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Abstract

Steel girders with trapezoidally corrugated webs are structural members with high load-carrying
capacity in relation to the material usage. The main advantage is that the corrugated web
provides a high shear capacity for very thin web plates. Research on this type of girders has
been conducted at Chalmers University of Technology since the 1980’s, with the main focus on
the shear capacity. It is also suspected that the lateral-torsional buckling capacity increases
due to the corrugation of the web.

In this report, previous research on the subject of lateral-torsional buckling of steel girders with
trapezoidally corrugated webs is presented and critically reviewed. The critical buckling moment
is strongly influenced by the torsion and warping constants, which are not well established for
girders with corrugated webs. Previous researchers state that there is an increased resistance
against lateral-torsional buckling caused by the corrugated web, and that this resistance should
be attributed only to an increased warping constant. By considering fundamental torsion
theory and by studying the torsional response of girders with corrugated webs using finite
element simulations conducted in Abaqus CAE, the authors of this report conclude that the
extra stiffness instead should be accounted for by an increased torsion constant.

In this report, a method is established for finding the torsion and warping constants of I-shaped
girders with arbitrary web profiles using finite element simulations of cantilevers subjected to
torsion. This method is verified by comparing the results to results from linear buckling finite
element analyses and analytically calculated values of the torsion and warping constants of
girders with flat webs.

The authors of this report suggest using a modified version of the expressions for the torsion
and warping constants stated by Lindner in previous research. By reformulating the original
expressions, the increased resistance can be attributed to the torsion constant instead of the
warping constant, resulting in critical buckling moments and sectional constants which agree
well with those obtained using the method proposed in this report.

Keywords: Lateral-torsional buckling, corrugated web, torsion constant, warping constant,
steel girder, torsional response
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Vippning av st̊albalkar med trapetskorrugerade liv
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JOHN PERSSON
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Avdelningen för konstruktionsteknik
St̊al- och träbyggnad
Chalmers tekniska högskola

Sammanfattning

St̊albalkar med trapetskorrugerade livpl̊atar har hög bärförm̊aga i förh̊allande till material̊atg̊ang.
Den största fördelen med denna typ av balk är att korrugeringen ger hög tvärkraftskapacitet
även för mycket tunna livpl̊atar. Forskning kring denna typ av balkar har bedrivits vid Chalmers
tekniska högskola sedan 1980-talet, med fokus p̊a tvärkraftskapacitet. Mycket tyder p̊a att
även det kritiska vippningsmomentet ökar tack vare det korrugerade livet.

I detta examensarbete presenteras och granskas tidigare forskning kring vippning av st̊albalkar
med trapetskorrugerade liv. Det kritiska vippningsmomentet p̊averkas kraftigt av balkens
vrid- och välvkonstanter. För balkar med korrugerade liv saknas väletablerade uttryck för att
beräkna dessa tvärsnittskonstanter. Tidigare forskning visar att motst̊andet mot vippning ökar
p̊a grund av det korrugerade livet, och att denna ökning bör tillskrivas en ökad välvkonstant.
Genom att beakta grundläggande vridteori och genom att studera vridresponsen av balkar
med korrugerade livpl̊atar i finita element-simuleringar utförda med Abaqus CAE, drar
författarna av denna rapport slutsatsen att den extra styvheten istället skall tillskrivas en ökad
vridkonstant.

I rapporten etableras en metod för att hitta vrid- och välvkonstanterna för I-balkar med
godtycklig korrugeringsprofil för livpl̊aten genom att använda finita element-simuleringar av
vridbelastade konsoler. Denna metod verifieras genom att jämföra erh̊allna resultat med resultat
fr̊an linjära instabilitetsanalyser samt med analytiskt beräknade vrid-och välvkonstanter för
balkar med plana liv.

Författarna av denna rapport föresl̊ar en modifierad version av uttrycken för att beräkna vrid-
och välvkonstanter som presenterades av Lindner i tidigare forskning. Genom att omformulera
dessa ursprungliga uttryck kan det ökade motst̊andet tillskrivas vridkonstanten istället för
välvkonstanten, vilket resulterar i ett kritiskt vippningsmoment och tvärsnittskonstanter som
stämmer väl överens med dem som erh̊alls fr̊an den metod som föresl̊as i denna rapport.

Nyckelord: Vippning, korrugerat liv, vridkonstant, välvkonstant, st̊albalk, vridrespons
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Notations

Upper case Roman letters

C1, C2 Correction factors accounting for boundary conditions and moment gradient
Cb Equivalent moment factor
E Modulus of elasticity
G Shear modulus
Gco Reduced shear modulus due to the corrugation of the web, used by Moon et al.
It Torsion constant
Iet Equivalent torsion constant from the method proposed in this report
I∗t Equivalent torsion constant used by Lindner
I ′t Equivalent torsion constant from the modified Lindner method
Iw Warping constant
Iew Equivalent warping constant from the method proposed in this report
I∗w Equivalent warping constant used by Lindner
I ′w Equivalent warping constant from modified Lindner method
Iw Equivalent warping constant used by Moon et al.

Îw Equivalent warping constant used by Zhang et al.
Iy Moment of inertia about the strong axis
Iy1 Moment of inertia of upper flange about the strong axis
Iy2 Moment of inertia of lower flange about the strong axis
Iz Moment of inertia about the weak axis
L Girder length
Lij Length of the interconnected plate element between the nodes i and j
Mcr Elastic critical bending moment for lateral-torsional buckling
M e

cr Elastic critical buckling moment obtained using the proposed method
MFE

cr Elastic critical buckling moment obtained using linear buckling analysis (Abaqus CEA)
ML

cr Elastic critical buckling moment obtained using Lindner’s method
Mf Flange moment
Mf,0 Flange moment at the fixed end
Mpl Plastic bending moment
MR,LT Moment resistance with respect to lateral-torsional buckling
T Torsional moment, general
Tt Saint-Venant torsional moment
Tw Vlasov torsional moment
Vw Warping shear force due to flange bending
Wel Elastic section modulus
Wpl Plastic section modulus
Wni Normalised unit warping at point i of an element (i-j)
Wnj Normalised unit warping at point j of an element (i-j)
Q Applied external torsional moment
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Lower case Roman letters

a Length of longitudinal panel
a Torsion bending constant
b Projected length of inclined panel
bf Flange width
c Actual length of inclined panel
d Maximum eccentricity of web
e Eccentricity of web
emax Maximum eccentricity of web
hm Distance between centroids of flanges
hr Amplitude of corrugation
hw Web height
fy Yield limit
k, kw Effective length factors with regard to torsion and warping respectively
tij Thickness of the interconnected plate element between the nodes i and j
tf Flange thickness
tw Web thickness
q Wavelength of corrugation
q Uniformly distributed transversal load
w Transversal deflection
w0i Unit warping at point i of an element (i-j)
w0j Unit warping at point j of an element (i-j)
zg Distance between the point of load application and the shear centre

Lower case Greek letters

α Angle of inclined web panel in relation to the longitudinal axis
α Imperfection factor
α Torsional parameter, describing the torsional response of a member
χLT Reduction factor, reduction with respect to lateral-torsional buckling
γM Material partial factor
γ Addition to the warping constant, suggested by Lindner
δ Addition to the torsion constant, modification to Lindner’s expression
λ Slenderness parameter
θ Rotation of the cross-section about the longitudinal axis
θL Total rotation of the cross-section about the longitudinal axis
θ′ First derivative of the rotation about the longitudinal axis
θ′′′ Third derivative of the rotation about the longitudinal axis
ρij Perpendicular distance between the centroid and the shear centre of the section
σx(x) Longitudinal flange stress, at the outermost fibre, along the member
σx,0 Longitudinal flange stress, at the outermost fibre, at the fixed end of a cantilever
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1 Introduction

1.1 Background

As the demand for inexpensive structures increases, so do the incentives for optimizing building
components. In order to create cheap and effective structural members, it is desirable to achieve
a high load carrying capacity using as little material as possible. For steel members subjected
to bending, this is achieved by creating cross-sections with large sectional depth, with a large
distance between the majority of the material and the gravity center of the cross-section. A
typical section of this type is an I-section, where a thin and high web creates a large distance
between the flanges. These slender members are susceptible to instability phenomena such as
local buckling of the web or global lateral-torsional buckling. In order to increase the resistance
against local web buckling without adding extra web stiffeners or increasing the web thickness,
a corrugated web can be used.

Research on steel girders with thin, corrugated webs has been conducted at Chalmers University
of Technology since the 1980’s [1]. The focus of this research has been the shear resistance of
steel girders with corrugated webs and, to some extent, the patch load capacity. Internationally,
some research has been carried out on the subject of lateral-torsional buckling of this type of
girders, but no comprehensive methodology for the design has been established. Designers are
currently forced to either use relatively complex and time consuming Finite Element models
for each unique structure in order to capture the positive effects of the corrugated web, or to
use the same approach as for girders with flat webs, thereby disregarding any extra resistance
provided by the corrugated web in terms of lateral-torsional stability.

This master’s thesis was initiated by Chalmers Universty of Technology and Borga Steel
Buildings, a steel product manufacturer, which often uses girders with trapezoidally corrugated
webs. One product that Borga Steel Buildings provides is prefabricated steel hall buildings,
using girders with corrugated webs, and they want to investigate the effect from corrugated
webs on the resistance against lateral-torsional buckling.

1.2 Aim

The aim of this master thesis is to find a method for calculating the resistance against lateral-
torsional buckling of steel girders with trapezoidally corrugated webs subjected to bending,
which could be used in the design process. The aim is to find a method which is easy to
implement, captures the beneficial effects of the corrugated web and does not overestimate the
capacity of the girders.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:57 1



1.3 Approach

In order to reach the aim stated above, the project is divided into a number of steps:

- First of all, a literature study is performed in order to understand the phenomenon of
lateral-torsional buckling and different types of torsional response. Previous research on
lateral-torsional buckling of girders with corrugated webs is critically reviewed.

- A method for obtaining the equivalent cross-sectional constants of girders with corrugated
webs is derived. These constants are used for calculating the critical lateral-torsional buckling
moment in the same way as for girders with flat webs.

- A parametric study is then performed where the proposed method and the existing models
are compared to each other and to results from FE-simulations performed in Abaqus CAE,
in order to investigate how different geometrical parameters of the girder affect the resistance
against lateral-torsional buckling.

1.4 Limitations

This report is limited to consider:

- Members subjected to a uniform bending moment about the strong axis of the member, when
considering lateral-torsional buckling.

- Linear elastic, homogeneous isotropic material.

- Girders with the same material properties for flanges and web.

- Thin-walled I-shaped girders with equal flanges.

- Prismatic steel girders and steel girders with trapezoidally corrugated webs.

- Webs with constant height over the length of the girder.

- Global lateral-torsional buckling. Local instability, such as web or flange buckling, has not
been considered.

Note: In some literature, the word ’prismatic’ is used to describe a girder which has the same
cross-sectional depth and flange dimensions over the length of the girder, regardless of the
shape of the web. In this report, the term prismatic girder refers to a girder with flat web. A
prismatic girder should have the same cross-section in every section, which is not true for a
girder with corrugated web.

2 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:57



1.5 Outline and contents of the report

Chapter 1 - Background to the subject as well as aim, approach and limitations of the
project.

Chapter 2 - Introduction to theory on lateral-torsional buckling and different types of torsional
response.

Chapter 3 - Overview of existing approaches for calculating the critical buckling moment of
girders with corrugated webs.

Chapter 4 - Analysis of different types of torsional response of prismatic and non-prismatic
members.

Chapter 5 - Derivation of the method used in this project for finding the equivalent torsion
and warping constants Iet and Iew of girders with corrugated webs.

Chapter 6 - Description of the FE models used in the simulations included in the project.

Chapter 7 - Results and discussion.

Chapter 8 - Conclusions drawn from the results.

Chapter 9 - Suggestions for further research.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:57 3



2 Theory

This chapter provides an overview of the theory on which the methods and analyses used
in this report are based. An introduction to lateral-torsional buckling is given as well as a
summary of different types of torsional response.

2.1 Introduction to lateral-torsional buckling

In order to get optimal use of material, girders with high load carrying capacity generally will
have a high cross-sectional depth. Such slender cross-sections are susceptible to instability
phenomena, and their full plastic capacity can not be utilized. An I-girder, for example, will
carry the bending moment mainly as a force couple in the flanges, and at a certain load the
compressive flange will become unstable and buckle laterally (the web prevents it from buckling
transversally). The opposite flange will be subjected to tension, and will ’anchor’ the lateral
displacement of the cross-section. These actions combined will cause the whole cross-section
to rotate about its longitudinal axis and translate in the lateral direction of the girder. This
phenomenon is known as lateral-torsional buckling, and is illustrated in figure 2.1.

Figure 2.1: Principle lateral-torsional buckling deformation of an I-girder subjected to bending
about its strong axis. a) Displacement of the mid-section; b) Global instability mode.

The susceptibility to lateral-torsional buckling of a member depends on the slenderness of the
cross-section and the free length of the member, analogous to a column in compression. In
order to take this instability phenomenon into account in the design process, the maximum
bending moment capacity MR of the section must be reduced. Eurocode 3 [2] provides two
approaches for the design of members prone to lateral-torsional buckling; one more accurate
method with specific buckling curves for lateral-torsional buckling, and one simplified method
where the compression flange is seen as a column in compression. In this report, only the
more accurate method will be considered. Both methods result in a reduction factor χLT

4 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:57



which is applied to the maximum bending moment capacity of the girder according to equation
2.1.

MR,LT = χLT ·MR (2.1)

Figure 2.2: Schematic buckling curve. Reduction factor taking into account lateral-torsional
buckling as a function of the slenderness of the member.

The reduction factor is based on the concept of buckling curves, applied in codes such as the
Eurocode. A principle buckling curve is shown in figure 2.2. The starting point of the buckling
curve is the Euler hyperbola. The background to the Euler hyperbola is entirely theoretical
and holds true for a perfect, elastic girder, where the critical moment approaches infinity as
the slenderness approaches zero. The shape of the buckling curve is governed by the yield
stress of the material and the influence of initial stresses and imperfections. As shown in
figure 2.2, the full plastic capacity can be utilized for members with low slenderness (’stocky’
members), and for members with high slenderness the actual buckling load is very close to
the theoretical elastic buckling load. The influence of the initial stresses and imperfections is
greatest for members with intermediate slenderness, as illustrated by the difference between
the Euler buckling curve and the design buckling curve in figure 2.2. The design buckling curve
is defined by equations 2.2 and 2.3[2]. Since χLT is a reduction factor, its value should never
be greater than 1.0.

χLT =
1

ΦLT +
√

Φ2
LT − λ2LT

(2.2)

ΦLT = 0.5 · [1 + αLT · (λLT − 0.2) + λ2LT ] (2.3)

The imperfection factor αLT , used in equation 2.3, is based on the geometry of the cross-section.
The relative slenderness is generally defined as the square root of the maximum load carrying
capacity divided by the elastic critical load. This definition is used regardless of what instability
phenomenon is considered, whether it concerns buckling of columns, buckling of plates or
lateral-torsional buckling of girders. The slenderness with regard to lateral-torsional buckling

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:57 5



λLT will simply be denoted λ since this report only considers lateral-torsional buckling and
no other instability phenomena. In the case of lateral-torsional buckling, the slenderness is
defined according to equation 2.4.

λ =

√
MR

Mcr

(2.4)

The maximum bending moment capacity MR (used in equation 2.4) is calculated according to
equation 2.5

MR = WR · fy (2.5)

where WR is the section modulus. For cross-section classes 1 and 2, the section modulus is taken
as the plastic section modulus Wpl. For cross-section class 3, the elastic section modulus Wel is
used, and for cross-section class 4 the effective section modulus of the reduced cross-section
Wef is used [2].

The elastic critical bending moment Mcr is the theoretical maximum bending moment (Euler
buckling moment) which can be resisted by the girder before lateral-torsional buckling occurs,
where no initial stresses or imperfections are considered. The sectional properties which
influence the resistance to lateral-torsional buckling are the moment of inertia about the weak
axis Iz, the torsion constant It and the warping constant Iw. The moment of inertia Iz prevents
lateral displacement, while the torsion and warping constants prevent rotation of the cross
section. This report only considers non-distorsional buckling, meaning that the shape of the
cross-section remains undeformed (as seen in figure 2.1a). The expression for the elastic critical
buckling moment of a simply supported girder loaded in uniform bending is stated in equation
2.6.

Mcr =
π2EIz
L2

√
Iw
Iz

+
L2GIt
π2EIz

(2.6)

This expression was derived analytically by Timoshenko [3] for a simply supported girder
loaded by equal and opposite moments at the ends, meaning that the girder is subjected to
a uniform bending moment. With this type of loading, no shear forces occur. In order to
account for other boundary conditions, moment distributions and load applications, empirical
modifications of that expression have been made, resulting in equation 2.7 [4].

Mcr = C1 ·
π2EIz
(kL)2


√(

k

kw

)2

· Iw
Iz

+
L2GIt
π2EIz

+ (C2zg)2 − C2zg

 (2.7)

The factor C1 accounts for the moment distribution, allowing for different types of loading and
boundary conditions. The term zg is the vertical distance between the level of load application
and the shear centre of the cross section and C2 is a correction factor applied to zg, governed
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by the load distribution and the boundary conditions. The factors k and kw are effective
length factors, analogous to the ratio between buckling length and system length of a column
subjected to normal buckling; k refers to the end rotation, while kw refers to end warping [4].
Sayed-Ahmed [5] uses similar expression where the boundary conditions, moment distribution
and load application are all accounted for in a single factor, the equivalent moment factor Cb.
Sayed-Ahmed concludes that the same values of the factor Cb used for prismatic girders can
be used for girders with corrugated webs as well. This factor replaces the factors C1 and C2 in
equation 2.7. Based on this, the authors of this report assume that the values of C1 and C2

derived for prismatic girders can be used for girders with corrugated webs as well.

The focus of this report is the influence of the corrugated web on the resistance against
lateral-torsional buckling. The influence from boundary conditions and moment distributions
on the critical moment are not within the scope of the report, and therefore only equation 2.6
will be used.

2.2 Description of different types of torsional response

As seen in equation 2.6, the torsion and warping constants It and Iw govern the critical
lateral-torsional buckling moment of a girder. In this section, the influence of these parameters
on the torsional response of a girder is studied. When a girder is subjected to a torsional
moment, the moment is resisted by shear stresses in the cross-section, which can be divided
into two types of torsional response – St. Venant torsion and Vlasov torsion [6]. St. Venant
torsion consists of shear stresses in the plane of the cross-section, without any out-of-plane
stresses or deformations. This type of torsional response is found in cross-sections where the
shear stresses mainly generate closed shear trajectories as seen in figure 2.3a, such as solid and
circular sections. Vlasov torsion also has shear stresses in the plane of the cross-section, but
these in-plane stresses are accompanied by out-of-plane deformations. Vlasov torsion dominates
the torsional response of cross-sections where the shear trajectories are open, as seen in figure
2.3b. This type of torsional response mainly occurs in open, thin-walled cross-sections.

Figure 2.3: Torsional moment resisted by shear stresses that form either a) closed or b) open
trajectories

If the entire torsional moment is resisted only by closed or only by open shear trajectories,
the cross-section is said to be subjected to pure St. Venant torsion or pure Vlasov torsion
respectively. A combination of St. Venant torsion and Vlasov torsion can occur, where the
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torsional moment is resisted by both open and closed shear trajectories in the cross-section.
This type of torsional response is referred to as mixed torsion. In each section of the member,
the total resisting torsional moment T is defined as the sum of the St. Venant torsion and the
Vlasov torsion. This is expressed in equation 2.8 [7], with the St. Venant torsion Tt and Vlasov
torsion Tw defined in equations 2.8b and 2.8c respectively. Note that St. Venant torsion is
related to the torsion constant It and the twist of the cross-section θ′, while Vlasov torsion is
related to the warping constant Iw and the third derivative of the angular displacement of the
cross-section θ′′′.

T = Tt + Tw (2.8a)

Tt = GItθ
′ (2.8b)

Tw = −EIwθ′′′ (2.8c)

If the response of the cross-section is pure St Venant torsion, e.g. a solid circular section, there
will be no warping deformations. For solid rectangular sections, where St. Venant torsion
dominates the response, there will be small warping deformations. In open, thin-walled sections,
where Vlasov torsion dominates the response, there will be significant warping deformations.
This is shown principally in figure 2.4.

Figure 2.4: Warping deformations for different types of cross sections; a) Circular section, no
warping deformations; b) Rectangular section, small warping deformations; c) Open thin-walled
section, significant warping deformations

For practical use, a torsional parameter α is defined according to equation 2.9. This parameter
is used for checking whether a certain cross section will resist torsion in St. Venant, Vlasov or
mixed torsion. For small values, |α| < 0.05, the member can be assumed to be subjected to
pure Vlasov torsion. For large values, |α| > 20, the member can be assumed to be subjected
to pure St. Venant torsion. For intermediate values of α, mixed torsion must be considered
[8].

α = −GItL
2

π2EIw
(2.9)
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2.3 Influence of boundary conditions on torsional re-

sponse

In addition to the geometry of the cross-section, the boundary conditions greatly influence the
torsional response of thin-walled members. In this section, the torsional response of a prismatic
I-girder is explained using different sets of boundary conditions.

2.3.1 Unrestrained girder loaded in torsion

Consider a prismatic I-girder subjected to a torsional moment at either end as seen in figure
2.5a, with no prescribed boundary conditions. The member has a certain torsion constant It
and warping constant Iw. According to equation 2.10, the angular displacement θ for this load
case will vary linearly over the length of the member and the the twist θ′ will be constant.
This is referred to as uniform torsion and is illustrated in figure 2.5b.

θ(x) =
Qx

GIt
(2.10)

Figure 2.5: Uniform torsion. a) Prismatic member with no external restraints against torsion
or warping, subjected to a torsional moment; b) Principle digram of uniform torsional response.

To evaluate the response, consider equation 2.8. Since the twist θ′ is constant, the third
derivative of the angular displacement θ′′′ will be equal to zero. This corresponds to that the
entire torsional moment is resisted by St. Venant torsion Tt (see figure 2.7a) and that the
response is governed only by the torsion constant It according to equation 2.8b.

2.3.2 Cantilever loaded in torsion

Now consider the same prismatic I-girder with the only difference that the torsion and warping
deformations at the left end are prevented, see figure 2.6. In this load case, the rate of the
angular displacement θ will not be constant over the length of the girder. This is referred to as
non-uniform torsion and the principle torsional response is shown in figure 2.6.
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Figure 2.6: Non-uniform torsion. a) Prismatic member with torsion and warping restrained
at the left end and subjected to a torsional moment at the free end; b) Principle diagram of
non-uniform torsional response.

For the specific load case of a cantilever with length L, loaded by a concentrated torsional
moment at the free end, an analytical expression for the angular displacement θ is given by
equation 2.11 [8] where the torsion bending constant a is defined according to equation 2.12
[9].

θ(x) =
Q

GIt

(
x−

a(sinh(L
a
)− sinh(L−x

a
)

cosh(L
a
)

)
(2.11)

a =

√
EIw
GIt

(2.12)

By studying the expression for the angular displacement θ for this load case defined in equation
2.11, it is found that both the first derivative θ′ and third derivative θ′′′ are non-zero. This
corresponds to a combination of St. Venant torsion Tt and Vlasov torsion Tw resisting the
applied torsional moment according to equation 2.8, and that the torsional response is governed
by both the torsion constant It and the warping constant Iw. In each section of the girder, the
total resisting moment must be equal to the applied torsional load Q for equilibrium to be
reached. The distribution between the resisting St. Venant moment and Vlasov moment over
the length of the girder for the two load cases described in this section can be seen in figure
2.7.

The cross-section of a member subjected to Vlasov torsion will exhibit out-of-plane deformations,
so called warping deformations, which are shown principally in figure 2.4. When these
deformations are prevented, e.g. by boundary conditions, this causes longitudinal stresses
corresponding to the prevented deformation. In an I-girder, these longitudinal stresses cause
flange moments Mf and warping shear forces Vw. The stresses in a doubly symmetric I-girder,
caused by restrained warping, are shown in figure 2.8.

In order to quantify the forces caused by prevented warping deformations, the torsionally
loaded cantilever previously studied in this section is considered. The resisting Vlasov moment
consists of shear forces in the flanges, denoted Vw, which constitute a force couple with the

10 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:57



Figure 2.7: a) Distribution of the resisting moment in a member with no prescribed boundary
conditions; b) Distribution of the resisting moment in a member with the left end fixed.

Figure 2.8: The warping shear, shear stresses and normal stresses caused by restrained warping
of an I-girder loaded in torsion. Figure courtesy of New Zealand Standards [9].

depth of the girder h as lever arm. At the fixed end, warping deformations are fully prevented
and the entire torsional moment Q is resisted by Vlasov torsion. The magnitude of the shear
forces at the fixed end is defined according to equation 2.13a, and the magnitude at an arbitrary
location along the girder can be calculated according to equation 2.13b. For a girder with
constant depth, the magnitude of the shear forces is directly proportional to the magnitude of
the Vlasov torsional moment, and the distribution over the length of the cantilever is illustrated
in figure 2.9. By studying this distribution, it is clear that the influence of a warping restraint
is high near the restraint, in this case, the fixed end. As the distance from the restraint
increases, the warping stresses approach zero and the torsional behaviour approaches that of
an unrestrained member.

Vw(x = 0) =
Q

h
(2.13a)

Vw(x) =
Tw(x)

h
(2.13b)
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Figure 2.9: Shear forces in flanges due to Vlasov torsion. The distribution of the shear forces
has the same shape as the Vlasov moment.

By visualising the Vlasov torsional moment as a force couple acting on the two flanges, the
flanges can be seen as two separate cantilevers. These fictive ‘flange cantilevers’ are then
analogous to transversally loaded cantilevers, where the warping shear force Vw is equivalent
to the transversal shear force and the flange moment Mf is equivalent to the bending moment
acting about the strong axis of the cantilever. From this analogy, it is concluded that the
flange moment at the fixed end of the flange can be obtained by integrating the flange shear
force Vw over the length of the flange L. This analogy is central in the method proposed in
this report for deriving the cross-sectional constants of girders with corrugated webs, which is
described in section 5.1.
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3 Overview of existing approaches for lateral-
torsional buckling of girders with trapezoidally
corrugated webs

Previous research on the subject show that there is a considerable increase in resistance against
lateral-torsional buckling for girders with trapezoidally corrugated webs compared to girders
with flat webs. Sayed-Ahmed [10] states that the increase in elastic critical buckling moment is
as high as 12-37 percent. Moon et al. [11] find that the increase is smaller, up to 10 percent. All
existing approaches presented in this section state that the increased lateral-torsional buckling
capacity is due to an increased warping constant Iw, while the moment of inertia Iz and torsion
constant It are not influenced by the corrugation of the web [11][12][13]. In this chapter, the
approaches for calculating the warping constant of girders with corrugated webs suggested by
Lindner, Moon et al. and Zhang et al. are presented and critically reviewed. The notations
used in this report for the geometry of the cross-section and the corrugation profile are defined
in figure 3.1.

Figure 3.1: Notations for the geometry of the cross-section and corrugation profile.

In most of the analyses included in this report, one particular corrugation profile has been
used, with the geometry specified in table 3.1. This profile is one of the most commonly used
for girder webs by the steel product manufacturer Borga Steel Buildings.

Table 3.1: Geometry of the corrugation profile used in a majority of the analyses included in
this report. All dimensions in millimetres unless otherwise stated.

a b c d α [◦]
140 50 71 25 45

3.1 Approach suggested by Lindner

Lindner [12][14] proposes a method for calculating the critical moment of girders with corrugated
webs based on analytical derivations, verified by experimental testing. Lindner states that
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the moment of inertia about the weak axis Iz and the torsion constant It can be calculated
using the same expressions as for girders with flat webs. The extra capacity in terms of critical
lateral-torsional buckling moment obtained for girders with corrugated webs is attributed to an
increased warping constant I∗w. The critical moment is calculated using the expression stated
in equation 2.6, with the torsion and warping constants I∗t and I∗w calculated according to
equation 3.1.

I∗t = It (3.1a)

I∗w = Iw + cw
L2

Eπ2
(3.1b)

It and Iw are the torsion and warping constants of a girder with flat web and cw is defined
according to equation 3.2.

cw =
(2d)2h2m

8ux(a+ b)
(3.2a)

ux =
hm

2Gatw
+
h2m(a+ b)3(Iy1 + Iy2)

600a2E(Iy1Iy2)
(3.2b)

Iy1 and Iy2 in equation 3.2b are the moment of inertia about the strong axis of the girder of
the upper and lower flange respectively. For girders with equal flanges the expression for ux
can be simplified according to equation 3.3.

ux =
hm

2Gatw
+
h2m(a+ b)3

25a2Ebf t3f
(3.3)

When establishing the method, Lindner verified the expressions by performing experimental
testing of girders with trapezoidally corrugated webs. These girders all had the same corrugation
profile, shown in table 3.2.

Table 3.2: Geometry of corrugation profile used by Lindner [14] when verifying his suggested
method. All dimensions in millimetres unless otherwise stated. Note that this profile is similar
to the one defined in table 3.1 which is the one mainly used in this project.

a b c d α [◦]
148 52 74 26 45

Lindner assumes that the torsion constant I∗t of a girder with a corrugated web is equal to
that of a girder with a flat web It, and that the warping constant I∗w is higher than that of a
girder with flat web Iw. It is noteworthy that, in equation 3.1b, the warping constant increases
quadratically with the length of the girder L. Typically, a sectional constant should only be
dependent on the geometry of the cross-section, and not on the length.
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3.1.1 A proposed modified version of the approach suggested by
Lindner

The authors of this report propose a method, such that the expressions originally stated by
Lindner are modified, where the extra rotational stiffness provided by the corrugated web
is attributed to the torsion constant It instead of the warping constant Iw. The modified
expressions result in the same critical lateral-torsional buckling moment, using equation 2.6.
This method will be referred to as the modified Lindner method, and is described in this
section.

In equation 3.4, the term Iw is equal to the warping constant of a girder with a flat web, and
the term γ accounts for the addition to the total warping constant caused by the corrugation of
the web. It is recognised that cw in γ is multiplied with the same term as the torsion constant
It in the equation for calculating the critical buckling moment (equation 2.6). By inserting the
expressions for the torsion and warping constants suggested by Lindner (defined in equation
3.1) into the expression for the critical buckling moment stated in equation 2.6, the expression
for the critical buckling moment can be rewritten according to equation 3.5.

I∗w = Iw + cw
L2

Eπ2︸ ︷︷ ︸
γ

(3.4)

Mcr =
π2EIz
L2

√
Iw
Iz

+
cwL

2

π2EIz
+
L2GIt
π2EIz

=
π2EIz
L2

√
Iw
Iz

+ (GIt + cw) · L2

π2EIz
(3.5)

In the rewritten expression, the addition to the warping constant (γ in equation 3.4) can be
interpreted as an addition δ to the torsion constant instead, as seen in equation 3.6a. This
alternative way of calculating the sectional constants is referred to as the modified Lindner
method, where the torsion and warping constants are denoted I ′t and I ′w respectively. Using
this definition of the cross-sectional constants, neither of these constants is dependent on the
girder length L. Given that lateral-torsional buckling is considered (i.e. that equation 2.6 is
used), the expressions for I ′t and I ′w defined in equation 3.6 are simply a rewritten version of
the expressions originally stated by Lindner [12], see equation 3.1. While the method originally
stated by Lindner and the modified Lindner method provide different torsion and warping
constants, the two methods will result in exactly the same critical buckling moment Mcr.

I ′t = It +

δ︷︸︸︷
cw
G

(3.6a)

I ′w = Iw (3.6b)
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3.2 Approach suggested by Moon et al.

Moon et al. [11] establish a method for calculating the critical buckling moment of girders
with corrugated webs using the same assumptions as Lindner, i.e. that all sectional properties,
except the warping constant, of a girder with corrugated web are equal to those of a prismatic
girder. In contrast to the expressions for calculating the warping constant presented by Lindner
[12], the expressions presented by Moon et al. are derived analytically based on the theory
presented by Galambos [15]. These expressions are quite complex, but can be simplified by
considering the geometry of the cross-section. By doing so, numerical formulas for warping
constants of open thin-walled members can be obtained as explained by Lue et al. [16]. Using
the numerical formulas provided by Lue et al., the warping constant of an open, thin-walled
prismatic member can be calculated by considering the cross section to be a series of thin,
interconnected plates. The cross-section is divided at discrete points, nodes, defining the
endpoints of these plate elements. The nodes are labelled 1 to n, and the geometry of each
plate element is defined by its thickness tij and length Lij. The warping constant Iw for the
cross-section is calculated according to equation 3.7.

Iw =
1

3

∑
(W 2

ni +WnjWni +W 2
nj)tijLij (3.7)

The normalized unit warping Wni and Wnj for the nodes at the ends of each element i-j are
defined by equation 3.8

Wni =
1

2A

n∑
0

(w0i + w0j)tijLij − w0i (3.8a)

Wnj =
1

2A

n∑
0

(w0i + w0j)tijLij − w0j (3.8b)

where A is the area of the cross-section, A =
∑
tijLij , and ρ0i is the distance from the centroid

of each element to the shear centre of the cross-section, defined perpendicular to the plate
element. The unit warping with respect to the centroid at point i and j respectively, w0i and
w0j, are defined according to equation 3.9.

w0i = ρ0ijLij (3.9a)

w0j = w0i + ρ0ijLij (3.9b)

Figure 3.2 and equations 3.7 through 3.10 show an example of how the warping constant
is calculated for an I-girder with eccentric web, indicating how the division into thin plate
elements has been performed and what nodes define each element. The normalised unit warping
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for each node can be calculated according to equation 3.10, and is used in equation 3.7. For
further reading, Lue et al. [16] perform a very clear step-by-step example of how the warping
constant of an arbitrary open, thin-walled cross-section can be calculated.

Figure 3.2: Definition of nodes and geometry used when calculating the warping constant of an
I-girder with eccentric web. Figure courtesy of Moon et al. [11].

Wn1 =
2b2fhwtf + bfh

2
wtw

8bf tf + 4hwtw
(3.10a)

Wn2 =
2b2fhwtf + bfh

2
wtw

8bf tf + 4hwtw
−
(
bf
4
− e

2

)
(3.10b)

Wn3 =
2b2fhwtf + bfh

2
wtw

8bf tf + 4hwtw
−
(
bf
4

+
e

2

)
(3.10c)

Wn4 =
2b2fhwtf + bfh

2
wtw

8bf tf + 4hwtw
− 1

2
bfhw (3.10d)

Wn5 = Wn4 (3.10e)

Wn6 = Wn1 (3.10f)

The method presented by Lue et al. [16] for finding the warping constant is valid for an arbitrary
open, thin-walled prismatic girder. For I-shaped girders with corrugated webs, the eccentricity
of the web e, which is included in equations 3.10b and 3.10c, is not constant but varies
periodically. In order to overcome this, Moon et al. [11] suggest using an average eccentricity
eavg, calculated according to equation 3.11. By doing so, the girder is now mathematically
considered to be a prismatic member with a constant web eccentricity.

eavg =
(2a+ b)emax

2(a+ b)
(3.11)
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Moon et al. [11] calculate the elastic critical buckling moment according to equation 3.12,
which is an alternative way of writing equation 2.6

Mcr =
π

L

√
EIzGcoIt

√
1 +W 2 (3.12)

where

W =
π

L

√
EIw
GcoIt

(3.13)

with Iw defined according to equation 3.7, and where Gco is the reduced shear modulus for
girders with corrugated webs. This reduced shear modulus is obtained by multiplying the
regular shear modulus by a reduction factor, defined as the ratio between the projected length
of the corrugated web plates in the longitudinal direction of the girder and the actual length of
the web plates according to equation 3.14.

Gco =
a+ b

a+ c
G (3.14)

3.2.1 Comments

It should be noted that Moon et al. suggest that the reduced shear modulus Gco should
be applied at all instances where the shear modulus is used in equation 3.12 and 3.13, not
only at the terms that relate the web. It could be argued that the reduced shear modulus
should be applied only to the terms that refer to the web, and not the terms that refer to the
flanges.

Moon et al. also investigate how the geometry of the corrugation influences the elastic critical
buckling moment by changing the corrugation angle α. By increasing the angle between the
longitudinal panels and the inclined panels of the corrugated web, the shear modulus Gco

decreases while the warping constant Iw increases. The reduced shear modulus decreases the
gain from the corrugated web in terms of the critical buckling moment. The results presented
by Moon et al. indicate that the lateral-torsional buckling resistance of girders with corrugated
webs increases with an increasing angle α, with a maximum increase of approximately 10
percent for an angle α of 60◦ [11].

3.3 Approach suggested by Zhang et al.

Zhang et al. [13] present a method for calculating the critical buckling moment in a way similar
to that presented by Moon et al. [11]. Zhang et al. also rely on the assumptions first presented
by Lindner [12], stating that the moment of inertia about the weak axis Iz and the torsion
constant It of a girder with a corrugated web can be assumed to be equal to those of a girder
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with a flat web, and that the increased critical buckling moment is caused only by an increased
warping constant Iw. The approach suggested by Zhang et al. [13] for obtaining the warping
constant of a girder with corrugated web is based on the expression for the warping constant of
a prismatic girder with a flat, eccentric web. That expression is defined in equation 3.15.

Ieccw =
tfb

3
fh

2
m

24
+
twh

3
me

2

12
(3.15)

The first term in equation 3.15 can be identified as the expression commonly used for calculating
the warping constant of a doubly symmetric I-profile, Iw, and the second term is an addition
due to the eccentricity of the web. In order to account for the varying eccentricity of the
corrugated web, equation 3.15 is integrated over one corrugation wavelength, q, and divided
by this length as shown in equation 3.16. Îw is the equivalent warping constant, suggested by
Zhang et al., accounting for the effect of the corrugated web.

Îw =
1

q
·
∫ q

0

tfb
3
fh

2
m

24
+
twh

3
me(x)2

12
dx = Iw +

twh
3
md

2

12

(a+ b
3
)

2q
(3.16)

3.4 Evaluation of assumptions used in existing research

In the existing research presented in this report [11][12][13] it is assumed that the contribution
from the corrugated web to the torsion constant It is equal to that from a flat web, and
that the contribution to the moment of inertia about the strong and weak axis Iy and Iz can
be disregarded entirely. In order not to overlook any effects of the corrugated web, these
assumptions have been critically reviewed and evaluated here in minor parametric studies.
These parametric studies were conducted by studying the response of girders with corrugated
webs using FE-simulations performed in Abaqus CAE, using the models described in chapter
6, and comparing the results to values calculated analytically using models based on the
aforementioned assumptions. The results from these parametric studies can be found in
Appendix A.

3.4.1 Moment of inertia about the strong axis, Iy

Even though this parameter is not included in the expression for the critical buckling moment
defined in equation 2.6, it is of interest to verify that the theory of the so called accordion effect
[11], stating that a corrugated web does not contribute to the moment of inertia about the
strong axis Iy, holds true for a reasonable thickness of the corrugated web. This assumption is
evaluated for simply supported girders subjected to a constant bending moment about the
strong axis. The girders are modelled in Abaqus CAE as described in section 6.1 in order to
obtain the longitudinal stresses in the flanges and the deflections at mid-span. These values
are compared to those calculated analytically using beam theory with the assumption that the
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web does not contribute to the moment of inertia about the strong axis, Iy. The analytical
expression for Iy used in the calculations is stated in equation 3.17.

Iy = 2 ·

(
bf t

3
f

12
+ bf tf

(
hw
2

)2
)

(3.17)

The expressions for calculating the maximum stress and mid-span deflection of a girder loaded
in uniform bending about the strong axis are stated in equation 3.18.

σ =
M

Iy
zmax (3.18a)

w =
ML2

8EIy
(3.18b)

The assumption regarding the contribution from the web to the moment of inertia about
the strong axis Iy proved to be valid, with a maximum deviation of approximately 3 percent
between FE results and analytical calculations for girders with corrugated webs.

3.4.2 Moment of inertia about the weak axis, Iz

The moment of inertia about the weak axis Iz highly influences the lateral-torsional stability of
the girder (see equation 2.6). For girders with thin, flat webs, the contribution of the web to Iz
is considered to be negligible, which is also assumed to be the case for girders with corrugated
webs. In order to evaluate this assumption, a simply supported girder is modelled in Abaqus
CAE, where it is loaded by a uniformly distributed load q in the weak direction of the girder as
described in section 6.2. The longitudinal flange stresses and deflections at mid-span obtained
from FE analyses are compared to those calculated according to equation 3.20 with Iz defined
in equation 3.19.

Iz = 2 ·
tfb

3
f

12
=
tfb

3
f

6
(3.19)

σ =
M

Iz
ymax (3.20a)

w =
5qL4

384EIz
(3.20b)

The assumption that the influence of the web on the moment of inertia about the weak axis
Iz can be neglected proved to be valid, with a maximum deviation of 2 percent between the
results obtained from FE simulations and the analytically calculated results.
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3.4.3 Torsion constant, It

The torsional response of an unrestrained girder is dependent only on the torsion constant
It, which is referred to as uniform torsion, see section 2.3.1. According to previous research
[11][12][13] the torsion constant of a girder with corrugated web is assumed to be equal to that
of a girder with flat web. An I-girder has an open, thin-walled cross-section consisting of three
strips, and an approximate way to calculate the torsion constant of such a section is given by
equation 3.21 [17]. In this equation, ai and bi are the length and width of each strip, where the
length always should be greater than the width in order for equation 3.21 to hold true.

It =
1

3

n∑
i=1

aib
3
i (3.21)

The simplest way to evaluate the torsion constant It of a girder with a flat or corrugated web in
an FE simulation is by modelling an unrestrained girder subjected equal and opposite torsional
moments at the ends, as described in section 6.3. The expression shown in equation 3.22 is
valid for uniform torsion, where θL is the total angular displacement of the member and Q is
the applied torsional moment. In order to simulate uniform torsion, warping of the member
must be unrestrained [17].

θL =
QL

GIt
(3.22)

To evaluate if the assumption regarding the torsion constant It holds true, the total angular
displacement of the member θL obtained from the FE analysis is compared to that calculated
using equation 3.22 with It calculated according to equation 3.21. Using this assumption, the
torsion constant was underestimated by up to 25 percent for the girders studied, see Appendix
A. This leads to the conclusion that the assumption regarding the torsion constant used in
previous research is incorrect. Since this assumption is shown to be incorrect, the torsional
response of girders with corrugated webs must be investigated further, which is done in chapter
4.
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4 Torsional response of prismatic and non-
prismatic members

The theory presented in section 2.2 is valid for open, thin-walled prismatic I-girders. In order to
understand the torsional response of a girder with corrugated web, a number of FE simulations
have been carried out on three types of I-girders; prismatic I-girders, prismatic I-girders with
discrete warping restraints and I-girders with corrugated webs. The response of these types
of girders is evaluated for different load cases in order to find similarities and differences in
the torsional response between the aforementioned types of girders. The principle torsional
response shown in the figures in this chapter are based on FE simulations of the different types
of girders. The results from these simulations are presented in Appendix B.

4.1 Prismatic I-girder

Consider the two cases depicted in figure 4.1a; the first case considers a long, prismatic I-girder
(the length of the member much larger than the depth) with free ends, loaded with equal but
opposite torsional moments at the free ends such that the member is in equilibrium. The
second case considers the same member, but with the left end totally fixed and the torsional
moment acting only at the free end. The torsional response of these two cases is shown in
figure 4.1b.

Figure 4.1: a) The two load cases used to illustrate the torsional response of prismatic members
subjected to torsion; b) Principle diagram for the angular displacement for the two load cases.

As shown in figure 4.1b, the angular displacement θ varies linearly along the length of the
unrestrained member (curve 1) corresponding to uniform torsion, which is described by equation
2.10. The inclination of the angular displacement graph corresponds to the twist of the cross
section θ′. The member that is fixed at the left end (curve 2) has a lower twist near the fixed
end than the free member (curve 1), indicating a higher rotational stiffness. This increase in
stiffness is due to the prevented warping deformations, which is explained thoroughly in section
2.3. It can also be seen in figure 4.1b that the effect of the warping restraint is decreasing as
the distance from the fixed end increases, and at a certain distance the effect is negligible. At
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this point, the rotational stiffness of the girder only depends on the torsion constant It, and
the twist is equal to that of the free member.

The warping stresses at the left end for these two cases can be seen in figure 4.2. The
unrestrained member has no warping stresses and therefore the twist is constant over the
length as seen in figure 4.1b. The fixed member has large warping stresses near the fixed end,
which decrease with an increased distance from the warping restraint. As the warping stresses
decrease (figure 4.2b) the twist increases (figure 4.1b), indicating that the prevented warping
provides additional rotational stiffness. The response for these two load cases agrees well with
common theories concerning pure and mixed torsion [8].

Figure 4.2: Stresses in the longitudinal direction of the member for; a) the free member and b)
the cantilever. The stresses in the web of the member which is free to warp (a) are caused by
local effects from the load application.

4.2 Prismatic I-girder with one discrete partial warping

restraint

Again, consider the member without any restraints at the ends, loaded by a uniform torsional
moment. A partial warping restraint is placed in the mid-section of the member as shown in
figure 4.3a. For an I-girder, this restraint can be in the form of a web stiffener connected to
the flanges, thereby partially preventing warping deformation of the flanges and providing an
extra rotational stiffness to the member. This extra stiffness will locally decrease the twist of
the member (θ′2) as seen in figure 4.3b. The prevented warping deformations will also induce
local longitudinal stresses in the flanges, shown in figure 4.4.

Similar to the member with one fixed end, the effect of the restrained warping decreases with
the distance from the stiffener. Far away from the stiffener, the warping stresses will be very
small and the twist will be approximately the same as for the unrestrained member, θ′1. At
this point, the torsional response is once again only depending on the torsion constant It of
the member.
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Figure 4.3: a) Illustration of the load case where two unrestrained prismatic members, without
and with one single discrete warping restraint, are subjected to torsion; b) Principle diagram
for the angular displacement along the members.

Figure 4.4: Longitudinal stresses in the flanges of in an I-girder, with one discrete partial
warping restraint, subjected to torsion. These stresses are caused by the restrained warping.

4.3 Prismatic I-girder with several discrete warping re-

straints

Once again, consider the member without any restraints at either end, subjected to uniform
torsion. In this case, web stiffeners connected to the flanges are placed close to each other with
equal spacing, as shown in figure 4.5a. Figure 4.5b shows the principle torsional response of
such a member and the torsional response of the same member without any web stiffeners.

The member without any web stiffeners has a constant twist (curve 1 in figure 4.5b), indicating
uniform torsion, and the torsional response therefore only depends on the torsion constant It.
The torsional response of the member with web stiffeners is represented by an oscillating curve,
with a lower average inclination than that of the curve representing the torsional response of
the member without web stiffeners.

Figure 4.5b indicates that the stiffeners provide extra torsional rigidity, and due to the close
spacing of the stiffeners, the curve describing the angular displacement over the length of the
member becomes quite smooth (curve 2). The additional stiffness provided by the stiffeners
can be ’smeared out’ by replacing the oscillating curve with a straight line. As explained in
section 2.3.1, the torsional response of members with constant twist θ′ only depends on the
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Figure 4.5: a) Load cases for the members with and without web stiffeners; b) Principle diagram
for the angular displacement along the members. The dotted line represents a prismatic member
with torsional stiffness equivalent to that of the member with web stiffeners.

torsion constant It. Replacing the oscillating curve with a straight line would be the same as
attributing an increased equivalent torsion constant to the girder. It should be noted that this
increased torsion constant is not a ’real’ torsion constant. The stiffeners do not really increase
the torsion constant of the girder, but they prevent warping at discrete points, causing an
overall stiffer rotational behaviour of the member. This torsional response is best represented
by an increased torsion constant.

4.4 I-girder with corrugated web

Consider two unrestrained members subjected to a constant torsional moment, one prismatic
I-girder (member 1) and one girder with a corrugated web (member 2), depicted in figure
4.1a.

Figure 4.6: a) Load cases for the members with and without web stiffeners; b) Principle angular
displacement along the members. The dotted line represents a prismatic member with torsional
stiffness equivalent to that of the member with a corrugated web.

Clear similarities between the prismatic girder with several discrete warping restraints, described
in section 4.3, and the girder with corrugated web can be identified. The inclined panels of the
corrugated web cause longitudinal stresses (figure 4.7a) in the flanges in a similar way as the
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discrete web stiffeners (figure 4.4). In the case with the prismatic member with web stiffeners,
the additional resistance against the bimoment provided by the stiffeners can be quantified
from the geometry of the stiffener. One stiffener can be modelled as a short member subjected
to torsion due to warping of the flanges (note the flange moment in figure 2.8). In the case
with the member with the corrugated web, the resistance against the bimoment is difficult to
evaluate. The corrugated web is usually made from thin steel sheet, which in itself has a low
torsional rigidity. However, since the inclined panels are connected to the longitudinal panels,
they are anchored in the longitudinal direction, which significantly increases their stiffness.
With the same reasoning as for the prismatic member with several discrete warping restraints,
the additional rotational rigidity provided by the corrugated web should be accounted for by
a higher equivalent torsional constant Iet . The main argument for this statement is that the
stiffer rotational behaviour of the girder with corrugated web is obtained regardless of whether
warping deformations are prevented or not, i.e. regardless of boundary conditions.

Figure 4.7: Stresses in the longitudinal direction of a member with a corrugated web subjected
to torsion for the case of; a) a free member and b) a cantilever. These stress patterns can be
compared to those for prismatic girders illustrated in figure 4.2

It should be noted that the equivalent torsion and warping constants not necessarily are
the correct physical cross-sectional constants, but those which best represent the torsional
behaviour of a girder with a corrugated web.
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5 Derivation of method for obtaining torsion
and warping constants of non-prismatic gird-
ers

This report aims at investigating what effect the corrugation of the web has on the resistance
against lateral-torsional buckling. The idea is to find a method for determining the equivalent
sectional constants to be used in the expression for the critical buckling moment (equation
2.6), so that the approach used for prismatic girders can be used for girders with corrugated
webs as well. The parameters which must be established are the moment of inertia about the
weak axis of the girder Iz, the torsion constant It and the warping constant Iw of the girder.
An expression for calculating the moment of inertia Iz has been established and verified, see
section 3.4.2. The equivalent torsion and warping constants will be evaluated by studying the
response of steel girders with trapezoidally corrugated webs subjected to torsion, using FE
simulations.

5.1 Method for finding equivalent torsion and warping

constants, Iet and Iew

If the sectional properties governing the torsional response of a member subjected to torsion are
unknown, the response must be assumed to be mixed torsion, described in section 2.2. Mixed
torsional response is governed by both the torsion constant It and the warping constant Iw
according to equation 2.8. Since, for non-prismatic girders, these two parameters are unknown,
two independent relationships must be established in order to determine these parameters.
The two relationships are established by studying a cantilever exposed to a torsional moment
applied at the free end as shown in figure 5.1a. By using FE analysis, the angular displacement
at the free end θL and the longitudinal stresses in the flanges at the fixed end σx,0 can be
obtained. These quantities are then used to find the associated equivalent torsion and warping
constants. Figure 5.1 shows the principal set-up of the member as well as the principle torsional
response and angular displacement along the member. The method proposed for finding the
torsion and warping constants is a combination of two existing relationships found in the
literature; the first one is the analytical expression for the angular displacement of a cantilever
subjected to torsion, seen in equation 5.1 [8]. The second relationship is the correlation between
the flange moment Mf and the torsion bending constant a defined in equation 5.3 [9].

A number of observations can be made from figure 5.1. The sum of the St. Venant torsion Tt
and Vlasov torsion Tw is always equal to the applied torsional moment Q, in every section of
the member, as shown in figure 5.1b. At the free end, the major part of the applied moment is
resisted by St. Venant torsion, with only a small amount Vlasov torsion. For long members,
the Vlasov torsion will approach zero at the free end. At the fixed end, the applied load
is resisted only by Vlasov torsion [8]. As seen in figure 5.1c, the twist of the member θ′ is
lower at the fixed end, and increases further away from the fixed end. This can be seen as an
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Figure 5.1: a) Cantilever subjected to a torsional moment applied at the free end causing
mixed torsional response; b) Principle distribution of St. Venant and Vlasov torsion along the
member; c) Angular displacement θ along the length of the member.

increased rotational stiffness near the fixed end caused by the restrained warping of the flanges,
as described in section 2.3.

The first of the two relationships required to find the two unknown sectional constants is
established by considering the angular displacement at the free end of the member θL. The
angular displacement varies along the length of the member according to equation 5.1 [8],
principally shown in figure 5.1c. If this expression is evaluated at the free end (x = L, see
equation 5.2), a relationship with three unknown parameters (θ, It and a) is established. The
angular displacement θL at this location will be evaluated by using FE analysis, leaving two
unknown parameters.

θ(x) =
Q

GIt

(
x−

a(sinh(L
a
)− sinh(L−x

a
)

cosh(L
a
)

)
(5.1)

θ(x = L) = θL =
Q

GIt
(L− a · tanh(

L

a
)) (5.2)

The torsion bending constant a is defined according to equation 5.3 [9].

a =

√
EIw
GIt

(5.3)

In order to find the torsion bending constant a, the nature of Vlasov torsion is considered.
Vlasov torsion consists of shear forces in open trajectories as described in section 2.2. In an
I-section, the shear forces in the flanges resist the Vlasov moment as a force couple, principally
shown in figure 5.2a. In each flange, the Vlasov shear force Vw is defined as the Vlasov moment
Tw divided by the lever arm h, which is the depth of the member. In this case, where there is an
analytical, differentiable expression for the angular displacement, an expression for the Vlasov
shear force can be obtained by inserting the explicit expression for the third derivative of the
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angular displacement θ′′′ (equation 5.4b) into the equation for the Vlasov torsion (equation
5.4a). This results in the explicit expression for the Vlasov torsion shown in equation 5.4c.

Figure 5.2: a) Vlasov shear force in flanges due to warping torsion; b) Principle distribution of
the Vlasov shear force along the length of the member. The shear force has the same distribution
as the Vlasov moment.

Tw(x) =− EIwθ′′′(x) (5.4a)

θ′′′(x) =− Q

GIt
·

cosh(L−x
a

)

a2 cosh(L
a
)

(5.4b)

Tw(x) =
QEIw
GIt

·
cosh(L−x

a
)

a2 cosh(L
a
)

=

{
a2 =

EIw
GIt

}
= Q ·

cosh(L−x
a

)

cosh(L
a
)

(5.4c)

In order to find the Vlasov shear force Vw, the Vlasov moment is divided by the distance
between the flanges h according to equation 5.5.

Vw(x) =
Q

h
·

cosh(L−x
a

)

cosh(L
a
)

(5.5)

At x = 0, the entire applied torsional moment will be resisted by Vlasov torsion causing the
shear forces Vw to assume the value Q/h. At the free end the shear force will have a small but
non-zero value. Analogous to a cantilever subjected to transversal load, the moment in the
flange at the fixed end Mf,0 is the integral of the shear force over the length of the member,
according to equation 5.6. For symmetric girders it is sufficient to consider only one of the
flanges.

Mf (x = 0) = Mf,0 =

∫ 0

L

Vw(x)dx =
Q

h
· a · tanh(

L

a
) (5.6)

The flange moment at the fixed end Mf,0 can also be evaluated from the FE model. Again,
consider the analogy between the flange and a cantilever subjected to a transversal load. The
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flange moment at the fixed end will cause longitudinal stresses with a linear distribution over
the width of the flange as shown in figure 5.3. The longitudinal flange stress at the fixed end
σx,0 obtained from an FE analysis is used to calculate the flange moment at the fixed end Mf,0

according to equation 5.7.

Mf,0 = σx,0 ·Wf (5.7)

Wf is the section modulus of one flange in its stiff direction. Assuming that the term tanh(L
a
)

in equation 5.6 is approximately equal to 1.0 - which holds true when the ratio between the
length of the member L and the torsion bending constant a is larger than 2 [9] - the expression
for the flange moment shown in equation 5.6 can be rewritten according to equation 5.8.

Figure 5.3: Longitudinal stresses in the flange caused by restrained warping.

Mf,0 =
Q

h
· a = σx,0 ·Wf ⇔ a =

σx,0 ·Wf · h
Q

(5.8)

With the torsion bending constant a calculated using equation 5.8, an equivalent torsion
constant Iet can be calculated by rewriting equation 5.2 into equation 5.9, using the assumption
that tanh(L

a
) is equal to 1.0. With the equivalent torsion constant Iet and the torsion bending

constant a known, an equivalent warping constant Iew can be calculated by using the definition
of a (equation 5.3), rewritten into equation 5.10.

Iet =
Q

θLG
· (L− a) (5.9)

Iew =
GIt
E
· a2 (5.10)
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Summary of the method proposed for obtaining the equivalent torsion and warping
constants of an I-shaped girder: An FE model of a girder is established, where the girder
is modelled as a cantilever subjected to a concentrated torsional moment applied at the free
end. A linear static FE analysis provides values for the angular displacement at the free end
of the cantilever θL as well as the longitudinal stresses in the flanges at the fixed end σx,0.
Using the value of the longitudinal stresses, the torsion bending constant a is calculated using
equation 5.11.

a =
σx,0 ·Wf · h

Q
(5.11)

Using the calculated torsion bending constant a and the known angular displacement at the
free end θL, the equivalent torsion constant Iet is calculated according to equation 5.12.

Iet =
Q

θLG
· (L− a) (5.12)

By using the calculated equivalent torsion constant Iet and torsion bending constant a, the
equivalent warping constant Iew is calculated according to equation 5.13.

Iew =
GIt
E
· a2 (5.13)

Using this methodology, both the equivalent torsion and warping constants Iet and Iew of the
girder can be obtained by performing a single linear static FE analysis. It is important to
verify, for each set-up, that the value of tanh(L

a
) is approximately equal to 1.0. This will highly

influence the accuracy of the resulting equivalent sectional constants. An example of how this
method is applied for a specific girder with corrugated web can be found in Appendix C. It
should be noted that the presented method has been verified only for I-shaped girders with
flat or corrugated webs.

5.2 Verification of the proposed method for finding equiv-

alent cross-sectional constants, Iet and Iew

The accuracy of the equivalent torsion and warping constants Iet and Iew obtained using the
method proposed in section 5.1 must be verified. The verification is performed in four different
ways; in the first verification the torsion and warping constants of prismatic I-girders, obtained
using the proposed method, are compared to the corresponding analytically calculated values.
The next verification is performed for girders with corrugated webs, where the obtained
equivalent torsion and warping constants Iet and Iew are used for calculating the critical buckling
moment. This moment is compared to the corresponding moment obtained from a linear
buckling analysis performed in Abaqus CAE. In a third study, it is checked that the method
is insensitive to a change of the girder length. Finally, the equivalent torsion constant Iet

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:57 31



of a girder with corrugated web, obtained using the proposed method, is compared to the
torsion constant obtained from a static FE analysis of the same girder subjected to uniform
torsion.

5.2.1 Torsion and warping constants of prismatic girders

This part of the verification was performed for a number of simply supported girders with flat
webs which were analysed in FE simulations using the proposed cantilever method for finding
the torsion and warping constants It and Iw (using the model described in section 6.4). These
constants were compared to the corresponding constants given by LTBeam, an analytical
software treating the subject of lateral-torsional buckling of prismatic girders. The warping
and torsion constants obtained using the proposed method are approximately 2 to 6 percent
lower than those calculated using LTBeam, see Appendix D. This is accuracy is considered to
be sufficient for stating that the proposed method can be used for calculating the torsion and
warping constants of prismatic I-shaped girders.

5.2.2 Elastic critical buckling moment for girders with corrugated
web

The equivalent cross-sectional constants Iet and Iew obtained for girders with corrugated webs
using the proposed method are verified by considering the critical buckling moment. With
the obtained cross-sectional constants, the critical buckling moment M e

cr is calculated using
equation 5.14, with no contribution to Iz from the corrugated web, as explained in section
3.4.2. This moment is compared to that obtained from a linear buckling analysis of the same
girder performed in Abaqus CAE, using the model described in section 6.5. These critical
buckling moments agree very well, with a maximum error of 1 percent, see Appendix D.

M e
cr =

π2EIz
L2

√
Iew
Iz

+
L2GIet
π2EIz

(5.14)

5.2.3 Influence of girder length

It should be confirmed that the method proposed in this report generates the same equivalent
torsion and warping constants Iet and Iew regardless of the length of the girder used for obtaining
the cross-sectional constants. In order to do this, the critical buckling moment is calculated for
a different length L2 than the length L1 used when obtaining the cross-sectional constants. The
member with length L2 was analysed in a linear buckling analysis performed using Abaqus
CAE, resulting in a critical buckling moment which agrees well with that calculated analytically
using equation 5.14. The maximum difference between the two critical moments was 1 percent
as seen in Appendix D. From these results, it is concluded that the equivalent torsion and
warping constants obtained using the proposed method are valid regardless of the girder length.
The influence of the girder length is studied further in section 7.2.
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5.2.4 Torsion constant of girders subjected to uniform torsion

In order to check the accuracy of the equivalent torsion constant Iet obtained using the proposed
method, static torsional analyses were performed in Abaqus CAE using the model described
in section 6.3. The analyses were carried out both for prismatic girders and for girders with
corrugated webs. Each girder was subjected to uniform torsion with both ends free to warp
and rotate, and the equivalent torsion constant Iet was calculated based on the total angular
displacement over the length of the beam, using equation 5.15. The equivalent torsion constant
obtained using this equation was compared to that obtained using the proposed cantilever
method. The two methods gave similar values with a maximum difference of 3 percent for the
girders considered. The results can be seen in Appendix D.

Iet =
QL

GθL
(5.15)
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6 Finite Element models

The results presented in this report are based on Finite Element analyses performed in Abaqus
CAE version 6.12-1. This chapter describes in detail how the different models have been
established. All analyses have been performed using eight node shell elements with quadratic
base functions and reduced integration (S8R). The elements had five integration points over
their thickness and the Simpson thickness integration rule was used. The analyses were
performed using linear material response with a modulus of elasticity E of 210 GPa and
Poisson’s ratio ν of 0.3. Unless otherwise stated, the type of analysis performed was static
analysis.

It should be noted that the material thickness was applied to the shell elements in the Abaqus
models from the centre of the web, flanges and stiffeners respectively, which caused a material
overlap in the connections between the elements comprising the cross-section as illustrated in
figure 6.1. The influence of this overlap on the results was considered to be negligible.

Figure 6.1: Illustration of the material overlap in the connection between web and flange in the
FE models.

Welds between the flanges and the web were not included in any of the FE models or considered
in any analytical calculations.

In order to verify that the results obtained from the FE models were accurate, a number of
different simulations were performed. Since accurate analytical expressions exist for calculating
stresses, deformations and critical buckling moments of prismatic members, these expressions
can be used to evaluate the accuracy of the FE models. Therefore, all of the verification
simulations were carried out for girders with flat webs. The geometry used and the results
obtained from these verification studies are found in Appendix E except for the results of the
model described in section 6.4, which are found in Appendix D. The models proved to be
valid for prismatic I-girders and it is therefore assumed that they can be used for girders with
corrugated webs as well.
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6.1 Bending about the strong axis of a simply supported

girder

When modelling bending about the strong axis, the boundary conditions simulate fork supports
and were modelled as follows (see figure 6.2); at point A, displacements in all directions (x, y
and z) and rotation about the longitudinal axis (x) were prevented. Vertical (z) and lateral (y)
displacements were prevented at point B, as well as rotation about the longitudinal axis (x).
In addition to this, all nodes on line a and line b were assigned a coupling condition, preventing
displacement in the lateral direction (y) relative to point A and point B respectively. These
coupling conditions are applied in order to prevent local buckling of the web caused by stress
concentration at points A and B.

The girder was subjected to a uniform bending moment of 1 kNm, which was applied to the
girder by adding shell edge loads normal to the flange edges, creating a force couple at each
end. The load followed the nodal rotation and its magnitude was defined for the undeformed
geometry.

Figure 6.2: Definition of loading and boundary conditions for bending about the strong axis (y).

Verification of the model The mid-span deflection and the longitudinal stresses in the
flanges obtained from the FE simulations for girders with flat webs were compared to the
corresponding analytically calculated values. The results obtained using the FE model proved
to be accurate, with a maximum difference of 4 percent for the stresses and less than 1 percent
for the deflection.

6.2 Bending about the weak axis of a simply supported

girder

As for bending about the strong axis, the web is assumed to give zero contribution to the
bending stiffness about the weak axis. This assumption was verified by comparing the stresses
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and deflections at mid-span obtained from FE simulations to the corresponding values calculated
analytically. It was difficult to apply bending moments about the weak axis at the ends of the
girder. Because of this, an evenly distributed lateral load of 1 kN/m was applied at the flanges.
Again, the stresses and deflections at mid-span were measured in FE models and compared
to analytical calculations based on the assumption that the web does not contribute to the
bending stiffness about the weak axis.

The boundary conditions were, again, simulating fork supports and were applied exactly as
when studying bending about the strong axis, see section 6.1. The load was applied as shell
edge loads acting normal to the flanges according to figure 6.3. The load followed the nodal
rotation and its magnitude was defined for the undeformed geometry.

Figure 6.3: Definition of loading and boundary conditions for bending about the weak axis (z).

Verification of the model In order to verify the model, the lateral deflection and longi-
tudinal flange stresses at mid-span were obtained from FE simulations for girders with flat
webs, using this model. Again, these values were compared to the corresponding analytically
calculated values. The finite element model proved accurate, with a maximum deviation of 1
percent for the stresses and less than 1 percent for the deflection.

6.3 Uniform torsion of an unrestrained girder

When calculating the torsion constant It (equivalent torsion constant Iet for girders with
corrugated web), a girder without torsion or warping restraints at the ends was exposed to a
constant torsional moment of 1 kNm and the angular displacement was obtained. This analysis
was only performed for a few girders in order to verify that the approach used in section 5.1 is
accurate when calculating the equivalent torsion constant Iet . By studying this load case, the
assumption used in previous research [11][12][13], stating that the torsion constant of a girder
with corrugated web is equal to that of a girder with a flat web, can be evaluated.

The torsional moment was applied as shell edge loads acting as shear on the flange ends as
shown in figure 6.4. The load followed the nodal rotation and its magnitude was defined for
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the undeformed geometry. The girder is stable in itself due to symmetry and no boundary
conditions are required.

Figure 6.4: Definition of loading conditions used when studying uniform torsion.

Verification of the model When verifying this model for girders with flat webs, the total
angular displacement over the length of the girder, obtained from FE simulations, was compared
to that calculated analytically using the expression for uniform torsion, see equation 3.22.
There was a maximum deviation of 5 percent for the girders included in the study.

6.4 Non-uniform torsion of a cantilever

In order to find the equivalent torsion constant Iet and the equivalent warping constant Iew,
a cantilever was exposed to a concentrated torsional moment with the magnitude 1 kNm at
the free end. The sectional constants were calculated from the angular displacement at the
free end and the longitudinal stresses in the flanges at the fixed end, according to the method
described in section 5.1.

The boundary- and loading conditions used in this model are shown in figure 6.5. Displacement
was prevented in all directions (x, y, z) for the nodes on the web at the fixed end, i.e. the
nodes on line a. For the nodes on lines b, the displacement in the longitudinal direction (x)
was prevented. Vertical and lateral displacements were unrestrained on lines b in order to allow
for strain in these directions caused by the Poisson effect following the longitudinal strains.
The torsional moment at the free end was applied by adding shell edge loads acting as shear
on the flange ends. The load followed the nodal rotation and its magnitude was defined for the
undeformed geometry.

Verification of model In order to verify this model, the torsion constant It and warping
constant Iw obtained using the proposed method for girders with flat webs using FE simulations
are compared to those given by LTBeam, an analytical software treating lateral-torsional
buckling. The model provides results that agree reasonably well with those obtained from
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Figure 6.5: Definition of loading and boundary conditions for the torsionally loaded cantilever.

LTBeam, with a maximum difference of 6 percent for the torsion constant It and a maximum
difference of 5 percent for the warping constant Iw.

6.5 Critical lateral-torsional buckling moment of a sim-

ply supported girder

In order to find the elastic critical lateral-torsional buckling moment, linear buckling analyses
were performed using the subspace eigensolver in Abaqus CAE. The boundary- and loading
conditions in these analyses were exactly the same as those used for bending about the strong
axis, which are described in section 6.1. In short, the model consists of a simply supported
girder with fork supports exposed to a constant bending moment about the strong axis with a
magnitude of 1 kNm. The critical buckling moment is found by multiplying the eigenvalue of
the first positive global lateral-torsional buckling mode by the applied unit bending moment of
1 kNm.

Verification of the model The elastic critical bending moment of girders with flat webs
obtained from the FE linear buckling analyses was compared to results from LTBeam with a
maximum error of 1 percent.

Comments This type of analysis proved to be very sensitive when it comes to boundary
conditions. The boundary conditions used in the models are those which best simulate the
analytical fork supports, which are used when deriving the analytical expression for the critical
buckling moment.

It should be noted that even if a certain set of boundary conditions produces good results in
terms of stresses or deflections in a static analysis, it may still give very inaccurate results when
using it in a linear buckling analysis. A model should always be verified using the appropriate
analytical expression if such an expression exists.

38 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:57



6.6 Convergence studies

In order to find a suitable mesh density and element type to be used in the FE simulations,
convergence studies were performed for two of the models - the linear buckling analysis of a
simply supported girder subjected to bending and the static analysis of a cantilever subjected to
torsion. These two models were selected because they were the two models used to the greatest
extent in this project. They also include all types of response included in the other models
(bending, torsion and warping). Both studies were conducted for a girder with corrugated web,
with dimensions according to table 6.1.

Table 6.1: The geometry of the girder used in the convergence studies. All dimensions in
millimetres unless otherwise stated.

L [m] bf tf hw tw a b c d α [◦]
9.5 200 12 700 2 140 50 71 25 45

Two different element types were used in the analyses; eight node shell elements with quadratic
base function and reduced integration (S8R) and four node shell elements with linear base
function and reduced integration (S4R). The results from the convergence study performed
for the linear buckling model can be seen in figure 6.6 while the corresponding results for
the convergence studies performed for the cantilever model are found in appendix F. The
tendencies are the same for both models. S4R elements require a very dense mesh for the
limit values to be reached, while S8R elements give good results for a coarser mesh. Even
though S8R elements are more complex and require more computations per element, they are
chosen instead of S4R elements. The critical buckling moment Mcr converges at an element
side length of 100 mm with S8R elements. Convergence is reached for the angular displacement
θ for an element side length of 40 mm using S8R elements, while an element side length of 50
mm is sufficient to reach convergence for the longitudinal flange stresses at the fixed end, σx,0.
In the simulations conducted in this project, S8R elements with an element side length of 30
mm were used in most of the analyses. For exceptionally long girders, the element side length
was increased to 50 mm in order to reduce the computation time.
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Figure 6.6: Critical buckling moment Mcr using different element types (S4R and S8R) with
varying element size.

7 Results and discussion

In this section, the results from the different studies performed in this project are presented
and discussed. The accuracy of the methods included in this report for calculating the critical
buckling moment of simply supported I-shaped girders with corrugated webs is evaluated,
which is done by comparing the results obtained using the different methods to results obtained
using FE simulations for different geometries. More extensive data from these studies can be
found in Appendices G through I.

7.1 Parametric study for evaluating existing methods

In order to verify how well the existing approaches suggested by Lindner, Zhang et al. and
Moon et al. agree with results from FE simulations, a parametric study was performed. The
critical buckling moments of steel girders with trapezoidally corrugated webs were calculated
using these methods, and these values were compared to the critical moments obtained using FE
analyses. The results are presented graphically in this section, and are presented numerically
in Appendix G. Throughout this parametric study, one base geometry is used (see table 7.1),
varying only one parameter at a time. The range of parameter values considered in this study is:

- Flange width, varying from 100 to 400 mm
- Flange thickness, varying from 4 to 24 mm
- Web height, varying from 300 to 1200 mm
- Web thickness, varying from 1 to 10 mm
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- Girder length, varying from 5.7 to 26.6 m

Table 7.1: The basic geometry of the girder used in the parametric study where the established
approaches are compared. All dimensions in millimetres unless otherwise stated.

L [m] bf tf hw tw a b c d α [◦]
9.5 200 12 700 2 140 50 71 25 45

Influence of flange width

When varying the flange width within the range of 100 to 400 mm, the critical buckling moment
is strongly dependent on the flange width. All examined methods are reasonably accurate for
calculating the critical buckling moment. Looking at figure 7.1 it is hard to distinguish any
differences but, by studying the exact values (found in Appendix G), it appears that Moon
et al. and Zhang et al. underestimate the critical buckling moment for girders with a small
flange width.

Figure 7.1: Comparison between critical buckling moment obtained using FE simulations and
the approaches suggested by Lindner, Moon et al. and Zhang et al. for varying flange width.

Influence of flange thickness

The critical buckling moment varies approximately linearly with the flange thickness for
thicknesses in the range 4 to 24 mm, as seen in figure 7.2. The methods for calculating the
critical buckling moment proposed by Zhang et al. and Moon et al. are quite accurate for
the range considered, while Lindner’s approach overestimates the critical buckling moment of
girders with thick flanges.
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Figure 7.2: Comparison between critical buckling moment obtained using FE simulations and
the approaches suggested by Lindner, Moon et al. and Zhang et al. for varying flange thickness.

Influence of web height

For web heights in the range of 300 to 1200 mm, the critical buckling moment varies approxi-
mately linearly with the web height, as seen in figure 7.3. It can be noted from the figure that
all methods, and that of Moon et al. in particular, are rather inaccurate for low web heights,
but give results that agree well with those obtained from FE simulations for high webs.

Figure 7.3: Comparison between critical buckling moment obtained using FE simulations and
the approaches suggested by Lindner, Moon et al. and Zhang et al. for varying web height.
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Influence of web thickness

The critical buckling moment is only slightly affected by the web thickness for the range
considered in this study, 1 to 10 mm, as seen in figure 7.4. The thickness of webs with
the corrugation profile used in this study is typically in the range of 1 to 4 mm. All the
methods included in this study have the same tendency as the results obtained from FE
simulations.

Figure 7.4: Comparison between critical buckling moment obtained using FE simulations and
the approaches suggested by Lindner, Moon et al. and Zhang et al. for varying web thickness.

Influence of girder length

The critical buckling moment significantly decreases as the length of the girder increases as seen
in figure 7.5. By studying the results graphically it appears that all methods considered agree
very well with the results from FE simulations, but by studying the numerical results presented
in Appendix G it is clear that Zhang et al. and Moon et al. underestimate the capacity of long
girders - for the longest girder considered in this study, the ratio between the results obtained
using the methods proposed by Zhang et al. and Moon et al. compared to the FE results
is 0.91 and 0.87 respectively. The corresponding ratio when using the method proposed by
Lindner was 1.04. The approaches suggested by Moon et al. and Zhang et al. attribute the
extra capacity provided by the corrugated web to the warping constant independent of the
girder length, while the expression for the warping constant suggested by Lindner includes the
girder length as a factor. This is studied and discussed in detail in section 7.2.
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Figure 7.5: Comparison between critical buckling moment obtained using FE simulations and
the approaches suggested by Lindner, Moon et al. and Zhang et al. for varying girder length.

7.2 Influence of girder length on the critical buckling

moment

In chapter 4, where the torsional response of prismatic and non-prismatic girders is studied,
the authors suggest that the extra rotational stiffness provided by the corrugated web should
be accounted for by using an increased torsion constant It, a statement which is evaluated in
this section. By studying equation 7.1, it can be recognised that the critical buckling moment
of long girders is mainly governed by the torsion constant since It is multiplied by a factor
L2. Consequently, the warping constant Iw has a stronger influence on the critical buckling
moment of short girders. By studying a large range of girder lengths, the accuracy of the
torsion and warping constants obtained by using the different methods can be evaluated.

Mcr =
π2EIz
L2

√
Iw
Iz

+
L2GIt
π2EIz

(7.1)

The critical buckling moments are calculated for a large range of girder lengths using four
different approaches; the method proposed in this report (section 5.1), the method proposed
by Lindner (section 3.1), the method proposed by Moon et al. (section 3.2) and the method
proposed by Zhang et al. (section 3.3). Three different cross-sections are considered, with
geometry according to table 7.2. The critical buckling moments Mcr obtained using these
methods are compared to the critical buckling moments MFE

cr obtained from linear buckling
analyses performed by using Abaqus CAE. The accuracy of the different methods is illustrated
by plotting the ratios between these moments. The results for profile 2 are plotted in figure
7.6. The plots for profiles 1 and 3 are found in Appendix H.
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Table 7.2: Geometry of girders with corrugated webs used in the comparative study. All
dimensions in millimetres unless otherwise stated.

ID L [m] bf tf hw tw a b c d α [◦]
1 3.8 - 34.2 160 8 200 2 140 50 71 50 45
2 3.8 - 34.2 200 12 400 2 140 50 71 50 45
3 3.8 - 34.2 240 12 700 2 140 50 71 50 45

Figure 7.6: Ratio between elastic critical buckling moment obtained using the different approaches
and FE results for profile 2 in table 7.2.

From figure 7.6 it is concluded that the results obtained using the method suggested by Lindner
and the method proposed by the authors of this report agree well with the results from the
FE-simulations, indicated by a ratio of approximately 1.0. The results obtained using the
methods proposed by Moon et al. and Zhang et al. are acceptable for short members, but these
approaches underestimate the capacity of long girders with the ratio converging to a value below
one (approximately 0.85 and 0.90 respectively for profile 2 as seen in figure 7.6). As previously
explained, the torsion constant It mainly governs the critical buckling moment of long girders.
The results obtained using the methods suggested by Moon et al. and Zhang et al., where
the capacity of long girders is underestimated, indicate that these methods underestimate the
torsion constant.

Lindner, Moon et al. and Zhang et al. all assume that the torsion constant It of a girder with a
corrugated web is equal to that of a girder with a flat web, and that the extra stiffness provided
by the corrugated web is attributed to the warping constant Iw. These three approaches
are described in sections 3.1 through 3.3. In the expression stated by Lindner, the warping
constant increases quadratically with the girder length L, whereas the expressions for the
warping constant stated by Moon et al. and Zhang et al. do not include the length of the
girder. The results for these two methods, table 7.3 and 7.4, are very similar. The modified
Lindner method, presented in section 3.1.1, produces the same critical buckling moment as the
method proposed by Lindner, but in the modified method the extra lateral-torsional buckling
resistance is attributed to the torsion constant instead of the warping constant. None of the
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cross-sectional constants in the modified Lindner method are dependent on the girder length.
The torsion and warping constants obtained using these four methods are compared to those
obtained using the method proposed in this report, and the results are presented in tables 7.3
through 7.6.

Table 7.3: Torsion and warping constants obtained by using the method proposed by Moon et al.
(I t, Iw) and by using the method proposed in this report (Iet , Iew) for the different cross-sections
presented in table 7.2. Torsion constants given in m4 and warping constants given in m6.

ID I t Iw Iet Iew
I t
Iet

Iw
Iew

1 5.52E-8 5.53E-8 7.72E-8 5.54E-8 0.71 1.00
2 2.32E-7 6.45E-7 3.02E-7 6.44E-7 0.77 1.00
3 2.78E-7 3.41E-6 3.54E-7 3.38E-6 0.79 1.00

Table 7.4: Torsion and warping constants obtained by using the method proposed by Zhang et al.
(Ît, Îw) and by using the method proposed in this report (Iet , Iew) for the different cross-sections
presented in table 7.2. Torsion constants given in m4 and warping constants given in m6.

ID Ît Îw Iet Iew
Ît
Iet

Îw
Iew

1 5.52E-8 5.53E-8 7.72E-8 5.54E-8 0.71 1.00
2 2.32E-7 6.46E-7 3.02E-7 6.44E-7 0.77 1.00
3 2.78E-7 3.42E-6 3.54E-7 3.38E-6 0.79 1.01

Table 7.5: Torsion and warping constants obtained by using the method proposed by Lindner
(I∗t , I∗w) and by using the method proposed in this report (Iet , Iew) for the different cross-sections
presented in table 7.2. Torsion constants given in m4 and warping constants given in m6.

ID L[m] I∗t I∗w Iet Iew
I∗t
Iet

I∗w
Iew

1 3.8 5.52E-8 6.70E-8 7.72E-8 5.54E-8 0.71 1.21
1 34.2 5.52E-8 1.06E-6 7.72E-8 5.54E-8 0.71 19.13
2 3.8 2.32E-7 6.86E-7 3.02E-7 6.44E-7 0.77 1.07
2 34.2 2.32E-7 4.38E-6 3.02E-7 6.44E-7 0.77 6.8
3 3.8 2.78E-7 3.45E-6 3.54E-7 3.38E-6 0.79 1.02
3 34.2 2.78E-7 8.21E-6 3.54E-7 3.38E-6 0.79 2.43

By comparing the cross-sectional constants obtained using the methods suggested by Moon et
al. and Zhang et al. to those obtained using the method proposed in this report, see tables
7.3 and 7.4, it can be concluded that the torsion constants I t and Ît are underestimated while
the warping constants Iw and Îw are very similar. This verifies that, as previously explained,
the methods proposed by Moon et al. and Zhang et al. underestimate the critical buckling
moment of long girders. Since the expressions for calculating the warping constants used in
these two methods appear to be accurate, these expressions should not be ruled out entirely.
However, in this report, these methods will not be studied further.
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Table 7.6: Torsion and warping constants obtained by using the modified Lindner method
(I ′t, I

′
w) and by using the method proposed in this report (Iet , Iew) for different cross-sections

presented in table 7.2. Torsion constants given in m4 and warping constants given in m6.

ID I ′t I ′w Iet Iew
I ′t
Iet

I ′w
Iew

1 7.72E-8 5.46E-8 7.72E-8 5.54E-8 1.00 0.99
2 3.14E-7 6.40E-7 3.02E-7 6.44E-7 1.04 0.99
3 3.84E-7 3.39E-7 3.54E-7 3.38E-7 1.08 1.00

The method suggested by Lindner results in critical buckling moments that agree well with
results from linear buckling analyses (see figure 7.6), while the torsion and warping constants
I∗t and I∗w differ strongly from those obtained using the method proposed in this report. The
difference between the warping constants for long girders is very large which can be explained
by the length factor included in the expression suggested by Lindner, see equation 3.1.

The cross-sectional constants obtained using the modified Lindner method agree well with
those obtained by using the proposed method. The warping constants deviate no more than
1 percent, whereas the torsion constants deviate slightly more with a maximum deviation of
8 percent (see table 7.6). The authors conclude that the modified Lindner method results
in cross-sectional constants similar to those obtained using the proposed method, which has
proved to agree well with results from FE simulations of lateral-torsional buckling.

7.3 Accuracy of the modified Lindner method for arbi-

trary corrugation profiles

For the girders studied in section 7.2, the cross-sectional constants obtained using the modified
Lindner method (described in section 3.1.1) corresponds well to the results obtained using
the method proposed in this report, which have proved to agree well with FE simulations
of lateral-torsional buckling. However, the same corrugation profile was used in all those
simulations. The corrugation profile which was used is one of the profiles most commonly
produced by Borga Steel Buildings, and is very similar to the profile used by Lindner [14]. The
geometry of these two profiles is shown in table 7.7.

Table 7.7: Geometry of two corrugation profiles; the one used by Lindner [14] when verifying
the expression for calculating the warping constant of girders with corrugated webs and a profile
commonly used by Borga Steel Buildings. All dimensions in millimetres unless otherwise stated.

a b c d α [◦]
Lindner 148 52 73.5 26 45
Borga 140 50 70.7 25 45

In order to investigate whether the modified Lindner method is valid for arbitrary corrugation
profiles, the critical buckling moments and equivalent cross-sectional constants were calculated
for girders with three different corrugation profiles. Since the torsion constant It has a greater
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effect on the critical buckling moment for long girders and the warping constant Iw has a larger
influence when considering shorter girders, one long and one short girder were studied for each
corrugation profile. The geometry of the girders can be seen in table 7.8 and the results from
the study are found in table 7.9.

Table 7.8: Cross-sections and corrugation profiles used to verify the modified Lindner method.
Dimensions in millimetres unless otherwise stated.

ID L[m] a b dmax α[◦] bf tf hw tw
4a 4.8 70 50 25 45 200 12 400 2
4b 24 70 50 25 45 200 12 400 2
5a 4.8 140 100 25 26.6 200 12 400 2
5b 24 140 100 25 26.6 200 12 400 2
6a 4.94 140 50 10 21.8 200 12 400 2
6b 24.32 140 50 10 21.8 200 12 400 2

Table 7.9: Critical buckling moment and cross-sectional constants obtained using the modified
Lindner method and the method proposed in this report. Torsion constants in m4 and warping
constants in m6, critical buckling moments in kNm.

ID MFE
cr ML

cr M e
cr

ML
cr

MFE
cr

M e
cr

MFE
cr

I ′t I ′w Iet Iew
I ′t
Iet

I ′w
Iew

4a 340.2 349.4 348.9 1.03 1.03 - - - - - -
4b 40.6 41.2 40.8 1.01 1.00 3.37E-7 6.40E-7 3.30E-7 6.44E-7 1.02 0.99
5a 323.7 337.6 338.0 1.04 1.04 - - - - - -
5b 36.4 37.1 37.0 1.02 1.02 2.68E-7 6.40E-7 2.66E-7 6.44E-7 1.01 0.99
6a 301.0 317.3 314.9 1.05 1.05 - - - - - -
6b 33.5 35.1 34.2 1.05 1.02 2.45E-7 6.40E-7 2.30E-7 6.40E-7 1.08 1.00

It can be observed from table 7.9 that the critical buckling moments ML
cr obtained using the

modified Lindner method agree well with the results obtained from the linear buckling FE
analyses for these different corrugation profiles. This indicates that the modified Lindner
method is valid for an arbitrary geometry of the girder. The method proposed in this report
also produces critical buckling moments M e

cr similar to those obtained from the linear buckling
analyses regardless of the corrugation profile. These results are more accurate for long members,
which can be explained by the fact that the approximations included in the proposed method
caused a larger error for short girders, see section 5.1. For this reason, the torsion and warping
constants Iet and Iew are calculated for the long girders in table 7.8.

The equivalent sectional constants Iet and Iew obtained using the method proposed in this report
have previously proved to be accurate, and are used as reference values when evaluating the
sectional constants I ′t and I ′w calculated using the modified Lindner method. As seen in table
7.9, both the torsion and warping constants I ′t and I ′w are accurate for the different corrugation
profiles. This indicates that the modified Lindner method is valid for calculating both the
critical buckling moment and the torsion and warping constants.

Another observation that can be made from the results in table 7.9 is that the warping constant
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I ′w agrees very well with that obtained using the method proposed in this report, with a
maximum difference of 1 percent. The same tendency can be seen in table 7.6 and for the
girders studied in Appendix I. This indicates that the expression used in the modified Lindner
method for calculating the warping constant of girders with corrugated webs, I ′w, which is the
exact same expression as for girders with flat webs (equation 3.6b), is valid for an arbitrary
corrugation profile. This would mean that the entire extra stiffness provided by the corrugated
web should be accounted for by an increased equivalent torsion constant, while the warping
constant is calculated as for a girder with flat web. This is exactly the opposite of what was
stated in all the previous research reviewed in this report. Before this can be concluded, more
extensive studies must be performed.
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8 Conclusions

It is stated in previous research that the resistance against lateral-torsional buckling of girders
with corrugated webs is higher than that of girders with flat webs. While this statement was
verified in this project, it was found that this increase in resistance should be accounted for in
a different way than suggested in previous research.

All previous research presented in this report is based on the assumptions that the extra
stiffness provided by the corrugated web should be attributed to the warping constant Iw,
and that the torsion constant It is equal to that of a girder with flat web. In chapter 4, it is
concluded that this assumption is incorrect, and that the torsion constant should be increased
due to the corrugated web.

In chapter 5, a method for calculating the equivalent torsion and warping constants of I-shaped
girders is established. The validity of these cross-sectional constants was evaluated by studying
the lateral-torsional buckling behaviour and the torsional response of I-shaped girders, with
both flat and corrugated webs. The results from these studies show that the equivalent torsion
and warping constants obtained using the proposed method are valid for any I-shaped girder
with constant height.

The models proposed by Moon et al. and Zhang et al. both rely on the basic assumptions
originally stated by Lindner, i.e. that the extra rotational stiffness provided by the web
corrugations should be attributed to the warping constant Iw, while the torsion constant It
is assumed to be the same as for a prismatic girder. The methods are similar in the sense
that they both account for the extra stiffness provided by the corrugated web by considering a
prismatic girder with an eccentric web. Moon et al. use sectorial coordinates with an average
web eccentricity, while the expression presented by Zhang et al. considers an average stiffness
contribution due to the web eccentricity as explained in sections 3.2 and 3.3 respectively. Since
the torsion constant It is underestimated and the warping constant Iw is overestimated in both
those methods, the critical buckling moments of long girders will be underestimated while the
critical buckling moments of short girders will be overestimated. This is clear when studying
the expression for the critical buckling moment seen in equation 2.6.

In the method established by Lindner, the extra rotational stiffness provided by the web
corrugations is attributed to the warping constant I∗w, while the torsion constant is assumed
to be equal to that of a girder with flat web. In the expression originally stated by Lindner,
the warping constant is dependent on the girder length, which is typically not the case for
cross-sectional constants. A modified version of Lindner’s method is proposed in this report,
where the extra rotational stiffness is attributed to the torsion constant I ′t instead. This is done
by rewriting the original expressions for the torsion and warping constants, yielding expressions
which result in exactly the same critical buckling moment as the expressions originally stated
by Lindner (see section 3.1). The modified Lindner method results in torsion and warping
constants I ′t and I ′w which agree well with those obtained using the method proposed in this
report, and seems to be valid for I-shaped girders with arbitrary corrugation profiles. For the
girders studied in this project, the warping constant I ′w is approximately equal to that of a girder
with a flat web, but further studies must be performed before this can be concluded.

50 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2013:57



9 Suggestions for further research

The conclusions presented in this report are not sufficient for design of girders with corrugated
webs with regard to lateral-torsional buckling. Before a design process can be established,
complementary research must be performed. The authors of this report suggest that the
following subjects are investigated:

- Establish an expression for calculating the torsion and warping constants It and
Iw of girders with trapezoidally corrugated webs.
It appears that the modified Lindner method provides accurate torsion and warping constants
for girders with trapezoidally corrugated webs. However, in this report only a few different
corrugation profiles have been considered, and while the method has produced good results for
these profiles, a more extensive study with a wider range of geometries and corrugation profiles
should be performed. The method proposed in this report, which is based on FE simulations,
could be used as a tool for verifying the cross-sectional constants.

- Investigate the influence of initial stresses and imperfections on the critical buck-
ling moment of girders with trapezoidally corrugated webs.
All the results presented in this report are based on elastic analyses. In order to investigate the
effect from initial stresses and imperfections, as well as local stress concentrations caused by
the corrugated web, plastic analyses of girders with corrugated webs must be performed. Using
plastic analyses, the imperfection factor αLT can be established for girders with corrugated
webs. With αLT known, the design moment with regard to lateral-torsional buckling, MR,LT ,
can be calculated.
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APPENDIX A

A Evaluation of assumptions used in previous research

This appendix contains the results from the evaluation of the assumptions used in previous
research. The conclusions drawn from the results are that the assumptions regarding the
moments of inertia about the strong axis and about the weak axis, Iy and Iz, are accurate,
and that the torsion constant It is underestimated.
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Girder C1 C2 C3 C4 C5 C6 C7 C8 C9

Number of periods 25 25 25 25 25 25 40 40 40

Length [m] 9,5 9,5 9,5 9,5 9,5 9,5 15,2 15,2 15,2

h_m [mm] 700 700 700 1500 1500 1500 700 700 700

t_w [mm] 2 2 2 4 4 4 2 2 2

b_f [mm] 160 160 160 350 350 350 160 160 160

t_f [mm] 8 10 12 16 20 24 8 10 12

a [mm] 140 140 140 140 140 140 140 140 140

b [mm] 50 50 50 50 50 50 50 50 50

d_max [mm] 25 25 25 25 25 25 25 25 25

Bending moment weak [Nm] 11281 11281 11281 11281 11281 11281 28880 28880 28880

Bending moment strong [Nm] 1000 1000 1000 1000 1000 1000 1000 1000 1000

Rotational moment [Nm] 1000 1000 1000 1000 1000 1000 1000 1000 1000

Moment of inertia, strong axis [m^4] 3,14E-04 3,92E-04 4,70E-04 6,30E-03 7,88E-03 9,45E-03 3,14E-04 3,92E-04 4,70E-04

Moment of inertia, weak axis [m^4] 5,46E-06 6,83E-06 8,19E-06 1,14E-04 1,43E-04 1,72E-04 5,46E-06 6,83E-06 8,19E-06

Rotational constant [m^4] 5,65E-08 1,09E-07 1,86E-07 9,88E-07 1,90E-06 3,26E-06 5,65E-08 1,09E-07 1,86E-07

Stress strong axis, Abaqus  [MPa] 1,12 0,893 0,745 0,117 0,093 0,078 1,08 0,870 0,725

Stress strong axis, analytical  [MPa] 1,12 0,89 0,74 0,12 0,10 0,08 1,12 0,89 0,74

Ratio 1,00 1,00 1,00 0,98 0,98 0,98 0,97 0,97 0,97

Deflection strong axis, Abaqus [mm] 0,167 0,134 0,112 0,008 0,007 0,006 0,429 0,344 0,288

Deflection strong axis, analytical [mm] 0,171 0,137 0,114 0,009 0,007 0,006 0,439 0,351 0,292

Ratio 0,98 0,98 0,98 0,99 0,99 0,99 0,98 0,98 0,98

Stress weak axis, Abaqus [MPa] 165,5 134,3 111,9 17,4 13,9 11,6 430,1 344,2 286,8

Stress weak axis, analytical  [MPa] 165,3 132,2 110,2 17,3 13,8 11,5 423,0 338,4 282,0

Ratio 1,00 1,02 1,02 1,01 1,01 1,01 1,02 1,02 1,02

Deflection weak axis, Abaqus  [mm] 92,0 73,7 61,4 4,43 3,54 2,95 602,6 482,5 402,4

Deflection weak axis, analytical  [mm] 92,47 73,98 61,65 4,42 3,53 2,94 606,0 484,8 404,0

Ratio 0,99 1,00 1,00 1,00 1,00 1,00 0,99 1,00 1,00
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Rotation, Abaqus 1,54E+00 8,28E-01 5,00E-01 1,06E-01 5,84E-02 3,60E-02 2,43E+00 1,30E+00 7,85E-01

Rotation, analytical 2,08E+00 1,08E+00 6,32E-01 1,19E-01 6,19E-02 3,61E-02 3,33E+00 1,73E+00 1,01E+00

Ratio Abaqus free to analytical 0,74 0,76 0,79 0,89 0,94 1,00 0,73 0,75 0,78
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APPENDIX B

B Torsional response of I-shaped girders

In this appendix, results from FE simulations of different I-shaped girders subjected to torsion
are presented. These analyses were the basis of the principle diagrams describing the torsional
response of I-shaped girders, with and without;
- Discrete partial warping restraints
- Prevented torsion and warping deformations at the left end
- Corrugated webs
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Flat
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APPENDIX C

C Implementation of the proposed method

This appendix contains a short ’walk-through’ of how the torsion and warping constants are
calculated in a Mathcad document, using the proposed method.
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Example of how the equivalent torsion and warping constants are

obtained using the proposed method

Material properties

E 210 GPa⋅:= ν 0.3:=

G
E

2 1 ν+( )
80.769 GPa⋅=:=

Load

Q 1000N m⋅:=

 Geometry

L 34.2m:=

hw 200mm:=

tw 2mm:=

bf 160mm:=

tf 8mm:=

 Bending resistance of one flange

Wf

tf bf
2

⋅

6
:=

 Moment of intertia about the weak axis

Iz

tf bf
3

⋅

6
5.461 10

6−
× m

4
=:=

 Input from Abaqus

dy 0.526422m:= Lateral displacement of the top flange at the free end, obtained from Abaqus

φ
2dy

hw

5.26422=:= Angular displacement at the free end

σx 200MPa:= Maximum longitudinal stress in the flanges at the fixed end,

obtained from Abaqus

 Moment in flange

Mf σx Wf⋅ 6.827 kN m⋅⋅=:= Flange moment at the fixed end

Torsion bending constant
a

Mf hw⋅

Q
1.365m=:=

It
Q

G φ⋅
L a−( )⋅ 7.72241 10

8−
× m

4
=:= Iw

G It⋅

E
a
2

⋅ 5.53677 10
8−

× m
6

⋅=:=

 Control of L/a-ratio

tanh
L

a








1=
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APPENDIX D

D Verification of the proposed method

In this appendix, the accuracy of the proposed method is evaluated. The accuracy is performed
in four steps;
- The torsion and warping constants obtained for girders with flat webs are compared to
analytical values.
- The critical buckling moment calculated using the torsion and warping constant obtained
using the proposed method is compared to the critical buckling moment from a linear buckling
FE analysis of the same girder.
- The critical buckling moment is calculated, using the same torsion and warping constants as
in the second step, but for a different length L2. The critical buckling moment is compared to
that obtained from a linear buckling FE analysis of the girder with length L2.
- Finally, the torsion constant obtained using the proposed method is compared to that obtained
from a static FE analysis of a the same girder subjected to uniform torsion, with no torsion or
warping restraints at the boundaries.
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Girder: F1 F2 F3 F4

L [m] 10 8 12 15

b_f [mm] 180 200 150 200

t_f [mm] 12 20 10 15

h_w [mm] 700 900 500 700

t_w [mm] 8 8 6 8

a [mm] - - - -

b [mm] - - - -

d_max [mm] - - - -

ϕ [rad] 0,26344 0,05516 0,90036 0,27059

σ [Pa] 7,60E+07 2,97E+07 1,41E+08 4,90E+07

I_t Abaqus [m^4] 3,08E-07 1,44E-06 1,29E-07 5,30E-07

I_t LTBeam [m^4] 3,21E-07 1,52E-06 1,32E-07 5,50E-07

Ratio 0,96 0,94 0,97 0,96

This is the first step of the verification of the method, where the 

torsion and warping constants are obtained for four different 

girders with flat webs. These constants are then compared to 

those calculated using the analytical software LTBeam. 

I_w Abaqus [m^6] 1,41E-06 5,17E-06 3,46E-07 2,39E-06

I_w LTBeam [m^6] 1,48E-06 5,43E-06 3,52E-07 2,45E-06

Ratio 0,95 0,95 0,98 0,97
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General: E [Pa] 2,10E+11

G [Pa] 8,08E+10

Girder C101 C102 C103 C104 C105

L1 [m] 9,5 9,5 9,5 15,2 15,2

L2 [m] 19 13,3 15,2 11,4 7,6

h_w [mm] 700 500 700 700 700

b_f  [mm] 180 180 180 200 200

t_f  [mm] 12 12 12 12 10

t_w  [mm] 2 2 6 2 2

a  [mm] 140 140 140 140 140

b  [mm] 50 50 50 50 50

c  [mm] 70,7 70,7 70,7 70,7 70,7

ϕ [rad] 0,27121 0,31816 0,22992 0,46226 0,72089

σ [Pa] 8,14E+07 8,20E+07 7,38E+07 7,39E+07 1,04E+08

I_t [m^4] 2,65E-07 2,66E-07 3,31E-07 2,96E-07 1,78E-07

This is the second and third step of the verification,

where the  critical buckling moment is calculated using 

the expression for the critical buckling moment with 

the torsion and warping constants obtained from the 

proposed method.  I_t [m^4] 2,65E-07 2,66E-07 3,31E-07 2,96E-07 1,78E-07

I_w [m^6] 1,39E-06 7,23E-07 1,43E-06 1,95E-06 1,61E-06

M_cr_L1 [Nm] 119533 101039 126302 77120 58687

M_cr_L1 (FE) [Nm] 119400 99706 126360 76447 58593

Ratio 1,00 1,01 1,00 1,01 1,00

M_cr_L2 [Nm] 44368 64009 64345 118524 185756

M_cr_L2 (FE) [Nm] 44520 63646 64248 117410 185450

Ratio 1,00 1,01 1,00 1,01 1,00

the expression for the critical buckling moment with 

the torsion and warping constants obtained from the 

proposed method.  

The torsion and warping constants is obtained for a 

girder of length L1, and are then used to calculate the 

critical buckling moments of two girders with the same 

'cross-section',  with length L1 and L2 respectively. 

These buckling moments are then compared to those 

obtained from linear buckling analyses in ABAQUS.
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Shear modulus G 8,077E+10

Torsional moment 1000

Comparison of I_t from proposed method to I_t obtained from a girder in uniform torsion

Girder C101 C102 C103 C104 C105 106 107 C108

L [m] 9,5 9,5 9,5 9,5 19 19 19 19

b_f [mm] 200 240 280 320 350 350 350 350

t_f [mm] 12 12 12 12 12 12 12 24

h_w [mm] 700 700 700 700 500 700 900 900

t_w [mm] 2 2 2 2 2 2 2 2

a [mm] 140 140 140 140 140 140 140 140

b [mm] 50 50 50 50 50 50 50 50

d_max [mm] 25 25 25 25 25 25 25 25

Total rotation [rad] 0,41189 0,3517 0,3083 0,2755 0,4917 0,4936 0,49593 0,0739

I_t pure twist [m^4] 2,86E-07 3,34E-07 3,82E-07 4,27E-07 4,78E-07 4,77E-07 4,74E-07 3,18E-06

I_t cantilever [m^4] 2,93E-07 3,44E-07 3,91E-07 4,38E-07 4,85E-07 4,83E-07 4,81E-07 3,29E-06I_t cantilever [m^4] 2,93E-07 3,44E-07 3,91E-07 4,38E-07 4,85E-07 4,83E-07 4,81E-07 3,29E-06

Ratio 0,97 0,97 0,97 0,97 0,99 0,99 0,99 0,97

This is the fourth and final step of the verification, where the torsion constant  btained using the proposed 

method is compared to the torsion constant obtained from the simulation of the unrestrained girder.
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APPENDIX E

E Verifications of FE models

In this appendix, the accuracy of the Finite Element models, described in chapter 6, are
evaluated for girders with flat webs. They are verified by comparing to analytically calculated
values of;
- Stresses
- Deflections
- Angular displacement
- Critical buckling moment
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Girder F1 F2 F3

Length [m] 10 8 14

h_m [mm] 700 708 700

t_w [mm] 8 8 8

b_f [mm] 180 160 180

t_f [mm] 12 8 12

Bending moment weak [Nm] 12500 8000 24500

Bending moment strong [Nm] 1000 1000 1000

Rotational moment [Nm] 1000 1000 1000

Moment of inertia, strong axis [m^4] 7,58E-04 5,57E-04 7,58E-04

Moment of inertia, weak axis [m^4] 1,17E-05 5,46E-06 1,17E-05

Rotational constant [m^4] 3,27E-07 1,75E-07 3,27E-07

Stress strong axis, Abaqus  [MPa] 0,470 0,628 0,445

Stress strong axis, analytical  [MPa] 0,46 0,64 0,46

Ratio 1,02 0,99 0,96

Deflection strong axis, Abaqus [mm] 0,079 0,068 0,154

Deflection strong axis, analytical [mm] 0,079 0,068 0,154

Ratio 1,00 1,00 1,00

Stress weak axis, Abaqus [MPa] 96,2 116,6 188,6

Stress weak axis, analytical  [MPa] 96,5 117,2 189,0

Ratio 1,00 0,99 1,00

Deflection weak axis, Abaqus  [mm] 53,1 46,29 203,8

Deflection weak axis, analytical  [mm] 53,2 46,5 204,2

Ratio 1,00 1,00 1,00

Rotation, Abaqus (Free to warp) 0,40 0,57 0,55

Rotation, analytical 0,38 0,56 0,53

Ratio Abaqus free to analytical 1,05 1,01 1,04

Critical buckling load, Abaqus [Nm] 114670 79987 70935

Critical buckling load, LTBeam [Nm] 115950 80402 71143

Ratio 0,99 0,99 1,00
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APPENDIX F

F Convergence studies

This is the convergence studies, where it is verified that the mesh densities and element types
used are appropriate. Convergence of the results is checked for the linear buckling model and
for the cantilever model.
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Convergence study for the linear buckling model

Geometry

L [m] b_f [mm] t_f [mm] h_w [mm] t_w [mm] a [mm] b [mm] d [mm]

9,5 200 12 700 2 140 50 25

Element size [mm] 200 100 75 50 40 30 20 15

Elements per longitudinal panel 1 1 2 3 4 5 7 8

Elements per inclined panel 2 2 2 2 2 2 4 4

Critical buckling moment, S8R [kNm] 160,7 158,71 159,09 157,16 157,57 157,61 157,41 157,08

Critical buckling moment, S4R [kNm] 166,87 153,51 149,28 152,96 155,32 156,38 156,72 157,08
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Convergence study for the cantilever model

Geometry

L [m] b_f [mm] t_f [mm] h_w [mm] t_w [mm] a [mm] b [mm] d [mm]

9,5 200 12 700 2 140 50 25

Element size [mm] 200 100 75 50 40 30 20 15

Elements per longitudinal panel 1 1 2 3 4 5 7 8

Elements per inclined panel 2 2 2 2 2 2 4 4

Angle θ, S8R [rad] 0,20899 2,19E-01 2,26E-01 2,28E-01 2,29E-01 2,29E-01 2,30E-01 2,30E-01

Angle θ, S4R rad[] 0,21187 2,26E-01 2,33E-01 2,32E-01 2,30E-01 2,30E-01 2,29E-01 2,30E-01

Stress σx0, S8R [MPa] 68 70,4 71,8 72,5 72,5 72,6 72,6 72,6

Stress σx0, S4R [MPa] 44,3 47 45,8 56,8 60,6 61,6 65,5 66,9
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APPENDIX G

G Parametric study

In this appendix, a parametric study is presented where influence of different geometrical
parameters on the critical buckling moment is evaluated, as well as the accuracy of the different
methods considered in this report. The parameters that are varied are;
- Flange width
- Flange thickness
- Web height
- Web thickness
- Girder length
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Varying flange width

Girder C001 C002 C003 C004 C005 C006 C007 C008 C009 C010 C011

L [m] 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5

b_f [mm] 100 120 140 160 180 200 240 280 320 360 400

t_f [mm] 12 12 12 12 12 12 12 12 12 12 12

h_w [mm] 700 700 700 700 700 700 700 700 700 700 700

t_w [mm] 2 2 2 2 2 2 2 2 2 2 2

a [mm] 140 140 140 140 140 140 140 140 140 140 140

b [mm] 50 50 50 50 50 50 50 50 50 50 50

d_max [mm] 25 25 25 25 25 25 25 25 25 25 25

M_cr_FEM [kNm] 28,559 43,726 63,705 88,469 119,31 157,45 256,83 392,42 569,94 795,91 1073,2

M_cr_Lindner [kNm] 30 45 65 91 123 162 263 401 582 812 1098

Ratio 1,04 1,03 1,03 1,03 1,03 1,03 1,02 1,02 1,02 1,02 1,02

M_cr_Moon [kNm] 26 40 59 83 113 150 247 380 556 781 1060

Ratio 0,91 0,92 0,92 0,94 0,95 0,95 0,96 0,97 0,98 0,98 0,99

M_cr_Zhang [kNm] 27 41 61 85 116 154 253 389 569 798 1082M_cr_Zhang [kNm] 27 41 61 85 116 154 253 389 569 798 1082

Ratio 0,94 0,95 0,95 0,96 0,97 0,98 0,99 0,99 1,00 1,00 1,01
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Varying flange thickness

Girder C101 C102 C103 C104 C105 C106 C107 C108 C109 C110 C111

L [m] 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5 9,5

b_f [mm] 200 200 200 200 200 200 200 200 200 200 200

t_f [mm] 4 6 8 10 12 14 16 18 20 22 24

h_w [mm] 700 700 700 700 700 700 700 700 700 700 700

t_w [mm] 2 2 2 2 2 2 2 2 2 2 2

a [mm] 140 140 140 140 140 140 140 140 140 140 140

b [mm] 50 50 50 50 50 50 50 50 50 50 50

d_max [mm] 25 25 25 25 25 25 25 25 25 25 25

M_cr_FEM [kNm] 44,561 68,929 95,66 125,11 157,45 192,72 230,88 271,84 315,51 361,75 410,48

M_cr_Lindner [kNm] 44 69 97 127 162 200 241 287 336 388 444

Ratio 1,00 1,00 1,01 1,02 1,03 1,04 1,05 1,05 1,06 1,07 1,08

M_cr_Moon [kNm] 45 68 93 120 150 183 219 259 302 350 401

Ratio 1,00 0,98 0,97 0,96 0,95 0,95 0,95 0,95 0,96 0,97 0,98

M_cr_Zhang [kNm] 45 69 94 123 154 189 227 269 315 365 420M_cr_Zhang [kNm] 45 69 94 123 154 189 227 269 315 365 420

Ratio 1,01 1,00 0,99 0,98 0,98 0,98 0,98 0,99 1,00 1,01 1,02
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Varying web height

Girder C201 C202 C203 C204 C205 C206

L [m] 9,5 9,5 9,5 9,5 9,5 9,5

b_f [mm] 200 200 200 200 200 200

t_f [mm] 12 12 12 12 12 12

h_w [mm] 300 400 500 700 900 1200

t_w [mm] 2 2 2 2 2 2

a [mm] 140 140 140 140 140 140

b [mm] 50 50 50 50 50 50

d_max [mm] 25 25 25 25 25 25

M_cr_FEM [kNm] 106,19 116,83 129,28 157,45 188,74 238,52

M_cr_Lindner [kNm] 110 121 134 162 192 242

Ratio 1,04 1,04 1,03 1,03 1,02 1,01

M_cr_Moon [kNm] 95 106 120 150 182,527 235

Ratio 0,89 0,91 0,93 0,95 0,97 0,98

M_cr_Zhang [kNm] 100 111 124 154 186 238M_cr_Zhang [kNm] 100 111 124 154 186 238

Ratio 0,94 0,95 0,96 0,98 0,99 1,00
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Varying web thickness

Girder C301 C302 C303 C304 C305 C306

L [m] 9,5 9,5 9,5 9,5 9,5 9,5

b_f [mm] 200 200 200 200 200 200

t_f [mm] 12 12 12 12 12 12

h_w [mm] 700 700 700 700 700 700

t_w [mm] 1 2 4 6 8 10

a [mm] 140 140 140 140 140 140

b [mm] 50 50 50 50 50 50

d_max [mm] 25 25 25 25 25 25

M_cr_FEM [kNm] 155,7 157,45 160,34 164,91 172,46 183,74

M_cr_Lindner [kNm] 160 162 163 167 173 182

Ratio 1,03 1,03 1,02 1,01 1,00 0,99

M_cr_Moon [kNm] 149 150 152 155 162 171

Ratio 0,96 0,95 0,95 0,94 0,94 0,93

M_cr_Zhang [kNm] 153 154 156 160 167 177M_cr_Zhang [kNm] 153 154 156 160 167 177

Ratio 0,98 0,98 0,97 0,97 0,97 0,96
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Varying length

Girder C401 C402 C403 C404 C405 C406

L [m] 5,7 7,6 9,5 13,3 19 26,6

b_f [mm] 200 200 200 200 200 200

t_f [mm] 12 12 12 12 12 12

h_w [mm] 700 700 700 700 700 700

t_w [mm] 2 2 2 2 2 2

a [mm] 140 140 140 140 140 140

b [mm] 50 50 50 50 50 50

d_max [mm] 25 25 25 25 25 25

M_cr_FEM [kNm] 384,94 229,7 157,45 92,816 56,439 37,194

M_cr_Lindner [kNm] 393 235 162 96 59 39

Ratio 1,02 1,02 1,03 1,03 1,04 1,04

M_cr_Moon [kNm] 377 222 150 86 50,6559 32

Ratio 0,98 0,97 0,95 0,93 0,90 0,87

M_cr_Zhang [kNm] 385 227 154 89 53 34M_cr_Zhang [kNm] 385 227 154 89 53 34

Ratio 1,00 0,99 0,98 0,96 0,93 0,91
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APPENDIX H

H Influence of girder length on the critical buckling moment

The accuracy of the different methods proposed in this report is evaluated for 3 different
cross-section, for a wide range of girder lengths. A Mathcad document is also appended, with
examples of how the sectional constants and critical buckling moments are calculated for the
different methods.

It is clear that the methods proposed by Moon et al. and Zhang et al. underestimate the
capacity of long girders.
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Web height 200 mm

L [m] 3,8 5,7 7,6 9,5 11,4 15,2 19 22,8 26,6 30,4 34,2

Corrugation periods 10 15 20 25 30 40 50 60 70 80 90

b_f [mm] 160 160 160 160 160 160 160 160 160 160 160

t_f [mm] 8 8 8 8 8 8 8 8 8 8 8

h_w [mm] 200 200 200 200 200 200 200 200 200 200 200

t_w [mm] 2 2 2 2 2 2 2 2 2 2 2

a [mm] 140 140 140 140 140 140 140 140 140 140 140

b [mm] 50 50 50 50 50 50 50 50 50 50 50

d_max [mm] 25 25 25 25 25 25 25 25 25 25 25

ϕ [rad] - - - - - - - - - - 5,26422

σ [Pa] - - - - - - - - - - 2,00E+08

M_cr_FEM [Nm] 1,00E+05 5,59E+04 3,88E+04 3,00E+04 2,46E+04 1,80E+04 1,42E+04 1,17E+04 1,00E+04 8,81E+03 7,86E+03

I_t [m^4] 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08I_t [m^4] 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08 7,72E-08

I_w [m^6] 5,54E-08 5,54E-08 5,54E-08 5,54E-08 5,54E-08 5,54E-08 5,54E-08 5,54E-08 5,54E-08 5,54E-08 5,54E-08

M_cr [Nm] 1,05E+05 5,83E+04 4,01E+04 3,07E+04 2,49E+04 1,82E+04 1,43E+04 1,19E+04 1,01E+04 8,83E+03 7,83E+03

Ratio 1,05 1,04 1,03 1,02 1,01 1,01 1,01 1,01 1,01 1,00 1,00

I_t_Lindner [m^4] 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08

I_w_Lindner [m^6] 6,70E-08 8,25E-08 1,04E-07 1.321E-7 1,66E-07 2,53E-07 3,65E-07 5,01E-07 6-621E-7 8,48E-07 1,06E-06

M_cr_Lindner [Nm] 1,05E+05 5,82E+04 4,01E+04 3,06E+04 2,49E+04 1,82E+04 1,43E+04 1,19E+04 1,01E+04 8,82E+03 7,83E+03

Ratio 1,05 1,04 1,03 1,02 1,01 1,01 1,01 1,01 1,01 1,00 1,00

I_t_Moon [m^4] 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08

I_w_Moon [m^6] 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08

M_cr_Moon [Nm] 9,68E+04 5,13E+04 3,43E+04 2,57E+04 2,07E+04 1,49E+04 1,17E+04 9,61E+03 8,18E+03 7,12E+03 6,31E+03

Ratio 0,97 0,92 0,88 0,86 0,84 0,82 0,82 0,82 0,81 0,81 0,80
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I_t_Zhang [m^4] 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08 5,52E-08

I_w_Zhang [m^6] 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08 5,53E-08

M_cr_Zhang [Nm] 9,86E+04 5,27E+04 3,55E+04 2,68E+04 2,16E+04 1,56E+04 1,22E+04 1,01E+04 8,59E+03 7,49E+03 6,64E+03

Ratio 0,98 0,94 0,92 0,89 0,88 0,86 0,86 0,86 0,86 0,85 0,84
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Web height 400 mm

L [m] 3,8 5,7 7,6 9,5 11,4 15,2 19 22,8 26,6 30,4 34,2

Corrugation periods 10 15 20 25 30 40 50 60 70 80 90

b_f [mm] 200 200 200 200 200 200 200 200 200 200 200

t_f [mm] 12 12 12 12 12 12 12 12 12 12 12

h_w [mm] 400 400 400 400 400 400 400 400 400 400 400

t_w [mm] 2 2 2 2 2 2 2 2 2 2 2

a [mm] 140 140 140 140 140 140 140 140 140 140 140

b [mm] 50 50 50 50 50 50 50 50 50 50 50

d_max [mm] 25 25 25 25 25 25 25 25 25 25 25

ϕ [rad] - - - - - - - - - - 1,30615

σ [Pa] - - - - - - - - - - 7,36E+07

M_cr_FEM [Nm] 5,00E+05 2,50E+05 1,60E+05 1,17E+05 9,16E+04 6,46E+04 4,99E+04 4,10E+04 3,47E+04 3,01E+04 2,67E+04

I_t [m^4] 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07I_t [m^4] 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07 3,02E-07

I_w [m^6] 6,44E-07 6,44E-07 6,44E-07 6,44E-07 6,44E-07 6,44E-07 6,44E-07 6,44E-07 6,44E-07 6,44E-07 6,44E-07

M_cr [Nm] 5,18E+05 2,58E+05 1,65E+05 1,20E+05 9,40E+04 6,58E+04 5,08E+04 4,15E+04 3,51E+04 3,04E+04 2,69E+04

Ratio 1,04 1,03 1,03 1,03 1,03 1,02 1,02 1,01 1,01 1,01 1,01

I_t_Lindner [m^4] 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07

I_w_Lindner [m^6] 6,86E-07 7,44E-07 8,25E-07 9,29E-07 1,06E-06 1,38E-06 1,79E-06 2,30E-06 2,90E-06 3,60E-06 4,38E-06

M_cr_Lindner [Nm] 5,19E+05 2,60E+05 1,67E+05 1,21E+05 9,52E+04 6,68E+04 5,16E+04 4,22E+04 3,57E+04 3,10E+04 2,74E+04

Ratio 1,04 1,04 1,04 1,04 1,04 1,03 1,03 1,03 1,03 1,03 1,03

I_t_Moon [m^4] 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07 2,32E-07

I_w_Moon [m^6] 6,45E-07 6,45E-07 6,45E-07 6,45E-07 6,45E-07 6,45E-07 6,45E-07 6,45E-07 6,45E-07 6,45E-07 6,45E-07

M_cr_Moon [Nm] 5,01E+05 2,43E+05 1,52E+05 1,08E+05 8,32E+04 5,70E+04 4,35E+04 3,52E+04 2,96E+04 2,56E+04 2,26E+04

Ratio 1,00 0,97 0,95 0,92 0,91 0,88 0,87 0,86 0,85 0,85 0,85
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I_t_Zhang [m^4] 2,32E-07 2,32E-08 2,32E-09 2,32E-10 2,32E-11 2,32E-12 2,32E-13 2,32E-14 2,32E-15 2,32E-16 2,32E-17

I_w_Zhang [m^6] 6,46E-07 6,46E-08 6,46E-09 6,46E-10 6,46E-11 6,46E-12 6,46E-13 6,46E-14 6,46E-15 6,46E-16 6,46E-17

M_cr_Zhang [Nm] 5,06E+05 2,47E+05 1,55E+05 1,11E+05 8,60E+04 5,93E+04 4,54E+04 3,68E+04 3,11E+04 2,69E+04 2,37E+04

Ratio 1,01 0,99 0,97 0,95 0,94 0,92 0,91 0,90 0,89 0,89 0,89
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Web height 700 mm

L [m] 3,8 5,7 7,6 9,5 11,4 15,2 19 22,8 26,6 30,4 34,2

Corrugation periods 10 15 20 25 30 40 50 60 70 80 90

b_f [mm] 240 240 240 240 240 240 240 240 240 240 240

t_f [mm] 12 12 12 12 12 12 12 12 12 12 12

h_w [mm] 700 700 700 700 700 700 700 700 700 700 700

t_w [mm] 2 2 2 2 2 2 2 2 2 2 2

a [mm] 140 140 140 140 140 140 140 140 140 140 140

b [mm] 50 50 50 50 50 50 50 50 50 50 50

d_max [mm] 25 25 25 25 25 25 25 25 25 25 25

ϕ [rad] - - - - - - - - - - 1,02154

σ [Pa] - - - - - - - - - - 6,18E+07

M_cr_FEM [Nm] 1,40E+06 6,47E+05 3,81E+05 2,57E+05 1,88E+05 1,20E+05 8,65E+04 6,72E+04 5,51E+04 4,70E+04 4,08E+04

I_t [m^4] 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07I_t [m^4] 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07 3,54E-07

I_w [m^6] 3,38E-06 3,38E-06 3,38E-06 3,38E-06 3,38E-06 3,38E-06 3,38E-06 3,38E-06 3,38E-06 3,38E-06 3,38E-06

M_cr [Nm] 1,43E+06 6,56E+05 3,86E+05 2,60E+05 1,91E+05 1,21E+05 8,73E+04 6,81E+04 5,58E+04 4,74E+04 4,12E+04

Ratio 1,02 1,01 1,01 1,01 1,01 1,01 1,01 1,01 1,01 1,01 1,01

I_t_Lindner [m^4] 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07

I_w_Lindner [m^6] 3,45E-06 3,52E-06 3.625E-6 3,76E-06 3,92E-06 4,34E-06 4,34E-06 5,53E-06 6,31E-06 7,20E-06 8,21E-06

M_cr_Lindner [Nm] 1,43E+06 6,60E+05 3,89E+05 2,63E+05 1,94E+05 1,23E+05 8,95E+04 7,01E+04 5,76E+04 4,89E+04 4,26E+04

Ratio 1,02 1,02 1,02 1,02 1,03 1,03 1,03 1,04 1,05 1,04 1,04

I_t_Moon [m^4] 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07 2,78E-07

I_w_Moon [m^6] 3,41E-06 3,41E-06 3,41E-06 3,41E-06 3,41E-06 3,41E-06 3,41E-06 3,41E-06 3,41E-06 3,41E-06 3,41E-06

M_cr_Moon [Nm] 1,42E+06 6,48E+05 3,76E+05 2,50E+05 1,82E+05 1,12E+05 7,96E+04 6,11E+04 4,95E+04 4,16E+04 3,59E+04

Ratio 1,02 1,00 0,99 0,97 0,96 0,94 0,92 0,91 0,90 0,89 0,88
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I_t_Zhang [m^4] 2,78E-07 2,78E-08 2,78E-09 2,78E-10 2,78E-11 2,78E-12 2,78E-13 2,78E-14 2,78E-15 2,78E-16 2,78E-17

I_w_Zhang [m^6] 3,42E-06 3,42E-07 3,42E-08 3,42E-09 3,42E-10 3,42E-11 3,42E-12 3,42E-13 3,42E-14 3,42E-15 3,42E-16

M_cr_Zhang [Nm] 1,43E+06 6,51E+05 3,79E+05 2,53E+05 1,84E+05 1,15E+05 8,17E+04 6,31E+04 5,13E+04 4,32E+04 3,74E+04

Ratio 1,02 1,01 1,00 0,99 0,98 0,96 0,94 0,94 0,93 0,92 0,92
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Comparison of warping and torsion constants given by the proposed method and by

the methods presented in previous research

Web height 200 mm

I_t mod Lindner [m^4] 7,72E-08 I_t Moon [m^4] 5,52E-08 I_t Zhang [m^4] 5,52E-08

I_t [m^4] 7,72E-08 I_t [m^4] 7,72E-08 I_t [m^4] 7,72E-08

Ratio 1,00 Ratio 0,71 Ratio 0,71

I_w mod Lindner [m^6] 5,46E-08 I_w Moon [m^6] 5,53E-08 I_w Zhang [m^6] 5,53E-08

I_w [m^6] 5,54E-08 I_w [m^6] 5,54E-08 I_w [m^6] 5,54E-08

Ratio 0,99 Ratio 1,00 Ratio 1,00

Web height 400 mm

I_t mod Lindner [m^4] 3,14E-07 I_t Moon [m^4] 2,32E-07 I_t Zhang [m^4] 2,32E-07

I_t [m^4] 3,02E-07 I_t [m^4] 3,02E-07 I_t [m^4] 3,02E-07

Ratio 1,04 Ratio 0,77 Ratio 0,77Ratio 1,04 Ratio 0,77 Ratio 0,77

I_w mod Lindner [m^6] 6,40E-07 I_w Moon [m^6] 6,45E-07 I_w Zhang [m^6] 6,46E-07

I_w [m^6] 6,44E-07 I_w [m^6] 6,44E-07 I_w [m^6] 6,44E-07

Ratio 0,99 Ratio 1,00 Ratio 1,00

Web height 700 mm

I_t mod Lindner [m^4] 3,84E-07 I_t Moon [m^4] 2,78E-07 I_t Zhang [m^4] 2,78E-07

I_t [m^4] 3,54E-07 I_t [m^4] 3,54E-07 I_t [m^4] 3,54E-07

Ratio 1,08 Ratio 0,79 Ratio 0,78

I_w mod Lindner [m^6] 3,39E-06 I_w Moon [m^6] 3,41E-06 I_w Zhang [m^6] 3,42E-06

I_w [m^6] 3,38E-06 I_w [m^6] 3,38E-06 I_w [m^6] 3,38E-06

Ratio 1,00 Ratio 1,01 Ratio 1,01
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Example of how the critical buckling moments as well as torsion and warping constants are

calculated using the different methods. This is performed for profile 1 defined in table 7.2.

General properties

Material properties

E 210 GPa⋅:= ν 0.3:=

G
E

2 1 ν+( )
80.769 GPa⋅=:=

fy 355MPa:=

Load

Q 1000N m⋅:=
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Cross-sectional constants for the approach suggested in this report, L = 34.2 m,

hw = 200mm

 Geometry

L 34.2m:=

hw 200mm:=

tw 2mm:=

bf 160mm:=

tf 8mm:=

r
bf

tf
20=:=

 Bending resistance flange

Wf

tf bf
2

⋅

6
:=

 Moment of intertia weak axis

Iz

tf bf
3

⋅

6
5.461 10

6−
× m

4
=:=

 Input from Abaqus

dy 0.526422m:= φ
2dy

hw

5.26422=:=

σx 200MPa:=

 Moment in flange

Mf σx Wf⋅ 6.827 kN m⋅⋅=:=

a
Mf hw⋅

Q
1.365m=:=

It.FE
Q

G φ⋅
L a−( )⋅ 7.72241 10

8−
× m

4
=:= Iw.FE

G It.FE⋅

E
a
2

⋅ 5.53677 10
8−

× m
6

⋅=:=

 Control of L/a-ratio

tanh
L

a






1=
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Cross-sectional constants according to Moon, hw = 200mm

 Corrugation profile 

a 140mm:=

b 50mm:=

dmax 25mm:=

c 2 dmax⋅( )2 b
2

+ 70.7 mm⋅=:=

q 2a 2b+( )
→

0.38m=:= One period of the corrugation

davg

2a b+( )dmax

2 a b+( )
21.711 mm⋅=:=

 Calculating warping and torsional constants

Wn

2 bf
2

⋅ hw tf⋅ bf hw
2

⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw⋅+

2bf
2

hw⋅ tf⋅ bf hw
2

⋅ tw⋅+

8bf tf⋅ 4 hw⋅ tw⋅+

bf

4

davg

2
−









hw⋅−

2bf
2

hw⋅ tf⋅ bf hw
2

⋅ tw⋅+

8bf tf⋅ 4 hw⋅ tw⋅+

bf

4

davg

2
+









hw⋅−

2 bf
2

⋅ hw tf⋅ bf hw
2

⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw⋅+

1

2
bf⋅ hw⋅−

2 bf
2

⋅ hw tf⋅ bf hw
2

⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw⋅+

1

2
bf⋅ hw⋅−

2 bf
2

⋅ hw tf⋅ bf hw
2

⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw⋅+













































:=
Ln

bf

2
davg−

hw tf+

bf

2
davg−

bf

2
davg+

bf

2
davg+





























:=
tn

tf

tw

tf

tf

tf



















:=

Cw

1

3
Wn

1( )2 Wn
1

Wn
2

⋅+ Wn
2( )2+





Ln
1

⋅ tn
1

⋅ Wn
2( )2 Wn

2
Wn

3
⋅+ Wn

3( )2+





Ln
2

⋅ tn
2

⋅+

Wn
3( )2 Wn

3
Wn

4
⋅+ Wn

4( )2+





Ln
3

⋅ tn
3

⋅ Wn
2( )2 Wn

2
Wn

5
⋅+ Wn

5( )2+





Ln
4

⋅ tn
4

⋅++

...

Wn
3( )2 Wn

3
Wn

6
⋅+ Wn

6( )2+





Ln
5

⋅ tn
5

⋅+

...















⋅:=

Iw.M Cw 5.527 10
8−

× m
6

=:=

It.M
1

3
hw tw

3
⋅ 2 bf⋅ tf

3
⋅+



⋅ 5.515 10

8−
× m

4
=:=

 Modified shear modulus due to web corrugation

η
a b+

a c+
0.902=:= Gco η G⋅ 72.83 GPa⋅=:=
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Critical lateral-torsional buckling moment for the different approaches, hw =

200mm

 Defining the lengths of the girders in the parametric study

L

3.8

5.7

7.6

9.5

11.4

15.2

19

22.8

26.6

30.4

34.2

































m:= It.FE 7.722 10
8−

× m
4

=

Iw.FE 5.537 10
8−

× m
6

=

 Critical moment for the approach suggested in this report

Mcr.FE

π
2

E⋅ Iz⋅

L
2

Iw.FE

Iz

L
2

G⋅ It.FE⋅

π
2

E⋅ Iz⋅

+⋅











→

1

1

2

3

4

5

6

7

8

9

10

11

105.446

58.34

40.146

30.688

24.903

18.164

14.337

11.858

10.118

8.827

7.83

kN m⋅⋅=:=
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 Critical moment for the approach suggested by Moon

W
π

L

E Iw.M⋅

Gco It.M⋅
⋅









→

:=

Mcr.M

π

L
E Iz⋅ Gco⋅ It.M⋅⋅ 1 W

2
+⋅





→

1

1

2

3

4

5

6

7

8

9

10

11

96.781

51.26

34.289

25.747

20.654

14.868

11.657

9.605

8.176

7.121

6.31

kN m⋅⋅=:=

Lindner and modified Lindner

Iy1

bf tf
3

⋅

12

→

:= Second moment of area for the top flange, strong axis

Second moment of area for the bottom flange, strong axis 
Iy2 Iy1

→
:=

It
1

3
hw tw

3
⋅ 2 bf⋅ tf

3
⋅+



⋅ 5.515 10

8−
× m

4
=:=

Expression for a girder with flat web
Iw

tf bf
3

⋅ hw
2

⋅

24

→

:=

β
hw

2 G⋅ a⋅ tw⋅

hw
2

a b+( )
3

⋅ Iy1 Iy2+( )⋅

600 a
2

⋅ E⋅ Iy1 Iy2⋅( )⋅

+










→

:=

cw

2 dmax⋅( )2 hw
2

⋅

8 β⋅ a b+( )⋅

→

:=
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Iw.L Iw cw
L
2

E π
2

⋅

⋅+

1

1

2

3

4

5

6

7

8

9

10

11

-86.701·10

-88.251·10

-71.042·10

-71.321·10

-71.662·10

-72.53·10

-73.646·10

-75.01·10

-76.621·10

-78.481·10

-61.059·10

m
6

=:=

Mcr.L

π
2

E⋅ Iz⋅

L
2

Iw

Iz

L
2

π
2

E⋅ Iz⋅

cw G It⋅+( )⋅+










⋅










→

1

1

2

3

4

5

6

7

8

9

10

11

105.03

58.185

40.071

30.645

24.876

18.15

14.328

11.852

10.114

8.823

7.827

kN m⋅⋅=:=

It.L.mod It

cw

G
+









→

7.718 10
8−

× m
4

=:=

Iw.L.mod Iw 5.461 10
8−

× m
6

=:=
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Zhang et al.

It 5.515 10
8−

× m
4

=

Iw.Z

tf bf
3

⋅ hw
2

⋅

24

tw hw
3

⋅ 2dmax( )2⋅

12

a
b

3
+

2q
⋅+











→

5.53 10
8−

× m
6

=:=

Mcr.Z

π
2

E⋅ Iz⋅

L
2

Iw.Z

Iz

L
2

G⋅ It⋅

π
2

E⋅ Iz⋅

+











⋅











→

1

1

2

3

4

5

6

7

8

9

10

11

98.557

52.734

35.521

26.794

21.558

15.573

12.232

10.089

8.593

7.488

6.637

kN m⋅⋅=:=
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APPENDIX I

I Different corrugation profiles evaluated using the modified
Lindner method

In this appendix, the accuracy of the modified Lindner method is evaluated for different
corrugation profiles.
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Corrugation profile 4b 5b 6b 4a 5a 6a

L [m] 24 24 24,32 9,5 9,5 9,6

b_f [mm] 200 200 200 200 200 200

t_f [mm] 12 12 12 12 12 12

h_w [mm] 400 400 400 400 400 400

t_w [mm] 2 2 2 2 2 2

a [mm] 70 140 140 70 140 140

b [mm] 50 100 50 50 100 50

d_max [mm] 25 25 10 25 25 10

ϕ [rad] 0,816 1,001 1,163 - - -

σ [Pa] 7,04E+07 7,84E+07 8,40E+07 - - -

M_cr_FEM [Nm] 4,06E+04 3,64E+04 3,35E+04 1,19E+05 1,09E+05 1,06E+05

I_t [m^4] 3,30E-07 2,66E-07 2,30E-07 - - -

I_w [m^6] 6,44E-07 6,44E-07 6,40E-07 - - -

M_cr [Nm] 4,08E+04 3,70E+04 3,42E+04 1,22E+05 1,14E+05 1,11E+05

Ratio 1,01 1,02 1,02 1,02 1,04 1,04

I_t_Lindner [m^4] 3,37E-07 2,68E-07 2,45E-07 - - -

I_w_Lindner [m^6] 6,40E-07 6,40E-07 6,40E-07 - - -

M_cr_Lindner [Nm] 4,12E+04 3,71E+04 3,51E+04 1,22E+05 1,14E+05 1,13E+05

Ratio 1,02 1,02 1,05 1,03 1,04 1,06Ratio 1,02 1,02 1,05 1,03 1,04 1,06

I_t_Lindner [m^4] 3,37E-07 2,68E-07 2,45E-07

I_t [m^4] 3,30E-07 2,66E-07 2,30E-07

Ratio 1,02 1,01 1,06

I_w_Lindner [m^6] 6,40E-07 6,40E-07 6,40E-07

I_w [m^6] 6,44E-07 6,44E-07 6,40E-07

Ratio 0,99 0,99 1,00

Same geometry as the three girders to 

the left, only shorter. The critical 

buckling moment according to the 

proposed method M_cr and the critical 

buckling moment calculated using the 

modified Lindner mehtod M_cr_Lindner  

are based on the torsion and warping 

constants derived for the longer girders.
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