump at high electricity prices when the heat demand is high. However, the
rolling average forecast now results in a higher cost than to the naive forecast compared
to the previous model. This is because flattening of the forecast makes it harder to plan
when to use the TES. The cost resulting from the regression forecast is outperforming all
other forecasts here as well. The values of the total production cost is given in Table A.3
together with the differences in costs from the reference.

4.4.1 Production patterns analysis

Figure 4.25 shows the results for the same period in January that were described in section
4.3.1.1 for model 1. Without TES the resulting total cost for the system was the same for
the reference and all the forecasts. But for model 2 there were significant differences
during this period. This can be seen in Figure 4.25 where the total production cost is
shown for the reference and all the forecast.
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Figure 4.25: Production cost for the reference and all the forecasts, resulting from model
2, for a period in January.

It is clear that there are deviations in costs between the reference and the forecasts during
this entire period. This makes it even more clear how the TES makes the system more
flexible and not just dependent on the electricity price level. The system can now choose
to operate the TES and not just the CHP and the heat pump. Since most district heating
plants and systems are equipped with TES today, the results from model 2 are important
and shows even more clearly the importance of forecasts. Figure 4.26 shows the electricity
production resulting from the reference, naive and the rolling average forecast.

Figure 4.26: Electricity production in the CHP resulting for the reference, naive and
rolling average for a period in January.

In Figure 4.27 are the same results but for the reference and the ML-forecasts.

Figure 4.27: Electricity production in the CHP resulting for the reference, regression and
random forest for a period in January.

29



4. Results and discussion

These figures shows significant differences in production which is the cause of the dif-
ference in production costs as stated earlier as well. Figure 4.28 shows the energy output
from the tank plotted for the reference, the naive and the rolling average.

Figure 4.28: Energy level in the TES for the reference, naive and rolling average for a
period in January.

Figure 4.29 shows the same results for the reference, regression and random forest.

Figure 4.29: Energy level in the TES for the reference, regression and random forest for
a period in January.

The usage of TES is also a significant factor of the differences in production cost. By
using the TES, it is possible to produce heat without having to buy electricity. But by
discharging too much will lead to longer time to charge the storage again and it might
not have enough capacity during those hours it is needed. This creates a more complex
system and production plans. More electricity is produced in the CHP for the reference
case, while the forecast cases rely more on TES. Since the TES can manage large fluctua-
tions, there are larger differences in costs during summer. This is when the TES can take
advantage of the fact that it can use stored heat. In this thesis TES is used in a short time
frame, and the levels vary from hour to hour. In reality TES is important when it comes to
long-term storage (seasonal). It is more difficult for the forecasts to predict the electricity
price on longer time-scales than just 168 hours ahead. More investments in electricity
price forecasts on a longer time frame might be important when it comes to implementing
TES.
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4.5 Results for electric boiler and oil boiler

In this section the results for model 3 and 4 are presented. These models where con-
structed with the purpose of adding a peak-load unit and hence have a more complex
system with more units to choose from in the optimization. Figure 4.30a and 4.30b shows
the production costs plotted for the reference and the forecasts for model 3.

(a) Production cost for the reference, the naive and the rolling average for model 3.

(b) Production cost for reference, regression and random forest for model 3.

Figure 4.30: The production costs for the reference and all forecasts for model 3.

There were no difference in costs when comparing these results with model 1. This is
simply because the optimization model did not choose to run the electric boiler at all. The
system could have chosen not to run the EB at all due to the high capacities of the CHP
and the HP. This is not surprising since investment costs is not included in the calculations.
EB is mainly motivated by offering a low investment cost. If there is not enough capacity
to meet the heat load at certain hours or not enough capacity of the HP to take advantage
of low electricity prices, the EB comes in handy. However, with a CHP unit which can
cover all the heat load and a HP on top of this, the systems has larger investments in
capacity that is common today. This means that the system that is investigated has more
flexibility to the expense of higher investment cost. This is different parameters were
tested in GAMS but no composition was found that choose to include the electric boiler.
In model 4, where an oil boiler was added instead, there was a slight difference in costs.
The total production costs were slightly increased compared to model 1 and can be seen
in Table A.4 in the appendix.
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Figure 4.31a and 4.31b shows the heat production in the oil boiler, the boiler starts at
about six occasions throughout the year.

(a) Heat production from oil boiler for reference,naive and rolling average where 1 MW
indicates that the boiler is running, for model 4.

(b) Heat production from oil boiler for reference, regression and random forest, where 1
MW indicates that the boiler is running, for model 4.

Figure 4.31: The amount of times the oil boiler is operating for the reference and all the
forecasts for model 4.

The oil boiler is only used at a few occasions where it is more profitable than running only
the CHP and the HP. This can happen during hours when the electricity price is low but
the heat demand is high, it is not profitable to run the CHP at low prices and the heat pump
is not enough to meet the demand. As seen from the figures, the forecasts has trouble with
the timing of the operations. Since few occasions occur where it is profitable to run the
oil-boiler it is even more important that the forecasts manage to predict these occasions.
Differences in production of heat in the oil boiler between the forecasts and the reference
will lead to high differences in total production costs between the cases. Because of high
fuel prices, the oil boiler also increases the total production cost for the system.
In order to get more reliable results and make more conclusions considering the electric
boiler and the oil boiler more work has to be put into the details of the models in GAMS
and what parameters to choose in the different units.
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4.6 Sensitivity analysis

The forecasts and production plans both have multiple factors that could change the out-
come of the results. Two new data sets were used to see if the results would change when
using different data as input when making the forecasts.

4.6.1 Year 2020
The first sensitivity analysis was to use data from 2020. The patterns in electricity prices
were different this year compared to usual years. Figure 4.32, shows the rolling average
and the naive forecasts plotted with the actual electricity price for year 2020 and figure
4.33 shows the same results for the ML-forecasts.

Figure 4.32: The forecast price for the reference, naive and rolling average forecasts for
the entire year 2020.

Figure 4.33: The forecast price for the reference, regression and random forest forecasts
for the entire year 2020.

The benchmark-forecasts only use data from 2020. A change in data set is therefore ex-
pected to change the results more than for the ML-forecasts. The regression and random
forest forecast trains on data from previous years (not only 2020) and are therefore ex-
pected to be less affected by this change in data. It is hard to see much details in the figures
showing the forecasts over the year but figure 4.33 seems to shows how the regression and
random forest forecasts successfully follows the reference electricity price. Compared to
2019, where the electricity prices were really high in the beginning of the year, the elec-
tricity prices for January 2020 are remarkably low. The mean electricity price for 2020
was the lowest in a long time and negative prices also occurred. The high levels of water
was the main contributor. This was also a consequence of high temperatures in the be-
ginning of the year which decreased the demand of heat and high wind production [29].
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However, the price has a peak in the middle of the summer which is rare. This peak is a
consequence of the low prices from January and little wind [30].

The MAE values for the forecasts during 2020 are presented in Table 4.3.

Table 4.3: The average value of the MAE for the forecasts.

Forecast average MAE
Naive 102.9

Rolling average 112.2
Regression 77.0

Random forest 89.1

Compared to 2019 in Table 4.2, the average MAE values are significantly higher for all
forecasts. However, in comparison between the forecasts the regression forecast has the
lowest MAE in 2020 as well as in 2019. The rolling average has the highest MAE as it
did for year 2019. However, a shift between the rolling average and the naive occurs in
which of them that had the largest errors and largest total production cost throughout the
different models for year 2019.

The production costs for 2020 can seen in Figure 4.34 and in Figure 4.35.

Figure 4.34: The production cost for the reference, naive and rolling average forecasts
for the entire year 2020.

are the reference cost plotted with the regression and random forest for year 2020.

Figure 4.35: The production cost for the reference, regression and random forest for the
entire year 2020.
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All the forecasts resulted in larger deviations in cost from the reference compared to 2019,
this can be seen throughout the year. The forecasts seem to predict higher prices than the
reference during the year. The figures show that the forecasts predicts the best during
summer and show the largest errors during march. March is also the month where the
Covid-19 pandemic started to affect Sweden and the living patterns of people drastically
changed.

The total production costs for 2020 are presented in Table 4.4.

Table 4.4: The total production costs for the reference and the four forecasts and the
difference between the reference and the forecasts for year 2020.

Forecast Total production cost [SEK] Difference in cost
Reference 30 123 561 0

Naive 32 001 408 +1 877 857
Rolling average 32 503 184 +2 379 623

Regression 31 676 612 +1 553 051
Random forest 32 450 547 +2 326 986

The table shows that all forecasts were far above the reference cost for year 2020. The
differences are much larger than in any of the previous models. The regression forecast
is the closest one in cost ,compared to the reference, in all cases investigated and also
for this sensitivity analysis. This reinforce that ML-forecasts has the ability to predict a
forecast even though the patterns in data that exists are disturbed. The reference cost is
also significantly higher than for all cases in 2019. This was due to the irregularities in
electricity prices mentioned earlier.

4.6.2 Future electricity system
As more and more renewables are introduced to the electricity system, the electricity
prices tend to fluctuate more. This can affect the performance of the forecasts. Another
sensitivity analysis was therefore made with Danish electricity prices. In Figure 4.36 are
the Danish electricity prices plotted against the Swedish ones for year 2019.

Figure 4.36: The Danish electricity prices are presented as the blue line and the Swedish
electricity prices as the red dotted line for year 2019.

The Danish system has more renewable in the system and as a result the electricity prices
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vary more than Swedish prices and negative prices occur at multiple occasions. In Table
4.5 the average electricity prices for Sweden and Denmark presented.

Table 4.5: The average electricity price for Sweden and Denmark year 2019.

Country Average electricity price [SEK/MWh]
Sweden 407.2

Denmark 409.3

Even though Denmark has some negative prices, the average price is higher than in Swe-
den. The figure shows that during summer time Denmark has higher prices than Sweden.
The production costs resulting from the Danish prices and the Swedish prices are shown
in Figure 4.37.

Figure 4.37: The Danish production cost for the Danish reference and the Swedish pro-
duction cost for the Swedish reference.

The forecast methods has similar patterns for the Danish production cost as for the Swedish
one. However, the forecasts do not have the same amount of errors during summer than
for the Swedish system but more problems in the beginning of the year. In Table 4.6 are
the total production cost for the reference and the benchmark forecasts presented. Also
the difference between the reference and the forecasts.

Table 4.6: The total production costs for the reference and the two benchmark forecasts
for danish production cost.

Forecast Total production cost [SEK] Difference in cost
Reference 19 993 849 0

Naive 22 349 383 +2 355 534
Rolling average 22 058 709 +2 064 860

The total production costs for the reference are slightly higher than the Swedish ones from
Table A.2. However, the benchmark forecasts has significantly larger differences in the
Danish case than for the Swedish case. Also, the naive forecasts has higher difference in
cost than the rolling average as it did for all the Swedish cases except model 2.
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5
Conclusions

From the result and discussion above there are some conclusions that now can be drawn.
The conclusions aim to answer the research questions.

The performance of the forecasts does shift between the different models with different
units, but there is a clear winner: the regression forecast that outperformed the other fore-
casts in terms of errors and production costs throughout all of the models and data sets.
This states that the forecast with the lowest errors, results in the best production plan. The
rolling average forecast resulted in the lower cost than the naive forecast for model, but
when TES was added this shifted.

Large differences in production costs occurred around a limit in electricity price, if the
forecast predicted a price below this limit the result was production of heat in the heat
pump. This only occurred at low electricity prices. If other forecasts predicted prices over
the limit, the heat pump would not be part of the mix and a price difference occur. This
is where the correct forecast matter, if the forecasts can predict high and low electricity
prices at the right time, then the production plan will run the most profitable unit and can
avoid high production costs. This also answers the question of when forecast perform
well and why, periods with low electricity prices (mostly summer) resulted in larger dif-
ferences in production costs. This also applies when an oil boiler was connected to the
system. Since the fuel price is high compared to regular electricity prices it will highly
affect the outcome of the total production cost.

The forecasts has proved that timing of the peaks is more important than reaching the
altitude of the peak. This might be why the naive forecast was improved when the rolling
average was performed on it. Off-peak altitudes can be of more importance since low
electricity prices were decisive in the choice of which unit to operate. The different fore-
cast performs differently on different kinds of events.

Using TES decreased the total production cost remarkably. It also resulted in larger dif-
ferences in production costs between the forecasts. TES therefore makes the system more
flexible but also more dependent on the electricity price forecast.
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To obtain more results regarding model 3 with the electric boiler, more efforts on how to
design the system in terms of deciding the size of the units and other important param-
eters must be made in future work. This also applies to the results regarding the other
peak-load unit (bio-oil boiler).

The comparison between the Swedish and the Danish system with more renewables re-
sulted in higher production costs for the Danish system. Fluctuations in price made it
harder for the benchmark forecasts to predict the electricity price. ML-forecasts might
have a larger role to play in predicting the electricity price in a system with more renew-
able energy since they performed better overall. Future work should investigate how the
ML-forecasts perform on this kind of data.

The electricity price has a clear correlation with external factors. Seen from the sensitivity
analysis, the world events occurring will affect the prices, which in turn affect the produc-
tion cost. From year 2020, the irregular events drastically disturbs the forecast methods
that had trouble with prediction and results in higher differences in total production cost.
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A
Appendix

A.1 Lag-features used in the modelling of ml-forecasts

Table A.1: Table containing all the features used in the ML-modelling.
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T18(t)
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T18(t)lasttwohours

A.2 Historical electricity spot prices

In this section is some historical electricity spot data presented. From year 2017 to year
2020. It makes it more clear how much the prices vary depending on external occasions,
also some small patterns are visible to see from year to year.

Figure A.1: The electricity spot price for year 2017.
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Figure A.2: The electricity spot price from year 2018.

Figure A.3: The electricity spot price from year 2019.

Figure A.4: The electricity spot price from year 2020.

A.3 Production cost and differences

In this section are the values of all forecasts in all four models presented. This is to see
the values clearly and the differences from model to model and from forecast to forecast.

Table A.2: The total production costs for the reference and the four forecasts and the
difference between the reference and the forecasts for model 1.

Forecast Total production cost [SEK] Difference in cost
Reference 19 820 656 0

Naive 20 602 239 +781 583
Rolling average 20 419 934 +599 278

Regression 20 211 512 +390 856
Random forest 20 304 677 +484 021
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Table A.3: The total production costs for the reference and the four forecasts and the
difference between the reference and the forecasts for model 2.

Forecast Total production cost [SEK] Difference in cost
Reference 17 886 504 0

Naive 18 954 213 +1 067 709
Rolling average 20 116 951 +2 230 447

Regression 18 362 899 +467 395
Random forest 18 912 630 +1 026 126

Table A.4: The total production costs for the reference and the four forecasts and the
difference between the reference and the forecasts for model 4.

Forecast Total production cost [SEK] Difference in cost
Reference 19 887 572 0

Naive 20 691 515 + 803 943
Rolling average 20 510 475 +622 903

Regression 20 261 663 +374 091
Random forest 20 304 677 +417 105

Figure A.5: The total production costs for three of the models.
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