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Abstract
Co-simulation has become a trending topic of simulation techniques in the recent
years with an emerging need for complex system development. However it can
show inconsistent results compared with mono-simulation due to the drawbacks
of modular integration. Many research works have been done on various types of
co-simulation. The scope of this thesis is to have a fundamental understanding
including stability and error analysis for parallel co-simulation with force/displace-
ment coupling. In the thesis we have shown that the co-simulation error is dom-
inated by the coupling error rather than error by numerical method. In addition
the causality and interface selection have an important effect on the robustness of
co-simulation results, which can further implies to higher degree extrapolation and
multi-subsystems. The study based on a basic dual mass-spring-damper research
model can indicate how a complex system can be partitioned in a robust manner.

Besides, a state-of-the-art co-simulation technique called nearly energy-preserving-
coupling-element (NEPCE) has been referred and evaluated. The techniques is
based on the concept of preserving energy in the power bond and use the resid-
ual energy as the error indicator. From the analytical and numerical results of the
thesis it is shown that the concept has a limited usage in our research model. A
new "causality-based extrapolation" method has been proposed based on the rough
knowledge of the system and interface dynamics. It is more accurate than mono-
lower-degree extrapolation and faster than mono-higher-degree extrapolation. In
certain cases, the improvement can be almost as good as mono-higher-degree ex-
trapolation. This discovery is extendable to multi-subsystems as well.

Lastly the different designs of interface and extrapolation methods have been tested
on a co-simulation case study of high fidelity electric power assisted steering (EPAS)
model and chassis model.

Keywords: non-iterative co-simulation, causality and interface, force/displacement
coupling, error analysis, stability analysis
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1
Introduction

1.1 Motivation
Automotive industry changes drastically with a trend of electrification and automa-
tion, where various needs emerge from research to production. For instance, the
vehicle system is getting complex with a combination of mechanical system, elec-
tronic system, hydraulic and thermodynamic system, from which it requires a more
advanced secure solution. In a complex multidisciplinary system it requires more
than one simulation tools, or even a specific tool for each system [4]. As a re-
sult, the difficulty of mechanical mathematical model grows. However technological
changes realise rarely smoothly but rather in pulses. The complex multidisciplinary
problems urge the research of a compatible method, which is able to solve various
systems with suitable solvers or tools correspondingly. CAE (computer-aided engi-
neering) simulation is heavily used in vehicle development, due to the fact that it
reduces development cost and time. Therefore a general compatible method should
be created for the multidisciplinary problems. Co-simulation is the answer for that.
Co-simulation is able to model coupled problem and solve them in a distributed
manner with the help of FMI (Functional Mock-Up Interface), which is a tool in-
dependent standard to support both model exchange and co-simulation of dynamic
models [1].

Co-simulation also enables system development in parallel, independently between
the clients and suppliers. However, research and development of these multidisci-
plinary systems are often divided between different suppliers. Each supplier devel-
ops its partial solution in a black box manner [13]. Due to the Intellectual Property
(IP), most of the details about the black box (including tools, domains, time step,
property) are not accessible in co-simulation sharing environment. In order to get a
complete solution of the system, one has to couple all the partial solutions or systems
from different suppliers. The later the coupling process is done in co-simulation, the
less accurate it will be [26] due to the numerical drawback of modular integration.
Thus we are interested in researching the propagation of error and change of stability,
the preference of coupling design, and further improvements in co-simulation.

1.2 Co-simulation
Model is an abstract expression of an object that only remains relevant meaningful
details. Co-simulation is the combination of the theory and techniques to enable

1



1. Introduction

global simulation of a coupled system via the composition of simulators [13]. Overall
co-simulation is responsible in coordination and control of the progress of time in the
co-simulation and the propagation of information between the constituent models
[12].

From a mathematical point of view, modular integration and coupling variables (in-
put and output variables) exchange are the main characteristics in co-simulation.
Coupling variables are predefined so are the exchange process, while it only occurs at
discrete time points. Before reaching these discrete time points each simulator runs
simulation independently. This process in consists of modular integration method
in combination with extrapolation or interpolation techniques, depending on the
coupling type.

The main differences between co-simulation and mono-simulation are:

• In co-simulation intermediate results are exchanged only in discrete time points.
While in mono-simulation all the results are calculated at the same time or
intermediate results are exchanged continuously.

• In co-simulation each subsystem can choose different numerical solvers and
discrete settings while these are not applicable in mono-simulation.

• Apart from numerical error there is also coupling error in co-simulation due to
the usage of extrapolation or interpolation in between the exchange interval.

 𝑧2(𝑡) = 𝜒2(𝑧2, 𝑢2, 𝑡) 𝑦2(𝑡) = 𝜓2(𝑧2, 𝑢2, 𝑡)

Integration + extrapolation/interpolation

 𝑧1(𝑡) = 𝜒1(𝑧1, 𝑢1, 𝑡) 𝑦1(𝑡) = 𝜓1(𝑧1, 𝑢1, 𝑡)

Integration + extrapolation/interpolation

𝑇𝑛 𝑇𝑛+1

 𝑧1 𝑡 𝑦1(𝑡)

 𝑧2 𝑡 𝑦2(𝑡)

Figure 1.1: Weakly coupled system example

Figure 1.1 demonstrates the differences in co-simulation comparing to mono-simulation.
Here we call the co-simulated system as weakly coupled system. The mono-simulated
system is the strongly coupled system, which can be seen as the reference.

In addition, systems can be weakly coupled in different ways depending on the choice
on modular, communication pattern and numerical level. Figure 1.1 represents one
kind of weakly coupled system. More details about the classification will be intro-
duced in the following chapters.

2



1. Introduction

From an engineering point of view, FMI is a model based development standard. It
enables model exchange and interconnection in simulation. FMI for co-simulation is
covered in MODELISAR project [1]. Systems can be exported as FMU (Functional
Mock Unit) to a co-simulation environment, where interfaces are set by FMI defini-
tion and intermediate results (input, output variables or other status information)
are exchanged.

1.3 Literature Review
Co-simulation survey and taxonomy by Gomes, Thule, Broman, Larsen and Vangheluwe
[13] gave a complete summary for co-simulation approaches, challenges, opportuni-
ties and classification for the past 5 years. Communication pattern and extrapo-
lation techniques in weakly coupled system were analysed and compared by Busch
[6], in terms of stability, error order and computation effort in co-simulation. Error
analysis for weakly coupled systems that are free of algebraic loop were investi-
gated by Arnold, Clauss and Schierz [3]. It was proven that error order reduction
only occurs in local error of weakly coupled systems that are free of algebraic loop,
but not in global error. A master algorithm for step size control in FMI compati-
ble environment based on error analysis was created by Schierz, Arnold and Clauß
[23]. Numerical stability of co-simulation with different modular coupling methods,
constraints coupling and applied force coupling, were analysed by Li [19] with a
linear two-mass oscillator as the research model. A context based extrapolation
for multi-core simulation using FMI was created by A. Ben Khaled-El Feki et.al
[11][17], where appropriate polynomial is selected for signal forecasting. Stability
and convergence for sequential modular time integration in multibody system were
investigated by Arnold [2], a linear implicit stabilization technique was proposed to
guarantee numerical stability and convergence.

1.4 Contributions
In this thesis force/displacement coupling with Jacobi communication pattern model
has been researched. First, we investigate the stability of our research model where
different degrees of extrapolation are used. Furthermore, we compare the stability
with and without the usage of numerical methods. As extrapolation degree increases,
stability region decreases. It further decreases when the explicit numerical method is
involved. Second, we compute different errors’ propagation in co-simulation in both
cases, namely with and without numerical methods. Input value is approximated
by certain degrees of extrapolation polynomial. From the error analysis we know
that coupling error is the major error source in co-simulation. It is important to
design a robust weakly coupled system. Hence, causality and interface designs are
analysed for our research model. A preference of coupling design is given at the end
of the analysis, these results can be extended to multi-subsystem and higher degree
of extrapolation co-simulation. Besides, an error indicator method called ’Nearly
Energy Preserving Coupling Element’ method is discussed and analyzed about its

3



1. Introduction

functionality in this thesis as well. Without violating the IP of co-simulation black
box, this method requires only input and output information to defein an error
indicator. But it turns out to have a limited usage in our research model. Lastly, an
economical and well-behaved extrapolation method in co-simulation call causality-
based extrapolation is introduced. It is a good alternative for force/displacement
co-simulation, as it requires only very few knowledge in the weakly coupled system,
presents lager stability region and delivers good results in co-simulation without
huge amount of computation cost.

1.5 Outline
This thesis is composed of 9 chapters. In this chapter a ground knowledge of co-
simulation from academic and industrial point view is presented. Chapter 2 presents
more mathematical background for co-simulation, co-simulation classification and
our research model in both strongly coupled and weakly coupled senses. Classical
numerical analysis for co-simulation is demonstrated in chapter 3 and chapter 4. It
consists of theoretical stability and error analysis and numerical simulation based
on the research model. Chapter 5 presents a preference of causality and interface
design for force/displacement co-simulation by comparing the weakly coupled so-
lution and the corresponding strongly coupled solution. The numeric experiments
are performed to test the theoretical results. In Chapter 6 Nearly Energy Pre-
serving Coupling Element is evaluated from definition to functionality. Chapter 7
introduces the Causality-based extrapolation from motivation to functionality and
compare with the simulation results with mono-degree extrapolation. Chapter 8
presents the numerical test on EPAS and chassis systems, base on the theoretical
results from the previous chapters. A summary, limitation and possible future work
for this thesis is given in the last chapter.

4



2
Co-simulation Model

2.1 Introduction
This chapter presents the fundamental knowledge in different types of differential
equation, which is the mathematical background for co-simulation. Besides a de-
tailed classification of co-simulation is presented as well. It exposes weakly cou-
pled systems in three different levels, and the characteristics of different coupling
methods. Lastly, based on a clear knowledge on the mathematical and engineering
background, the research model is introduced.

2.2 Basics on Differential Equations

Differential equations (DEs) can describe nearly all the fundamental principles that
govern physical processes of engineering interest [14]. Therefore research in the well
posedness, stability and other properties depending on differential equations are of
high interest in mathematical sense.

Modelling a physical phenomenon can differ from case to case in terms of different
kinds of DEs. DEs can be classified into several types, most commonly are: lin-
ear/ non-linear, homogeneous/ inhomogeneous and ordinary/ partial. Linearity and
homogeneity of DEs are rather straight forward, by looking at the coefficients and
source term. The focus in this section is on the ordinary/ partial DEs.

2.2.1 Ordinary Differential Equation
Definition 2.2.1. An nth-order ordinary differential equation (ODE) is a relation

F (x, u, u′, ..., u(n)) = 0 (2.1)

connecting a single independent variable x and dependent variable u and its deriva-
tives u, u′, ..., u(n) w.r.t to x. Usually the single independent variable is time variable
[16].

Example 1. Logistic differential equation

d

dx
f(x) = f(x) (1− f(x)) (2.2)

5



2. Co-simulation Model

2.2.2 Partial Differential Equation
Recall the definition of ODE, a differential equation with the amount of independent
variables is greater than 1 is partial differential equation [16].

Definition 2.2.2. A first order partial differential equation (PDE) is a relation

F (x1, ..., xn, u, p1, ..., pn) = 0 (2.3)
where

pi = ∂u

∂xi
, i = 1, ...n

connecting a vector of variables xi, i = 1, ...n and dependent variable u and its par-
tial derivatives ∂u

∂xi
, i = 1, ...n. The order of PDE is the highest derivative order

occur in the equation.

Example 2. Continuity equation(fluid dynamics)

∂ρ

∂t
+∇ · (ρu) = 0, (2.4)

where ρ is fluid density, t is time, u is flow velocity vector field, and ∇ is divergence.

2.2.3 Differential Algebraic Equation
Differential algebraic equation (DAE) has similar definition like ODE but with extra
algebraic constraints involved.

Definition 2.2.3. A system of equations given in implicit form

F (t,x, ẋ(t)) = 0, (2.5)

is called DAE, if the jacobian matrix ∂F
∂ẋ

is singular, where t ∈ R, x(t) ∈ Rn.

Definition 2.2.4. The differential index of a DAE is the minimum differentiation
steps it requires to transform a DAE [24]

F (t, x, ẋ(t)) = 0, (2.6)

to a ODE
ẋ(t) = f(t, x). (2.7)

Example 3. Constrained mechanical model (CMM)
Consider a mathematical pendulum problem,

mẍ+ 2λx = 0,
mÿ −my + 2λy = 0,

x2 + y2 − l2 = 0.
(2.8)

where λ is Lagrange multiplier, (x (t) , y (t)) is the position at time t. As known,
this is a index 3 problem.

6



2. Co-simulation Model

Roughly speaking, non-linearity, high index represents the difficulty in solving DAE.
There are no general results available for the solvability and stability of nonlinear
DAE. Therefore, one often considers a linearized DAE model [15].

2.2.4 State Space Representation

State space representation is a mathematical model that generates the a physical
phenomenon by first order DE with a set of input, output and state variables.

Definition 2.2.5. State space representation

ż(t) = f(z(t),u(t)),
y(t) = g(z(t),u(t))

(2.9)

where z(t) ∈ Rn is the state vector, y(t) ∈ Rq is the output vector and u(t) ∈ Rp is
the input vector. If it is linear system, one can rewrite the state space representation
as:

ż(t) = A(t)z(t) + B(t)u(t)
y(t) = C(t)z(t) + D(t)u(t)

(2.10)

where A(t) ∈ Rn×n is the state matrix, B(t) ∈ Rn×p is the input matrix, C(t) ∈
Rq×n is the output matrix and D(t) ∈ Rq×p is the feed-through matrix. Feed-
through matrix describes the dependency between system output and input.

Remark. In our coupling mechanical systems, we used state space representations
as our mathematical model.

2.3 Co-simulation Classification

For a coupled system, the most clear difference between weakly coupled and strongly
coupled system is the interface. The interface defines different subsystems. And each
subsystem communicates at discrete time point through an interface while subsys-
tem in strongly coupled system communicates continuously. We classify the weakly
coupling techniques into 3 different perspectives: modular, communication pattern
and numerical approach.

7
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Coupled

System

Jacobi

Strongly
Coupled

Weekly
Coupled

Algebraic
Constraints

Applied
Force

Gauss Seidel

Waveform

Explicit

Implicit

Semi-explicit

Force / Force

Force / Displacement

Force / Force

Interface

Modular

Pattern

Numeric

Approachs

Displacement / Displacement

Figure 2.1: Co-simulation classification

In weakly coupled system, modular level is about how to design input and out-
put. Algebraic constraint coupling means each subsystem are coupled via constraint
forces (i.e. via Lagrange multipliers) [6]. It can be having force as input and output
in each subsystem, which leads us to DAE model by summarizing the state space
equations. In the well-known DAE there are stability, index, computation problems.
Furthermore there will be an algebraic loop in the co-simulation, it is a challenge to
deal with algebraic constraint coupling. One example of algebraic constraint cou-
pling is force/force coupling, where each subsystem has force as input and output.

Remark. Algebraic loop occurs when a variable indirectly depends on itself.
To see how it arise in co-simulation, let us assume that there are two subsystems,
take the output equation in general state space representations an example:

y1 = g1(z1,u1),
u1 = y2,

y2 = g2(z2,u2),
u2 = y1.

therefore y1 indirectly depends on itself, if

∂gi(zi(t).ui(t))
∂ui(t)

6= 0, i = 1, 2 ∀t ∈ T,

where T is total simulation time set. This result can be extended to multi-subsystems
co-simulation.

In applied force coupling, we have force/displacement coupling and displacement
/displacement coupling, both of them are free of algebraic loop. In force/displace-
ment coupling, each subsystem has either force as input or output and displacement

8



2. Co-simulation Model

as output or input. Hence there is a so called causality problem, whether the subsys-
tem should output force or input force. Force as input in different subsystem changes
the co-simulation performance. Therefore, one has to be careful when it comes to
causality problem. While in displacement/displacement coupling, each subsystem
has displacement as input and output. This is more accurate than force/displace-
ment [6], more details will be given in Chapter 4.

Remark. In modular coupling level, a complementary term called causality (causal
or acausal)need to be introduced. Causal approach describes the system’s physics in
form where the direction (causality) of signal flows explicitly, while acausal approach
is not [10].

After chosen the modular level, we take a look at the communication pattern be-
tween subsystems. The common choices are: Jacobi, Gauss Seidel and waveform.

In Jacobi pattern, each subsystem integrates its own dynamics in parallel and inde-
pendently. For details one can see it from Figure 2.2.

S1

S2
Tn-1 Tn Tn+1

1

2

53

4

4

2

time

time

coupling

extrapolation

Figure 2.2: Jacobi communication pattern

Assume there are two different subsystems S1 and S2 in co-simulation, at each com-
munication instant Tn−1, Tn and Tn+1, subsystems communicate with each other.
After the communication action, each subsystem integrates within itself indepen-
dently and in parallel till the next communication instant. As indicated in Figure
2.2, the number represents the order of time for co-simulation. 1, 3, 5 are coupling
steps at communication instant, 2, 4 represent independent integration steps on each
subsystem, where extrapolation is needed for unknown input value at each micro
time step. This communication pattern is usually more efficient in terms of compu-
tational cost but less accurate in comparison with Gauss Seidel [6].

In Gauss Seidel, the coupled subsystems integrate its own dynamics sequentially. It
is slightly more complicated than Jacobi communication pattern, as the simulators
are integrated in a sequential order where extrapolation and interpolation techniques
are both needed for unknown input value.
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S1

S2
Tn-1 Tn Tn+1

1

2

95

8

6

4

time

time

coupling

extrapolation

3 7

interpolation

Figure 2.3: Gauss Seidel communication pattern

Again the number indicated in Figure 2.3 represents the order of time for co-
simulation, where red color represents interpolation and green color represents ex-
trapolation(the same rule applies in waveform pattern). At communication instant
Tn−1 subsystem S1 obtains a new input value from subsystem S2, then integrates
within itself till next communication instant Tn, where extrapolation for unknown
input value at each micro time step is needed. At communication instant Tn subsys-
tem S2 obtains a new input value from subsystem S1, then integrates within itself at
macro step (Tn−1, Tn] , where interpolation is needed for input value approximation.
There is a sequential order of integration in Figure 2.3, which means Gauss Seidel
communication pattern takes longer time for simulation but also is more accurate
than Jacobi [6].

Remark. Figure 2.3 has explicitly indicated the sequential order of calculation for
each subsystem, but this is not the case in practise in general. There is a so called
master algorithm controls the sequential order for the subsystems.
In waveform pattern, the coupled subsystems communicate in an interactive way,
which means it has the highest level in terms of difficulty, computation cost and
stability [6].

S1

S2

Tn-1 Tn Tn+1

1

4

4

1

time

time

coupling

extrapolation interpolation

6k

2k 5k

6k3k

3k

Figure 2.4: Waveform communication pattern
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In waveform pattern, after communication instant Tn−1 each subsystem starts like
Jacobi pattern integrating independently and in parallel, where extrapolation for
unknown input value at each micro time step is involved, marked as number 1 in
green color in Figure 2.4. At communication instant Tn, two subsystems commu-
nicate with each other, the obtaining new input value is used again from Tn−1,
the difference is that instead of extrapolation technique, interpolation technique is
involved for input value approximation at macro time step (Tn−1, Tn], marked as
number 3 in red color on in Figure 2.4. This interactive communication between
subsystems marked as number 2 and interpolation procedure marked as number 3
are ongoing repeatedly k times till the error is lower than predefined error tolerance,
which is controlled by the master algorithm. Then the subsystems starts again the
same procedure on (Tn, Tn+1] like (Tn−1, Tn].

The last in weakly coupled classification is from numerical approach level, this dif-
fers from case to case depending on the differential equation. Ordinary Differential
Equation (ODE) and Differential Algebraic Equation (DAE) solvers can be chosen
differently, as well as specific time step.

2.4 Research Model
Due to the fact that Jacobi communication patter is easy to implement (without
master algorithm), fast to compute and does not require the backward calculation
ability for simulator. Thus it is widely used in industry. The main focus of our
research is force/displacement coupling approach in combination with Jacobi com-
munication pattern.

The difference of macro time step, micro time step and extrapolation in co-simulation
can be found in Figure 2.5.

S1

S2

y1(nH)

y2(nH)

y1((n+1)H)

y2((n+1)H)
H=h1=h2

Figure 2.5: Jacobi:macro step size = micro step size

H, h1, h2 are denoted as macro step size, micro step size in subsystem S1 and micro
step size in subsystem S2 respectively. For H = h1 = h2, subsystems communicate
with each other after one calculation, and each time there would be one extrap-
olation needed. This is more efficient comparing to Jacobi in combination with
H 6= h1 6= h2, but more computational expense at the same time.
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y1(nH)

y2(nH)

y1((n+1)H)

y2((n+1)H)
H�h1�h2

h1

h2

S1

S2

extrapolation

Figure 2.6: Jacobi: macro step size unequal to micro step size

From Figure 2.6 one can see that between each communication instant, input value
is unknown as there is no communication between two subsystems. Therefore, ex-
trapolation for unknown input value is needed at each micro step time point. The
larger macro time step is, the more extrapolation approximation is needed. This
turns out to be an important source of global error, the details will be explained in
Chapter 4.

For research purposes, we choose dual mass spring damping system in Figure 2.7
as the research model, because dual mass spring system can represent most of the
mechanical systems. For instance, the vehicle model and steering system can be
seen as a dual mass spring system or a steering system can be also decoupled into
a dual mass spring system.

m1m1

k1

d1

kc

dc

k2

d2

m2

x1 x2

Figure 2.7: Strongly coupled system

We can generate the dynamics as follow:

ż = Az,

z =


x1
ẋ1
x2
ẋ2

 ,

A =


0 1 0 0

−k1+kc

m1
−d1+dc

m1
kc

m1
dc

m1
0 0 0 1
kc

m2
dc

m2
−kc+k2

m2
−dc+d2

m2

 .
(2.11)
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As we mentioned before, strongly coupled system has no interface, and all the state
variables are integrated together. In order to compare weakly coupled system with
strongly coupled system more easily, we can understand that there is an imaginary
interface exists in the strongly coupled system. But subsystems exchange intermedi-
ate results continuously, which means no extrapolation approximation for unknown
input value is needed.

Here we are interested in using a force/displacement coupling approach in combina-
tion with a Jacobi scheme to connect two subsystems and researching the effect on
global error and stability. Therefore we decoupled this mass spring damping system
it into two subsystems S1 and S2 as in Figure 2.8 and take this as our research
model.

m1 m2m1

k1

d1

kc

dc

k2

d2

x1 x2

Figure 2.8: Research model

In each subsystem, state motion can be described as a second order ODE by New-
ton’s law:

mẍ+ dẋ+ kx = f (2.12)
and an output linear equation

y = g(z,u). (2.13)
Thus, we can summarize the state space equations for each subsystem as below. For
subsystem S1:

ż1 = f1(z1,u1) = A1z1 + B1u1,

y1 = g1(z1,u1) = C1z1 + D1u1,
(2.14)

where
z1 =

[
x1
ẋ1

]
, y1,u1 ∈ R2. (2.15)

Analogously for subsystem S2:

ż2 = f2(z2,u2) = A2z2 + B2u2,

y2 = g2(z2,u2) = C2z2 + D2u2,
(2.16)

where
z2 =

[
x2
ẋ2

]
, y2,u2 ∈ R2. (2.17)
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2. Co-simulation Model

For the coupling process between two subsystems:[
u1
u2

]
= u = Ly = L

[
y1
y2

]

L =
[
O I
I O

]
,

(2.18)

where O ∈ R2×2 is a zero matrix, I ∈ R2×2 is identity matrix.

In the research model, subsystem S1 and subsystem S2 are coupled via force/dis-
placement, where subsystem S2 has an external force f as input, subsystem S1 has
the force f as output:

u1 =
[
x2
ẋ2

]
y1 = f

u2 = f y2 =
[
x2
ẋ2

]

where
f = k1(x1 − x2) + d1(ẋ1 − ẋ2).

In other literature [6], subsystem S1 is also called base point excited 1-DOF oscillator
and subsystem S2 is called force driven 1-DOF oscillator. The matrix coefficient can
be formulated as follows:

A1 =
[

0 1
−k1+kc

m1
−d1+dc

m1

]
, B1 =

[
0 0
kc

m1
dc

m1

]
, C1 =

[
0 0
kc dc

]
, D1 =

[
0 0
−kc −dc

]
,

A2 =
[

0 1
− k2
m2
− d2
m2

]
, B2 =

[
0 0
0 1

m2

]
, C2 =

[
1 0
0 1

]
, D2 =

[
0 0
0 0

]
,

It is not hard to see that, when one system outputs displacement/velocity, it has D
matrix is a zero matrix. D matrix describes the dependency between system output
and input. We call the subsystem direct feed-through, if D is not a zero matrix.
Vice versa, the subsystem is nondirect feed-through, if D is a zero matrix.

Remark. In displacement/displacement weakly coupled system, each subsystem has
displacement/velocity as input and output. Therefore, every subsystem in displace-
ment/displacement coupling is nondirect feed-through. This is a property that affect
local error order, more details will be exposed in Chapter 4.

2.5 Research Questions
Given the background of co-simulation and our research model, in this thesis we aim
to find out:
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2. Co-simulation Model

• How do local solver, extrapolation degree and step size evolve in co-simulation?
• How to choose causality for a given model?
• How does NEPCE method work as error indicator in co-simulation?
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3
Weakly Coupled System Stability

Analysis

3.1 Introduction
The strongly coupled dual mass spring damping system is stable, it will become
static after sometime. But in weakly coupled system an approximated input is
added, how the stability will change needs to be known. In this chapter weakly cou-
pled model linear stability, numerical stability and zero stability will be discussed.
In our weakly coupled research model input value extrapolation can be chosen from
different extrapolation techniques and degrees. In this thesis, we analyse the sta-
bility in combination with Lagrange polynomials. Analysis processes are similar for
other extrapolation technique e.g. Hermite approximation, the result can be found
in M.Busch [6].

3.1.1 Zero Stability
A numerical method is zero stable if the solution remains bounded as simulation
step size converges to 0, for finite final time T . In co-simulation, a coupling method
is called zero stable if the co-simulation results converge for an infinitesimal macro
step size, i.e. H → 0 [6]. Zero stability may be seen directly in the coupling struc-
ture. If all the subsystems are direct feed-through, an algebraic loop will arise [18],
which leads to stability problems in DAE systems [6]. Therefore, zero stability can
not be guaranteed [18].

3.1.2 Numerical Stability
Getting an arbitrary small simulation step size is not practical, thus we want to
know whether a relative small step size will lead to convergence as well. This is
the well-known numerical stability. In co-simulation numerical stability is always
studied by assuming that the system being co-simulated is stable [13]. There is no
point to discuss an unstable strongly coupled system and an corresponding unsta-
ble weakly coupled system. One way to check stability is to calculate the spectral
radius of the weakly coupled system. Numerical stability is a desired property of a
numerical method.
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3. Weakly Coupled System Stability Analysis

3.2 Stability Analysis

We have discrete weakly coupled system:

˙̃zn = Az̃n + BΦ(ũn),
ỹn = Cz̃n + DΦ(ũn),
ũn = Lỹn,

(3.1)

where z̃, ỹ, ũ is the weakly coupled notation for the state variable z, the output
variable y and the input variable u respectively, Φ is the extrapolation operator,
and

A =



A1

A2 O
. . .

O An−1
An


is a Jordan matrix, each Jordan block is the Ai in i-th subsystem. B,C,D are
Jordan matrices as well, and the Jordan blocks are the corresponding matrix pre-
sentations in each subsystem.

We want to know the stability and numerical stability for weakly coupled system in
combination of constant, linear and quadratic extrapolation respectively. Thus we
need to transform equation (3.1) into a linear system:

[
z
y

]
n+1

= A∗
[
z
y

]
n

and compute the spectral radius in A∗. For the differential equation, we will solve it
exactly and with Forward Euler method respectively. Then we compare the spectral
radius in both cases in combination with different degrees of extrapolation.

3.2.1 Constant Extrapolation

Under constant extrapolation approximation:

Φ(ũ(τ)) = ũn, τ ∈ (nH, (n+ 1)H]. (3.2)

First let us solve the differential equation exactly by using Variation of Constant
Formula. The discrete system can be written as:

18
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z̃n+1 = eAH z̃n +
∫ (n+1)H

nH
eA((n+1)H−τ)BΦ(ũ(τ))dτ,

= eAH z̃n +
∫ (n+1)H

nH
eA((n+1)H−τ)dτBΦ(ũn),

= eAH z̃n +
∫ (n+1)H

nH
eA((n+1)H−τ)dτBLỹn,

= eAH z̃n + K(H)BLỹn
ỹn+1 = Cz̃n+1 + DΦ(ũn),

= CK(H)BLỹn + CeAH z̃n + DLỹn,

where K(H) =
∫ (n+1)H

nH
eA((n+1)H−τ)dτ

(3.3)

To combine above equations together:[
z̃n+1
ỹn+1

]
=
[
eAH K(H)BL

CeAH CK(H)BL + DL

] [
z̃n
ỹn.

]
(3.4)

The weakly coupled system is stable, if the spectral radius of the matrix above is
smaller than 1.

Assuming there is Forward Euler method involved in combination with constant
extrapolation, the discrete weakly coupled system can be written as:

z̃n+1 = z̃n + ˙̃znH,
= z̃n + (Az̃n + BΦ(ũn))H,
= (I + AH)z̃n + BLHỹn,

ỹn+1 = Cz̃n+1 + DΦ(ũn),
= C(I + AH)z̃n + CBLHỹn + DΦ(ũn),
= C(I + AH)z̃n + (CBLH + DL)ỹn.

(3.5)

To combine above equations together:[
z̃n+1
ỹn+1

]
=
[

I + AH BLH
C(I + AH) CBLH + DL

] [
z̃n
ỹn

]
. (3.6)

The weakly coupled system is stable, if the spectral radius of the matrix above is
smaller than 1.

3.2.2 Linear Extrapolation
Under linear extrapolation approximation:

Φ(ũ(τ)) = ũn + (τ − nH)ũn − ũn−1

H
, τ ∈ (nH, (n+ 1)H]. (3.7)
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First let us solve the differential equation exactly by using Variation of Constant
Formula. The discrete system can be written as:

z̃n+1 = eAH z̃n +
∫ (n+1)H

nH
eA((n+1)H−τ)BΦ(ũ(τ))dτ,

= eAH z̃n +
∫ (n+1)H

nH
eA((n+1)H−τ)B

(
ũn + (τ − nH) ũn − ũn−1

H

)
dτ,

= eAH z̃n

+ (
∫ (n+1)H

nH
eA((n+1)H−τ)dτ +

∫ (n+1)H

nH
eA((n+1)H−τ) (τ − nH)

H
dτ)BLỹn

−
∫ (n+1)H

nH
eA((n+1)H−τ) (τ − nH)

H
dτ)BLỹn−1,

= eAH z̃n + (K(H) + J(H))BLỹn − J(H)BLỹn−1,

ỹn+1 = Cz̃n+1 + DΦ(ũn),

= Cz̃n+1 + D(ũn +H
ũn − ũn−1

H
),

= (C(K(H) + J(H))BL + 2DL)ỹn
− (CJ(H)BL + DL)ỹn−1 + CeAH z̃n,

(3.8)

where

K(H) =
∫ (n+1)H

nH
eA((n+1)H−τ)dτ,

J(H) =
∫ (n+1)H

nH

eA((n+1)H−τ)(τ − nH)
H

dτ.

To combine above equations together:z̃n+1
ỹn+1
ỹn

 =
[
S
]  z̃n

ỹn
ỹn−1

 . (3.9)

where

S =

 eAH (K(H) + J(H))BL −J(H)BL
CeAH C(K(H) + J(H))BL + 2DL −(CJ(H)BL + DL)

O I O


O, I ∈ R4×4

The weakly coupled system is stable, if the spectral radius of the matrix above is
smaller than 1.

Remark. In equation (3.9), the extrapolation points are chosen at time instant
(n − 1)H and nH. In fact, it is also possible to do it in a smaller time step, e.g.
nH − h and nH, where h is the micro step size.

Assuming there is Forward Euler method involved in combination with linear ex-
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trapolation, the discrete weakly coupled system can be written as:

z̃n+1 = z̃n + ˙̃znH,
= z̃n + (Az̃n + BΦ(ũn))H,
= (I + AH)z̃n + 2BLHỹn −BLHỹn−1,

ỹn+1 = Cz̃n+1 + DΦ(ũn),

= Cz̃n+1 + D(ũn +H
un − ũn−1

H
),

= C(I + AH)z̃n + (2CBLH + 2DL)ỹn − (CBLH + DL)ỹn−1.

(3.10)

To combine above equations together:

z̃n+1
ỹn+1
ỹn

 =

 I + AH 2BLH −BLH
C(I + AH) 2CBLH + 2DL −(CBLH + DL)

O I O


 z̃n

ỹn
ỹn−1

 , (3.11)

where O, I ∈ R4×4.

The weakly coupled system is stable, if the spectral radius of the matrix above is
smaller than 1.

3.2.3 Quadratic Extrapolation

Under quadratic extrapolation approximation:

Φ(ũ(τ)) = ũn + (τ − nH)ũn − ũn−1

H

+ (τ − nH)(τ − (n− 1)H)
2

ũn − 2ũn−1 + ũn−2

H2 , τ ∈ (nH, (n+ 1)H].
(3.12)

First let us solve the differential equation exactly by using Variation of Constant
Formula. The discrete system can be written as:
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z̃n+1 = eAH z̃n +
∫ (n+1)H

nH
eA((n+1)H−τ)BΦ(ũ(τ))dτ,

= eAH z̃n +
∫ (n+1)H

nH
eA((n+1)H−τ)B

(
ũn + (τ − nH) ũn − ũn−1

H

+(τ − nH) (τ − (n− 1)H)
2

(ũn − 2ũn−1 + ũn−2)
H2

)
dτ,

= eAH z̃n + (K(H) + J(H) + G(H))BLỹn
− (J(H) + 2G(H))BLỹn−1 + G(H)BLỹn−2,

ỹn+1 = Cz̃n+1 + DΦ(ũn),

= C(z̃n+1) + D

(
ũn +H

ũn − ũn−1

H
+ H2

2
(ũn − 2ũn−1 + ũn−2)

H2

)
,

= (C(K(H) + J(H) + G(H))BL + 5
2DL)ỹn

− ((J(H) + 2G(H))BL + 2DL))ỹn−1

+ (G(H)BL + 1
2DL)ỹn−2 + CeAH z̃n,

(3.13)

where

K(H) =
∫ (n+1)H

nH
eA((n+1)H−τ)dτ,

J(H) =
∫ (n+1)H

nH

eA((n+1)H−τ)(τ − nH)
H

dτ,

G(H) =
∫ (n+1)H

nH

eA((n+1)H−τ)(τ − nH)(τ − (n− 1)H)
2H2 dτ.

To combine above equations together:


z̃n+1
ỹn+1
ỹn

ỹn−1

 =


eAH S1,2 S1,3 S1,4

CeAH S2,2 S2,3 S2,4
O I O O
O O I O




z̃n
ỹn

ỹn−1
ỹn−2

 , (3.14)

where

S1,2 = (K(H) + J(H) + G(H))BL,

S1,3 = (J(H) + 2G(H))BL,

S1,4 = G(H)BL,

S2,2 = C(K(H) + J(H) + G(H))BL + 5
2DL,

S2,3 = −((J(H) + 2G(H))BL + 2DL)),

S2,4 = G(H)BL + 1
2DL,

O ∈ R4×4, I ∈ R4×4.
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The weakly coupled system is stable, if the spectral radius of the matrix above is
smaller than 1.

Assuming there is Forward Euler method involved in combination with quadratic
extrapolation, the discrete weak coupled system can be written as:

z̃n+1 = z̃n + ˙̃znH,
= z̃n + (Az̃n + BΦ(un))H,

= (I + AH)z̃n + BH

(
ũn +H

ũn − ũn−1

H
+ H2

2
(ũn − 2ũn−1 + ũn−2)

H2

)
,

= (I + AH)zn + 5
2BLHỹn − 2BLHỹn−1 + 1

2BLHỹn−2.

ỹn+1 = Cz̃n+1 + DΦ(ũn),

= Cz̃n+1 +D

(
ũn +H

ũn − ũn−1

H
+ H2

2
(ũn − 2ũn−1 + ũn−2)

H2

)
,

= C(I + AH)z̃n + 5
2(CBLH + DL)yn − (2CBLH + 2DL)ỹn−1

+ 1
2(CBLH + DL)ỹn−2.

(3.15)

To combine above equations together:


z̃n+1
ỹn+1
ỹn

ỹn−1

 =
[
M 1,1 M 1,2
M 2,1 M 2,2

] 
z̃n
ỹn

ỹn−1
ỹn−2

 (3.16)

where

M 1,1 =
[

I + AH 5
2BLH

C(I + AH) 5
2(CBLH + DL)

]
,

M 1,2 =
[

−2BLH 1
2BLH

−(2CBLH + 2DL) 1
2(CBLH + DL)

]
,

M 2,1 =
[
O I
O O

]
,

M 2,2 =
[
O O
I O

]
,

O, I ∈ R4×4

The weakly coupled system is stable, if the spectral radius of the matrix above is
smaller than 1.
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3. Weakly Coupled System Stability Analysis

3.3 Numerical Simulation
As indicated Chapter 2, our research model is force/displacement coupling with Ja-
cobi communication pattern, which means it is a zero-stable model. Thus in this
section, we will present the stability and numerical stability property of our research
model.

We would like to observe the change of the spectral radius in our co-simulation model
under Constant, Linear and quadratic extrapolation. Let us define the parameters
as:

k1 100.0 N/m
d1 100.0 Ns/m
m1 100.0 kg
k2 100.0 N/m
d2 100.0 Ns/m
m2 100.0 kg
kc 60.0 N/m
dc 60.0 Ns/m

H = h [10−5, 1] s

Table 3.1: Parameters set-up 1

We can obtain the matrix representation from Chapter 2, plug the parameters into
the matrices (3.4), (3.9) and (3.14) and obtain the spectral radius. First let us have
a look at the spectral radius without any numerical methods involved:
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Figure 3.1: Spectral radius of weakly coupled system in combination of constant,
linear and quadratic extrapolation

Assuming one uses Forward Euler in solving the differential equation, under same
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3. Weakly Coupled System Stability Analysis

parameter condition, plug the parameters into the matrices (3.6), (3.11), (3.16), the
spectral radius looks like:
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Figure 3.2: Spectral radius of weakly coupled system in combination of constant,
linear and quadratic extrapolation 2

As expected, higher order extrapolation is more sensitive to step size changes, thus
smaller stable region. Forward Euler is not a-stable method, therefore it works only
in a small range of step size. In this case there are two unstable sources in weakly
coupled system, extrapolation method and explicit numerical method. As we can
see from Figure 3.1 and Figure 3.2, stability region further decreases correspondingly
when there is explicit numerical method involved.

Remark. The solution of the DE that is applied from an a-stable method with fixed
step size, zn → 0 as n→∞ [8][7].

3.4 Conclusions
The weakly coupled system presents different stability behaviour compare with the
corresponding stable strongly coupled system. The stability of a weakly coupled
dual mass spring damping system is strongly related to the input value extrapolation
polynomial. Higher degree extrapolation polynomial is more sensitive to the change
of step size. Stability region decreases as extrapolation degree increases, stability
region further decreases if explicit numerical method is involved in co-simulation.

25



3. Weakly Coupled System Stability Analysis

26



4
Weakly Coupled System Error

Analysis

4.1 Introduction

Apart from stability analysis, accuracy is of high interest in numerical analysis as
well. Generally speaking, there can be three kinds of error that affect the accuracy
of the model:

• Round-off error
• Measurement error
• Approximation error

Round-off error occurs when the computer has limit digit on memory for calcula-
tion. All kinds of physical measurement for parameters lead to measurement error.
Approximation error occurs in all kinds of approximation. In this chapter we ne-
glect first two types of error, focus on the approximation error. For simplicity, we
first analyse the global error without any numerical method. Then we compute the
global error again with numerical method involved for comparison. Global error is
usually of higher interest than local error, anyhow to reach global error one has to
start from local error analysis.

4.2 Local Error

In classical local error analysis, it is assumed that in [0, nH], the system is ideally
exactly calculated. We focus only on the difference between the exact solution and
the approximated solution in (nH, (n+ 1)H] [9][27][28].

The exact solution can be obtained from the corresponding strongly coupled system,
where the coupled variables are changed continuously:

ż = Az + Bu,

y = Cz + Du,

u = Ly.

(4.1)

Strongly coupled state value at time (n + 1)H is denoted as zn+1. By solving the
DE in (4.1) analytically we obtain:
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4. Weakly Coupled System Error Analysis

zn+1 = eAHzn +
∫ (n+1)H

nH
eA((n+1)H−τ)Bu(τ)dτ. (4.2)

The approximated solution is the solution that obtain from weakly coupled system
with certain degrees of extrapolation polynomial:

˙̃z = Az̃ + BΦ(ũ),
ỹ = Cz̃ + DΦ(ũ),
ũ = Lỹ.

(4.3)

Weakly coupled state value with certain degree of polynomial approximation at time
(n+1)H is denoted as z̃n+1. By solving the DE in equation (4.3) exactly we obtain:

z̃n+1 = eAH z̃n +
∫ (n+1)H

nH
eA((n+1)H−τ)BΦ(ũ(τ))dτ. (4.4)

Local state error at time (n + 1)H is denoted as ε(zn+1). Following the classical
local error analysis in numerical analysis, we compute local error as:

ε(zn+1) = zn+1 − z̃n+1,

= zn+1 − (eAHzn +
∫ (n+1)H

nH
eA((n+1)H−τ)BΦ(u(τ))dτ),

= eAHzn +
∫ (n+1)H

nH
eA((n+1)H−τ)Bu(τ)dτ

− eAHzn −
∫ (n+1)H

nH
eA((n+1)H−τ)BΦ(u(τ))dτ,

=
∫ (n+1)H

nH
eA((n+1)H−τ)B(u(τ)− Φ(u(τ)))dτ,

≤
∫ (n+1)H

nH
e‖A((n+1)H−τ)‖Bdτ max

nH≤τ≤(n+1)H
‖u(τ)− Φ(u(τ))‖dτ,

≤∗ O(H)BO(Hk+1),
≤ O(Hk+2),

(4.5)

where, ≤∗ holds if ‖A‖ ≤ c, and c ∈ N, and k is the degree of the extrapolation
operator Φ(u).

Here we obtain the local error for state value ε(z) is O(Hk+2), in both displacemen-
t/displacement and force/displacement weakly coupled systems.

Next, we will have an insight into the local error in terms of output value. Use
notation ε(yn+1) for local output error at time (n+ 1)H. Output equations in state
space systems (4.1) and (4.3) are linear equations, thus:

ε(yn+1) = Cε(zn+1) + Dε(un+1), (4.6)
where ε(un+1) relates to the input extrapolation degree.

28



4. Weakly Coupled System Error Analysis

In force/displacement coupled system, we have:

ε(yn+1) = CO(Hk+2) + DO(Hk+1) = O(Hk+1). (4.7)

In this case, there is order reduction on local output error, due to the presence of
direct feed-through in one of the subsystems:

ε(zn+1) = O(Hk+2),
ε(un+1) = O(Hk+1),
ε(yn+1) = O(Hk+1),

(4.8)

In displacement/displacement coupled system, we have:

ε(zn+1) = O(Hk+2),
ε(un+1) = O(Hk+1),
ε(yn+1) = O(Hk+2),

(4.9)

In this case, local error w.r.t the state and the output have the same order, due to
nondirect feed-through is every subsystem.

Calculations and conclusions above are obtained by assuming that the previous time
steps before the local error step are error-free. However, that is not true in practise.
In the following section, we will have a look at the global error which has more
practical meaning.

4.3 Global Error

Global error has more practical meaning than local error. However, it is usually
very difficult to obtain global error directly. One way to do it is to derive local error
recursively, and this is the approach we will do in this section.

4.3.1 Global Error without Numerical Method

Use notation E(zn) for the global state error at time nH. Since the global error is
the accumulation of all local error, we can not neglect the error from the previous
time steps as we did in local error analysis:
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E(zn) = zn − z̃n

= eAHzn−1 +
∫ nH

(n−1)H
eA(nH−τ)Bu(τ)dτ

− eAH z̃n−1 −
∫ nH

(n−1)H
eA(nH−τ)BΦ(ũ(τ))dτ

= eAHE(zn−1) +
∫ nH

(n−1)H
eA(nH−τ)B(u(τ)− Φ(u(τ)) + Φ(u(τ))− Φ(ũ(τ)))dτ

≤ ‖eAHE(zn−1)‖+
∫ nH

(n−1)H
eA(nH−τ)B max

nH≤τ≤(n+1)H
‖(Φ(u(τ))− Φ(ũ(τ)))‖+O(Hk+2)

......

≤∗ O(H)O(Hk+1)e
nAH − 1
O(H) +O(Hk+2)

≤ O(Hk+1)
(4.10)

where ≤∗ holds if ‖A‖ ≤ c, and c ∈ N

Following the similar calculation like equation (4.10), we can obtain global output
error at time nH denoted as E(yn) as follow:

E(yn) = E(zn) = O(Hk+1),

which means there is no order reduction in global error. This is true for weakly cou-
pled system without algebraic loop, (e.g. displacement/displacement coupled system
and force/displacement weakly coupled system) [3].

Simulation results of the global error with different extrapolation methods have been
shown:

k1 100.0 N/m
d1 100.0 Ns/m
m1 100.0 kg
k2 100.0 N/m
d2 100.0 Ns/m
m2 100.0 kg
kc 60.0 N/m
dc 60.0 Ns/m

H = h [10−3, 10−2] s

Table 4.1: Parameters set up-2
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Figure 4.1: x1 displacement global error order

Since the global error in constant extrapolation case is several order higher than
the global error in linear and quadratic extrapolation cases. Therefor,we we ne-
glect the constant extrapolation case to have a closer look in linear and quadratic
extrapolation cases.
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Figure 4.2: x1 displacement global error order 2

From Figure 4.1 and Figure 4.2 it is clear that the global error value decreases as
the extrapolation degree increases. And the global error increases if the step size
increases. The simulation results coincide with our global error analysis.
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4.3.2 Global Error with Numerical Method
By adding numerical methods in co-simulation, more errors are propagated than
without numerical methods. To classify different error sources, we call error that is
propagated by coupling (without the usage of numerical method) as coupling error,
which we have shown in the last subsection. The error that is emerged by numerical
method named as numerical error. For theoretical research we are interested in the
error emerged by co-simulation. But from industrial point of view, how the numer-
ical error involved in co-simulation has to be discussed as well.

We first conclude the global error with numerical method involved in co-simulation
as the following lemma, then we will show the proof of it.

Lemma 4.3.1. Given extrapolation polynomial of degree k, numerical method of
order j, and micro step equal to macro step then one can have global error for
co-simulation as:

E(zn) ≤ O(Hj) +O(Hk+1)
E(yn) ≤ O(Hj) +O(Hk+1)

(4.11)

Proof. First let us try to fix one numerical method but not the degree of extrapola-
tion polynomial, then we will conclude to other numerical methods.

Suppose we choose Forward Euler as the local solver:

z̃n+1 = z̃n + ˙̃zn ∗H
= (I + AH)z̃n + BHΦ(ũn).

(4.12)

And the exact solution can be obtained by applying the Taylor series:

zn+1 = zn + żn ∗H +O(H2)
= (I + AH)zn + BHun +O(H2).

(4.13)

We have local error as:

ε(zn+1) = zn+1 − z̃n+1

= (I + AH)zn + BHun − ((I + AH)zn + BHΦ(u)n) +O(H ,)
= BH(un − Φ(u)n) +O(H2)
≤∗ O(Hk+2) +O(H2),

(4.14)

where ≤∗ holds if ‖B‖ ≤ c, c ∈ N.

We obtain global error by recursion:
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E(zn+1) = zn+1 − z̃n+1

= (I + AH)zn + BHun − (I + AH)z̃n + BHΦ(ũ)n) +O(H2)
= (I + AH)E(zn) + BH(un − Φ(u)n + Φ(u)n − Φ(ũ)n) +O(H2)
≤ ‖(I + AH)E(zn)‖+BHO(Hk+1) + ‖Φ(u)n − Φ(ũ)n‖+BHO(Hk+1) +O(H2)
≤ ......

≤ (I + AH)E(z0) + [I + (I + AH) + ...+ (I + AH)n](BHO(Hk+1) +O(H2)

≤∗ (I + cH)n − I
cH

(BHO(Hk+1)) +O(H2)

≤ O(Hk+1) +O(H1),
(4.15)

where ≤∗ holds if ‖A‖ ≤ c, c ∈ N.

Numerical methods typically proceed by truncating the Taylor series at some point,
arguing that the error that is introduced by doing so is small enough to be unim-
portant [25]. Therefore we can conclude the global error order to other numerical
methods as the following:

z̃n+1 = φ(
n∑

i=n−j
z̃i, j,H,A) + Φ(

n∑
l=n−k

ũl, k,H,B)

zn+1 = φ(
n∑

i=n−j
zi, j,H,A) + Φ(

n∑
l=n−k

ul, k,H,B) +O(Hk+2) +O(Hj+1)

ε(zn+1) = zn+1 − z̃n+1

≤ O(Hj+1) +O(Hk+2)
E(zn+1) = zn+1 − z̃n+1

≤ O(Hj) +O(Hk+1).

(4.16)

where notation φ is the numerical method of order j, notation Φ is the extrapolation
operator of degree k.

And we know there is no order reduction in global error [3]. Therefore, we can
generate immediately or follow the same proof, and obtain:

E(yn) ≤ O(Hj) +O(Hk+1). (4.17)

Remark. For global error in co-simulation where H 6= h, similar analysis processes
can be done and obtain:

E(zn) ≤ O(hj) +O(Hk+1),
E(yn) ≤ O(hj) +O(Hk+1),

(4.18)
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where h = maxh1, h2, ...hm is the largest micro step size in all the subsystems.
In usual case: H ≥ h, k ∈ [0, 2] and j ∈ [1, 6], the error is dominated by the second
term or we call it coupling error.

4.4 Conclusions
In local error analysis, output error experiences error order reduction due to the
presence of direct feed-through in force/displacement weakly coupled system. How-
ever, in global error case there is no error order reduction in our model. Global error
is bounded by the summation of numerical error and coupling error. In usual case,
global error is dominated by coupling error, which makes it effective to reduce the
global error by an appropriate extrapolation method or by more robust interface
and causality design.
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5
Interface and Causality Design

5.1 Introduction
In force/displacement weakly coupled system there is a matter of causality, whether
the force should be placed as input or output. The scope of this chapter is to give
a preferable design for causality and interface preference, by comparing the weakly
coupled solution and the strongly coupled solution.

5.2 Interface and Causality Design
In strongly coupled system the input and output variables exchange continuously.
Therefore, it can be written in form of:

ż = Az + Bu,

y = Cz + Du,

u = Ly.

(5.1)

Analytical solution for the strongly coupled system can be written as:

zn+1 = e(A+BL(I−DL)−1C)Hzn

yn+1 = (I −DL)−1Czn+1
(5.2)

where matrix (I −DL)−1 is assumed to be non-singular.

Rewrite equation (5.2) in matrix form:[
zn+1
yn+1

]
=
[

e(A+BL(I−DL)−1C)H O

(I − DL)−1Ce(A+BL(I−DL)−1C)H O

] [
zn
yn

]
(5.3)

Assuming that the input value is approximated by the linear extrapolation polyno-
mial, we obtain the weakly coupled solution from equation (3.4):[

z̃n+1
ỹn+1

]
=
[
eAH K(H)BL
CeAH CK(H)BL + DL

] [
z̃n
ỹn

]
(5.4)

where
K(H) =

∫ (n+1)H

nH
eA((n+1)H−τ)dτ
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Intuitively we want to have the weakly coupled model as close as possible to strongly
coupled model , which means z̃(t) ≈ z(t), ∀t ∈ T, where T represents total simula-
tion time set. By comparing equation (5.4) and equation (5.3), the weakly coupled
solution and strongly coupled solution will be roughly ’equal’,

if

DL ≈ O

BL ≈ O
(5.5)

or

K(H) ≈ O

DL ≈ O
(5.6)

or

DL ≈ O

BL ≈ O

K(H) ≈ O

(5.7)

The above possibilities can be further extended for the parameters study based on
our research model:

BL =


0 0 0 0
0 0 kc

m1
dc

m1
0 0 0 0
0 1

m2
0 0

 (5.8)

DL =


0 0 0 0
0 0 −kc −dc
0 0 0 0
0 0 0 0

 (5.9)

If kc and dc is relative small, and m2 is relatively large, DL and BL are nearly zero
matrices.

Then we analyse the second possibility,

K(H) ≈ 0,
DL ≈ O

(5.10)

it is equivalent to:

K(H) ≈ O =⇒ H ≈ 0,
DL ≈ O =⇒ kc ≈ dc ≈ small value.

(5.11)

Therefore, we would like to have kc and dc as small value at the interface and small
global time step size. The result is very trivial. If each subsystems communicates
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in high frequency, the weakly coupled system behaves like a strongly coupled system.

For the third possibility, it is very straight forward. As it combines all the require-
ments from first and second possibilities.

What if one increase the degree of input value extrapolation? Assuming input
value is approximated by linear extrapolation polynomial, we obtain weakly coupled
solution from equation (3.9):

z̃n+1
ỹn+1
ỹn

 =

 eAH (K(H) + J(H))BL −J(H)BL
CeAH C(K(H) + J(H))BL + 2DL −CJ(H)BL−DL

O I O


 z̃n

ỹn
ỹn−1


(5.12)

where

K(H) =
∫ (n+1)H

nH
eA((n+1)H−τ)dτ

J(H) =
∫ (n+1)H

nH

eA((n+1)H−τ)τ

H
dτ.

(5.13)

In order to compare with strongly coupled system, we rewrite equation (5.3) as:zn+1
yn+1
yn

 =

 e(A+BL(I−DL)−1C)H O O

(I −DL)−1Ce(A+BL(I−DL)−1C)H O O
O I O


 zn

yn
yn−1

 (5.14)

Again,the above two matrices will be roughly identical element-wise, if

DL ≈ O

BL ≈ O
(5.15)

or

K(H) ≈ O

J(H) ≈ O

DL ≈ O

(5.16)

or

DL ≈ O

BL ≈ O

K(H) ≈ O

J(H) ≈ O

(5.17)

As we can see that equation (5.8) coincides with equation (5.18), equation (5.9)
coincides with equation (5.19), equation (5.10) coincides with Equation (5.20).

Therefore, we would like to have rather soft interface, and force applied to the
subsystem which has larger mass value. This results can be extended to higher
extrapolation degree and multi-subsystems co-simulation.
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5.3 Simulation

In this section we will validate three different possibilities. Overall speaking, all the
possibilities require that interface has to be chosen where the spring and damper has
relative small value. Following the notation in our research model it would be kc and
dc has relative small value. In the following simulation we process quasi-experiments,
which means each time only one variable is changed. Beside we always compare
the ratio of weakly coupled and strongly coupled simulation result correspondingly.
Thus the closer the ratio to 1, the better the simulation result we can get.
To see the effect when the interface is getting more stiff, we choose step size H =
h = 0.01 s and define the initial value for the parameters as Table 3.1 with varying
parameters kc ∈[60.0, 120.0] N/m and dc ∈ [60.0, 120.0] Ns/m.

Insert the given parameters set-up into equation (4.2) and (4.4), and compute the
ratio of weakly coupled solution and strongly coupled solution in each simulation
time:
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Figure 5.1: Increase the value of spring and damper at the interface

As we can see from Figure 5.1, the increase of spring and damper value at the in-
terface has a obvious effect on the weakly coupled simulation results. As simulation
time pass, the traces diverge from value 1. But the model with the softest interface
delivers a rather robust trace among all other models.

Next we validate if force should go to the subsystem that is heavier. We choose step
size H = h = 0.01 s and define the initial value for the parameters as Table 3.1 with
varying parameter m2 ∈[100.0,400.0] kg:
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Figure 5.2: increase the mass value m2

From Figure 5.2 we can see that, the increase value of m2, makes the ratio getting
closer to value 1, which means more accurate. The result coincides with our as-
sumption.

Then we validate the effect when the step size increase. We choose step size
H = h = 0.01 s and define the initial value for the parameters as Table 3.1 by
increase the step size in each simulation:
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Figure 5.3: Increase macro step size
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As we can see from the Figure 5.3, the smaller macro step is, the closer trace is to
value 1. The simulation results coincide with our assumption. The result is trivial
to see, as small macro step size means more frequent communication between sub-
systems, and this is the reason for accuracy. We can see this from Chapter 4 as well,
the error order is strongly related to step size and extrapolation order. Since we
fixed the simulation to constant extrapolation, then the only difference left is step
size.

The third assumption is the combination of the first two assumptions. We define
the initial value for the parameters as Table 3.1 but with the step size H = h = 0.01
s, the mass value m2 = 400 kg and increase the step size in each simulation:
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Figure 5.4: Increase macro step size

Obviously co-simulation with the smallest macro step has the best performance,the
simulation results coincide with our previous assumptions. If we try to compare
Figure 5.3 and Figure 5.4, under same macro step size, each trace in Figure 5.4
is closer to value 1 than the trace in Figure 5.3 respectively. Because the third
assumption combine all the good parameter setting in the first and the second
assumptions.

5.4 Conclusions
Interface should be always chosen in the part that it is soft, which means small value
in stiffness and damping coefficients. Force is placed as input to the subsystem
which weights more. Macro step size is always preferable to be small. But all
these parameter can not be infinitely large or small, there is some kinds of physical
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connection between the parameters. For instance, the coupled systems lost the sense
of coupling, when the coefficients at the interface are set to be infinitely small.
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6
Evaluation of Nearly Energy
Preserving Coupling Element

6.1 Introduction

In weakly coupled co-simulation, it is very difficult or impossible to have an insight
look into the state value or even the state space equations in different simulators.
The reasons for this can be the models or the calculation algorithms are part of the
intellectual property [13]. Therefore, we have a lack of a reference to compare with
the weakly coupled co-simulation for error estimation. One way to find the reference
is to take a relative small step size, compute the solution interactively till the error is
lower than the predefined tolerance as the reference for weakly coupled system. This
requires the rollback ability for the simulators, thus it is not applicable in practice.
Nearly Energy Preserving Coupling Element (NEPCE) method [21] claimed that, it
can be used as an error indicator without the knowledge about the dynamics inside
the simulators and rollback ability. In this chapter, we first introduce the idea that
NEPCE method came from, then explain the method, lastly evaluate the method
based on our research model.

6.2 Energy Conservation and Power Bond

The usage of energy conservation and power bond in NEPCE came from the bond
graph theory [5][20]. It states that the energy transactions between two systems as
the general energy continuity equation:

∂ε(x, t)
∂t

+ ∆jε(x, t) = σε(x, t) (6.1)

where ε(x, t) is the local energy density at time t position x, jε is the energy flux
through the surface, and σε is the energy dissipation rate.

The general equation of energy continuity states that a net flux of energy through
the surface is either stored or dissipated. It is designed to represent the behaviour
of energy, power, entropy and other physical properties. This reflects the energy
conservation. And the energy transactions between two systems are seen as power
bonds [20][5].
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6.3 Nearly Energy Preserving Coupling Element
NEPCEmethod claimed to describe the performance for non-interactive co-simulation
base on the input value extrapolation violation of the (generalized) energy conser-
vation law [21].

The idea of NEPCE is to apply the power bond theory and energy conservation
law in weakly coupled mechanical systems. Assuming there are two weakly coupled
subsystems S1 and S2, between each subsystem there are input ui and output yi for
i = 1, 2. Two subsystems exchange energy through a power bond k, at a rate Pki.
Power bond Pki and energy Ei for i = 1, 2 are defined as follow:

Pki(t) = ui(t)yi(t)

Ei(t) =
∫
P (t)dt

(6.2)

No energy should be dissipated or stored by general equation of energy continuity:

− (Pk1 + Pk2) = 0. (6.3)
However, input variables are generally unknown between each macro time step point
and extrapolated input value Φ(ũ(t)) ≈ u(t) has to be used. Denote power bond
rate in this case as P̃k:

P̃ki(t) = Φ(ũi(t))ỹi(t)
P̃ki(t) 6= Pki(t)

(6.4)

It is straight forward to see that the weakly coupled system violates energy conser-
vation due the extrapolated input value [21][22]. Here we use the notation δP (t)
and δE(t) to represent the residual power and residual energy respectively, and
δP (t) 6= 0 as ũ 6= u.

δP (t) = −
(
P̃k1 (t) + P̃k2 (t)

)
δE(t) =

∫
δP̃ (t)dt

(6.5)

S. Sadjina et.al.[21] believes that if co-simulation model follows energy conservation
law, residual power will be zero [21] . But this does not suffice in general, energy
either leaks from (δPk < 0) or accumulates at (δPk > 0) the power bond. Therefore,
it is concluded that residual energy as error indicator [21].

Considering the time dependent states z = [z1, z2], the discrete weakly coupled
systems can be expressed as:

˙̃zn = f(z̃n,Φ(ũn)),
ỹn = g(z̃n,Φ(ũn))
ũn = Lỹn

(6.6)
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The concept behind NEPCE method is to find corrections δu for the input at each
communication time step to reduces the residual energy. Thus the most ideal cor-
rection would be:

δu(t) = −εu(t) (6.7)

where εu(t) is the local error for input at time instant t. It means the corrections
ideally cancel the local error in the inputs.After adding a correction δu, it will affect
the output ỹ as well, we use the notation δy as the modification for output. This
modification to output is of the same order as the input corrections, δy = O(Hk+1)
in force/displacement case.

As we did in local error analysis in Chapter 4:

εu(t) = Φ(ũ(t))− u(t)
= Φ(ũ(t))− L(ỹ(t)− εy(t))

εy(t) = ỹ(t)− y(t)
= Jg(z)εz(t) + Jg(u)εu(t) +O(Hk+2)

εz(t) = O(Hk+2)

(6.8)

where k is the degrees of the extrapolation polynomial operator, Jgij(u) = ∂gi/∂uj is
the interface Jacobian and Jgij(x) = ∂gi/∂xj. Rewriting equation (6.8), we obtain:

εu(t) = (I −LD)−1(ũ(t)− Lũ(t)) +O(Hk+2). (6.9)

Therefore, NEPCE choose:

δu(t) = −εu(t) ≈ (I −LD)−1(Lỹ(t)− ũ(t)) (6.10)

in force/displacement case. It would make the residual energy vanish.

If the simulation is on time step (nH, (n + 1)H], then ỹ(t) is unknown a prior
for t ∈ (nH, (n + 1)H] in equation (6.6). Therefore , NEPCE method realize the
correction in terms of previous coupling data:

δu(t) ≈ α

H
(I −LD)−1

∫ nH

(n−1)H
(Lỹ(τ)− ũ(τ))dτ, α ∈ [0, 1] (6.11)

6.4 NEPCE method Evaluation
To validate NEPCE method, I would like to start my arguments by the following
order:

• Is NEPCE method related to power bond and energy conservation law?
• Does residual power indicate the dynamic error in co-simulation system?

Let us start from the first question. It is not precise enough to use power bond and
energy conservation in co-simulation system.
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First, The idea of energy conservation in NEPCE[21] comes from general equation
of energy continuity[20]. In general equation of energy continuity, energy and power
has strict physical meaning. Furthermore, the continuity equation is valid only if
the energy terms are properly evaluated [20]. The idea of power bond comes from
bond graph theory [20][5], where it is designed to represent the behaviour of energy,
power, entropy and other physical properties.

Power bond theory and energy conservation are applicable, if we only look into
a single subsystem in co-simulation in our research model, that is a mass spring
damping system.

Figure 6.1: A mass spring damping system

where energy is stored in mass and spring, energy is dissipated in the damper.
Assuming spring and damper are non-linear, we sum up the physical phenomenon
as follow [20]

Pin − Pout = d

dt
(Ek2 + Em2) + ρd2, (6.12)

where Ek2 and Em2 represents energy in spring and mass respectively, ρd2 represents
damping dissipation. This means the energy is stored in the mass and spring, while
the energy is dissipated by the damper. There exists a power bond between the
mechanical system and the outer environment.

However in general weakly coupled system there is no continuous energy transaction
between two subsystems, instead it is manually defined macro step size for energy
transactions.

Second the usage of power bond concept in co-simulation does not always have strict
physical meaning. From Figure 2.1 we can see that, there exists three most common
kinds of weakly coupled system in modular level.

• force/force coupling, input and output in each subsystem are force.
• force/displacement coupling, input or output in each subsystem is either force

or velocity and displacement.
• displacement/displacement coupling, input and output in each subsystem are

displacement.
Therefore only in force/displacement coupling, the product of force and velocity has
physical meaning. However, as we can see from the explicit expression in force/force
coupling and displacement/displacement coupling , input and output are a vector
of displacement or velocity both. Therefore, input or output is not an extensive
variable (velocity, flow, etc) strictly. There is no power bonds in the bond graph
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and the energy continuity sense [20][5] connecting these subsystems.

For second question we evaluate the functionality of residual power as error indicator.
An error indicator should be able to give the information about how good/bad the
simulation is, which means difference between the dynamic in the weakly coupled
model and strongly coupled system. Here we ignore the physical power and energy
meaning, only focus on the residual power numeric value in NEPCE [21] method.
A general co-simulation model with two subsystems [18] can be generated as follow:

żi = fi(zi(t),ui(t)), i = 1, 2
yi(t) = gi(zi(t),ui(t)), i = 1, 2

By residual power definition:

−δP (ti) = Φ(ũ1(ti))ỹ1(ti) + Φ(ũ2(ti))ỹ2(ti)
0 = u1(ti)y1(ti)− u2(ti)y2(ti)

(6.13)

We subtract two equations above, see how much residual power speaks as an error
indicator:

−δP (ti) = [Φ(ũ1(ti))ỹ1(ti)− u1(ti)y1(ti)] + [Φ(ũ2(ti))ỹ2(ti)− u2(ti)y2(ti)]
= [Φ(ũ1(ti))ỹ1(ti)− Φ(ũ1(ti))y1(ti) + Φ(ũ1(ti))y1(ti)− u1(ti)y1(ti)]

+ [Φ(ũ2(ti))ỹ2(ti)− Φ(ũ2(ti))y2(ti) + Φ(ũ2(ti))y2(ti)− u2(ti)y2(ti)]
= [Φ(ũ1(ti))E(y1(ti)) + E(u1(ti))y1(ti)]

+ [Φ(ũ2(ti))E(y2(ti)) + E(u2(ti))y2(ti)]

= [Φ(ũ1(ti))
∂g1

∂z1
(ti)E(z1(ti)) + Φ(ũ1(ti))

∂g1

∂u1
(ti)E(u1(ti))

+ E(u1(ti))y1(ti)] + [Φ(ũ2(ti))
∂g2

∂z2
(ti)E(z2(ti))

+ Φ(ũ2(ti))
∂g2

∂u2
(ti)E(u2(ti)) + E(u2(ti))y2(ti)]

(6.14)

where ∂gi

∂zi
, ∂gi

∂u1
represent the jacobian matrix.

We can see that not only the global error in dynamics but also the global error in
input will contribute to the value of residual power. For residual power being a good
error indicator, it should be able to tell the error (dynamic behaviour E(z)) of the
model. Therefore, one would hope the irrelevant components (not relate to E(z) )
contribution to residual power as less as possible. Only in displacement/displace-
ment coupling, where there is nondirect feed-through, residual power has the least
irrelevant components;
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−δP (ti) = [Φ(ũ1(ti))
∂g1

∂z1
(ti)E(z1(ti)) + E(u1(ti))y1(ti)]

+ [Φ(ũ2(ti))
∂g2

∂z2
(ti)E(z2(ti)) + E(u2(ti))y2(ti)]

(6.15)

However this does not mean that NEPCE methods are quantitatively better always
with displacement/displacement coupling than with force/displacement coupling.

Generally speaking:

−δP (ti)→ 0⇒ Φ(ũ1(ti))ỹ1(ti)− Φ(ũ2(ti))ỹ2(ti)→ 0
; Φ(ũ(ti))→ u(ti) and Φ(ỹ(ti))→ y(ti)
; E(z(ti))→ 0

6.5 Simulation
To see the connection between residual power and state error, here we proceed some
numerical tests base on our research model force/displacement coupling. We get
to know the proper design for force/displacement coupling in Chapter 5, hence we
two different parameter set-ups are tested here. Namely one with proper designed
parameters, the other with improper designed parameters. We compare the residual
power with dynamic error in subsystem S1 and S2 and dynamic error summation
respectively. To be clear that, in the numerical tests here only absolute value will
be compared, input value will be approximated by constant, linear and quadratic
extrapolation polynomial respectively.

6.5.1 Proper Designed Model
Adopting the conclusion from Chapter 5, it is favourable to have a soft interface and
place force to the subsystem that weights more, therefore we define the parameters
as follow:

k1 100.0 N/m
d1 100.0 Ns/m
m1 100.0 kg
k2 100.0 N/m
d2 100.0 Ns/m
m2 450.0 kg
kc 60.0 N/m
dc 60.0 Ns/m

H = h 0.01 s

Table 6.1: Parameters set-up 3
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First, the input value is approximated by constant extrapolation.
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Figure 6.2: State error and residual power comparison 1

Considering there are several order difference in terms of numeric value between
residual power and state error, we have separated them in two different graphs. But
the trace is very obvious that they are at least not linear related. Residual power
can indicates neither the summation state error nor the single subsystem state error.

To see the correlation better, here we introduce a method call Pearson correlation
coefficient (PCC), which is a measure of the linear correlation between two variables.
It has value from [−1, 1], where 1 represents total positive linear correlation, 0 repre-
sents no linear correlation and −1 represents total negative linear correlation. Here
we will compare the PCC between state error and residual power from the above
numerical results.

Remark. PCC is calculated through:

r(δP, y) =
∑n
i=1(δP (ti)− ¯δP )(yi − ȳ)√∑n

i=1(δP (ti)− ¯δP )2
√∑n

i=1(yi − ȳ)2

where r is PCC coefficient, ¯δP and ȳ represent the residual power expectation and
y expectation. Set y can be chosen from subsystem S1, S2 and the summation state
error set.
In the correlation matrix means:

ρ(δP, y) =
[
r(δP, δP ) r(δP, y)
r(y, δP ) r(y, y)

]
To obtain PCC, we just need to look at the anti-diagonal elements in correlation
matrix.
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Obtaining correlation matrices between the absolute state error on x1 displacement,
x2 displacement, the state error summation and the residual power respectively as
follow:

[
1.0000 −0.7012
−0.7012 1.0000

]
,

[
1.0000 −0.6646
−0.6646 1.0000

]
,

[
1.0000 −0.8968
−0.8968 1.0000

]
(6.16)

PCC tells us that absolute state error summation and residual power has quite
strong negative correlation. However, it is not enough to use it as an error indicator.

Second, the input value is approximated by linear extrapolation.
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Figure 6.3: State error and residual power comparison 2

In this case, we can see there is no obvious connection between any state error and
the residual power. For more information, we can obtain the correlation matrices
between the absolute state error on x1 displacement, x2 displacement, state error
summation and the residual power respectively as follow:

[
1.0000 −0.7035
−0.7035 1.0000

]
,

[
1.0000 −0.1576
−0.1576 1.0000

]
,

[
1.0000 −0.1679
−0.1679 1.0000

]
(6.17)

Unsurprisingly, the correlation matrices tells us no much in correlation between state
error and residual power as it is clear from Figure 6.3. The state error in subsystem
S1 has quite high negative correlation with residual power, but this is not good
enough to indicate the state error as well.

Lastly, the input value is approximated by quadratic extrapolation.
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Figure 6.4: State error and residual power comparison 3

From the trace itself, we can see that residual power has a similar trend as the
summation of state error. To see more effect on it, one can check the correlation
matrices between the absolute state error on x1 displacement, x2 displacement, state
error summation and the residual power respectively are as follow:

[
1.0000 0.0320
0.0320 1.0000

]
,

[
1.0000 −0.8882
−0.8882 1.0000

]
,

[
1.0000 0.8663
0.8663 1.0000

]
(6.18)

Even there is quite negative correlation between residual power and sate error in
subsystem S2, this is not good enough to indicate the state dynamic. Again, it is
very difficult to say residual power indicates the state error.

In this proper designed model, there is no sign that residual power has strong linear
correlation with dynamic error in subsystems or overall error. Even if we increase ex-
trapolation degree in co-simulation, no obvious signs of linear correlation are shown.
Residual power does not have consistent good performance in this proper designed
model.

6.5.2 Improper Designed Model

Adopting the conclusion from Chapter 5, it is not so favourable to have high value
at the interface and force as input to the subsystem which has lighter mass value.
Therefore we design parameters as follow:

51



6. Evaluation of Nearly Energy Preserving Coupling Element

k1 100.0 N/m
d1 100.0 Ns/m
m1 100.0 kg
k2 100.0 N/m
d2 100.0 Ns/m
m2 50.0 kg
kc 130.0 N/m
dc 130.0 Ns/m

H = h 0.01 s

Table 6.2: Parameters set-up 4

First, the input value is approximated by constant extrapolation.
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Figure 6.5: State error and residual power comparison 4

From the trace itself, there is not much connection between the dynamic error and
the residual power like in proper design model. For more information we can com-
pute the correlation matrices between the absolute state error on x1 displacement, x2
displacement, state error summation and the residual power respectively as follow:

[
1.0000 −0.6768
−0.6768 1.0000

]
,

[
1.0000 −0.5436
−0.5436 1.0000

]
,

[
1.0000 0.1602
0.1602 1.0000

]
(6.19)

Second, the input value is approximated by linear extrapolation.
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Figure 6.6: State error and residual power comparison 5

From Figure 6.6 we can see that there is very strong linear correlation between the
residual power and the summation state error. For more information, PCC matrices
between the absolute state error on x1 displacement, x2 displacement, the state error
summation and the residual power respectively are as follow:[

1.0000 0.0408
0.0408 1.0000

]
,

[
1.0000 0.3713
0.3713 1.0000

]
,

[
1.0000 0.9541
0.9541 1.0000

]
(6.20)

There is positive linear correlation between residual power and summation state
error as in Figure 6.6, but almost no linear correlation with any subsystem.
Last, the input value is approximated by quadratic extrapolation.
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Figure 6.7: State error and residual power comparison 6

53



6. Evaluation of Nearly Energy Preserving Coupling Element

From the trace itself, at least one can see that residual power has similar trend like
the summation of state error. To see more effect on it, we can obtain correlation
matrices between the absolute state error on x1 displacement, x2 displacement, the
state error summation and the residual power respectively as follow:[

1.0000 0.3215
0.3215 1.0000

]
,

[
1.0000 0.3687
0.3687 1.0000

]
,

[
1.0000 0.9339
0.9339 1.0000

]
(6.21)

From PCC matrices one can see that the absolute state error summation has very
strong linear correlation with the residual power. But this is not the case in any
single subsystem. Again, it is very difficult to say residual power as an error indica-
tor for the weakly coupled model.

From the above numerical tests, we can see that as parameters change, residual
power functionality changes drastically as well. This does not speak for the gener-
ality good performance of residual power as an error indicator.

6.6 Conclusions
In cases above, regardless of the design of the model, sometimes the residual power
has positive/ negative correlation with the absolute summation state error, some-
times not. As we derived the residual power formula earlier, there are irrelevant
contributions than just state error to the numeric value of residual power. That is
the main reason why residual power does not have a consistent good performance
to indicate state error. NEPCE method gives us more inside look into input/output
connection, but it has no linear connection with co-simulation dynamic. Therefore,
it is not appropriate to use residual power as an error indicator.
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Causality-based Extrapolation

7.1 Introduction
In this chapter a so-called causality-based extrapolation method for co-simulation
will be introduced. This method is easy to apply, compute and delivers a fairly good
result.

As we only consider force/displacement model, the numerical error in the simulator
will be larger if the simulator outputs force. To see how it arises, we can formulate
it as follow:
In force/displacement coupling there will always exists a subsystem Si with force
output, i represents the index for the specific subsystem, which can be written as:

żi = Aizi + Biui

yi = Cizi + Diui

(7.1)

where Ci, Di are non-zero matrices.

From local error analysis we know that, output error order has order reduction if
the subsystem is direct feed-through, because:

ε(yn+1) = Cε(zn+1) + Dε(un+1) (7.2)
Therefore, we can use extrapolation polynomial of higher degree when there is more
numerical error (direct feed-through) in the subsystem but lower degree of extrap-
olation polynomial when there is less numerical error (nondirect feed-through).

The causality-based extrapolation has advantages over the mono-extrapolation meth-
ods in terms of:

• Enhance co-simulation accuracy compare to mono-low degree extrapolation.
• Decrease computation costs compare to mono-high degree extrapolation.
• Increase stability region compare to mono-high degree extrapolation

which will be demonstrated in the following sections.

7.2 Causality-based Extrapolation
Definition 7.2.1 (Causality Based Extrapolation). Given a coupled system with
subsystem S1, S2...Sn, where n ∈ N, one use higher degree of input extrapolation
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polynomial, if Di 6= 0; use lower degree of input extrapolation polynomial, if Di = 0.

It is not difficult to see why causality-based extrapolation has larger stability region
than mono-high degree extrapolation co-simulation, since higher degree extrapola-
tion is more sensitive to the step size. Regarding to the computation costs, causality-
based extrapolation use cost less computation time as higher degree extrapolation
costs more computation time than lower degree extrapolation. These will be shown
when we proceed the numerical test. Therefore, we will show how it can enhance
the co-simulation accuracy.

First let us look into the local error, adopting the procedure as we did in equation
(4.5):

ε(zn+1) =
[
z1,n+1
z2,n+1

]
−
[
z̃1,n+1
z̃2,n+1

]

≤∗
[∫ (n+1)H
nH ‖eA1(n+1)H‖dτB1max‖u1(τ)− Φ(u1(τ))‖∫ (n+1)H
nH ‖eA2(n+1)H‖dτB2max‖u2(τ)− Φ(u2(τ))‖

]

≤
[
‖(A1)−1‖O(H)‖B1‖O(Hk+1)
‖(A2)−1‖O(H)‖B2‖O(Hj+1)

]

where ≤∗ suffices if ‖A1‖ ≤ c1, and ‖A2‖ ≤ c2, c1, c2 ∈ N; and k, j is the extrapo-
lation degree in subsystem S1 and S2 respectively.

Similar procedure can be done as in equation (4.10) to compute global error, we
obtain:

E(zn+1) ≤
[
O(Hk+1)
O(Hj+1)

]
(7.3)

In our research model, subsystem S1 is direct feed-through and subsystem S2 is
nondirect feed-through. Applying causality-based extrapolation in our research
model, we set k > j. Then it is straightforward to see that global error in causality-
based extrapolation is lower than global error in mono-low degree j case. Numerical
results will be performed in the next section.

Furthermore causality-based extrapolation can have very good performance like mono-
high degree extrapolation co-simulation, if the following are fulfilled:

‖A2
−1‖≤ ‖A1

−1‖ and ‖B2‖≤ ‖B1‖ (7.4)

In our research model, we use constant input extrapolation polynomial in subsystem
S2, and linear input extrapolation polynomial in subsystem S1. Denote zi,j as state
value in subsystem i, at time j. And the idea can be written as follow:
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z̃1,n+1 = eA1Hz1,n +
∫ (n+1)H

nH
eA1(H−τ)B1

(
ũ1,n +H

(ũ1,n − ũ1,n−1)
H

)
dτ

= eA1H z̃1,n + (K1 + J1)B1ỹ2,n − j1B1ỹ2,n−1,

ỹ1,n+1 = C1z1,n+1 + D1

(
ũ1,n +H

(ũ1,n − ũ1,n−1)
H

)
= (C1(K1(H) + J1(H))B1 + 2D1)ũ1,n − (C1J1(H)B1 + D1)ũ1,n−1 + C1e

A1H z̃1,n

= (C1(K1(H) + J1(H))B1 + 2D1)ỹ2,n − (C1J̃1(H)B1 + D1)ỹ2,n−1 + C1e
A1H z̃1,n

z̃2,n+1 = eA2H z̃2,n +
∫ (n+1)H

nH
eA2((n+1)H−τ)dτB2ũ2,n,

= eA1H z̃2,n + K2B2ỹ1,n,

ỹ2,n+1 = C2z̃2,n+1 + D1ũ2,n

= (C2K2(H)B2 + D2)ỹ1,n + C1e
A2H z̃2,n,

(7.5)
where

K1(H) =
∫ (n+1)H

nH
eA1((n+1)H−τ)dτ

J1(H) =
∫ (n+1)H
nH eA1((n+1)H−τ)τ

H
dτ

K2(H) =
∫ (n+1)H

nH
eA2((n+1)H−τ)dτ

To combine equations (7.5) together, we obtain:

z1,n+1
z2,n+1
y1,n+1
y2,n+1
y1,n
y2,n


=
[
S1,1 S1,2
S2,1 S2,2

]


z1,n
z2,n
y1,n
y2,n

y1,n−1
y2,n−1


(7.6)

where

S1,1 =

 eA1H O O
O eA2H K2B2

C1e
A1H O O



S1,2 =

 (K1(H) + J1(H))B1 O −J1(H)B1
O O O

C1(K1(H) + J1(H))B1 + 2D1 O −C1J1(H)B1 −D1



S2,1 =

O C2e
A2H C2K2(H)B2 + D2

O O I
O O O



S2,2 =

O O O
O O O
I O O
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7. Causality-based Extrapolation

Based on the assumption above, causality-based extrapolation has almost as good
as linear extrapolation co-simulation results, if:

‖A2
−1‖≤ ‖A1

−1‖
and m1 ≤ m2 or kc, dc ≥ 1

(7.7)

7.3 Simulation
Next we will try to test it on the same model where we used in the previous Chapters,
which happens to fulfill our assumption above.

k1 100.0 N/m
d1 100.0 Ns/m
m1 100.0 kg
k2 100.0 N/m
d2 100.0 Ns/m
m2 100.0 kg
kc 60.0 N/m
dc 60.0 Ns/m

H = h 0.01 s

Table 7.1: Parameters set-up 5
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Figure 7.1: Constant, linear and causality-based extrapolation spectrum radius

From Figure 7.1, we can see that causality-based extrapolation has wider stability
region than linear extrapolation but smaller stability region than constant extrapo-
lation.
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7. Causality-based Extrapolation

Apart from stability analysis, we are curious about the causality-based extrapolation
effect in co-simulation as well. Let us choose step size H = 0.05, where it is a
stable step size for constant and linear extrapolation.The error performance for
three different extrapolation are shown in Figure 7.1.
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Figure 7.2: Constant, linear and causality-based extrapolation error analysis

Unsurprisingly that constant extrapolation has several magnitude large error than
the other two, so we try to neglect constant extrapolation and see more details about
it.
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Figure 7.3: Linear and causality-based extrapolation error analysis
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7. Causality-based Extrapolation

As expected causality-based extrapolation delivers result almost as good as linear
extrapolation.

The Matlab computation time for three different extrapolations are listed in the
following table:

constant 1.575269 s
causality-based 2.098703 s

linear 2.738973 s

Table 7.2: Constant, linear and causality-based extrapolation run time

Therefore,
In terms of error performance: constant < causality based < linear
In terms of computation time: constant < causality based < linear
In terms of stability region: linear < causality based < constant

7.4 Conclusions
In causality-based extrapolation method, higher degree extrapolation polynomial
is used only when it is necessary. For instance in output force subsystem, which
means it has higher numeric error. We have seen that causality-based extrapola-
tion has wider stability region and less computation cost than mono-high degree
extrapolation co-simulation. Causality-based extrapolation is always more accurate
than mono-low degree extrapolation, but less accurate than mono-high degree ex-
trapolation. However, this method can be almost as good as mono-high degree
extrapolation in certain models. Hence, causality-based extrapolation can be a good
alternative in terms of stability and performance.
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8
Case Study: EPAS and Chassis

System Co-simulation

8.1 Introduction
Steering system is a basic subsystem of the vehicle chassis system. It can transmit
the steering input from the human driver to the translation of the steering rack
and further into the rotation of the front wheels so that the vehicle motion can be
controlled. The steering system is also an important part that the driver has strong
interaction with. The driver can perceive how the driving condition is and how the
car feels like from the haptic feedback and road disturbance transmitted through
the steering mechanisms.

A basic steering system normally involves with several parts, e.g. a steering wheel,
a steering column, a steering rack and tie-rods. The upstream steering wheel and
column can rotate freely around the rotation axis. The lower end of the steering
column is linked to the rack through a rack-pinion which transforms the rotation
into translation, as well as the torque into force. The downstream tied-rods are the
mechanical linkages between the ends of the rack and the wheel uprights. They
work as pull or push rods to make the wheel rotate around the spindle axis.

In modern steering systems some auxiliary parts have been added to the fundamental
mechanical parts, for example the hydraulic power assisted steering (HPAS) system
or electrically power assisted steering (EPAS) system. Basically an actuator driven
by hydraulic or electric systems is added on the rack or column to provide an assisted
force. With the help of such system the steering effort require from the driver can
be reduced and the steering feeling can be further designed by control algorithms.

8.2 System Modeling

8.2.1 EPAS Modeling
The EPAS mechanical model is constituted by the dynamic equations on the steer-
ing column, rack and the electric motor. The equations are briefly given by following
equations.

• The dynamic equations on the steering column:
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8. Case Study: EPAS and Chassis System Co-simulation

Jcolumnδ̈s = Ts − Tpinion − Tcf
(8.1)

where Jcolumn is the overall inertia of the steering wheel and column, δs and
Ts are the steering angle and torque, Tcf

is the friction torque on the column,
Tpinion is the torque on the torsion spring of pinion, which is further given by:

Tpinion = kt(δs − δp) (8.2)

where kt is the torsion spring stiffness, δp is the output shaft angle which is
related to the rack displacement xR by constant ratio η1.

• The dynamic equations on the steering rack:

mrackẍR = Fpinion + Fassist − Frod − Frf
(8.3)

where mrack is the mass of the rack, xR is the rack displacement, Fpinion is the
force from pinion to the rack and related to the torsion bar torque Tpinion by
constant ratio η1 as well, Frf

is the friction force on the rack.
• The dynamic equations on the electric motor:

Jmotorδ̈m = Te − Tbelt − Tmf
(8.4)

where Jmotor is the motor inertia and δm is the motor rotation angle, Te is the
electric torque by the electric-magnetic field and Tmf

is the friction torque of
the motor, Tbelt is the load torque on the belt driven by the motor, Tbelt can
be calculated by:

Tbelt = kbelt(δm − δr1) + dbelt(δ̇m − δ̇r1)
δr1 = η2δr2

(8.5)

where kbelt and dbelt are the equivalent belt stiffness and damping on the input
shaft, δr2 is the rotation angle of the output shaft, δr1 is the input shaft rota-
tion angle without compliance and their ratio is η2. The output shaft rotation
δr2 is further transmitted to the rack displacement xR through a ball-nut gear
system by a ratio of η3. Similar to other mechanical systems the ball-nut gear
has masses and friction losses, which the detailed equations are not shown in
this thesis.

The friction element Tcf
, Frf

, Tmf
on each part is modeled by the hyperbolic tan-

gent equations so it facilitates the computation comparing with the discontinuous
Coulomb friction model. In addition a dynamic effect has been added so it can
capture the hysteresis effect.

8.2.2 Chassis Modeling
The vehicle chassis system consists of the vehicle body, suspensions in the front,
rear and four wheels. A detailed chassis model can be a complex assembly of rigid
parts which moves according to their constraints. This complex system are usually
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8. Case Study: EPAS and Chassis System Co-simulation

simulated by specific multi-body software such as Adams/Car with its own methods.
For the simplicity of our research work, a simplified chassis model called bicycle
model as shown in Figure 8.1 has been used. The dynamics of the bicycle model is
given by dynamic equilibrium in directions of X, Y and Z (equation (8.6)).

Fig. 8.1: The simplified bicycle model of chassis system

max = m(v̇x − ωzvy) = Ffxv + Frx

may = m(v̇y + ωzvy) = Ffyv + Fry

Jzω̇z = Ffyvlf − Frylr
(8.6)

where m is vehicle mass, Jz is the moment of inertia in Z direction, lf and lr are
the distance front mass center to the front axle and rear axle.

The tire forces on the right-hand side are calculated by linear tire equations:

Ffyv = Cf (−
vy + lfωz

vx
+ δf )

Fry = Cr(−
vy − lrωz

vx
)

(8.7)

where Cf and Cr are the cornering stiffness of front and rear axle, δf is the steering
angle on the front wheel which is proportional to the rack displacement xR in EPAS
model equation (8.3). Similarly, the front tire force Ffyv is transmitted to rack as
tie-rods force Frod equation (8.3) following the similar kinematic relation.

The dynamics equations can be further formulated in state space form which shows
a second-order system behavior. The bicycle model cannot capture the nonlinear
and transient behaviors as the complex multibody model. However, it is fairly good
to represent the main dynamics of the real chassis at high-speed. Since our purpose
is only to verify the co-simulation coupling method, the simplified model has been
adopted to mimic the behavior of the multibody one.
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8. Case Study: EPAS and Chassis System Co-simulation

8.3 System Co-simulation Results

8.3.1 System Coupling
The layout of system coupling has been shown in Figure 8.2. The chassis model
is coupled with steering mechanism by force/displacement or velocity, the steering
mechanism is coupled with the electric motor by torque/ angle or rotation velocity.
The system can be seen as a complicated version multi mass-spring-damper system.
Differently it has nonlinear behavior and gear ratio.

Fig. 8.2: The EPAS and chassis system coupling layout

In practice the complex EPAS model might be provided and validated by the sup-
plier. The vehicle companies have limited access to the detailed models and solvers
of the subsystem due to intellectual property. Co-simulation is necessary to inte-
grate subsystems for a holistic system development.

In theory interdisciplinary problem occurs in the detailed EPAS model and chas-
sis model. The electric model model usually has a much faster dynamics: it has
components with small masses, friction elements, electric system and the control
algorithms which require implicit method or small integration step. The chassis
model, which is a multibody system, has much slower dynamics and the Jacobian
matrix calculation at every integration step is expensive. Calculating the model in
a single simulator at the same step size would be inefficient.

As a result the EPAS model and chassis model are integrated in a multi-rate manner.
The chassis model is simulated at fixed time step of 5 ms and the electric motor is
simulated at fixed time step of 1 ms. The intermediate steering mechanism can be
either modeled together with the chassis or the motor. Thus 4 different possible cases
of interface and causality designs are created as shown in Table8.1. Subsystem S1
and subsystem S2 are implemented on different simulators. The simulation results
of the different cases are given in next section.

Table 8.1: Interface and causality

cases subsystem 1 subsystem 2 force/torque direction
I chassis rack-pinion + EPAS motor to subsystem 2
II chassis rack-pinion + EPAS motor to subsystem 1
III chassis + rack-pinion EPAS motor to subsystem 2
IV chassis + rack-pinion EPAS motor to subsystem 1
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8. Case Study: EPAS and Chassis System Co-simulation

8.3.2 Co-simulation Results
A mono-simulation reference is prepared as well for comparison. A slow sine swept
steer with vehicle speed of 50 km/h has been simulated, divergent results occur in
case II and case IV. The reason of instability is that a less stable interface has been
used according to our previous analysis. Due to the ratio from the belt transmission
and the ball-nut gear transmission, the equivalent masses in subsystem 1 from the
rack mass mrack and chassis lateral dynamics are hugely scaled down and smaller
than the motor inertia Jmotor. As a result case II and case IV become unstable as
expected when the gear ratio values η2 and η3 have been reduced.
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Fig. 8.3: Characteristic curve of steering torque to steering angle

On the contrary the force or torque is applied to the subsystem 2 in case I and case
III and the simulations are stable. The resulting steering torque to steering wheel
angle characteristic is plotted in Figure 8.3. The normalized root-mean-square error
(RMSE) of several state variables are given in Table 8.2. Case I shows slightly less
errors than case III. To be clear that, RMSE results indicate the offset errors ( due
to modular integration in weakly coupled system) and noise results.

Table 8.2: RMSE of co-simulation results in 5ms

variables case I case III
steering wheel angle 0.0178 0.1042
assist force 0.0431 0.1313
motor torque 0.2412 0.2963
motor speed 1.4101 3.9603
rack velocity 5.9446 6.1630

Remark. Root-mean-square error (RMSE) represents the sample standard deviation
of the differences date set, generally it can be calculated through:

RMSE =
√∑n

i=1(xi − yi)2

n
, x, y represent two different data sets.
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8. Case Study: EPAS and Chassis System Co-simulation

To further understand the robustness of case I and case III. Different integration
step for subsystem 1 has been tested. The state of rack speed has shown different
behaviors as shown in the Figure 8.4, Figure 8.5 and Figure 8.6. At 1 ms both
case I and case III have shown a consistent results with the reference because the
macro-time step is small. At 5 ms and 10 ms, case I shows more noise results and
case III is more robust even with a small offset. Combining RMSE analysis and
noise results, case I can have slightly smaller maximum error value than case III but
the noisy behavior make the simulation result difficult to use.

From this comparison we can see that case III is more preferred than case I in
our research model. The reason might be that the compliance of the transmission
belt is a softer interface than the tie-rods. But it should be noticed that the mass
difference on both sides also influences the robustness comprehensively. It is intuitive
to consider that case I has large step-wise force input to the rack directly which is
avoided in case III by different interface selection.
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Fig. 8.4: Rack speed in co-simulation with subsystem 1 simulated at 1 ms
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Fig. 8.5: Rack speed in co-simulation with subsystem 1 simulated at 5 ms
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Fig. 8.6: Rack speed in co-simulation with subsystem 1 simulated at 10 ms

8.4 Conclusions
From the case study of chassis and EPAS co-simulation, we can see that the previous
guideline from our research model can also apply to complex cases. It provided very
useful and intuitive information when simulators are prepared in complex system
development.
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9
Conclusions

9.1 Summary
Co-simulation is an effective way to solve the multidisciplinary problems. Although
the model and calculation algorithm in each simulator are inaccessible due to the
intellectual property, we have proven that the coupling methods have more effect in
co-simulation accuracy then choices of numerical methods inside the simulators in
usual cases. The numerical drawback of modular integration is shown not only in
error dynamics but also in the change of stability. The weakly coupled system has
smaller stability region than the corresponding strongly coupled system. In addi-
tion, stability region in the weakly coupled system decreases when the extrapolation
polynomial degree increases. It further decreases, when there is explicit numerical
method involved. Based on a clear background of the weakly coupled system, we
have given a preference on causality and interface design for our research model
with numerical tests validation. Besides, we have presented that NEPCE (energy
preserving coupling element) method has a limited usage in our research model by
presenting theoretical results and simulation results. Furthermore, without violating
the intellectual property of co-simulation we have presented a relative economical,
fast and accurate method called causality-based extrapolation for force/displacement
coupling model. In certain cases, it is shown that causality-based extrapolation is
almost as accurate as mono-high degree extrapolation in co-simulation. Started
from theoretical research we came back to a real industrial problem, which is a
weakly coupled model of EPAS and chassis systems. It has shown a proper design
of causality and interface has strong connection with the stability and robustness of
the research model.

9.2 Limitation and Future Work
Due to the time limitation, only the Lagrange based extrapolation technique and
explicit numerical methods were investigated in this thesis. Hermite based extrapo-
lation technique can be discussed and compared with the Lagrange based extrapola-
tion technique. We can further investigate the change of stability in weakly coupled
system when there is implicit method (or A-stable method) involved. As A-stable
methods have no step size restriction in mono-simulation, it is expected that A-
stable methods do not effect the stability of weakly coupled system. Causality-based
extrapolation can be further improved to be an optimal extrapolation method. For
example, in continuous time-variant model the choice of extrapolation degree should
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9. Conclusions

be not only based on the causality design but also matrices representation numeric
value.
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A
Appendix 1

The first function is used to obtain the strongly coupled solution of our research
model.
The second function is used to obtain the weakly coupled solution (without the
usage of numerical method) of our research, where the input value is approximated
by constant, linear, quadratic and causality-based extrapolation. In addition, the
residual power is computed at every time step.
The third function is used to obtain the spectral radius of our weakly coupled model
with and without the usage of numerical method, where the input value is approxi-
mated by constant, linear and quadratic extrapolation.

%% ana l y t i c a l s o l u t i o n func t i on
function [ z ] = exa c t s o l ( k1 , k2 , k_c , d1 , d2 , d_c ,m1,m2, t_end ,H)
% H i s macro s t ep s i z e
% t_end t o t a l s imu la t i on time

% de f i n e matrix r e p r e s en t a t i on s f o r our research model
%∗∗∗∗∗ de f i n e materix A_1 and A_2
A_1 = [0 ,1 , ; − ( k1+k_c) /m1, −(d1+d_c) /m1 ] ;
A_2 = [0 ,1 ;− ( k2/m2) , −(d2/m2) ] ;
%∗∗∗∗∗ de f i n e materix B_1 and B_2
B_1 = [ 0 , 0 ; ( k_c/m1) , (d_c/m1) ] ;
B_2 = [0 0 ;0 (1/m2) ] ;
% ∗∗∗∗∗ de f i n e materix C_1 and C_2
C_1 = [0 0 ; k_c , d_c ] ;
C_2 = [ 1 , 0 ; 0 , 1 ] ;
% ∗∗∗∗∗ de f i n e materix D_1 and D_2
D_1 = [0 0;−k_c , −d_c ] ;
D_2 = [0 0 ;0 0 ] ;

O = zeros ( 2 , 2 ) ;
A1 = [A_1 O;O A_2 ] ;
B1 = [B_1 O;O B_2 ] ;
C1 = [C_1 O;O C_2 ] ;
D1 = [D_1 O;O D_2 ] ;

I = eye (4 ) ;
L=[0 0 1 0 ;0 0 0 1 ;1 0 0 0 ;0 1 0 0 ] ; % L i s coup l ing
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A. Appendix 1

matrix
time = 0 ;
z ( : , 1 ) = [ 1 ; 1 ; 1 ; 1 ] ;% i n i t i a l i z e s t a t e va lue

for i t = 1 : t_end/H
S = A1+B1∗L∗ inv ( I − D1∗L) ∗C1 ;
z ( : , i t +1)= expm( time∗S) ∗z ( : , 1 ) ;
time=time+H;

end
end

%% co−s imu la t i on performance func t i on
function [ z_con , z_lin , z_qua , p_res_con , p_res_lin , p_res_qua ] =

ErrorPerformance (H, t_end , k1 , k2 , k_c , d1 , d2 , d_c ,m1,m2)
%micro s t ep s i z e=macro s t ep s i z e

%H i s macro s t ep s i z e
%t_end t o t a l s imu la t i on time

% de f i n e matrix r e p r e s en t a t i on s f o r our research model
%∗∗∗∗∗ de f i n e materix A_1 and A_2
A_1 = [0 ,1 , ; − ( k1+k_c) /m1, −(d1+d_c) /m1 ] ;
A_2 = [0 ,1 ;− ( k2/m2) , −(d2/m2) ] ;
%∗∗∗∗∗ de f i n e materix B_1 and B_2
B_1 = [ 0 , 0 ; ( k_c/m1) , (d_c/m1) ] ;
B_2 = [0 0 ;0 (1/m2) ] ;
% ∗∗∗∗∗ de f i n e materix C_1 and C_2
C_1 = [0 0 ; k_c , d_c ] ;
C_2 = [ 1 , 0 ; 0 , 1 ] ;
% ∗∗∗∗∗ de f i n e materix D_1 and D_2
D_1 = [0 0;−k_c , −d_c ] ;
D_2 = [0 0 ;0 0 ] ;

z ( : , 1 ) = [ 1 ; 1 ; 1 ; 1 ]% i n i t i a l i z e s t a t e va lue

%i n i t i a l i z e u_con_1 = [ x2 ; x2 ’ ]
u_con_1 ( : , 1 ) = [ z (3 , 1 ) ; z ( 4 , 1 ) ] ; %input va lue in

subsystem 1 under cons tant e x t r a p o l a t i o n
u_lin_1 = u_con_1 ; %input va lue in subsystem 1 under

l i n e a r e x t r a p o l a t i o n
u_qua_1 = u_con_1 ; %input va lue in subsystem 1 under

quadra t i c e x t r a p o l a t i o n

%u_con_2 = [ 0 ; f ] , where f = k1 ( x1−x2 )+d1 ( x1 ’−x2 ’ )
u_con_2 ( : , 1 ) = [ 0 ; k_c∗( z (1 , 1 )−z (3 , 1 ) )+d_c∗( z (2 , 1 )−z (4 , 1 )

) ] ;
u_lin_2 = u_con_2 ;
u_qua_2 = u_con_2 ;
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%i n i t i a l i z e z_con_1= [ x1 ; x1 ’ ]
z_con_1 ( : , 1 ) = [ z (1 , 1 ) ; z ( 2 , 1 ) ] ;
z_lin_1 = z_con_1 ;
z_qua_1 = z_con_1 ;

%i n i t i a l i z e z_con_2 = [ x2 ; x2 ’ ]
z_con_2 ( : , 1 ) = [ z (3 , 1 ) ; z ( 4 , 1 ) ] ;
z_lin_2 = z_con_2 ;
z_qua_2 = z_con_2 ;

%i n i t i a l i z e y_con_1 = [ 0 ; f ]
y_con_1 ( : , 1 ) = [ 0 ; k_c∗( z (1 , 1 )−z (3 , 1 ) )+d_c∗( z (2 , 1 )−z (4 , 1 )

) ] ;
y_lin_1 = y_con_1 ;
y_qua_1 = y_con_1 ;

%i n i t i a l i z e y_con_2 = [ x2 ; x2 ’ ]
y_con_2 ( : , 1 ) = [ z (3 , 1 ) ; z ( 4 , 1 ) ] ;
y_lin_2 = y_con_2 ;
y_qua_2 = y_con_2 ;

% i n i t i a l i z e r e s i d u a l power
p_res_con = zeros (1 , nH_total ) ;
p_res_con (1 , 1 ) = u_con_1 (2 , 1 ) ∗y_con_1 (2 , 1 )−u_con_2 (2 , 1 )

’∗y_con_2 (2 , 1 ) ;
p_res_lin = p_res_con1 ;
p_res_qua = p_res_con1 ;

i t = 1 ;

while i t <=t_end/H

%Exac t l y s o l v e DE + Constant input approximation
% ∗∗∗ subsystem1
k_con_1=@( tau )expm(A_1∗ ( ( i t +1)∗H−tau ) ) ;
K_con_1=i n t e g r a l (k_con_1 , i t ∗H, ( i t +1)∗H, ’

ArrayValued ’ , t rue ) ;
z_con_1 ( : , i t +1) = expm(A_1∗H) ∗z_con_1 ( : , i t ) +

K_con_1∗B_1∗u_con_1 ( : , i t ) ;
y_con_1 ( : , i t +1) = C_1∗z_con_1 ( : , i t +1) + D_1∗

u_con1_1 ( : , i t ) ;
% ∗∗∗ subsystem2
k_con_2=@( tau )expm(A_2∗ ( ( i t +1)∗H−tau ) ) ;
K_con_2=i n t e g r a l (k_con_2 , i t ∗H, ( i t +1)∗H, ’

ArrayValued ’ , t rue ) ;
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z_con_2 ( : , i t +1) = expm(A_2∗H) ∗z_con_2 ( : , i t ) +
K_con_2∗B_2∗u_con_2 ( : , i t ) ;

y_con_2 ( : , i t +1) = C_2∗z_con_2 ( : , i t +1) + D_2∗
u_con_2 ( : , i t ) ;

% re s i d u a l power
p_res_con ( : , i t +1) = u_con_1 ( : , i t ) ’∗y_con_1 ( : , i t

+1)−y_con_2 ( : , i t +1) ’∗u_con_2 ( : , i t ) ;

% update input va lue
u_con_1 ( : , i t +1) = y_con_2 ( : , i t +1) ;
u_con_2 ( : , i t +1) = y_con_1 ( : , i t +1) ;

i f i t >2

%Exac t l y s o l v e DE + Linear input
approximation

% ∗∗∗ subsystem1
k_lin_1=@( tau )expm(A_1∗ ( ( i t +1)∗H−tau ) ) ∗( tau−

i t ∗H) ;
K_lin_1=i n t e g r a l ( k_lin_1 , i t ∗H, ( i t +1)∗H, ’

ArrayValued ’ , t rue ) ;
z_lin_1 ( : , i t +1) = expm(A_1∗H) ∗z_lin_1 ( : , i t )

+ K_con_1∗B_1∗u_lin_1 ( : , i t )+K_lin_1∗B_1∗(
u_lin_1 ( : , i t )−u_lin_1 ( : , i t −1) ) /H;

y_lin_1 ( : , i t +1) = C_1∗z_lin_1 ( : , i t +1) + D_1
∗( u_lin_1 ( : , i t )+u_lin_1 ( : , i t )−u_lin_1 ( : ,
i t −1) ) ;

% ∗∗∗ subsystem2
k_lin_2=@( tau )expm(A_2∗ ( ( i t +1)∗H−tau ) ) ∗( tau−

i t ∗H) ;
K_lin_2=i n t e g r a l ( k_lin_2 , i t ∗H, ( i t +1)∗H, ’

ArrayValued ’ , t rue ) ;
z_lin_2 ( : , i t +1) = expm(A_2∗H) ∗z_lin_2 ( : , i t )

+ K_con_2∗B_2∗u_lin_2 ( : , i t )+K_lin_2∗B_2∗(
u_lin_2 ( : , i t )−u_lin_2 ( : , i t −1) ) /H;

y_lin_2 ( : , i t +1) = C_2∗z_lin_2 ( : , i t +1) + D_2
∗( u_lin_2 ( : , i t )+u_lin_2 ( : , i t )−u_lin_2 ( : ,
i t −1) ) ;

% re s i d u a l power
p_res_lin ( : , i t +1) = u_lin_1 ( : , i t ) ’∗ y_lin_1

( : , i t +1)−y_lin_2 ( : , i t +1) ’∗ u_lin_2 ( : , i t ) ;

% update input va lue
u_lin_1 ( : , i t +1) = y_lin_2 ( : , i t +1) ;
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u_lin_2 ( : , i t +1) = y_lin_1 ( : , i t +1) ;

%Exac t l y s o l v e DE + Quadratic input
approximation

% ∗∗∗ subsystem1
k_qua_1=@( tau )expm(A_1∗ ( ( i t +1)∗H−tau ) ) ∗( tau−

i t ∗H) ∗( tau−( i t −1)∗H) ;
K_qua_1=i n t e g r a l (k_qua_1 , i t ∗H, ( i t +1)∗H, ’

ArrayValued ’ , t rue ) ;
z_qua_1 ( : , i t +1) = expm(A_1∗H) ∗z_qua_1 ( : , i t )

+ K_con_1∗B_1∗u_qua_1 ( : , i t )+K_lin_1∗B_1∗(
u_qua_1 ( : , i t )−u_qua_1 ( : , i t −1) ) /H +
K_qua_1∗B_1∗ ( . 5∗ ( u_qua_1 ( : , i t )−2∗u_qua_1
( : , i t −1)+u_qua_1 ( : , i t −2) ) ) /(H^2) ;

y_qua_1 ( : , i t +1) = C_1∗z_qua_1 ( : , i t +1) + D_1
∗(u_qua_1 ( : , i t )+u_qua_1 ( : , i t )−u_qua_1 ( : ,
i t −1)+.5∗(u_qua_1 ( : , i t )−2∗u_qua_1 ( : , i t −1)
+u_qua_1 ( : , i t −2) ) ) ;

% ∗∗∗ subsystem2
k_qua_2=@( tau )expm(A_2∗ ( ( i t +1)∗H−tau ) ) ∗( tau−

i t ∗H) ∗( tau−( i t −1)∗H) ;
K_qua_2=i n t e g r a l (k_qua_2 , i t ∗H, ( i t +1)∗H, ’

ArrayValued ’ , t rue ) ;
z_qua_2 ( : , i t +1) = expm(A_2∗H) ∗z_qua_2 ( : , i t )

+ K_con_2∗B_2∗u_qua_2 ( : , i t )+K_lin_2∗B_2∗(
u_qua_2 ( : , i t )−u_qua_2 ( : , i t −1) ) /H +
K_qua_2∗B_2∗ ( . 5∗ ( u_qua_2 ( : , i t )−2∗u_qua_2
( : , i t −1)+u_qua_2 ( : , i t −2) ) ) /(H^2) ;

y_qua_2 ( : , i t +1) = C_2∗z_qua_2 ( : , i t +1) + D_2
∗(u_qua_2 ( : , i t )+u_qua_2 ( : , i t )−u_qua_2 ( : ,
i t −1)+.5∗(u_qua_2 ( : , i t )−2∗u_qua_2 ( : , i t −1)
+u_qua_2 ( : , i t −2) ) ) ;

% re s i d u a l power
p_res_qua ( : , i t +1) = u_qua_1 ( : , i t ) ’∗y_qua_1

( : , i t +1)−y_qua_2 ( : , i t +1) ’∗u_qua_2 ( : , i t ) ;

% update input va lue
u_qua_1 ( : , i t +1) = y_qua_2 ( : , i t +1) ;
u_qua_2 ( : , i t +1) = y_qua_1 ( : , i t +1) ;

e l s e i f i t==2

%Exac t l y s o l v e DE + Linear input
approximation

% ∗∗∗ subsystem1
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k_lin_1=@( tau )expm(A_1∗ ( ( i t +1)∗H−tau ) ) ∗( tau−
i t ∗H) ;

K_lin_1=i n t e g r a l ( k_lin_1 , i t ∗H, ( i t +1)∗H, ’
ArrayValued ’ , t rue ) ;

z_lin_1 ( : , i t +1) = expm(A_1∗H) ∗z_lin_1 ( : , i t )
+ K_con_1∗B_1∗u_lin_1 ( : , i t )+K_lin_1∗B_1∗(
u_lin_1 ( : , i t )−u_lin_1 ( : , i t −1) ) /H;

y_lin_1 ( : , i t +1) = C_1∗z_lin_1 ( : , i t +1) + D_1
∗( u_lin_1 ( : , i t )+u_lin_1 ( : , i t )−u_lin_1 ( : ,
i t −1) ) ;

% ∗∗∗ subsystem2
k_lin_2=@( tau )expm(A_2∗ ( ( i t +1)∗H−tau ) ) ∗( tau−

i t ∗H) ;
K_lin_2=i n t e g r a l ( k_lin_2 , i t ∗H, ( i t +1)∗H, ’

ArrayValued ’ , t rue ) ;
z_lin_2 ( : , i t +1) = expm(A_2∗H) ∗z_lin_2 ( : , i t )

+ K_con_2∗B_2∗u_lin_2 ( : , i t )+K_lin_2∗B_2∗(
u_lin_2 ( : , i t )−u_lin_2 ( : , i t −1) ) /H;

y_lin_2 ( : , i t +1) = C_2∗z_lin_2 ( : , i t +1) + D_2
∗( u_lin_2 ( : , i t )+u_lin_2 ( : , i t )−u_lin_2 ( : ,
i t −1) ) ;

% re s i d u a l power
p_res_lin ( : , i t +1) = u_lin_1 ( : , i t ) ’∗ y_lin_1

( : , i t +1)−y_lin_2 ( : , i t +1) ’∗ u_lin_2 ( : , i t ) ;

% update input va lue
u_lin_1 ( : , i t +1) = y_lin_2 ( : , i t +1) ;
u_lin_2 ( : , i t +1) = y_lin_1 ( : , i t +1) ;

%Exac t l y s o l v e DE + Quadratic input
approximation

% ∗∗∗ subsystem1
z_qua_1 ( : , i t +1) = expm(A_1∗H) ∗z_qua_1 ( : , i t )

+ K_con_1∗B_1∗u_qua_1 ( : , i t ) ;
y_qua_1 ( : , i t +1) = C_1∗z_qua_1 ( : , i t +1) + D_1

∗(u_qua_1 ( : , i t ) ) ;
% ∗∗∗ subsystem2
z_qua_2 ( : , i t +1) = expm(A_2∗H) ∗z_qua_2 ( : , i t )

+ K_con_2∗B_2∗u_qua_2 ( : , i t ) ;
y_qua_2 ( : , i t +1) = C_2∗z_qua_2 ( : , i t +1) + D_2

∗(u_qua_2 ( : , i t ) ) ;

% update input va lue
u_qua_1 ( : , i t +1) = y_qua_2 ( : , i t +1) ;
u_qua_2 ( : , i t +1) = y_qua_1 ( : , i t +1) ;
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e l s e i f i t==1

%Exac t l y s o l v e DE + Linear input
approximation

% ∗∗∗ subsystem1
z_lin_1 ( : , i t +1) = expm(A_1∗H) ∗z_lin_1 ( : , i t )

+ K_con_1∗B_1∗u_lin_1 ( : , i t ) ;
y_lin_1 ( : , i t +1) = C_1∗z_lin_1 ( : , i t +1) + D_1

∗( u_lin_1 ( : , i t ) ) ;
% ∗∗∗ subsystem2
z_lin_2 ( : , i t +1) = expm(A_2∗H) ∗z_lin_2 ( : , i t )

+ K_con_2∗B_2∗u_lin_2 ( : , i t ) ;
y_lin_2 ( : , i t +1) = C_2∗z_lin_2 ( : , i t +1) + D_2

∗( u_lin_2 ( : , i t ) ) ;

% re s i d u a l power
p_res_lin ( : , i t +1) = u_lin_1 ( : , i t ) ’∗ y_lin_1

( : , i t +1)−y_lin_2 ( : , i t +1) ’∗ u_lin_2 ( : , i t ) ;

% update input va lue
u_lin_1 ( : , i t +1) = y_lin_2 ( : , i t +1) ;
u_lin_2 ( : , i t +1) = y_lin_1 ( : , i t +1) ;

%Exac t l y s o l v e DE + Quadratic input
approximation

% ∗∗∗ subsystem1
z_qua_1 ( : , i t +1) = expm(A_1∗H) ∗z_qua_1 ( : , i t )

+ K_con_1∗B_1∗u_qua_1 ( : , i t ) ;
y_qua_1 ( : , i t +1) = C_1∗z_qua_1 ( : , i t +1) + D_1

∗(u_qua_1 ( : , i t ) ) ;
% ∗∗∗ subsystem2
z_qua_2 ( : , i t +1) = expm(A_2∗H) ∗z_qua_2 ( : , i t )

+ K_con_2∗B_2∗u_qua_2 ( : , i t ) ;
y_qua_2 ( : , i t +1) = C_2∗z_qua_2 ( : , i t +1) + D_2

∗(u_qua_2 ( : , i t ) ) ;

% re s i d u a l power
p_res_qua ( : , i t +1) = u_qua_1 ( : , i t ) ’∗y_qua_1

( : , i t +1)−y_qua_2 ( : , i t +1) ’∗u_qua_2 ( : , i t ) ;

% update input va lue
u_qua_1 ( : , i t +1) = y_qua_2 ( : , i t +1) ;
u_qua_2 ( : , i t +1) = y_qua_1 ( : , i t +1) ;

end
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i t = i t + 1 ;

end

z_con ( 1 , : ) = z_con_1 ( 1 , : ) ;%x1 disp lacement
z_con ( 2 , : ) = z_con_1 ( 2 , : ) ;%x1 speed
z_con ( 3 , : ) = z_con_2 ( 1 , : ) ;%x2 disp lacement
z_con ( 4 , : ) = z_con_2 ( 2 , : ) ;%x2 speed

z_l in ( 1 , : ) = z_lin_1 ( 1 , : ) ;%x1 disp lacement
z_l in ( 2 , : ) = z_lin_1 ( 2 , : ) ;%x1 speed
z_l in ( 3 , : ) = z_lin_2 ( 1 , : ) ;%x2 disp lacement
z_l in ( 4 , : ) = z_lin_2 ( 2 , : ) ;%x2 speed

z_qua ( 1 , : ) = z_qua_1 ( 1 , : ) ;%x1 disp lacement
z_qua ( 2 , : ) = z_qua_1 ( 2 , : ) ;%x1 speed
z_qua ( 3 , : ) = z_qua_2 ( 1 , : ) ;%x2 disp lacement
z_qua ( 4 , : ) = z_qua_2 ( 2 , : ) ;%x2 speed

end

%% Spec t r a l rad ius func t i on
function [ spectra l_con , sp e c t r a l_ l i n , spectral_qua ,

spectral_mix ] = Spec t r a l ( k1 , k2 , d1 , d2 , k_c , d_c ,m1,m2,H)
% de f i n e matrix r e p r e s en t a t i on s f o r our research model
%∗∗∗∗∗ de f i n e materix A_1 and A_2
A_1 = [0 ,1 , ; − ( k1+k_c) /m1, −(d1+d_c) /m1 ] ;
A_2 = [0 ,1 ;− ( k2/m2) , −(d2/m2) ] ;
%∗∗∗∗∗ de f i n e materix B_1 and B_2
B_1 = [ 0 , 0 ; ( k_c/m1) , (d_c/m1) ] ;
B_2 = [0 0 ;0 (1/m2) ] ;
% ∗∗∗∗∗ de f i n e materix C_1 and C_2
C_1 = [0 0 ; k_c , d_c ] ;
C_2 = [ 1 , 0 ; 0 , 1 ] ;
% ∗∗∗∗∗ de f i n e materix D_1 and D_2
D_1 = [0 0;−k_c , −d_c ] ;
D_2 = [0 0 ;0 0 ] ;

O = zeros ( 2 , 2 ) ;
A1 = [A_1 O;O A_2 ] ;
B1 = [B_1 O;O B_2 ] ;
C1 = [C_1 O;O C_2 ] ;
D1 = [D_1 O;O D_2 ] ;

% Constant e x t r a p o l a t i o n + DE so l v ed e x a c t l y
k=@( tau )expm(A1∗(H−tau ) ) ;
K=i n t e g r a l (k , 0 ,H, ’ ArrayValued ’ , t rue ) ;
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A_Con=[expm(A1∗H) K∗B1∗L ;
C1∗expm(A1∗H) C1∗K∗B1∗L+D1∗L ] ;

% Constant e x t r a p o l a t i o n + DE so l v ed by FE
AA_Con=[ I4+H∗A1 H∗B1∗L ;C1∗( I4+H∗A1) C1∗H∗B1∗L+D1∗L ] ;

% Linear e x t r a p o l a t i o n + DE so l v ed e x a c t l y
j=@( tau )expm(A1∗(H−tau ) ) ∗ tau/H;
J=i n t e g r a l ( j , 0 ,H, ’ ArrayValued ’ , t rue ) ;
A_Lin=[expm(A1∗H) K∗B1∗L+J∗B1∗L −J∗B1∗L ;

C1∗expm(A1∗H) C1∗(K+J ) ∗B1∗L+2∗D1∗L −C1∗J∗B1∗L−D1∗L ;
O4 I4 O4 ] ;

% Linear e x t r a p o l a t i o n + DE so l v ed by FE
AA_Lin=[ I4+H∗A1 2∗H∗B1∗L −H∗B1∗L ;

C1∗( I4+H∗A1) 2∗C1∗H∗B1∗L+2∗D1∗L −H∗C1∗B1∗L−D1∗L
O4 I4 O4 ] ;

% Quadratic e x t r a p o l a t i o n + DE so l v ed e x a c t l y
g=@( tau )expm(A1∗(H−tau ) ) ∗ tau ∗( tau+H) /(2∗H^2) ;
G=i n t e g r a l ( g , 0 ,H, ’ ArrayValued ’ , t rue ) ;
A_Qua=[expm(A1∗H) (K+J+G) ∗B1∗L −(J+2∗G) ∗B1∗L G∗B1∗L ;

C1∗expm(A1∗H) C1∗(K+J+G) ∗B1∗L + 2.5∗D1∗L −(J+2∗G) ∗B1
∗L−2∗D1∗L G∗B1∗L+0.5∗D1∗L

O4 I4 O4 O4
O4 O4 I4 O4 ] ;

% Quadratic e x t r a p o l a t i o n + DE so l v ed by FE
AA_Qua=[ I4+A1∗H 2.5∗B1∗H∗L −2∗B1∗H∗L 0.5∗B1∗H∗L ;

C1∗( I4+H∗A1) 2 . 5∗ (B1∗H∗L+D1∗L) −2∗(B1∗H∗L+D1∗L)
0 . 5∗ (B1∗H∗L+D1∗L) ;

O4 I4 O4 O4
O4 O4 I4 O4 ] ;

% Causa l i ty−based e x t r a p o l a t i o n + DE so l v ed e x a c t l y
p_1=@( tau )expm(A_1∗(H−tau ) ) ;
P_1=i n t e g r a l (p_1 , 0 ,H, ’ ArrayValued ’ , t rue ) ;
pp1_1=@( tau )expm(A_1∗(H−tau ) ) ∗ tau/H;
PP1_1=i n t e g r a l (pp1_1 , 0 ,H, ’ ArrayValued ’ , t rue ) ;
p1_2=@( tau )expm(A_2∗(H−tau ) ) ;
P1_2=i n t e g r a l (p1_2 , 0 ,H, ’ ArrayValued ’ , t rue ) ;
A1_Mix=[expm(A_1∗H) O O (P_1+PP1_1) ∗B_1 O −PP1_1∗B_1;

O expm(A_2∗H) P1_2∗B_2 O O O;
C_1∗expm(A_1∗H) O O C_1∗(P_1+PP1_1) ∗B_1+2∗D_1 O −C_1

∗PP1_1∗B_1−D_1;
O C_2∗expm(A_2∗H) C_2∗P1_2∗B_2+D_2 O O O;
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O O I2 O O O;
O O O I2 O O] ;

spectra l_con (1 )=max(abs ( eig (A_Con) ) ) ;
spectra l_con (2 )=max(abs ( eig (AA_Con) ) ) ;

s p e c t r a l_ l i n (1 )=max(abs ( eig (A_Lin) ) ) ;
s p e c t r a l_ l i n (2 )=max(abs ( eig (AA_Lin) ) ) ;

spectra l_qua (1 )=max(abs ( eig (A_Qua) ) ) ;
spectra l_qua (2 )=max(abs ( eig (AA_Qua) ) ) ;

spectral_mix=max(abs ( eig (A1_Mix) ) ) ;
end
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